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Effect of Severe Image Compression on
Iris Recognition Performance

John Daugman and Cathryn Downing

Abstract—We investigate three schemes for severe compression
of iris images in order to assess what their impact would be on
recognition performance of the algorithms deployed today for
identifying people by this biometric feature. Currently, standard
iris images are 600 times larger than the IrisCode templates
computed from them for database storage and search; but it is
administratively desired that iris data should be stored, trans-
mitted, and embedded in media in the form of images rather than
as templates computed with proprietary algorithms. To reconcile
that goal with its implications for bandwidth and storage, we
present schemes that combine region-of-interest isolation with
JPEG and JPEG2000 compression at severe levels, and we test
them using a publicly available database of iris images. We show
that it is possible to compress iris images to as little as 2000 bytes
with minimal impact on recognition performance. Only some 2%
to 3% of the bits in the IrisCode templates are changed by such
severe image compression, and we calculate the entropy per code
bit introduced by each compression scheme. Error tradeoff curve
metrics document very good recognition performance despite
this reduction in data size by a net factor of 150, approaching a
convergence of image data size and template size.

Index Terms—Biometrics, image compression, image segmenta-
tion, iris recognition, JPEG2000, region of interest, receiver oper-
ating characteristic (ROC) curves.

I. INTRODUCTION

DATA compression is one of several disciplines rooted in
information theory having relevance to biometric tech-

nologies for identifying persons, and its significance extends
beyond the practical matter of data-storage requirements. One
of Shannon’s fundamental insights in formulating information
theory [1] was that the entropy of a random variable measures
simultaneously its information content (expressed in bits) and
its compressibility without loss (to the same number of bits).
This link between entropy, informativeness, and compress-
ibility extends also to other measures that apply to biometrics.
For example, the relative entropy between two distributions is
one way to measure how well a biometric technique separates
samples from the same versus different people. The amount
of variability in a given biometric across a population, or in
different samples from the same source, is also captured by
conditional entropies, with a larger entropy signifying greater
randomness. Finally, the similarity between pairs of biometric
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templates is reflected by their mutual information: the extent
to which knowledge of one sample predicts the other. All of
these properties are deeply connected with the compressibility
of biometric data.

An extreme variant of Shannon’s insight was expressed by
Kolmogorov [2] in his notion of minimal description length,
which defined the complexity of a string of data as the length of
the shortest binary program that could generate the data. Cre-
ating that program “compresses” the data; executing that pro-
gram “decompresses” (generates) the data. Fractal image com-
pression is based on this idea; and a data string is said to be Kol-
mogorov incompressible if the shortest program that can gen-
erate it is essentially a data statement containing it, so the data
is then its own shortest possible description. Within biometrics,
this notion has appeared implicitly under a different rubric in
work on synthetic biometrics, seeking methods for artificially
synthesizing a biometric image that is indistinguishable in prac-
tice from some actual biometric image. Pioneering work in this
direction was done by Terzopoulos and Waters [3] for facial im-
ages and sequences, by Cappelli et al. [4] for fingerprints, and by
Cui et al. [5] and by Zuo et al. [6] for iris images. In the future,
such programs for generating particular biometric images might
therefore serve as ways to “compress” them in Kolmogorov’s
sense; and one might even anticipate biometric recognition by
comparison of the synthesizing programs. In this work, we in-
vestigate a question somewhat related to Kolmogorov’s query
about the relation between data length and its descriptive length.
We ask how severely can raw image data be compressed without
significantly affecting the biometric templates computed from
the data, or thereby the computation of identity. In the case of
iris recognition, we demonstrate compressibility of image data
down to the order of size of the standard template itself, with
minimal impact on performance.

For reasons more mundane and related to policy confor-
mance, data compression in biometrics is also important
because governments, regulatory bodies, and international stan-
dards organizations often specify that biometric data must be
recorded and stored in image form, rather than in (or in addition
to) postprocessed templates that may depend on proprietary
algorithms. The reasons are to try to achieve interoperability
and vendor neutrality. Enrolling or storing raw image data also
makes such deployments and databases more “future proof”
since they can benefit from inevitable future improvements
in recognition algorithms, simply by enrolling anew the raw
data. Finally, a directive for standards bodies, such as the
International Organization for Standardization (ISO) [7] and
industry consortia, such as the Registered Traveller Interoper-
ability Consortium (RTIC) [8] that embed biometric data into
smart cards, is to avoid incorporating patented techniques into
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data formats and standards, as that would effectively confer
monopolies. But storing images instead of templates can imply
almost a thousand-fold increase in data size, with consequences
such as greatly increased data transmission times and inability
to embed the image data in the allocated space in smart cards,
which in the case of the RTIC specification [8] for iris images is
a mere 4000 bytes per eye. Hence, questions of compressibility
and about the effects of lossy image compression on recognition
performance become critical.

In summary, both for fundamental scientific reasons related
to information theory, and also for practical reasons related to
standards, data formats, and storage media, it is important to
ask: How much raw image data is really needed for biometric
recognition technologies to perform effectively? A watershed
event in fingerprint technology occurred in 1993 when the FBI
adopted the wavelet scalar quantization (WSQ) protocol [9] to
compress vast libraries of fingerprint photograph cards that were
digitized to 500 dpi, previously stored in acres of filing cabi-
nets, to achieve compression ratios of typically 10:1 or 15:1.
In the relatively new field of iris recognition [10], [11], a pio-
neering study of iris compressibility was undertaken by Rakshit
and Monro [12] showing that if segmented and normalized iris
data were extracted in polar form, this “unwrapped” polar data
structure could be compressed to 2560 bytes or even less without
impairing recognition performance. In this paper, we investi-
gate three compression schemes that retain the native rectilinear
image array format but compress it to as little as 2000 bytes
while still allowing very good recognition performance on the
difficult Iris Challenge Evaluation (ICE-1) iris database avail-
able from the National Institute of Standards and Technology
(NIST) [13]. We also document interoperability between those
images subjected to the compression regimes and their uncom-
pressed form, and we find that on average only 2% to 3% of the
bits within the computed 512-byte iris templates (“IrisCodes”)
are affected even when the net image reduction factor reaches
150:1.

II. SIMPLE CROPPING AND JPEG COMPRESSION

An obvious first step to reduce the image data size from
the standard iris image format of 640 480 pixels with 8-bit
grayscale data per pixel, consuming 307 200 bytes, is to crop
the image to a smaller region containing the iris, and then to
JPEG compress this cropped image. We ran the eye-finding
part of the standard algorithms [11] that are used in all current
public deployments of iris recognition, on all images in the
publicly available NIST [13] ICE1Exp1 database, which con-
tains 1425 iris images from 124 subjects with “ground-truth”
information given about which images were taken from the
same iris. This database contains many images in which the
iris is partly outside the full (640 480) image frame, or is
severely defocused, occluded by eyelids or printed patterned
contact lenses, interlace corrupted, or with the gaze of the eye
directed away from the camera. The real-time algorithms for
iris finding and encoding at video rates (30 frames/s) have
been described before in detail [11] and will not be reviewed
again here. The algorithms correctly localized the iris in all
images and produced from each one a new cropped image of
320 320 pixels with the iris centered in it. For those images

Fig. 1. ROC curves in semilogarithmic coordinates for the NIST [13]
ICE1Exp1 iris database, showing the impact of simple data reduction methods
on performance. The black curve shows baseline performance on the original
database of full-size images. The red curve shows the effect of simple cropping
to 320� 320 pixels after automatically locating and centering each iris,
followed by JPEG compression at QF = 70. The blue and green curves show
the effects of more severe JPEG compression at QF = 30 and QF = 20.

in which the iris was partly outside the original image frame,
the missing pixels were replaced with black ones. For those
in which the algorithms detected that the gaze was directed
away from the camera, as gauged by projective deformation
of the eye shape, a corrective affine transformation was au-
tomatically applied, which effectively “rotated” the eye in its
socket into orthographic perspective on-axis with the camera.
The new gallery of 1425 cropped and centered iris images was
then JPEG compressed [14], [15] by various factors using the
Linux tool with several specified quality factors (QF).
These lossily compressed galleries were then decompressed
using Linux tool to recover image arrays. The standard
algorithms were then run on all of the decompressed images
to relocalize the iris, generate IrisCodes (phase bit sequences)
[11], and then compare each IrisCode with all others, from both
the same and different eyes, to measure the loss in recognition
performance against baseline performance for the same original
(uncompressed and uncropped) images.

Biometric recognition performance is usually measured by
generating receiver operating characteristic (ROC) curves,
which plot the tradeoff between two error rates [false accept
rate (FAR) and false reject rate (FRR)] as the decision threshold
for similarity scores is varied from conservative to liberal. It
is common to tabulate specific points on such tradeoff curves,
such as the FRR when the decision threshold causes an FAR
of 1 in 1000 or of 1 in 10 000, and the point at which the two
error rates are equal, , the equal error
rate. Such ROC curves and tabulations are presented in Fig. 1
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for the NIST [13] ICE-1 gallery, both for baseline performance
(uncompressed and uncropped: black curve) and for three JPEG
quality factors (colored curves). The coordinates for the ROC
curves are semilogarithmic: the ordinate plots 1-FRR linearly,
over just the upper 5% of its possible range, while the abscissa
logarithmically spans many factors of 10 in FAR, to nearly as
low as one in a million. The number of images and the mix
of subjects in this NIST iris database allows 12 214 same eye
matches to be tested, and it allows 1 002 386 different eye
comparisons to be done, which means that one cannot measure
an FAR between 0 and 1 in a million; this determines the limit
of the ROC curves on the left extreme of these graphs.

The JPEG quality factors (QF) studied here were 70, 30, and
20, producing cropped image file sizes averaging 12 400 bytes,
5700 bytes, and 4200 bytes (red, blue, and green ROC curves,
respectively). Including the initial three-fold reduction in file
size due merely to cropping the images to 320 320 pixels,
these net data reduction factors relative to the original full-size
images therefore average 25:1, 54:1, and 72:1, respectively. The
red ROC curve in Fig. 1 shows that at a JPEG quality factor of
70 and an overall data reduction factor of 25:1, no performance
loss relative to the baseline (black) ROC curve is detectable.
(Indeed there is even some suggestion of a small benefit from
compression, possibly due to denoising.) The blue and green
ROC curves show that for this scheme based only on image
cropping and JPEG compression, using a QF in the range of 20
to 30 produces image file sizes in the range of 5000 bytes but at
the cost of roughly doubling the FRRs and EER.

Clearly, one could do better by a form of cropping which
extracted only the iris pixels, so that the JPEG compression
did not waste bytes on noniris pixels. Iris templates are usu-
ally computed from a polar or pseudopolar coordinate map-
ping of the iris, after locating its inner and outer boundaries.
The ISO/IEC 19794–6 Iris Image Data Standard [7] specifies
two optional methods of sampling iris pixels in polar coordi-
nates so that image data (pixels) rather than computed templates
(which would generally be proprietary) could be used for an
interoperable data interchange. However, both methods suffer
from the fact that polar mappings depend strongly upon the
choice of origin of coordinates, which may be prone to error,
uncertainty, or inconsistency. Unlike rectilinear coordinates, for
which a shift error has no more effect than a shift, in polar map-
pings a shift error in the choice of coordinate origin can cause
large distortions in the mapped data, with no way to recover
from such deformations.

In one of the optional polar methods (6.3.2.3) of the standard
[7], the mapping extends from the determined center of the pupil
to some distance beyond the outer boundary of the iris. Unfor-
tunately, whatever fraction of this diameter is the pupil diameter
(typically about 40%), that same fraction of the data is wasted
on encoding the black pixels of the pupil, since it is a polar grid.
In the other optional polar method (6.3.2.2), circular models are
assumed for the inner and outer boundaries of the iris, and the
image data is mapped just between those. But in fact for many
irises these boundaries cannot be well described as circles; two
examples are shown in Fig. 2. In the lower left corner of each
picture are two wavy “snakes;” the lower snake is the curvature
map of the pupil boundary, and the upper snake is the curvature

Fig. 2. Many irises have noncircular boundaries, creating problems for polar
mappings. The box in the lower left of each image shows the inner and outer
boundary curvature maps, which would be flat and straight if they were cir-
cles. Active contours enhance iris segmentation and enable flexible coordinate
systems; the dotted curves are Fourier series approximations. The bit streams
shown in the upper left are the computed IrisCodes.

map of the iris outer boundary. If the assumptions of circular
boundaries were valid these should both be straight lines, cor-
responding to a constant radius of curvature. Clearly they are
not. Instead, the dotted curves shown fitting the data, both along
the actual iris boundaries and as the skeleton of each snake,
are Fourier series expansions of the boundaries using up to 16
Fourier components. (The dc term in such Fourier series expan-
sions corresponds to a simple circular model, and this value is
its radius.) Such flexible “active contours” are very important
for achieving good iris mappings, but they are not consistent
with the polar mappings specified in the data format standard
[7]. So we seek a compressible data format that retains rec-
tilinear coordinates, thereby avoiding the problems with polar
mappings mentioned before, but in which the iris data alone re-
ceives nearly all of the coding budget.

III. REGION-OF-INTEREST (ROI) SEGMENTATION

The standard lossy JPEG coding scheme [14], [15] effectively
allocates bytes on an “as needed” basis, meaning that the cost
of encoding uniform regions of an image is almost nil, whereas
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Fig. 3. Region-of-interest isolation of the iris within rectilinear image array
formats, to achieve greater compression. Substitution of noniris regions by uni-
form gray levels prevents wasting the coding budget on costly irrelevant struc-
tures such as eyelashes.

image areas containing busy textures, such as eyelashes, may
consume much of the available information budget. In uniform
regions, the only nonzero discrete cosine transform (DCT) co-
efficient in each block of 64 frequency components that encode
an 8 8 pixel block (data unit) is the dc coefficient specifying
their average gray value; all other coefficients are 0 if the data
unit is a truly uniform region, or else become 0 after lossy quan-
tization, and so their cost in the zeroes run-length coding stage
is essentially nil. Therefore, JPEG encoding of iris images can
be made much more efficient if all noniris parts of the image are
replaced with a uniform gray value. Such a substitution of pixel
values within what is still a rectilinear image array is preferable,
from the viewpoint of standards bodies, than actual extraction
and mapping of pixel data from a normalized (“unwrapped”)
iris because it is desirable to be as shape agnostic and as al-
gorithm neutral as possible. This original rectilinear format is
also preferable mathematically because pixels retain constant
size and spacing, rather than suffering the polar size distortions
and shift sensitivity of unwrapping methods.

JPEG coding schemes lend themselves well to the region-of-
interest (ROI) differential assignment of the coding budget. In-
deed the JPEG2000 standard [16]–[18], and even the Part 3 ex-
tension of the old JPEG standard [14], [15] support variable
quantization for explicitly specifying different quality levels for
different image regions. In JPEG2000, the MAXSHIFT tool al-
lows specification of an ROI of arbitrary shape. This was ex-
plored for biometric face recognition by Hsu and Griffin [19],
who demonstrated that recognition performance was degraded
by no more than 2% for file sizes compressed to the range of 10
000–20 000 bytes with ROI specification. We now investigate
how much compression of iris images can be achieved with min-
imal impact on iris recognition performance, using the ROI idea
without “unwrapping” the iris but retaining a rectilinear array
format.

Noniris regions must be encoded in a way that distinguishes
sclera from eyelids or eyelashes regions, so that postcompres-
sion algorithms can still determine both types of iris boundaries.
Therefore we use two different substitution gray levels: a darker
one signifying eyelids and a brighter one for the sclera, com-
puted as an average of actual sclera pixels and blending into ac-
tual sclera pixels near the iris outer boundary. Since the substi-
tution gray levels are uniform, their coding cost is minimal and
could be further reduced by using larger data units. Examples of
such ROI segmentation within the rectilinear image array format
are shown in the second column of Fig. 3; the first column shows
each eye before ROI isolation. The eyelid boundaries were au-
tomatically detected by the standard algorithms [11] as the basis
for pixel substitution, and the transition to eyelid substitution re-
gions was locally smoothed by a (5 7) kernel to minimize the
boundary’s impact on the coding budget. For any given speci-
fied QF, the result of iris ROI isolation is typically a two-fold re-
duction in file size while maintaining a simple rectilinear image
format and easy localization of eyelid boundaries in later stages.

The distribution of image file sizes after JPEG compression
under various quality factors, with and without ROI segmenta-
tion, is shown in the histograms of Fig. 4. In each of the six
schemes shown, the range of file sizes obtained spans a factor
(max/min) of about 3:1. This unpredictability in the actual file
size that will be obtained when specifying a given QF for JPEG
compression is disadvantageous in biometric data storage and
transmission schemes that allocate a fixed payload space [8].
However, for each QF studied, the benefit of the ROI iris isola-
tion is clear: it reduces file sizes on average by another factor of
two.

The impact of the ROI isolation and file size reduction on
iris recognition performance is gauged by the ROC curves in
Fig. 5. These show that for each QF studied, iris recognition per-
formance remained about the same as before the ROI isolation
(Fig. 1), yet with an achievement of a further two-fold reduction
in image data size, even down to the range of just 2000–3000
bytes per image.

IV. JPEG2000 COMPRESSION WITH ROI SEGMENTATION

In 2000, a more powerful version of JPEG coding offering
more flexible modes of use, and typically achieving 20–30%
further compression at any given image quality, was enshrined
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Fig. 4. Distributions of file sizes for the 1425 iris images in the NIST [13]
ICE1Exp1 database when JPEG compressed with quality factors of 70, 30, and
20, with and without the ROI isolation of the iris. At every QF there is a clear
benefit from the ROI isolation, amounting to typically a factor of two in further
file size reduction. Iris recognition performance for each of these six cases is
given by the corresponding ROC curves in Figs. 1 and 5.

as the JPEG2000 Standard [17], [18]. Mathematically based on
a discrete wavelet transform (DWT) onto Daubechies wavelets
rather than the DCT, JPEG2000 does not suffer as badly from
the block quantization artifacts that bedevil JPEG at low bit
rates, which are due to the fact that the DCT simply chops co-
sine waves inside box windows with obvious truncation con-
sequences when they are sparse and incomplete. Moreover, the
different levels within the multiresolution DWT wavelet decom-
position allow local areas within each image tile to be encoded
using different subbands of coefficients [18] as needed. The net
superiority of JPEG2000 over JPEG in terms of image quality
is especially pronounced at very low bit rates, corresponding to
severe compression, as we study here, in the range of 0.15 bits
per pixel (bpp). Finally, JPEG2000 allows the use of a mask to
specify an ROI of arbitrary shape to control the allocation of the
encoding budget.

Several mechanisms exist within JPEG2000 for heteroge-
neous allocation of the coding budget, including tile definition,
code-block selection allowing different DWT resolution levels
in different tiles, and DWT coefficient scaling. In this paper,
we do not explicitly control those parameters nor use the

Fig. 5. ROC curves and data-size statistics showing the consequences of ROI
isolation before JPEG image compression, so that the available information
budget is allocated almost entirely to the iris texture itself. The same quality
factors were specified as in the corresponding curves of Fig. 1, and the recog-
nition performance is generally comparable, but now the data reduction factors
achieved in each case are twice as great.

MAXSHIFT tool, but rather we use the same pixel substi-
tution method for ROI as described earlier, for comparison
purposes. The Linux tools we used for JPEG2000 compression
and decompression at various quality factors to document
effects on iris recognition performance were
and from the JPEG2000 and
libraries. Examples of the resulting ROI+JPEG2000 images
can be seen in the second column of the previous Fig. 3 which
was used to introduce the ROI method. Those three images
were created with a JPEG2000 compression factor (CF) of 50
and thus have a file size of only about 2000 bytes. Whereas
JPEG generates widely varying file sizes to deliver any given
QF, as was seen in the histograms of Fig. 4, JPEG2000 creates
file sizes that are closely predictable from the specified CF. In
our experience of compressing several thousand iris images
with JPEG2000, the standard deviation of the distribution of
resulting file sizes was usually only about 1.6% of the mean,
for any given CF. (This variation is narrower even than the
width of a bin in the Fig. 4 histograms.) Predictable file size is
an important benefit for fixed payload applications [8].

Starting with the same gallery of cropped (320 320) and
ROI-isolated iris images illustrated in Fig. 3 that led to the ROC
curves of Fig. 5 after JPEG compression at various QF values,
we created new galleries compressed by JPEG2000 at CF values
of 20, 50, and 60. These galleries had image data sizes of about
5100, 2000, and 1700 bytes, respectively. Fig. 6 presents the
ROC curves that the galleries generated, together for compar-
ison with the black ROC curve for the baseline gallery (un-
cropped, uncompressed, not ROI isolated). It is clear that com-
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Fig. 6. ROC curves and data-size statistics showing iris recognition per-
formance when the cropped and ROI-isolated images are compressed using
JPEG2000 at various compression factors. Performance with file sizes of
merely 2000 bytes (CF = 50, purple curve) remains remarkably unimpaired
compared to a baseline (black curve); but further compression begins to exact
a high toll (blue–green curve).

pression as severe as 0.156 bpp ( , file size 2.0 kB,
purple curve) still allows remarkably good iris recognition per-
formance. For example, the FRR remains below 1% at an FAR
of 1 in 100 000. It seems extraordinary that image arrays recon-
structed from as little as 2000 bytes of data are still so service-
able for iris recognition. It is possible that part of the explanation
lies in the similarity between the Daubechies wavelets used for
the DWT in JPEG2000 coding, and the Gabor wavelets used in
our creation [11] of the IrisCode itself, so that information lost
in such severe compression is not used in the IrisCode anyway.
However, a watershed seems to exist at 2000 bytes, since a pro-
nounced degradation becomes evident when images are further
compressed to 1700 bytes ( , blue–green ROC curve in
Fig. 6).

V. COMPARING THE EFFECTS OF THE COMPRESSION SCHEMES

In this paper we have focused on ROC curves, which reflect
the overlapping tails of the two distributions of similarity scores
computed for images from same or different eyes. The simi-
larity score is a normalized Hamming distance (HD), which is
the fraction of bits disagreeing between two IrisCodes among
the bits compared [11]. It is informative to see the full distri-
butions of HD scores, which we present in Fig. 7 for two of
the compression schemes. In each panel, two different ordi-
nate axis scales are used to facilitate visualization since there
are 1 002 386 counts in the “all against all other” distribution
(magenta) created by comparing different eyes, but only 12 214

Fig. 7. Distributions of Hamming distance scores comparing the same and dif-
ferent eyes in the NIST database, for two of the image compression schemes
bracketing the range of schemes studied. Even in the most severe case (lower
panel) using images compressed to only 1700 bytes, the dual distributions have
little overlap and so decisions about identity remain robust.

counts in the distribution (olive) made by all same eye com-
parisons across the database. The upper panel shows the dis-
tributions obtained with ROI+JPEG compression at ,
which created an average file size of 5700 bytes and generated
the red ROC curve in Fig. 4. As was evident in Fig. 4, the recog-
nition performance obtained with that compression scheme was
almost indistinguishable from the baseline performance (black
ROC curve: no compression, ROI, or cropping). The dual dis-
tributions for that baseline case are likewise indistinguishable
from the upper panel in Fig. 7, as one would expect, and so we
do not include them here. The lower panel shows the distribu-
tions obtained with ROI+JPEG2000 compression at ,
which created an average file size of just 1700 bytes and gener-
ated the blue–green ROC curve in Fig. 6. It is remarkable that
such extremes of compression do not have catastrophic effects
on the separability of the pair of distributions. Instead, we see
in Fig. 7 that the distribution obtained from different eyes (ma-
genta) is virtually unchanged, whereas the distribution obtained
from same eye images (olive) is shifted to the right by a small
amount, corresponding to an increase in the mean HD score
from 0.1080 to 0.1424 as indicated by the two dots and a pro-
jected vertical line for comparison.
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Information theory provides certain metrics for defining the
“distance” between two random variables in terms of their
entire probability distributions. When both random variables
are distributed over the same set of possible outcomes, such
as the HD scores that were tallied in the histograms for same
and for different eyes in Fig. 7, then the relative entropy or
Kullback–Leibler distance is a natural way to measure the
overall distance between the two distributions. As a measure
of separation, it is also called the “information for discrimina-
tion.” Unfortunately, this measure becomes undefined if there
are some values that only one random variable can have while
other values are accessible only to the other random variable.
Since the distributions of HD scores obtained from compar-
isons between different eyes in Fig. 7 vanish for scores smaller
than about 0.3, and likewise the score distributions for same
eyes attenuate to zero over much of the other distribution, the
calculated Kullback–Leibler distance between these distribu-
tions is infinite and meaningless, unless based on nonvanishing
theoretical models for them or by adding arbitrary quantities
that then become decisive for this metric.

An alternative family of distance metrics, encompassing the
Fisher ratio and Z-scores, defines distance in terms of the dif-
ference between the means of the two distributions, normal-
ized by some function of their standard deviations. One such
is the metric of decidability in signal detection theory, de-
fined as , where and are
the means and and are the standard deviations. A lim-
itation of this metric is that by considering only the first two
moments of the distributions, it makes no explicit use of skew,
kurtosis, and higher moments that are more sensitive to mass in
the tails. Thus, might be said to take a “Gaussian view” of
the world, whereas the skewed distributions in Fig. 7 are clearly
not Gaussian. Nonetheless, we have included within the ROC
graphs in Figs. 1, 5, and 6 the scores for each underlying pair
of distributions obtained with each of the compression schemes
studied. They show a small but systematic trend of deteriora-
tion with more aggressive levels of image compression. But as
is clear from the two bracketing extremes presented in Fig. 7, the
separability of the two underlying distributions remains remark-
able, despite the massive compression factor reaching 180:1 re-
duction from the original images.

Another metric often used in decision theory to summarize
overall performance by a single scalar statistic is the area under
the ROC curve. Clearly, a value of 1.0 represents perfection
since it arises only from the complete absence of overlap
between the two distributions. The ten different ROC curves
plotted in Figs. 1, 5, and 6 appear to have significant amounts
of missing area, but this is an illusion due to the logarithmic
abscissa and the magnified ordinate ranging just between 0.95
and 1.00. In fact the area under the baseline black ROC curve
(present in all three figures) is 0.999985, and the areas under
most of the other nine curves are reduced from this value in
only the 6th decimal place.

Finally, it is interesting to compare visually some examples
of the iris images after compression to a constant data size of
2000 bytes using the three different schemes. Each column of
Fig. 8 is from the same NIST iris image; the rows represent the
different schemes. The top row is simple JPEG compression of

Fig. 8. Visual comparison of the three schemes for iris image compression, for
images all compressed to the same data size of 2000 bytes. The left column is
NIST 239230; the right is NIST 239343. Top row: simple JPEG compression of
the cropped (320� 320) images. Middle row: JPEG compression of the cropped
images after ROI isolation. Bottom row: JPEG2000 compression of the cropped
and ROI-isolated images. Iris recognition performance of this third scheme is
shown by the purple ROC curve (CF = 50) in Fig. 6.

a cropped (320 320) image but without ROI isolation. Most of
the 2000-byte budget is wasted trying to encode eyelashes, and
the cost on iris texture is horrendous. The middle row shows
improvement after ROI isolation, so most of the JPEG budget is
allocated to the iris, but the result is still very poor. The bottom
row shows the result of combining the cropping, ROI isolation,
and JPEG2000 compression for the same iris images. The im-
provement is visually remarkable, and it is confirmed by very
good iris recognition performance as summarized by the purple
ROC curve in Fig. 6.

VI. EFFECT OF SEVERE COMPRESSION ON AN IMAGE-QUALITY

METRIC PREDICTING PERFORMANCE

A growing focus of biometric research concerns quality met-
rics that may predict recognition performance, and that there-
fore might be used to control the image-acquisition process or to
qualify images. It is relevant to examine how some of the com-
pression regimes explored in this paper affect such iris image-
quality metrics.
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Fig. 9. Effect of image quality on Hamming Distance between same-eye NIST
images. The main elements of the quality metric are image focus [11], motion,
proportion of iris visible, and number of code bits deemed reliable.

For all “probe” and “gallery” pairings of images in the NIST
iris database that arise from a given eye and therefore should
match, we plotted their match Hamming Distance as a function
of both of their quality scores as measured by “Q.” This metric
is based mainly on the focus score of each image (computed
by 2-D Fourier methods as detailed in [11, Appendix] and on
the sharpness of the pupillary boundary as a further indicator
of focus), and on detection of interlaced raster shear signifying
subject motion during the acquisition of a frame. It is also based
on calculating the percentage of the iris that is not occluded
by eyelids or eyelashes or by specular reflections, and on the
number of bits in its computed IrisCode [11] that are deemed to
be significant and reliable. A surface plot showing dependence
of match Hamming Distance on both “Q” scores for the avail-
able same-eye image pairings in the NIST database is presented
in Fig. 9. Clearly, it slopes down almost monotonically as a func-
tion of both “Q” scores.

Since the Hamming Distance is the metric on which match
decisions are based, the surface plot in Fig. 9 implies directly
how the false nonmatch rate (FnMR) is predicted by the image-
quality metric. An actual FnMR at a threshold of is
shown in Fig. 10 as another surface plot over joint “Q” scores for
these image pairings, and the same data is shown as a contour
plot in Fig. 11. Clearly, the quality metric “Q” is a very strong
predictor of matching performance.

Therefore, we examine how the three different JPEG2000
compression regimes whose ROC curves were presented in
Fig. 6 affect the quality metric “Q” for these images. This is
shown in Fig. 12 (using the same color coding as in Fig. 6
for each regime) as a group of overlaid scatter plots. The “Q”
scores along the abscissa are for the original uncompressed
images after cropping and the region-of-interest isolation, and
the scatter plots of “Q” scores plotted as a function of those

Fig. 10. Image quality as a predictor of false nonmatch rate for same-eye NIST
images. The quality metric is here applied to the original uncompressed images,
in order to validate its power to predict performance.

Fig. 11. Effect of image quality on the false nonmatch rate for same-eye NIST
images, before application of any of the compression schemes. This baseline
contour plot is derived from the surface plotted in Fig. 10.

reveal the impact of each of the three compression regimes
( , and ) on this quality metric.
The minimal effect of each compression regime on “Q” scores
is captured by the correlation coefficients between the
scores for uncompressed images and the scores after com-
pression by each CF factor. These correlation coefficients are

and , respectively.
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Fig. 12. Scatter plots for quality scores before and after compression under
each of the JPEG2000 regimes whose ROC curves were shown in Fig. 6. The
color coding for each of the compression factors in these figures is the same.

VII. CONCLUSION

We have studied the effects of three schemes for image com-
pression on iris recognition performance, leading to the sur-
prising conclusion that even images compressed as severely as
150:1 from their original full-size formats, to just 2000 bytes, re-
main very serviceable. It is important to use region-of-interest
isolation of the iris within the image so that the coding budget
is allocated almost entirely to the iris; and it is important to use
JPEG2000 instead of JPEG as the compression protocol. Ad-
vantages of this overall approach from the perspective of san-
dards bodies and interoperability consortia are that the compact
image data (when decompressed) is a native rectilinear array;
no proprietary methods are required; and the distortions that can
arise from alternative coordinate transformation methods such
as polar unwrapping or polar sampling are avoided.

As concluding measures, we compared the IrisCodes
generated under each scheme to those generated for the
corresponding original uncompressed images. The entropy

or uncertainty per code bit caused by
each compression scheme is tabulated in Table I. For reference,
the entropy associated with the states of bits in IrisCodes
calculated from different images of the same eye, due merely
to variation in image capture, is typically 0.506 bit; Table I
shows that the corrupting effect of the image compression
schemes is much less than this native uncertainty in the bits of
IrisCodes for a given eye. The final column of Table I tabulates,
as interoperability scores, the average HD (fraction of dis-
agreeing bits) between the IrisCodes obtained before and after
image compression for each scheme and for each compression
parameter. They indicate that only about 2% to 3% of the
IrisCode bits change as a consequence of image compression

TABLE I
SUMMARY OF THE COMPRESSION SCHEMES, RESULTING FILE SIZES, AND

THEIR EFFECTS ON COMPUTED IRISCODES, EXPRESSED AS ENTROPY PER CODE

BIT AND AS THE FRACTION (HD) OF BITS THAT WERE CHANGED FROM THOSE

COMPUTED FOR THE ORIGINAL FULL-SIZE IMAGES

even as severe as to 2000 bytes. When considered in the context
of Fig. 7 showing the HD distributions for same and different
eyes, it is clear that an increment of 0.02 to 0.03 in HD score is
a negligible impact indeed. In conclusion, it appears that rough
convergence between data length and standard descriptive
length for this biometric is possible.
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