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New Methods in Iris Recognition
John Daugman

Abstract—This paper presents the following four advances in
iris recognition: 1) more disciplined methods for detecting and
faithfully modeling the iris inner and outer boundaries with active
contours, leading to more flexible embedded coordinate systems;
2) Fourier-based methods for solving problems in iris trigonome-
try and projective geometry, allowing off-axis gaze to be handled
by detecting it and “rotating” the eye into orthographic perspec-
tive; 3) statistical inference methods for detecting and excluding
eyelashes; and 4) exploration of score normalizations, depending
on the amount of iris data that is available in images and the
required scale of database search. Statistical results are presented
based on 200 billion iris cross-comparisons that were generated
from 632 500 irises in the United Arab Emirates database to
analyze the normalization issues raised in different regions of
receiver operating characteristic curves.

Index Terms—Active contours, biometrics, Gabor wavelets,
gaze correction, iris recognition, score normalization, texture.

I. INTRODUCTION

THE ANTICIPATED large-scale applications of biometric
technologies such as iris recognition are driving inno-

vations at all levels, ranging from sensors to user interfaces,
to algorithms and decision theory. At the same time as these
good innovations, possibly even outpacing them, the demands
on the technology are getting greater. Today, many countries
are considering or have even announced procurement of bio-
metrically enabled national identity (ID) card schemes, one of
whose purposes will be to detect and prevent multiple IDs.
Achieving that purpose will require, at least at the time when
cards are issued and IDs are registered, an offline “each-against-
all” cross-comparison. In effect then the number of biometric
comparisons that must be performed scales as the square of the
population. The decision confidence levels that will be required
to keep the false match rate (FMR) negligible, despite such vast
numbers of opportunities to make false matches, can only be
described as astronomical.

At the other end of the conceptual receiver operating char-
acteristic (ROC) curve from the FMR = 0 limit, much greater
demands are also being placed on the false non-match rate
(FnMR). This is partly because national-scale deployments
must be as inclusive as possible; hence, it is unacceptable
to exclude members of outlier populations who, for various
reasons, may have a nonstandard eye appearance (e.g., non-
round iris, coloboma, oddly shaped pupil, drooping eyelids,
or much eyelash occlusion) or who simply have difficulty
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presenting to the camera (e.g., nystagmus or deviated gaze).
The demands against false non-matches are also being raised
by the development of more tolerant and fluid user interfaces,
which aim to replace the “stop-and-stare” camera interface with
iris recognition on the move, off-axis, and at a distance [9].

These two trends seem to require, paradoxically, that de-
cision criteria be used which are simultaneously much more
conservative and liberal than those that are presently deployed.
The purpose of this paper is to present four new advances in
iris recognition that aim to simultaneously improve at both
extremes. Sections II–IV present new methods of image
processing for iris segmentation, allowing flexible shapes and
coordinate systems. The images used in these sections come
from the National Institute of Standards and Technology
(NIST) “Iris Challenge Evaluation” (ICE-1), and their file
numbers are cited to facilitate comparative work. Sections V
and VI analyze alternative score normalization rules that are
adapted for differently sized databases, using results from
200 billion iris cross-comparisons.

II. ACTIVE CONTOURS AND GENERALIZED COORDINATES

Iris recognition begins with finding an iris in an image, de-
marcating its inner and outer boundaries at the pupil and sclera,
detecting the upper and lower eyelid boundaries if they occlude,
and detecting and excluding any superimposed eyelashes or
reflections from the cornea or eyeglasses. These processes may
collectively be called segmentation. Precision in assigning the
true inner and outer iris boundaries, even if they are partly
invisible, is important because the mapping of the iris in a
dimensionless (i.e., size invariant and pupil dilation invariant)
coordinate system is critically dependent on this. Inaccuracy in
the detection, modeling, and representation of these boundaries
can cause different mappings of the iris pattern in its extracted
description, and such differences could cause failures to match.

It is natural to start by thinking of the iris as an annulus.
Soon, one discovers that the inner and outer boundaries are
usually not concentric. A simple solution is then to create
a nonconcentric pseudo-polar coordinate system for mapping
the iris, relaxing the assumption that the iris and pupil share
a common center and requiring only that the pupil is fully
contained within the iris. This “doubly dimensionless pseudo-
polar coordinate system” was the basis of my original paper
on iris recognition [2] and patent [3], and this iris coordinate
system was incorporated into International Organization for
Standardization (ISO) Standard 19794-6 for iris data [7]. Soon
one also discovers that, often, the pupil boundary is noncircular,
and usually, the iris outer boundary is noncircular. Performance
in iris recognition is significantly improved by relaxing both
of those assumptions, replacing them with more disciplined
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Fig. 1. Active contours enhance iris segmentation, because they allow for
noncircular boundaries and enable flexible coordinate systems. The box in
the lower left-hand corner shows curvature maps for the inner and outer iris
boundaries, which would be flat and straight if they were circles. Here, the outer
boundary (upper plot) is particularly noncircular. Dotted curves in the box and
on the iris are Fourier series approximations. This iris is ICE-1 file 239261.

methods for faithfully detecting and modeling those boundaries
whatever their shapes are and defining a more flexible and
generalized coordinate system on their basis.

Because the iris outer boundary is often partly occluded by
eyelids, and the iris inner boundary may be partly occluded by
reflections from illumination, and sometimes both boundaries
also by reflections from eyeglasses, it is necessary to fit flex-
ible contours that can tolerate interruptions and continue their
trajectory across them on a principled basis, which is somehow
driven by the data that exist elsewhere. A further constraint is
that both the inner and outer boundary models must form closed
curves. A final goal is that we would like to impose a constraint
on smoothness based on the credibility of any evidence for
nonsmooth curvature.

An excellent way to achieve all of these goals is to describe
the iris inner and outer boundaries in terms of “active contours”
based on discrete Fourier series expansions of the contour
data. By employing Fourier components whose frequencies
are integer multiples of 1/(2π), closure, orthogonality, and
completeness are ensured. Selecting the number of frequency
components allows control over the degree of smoothness
that is imposed and over the fidelity of the approximation. In
essence, truncating the discrete Fourier series after a certain
number of terms amounts to low-pass filtering the boundary
curvature data in the active-contour model.

These methods are illustrated in Figs. 1 and 2. The lower
left-hand corner of each figure shows two “snakes,” each con-
sisting of a fuzzy ribbon-like data distribution and a dotted
curve, which is a discrete Fourier series approximation to the
data, including continuation across gap interruptions. The lower
snake in each snake box is the curvature map for the pupil
boundary, and the upper snake is the curvature map for the iris
outer boundary, with the endpoints joining up at the six o’clock
position. The interruptions correspond to detected occlusions
by eyelids, which are indicated by separate splines in both
images, or by specular reflections. The data plotted as the gray

Fig. 2. Active contours enhance iris segmentation, because they allow for
noncircular boundaries and enable flexible coordinate systems. The box in
the lower left-hand corner shows curvature maps for the inner and outer iris
boundaries, which would be flat and straight if boundaries were circles. Here,
the pupil boundary (lower plot) is particularly noncircular. Dotted curves in the
box and on the iris are Fourier series approximations. This iris is ICE-1 file
240461.

level for each snake is the image gradient in the radial direction.
Thus, the relative thickness of each snake roughly represents the
sharpness of the corresponding radial edge. If an iris boundary
were well-described as a circular edge, then the corresponding
snake in its box should be flat and straight. In general, this is
not the case.

The dotted curve that is plotted within each snake, as well
as superimposed on the corresponding loci of points in the iris
image, is a discrete Fourier series approximation to the data.
(In both figures, detected eyelid occlusions are also demarcated
by white pixels, and they interrupt the corresponding outer
boundary data snake, although the estimated contour continues
through such interruptions.) The estimation procedure is to
compute a Fourier expansion of the N regularly spaced angular
samples of radial gradient edge data {rθ} for θ = 0 to θ =
N − 1. A set of M discrete Fourier coefficients {Ck}, for k = 0
to k = M − 1, is computed from the data sequence {rθ} as
follows:

Ck =
N−1∑
θ=0

rθe
−2πikθ/N . (1)

Note that the zeroth-order coefficient or “DC term” C0

extracts information about the average curvature of the (pupil
or outer iris) boundary, or in other words, about its radius when
it is approximated as just a simple circle.

From these M discrete Fourier coefficients, an approxima-
tion to the corresponding iris boundary (now without inter-
ruptions and at a resolution determined by M ) is obtained
as the new sequence {Rθ} for θ = 0 to θ = N − 1, which is
expressed as follows:

Rθ =
1
N

M−1∑
k=0

Cke
2πikθ/N . (2)
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As is generally true of active-contour methods [1], [8], there
is a tradeoff between how precisely one wants the model to
fit all the data (improved by increasing M ) versus how much
one wishes to impose constraints such as keeping the model
simple and of low-dimensional curvature (achieved by reducing
M ; e.g., M = 1 enforces a circular model). Thus, the number
M of activated Fourier coefficients is a specification for the
degrees of freedom in the shape model. It has been found that
a good choice of M for capturing the true pupil boundary with
appropriate fidelity is M = 17, whereas a good choice for the
iris outer boundary where the data is often much weaker is
M = 5. It is also useful to impose monotonically decreasing
weights on the computed Fourier coefficients {Ck} as further
control on the resolution of the approximation {Rθ} ≈ {rθ},
which amounts to low-pass filtering the curvature map in its
Fourier representation. Altogether, these manipulations, partic-
ularly the two different choices for M , implement the computer
vision principle that strong data (the pupil boundary) may be
modeled with only weak constraints, whereas weak data (the
outer boundary) should be modeled with strong constraints.

The active-contour models for the inner and outer iris bound-
aries support an isometric mapping of the iris tissue between
them, regardless of the actual shapes of the contours. Suppose
the contour model for the pupillary boundary consists of Carte-
sian coordinates (xp(θ), yp(θ)) with arc parameter θ ∈ [0, 2π]
and the outer boundary of the iris at the sclera is described by
the contour model (xs(θ), ys(θ)). Then, a shape-flexible, size-
invariant, and pupil-dilation-invariant dimensionless coordinate
system for the iris portion of the image I(x, y) can be repre-
sented by the following normalized mapping:

I(x(r, θ), y(r, θ)) → I(r, θ) (3)

where the dimensionless parameter r ∈ [0, 1] spans the unit
interval, and

[
x(r, θ)
y(r, θ)

]
=

[
xp(θ) xs(θ)
yp(θ) ys(θ)

] [
1 − r
r

]
. (4)

The execution time for the entire subroutine that fits active
contours to both the inner and outer iris boundaries is just
3.5 ms on a 3-GHz PC with optimized code. The benefit of the
new adaptive coordinate system based on the active contours
may be gauged by the improvement that it offers in recognition
performance on difficult image databases. The NIST ICE-1 iris
database contains many difficult images, producing a high false
reject rate (FRR), which degrades the equal error rate (EER).
Algorithms that yielded an EER of 1% (i.e., EER = 0.01) when
using enforced circular models improved tenfold to an EER of
0.1% (i.e., EER = 0.0011) on the same database by adopting
this active-contours approach instead.

Because of the flexibility of this method and its ability to
establish a continuous deformation mapping between arbitrary
shapes, we may call this a “generalized embedded coordinate
system,” or perhaps, more evocatively, we may use the name
“Faberge coordinates” [10].

III. FOURIER-BASED TRIGONOMETRY

AND OFF-AXIS GAZE

A limitation of current iris recognition cameras is that they
require an on-axis image of an eye, which is usually achieved
through what may be called a “stop-and-stare” interface, in
which a user must align her optical axis with the camera’s
optical axis. This is not as flexible or fluid as it might be.
Moreover, sometimes, the standard cameras acquire images for
which the on-axis assumption is not true. For example, the
NIST iris images that were made available and used for testing
in ICE-1 contained several images with very deviated gaze,
probably because the user’s gaze was distracted by an adjacent
monitor.

The on-axis requirement can be relaxed by correcting the
projective deformation of the iris when it is imaged off-axis,
provided that one can reliably estimate the actual parameters of
gaze. Dorairaj et al. [5] approached this by seeking the gaze
parameters that optimize the value of an integro-differential
operator [2], [4], which detects circular boundaries. The gaze
parameters that we seek include two spherical angles for eye
pose, but the projective geometry also depends on the distance
between the eye and the camera, which may be unknown,
and on the surface curvature of the iris, which is generally
not zero. If simplifying assumptions and approximations are
made about the latter factors, then a simple affine projective
transformation may suffice to make the iris recognizable against
itself as imaged in other poses, orthographic or not.

The essence of the problem is then estimating the two angles
of gaze relative to the camera. Eye morphology is so variable
in terms of visible sclera and eyelid occlusion that it is unlikely
that such factors could support robust estimation, at least when
only one eye is imaged; although it must be noted that humans
are very impressively skilled somehow at monitoring each
other’s gaze direction. In the absence of solving that mystery,
an obvious alternative approach would be to assume that an
orthographic image of the iris should reveal a circular pupil;
therefore, detecting ellipticity of the pupil indicates off-axis
image acquisition, and estimating the elongation and orienta-
tion of that ellipse would yield the two parameters of gaze
deviation, modulo π in direction. We present here a somewhat
more robust variant of this idea, which does not assume that
the true pupil’s shape is circular when orthographically viewed.
This method of estimating gaze (and, thus, correcting for off-
axis imaging) uses a new approach that may be called “Fourier-
based trigonometry.”

The method arises from the observation that Fourier series
expansions of the X and Y coordinates of the detected pupil
boundary contain shape distortion information that is related
to deviated gaze, within the relationships among the real and
imaginary coefficients of the lowest frequency term of each of
those series expansions. In the special case that the true pupil
boundary when viewed orthographically is really a circle, this
method reduces to the simpler “ellipticity” method outlined
above.

We begin by considering that simple special case of a circular
pupil. Let X(t) and Y (t) be the parameterized coordinate
vectors of the pupil boundary, so the range of t is from 0 to
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2π in one cycle around this closed curve. Clearly, in the case
of a circular pupil with radius A, which is origin centered
for simplicity, these functions are just X(t) = A cos(t) and
Y (t) = A sin(t). In the case of deviated gaze along a cardinal
axis, and assuming that the camera distance is large compared
with the iris diameter so there is simple foreshortening along
the cardinal axis, these functions become X(t) = A cos(t) and
Y (t) = B sin(t), where A �= B. Finally, if the gaze deviation
is not along a cardinal axis but rather in direction θ, then these
functions take the more general conic form for an oriented
ellipse, which is described as follows:

X(t)=[A cos2 θ+B sin2 θ] cos(t)+[(B−A) cos θ sin θ] sin(t)

(5)

Y(t)=[(B−A) cos θ sin θ] cos(t)+[B cos2 θ+A sin2 θ] sin(t).

(6)

It is worth noting that the information that we seek about
gaze deviation, namely, the direction and magnitude of the
deviation, are contained in the form of Fourier coefficients
on the harmonic functions cos(t) and sin(t) that represent
in their linear combination the contour data X(t) and Y (t).
Specifically, the lowest complex-valued coefficient in a Fourier
series expansion of the empirical function X(t) contains as its
real and imaginary parts the coefficients a and b, respectively,
which specify the phase in (5) as follows:

a =A cos2 θ + B sin2 θ (7)

b = (B −A) cos θ sin θ. (8)

Likewise, the lowest complex-valued coefficient in a Fourier
series expansion of the empirical function Y (t) contains as its
real and imaginary parts the coefficients c and d, respectively,
which specify the phase in (6) as follows:

c =(B −A) cos θ sin θ (9)

d =B cos2 θ + A sin2 θ. (10)

Thus, we can derive the gaze deviation parameters that we
seek just by computing the relevant Fourier coefficients of the
empirical contour functions X(t) and Y (t). This estimation
process is independent of the higher order Fourier coefficients
that will exist when the pupil has a shape that is more complex
and irregular than a circle. The method is not restricted to such
an assumption about a circular shape.

Algebraic manipulation extracts from the four empirical
Fourier coefficients a, b, c, and d the gaze deviation parameters
that we need. It should be noted that although the right-hand
sides of (8) and (9) above appear to be identical functions of the
desired parameters, these equations express constraints based
on different empirical data. Quantities a and b are obtained from
X(t), whereas c and d are obtained from Y (t). The computed
direction of gaze deviation (modulo π) essentially has the form
of Fourier phase information, i.e.,

θ = 0.5 arctan
(
−b− c

a− d

)
(11)

Fig. 3. Fourier-based trigonometry enables gaze estimation and transforma-
tion of an image of an eye with deviated gaze into one apparently looking
directly at the camera. Without this transformation, such images would fail to
be matched. This iris is ICE-1 file 244858.

and the magnitude of the gaze deviation in direction θ is
expressed not as an angle but as the projective aspect ratio
γ = B/A, which gives the second affine transformation
parameter as

γ =
(a + d) cos(2θ) + a− d

(a + d) cos(2θ) − a + d
. (12)

By estimating these parameters, the “Fourier-based
trigonometry” allows the projective geometric deformation
caused by the gaze deviation to be reversed by an affine
transformation of the off-axis image. This is illustrated in
Fig. 3, which shows image 244858 from the NIST ICE-1
database in the upper panel and the same eye image after
“correcting” the gaze deviation by an affine transformation
with the extracted parameters (θ, γ) in the lower panel. The
result of the transformation is to convert such images into
apparent orthographic form, appearing to rotate the eyes in
their sockets, making them recognizable against other images
of the same eye. A limitation of this method is that the affine
transformation assumes that the iris is planar, whereas, in fact,
it has some curvature.
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Fig. 4. Statistical inference of eyelashes from the iris pixel histogram and
determination of a threshold for excluding the lashes (labeled in white) from
influencing the IrisCode. This iris is ICE-1 file 239766.

IV. EXCLUDING EYELASHES BY STATISTICAL INFERENCE

One of the ways in which iris image data may be corrupted,
besides reflections, camera noise, and eyelid occlusion, is oc-
clusion by eyelashes (usually from the upper eyelid). These
often have random and complex shapes, combining with each
other to form masses of intersecting elements rather than just
simple hair-like strands that might be amenable to detection by
elementary shape models. They can be the strongest signals in
the iris image in terms of contrast or energy, and they could
dominate the IrisCode with spurious information if not detected
and excluded from the encoded data.

The inference of eyelashes and their exclusion from the
IrisCode can be handled by statistical estimation methods that
essentially depend on determining whether the distribution of
iris pixels is multimodal. If the lower tail of the iris pixel
histogram supports a hypothesis of multimodal mixing, then
an appropriate threshold can be computed, and pixels outside
it can be excluded from influencing the IrisCode.

Fig. 4 illustrates this method. The panel in its lower-right
corner superimposes four histograms, all computed from just
the pixels in the segmented iris portion of the image between
the detected eyelids. The solid gray distribution is a histogram
of all the iris pixels (ranging from 0 to 255). The two dotted
outline histograms break this up into two components, one for
just the lower part of the iris (white dotted curve), and the
other for just the upper part of the iris (black dotted curve).
The solid black histogram is the difference between these
two histograms. We are interested in whether the cumulatives
from the left of this difference histogram pass a test of being
statistically separable from the mother (solid gray) distribution.
If so, based on significant Z-score deviations between their
respective quartiles, the hypothesis that the iris contains some
superimposed eyelash pixels may be accepted.

The vertical dashed line in the histogram panel indicates
the computed threshold where such a hypothesis in this case
(for this image) is supported. If that hypothesis also passes a
further test on the deviation between the threshold quartile and

the median of the mother distribution, thus confirming that not
only are there two populations but also that they are sufficiently
different from each, then the threshold is accepted, and pixels
below it are deemed to arise from superimposed eyelashes.

In the iris image itself in Fig. 4, these detected eyelashes
within the iris have now been marked as white pixels. Their
positions are recorded in a mask array that prevents them from
influencing the data that encode the iris texture.

V. SCORE NORMALIZATIONS

Iris recognition works by performing a test of statistical in-
dependence between two IrisCodes, in order to decide whether
they arise from the same or from different irises [2]–[4]. This
test of statistical independence is equivalent to tossing a coin
many times, with each toss representing a comparison between
two bits in the two IrisCodes, in order to decide whether or not
the coin is fair by delivering roughly 50–50 outcomes. If such a
result is obtained, then the irises can be judged as independent;
but if there is a great preponderance of, e.g., “heads,” which
means that a large majority of corresponding bit pairs agreed,
then that is strong evidence that the IrisCodes came from the
same iris. But what is the effect of greatly varying numbers
of such “coin tosses” in these correlated Bernoulli trials, due
to varying amounts of iris data being visible and available for
comparison?

Areas of the iris that are obscured by eyelids, eyelashes,
or reflections from eyeglasses, or that have low contrast or a
low signal-to-noise ratio, are detected by the image-processing
algorithms and prevented from influencing the iris comparisons
through bitwise mask functions. Whereas the IrisCode bits
themselves contain phase data [2]–[4] that are XORed (

⊗
)

to detect disagreement and thereby determine similarity be-
tween two irises, the bits to be considered are first selected by
ANDing (

⋂
) each pair with the associated mask functions of

both irises to ensure their validity and their significance. The
norms (‖ ‖) of the resultant bit vector and of the ANDed mask
vectors are then measured in order to compute a raw Hamming
distance HDraw, as the fraction of meaningful bits that disagree
between two irises whose two phase code bit vectors are de-
noted {codeA, codeB} and whose mask bit vectors are denoted
{maskA, maskB}. Thus, we have

HDraw =
‖(codeA

⊗
codeB)

⋂
maskA

⋂
maskB‖

‖maskA
⋂

maskB‖ . (13)

Usually, the total number of bit pairs that are available
for comparison, i.e., ‖maskA

⋂
maskB‖, is nearly a thousand.

However, if one of the irises has, for example, almost complete
occlusion of its upper half by a drooping upper eyelid, and
if the other iris that is being compared with it has almost
complete occlusion of its lower half, then the common area
available for comparison may be almost nil. In such cases,
returning to the coin-tossing analogy, our test for the “fairness”
of the coin (i.e., statistical independence of the two IrisCodes by
finding a nearly 50–50 result) will be based upon a very small
number of Bernoulli trials indeed. Therefore, the interpretation
of any given deviation from the 50–50 outcome that is expected
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for independence must take into account the total amount of
comparison data that were available. This is the role of score
normalization.

A natural choice for the score normalization rule would be
to rescale all deviations from a 0.5 raw Hamming distance in
proportion to the square root of the number of bits that were
compared when obtaining that score. The reason for such a
rule is that the expected standard deviation in the distribution
of Bernoulli trial outcomes (expressed as a fraction of the n
Bernoulli trials having a given outcome) is σ = (pq/n)1/2,
where p and q are the respective outcome probabilities (both
nominally 0.5 in this case). Thus, decision confidence levels can
be held constant, irrespective of how many bits n were actually
compared, by mapping each raw Hamming distance HDraw into
a normalized score HDnorm using a rescaling rule like

HDnorm = 0.5 − (0.5 − HDraw)
√

n

911
. (14)

This normalization should transform all samples of scores ob-
tained when comparing different eyes into samples drawn from
the same binomial distribution, whereas the raw scores HDraw

might be samples from many different binomial distributions
having standard deviations σ that are dependent on the number
of bits n that were actually available for comparison. This nor-
malization maintains constant confidence levels for decisions
using a given Hamming distance threshold, regardless of the
value of n. The scaling parameter 911 is the typical number
of bits compared (unmasked) between two different irises, as
estimated from one particular (early) database. Today, based
on much larger databases, it appears that a better choice for
that parameter may be about 960. In any case, when comparing
different normalization rules in this paper, this rule (14) will be
termed “SQRT normalization.”

The benefit of SQRT normalization is to prevent false
matches arising by chance due to few bits being compared (just
as few coin tosses may well yield all “heads”). However, the
cost of this normalization for n is that same-eye matches are
penalized when few bits are available for comparison; even
if they all agreed, so that HDraw = 0, the resulting HDnorm

may be above the acceptance threshold, and the match would
be rejected. This penalty is apparent by comparing false re-
ject performance with and without score normalization on the
NIST ICE-1 iris database, which consists of a few thousand
iris images that NIST released together with “ground-truth”
information. This image database contained many very difficult
and corrupted images, often in poor focus and with much eyelid
occlusion, and sometimes with the iris partly outside the image
frame. In the region of the receiver operating characteristic
(ROC) curve [tradeoff between FRR and false accept rate
(FAR)], where one tolerates rather high FAR such as one in
1000 or one in 10 000, as shown in Fig. 5, the cost of score
normalization (Algorithm 1) on FRR is clear. The EER (where
FRR = FAR) is about 0.001 without score normalization, but
0.002 with normalization. Similarly, at other nominal points of
interest in this region of the ROC curve, as tabulated within
Fig. 5, the cost of score normalization is roughly a doubling
in FRR.

Fig. 5. Comparison of two algorithms on the NIST ICE-1 database: with
and without score normalization (i.e., Algorithms 1 and 2, respectively). Solid
squares mark their EER points. In this region of the ROC curve near EERs,
where the required FMRs are not very demanding, best performance is achieved
without score normalization.

However, in much more aggressive regions of the ROC,
where one demands an FAR of perhaps one in a billion for
applications such as national database search or “all-against-
all” cross-comparisons over large databases to discover any
multiple IDs, the benefits of score normalization become ap-
parent. It is informative to first examine what occurs in this
region without score normalization. We must use a much larger
database than the released part of the NIST ICE-1 database,
because the latter allows only a few million cross-comparisons
between different eyes. We must explore the behavior when
many billions of cross-comparisons are done. This is possi-
ble with the United Arab Emirates (UAE) database of N =
632 500 IrisCodes all obtained from different eyes, enabling
a total of N · (N − 1)/2 = 200 billion different pair compar-
isons. Based on this complete set of 2 × 1011 pairings, Table I
shows the observed FMRs for unnormalized scores HDraw as a
function of both the decision threshold and the number of bits
compared.

It is clear from Table I that false matches are much more
likely (at any Hamming distance criterion) when fewer bits
were the basis of the comparison. For example, at a criterion
of HDraw = 0.285, using unnormalized scores, a false match
would be 1000 times more likely when only 400 bits were
the basis of the comparison than if 1000 bits were avail-
able for comparison. This illustrates the importance of score
normalization.

For the same UAE database, Fig. 6 compares the FMRs
for the three approaches to normalizing scores based on the
number of bits compared. The upper plot takes no account of
the number of bits, so it has the highest FMRs. (It should be
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TABLE I
FMR WITHOUT SCORE NORMALIZATION: DEPENDENCE ON THE NUMBER OF BITS COMPARED AND THE CRITERION

Fig. 6. Comparisons of three approaches to score normalization based on
200 billion iris cross-comparisons using the UAE database of 632 500
IrisCodes. FMRs are plotted in semilogarithmic coordinates versus decision
criterion. The range of the ordinate in this plot spans a factor of 300 000 to 1.

noted that, in Fig. 6, all iris comparisons were done in each
of several relative orientations to compensate for possible tilt,
making all FMRs about seven times worse than the case in
Table I because of the increased number of opportunities.) The
bottom curve in Fig. 6 shows the benefit of score normalization
using the SQRT rule given in (14), causing the observed FMR to
plummet to one in 200 billion at a criterion around HDnorm =
0.262. This performance is about 2000 times better than without
the normalization (note the semilogarithmic coordinates). The
middle curve represents a hybrid normalization rule that is a
linear combination of the other two, taking into account the
number of bits compared only when in a certain range.

We learn from these comparisons of alternative normaliza-
tion rules that performance in different regions of the ROC
curve is optimized by different rules. In the relatively unde-
manding domain highlighted in Fig. 5, near the EER point

Fig. 7. Distribution of HDnorm normalized similarity scores (14) for
200 billion different pairings of iris patterns, without relative rotations. The
solid curve fitting the histogram is a binomial density (15).

of the ROC curve and involving only a small database, best
performance was achieved without score normalization because
that amounts to a penalty on good matches when few bits were
compared. However, in the vastly more demanding domain
of national-scale databases that involve possibly astronomical
numbers of cross-comparisons, as investigated in Fig. 6 with
200 billion iris comparisons, normalizing scores by the number
of bits on which they were based is a critical necessity.

VI. ADAPTING FOR LARGE-SCALE DATABASES

Using the SQRT normalization rule, Fig. 7 presents a his-
togram of all 200 billion cross-comparison similarity scores
among the 632 500 different irises in the UAE database. The
vast majority of IrisCodes from different eyes disagreed in
roughly 50% of their bits, as expected, since the bits are
equiprobable and uncorrelated between different eyes [2], [4].
Very few pairings of IrisCodes could disagree in fewer than
35% or more than 65% of their bits, as is evident from the
distribution.
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The solid curve that fits the data very closely in Fig. 7 is
a binomial probability density function. This theoretical form
was chosen because comparisons between bits from different
IrisCodes are Bernoulli trials, or conceptually “coin tosses,”
and Bernoulli trials generate binomial distributions. If one
tossed a coin whose probability of “heads” is p in a series of
N independent tosses and counted the number m of “heads”
outcomes, and if one tallied this fraction x = m/N in a large
number of such repeated runs of N tosses, then the expected
distribution of x would be as per the solid curve in Fig. 7. Thus,
we have

f(x) =
N !

m!(N −m)!
pm(1 − p)(N−m). (15)

The analogy between tossing coins and comparing bits be-
tween different IrisCodes is deep but imperfect, because any
given IrisCode has internal correlations arising from iris fea-
tures, especially in the radial direction [2]. Further correlations
are introduced because the patterns are encoded using 2-D
Gabor wavelet filters [4], whose low-pass aspect introduces
correlations in amplitude, and whose bandpass aspect intro-
duces correlations in phase, both of which linger to an extent
that is inversely proportional to the filter bandwidth. The effect
of these correlations is to reduce the value of the distribution
parameter N to a number that is significantly smaller than
the number of bits that are actually compared between two
IrisCodes; N becomes the number of effectively independent
bit comparisons. The value of p is very close to 0.5 (empirically
0.499 for the UAE database), because the states of each bit are
equiprobable a priori, and so any pair of bits from different
IrisCodes are equally likely to agree or disagree.

The binomial functional form that very well describes the
distribution of normalized similarity scores for comparisons
between different iris patterns is the key to the robustness of
these algorithms in large-scale search applications. The tails
of the binomial attenuate extremely rapidly, because of the
dominating central tendency caused by the factorial terms in
(15). Rapidly attenuating tails are critical for a biometric to
survive the vast numbers of opportunities to make false matches
without actually making any, when applied in an “all-against-
all” mode of searching for matching or multiple IDs, as con-
templated in some national ID card projects in the U.K. and
elsewhere in Europe.

The cumulatives (up to various thresholds) under the left tail
of the distribution of normalized similarity scores for different
irises compared at multiple relative tilts reveal the FMRs among
the 200 billion iris comparisons if the identification decision
policy used those thresholds. These rates are provided in
Table II. Although the smallest observed match was around
0.26, the table has been extended down to 0.22 using the theo-
retical cumulative of the extreme value distribution of multiple
samples from the binomial (15) plotted as the solid curve in
Fig. 5 in order to extrapolate the theoretically expected FMRs
for such decision policies. These FMRs, whether observed or
theoretical, also serve as confidence levels that can be associ-
ated with a given quality of match using the score normalization
rule (14). In this analysis, only a single eye is presumed to be

TABLE II
FMRs WITH HDnorm SCORE NORMALIZATION: DEPENDENCE ON THE

CRITERION (200 BILLION COMPARISONS, UAE DATABASE)

presented. Under the assumption of independence between the
right- and left-eye IrisCodes, which is strongly supported by the
available data (see [4, Fig. 6]), the confidence levels in Table II
could be multiplied together for matches that were obtained
with both eyes.

The requirements of biometric operation in the “identifi-
cation” mode by exhaustively searching a large database are
vastly more demanding than merely operating in a one-to-one
“verification” mode (in which an ID must first be explicitly
asserted, which is then verified in a yes/no decision by com-
parison against just the single nominated template).

If P1 is the false match probability for single one-to-one
verification trials, then (1 − P1) is the probability of not mak-
ing a false match in single comparisons. The likelihood of
successfully avoiding this in each of N independent attempts
is therefore (1 − P1)N ; hence, PN , which is the probability
of making at least one false match when searching a database
containing N different patterns, is given by

PN = 1 − (1 − P1)N . (16)

By observing the approximation that PN ≈ NP1 for small
P1 � 1/N � 1, when searching a database of size N , an
identifier needs to be roughly N times better than a verifier
to achieve comparable odds against making false matches. In
effect, as the database grows larger and larger, the chance of
making a false match also grows almost in proportion. These
chances also grow in proportion to the number of independent
searches that are conducted against the database. To success-
fully survive so many opportunities to make false matches, the
decision threshold policy must be adaptive to both of these
factors. Fortunately, because of the underlying binomial com-
binatorics, the algorithms with score normalization generate
extremely rapidly attenuating tails for the HDnorm distribution.
This felicitous property enables very large databases to be
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accommodated and large numbers of searches to be conducted
against them. The rule to be followed for decision policy thresh-
old selection is to multiply the size of the enrolled database
times the number of searches to be conducted against it in a
given interval of time and then to determine from Table II what
Hamming distance threshold will correspond to the risk level
that is deemed to be acceptable. Again, Table II assumes that
only a single eye is used for matching.

For example, in the U.K., with a national adult population of
about 45 million, an “all-against-all” comparison of IrisCodes,
which totals to about 1015 pairings, as envisioned to search
for any multiple IDs when issuing the proposed biometric ID
cards, could be performed using an HDnorm decision threshold
as high as 0.22 without expecting to make any false matches.
At this threshold, in order to keep the FnMR acceptably low
(e.g., below 1%), systems will need to be more tolerant than
the currently deployed ones in order to handle difficult image
capture conditions, or unusual eyes and nonideal presentations.
It is hoped that the new image-processing algorithms intro-
duced in Sections II–IV of this paper using active contours,
deviated gaze correction, and other improvements can help in
achieving those requirements. A further advance that allows
IrisCodes to be indexed by their collisions with substrings,
thereby replacing the need for exhaustive search (which is time
consuming in large databases) by instead almost instantaneous
direct addressing with IrisCodes, is the subject of a separate
paper [6].
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