
Under consideration for publication in J. Functional Programming 1

The Arrow Calculus

Sam Lindley, Philip Wadler, and Jeremy Yallop

Abstract

We introduce the arrow calculus, a metalanguage for manipulating Hughes’s arrows with
close relations both to Moggi’s metalanguage for monads and to Paterson’s arrow nota-
tion. Arrows are classically defined by extending lambda calculus with three constructs
satisfying nine (somewhat idiosyncratic) laws; in contrast, the arrow calculus adds four
constructs satisfying five laws (which fit two well-known patterns). The five laws were
previously known to be sound; we show that they are also complete, and hence that the
five laws may replace the nine.

1 Introduction

Arrows belong in the quiver of every functional programmer, ready to pierce hard
problems through their heart.

Arrows (Hughes, 2000) generalise the monads of Moggi (1991) and the idioms
of McBride and Paterson (2008). They are closely related to Freyd categories, dis-
covered independently from Hughes by Power, Robinson and Thielecke (Power &
Robinson, 1997; Power & Thielecke, 1999). Arrows enjoy a wide range of appli-
cations, including parsers and printers (Jansson & Jeuring, 1999), web interaction
(Hughes, 2000), circuits (Paterson, 2001), graphic user interfaces (Courtney & El-
liott, 2001), and robotics (Hudak et al., 2003).

Formally, arrows are defined by extending simply-typed lambda calculus with
three constants satisfying nine laws. And here is where the problems start. While
some of the laws are easy to remember, others are not. Further, arrow expressions
written with these constants use a ‘pointless’ style of expression that can be hard to
read and to write. (Not to mention that ‘pointless’ is the last thing arrows should
be.)

Fortunately, Paterson introduced a notation for arrows that is easier to read
and to write, and in which some arrow laws may be directly expressed (Paterson,
2001). But for all its benefits, Paterson’s notation is only a partial solution. It simply
abbreviates terms built from the three constants, and there is no claim that its laws
are adequate for all reasoning with arrows. Syntactic sugar is an apt metaphor: it
sugars the pill, but the pill still must be swallowed.

Here we define the arrow calculus, which closely resembles both Paterson’s no-
tation for arrows and Moggi’s metalanguage for monads. Instead of augmenting
simply typed lambda calculus with three constants and nine laws, we augment it
with four constructs satisfying five laws. Two of these constructs resemble function

2 Lindley, Wadler and Yallop

abstraction and application, and satisfy beta and eta laws. The remaining two con-
structs resemble the unit and bind of a monad, and satisfy left unit, right unit, and
associativity laws. So instead of nine (somewhat idiosyncratic) laws, we have five
laws fitting two familiar patterns.

The arrow calculus is equivalent to the classic formulation. We give a translation
of the four constructs into the three constants, and show the five laws follow from
the nine. Conversely, we also give a translation of the three constants into the four
constructs, and show the nine laws follow from the five. Hence, the arrow calculus
is no mere syntactic sugar. Instead of understanding it by translation into the three
constants, we can understand the three constants by translating them to it!

Elsewhere, we have already applied the arrow calculus to elucidate the connec-
tions between idioms, arrows, and monads (Lindley et al., 2008b). Arrow calculus
was not the main focus of that paper, where it was a tool to an end, and that
paper has perhaps too terse a description of the calculus. This paper was in fact
written before the other, and we hope provides a readable introduction to the arrow
calculus.

Our notation is a minor syntactic variation of Paterson’s notation, and Paterson’s
paper contains essentially the same laws we give here. So what is new?

First, Paterson translates his notation into classic arrows, and shows the five laws
follow from the nine (Soundness). Conversely, we give an inverse translation, and
show that the nine laws follow from the five (Completeness). Completeness is not
just a nicety: Paterson regards his notation as syntactic sugar for the classic arrows;
completeness lets us claim our calculus can supplant classic arrows.

Second, we are also the first to publish concise formal type rules. The type rules
are unusual in that they involve two contexts, one for variables bound by ordinary
lambda abstraction and one for variables bound by arrow abstraction. Discovering
the rules greatly improved our understanding of arrows. Or rather, we should say
rediscovering. It turns out that the type rules were known to Paterson, and he used
them to implement the arrow notation extension to the Glasgow Haskell Compiler.
But Paterson never published the type rules; he explained to us that “Over the
years I spent trying to get the arrow notation published, I replaced formal rules
with informal descriptions because referees didn’t like them.” We are glad to help
the formal rules finally into print.

Third, we show the two translations from classic arrows to arrow calculus and
back are exactly inverse, providing an equational correspondence in the sense of
Sabry and Felleisen (1993). The reader’s reaction may be to say, ‘Of course the
translations are inverses, how could they be otherwise?’ But in fact the more com-
mon situation is for forward and backward translations to compose to give an
isomorphism (category theorists call this an equivalence of categories), rather than
compose to give the identity on the nose (an isomorphism of categories). Lind-
ley, Wadler and Yallop (2008b) give forward and backward translations between
variants of idioms, arrows, and monads, and only some turn out to be equational
correspondences; we had to invent a more general notion of equational equivalence
to characterize the others. Interestingly, the proof of equational correspondence
depends only on the translations, and is independent of the type rules.

The Arrow Calculus 3

Fourth, we reveal a redundancy: the nine classic arrow laws can be reduced to
eight. Notation alone was not adequate to lead to this discovery; it flowed from
our attempts to show the translations between classic arrows and arrow calculus
preserve the laws.

Fifth, following Hughes and Paterson, we extend the arrow calculus to higher-
order arrows, corresponding to arrows with apply, which in turn correspond to
monads (Hughes, 2000). We again show soundness and completeness, and uncover
a second redundancy, that the three laws proposed by Hughes can be reduced to
two.

The arrow calculus has already proven useful. It enabled us to clarify the relation-
ship between idioms, arrows and monads (Lindley et al., 2008b), and it provided
the inspiration for a categorical semantics of arrows (Atkey, 2008).

In private correspondence, Eugenio Moggi and Robert Atkey have suggested that
there may be interesting generalizations of arrows, inspired by the formulation
proposed in this paper, possibly related to Indexed Freyd Models (Atkey, 2008) or
to a generalization of Benton’s Adjoint Calculus (Benton, 1995).

This paper is organized as follows. Section 2 reviews the classic formulation of
arrows. Section 3 introduces the arrow calculus. Section 4 translates the arrow
calculus into classic arrows, and vice versa, showing that the laws of each can be
derived from the other. Section 5 extends the arrow calculus to higher-order arrows.

2 Classic arrows

We refer to the traditional presentation of arrows as classic arrows, and to our new
metalanguage as the arrow calculus.

The core of both is an entirely pedestrian simply-typed lambda calculus with
products and functions, as shown in Figure 1. We let A,B,C range over types,
L,M,N range over terms, and Γ,∆ range over environments. A type judgment
Γ ` M : A indicates that in environment Γ term M has type A. We use a Curry
formulation, eliding types from terms. Products and functions satisfy beta and eta
laws. The (η→) law has the usual side-condition, that x is not free in L.

Classic arrows extends lambda calculus with one type and three constants satis-
fying nine laws, as shown in Figure 2. The type A ; B denotes a computation that
accepts a value of type A and returns a value of type B, possibly performing side ef-
fects. The three constants are: arr, which promotes a function to a pure arrow with
no side effects; (>>>), which composes two arrows; and first, which extends an arrow
to act on the first component of a pair leaving the second component unchanged.
We allow infix notation as usual, writing M >>>N in place of (>>>) M N .

The nine laws state that arrow composition has a left and right unit (;1,;2),
arrow composition is associative (;3), composition of functions promotes to com-
position of arrows (;4), first on pure functions rewrites to a pure function (;5),
first is a homomorphism for composition (;6), first commutes with a pure function
that is the identity on the first component of a pair (;7), and first pushes through
promotions of fst and assoc (;8,;9).

The figure defines ten auxiliary functions, all of which are standard. The identity

4 Lindley, Wadler and Yallop

Syntax

Types A,B,C ::= X | A×B | A→ B
Terms L,M,N ::= x | (M,N) | fst L | snd L | λx.N | L M
Environments Γ,∆ ::= x1 : A1, . . . , xn : An

Types

(x : A) ∈ Γ

Γ ` x : A

Γ `M : A
Γ ` N : B

Γ ` (M,N) : A×B

Γ ` L : A×B

Γ ` fst L : A

Γ ` L : A×B

Γ ` snd L : B

Γ, x : A ` N : B

Γ ` λx.N : A→ B

Γ ` L : A→ B
Γ `M : A

Γ ` L M : B

Laws

(β×1) fst (M,N) = M
(β×2) snd (M,N) = N
(η×) (fst L, snd L) = L
(β→) (λx.N) M = N [x :=M]
(η→) λx. (L x) = L

Fig. 1. Lambda calculus

function id, selector fst, associativity assoc, function composition f · g, and product
bifunctor f × g are required for the nine laws. Functions dup and swap are used to
define second, which is like first but acts on the second component of a pair, and
f &&& g, which applies arrows f and g to the same argument and pairs the results.
We also define the selector snd.

Every arrow of interest comes with additional operators, which perform side
effects or combine arrows in other ways. The story for these additional operators is
essentially the same for classic arrows and the arrow calculus, so we say little about
them.

3 The arrow calculus

Arrow calculus extends the core lambda calculus with four constructs satisfying
five laws, as shown in Figure 3. As before, the type A ; B denotes a computation
that accepts a value of type A and returns a value of type B, possibly performing
side effects.

We now have two syntactic categories. Terms, as before, are ranged over by
L,M,N , and commands are ranged over by P,Q,R. In addition to the terms of

The Arrow Calculus 5

Syntax

Types A,B,C ::= · · · | A ; B
Terms L,M,N ::= · · · | arr | (>>>) | first

Types

arr : (A→ B)→ (A ; B)
(>>>) : (A ; B)→ (B ; C)→ (A ; C)

first : (A ; B)→ (A×C ; B×C)

Laws

(;1) arr id>>> f = f
(;2) f >>> arr id = f
(;3) (f >>> g)>>> h = f >>> (g >>> h)
(;4) arr (g · f) = arr f >>> arr g
(;5) first (arr f) = arr (f × id)
(;6) first (f >>> g) = first f >>> first g
(;7) first f >>> arr (id× g) = arr (id× g)>>> first f
(;8) first f >>> arr fst = arr fst>>> f
(;9) first (first f)>>> arr assoc = arr assoc>>> first f

Definitions

id : A→ A
id = λx. x

fst : A×B → A
fst = λz. fst z

snd : A×B → B
snd = λz. snd z

dup : A→ A×A
dup = λx. (x, x)

swap : A×B → B×A
swap = λz. (snd z, fst z)
(×) : (A→ C)→ (B → D)→ (A×B → C×D)
(×) = λf. λg. λz. (f (fst z), g (snd z))

assoc : (A×B)×C → A×(B×C)
assoc = λz. (fst (fst z), (snd (fst z), snd z))

(·) : (B → C)→ (A→ B)→ (A→ C)
(·) = λf. λg. λx. f (g x)

second : (A ; B)→ (C×A ; C×B)
second = λf. arr swap>>> first f >>> arr swap

(&&&) : (C ; A)→ (C ; B)→ (C ; A×B)
(&&&) = λf. λg. arr dup>>> first f >>> second g

Fig. 2. Classic arrows

the core lambda calculus, there is one new term form: arrow abstraction λ•x.Q.
There are three command forms: arrow application L •M ; arrow unit [M], which

6 Lindley, Wadler and Yallop

Syntax

Types A,B,C ::= · · · | A ; B
Terms L,M,N ::= · · · | λ•x.Q
Commands P,Q,R ::= L •M | [M] | let x⇐ P in Q

Types

Γ; x : A ` Q ! B

Γ ` λ•x.Q : A ; B

Γ ` L : A ; B
Γ, ∆ `M : A

Γ; ∆ ` L •M ! B

Γ, ∆ `M : A

Γ; ∆ ` [M] ! A

Γ; ∆ ` P ! A
Γ; ∆, x : A ` Q ! B

Γ; ∆ ` let x⇐ P in Q ! B

Laws

(β;) (λ•x.Q) •M = Q[x :=M]
(η;) λ•x. (L • x) = L
(left) let x⇐ [M] in Q = Q[x :=M]
(right) let x⇐ P in [x] = P
(assoc) let y ⇐ (let x⇐ P in Q) in R = let x⇐ P in (let y ⇐ Q in R)

Fig. 3. Arrow calculus

resembles unit in a monad; and arrow bind let x ⇐ P in Q, which resembles bind
in a monad.

In addition to the term typing judgment

Γ `M : A.

we now also have a command typing judgment

Γ; ∆ ` P ! A.

An important feature of the arrow calculus is that the command type judgment
has two environments, Γ and ∆, where variables in Γ come from ordinary lambda
abstractions, λx.N , while variables in ∆ come from arrow abstractions, λ•x.Q, and
arrow bind, let x⇐ P in Q.

We will give a translation of commands to classic arrows, such that a command
P satisfying the judgment Γ; ∆ ` P ! A translates to a term [[P]]∆ satisfying the
judgment Γ ` [[P]]∆ : ∆ ; A; so a command P denotes an arrow, and the second
environment ∆ corresponds to the argument type of the arrow. We explain the type
rules of the language in this section, and the translation in the next.

Here are the type rules for the four constructs. Arrow abstraction converts a
command into a term.

Γ; x : A ` Q ! B

Γ ` λ•x.Q : A ; B

The Arrow Calculus 7

Arrow abstraction closely resembles function abstraction, save that the body Q is
a command (rather than a term) and the bound variable x goes into the second
environment (separated from the first by a semicolon).

Conversely, arrow application builds a command from two terms.

Γ ` L : A ; B

Γ, ∆ `M : A

Γ; ∆ ` L •M ! B

Arrow application closely resembles function application. The argument term may
contain variables from ∆, but the term denoting the arrow to be applied may not;
this is because there is no way to apply an arrow that is itself yielded by another
arrow. It is for this reason that we distinguish two environments, Γ and ∆. (Section 5
describes an arrow with an apply operator, which relinquishes this restriction and
is equivalent to a monad.)

Arrow unit promotes a term to a command.

Γ, ∆ `M : A

Γ; ∆ ` [M] ! A

Note that in the hypothesis we have a term judgment with one environment (there is
a comma between Γ and ∆), while in the conclusion we have a command judgment
with two environments (there is a semicolon between Γ and ∆).

Lastly, the value returned by a command may be bound.

Γ; ∆ ` P ! A
Γ; ∆, x : A ` Q ! B

Γ; ∆ ` let x⇐ P in Q ! B

This resembles a traditional let term, save that the bound variable goes into the
second environment, not the first.

Admissability rules for substitution and weakening follow from these. Substitu-
tion of a term in a term is straightforward.

Γ `M : A
Γ, x : A ` N : B

Γ ` N [x :=M] : B

Here the double line means that if the judgment on the top is derivable then the
judgment on the bottom is also derivable.

Substitution of a term in a command may involve either environment. Substitu-

8 Lindley, Wadler and Yallop

tion for a variable in first environment is again straightforward.

Γ `M : A
Γ, x : A; ∆ ` Q ! B

Γ; ∆ ` Q[x :=M] ! B

Substitution for a variable in the second environment is more interesting.

Γ, ∆ `M : A
Γ; ∆, x : A ` Q ! B

Γ; ∆ ` Q[x :=M] ! B

In this case the term may refer to variables in either environment.
The weakening rule for terms is straightforward. Write Γ ⊆ Γ′ to indicate that

every type binding x : A in Γ also occurs in Γ′. If Γ ⊆ Γ′, then

Γ `M : A

Γ′ `M : A

The weakening rule for commands is slightly unusual because of the two typing
contexts. If Γ ⊆ Γ′ and Γ,∆ ⊆ Γ′,∆′, then

Γ; ∆ ` P ! A

Γ′; ∆′ ` P ! A

Weakening permits both the Γ and ∆ type enviroments to grow, and also permits
variables to move from ∆ into Γ (but not conversely).

Arrow abstraction and application satisfy beta and eta laws, (β;) and (η;),
while arrow unit and bind satisfy left unit, right unit, and associativity laws, (left),
(right), and (assoc). Similar laws appear in the computational lambda calculus of
Moggi (1991). The (assoc) law has the usual side condition, that x is not free in R.
We do not require a side condition for (η;), because the type rules guarantee that
x does not appear free in L.

Paterson’s notation is closely related to ours. Here is a translation table, with
our notation on the left and his on the right.

λ•x.Q proc x→ Q

L •M L−≺M
[M] arrowA−≺M
let x⇐ P in Q do {x← P ;Q}

In essence, each is a minor syntactic variant of the other. The only difference of
note is that we introduce arrow unit as an explicit construct, [M], while Paterson
uses the equivalent form arrowA −≺M where arrowA is arr id. Our introduction
of a separate construct for arrow unit is slightly neater, and avoids the need to
introduce arrowA as a constant in the arrow calculus.

The Arrow Calculus 9

[[x]] = x
[[(M,N)]] = ([[M]], [[N]])
[[fst L]] = fst [[L]]
[[snd L]] = snd [[L]]
[[λx.N]] = λx. [[N]]
[[L M]] = [[L]] [[M]]
[[λ•x.Q]] = [[Q]]x

[[L •M]]∆ = arr (λ∆. [[M]])>>> [[L]]
[[[M]]]∆ = arr (λ∆. [[M]])
[[let x⇐ P in Q]]∆ = (arr id &&& [[P]]∆)>>> [[Q]]∆,x

Fig. 4. Translation from Arrow Calculus into Classic Arrows

[[x]]−1 = x
[[(M,N)]]−1 = ([[M]]−1, [[N]]−1)
[[fst L]]−1 = fst [[L]]−1

[[snd L]]−1 = snd [[L]]−1

[[λx.N]]−1 = λx. [[N]]−1

[[L M]]−1 = [[L]]−1 [[M]]−1

[[arr]]−1 = λf. λ•x. [f x]
[[(>>>)]]−1 = λf. λg. λ•x. let y ⇐ f • x in g • y
[[first]]−1 = λf. λ•z. let x⇐ f • fst z in [(x, snd z)]

Fig. 5. Translation from Classic Arrows into Arrow Calculus

4 Translations

We now consider translations between our two formulations, and show they are
equivalent.

The translation takes an arrow calculus term M into a classic arrow [[M]]:

[[Γ `M : A]] = Γ ` [[M]] : A

Similarly, the translation takes an arrow calculus command P into a classic arrow
[[P]]∆, paramaterized by a sequence of variables:

[[Γ; ∆ ` P ! A]] = Γ ` [[P]]∆ : ∆ ; A.

The denotation of a command is an arrow, with argument corresponding to the
command’s (second) environment ∆ and result corresponding to the command’s
type A.

Note that in [[P]]∆, we take ∆ to stand for a tuple of the variables in the en-
vironment, and in ∆ ; A we take ∆ to stand for the product of the types in
the environment. We encode these as binary products associating to the left. For
example, if ∆ is x1 : A1, x2 : A2, x3 : A3 then ∆ as a tuple of variables stands for
((x1, x2), x3) and ∆ as a type stands for (A1 × A2) × A3. We also write λ∆.M
with the obvious meaning. For example, if ∆ is as above then λ∆. [[M]] stands for
λz. [[M]][x1 := fst (fst z), x2 := snd (fst z), x3 := snd z].

The translation on judgments extends pointwise to a translation on type rules.

10 Lindley, Wadler and Yallop

For instance: Γ; x : A ` Q ! B

Γ ` λ•x.Q : A ; B

 =
[[Γ; x : A ` Q ! B]]

[[Γ ` λ•x.Q : A ; B]]

The translation from arrow calculus to classic arrows is given in Figure 4. The
translation of the constructs of the core lambda calculus are straightforward homo-
morphisms. We consider in turn the translation of the four new constructs.

The translation of an arrow abstraction is the translation of its body with respect
to its bound variable:

[[λ•x.Q]] = [[Q]]x

Or, in the context of its type rules: Γ; x : A ` Q ! B

Γ ` λ•x.Q : A ; B

 =
Γ ` [[Q]]x : A ; B

Γ ` [[Q]]x : A ; B

The introduction rule for arrow abstractions in the arrow calculus becomes a no-op
when translated to a classic arrow.

The translation of an arrow application is the composition of the promotion of
the translation of the argument with the translation of the function:

[[L •M]]∆ = arr (λ∆. [[M]])>>> [[L]]

Or, in the context of its type rules:

Γ ` L : A ; B

Γ, ∆ `M : A

Γ; ∆ ` L •M ! B

 =

Γ ` [[L]] : A ; B

Γ, ∆ ` [[M]] : A

Γ ` arr (λ∆. [[M]])>>> [[L]] : ∆ ; B

Here λ∆. [[M]] is a function of type ∆ → A; applying arr to this yields an arrow
∆ ; A which is composed with the arrow [[L]] of type A ; B to yield an arrow
∆ ; B as required.

The translation of the promotion of a term to a command is the promotion of
the corresponding function:

[[[M]]]∆ = arr (λ∆. [[M]])

Or, in the context of its type rules: Γ, ∆ `M : A

Γ; ∆ ` [M] ! A

 =
Γ, ∆ ` [[M]] : A

Γ ` arr (λ∆. [[M]]) : ∆ ; A

This is exactly the same as the part of the previous transformation corresponding
to the argument of the function.

Finally, the translation of a binding extends the environment by the translation
of the definiens and composes this with the body:

[[let x⇐ P in Q]]∆ = (arr id &&& [[P]]∆)>>> [[Q]](∆,x)

The Arrow Calculus 11

Or, in the context of its type rules:

Γ; ∆ ` P ! A
Γ; ∆, x : A ` Q ! B

Γ; ∆ ` let x⇐ P in Q ! B

 =

Γ ` [[P]]∆ : ∆ ; A

Γ ` [[Q]]∆,x : ∆×A ; B

Γ ` (arr id &&& [[P]]∆)>>> [[Q]]∆,x : ∆ ; B

This translation uses &&&, which is defined in terms of first (and second) in Figure 2.
Here arr id &&&[[P]]∆ of type ∆ ; ∆×A extends the environment, and composition
with [[Q]]∆,x of type ∆×A ; B yields an arrow ∆ ; B as required.

The inverse translation, from classic arrows to the arrow calculus, is given in
Figure 5. Again, the translation of the constructs of the core lambda calculus are
straightforward homomorphisms. Each of the three constants translates to an ap-
propriate term in the arrow calculus. Promotion accepts a function, and returns
the corresponding arrow which applies the function:

[[arr]]−1 = λf. λ•x. [f x]

Composition of arrows looks just like ordinary function composition, but using
arrow apply instead of function application:

[[(>>>)]]−1 = λf. λg. λ•x. let y ⇐ f • x in g • y

And the constant first accepts an arrow, and returns an arrow which takes a pair,
applies the arrow to the first component of the pair and returns the second compo-
nent unchanged:

[[first]]−1 = λf. λ•z. let x⇐ f • fst z in [(x, snd z)]

Our previous admissibility rules give rise to two lemmas about translation. The
Substitution Lemma relates the translation of a substitution to the translation of
its components:

[[Q[x :=M]]]∆ = arr (λ∆. (∆, [[M]]))>>> [[Q]]∆,x

Or, in the context of its type rules:

Γ, ∆ `M : A
Γ; ∆, x : A ` Q ! B

Γ; ∆ ` Q[x :=M] ! B

 =

Γ, ∆ ` [[M]] : A
Γ ` [[Q]]∆, x : ∆×A ; B

Γ ` arr (λ∆. (∆, [[M]]))>>> [[Q]]∆,x : ∆ ; B

The proof is by induction on the structure of Q.
Similarly, the Weakening Lemma relates the translation of a weakened judgment

to the translation of the original judgment:

[[P]]∆′ = arr (λ∆′.∆)>>> [[P]]∆

Or, in the context of its type rules, if Γ ⊆ Γ′ and Γ, ∆ ⊆ Γ′, ∆′, then
 Γ; ∆ ` P ! A

Γ′; ∆′ ` P ! A

 =

Γ ` [[P]]∆ : ∆ ; A

Γ′ ` arr (λ∆′.∆)>>> [[P]]∆ : ∆′ ; A

12 Lindley, Wadler and Yallop

[[let x⇐M in [x]]]∆
= def [[−]]

(arr id &&& [[M]]∆)>>> arr snd
= def &&&

arr dup>>> first (arr id)>>> second [[M]]∆ >>> arr snd
= (;5)

arr dup>>> arr (id× id)>>> second [[M]]∆ >>> arr snd
= id× id = id

arr dup>>> arr id>>> second [[M]]∆ >>> arr snd
= (;1)

arr dup>>> second [[M]]∆ >>> arr snd
= def second

arr dup>>> arr swap>>> first [[M]]∆ >>> arr swap>>> arr snd
= (;4)

arr (swap · dup)>>> first [[M]]∆ >>> arr (snd · swap)
= swap · dup = dup, snd · swap = fst

arr dup>>> first [[M]]∆ >>> arr fst
= (;8)

arr dup>>> arr fst>>> [[M]]∆
= (;4)

arr (fst · dup)>>> [[M]]∆
= fst · dup = id

arr id>>> [[M]]∆
= (;1)

[[M]]∆

Fig. 6. Proof of (right) from classic arrows

[[f >>> arr id]]−1

= def [[−]]−1

λ•x. let y ⇐ f • x in (λ•z. [id z]) • y
= def id

λ•x. let y ⇐ f • x in (λ•z. [z]) • y
= (β;)

λ•x. let y ⇐ f • x in [y]
= (right)

λ•x. f • x
= (η;)

f
= def [[−]]−1

[[f]]−1

Fig. 7. Proof of (;2) in arrow calculus

The proof is by induction over P .

We can now show four properties.

(i) The five laws of the arrow calculus follow from the nine laws of classic arrows.

The Arrow Calculus 13

[[[[first f]]−1]]
= def [[−]]−1

[[λ•z. let x⇐ f • (fst z) in [(x, snd z)]]]
= def [[−]]

(arr id &&& (arr (λu. fst u)>>> f))>>> arr (λv. (snd v, snd (fst v)))
= let r = λv. (snd v, snd (fst v))

(arr id &&& (arr fst>>> f))>>> arr r
= def &&&

arr dup>>> first (arr id)>>> second (arr fst>>> f)>>> arr r
= (;5)

arr dup>>> arr (id× id)>>> second (arr fst>>> f)>>> arr r
= id× id = id

arr dup>>> (arr id)>>> second (arr fst>>> f)>>> arr r
= (;1)

arr dup>>> second (arr fst>>> f)>>> arr r
= def second

arr dup>>> arr swap>>> first (arr fst>>> f)>>> arr swap>>> arr r
= (;4)

arr (swap · dup)>>> first (arr fst>>> f)>>> arr (r · swap)
= swap · dup = dup, r · swap = id× snd

arr dup>>> first (arr fst>>> f)>>> arr (id× snd)
= (;6)

arr dup>>> first (arr fst)>>> first f >>> arr (id× snd)
= (;5)

arr dup>>> arr (fst× id)>>> first f >>> arr (id× snd)
= (;7)

arr dup>>> arr (fst× id)>>> arr (id× snd)>>> first f
= (;4)

arr ((id× snd) · (fst× id) · dup)>>> first f
= (id× snd) · (fst× id) · dup = id

arr id>>> first f
= (;1)

first f

Fig. 8. Translating first to arrow calculus and back is the identity

That is,

M = N implies [[M]] = [[N]]
and

P = Q implies [[P]]∆ = [[Q]]∆

for all arrow calculus terms M , N and commands P , Q. The proof requires five
calculations, one for each law of the arrow calculus. Figure 6 shows one of these,
the calculation to derive (right) from the classic arrow laws.

(ii) The nine laws of classic arrows follow from the five laws of the arrow calculus.
That is,

M = N implies [[M]]−1 = [[N]]−1

for all classic arrow terms M , N . The proof requires nine calculations, one for each

14 Lindley, Wadler and Yallop

f >>> arr id
= (;1)

arr id>>> f >>> arr id
= fst · dup = id

arr (fst · dup)>>> f >>> arr id
= (;4)

arr dup>>> arr fst>>> f >>> arr id
= (;8)

arr dup>>> first f >>> arr fst>>> arr id
= (;4)

arr dup>>> first f >>> arr (id · fst)
= id · fst = fst

arr dup>>> first f >>> arr fst
= (;8)

arr dup>>> arr fst>>> f
= (;4)

arr (fst · dup)>>> f
= fst · dup = id

arr id>>> f
= (;1)

f

Fig. 9. Proof that (;2) is redundant

classic arrow law. Figure 7 shows one of these, the calculation to derive (;2) from
the laws of the arrow calculus.

(iii) Translating from the arrow calculus into classic arrows and back again is the
identity on terms. That is,

[[[[M]]]]−1 = M

for all arrow calculus terms M . Translating a command of the arrow calculus into
classic arrows and back again cannot be the identity, because the back translation
yields a term rather than a command, but it does yield the term that is the arrow
abstraction of the original command. That is,

[[[[P]]∆]]−1 = λ•∆. P

for all arrow calculus commands P . The proof requires four calculations, one for
each construct of the arrow calculus.

(iv) Translating from classic arrows into the arrow calculus and back again is the
identity. That is,

[[[[M]]−1]] = M

for all classic arrow terms M . The proof requires three calculations, one for each
classic arrow constant. Figure 8 shows one of these, the calculation for first.

Properties (i)–(iv) together constitute an equational correspondence between clas-
sic arrows and the arrow calculus (Sabry & Felleisen, 1993). The full details of the
proof appear in a companion technical report (Lindley et al., 2008a).

A look at Figure 6 reveals a mild surprise: (;2), the right unit law of classic

The Arrow Calculus 15

arrows, is not required to prove (right), the right unit law of the arrow calculus.
Further, it turns out that (;2) is also not required to prove the other four laws.
But this is a big surprise! From the classic arrow laws—excluding (;2)—we can
prove the laws of the arrow calculus, and from these we can in turn prove the classic
arrow laws—including (;2). It follows that (;2) must be redundant.

Once the arrow calculus provided the insight, it was not hard to find a direct
proof of redundancy, as presented in Figure 9. We believe we are the first to observe
that the nine classic arrow laws can be reduced to eight.

5 Higher-order arrows

Arrows offer only a weak notion of structure, and it is common to impose additional
structure by adding extra constants and extra laws. Such variants include higher-
order arrows (Hughes, 2000), arrows with choice (Hughes, 2000), arrows with loops
(Paterson, 2001), and static arrows (Lindley et al., 2008b). Here we show how to
treat higher-order in the arrow calculus; we believe the other extensions can be
treated similarly.

Hughes (2000) described the additional structure required for classic arrows to
be higher-order, and showed that an arrow with this structure is equivalent to a
monad. In practice, when such structure is present one would tend to use a monad
rather than an arrow (since the monad calculus is simpler than the arrow calculus).
But the structure is useful for understanding the relation between monads and
arrows (Hughes, 2000; Lindley et al., 2008b).

Hughes introduced a new constant, an arrow analogue of application,

app : (A ; B)×A ; B

satisfying three laws, as shown in Figure 10.
Recall our previous rule for arrow application,

Γ ` L : A ; B

Γ, ∆ `M : A

Γ; ∆ ` L •M ! B

which imposes the restriction that the term denoting the arrow to apply cannot
contain free variables in ∆. To extend the arrow calculus to higher-order arrows,
we introduce a second apply operation (written ? rather than •) which lifts this
restriction,

Γ, ∆ ` L : A ; B

Γ, ∆ `M : A

Γ; ∆ ` L ?M ! B

and satisfies a beta law,

(βapp) (λ•x.Q) ? M = Q[x :=M]

The changes are summarized in Figure 11.

16 Lindley, Wadler and Yallop

Syntax

Terms L,M,N ::= · · · | app

Types

app : (A ; B)×A ; B

Laws

(;H1) first (arr (λx. arr (λy. 〈x, y〉)))>>> app = arr id
(;H2) first (arr (g>>>))>>> app = second g >>> app
(;H3) first (arr (>>>h))>>> app = app>>> h

Fig. 10. Higher-order classic arrows

Syntax

Commands P,Q,R ::= · · · | L ?M

Types

Γ, ∆ ` L : A ; B
Γ, ∆ `M : A

Γ; ∆ ` L ?M ! B

Laws

(βapp) (λ•x.Q) ? M = Q[x :=M]
(ηapp) λ•x. (L ? x) = L

Fig. 11. Higher-order arrow calculus

[[L ?M]]∆ = arr (λ∆. ([[L]], [[M]]))>>> app

Fig. 12. Translation from Arrow Calculus into Classic Arrows, extended

[[app]]−1 = λ•z. (fst z) ? (snd z)

Fig. 13. Translation from Classic Arrows into Arrow Calculus, extended

It is instructive to see the beta law rewritten with types:

Γ; x : A ` Q ! B
Γ `M : A

Γ; ∅ ` (λ•x.Q) ? M = Q[x :=M] ! B

The Arrow Calculus 17

where we write Γ; ∆ ` P = Q ! A to abbreviate Γ; ∆ ` P ! A and Γ; ∆ ` Q ! A
and P = Q. One might be tempted to adopt more general types,

Γ, ∆; x : A ` Q ! B
Γ, ∆ `M : A

Γ; ∆ ` (λ•x.Q) ? M = Q[x :=M] ! B

but this cannot be correct, because the more general typing for the right-hand side
is not necessarily admissible under the more general typing for Q.

The (ηapp) law follows from (βapp).

λ•x. L ? x

= (η;)
λ•x. (λ•y. L • y) ? x

= (βapp)
λ•x. L • x

= (η;)
L

Further, every first-order application is equivalent to a higher-order application.
Assume Γ ` L : A ; B and Γ, ∆ `M : A, and x 6∈ Γ, ∆. Then

L •M
= (βapp)

(λ•x. L • x) ? M
= (η;)

L ?M

Replacing every occurrence of L •M by L ?M renders the difference in the two
environments, Γ and ∆, no longer relevant, since the only significant difference
between Γ and ∆ is that L in L •M may not use variables in ∆, and it is precisely
this restriction that is lifted in L ?M .

The Substitution and Weakening Lemmas extend straightforwardly. The trans-
lation from arrow calculus to classic arrows is extended as shown in Figure 12, and
the inverse translation is extended as shown in Figure 13.

As before, we must show that the translations preserve equations. There are three
calculations for each of the three higher-order arrow laws. Figure 14 shows one of
these, the calculation to derive (;H2) from the laws of the arrow calculus and
(βapp. Figure 15 shows the corresponding calculation for the inverse translation, a
proof of (βapp) from the laws of classic arrows with apply.

Once again, the proof reveals a surprise: (;H2) is not required to prove (βapp).
From the classic laws—with apply but excluding (;H2)—we can prove the laws of
higher-order arrow calculus, and from these we can in turn prove the classic laws—
including (;H2). It follows that (;H2) must be redundant. We believe we are the
first to observe that the three classic arrow laws for app can be reduced to two.

18 Lindley, Wadler and Yallop

[[first (arr (g>>>))>>> app]]−1

= def [[−]]−1

λ•a. let b⇐ (λ•z. let x⇐ (λ•f. [[[g >>> f]]−1]) • fst z in [〈x, snd z〉]) • a in
(λ•w. fst w ? snd w) • b

= (β;)
λ•a. let b⇐ (let x⇐ [[[g >>> fst a]]−1] in [〈x, snd a〉]) in fst b ? snd b

= (assoc)
λ•a. let x⇐ [[[g >>> fst a]]−1] in let b⇐ [〈x, snd a〉] in fst b ? snd b

= (left)
λ•a. let x⇐ [[[g >>> fst a]]−1] in x ? snd a

= def [[−]]−1

λ•a. let x⇐ [λ•d. let y ⇐ g • d in fst a • y] in x ? snd a
= (ηapp, β;)

λ•a. let x⇐ [λ•d. let y ⇐ g • d in fst a ? y] in x ? snd a
= (left, βapp)

λ•a. let y ⇐ g • snd a in fst a ? y
= (left)

λ•a. let y ⇐ g • snd a in let b⇐ [〈fst a, y〉] in fst b ? snd b
= (assoc)

λ•a. let b⇐ (let y ⇐ g • snd a in [〈fst a, y〉]) in fst b ? snd b
= (β;)

λ•a. let b⇐ (λ•z. let y ⇐ g • snd z in [〈fst z, y〉]) • a in
(λ•w. fst w ? snd w) • b

= def [[−]]−1

[[second g >>> app]]−1

Fig. 14. Proof of (;H2) in higher-order arrow calculus

Acknowledgements

Our thanks to Robert Atkey, Samuel Bronson, John Hughes, Eugenio Moggi, Ross
Paterson, and our referees.

References

Atkey, Robert. (2008). What is a categorical model of arrows? Mathematical structures
in functional programming. ENTCS.

Benton, Nick. (1995). A mixed linear and non-linear logic: Proofs, terms and models.
Computer science logics. LNCS 933.

Courtney, Antony, & Elliott, Conal. 2001 (Sept.). Genuinely functional user interfaces.
Pages 41–69 of: Haskell workshop.

Hudak, Paul, Courtney, Antony, Nilsson, Henrik, & Peterson, John. (2003). Arrows,
robots, and functional reactive programming. Jeuring, Johan, & Jones, Simon Pey-
ton (eds), Advanced functional programming, 4th international school. LNCS, vol. 2638.
Springer-Verlag.

Hughes, John. (2000). Generalising monads to arrows. Science of computer programming,
37(May), 67–111.

Jansson, Patrik, & Jeuring, Johan. (1999). Polytypic compact printing and parsing. Pages
273–287 of: European symposium on programming. LNCS, vol. 1576. Springer-Verlag.

The Arrow Calculus 19

Lindley, Sam, Wadler, Philip, & Yallop, Jeremy. (2008a). The arrow calculus. Tech. rept.
EDI-INF-RR-1258. School of Informatics, University of Edinburgh.

Lindley, Sam, Wadler, Philip, & Yallop, Jeremy. (2008b). Idioms are oblivious, arrows are
meticulous, monads are promiscuous. Mathematical structures in functional program-
ming. ENTCS.

McBride, Conor, & Paterson, Ross. (2008). Applicative programming with effects. Journal
of functional programming, 18(1), 1–13.

Moggi, Eugenio. (1991). Notions of computation and monads. Information and computa-
tion, 93(1), 55–92.

Paterson, Ross. (2001). A new notation for arrows. Pages 229–240 of: International
conference on functional programming. ACM Press.

Power, John, & Robinson, Edmund. (1997). Premonoidal categories and notions of com-
putation. Mathematical structures in computer science, 7(5), 453–468.

Power, John, & Thielecke, Hayo. (1999). Closed Freyd- and kappa-categories. International
colloquium on automata, languages, and programming. LNCS, vol. 1644. Springer.

Sabry, Amr, & Felleisen, Matthias. (1993). Reasoning about programs in continuation-
passing style. Lisp and symbolic computation, 6(3/4), 289–360.

20 Lindley, Wadler and Yallop

[[(λ•x.Q) ? M]]∆
= def [[−]]

arr (λ∆. ([[Q]]x, [[M]]))>>> app
= def (×), dup

arr (((λ∆. [[Q]]x)× (λ∆. [[M]])) · dup)>>> app
= g × f = swap · (f × id) · swap · (g × id)

arr (swap · ((λ∆. [[M]])× id) · swap · ((λ∆. [[Q]]x)× id) · dup)>>> app
= (;4)

arr dup>>> arr ((λ∆. [[Q]]x)× id)>>> arr swap>>> arr ((λ∆. [[M]])× id)>>> arr swap>>> app
= (;5)

arr dup>>> first (arr (λ∆. [[Q]]x))>>> arr swap>>> first (arr (λ∆. [[M]]))>>> arr swap>>> app
= def second,&&&

(arr (λ∆. [[Q]]x) &&& arr (λ∆. [[M]]))>>> app
= Weakening Lemma

(arr (λ∆. arr (λx. (∆, x))>>> [[Q]]∆,x) &&& arr (λ∆. [[M]]))>>> app
= let i = λ∆. arr (λx. (∆, x)), p = arr (λ∆. [[M]]), q = [[Q]]〈∆,x〉

(arr ((q>>>) · i) &&& p)>>> app
= def &&&

arr dup>>> first (arr ((q>>>) · i))>>> second p >>> app
= (;5)

arr dup>>> arr (((q>>>) · i)× id)>>> second p >>> app
= arr (f × id)>>> second g = second g >>> arr (f × id)

arr dup>>> second p >>> arr (((q>>>) · i)× id)>>> app
= (;5)

arr dup>>> second p >>> first (arr ((q>>>) · i))>>> app
= (;4)

arr dup>>> second p >>> first (arr i >>> arr (q>>>))>>> app
= (;6)

arr dup>>> second p >>> first (arr i)>>> first (arr (q>>>))>>> app
= (;H3)

arr dup>>> second p >>> first (arr i)>>> app>>> q
= (;H1)

arr dup>>> second p >>> arr id>>> q
= (;2)

arr dup>>> second p >>> q
= (;1)

arr dup>>> arr id>>> second p >>> q
= id = id× id

arr dup>>> arr (id× id)>>> second p >>> q
= (;5)

arr dup>>> first (arr id)>>> second p >>> q
= def &&&

(arr id &&& p)>>> q
= def p, q

(arr id &&& arr (λ∆. [[M]]))>>> [[Q]]∆,x

= Substitution Lemma
[[Q[x :=M]]]∆

Fig. 15. Proof of (βapp) from higher order classic arrows

