
Staging Generic Programming

Jeremy Yallop
University of Cambridge, UK
jeremy.yallop@cl.cam.ac.uk

Abstract
Generic programming libraries such as Scrap Your Boilerplate
eliminate the need to write repetitive code, but typically introduce
significant performance overheads. This leaves programmers with
the unfortunate choice of writing succinct but slow programs or
writing tedious but efficient programs. We show how to systemat-
ically transform an implementation of the Scrap Your Boilerplate
library in the multi-stage programming language MetaOCaml to
eliminate the overhead, making it possible to combine the benefits
of high-level abstract programming with the efficiency of low-level
code.

Categories and Subject Descriptors D.1.1 [Programming tech-
niques]: Applicative (Functional) Programming

Keywords multi-stage programming, generic programming, ML,
MetaOCaml, partial evaluation

1. Introduction
Generic programming The promise of generic programming is
the elimination of the tedious boilerplate code used to traverse com-
plex data structures. For example, if you want to apply a function
munge to all values of a particular type t within a larger data struc-
ture s you might start by writing code to traverse s, examining
its constructors and iterating over their fields. Alternatively, you
might use a generic programming library such as Scrap Your Boil-
erplate (Lämmel and Jones 2003), and write code like the follow-
ing:

everywhere (mkT munge) s

This small piece of code locates all the values of type t within
the structure s and transforms them with munge. Regardless of
whether s is a list, a tree, a pair, or some more complex structure,
everywhere traverses its sub-values, applying mkT munge to each.
The application of mkT munge succeeds exactly when the argument
has a type that matches the domain of munge. In this way, generic
programming eliminates the need to write type-specific traversals.

Evidently, generic programming can significantly simplify cer-
tain programming tasks. However, the genericity of functions im-
plemented using libraries such as Scrap Your Boilerplate (SYB)
often comes with a severe performance cost. For example, the call

to everywhere above may take around 15 to 20 times longer than
an equivalent traversal specialized to a particular type (Section 4).

Multi-stage programming The poor performance of functions
like everywhere is a consequence of the same genericity that makes
them appealing. How might we keep the genericity but eliminate
the cost? One approach to reducing the costs of abstraction is multi-
stage programming. Multi-stage programs make use of information
that becomes available between the time when a function is de-
fined and the time when it is invoked to improve the function’s ef-
ficiency. For example, the author of the everywhere function, who
cannot possibly know the eventual types of its arguments, ought
to make everywhere as general as possible. However, the caller of
everywhere typically knows the types of the arguments long be-
fore the time when it is actually called. This type information can
be used to instantiate everywhere at the call site, producing an im-
plementation that is specialized to those argument types. In this
way the overhead of genericity may be eliminated before the time
comes to call everywhere, so that the eventual call is as efficient as
possible.

Here is a call to a staged version of everywhere which is spe-
cialized for traversing lists of trees:
let transform : int tree list→ int tree list =
instantiateT (everywhere_ (mkT_ munge_))

The second line passes the result of the call to everywhere_ to
a function instantiateT, which builds a type-specialized version
of the function, transform, without the overhead of genericity.
(The convention throughout this paper is that a trailing underscore
indicates a staged version of a function.) The generated function,
transform, can be called immediately with the value s:

transform s

The type-specialized transform function behaves exactly as the
original call to everywhere, but its performance is much closer to
that of the tedious hand-written traversal which we have still man-
aged to avoid writing. The behaviour of instantiateT, everywhere_,
etc., is explained in detail in the body of this paper.

1.1 Contributions
The primary contribution of this paper is the demonstration that
standard multi-stage programming techniques can eliminate the
overhead of generic programming without the need to resort to
extra-lingual mechanisms. In more detail, this paper includes

• a port of Scrap Your Boilerplate library to BER MetaOCaml
extended with modular implicits, using extensible variant types
to implement a safe type equality test (Section 2);
• a straightforward transformation of generic operations into

generators of monomorphic code, eliminating the overhead of
generic dispatch (Section 3.1);
• a refactoring of the SYB generic traversal schemes to use ex-

plicit fixpoints, allowing memoization of recursive calls and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

PEPM’16, January 18–19, 2016, St. Petersburg, FL, USA
ACM. 978-1-4503-4097-7/16/01...$15.00
http://dx.doi.org/10.1145/2847538.2847546

85

let insertion, transforming open-recursive code into groups of
mutually-recursive functions (Section 3.2); and
• performance measurements showing that staging eliminates the

great majority of the overhead of generic traversals over hand-
written code, and an analysis of the sources of the remaining
overhead in the staged generic programming library (Section 4).
• Along the way are various incidental observations, including

the first case study of a library written using modular implic-
its (White et al. 2015), an argument for adding recursive mod-
ule types to OCaml (Section 2.3) and an argument for extend-
ing MetaOCaml with facilities for dynamically constructing
mutually-recursive bindings.

2. Scrap Your Boilerplate, OCaml-Style
The majority of generic programming libraries, including SYB, are
written for Haskell or closely-related languages. However, most
research on multi-stage programming has focused on ML-family
languages such as BER MetaOCaml (Kiselyov 2014). This paper
uses a port of SYB to BER MetaOCaml as a starting point for
demonstrating how to use staging to improve the efficiency of
generic programming.

2.1 SYB Basics
The Scrap Your Boilerplate design has three principal ingredients.

The first ingredient is a type coercion that makes it possible to
write functions such as the mkT function used in the introduction.
In the original SYB implementation (Lämmel and Jones 2003) the
coercion is implemented as a typed wrapper around an untyped
cast. The implementation in this paper takes advantage of advances
in language technology to implement the coercion more safely and
efficiently as a typed equality test based around extensible GADTs
(Section 2.2).

The second ingredient is a small collection of generic mapping
functions over data. Each mapping function takes a generic func-
tion as argument and applies it to all the immediate subnodes of a
value (Section 2.3).

The third ingredient is a collection of generic “schemes” — that
is, functions which traverse data in a variety of ways. The schemes
are built by recursively applying the generic mapping functions and
combining them with other functions to transform, interrogate, and
display data (Section 2.4).

2.2 The First SYB Ingredient: Type Equality
Type equality plays a central role in the Scrap Your Boilerplate
library. The original Haskell library (Lämmel and Jones 2004) is
based on a generalized cast operation with the following Haskell
type:

gcast :: (Typeable a, Typeable b) => c a→ Maybe (c b)

The type of gcast may be read as follows: for any types a and b

that are instances of the Typeable class, gcast attempts to convert
a value of type a in some context c (typically a newtype) into a
value of type b in the same context. The Maybe type constructor
indicates that the attempt may fail: in fact, it certainly ought to fail
whenever the types a and b are not the same!

The gcast function is based on an unchecked coercion function,
unsafeCoerce, which it calls after retrieving and comparing type
representations of a and b, ensuring that unsafeCoerce is only
actually invoked if the representations of a and b are the same.
Convention (and, in later versions, compiler support) ensures that
distinct types are given distinct representations.

Since SYB was first released, language technology has ad-
vanced, and it is now possible to implement equivalent behaviour

without the need for either the low-level unsafe features or the awk-
wardness of type contexts encoded as newtypes. Recent versions of
OCaml include both GADTs, which support a richer notion of type
equality than gcast, and extensible variant types (Löh and Hinze
2006), which serve as a useful basis for building type representa-
tions.

type (_, _) eql = Refl : (’a, ’a) eql

Figure 1. Type equality

Figure 1 shows the classic equality GADT (Johann and Ghani
2008), which provides evidence that two types are equal. The eql

type has two parameters, since it represents a relation between two
types. However, the sole constructor Refl reveals that in the only
permissible instantiation both parameters are the same, reflecting
the fact that the only type equal to a type t is t itself. In code that
uses pattern matching to scrutinise a value of type (t, s) eql to
reveal a Refl, the compiler therefore allows the types t and s to be
used interchangeably.

type _ type_rep = ..

Figure 2. An extensible type representation

Figure 2 introduces a type type_rep, with a single parameter
and no constructors. A value of type t type_rep is intended to
serve as a representation for the type t, and to support comparing
two type representations to determine whether the corresponding
types are equal. The dots .. in the definition of type_rep indicate
that it is an extensible type. Extensibility is a useful property for a
type representation. Since the set of types is open — each new data
type declaration generates a fresh type — it is convenient if the set
of type representations is also open.

Figure 3 shows the TYPEABLE signature, which corresponds to
a class of the same name in the original SYB implementation. A
structure of type TYPEABLE contains a type representation for a type
t and a function eqty for comparing the type representation with
the representation of some other type ’s. If the representations are
determined to be equal, eqty returns the value Some Refl, which
makes it possible for t and ’s to be used interchangeably. (The unit
argument to the type_rep function is there for technical reasons; it
prevents difficulties in the next section, where TYPEABLE values are
used in recursive modules, which have restrictions on non-function
members (Leroy 2003).)

Figure 4 implements a binary equality function =~~= in terms of
eqty, which passes the type representation of the right argument to
the equality function of the left argument.

Figure 5 adds a constructor, Int, for representing the int type,
to type_rep, and gives an instance of TYPEABLE for int. The
type_repr constructor simply returns Int. The eqty function ex-
amines its argument of type b type_rep: if it is revealed to be Int

then b must be equal to int and the type checker allows Some Refl

to be returned; otherwise nothing more is revealed about the type
and the function returns None.

Figure 6 extends type_rep with a constructor List with one
argument for representing the one-parameter type constructor list,
and gives an implementation of TYPEABLE for list, parameterised
by an implementation of TYPEABLE for list’s type parameter. The
implementation of eqty must examine both the List constructor
and the argument of List before enough information is revealed to
permit the return of Some Refl.

2.3 The Second SYB Ingredient: Generic Operations
The second ingredient of Scrap Your Boilerplate is a small set of
generic operations over data.

86

module type TYPEABLE = sig
type t
val type_rep : unit→ t type_rep
val eqty : ’s type_rep→ (t, ’s) eql option

end

Figure 3. The TYPEABLE interface

val (=~~=) : {A:TYPEABLE}→ {B:TYPEABLE}→
(A.t,B.t) eql option

let (=~~=) {A: TYPEABLE} {B: TYPEABLE} =
A.eqty (B.type_rep ())

Figure 4. Equality for TYPEABLE instances

type _ type_rep += Int : int type_rep

module Typeable_int :
TYPEABLE with type t = int =

struct
type t = int
let eqty : type b.
b type_rep→ (t, b) eql option =
function Int→ Some Refl | _→ None

let type_rep () = Int
end

Figure 5. TYPEABLE for int

type _ type_rep += List : ’a type_rep→ ’a list type_rep

module Typeable_list(A: TYPEABLE) :
TYPEABLE with type t = A.t list =

struct
type t = A.t list
let eqty : type b.
b type_rep→ (t,b) eql option =
function

List a→
(match A.eqty a with

Some Refl→ Some Refl
| None→ None)

| _→ None
let type_rep () = List (A.type_rep ())

end

Figure 6. TYPEABLE instances for int and list

Figure 7 gives the definition of the DATA signature1, which sup-
ports the operations of TYPEABLE, together with two additional op-
erations. The first operation, gmapT, is a kind of generic map, which
transforms a value by applying its argument function to every sub-
value. The second operation, gmapQ, is a kind of generic query,
which collects the results of applying its argument function to every
subvalue. (The full implementation has further operations, includ-
ing support for generic folds.)

The types of gmapT and gmapQ include some elements which are
not part of the current OCaml release. The brace-enclosed argu-
ment type {D: DATA} denotes an implicit module argument, which
is part of a proposed extension to OCaml for overloaded function

1 Recursive module types, introduced with module type rec, are a small,
independently-useful language extension, which are macro-expressible in
terms of OCaml’s existing recursive modules.

module type rec DATA =
sig
type t
module Typeable : TYPEABLE with type t = t
val gmapT : ({D: DATA}→ D.t→ D.t)→ t→ t
val gmapQ : ({D: DATA}→ D.t→ ’u)→ t→ ’u list

end

Figure 7. The DATA interface

support (White et al. 2015). Modular implicits are not an essential
feature of the implementation given here — it would be possible to
pass explicit dictionaries in place of implicit arguments — but sig-
nificantly improve usability. Figure 8 shows how various aspects of
modular implicits correspond to similar features in Haskell’s type
classes. There are differences between implicits and type classes,
but they do not play a significant role in this work.

Figure 9 defines aliases for the argument types of gmapT and
gmapQ, which will appear frequently in the following pages.

Figure 10 defines two implicit instances of the DATA signature.
The first instance, Data_int, gives an implementation of gmapT

which simply returns its second argument and an implementation of
gmapQ which returns an empty list, ignoring both its arguments —
in both cases reflecting the fact that an int value has no subnodes.
The second instance, Data_list, gives implementations of gmapT

and gmapQ which apply the argument function f to each sub-node,
reconstructing the list or collecting the results as appropriate. The
generic type of f allows it to be applied to any value for which
a suitable implicit argument is available; in particular, it can be
applied to x, which has type A.t, since the implicit argument A is
available, and to xs, which has type t, since the implicit module
Data_list(A) is available.

Figure 11 defines an implicit functor, Typeable_of_data, which
projects the TYPEABLE member from an implicit DATA module.

Mechanising DATA instance construction In practice, DATA in-
stances such as Data_int and Data_list will be synthesised auto-
matically from a type definition rather than written by hand, much
as GHC automatically generates instances for the Typeable and
Data classes in the original SYB library (The GHC Team 2015,
7.5.3).

To support convenient access to the gmapT and gmapQ members
of a DATA module, Figure 12 defines top-level functions of the same
names which simply project out the corresponding members from
their implicit arguments.

Here is an example of gmapT in action:

gmapT (mkT succ) [10; 20];;
- : int list = [11; 20]

Since gmapT applies its first argument only to immediate sub-nodes
of its second — here 10 and [20] — only the first integer is
incremented. (The mkT function, which builds a generic function
from a non-generic function, is defined in the next section.)

2.4 The Third SYB Ingredient: Generic Traversal Schemes
The final ingredient of the Scrap Your Boilerplate library is a set of
recursive schemes built atop gmapT and gmapQ.

Figure 13 shows the types of some representative schemes.
Unlike the non-recursive gmapT and gmapQ functions of Section 2.3,
each of the schemes everywhere, everything, and gsize involves
traversing entire values.

Building the generic schemes of Figure 13 from the generic op-
erations of Section 2.3 involves “tying the knot” — i.e. passing a
function to gmapT and gmapQ that invokes those operations recur-
sively on subvalues.

87

module type SHOW = sig
type a
val show : a→ string

end

class Show a where
show :: a→ String

Declaring overloaded
operations

implicit module Show_option {A: SHOW} =
struct

type a = A.a option
let show o = match o with

Some x→ "Some "^ A.show x
| None→ "None"

end

instance Show a => Show (Maybe a)
where
show o = case o of

Just x→ "Just " ++ show x
Nothing→ "Nothing"

Implementing overloaded
operations

val print : {A:SHOW}→ A.a→ unit print :: Show a => a→ IO () Types of overloaded
functions

let print {A:SHOW} (x: A.a) =
print_string (A.show x)

print x =
putStr (show x)

Defining overloaded
functions

print 10 print 10 Calling overloaded
functions

Figure 8. Polyglot: OCaml implicits vs Haskell typeclasses

type genericT = {D: DATA}→ D.t→ D.t
type ’u genericQ = {D: DATA}→ D.t→ ’u

Figure 9. genericT and genericQ

implicit module Data_int
: DATA with type t = int =

struct
type t = int
module Typeable = Typeable_int
let gmapT _ x = x
let gmapQ _ _ = []

end

implicit module rec Data_list {A: DATA}
: DATA with type t = A.t list =

struct
type t = A.t list
module Typeable = Typeable_list(A.Typeable)
let gmapT : genericT→ t→ t =

fun f l→ match l with
[]→ []

| x :: xs→ f x :: f xs

let gmapQ (f : _ genericQ) (l : t) =
match l with

[]→ []
| x :: xs→ [f x; f xs]

end

Figure 10. DATA instances

implicit module Typeable_of_data{F: DATA} = F.Typeable

Figure 11. TYPEABLE from DATA

Writing generic traversals in this open-recursive style allows
considerable flexibility in the form of the traversal. For example,
everywhere traverses values in a bottom-up fashion by applying
the argument function f to the result of the call to gmapT, while

val gmapT : genericT→ genericT
let gmapT f {D: DATA} = D.gmapT f

val gmapQ : ’u genericQ→ ’u list genericQ
let gmapQ f {D: DATA} = D.gmapQ f

Figure 12. Top-level functions gmapT and gmapQ

(* Apply a transformation everywhere, bottom-up *)
val everywhere : genericT→ genericT

(* Summarise all nodes, top-down, left-to-right *)
val everything :

(’r→ ’r→ ’r)→ ’r genericQ→ ’r genericQ

(* Compute size of an arbitrary data structure *)
val gsize : int genericQ

Figure 13. Some generic SYB schemes

let rec everywhere : genericT→ genericT =
fun (f : genericT) {D:DATA} x→

f ((gmapT (everywhere f) : genericT) x)

let rec everything : ’r. (’r→ ’r→ ’r)→ ’r genericQ→
’r genericQ =

fun (@) g {D: DATA} x→
fold_left (@) (g x) (gmapQ (everything (@) g) x)

let rec gsize {D:DATA} v = 1 + sum (gmapQ gsize v)

Figure 14. Some generic schemes (implementations)

everything traverses top-down, collecting results, and gsize com-
bines intermediate results to compute an integer (Figure 14).

mkT and mkQ The everywhere function, like many SYB generic
schemes, accepts a generic function as an argument. A common
pattern when calling such schemes is to convert a non-generic func-

88

val mkT : {T:TYPEABLE}→ (T.t→ T.t)→ genericT
val mkQ : {T:TYPEABLE}→ ’u→ (T.t→ ’u)→ ’u genericQ

Figure 15. Converting functions to genericT and genericQ (types)

let appT (type a) (type b)
(module A:TYPEABLE with type t = a)
(module B:TYPEABLE with type t = b)
(g : b→ b) (x : a) : a =

match {A} =~~= {B} with
Some Refl→ g x

| _→ x

let mkT {T:TYPEABLE} g : genericT =
fun {D:DATA}→

appT (module D.Typeable) (module T) g

let appQ (type a) (type b)
(module A : TYPEABLE with type t = a)
(module B : TYPEABLE with type t = b)
u (g : b→ ’u) (x: a) =

match {A} =~~= {B} with
| Some Refl→ g x
| _ → u

let mkQ {T:TYPEABLE} u g : ’u genericQ =
fun {D: DATA} x→

appQ (module D.Typeable) (module T) u g x

Figure 16. Converting functions to genericT and genericQ

tion f of some type t→ t to a generic function of type genericT

that applies f to values of type t and leaves other values unchanged.
The SYB function mkT performs this conversion. Here is an exam-
ple, showing the result of applying mkT to the standard library func-
tion succ, which increments an int:

mkT succ;;
- : Syb.genericT = <fun>
mkT succ 10;;
- : int = 11
mkT succ "hello";;
- : string = "hello"

Similarly, mkQ converts a function of type a →b and a default
value of type b into a generic query of type b genericQ. Here is an
example, showing how to use mkQ to convert the standard library
function string_of_int into a generic query that turns ints into
strings, and returns "not an int" for values of other types:

mkQ "not an int" string_of_int 10;;
- : string = "10"
mkQ "not an int" string_of_int [1;2;3];;
- : string = "not an int"

Figure 15 gives the types of mkT and mkQ, which indicate that
the argument types of the converted functions must have TYPEABLE

instances.
Figure 16 gives the implementations of mkT and mkQ. The imple-

mentation is given in terms of auxiliary functions appT and appQ,
which compare the type representations of the function domain and
the argument and optionally apply the function if the representa-
tions match. The use of an auxiliary function is for technical rea-
sons rather than for clarity: it makes it possible to introduce the
“locally abstract types” a and b, which are a prerequisite for GADT
refinement.

3. Staging Scrap Your Boilerplate
SYB overhead It has frequently been observed that the SYB li-
brary has poor performance compared to handwritten code (e.g. Adams
et al. (2015)). The causes of this inefficiency are various, but most
can be traced back to various forms of abstraction — that is, to
delaying of decisions about which code should be executed until
the last possible moment. For example

• Almost every function call in an SYB traversal is a call to a
polymorphic overloaded function.
• Almost every function call in an SYB traversal is indirect —

through an argument rather than a statically-known function.
• Many common SYB schemes involve a runtime type equality

check on almost every call.

Multi-stage programming makes it possible to systematically elim-
inate each of these sources of inefficiency, transforming polymor-
phic functions into monomorphic functions, indirect calls into di-
rect calls, and dynamic type equality checks into static code spe-
cializers.

Here is the code from the introduction again:
everywhere (mkT munge) s

Suppose, for concreteness, that munge is the successor function
succ, and that s has type (int * int) tree, where tree is defined
as follows:
type ’a tree =

Leaf
| Bin of ’a * ’a tree * ’a tree

Hand-written code that performs the same function as the call
above might then have the following form:
let rec incTree : (int * int) tree→ (int * int) tree =

fun t→ match t with
| Leaf→

Leaf
| Bin ((a, b), l, r)→

Bin ((succ a, succ b), incTree l, incTree r)

Compared to this relatively efficient code, the call to everywhere

performs a great many fruitless operations, attempting to apply the
generic function mkT succ to every node, including trees and pairs,
and dispatching recursive calls through polymorphic functions and
DATA instances.

Optimising the existing inefficient SYB implementation of Sec-
tion 2 to perform (almost) as well as this hand-written code does
not require a complete rewrite. Sections 3.1 and 3.2 demonstrate
how to transform the inefficient SYB implementation step-by-step
into a code generator and specializer.

These changes to SYB involves changing two of the three in-
gredients in the implementation.

The code implementing the type equality test (Section 2.2)
remains entirely unchanged, although it will be employed statically
rather than dynamically — that is, during code generation rather
than code execution — to generate code rather than to traverse
values.

The generic operations of Section 2.3 are specialized to partic-
ular types. The functions gmapT and gmapQ become code generators
(Section 3.1).

The recursive knot-tying schemes of Section 2.4 are trans-
formed, first into open-recursive functions, and then into gener-
ators which can build cliques of mutually-recursive monomorphic
functions (Section 3.2).

3.1 Staged Generic Operations
Staging basics The aim of staging a function in MetaOCaml is to
change its behaviour so that rather than returning a regular value it

89

constructs code that computes that value. Staging is accomplished
by introducing quotations and antiquotations. Enclosing an expres-
sion e of type t in quotations, .<e>., delays its evaluation, instead
constructing a code value of type t code. Conversely, splicing an
expression e of type t code within a quotation forces its evalua-
tion to produce a code value which is inserted into the enclosing
quotation.

3.1.1 Background: Partial Evaluation
Many forms of staging can be viewed as a kind of programmer-
directed partial evaluation, and the partial evaluation literature
(e.g. Jones et al. (1993)) provides useful vocabulary. Partial eval-
uation divides the variables in an environment into static — those
whose values are available immediately — and dynamic — those
whose values are not yet available — a process known as binding-
time analysis. Binding-time analysis generalizes from variables to
expressions: those expressions which involve only static variables
are classified as static. Given a binding-time analysis, a term can
be factored into two parts, the first of which — the generating ex-
tension — operates on the static data to produce the second — the
residual program. Since only part of the evaluation remains to be
performed, the residual program is typically more efficient than the
original program.

The staging process is an essentially mechanical refactoring.
Given a binding-time analysis which classifies each variable and
each expression as static or dynamic, an unstaged expression of
type t can be viewed without loss of generality as a function of type
tsta → tdyn → t from a static value of type tsta and a dynamic
value of type tdyn.

The first step changes the types of dynamic variables of type
t to t code, quotes dynamic expressions, and encloses static ex-
pressions that occur within dynamic expressions in splices. (At this
point there is also the option of performing binding-time improve-
ments — transformations of the original program such as CPS con-
version (Nielsen and Srensen 1995) or eta expansion (Danvy et al.
1996) which allow more expressions to be classified as static.)
The result of this step is is a code-generating function of type
tsta → tdyn code→ t code.

The second step constructs the static data and supplies them
to the function, producing a function of type tdyn code→ t code.
The function back, defined as follows

let back f = .< fun x→ .~(f .<x>.) >.

turns this code generator into a residual program of type (tdyn →
t) code.

Finally, running the residual program produces a function of
type tdyn → t which can be applied to the dynamic data when they
become available.

3.1.2 Binding-Time Analysis and SYB
The binding-time analysis for SYB is particularly simple. The
generic operations gmapT and gmapQ both take implicit arguments
describing the type structure of the values passed as non-implicit
arguments. The implicit parameters bound to type variables are in-
serted by the compiler during compilation, and so can be classified
as static (but see Section 5.3 for some exceptions). The non-implicit
parameters — the actual values to be traversed — are typically only
available later, and so are classified as dynamic. The result is that
SYB functions are changed from functions which accept both type
representations and values at runtime to functions which first accept
type representations, which they use to generate code representing
functions which accept values.

Staging DATA The binding-time analysis for DATA transforms the
signature as shown in Figure 17. Each implicit argument is classi-
fied as static, and so is left unchanged. Each non-implicit argument

module type rec DATA =
sig
type t
module Typeable : TYPEABLE with type t = t
val gmapT_ : ({D: DATA}→ D.t code→ D.t code)→

t code→ t code
val gmapQ_ : ({D: DATA}→ D.t code→ ’u code)→

t code→ ’u list code
end

Figure 17. DATA, staged

and each return type is classified as dynamic, and becomes a code

value. The function arguments of gmapT_ and gmapQ_ are classified
as static, even though in practice the functions passed might not be
fully known in advance. However, Section 3.3 shows that it is still
possible to use gmapT_ and gmapQ_ with statically-unknown func-
tions.

type genericT_ = {D:DATA}→ D.t code→ D.t code
type ’u genericQ_ = {D: DATA}→ D.t code→ ’u code

Figure 18. genericT and genericQ, staged

The definitions of genericT and genericQ need to be modified
accordingly (Figure 18).

implicit module Data_int = struct
type t = int
module Typeable = Typeable_int
let gmapT_ _ x = x
let gmapQ_ _ _ = .<[]>.

end

implicit module rec Data_list {A: DATA} = struct
type t = A.t list
module Typeable = Typeable_list(A.Typeable)
let gmapT_ (f : genericT_) l =

.< match .~l with
[]→ []

| x :: xs→ .~(f .<x>.) :: .~(f .<xs>.) >.

let gmapQ_ (f : _ genericQ_) l =
.< match .~l with

| []→ []
| x :: xs→ [.~(f .<x>.); .~(f .<xs>.)] >.

end

Figure 19. DATA instances, staged

Applying the staging process described above to Data_int and
Data_list results in the code in Figure 19. In Data_list, in both
gmapT and gmapQ, l is dynamic, and must be spliced within the
quotation which builds the body of the function. Similarly, the
variables x and xs are dynamic, since they are only available when
l is examined; they must be passed to f as quoted code values.
However both f and its implicit argument are classified as static,
and so f can be called immediately, generating code that is spliced
into the body quotation.

Figure 20 gives staged equivalents of the top-level operations
gmapT and gmapQ.

Here is the staged analogue of the example at the close of
Section 2.3, illustrating the transformation of gmapT from a generic
function to a generic code generator:

(generateT (gmapT_ (mkT_ (fun x→ .<succ .~x>.)))
: (int list→ int list) code);;

90

val gmapT_ : genericT_→ genericT_
val gmapQ_ : ’u genericQ_→ ’u list genericQ_

let gmapT_ f {D: DATA} = D.gmapT_ f
let gmapQ_ f {D: DATA} = D.gmapQ_ f

Figure 20. generic operations, staged

- : (int list→ int list) code =
.< fun x_1 →

match x_1 with
| []→ []
| x_2::xs_3→ Pervasives.succ x_2 :: xs_3 >.

The generateT function instantiates a generic function of type
genericT_ to build a value of type (t →t) code. Its operation
is described more fully in Section 3.2. The type annotation on
the call to generateT is essential for guiding the specialization
process. If the type of the result of the call is not known then the
implicit arguments cannot be instantiated and no code generation
takes place.

Inspecting the generated code reveals that there is no trace of ei-
ther TYPEABLE or DATA. These generic signatures are now used only
during generation of type-specialized traversals and are no longer
needed for the traversals themselves; they can be discarded, along
with all the other generic function machinery and its associated
overhead, before the call to the generated function takes place.

3.2 Staged Traversal Schemes
Staging non-recursive code such as gmapT and gmapQ is straight-
forward. However, most useful functions in SYB are recursive, in-
troducing new challenges for staging. In the general case, apply-
ing a generic scheme such as everywhere may involve traversing a
number of mutually-recursive types, and so specializing a generic
scheme involves generating a set of mutually-recursive functions.

(* Apply a transformation everywhere (bottom-up) *)
val everywhere_ : genericT_→ genericT_

(* Summarise all nodes (top-down, left-to-right) *)
val everything_ : (’r code→ ’r code→ ’r code)→

’r genericQ_→ ’r genericQ_

(* Compute size of an arbitrary data structure *)
val gsize_ : int genericQ_

Figure 21. Some staged generic SYB schemes

Figure 21 shows the types of the schemes of Figure 13 after
applying the binding-time analysis of Section 2.4, systematically
classifying implicit arguments as static and non-implicit arguments
as dynamic.

Unfortunately, while updating the types of generic schemes for
the multi-stage context is straightforward, naively applying the ap-
proach described in Section 3.1 is doomed to failure. The princi-
pal difficulty is that turning dynamic calls into static calls results
in code generators that attempt to unroll all recursive structure.
Where the static arguments represent types, unrolling the structure
will never terminate, since many type definitions, such as list, are
cyclic.

However, there are existing techniques for dealing with staging
of recursive functions, which can be generalized to the current
setting. Kameyama et al. (2011) outline the following three step
approach.

First, the recursive function should be written in open-recursive
style, and made recursive with a fixpoint combinator. For example,

the everywhere function of Figure 14 should be rewritten to take
an additional argument which is used for self calls:

let everywhere (f : genericT) =
gfixT (fun self {X:DATA} x→ f (gmapT self x))

The gfixT function, described below, is a fixpoint operator suitable
for constructing generic functions of type genericT.

Second, the fixpoint combinator can be modified to support
memoization, avoiding non-terminating recursion. Since gfixT

builds functions of type {D:DATA} →D.t →D.t, memoization in-
volves maintaining a heterogeneous map from DATA instances D

(or equivalently, from TYPEABLE instances) to the corresponding
functions of type D.t →D.t.

Third, the fixpoint combinator can be modified to support let
insertion, avoiding duplication of computations. Generic functions
require let rec insertion in the general case rather than simple
let insertion, since the functions generated for mutually-recursive
types must be mutually recursive.

let everywhere_ (f : genericT_) =
gfixT_ (fun self {X:DATA} x→

f (gmapT_ self x))

let everything_ (@) (g : _ genericQ_) =
gfixQ_ (fun self {X: DATA} x→

let f = g x in .<
let rec crush u = function

[]→ u
| x :: xs→ crush (.~(.<u>. @ .<x>.)) xs
in crush .~f .~(gmapQ_ self x) >.)

let gsize_ = gfixQ_ (fun self {D:DATA} v→
.< 1 + List.fold_left (+) 0 .~(gmapQ_ self v) >.)

Figure 22. Some staged generic SYB schemes (implementations)

Figure 22 shows the result of staging everywhere, everything
and gsize with fixpoint combinators gfixT_ and gfixQ_ that per-
form memoization and let rec insertion. The remainder of this
section investigates how to define those combinators.

Generic fixpoint combinators Here is a definition of gfixT, an
unstaged, non-memoizing fixpoint combinator for constructing
genericT values:

let rec gfixT : (genericT→ genericT)→ genericT =
fun f {D: DATA} (x:D.t)→ f {D} (gfixT f) x

This definition of gfixT is easy to construct by starting from the
equation f = f (fix f), eta-expanding to account for the call-
by-value setting, and then generalizing further over the implicit
argument D.

The definition of gfixQ is similar:

let rec gfixQ : (’u genericQ→ ’u genericQ)→
’u genericQ =

fun f {D: DATA} (x:D.t)→ f {D} (gfixQ f) x

(Throughout this section it would be possible to combine gfixT and
gfixQ into a single definition, using a functor to abstract over the
differences in type, at the cost of some clarity in the code. Instead,
I will focus on gfixT; the reader is invited to fill in the details for
gfixQ, or consult the online code repository at the location given in
Appendix A.)

These definitions are adequate for rewriting the unstaged SYB
schemes in an open-recursive style.

91

type map
val new_map : unit→ map ref
val lookup : {T:TYPEABLE}→

map→ (T.t→ T.t) option
val push : {T:TYPEABLE}→

map ref→ (T.t→ T.t)→ unit

Figure 23. TYPEABLE-keyed maps: interface

Memoization via heterogeneous maps The next step involves
adding support for memoization. Figure 23 gives an interface for
a mutable map whose keys are TYPEABLE instances and whose val-
ues are functions. (This map supports memoization for genericT

functions; the very similar map that supports genericQ memoiza-
tion is omitted.)

type map =
Nil : map

| Cons : (module TYPEABLE with type t = ’b)
* (’b→ ’b) * map→ map

let new_map () = ref Nil

let rec lookup :
{T:TYPEABLE}→ map→ (T.t→ T.t) option =
fun {T: TYPEABLE}→ function

Nil→ None
| Cons ((module R), f, rest)→

match {T} =~~= {R} with
Some Refl→ Some f

| None→ lookup rest

let push {T:TYPEABLE} t c =
t := Cons ((module T), c, !t)

Figure 24. TYPEABLE-keyed maps

Figure 24 gives an implementation of the map interface. A map

value is a heterogeneous list, which is either empty (Nil), or a
Cons of some TYPEABLE instance T, stored as a first-class module,
together with a function whose type is shared with the type of T,
and a further map. The new_map function allocates an empty map,
stored in a mutable reference cell. The lookup function searches the
list for an entry whose TYPEABLE component R matches the implicit
argument T; if there is a match then the Refl GADT constructor
modifies the type context with an equality that reveals that the
type of the value f must match both R and the T, allowing f to
be returned from the function. The push function mutates its map

argument, adding a new entry to the map.
The typed map makes it possible to write a memoizing version

of the gfixT combinator:

let gfixT (f : genericT→ genericT) : genericT =
let tbl = new_map () in
let rec result {D: DATA} x =

match lookup {D.Typeable} !tbl with
Some g→ g x

| None→
let g = f result {D} in
let () = push tbl g in
g x

in result

This memoized definition of gfixT is derived directly from the
earlier definition by interposing map lookups on every call to the
fixpoint combinator, and returning the result of the lookup if an
entry is found for the implicit argument D.Typeable. The table tbl

is constructed outside of the recursive body of the combinator, but

val let_locus : (unit→ ’w code)→ ’w code
val genlet : ’a code→ ’a code

Figure 25. Let insertion with MetaOCaml

after the argument f has been received; thus, no state is shared
between calls to gfixT.

Memoizing staged functions The memoizing implementation of
gfixT above operates on unstaged functions. Supporting staged
functions involves changing the type of values in the map from
’b →’b to (’b →’b) code:

type map =
Nil : map

| Cons : (module TYPEABLE with type t = ’b)
* (’b→ ’b) code * map→ map

and making corresponding adjustments to the types of lookup and
push.

let- and let rec-insertion Memoizing with function values is
straightforward: the functions are added to a table and retrieved
when needed, at which point they may be called directly. Memo-
izing with code values is less straightforward. Since MetaOCaml
code values may contain free variables, there are scoping issues to
consider: it is essential to ensure that the inserting code retrieved
from the table into a larger code value produces a result that is
well-scoped. With insufficient care, it is possible for code which is
well-scoped in the context where it is inserted into the table to be
ill-scoped in the context where it is retrieved.

One tool for managing the scope of generated code is let-
insertion. The goal of let-insertion is to float let bindings in gen-
erated code outwards, ensuring that the code is as efficient as possi-
ble. Figure 25 gives the interface to a generic let-insertion library
for MetaOCaml introduced in the presentation accompanying Kise-
lyov (2014).

There are two operations. The first, let_locus, marks a point
on the stack which is suitable for let-insertion (much as try marks
a point where an exception may be caught). The second, genlet,
takes a code value .<e>. as argument, searches all the points which
have been marked by let_locus to find the outermost point where
.<e>. is well-scoped, inserts a let-binding .<let x = e in ...>.

there, and returns the newly-introduced bound variable .<x>.. The
implementation of these operations requires some form of delim-
ited control, such as the delimcc library (Kiselyov 2012) or the
proposed algebraic effects language feature (Dolan et al. 2015).

In the current case, let insertion is not quite sufficient, since the
generated code may be mutually recursive. For example, here is a
definition of a tree as a pair of mutually-recursive type definitions:

type ’a branch = ’a tree * ’a tree
and ’a tree = Leaf of ’a | Branch of ’a branch

Traversals specialized to the mutually-recursive branch and tree

types will also be mutually recursive:

let rec traverse_branch (l, r) =
(traverse_tree l, traverse_tree r)

and traverse_tree = function
Leaf v→ Leaf (succ v)

| Branch b→ Branch (traverse_branch b)

and so some way of generating mutually-recursive bindings is
needed.

Recursion via mutable state Unfortunately, MetaOCaml does not
currently support the dynamic construction of mutually-recursive

92

binding groups, since quotations only support constructing expres-
sions, and so an encoding is needed to achieve equivalent be-
haviour.

One way of simulating recursive binding groups is to use mu-
table state. It is not possible to dynamically construct groups of
bindings such as traverse_branch and traverse_tree, but it is
possible to achieve the same effect using reference cells. The idea
is to start with cells that initially contain dummy functions:

let traverse_branch = ref (fun _→ assert false) in
let traverse_tree = ref (fun _→ assert false) in

With the bindings established the cells can be populated with the
real function implementations. At this point, both traverse_branch

and traverse_tree are in scope, and so the bodies of the functions
can refer to them to achieve recursive behaviour:

...
traverse_branch :=

fun (l, r)→ (!traverse_tree l, !traverse_tree r);
traverse_tree := function

Leaf v→ Leaf (succ v)
| Branch b→ Branch (!traverse_branch b);

The following implementation of the genletrec function cap-
tures this idea. A call to genletrec inserts two let bindings. The
first binding introduces a reference r initially bound to a dummy
function, and the second assigns a value to r. The function k that
constructs the right-hand side has access to the dereferenced r,
making it possible to build recursive functions:

let genletrec k =
let r = genlet (.< ref (fun _→ assert false) >.)
in

genlet (.<.~r := .~(k .< ! .~r >.) >.);
.< ! .~r >.

Finally, the following definition of gfixT_ combines staging,
(heterogeneous) memoization and let rec-insertion:

let gfixT_ (f : genericT_→ genericT_) =
let tbl = new_map () in
let rec result {D: DATA} x =

match lookup {D.Typeable} !tbl with
Some g→ .< .~g .~x >.

| None→
let g = genletrec

(fun self→
push tbl self;

.< fun y→ .~(f result .<y>.) >.)
in .< .~g .~x >.

in result

The argument to genletrec begins by adding an entry to the table
for the fresh binding so that if the table is consulted during the call
to f the binding will be available. Section 3.3 shows the (single)
call to let_locus that determines where the bindings are inserted
in the generated code.

This definition of gfixT_ supports both the definitions of the
staged generic schemes of Figure 22, and the other generic schemes
in the SYB library.

Staging mkT and mkQ .
It remains only to implement staged versions of the mkT and

mkQ functions of Figure 16. Since these functions operate on
TYPEABLE values, which are only used statically, the staging is en-
tirely straightforward, and involves only the addition of the code

type constructor to the annotations of dynamic variables in appT

and appQ (Figure 26).

let appT_ (type a) (type b)
(module A : TYPEABLE with type t = a)
(module B : TYPEABLE with type t = b)
(g : b code→ b code) (x : a code) : a code =
match {A} =~~= {B} with
| Some Refl→ g x
| _ → x

let mkT_ {T:TYPEABLE} g : genericT_ =
fun {D: DATA}→

appT (module D.Typeable) (module T) g

let appQ_ (type a) (type b) (type u)
(module A : TYPEABLE with type t = a)
(module B : TYPEABLE with type t = b)
u (g : b code→ ’u code) (x: a code) =

match {A} =~~= {B} with
| Some Refl→ g x
| _ → u

let mkQ_ {T:TYPEABLE} u g : ’u genericQ_ =
fun {D: DATA} x→
appQ_ (module D.Typeable) (module T) u g x

Figure 26. Staging mkT and mkQ

3.3 Instantiating Staged Generic Functions
The staged generic schemes in Section 3.2 are built around func-
tions from code to code. Using the code generated by such a func-
tion involves converting it to a single piece of closed code, then
compiling that code into a runnable function using MetaOCaml’s
builtin run operation, which serves as a kind of eval.

val generateT : {D:DATA}→ genericT_→ (D.t→ D.t) code

val generateQ : {D:DATA}→ ’u genericQ_→
(D.t→ ’u) code

Figure 27. Code generation: types

let generateT {D: DATA} (f : genericT_) =
let_locus (fun ()→ .< fun x→ .~(f .<x>.) >.)

let generateQ {D: DATA} (q : ’u genericQ_) =
let_locus (fun ()→ .< fun x→ .~(q .<x>.) >.)

Figure 28. Code generation: terms

Figures 27 and 28 give the types and implementations of func-
tions generateT and generateQ, which convert staged generic
schemes into code values. Both generateT and generateQ accept
an implicit argument representing the type at which the generated
code should be instantiated, and a generic scheme. The call to
let_locus function of Figure 25 indicates that the point around
the generated functions is a suitable point to bind the specialized
schemes generated by the process described in Section 3.2. The
quotations in the bodies of the functions correspond to the back

operation described in Section 3.1, except that there is also an ad-
ditional implicit argument passed to f and q.

The types of the generateT and generateQ functions indicate
that generateT {D} f and generateQ {D} q specialize generic
functions f and q at the type D.t. For example, the following call
to generateQ generates specialized code for computing the sizes of
lists of pairs of int and bool:

(generateQ gsize
: ((int * bool) list→ int) code)

93

val instantiateT : {D:DATA}→ genericT_→ D.t→ D.t

val instantiateQ : {D:DATA}→ ’u genericQ_→ D.t→ ’u

Figure 29. Generic function instantiation: types

let instantiateT {D: DATA} f =
Runcode.run (generateT f)

let instantiateQ {D: DATA} q =
Runcode.run (generateQ q)

Figure 30. Generic function instantiation

The type ascription guides the instantiation of the implicit argument
to generateQ. In practice, the type information propagated from the
surrounding context is often sufficient, in which case no ascription
is needed.

Figures 29 and 30 give the types and implementations of
functions instantiateT and instantiateQ which convert staged
generic schemes into runnable functions by generating code us-
ing generateT and generateQ and then calling MetaOCaml’s run

function on the result.

Instantiating with unknown arguments Although most of the
examples in this paper involve cases where the function argu-
ment is known at code generation time, the interface also sup-
ports generating code that is parameterised by a function. For ex-
ample, the following expression generates a piece of code of type
((t →t) →(s →s)) code for some types t and s:

.< fun f→
.~(generateT

(everywhere_ (mkT_ (fun x→ .< f .~x >.))))>.

Generating a parameterised traversal in this way may be more
space-efficient than instantiating everywhere separately for each
argument type.

4. Performance
Figure 31 lists the performance of the staged SYB library on three
representative benchmarks, which are OCaml ports of benchmarks
described by Adams et al. (2015). Each row records the time taken
to invoke each of three implementations of a particular function on
the same data: a hand-written implementation, an implementation
written using the unstaged SYB library of Section 2, and an imple-
mentation generated by the staged SYB library of Section 3.

The first benchmark, RMWeights, involves a transformation of a
leaf-labeled weighted binary tree:

type (’a, ’w) wtree =
| Leaf of ’a
| Fork of (’a, ’w) wtree * (’a, ’w) wtree
| WithWeight of (’a, ’w) wtree * ’w

The rmWeights operation transforms the tree to eliminate WithWeight
nodes:

let rec rmWeights = function
| WithWeight (t, w)→ rmWeights t
| Leaf x→ Leaf x
| Fork (l, r)→ Fork (rmWeights l, rmWeights r)

An equivalent function can be written using everywhere, together
with an auxiliary non-recursive function rmWeight that removes
WithWeight from single level:

let rmWeight = function
| WithWeight (t, w)→ t

| t→ t

let rmWeights : {D:DATA}→ D.t→ D.t =
everywhere (mkT rmWeight)

As Figure 31 shows, this second implementation is over 19 times
slower than the hand-written version. However, switching to the
staged of everywhere and mkT dramatically improves the perfor-
mance so that it is only around 1.5 times slower than the hand-
written version.

The majority of the remaining additional overhead in the gener-
ated code is a result of an unnecessary recursive call. In the hand-
written implementation the rmWeights function entirely ignores the
weight w in each WithWeight node. In contrast, in the implementa-
tion generated by the staged SYB library there is a call to the in-
stantiated gmapT operation for each weight in the tree. Section 5.1
discusses approaches to eliminating these unnecessary calls.

The second benchmark, SelectInt, involves a traversal of the
same wtree type. The function selectInt traverses a wtree value
to locate and sum all the integer nodes:

let rec selectInt : (int, int) wtree→ int =
function
| Leaf x→ x
| Fork (l, r)→ selectInt l + selectInt r
| WithWeight (t, x)→ selectInt t + x

The selectInt traversal can be succinctly expressed using
everything and mkQ:

let selectInt (t : (int, int) wtree) =
everything (+) (mkQ 0 (fun x→ x)) t

Once again, Figure 31 shows that the generic implementation
comes with a significant performance penalty, running almost 15
times slower. Staging the generic implementation produces a sub-
stantial speedup, but the generated code is still over twice as slow
as the hand-written version.

The remaining inefficiency in this case is primarily a result of
the intermediate list generated by gmapQ. Improving the generated
code to eliminate the intermediate lists results in a speed-up of
almost double, bringing the staged version to within about 20%
of the time of the hand-written code. Section 5.2 suggests how
gmapQ might be improved to avoid the overhead introduced by list
processing.

The third benchmark, Map, compares the performance of a hand-
written map over a binary tree with an equivalent traversal gener-
ated by instantiating everywhere:

let mapTree_succ : int tree→ int tree =
fun t→ everywhere (mkT succ) t

Once again, the generic version suffers from significantly worse
performance than the hand-written code. The performance over-
head of the staged version is significantly less; in fact, the only
source of degraded performance is the encoding of mutual recur-
sion using references (Section 3.2). Once these are eliminated the
generated code is slightly faster than the hand-written implementa-
tion, apparently as a result of the inlining of succ in the generated
traversal.

Figure 31 records only the performance of the generated code,
and excludes the cost of code generation. However, since the time
taken to generate code does not vary with the size of the data, the
overhead of generating code is typically insignificant for programs
which process large data sets, or which call the generated functions
many times. For example, the time taken to generate code for the
Map benchmark is less than the time taken for a single generic call
to process a tree containing 3000 elements.

94

Benchmark Time: hand-written code Time: SYB (vs handwritten) Time: SYB staged (vs handwritten)
RMWeights 93.33µs 1779.72µs (19.1x) 136.26µs (1.46x)

SelectInt 70.19µs 1032.44µs (14.71x) 158.71µs (2.26x)
Map 95.99µs 1775.17µs (18.49x) 107.62µs (1.12x)

Figure 31. Performance measurements

5. Extensions
The analysis in Section 4 identified a number of opportunities to
improve the performance of the generated code.

5.1 Selective Traversal
The most significant overhead in the RMWeights benchmark is a
result of traversing an int value to look for wtree subvalues. Im-
proving the code generation to detect cases like this — where it is
clear from the types that traversing a subtree has no possibility of
success — would bring the performance of the staged SYB library
significantly closer to hand-written code.

This kind of selective traversal, where static information is used
to prune branches from the dynamic search, has been successfully
employed by some implementors of SYB variants to improve per-
formance (Boulytchev and Mechtaev 2011; Adams and DuBuisson
2012).

5.2 Improving the Type of genericQ
Almost all of the overhead in the SelectInt benchmark is at-
tributable to the intermediate list in the gmapQ traversal. The gmapQ

traversals use lists because the library in this paper is a direct
translation of the original Haskell SYB implementation. However,
whereas using lists to stream results between functions is a rela-
tively efficient technique in a lazy language, an interface based on
destructors rather than constructors would produce better perfor-
mance in the MetaOCaml implementation. For example, the gmapQ_
function (Figure 20) could be replaced with an equally-expressive
but more efficient function of the following type, where the first two
arguments are respectively used to combine results from different
nodes and as the default value at nullary nodes:

val gmapQ_ : (’u code→ ’u code→ ’u code)→
’u code→ ’u genericQ_→ ’u genericQ_

5.3 Limitations
The types of all the values used as arguments of generic schemes
in this paper are regular. The regularity of a type is a property of
its definition: if every occurrence of a type constructor t in its own
definition is applied to the type parameters in order then the type is
regular; otherwise, it is irregular.

In common with many other generic programming libraries, the
staged SYB implementation in this paper does not support non-
regular data types. The difficulty manifests itself in the memoizing
fixpoint operator (Section 3.2), where non-regular types can lead to
non-termination. For example, here is a definition of a non-regular
type of perfect trees:

type ’a perfect = Zero of ’a
| Succ of (’a * ’a) perfect

A value of type ’a perfect may contain sub-values of type
(’a * ’a) perfect. In turn, those sub-values may contain val-
ues of type ((’a * ’a) * (’a * ’a)) perfect, and so on. It is
clearly impossible to construct a recursive group of monomorphic
functions which can account for all the possible sub-values.

6. Related Work
That generic programming libraries often suffer from poor perfor-
mance is well known, and there have been several investigations
into ways to make them more efficient.

Boulytchev and Mechtaev (2011) (with a more extensive ac-
count in Russian (Mechtaev 2011)) explore how to implement SYB
efficiently in OCaml. Their implementation preceded the introduc-
tion of modular implicits and GADTs, so they use a type-passing
implementation together with a type equality based on an unsafe
cast. Instead of language-supported staging, they carefully refactor
the SYB code to eliminate inefficiencies, translating to CPS and
traversing the type structure in advance to build efficient closure-
based traversals. They achieve performance fairly close to hand-
written code by combining these optimisations with the selective
traversal optimisation described in Section 5.1.

The work of Adams et al. (2015) (and the earlier version, Adams
et al. (2014)) are a direct inspiration for the work described in this
paper. Adams et al. improve the performance of the Scrap Your
Boilerplate library by means of a domain-specific optimisation, im-
plemented first as a Hermit script (Farmer et al. 2012), and then as
a GHC optimisation. The optimisation seeks to eliminate expres-
sions of “undesirable types” — that is, expressions corresponding
to the dictionaries for the Data and Typeable classes, expressions
of type TypeRep, and some associated newtypes — from code that
uses SYB by various transformations on the intermediate language.
The resulting improvements on several benchmarks are impressive,
bringing the performance of code using SYB in line with the per-
formance of handwritten code.

The work described in this paper improves on the work of
Adams et al. in a number of ways. Staging avoids the need to go
outside the language to improve performance — indeed, the seman-
tics of the language stipulate precisely what code should be gener-
ated by the implementation of Section 3 — and so the behaviour of
the staged library is not vulnerable to changes in the details of op-
timization passes or other internal compiler issues. Further, Meta-
OCaml’s type system justifies a degree of confidence in the correct-
ness of the staged code. Although there are some scope extrusion
errors that can only be detected during code generation (Kiselyov
2014), any code generated by a MetaOCaml program is guaranteed
to be well-typed, whereas a poorly written compiler optimisation
may contain bugs that result in incorrect output. Finally, focusing
on values of “undesirable” type misses some important cases. As
Hinze and Löh (2006) observe, it is sometimes useful to treat type
representations themselves as values to be operated on by generic
functions, but classifying TypeRep as unconditionally undesirable
necessarily misses this case.

The treatment of implicit arguments as static data in a partial
evaluation goes back to Jones (1995), who applies it to the more
general case of specializing overloaded functions associated with
arbitrary type classes.

Magalhães (2013) applies local rewrite rules to another generic
programming library for Haskell, generic-deriving, and with care-
ful tuning achieves results equivalent to handwritten code. These
results are encouraging, particularly since no compiler modifica-
tions are needed. Nonetheless, relying on extra-lingual annotations
cannot provide strong guarantees that optimisations will continue
to work with future versions of the compiler.

95

Finally, the staged SYB implementation in this paper can be
seen as an kind of active library (Veldhuizen 2004) — that is, a
library which interacts with the compiler in some way to improve
performance. Active libraries are most commonly used in scientific
programming domains where performance is critical. The implicit
thesis of this paper is that the active library approach also has a role
to play in significantly improving the performance of very high-
level libraries such as SYB, bringing them to a point where they do
not suffer significant disadvantages over hand-written code.

7. Further work
Section 5 proposed some performance improvements to the staged
SYB library. Besides improving performance, there are a number
of other promising avenues for future exploration.

While MetaOCaml supports generating and loading code at
runtime, most of the specialization benefits of the staged SYB
library come from making use of information that is available at
compile time — that is, the types of the functions and values
involved in a call to a generic scheme. The library is therefore likely
to be a good fit for the Modular Macros proposal which extends
OCaml with compile-time staged programming facilities (Yallop
and White 2015), or perhaps for Typed Template Haskell, using
monadic effects in place of the delimited control operators used to
insert let rec bindings (Section 3.2).

SYB is perhaps the best-known generic programming library,
but there are a wide variety of approaches to generic programming
(e.g Gibbons (2007); Oliveira et al. (2007)). It would be interesting
to investigate whether the kind of staging techniques applied here
could also be used to improve the performance of other generic
programming libraries.

References
M. D. Adams and T. M. DuBuisson. Template your boilerplate: Using

Template Haskell for efficient generic programming. In Proceedings of
the 2012 ACM SIGPLAN Haskell symposium, Haskell ’12, pages 13–24,
New York, NY, USA, 2012. ACM.

M. D. Adams, A. Farmer, and J. P. Magalhães. Optimizing SYB is easy!
In Proceedings of the ACM SIGPLAN 2014 Workshop on Partial Evalu-
ation and Program Manipulation, PEPM ’14, pages 71–82, New York,
NY, USA, 2014. ACM.

M. D. Adams, A. Farmer, and J. P. Magalhães. Optimizing SYB Traversals
Is Easy! Science of Computer Programming, 2015. To appear.

D. Boulytchev and S. Mechtaev. Efficiently scrapping boilerplate code in
OCaml, September 2011. ACM Workshop on ML 2011.

O. Danvy, K. Malmkjær, and J. Palsberg. Eta-expansion does the trick.
ACM Trans. Program. Lang. Syst., 18(6):730–751, Nov. 1996. ISSN
0164-0925.

S. Dolan, L. White, K. Sivaramakrishnan, J. Yallop, and A. Madhavapeddy.
Effective concurrency through algebraic effects. OCaml Users and
Developers Workshop 2015, September 2015.

A. Farmer, A. Gill, E. Komp, and N. Sculthorpe. The HERMIT in the ma-
chine: A plugin for the interactive transformation of GHC core language
programs. SIGPLAN Not., 47(12):1–12, Sept. 2012. ISSN 0362-1340.

J. Gibbons. Datatype-generic programming. In R. Backhouse, J. Gibbons,
R. Hinze, and J. Jeuring, editors, Spring School on Datatype-Generic
Programming, volume 4719 of Lecture Notes in Computer Science.
Springer-Verlag, 2007.

R. Hinze and A. Löh. “Scrap your boilerplate” revolutions. In Proceedings
of the 8th International Conference on Mathematics of Program Con-
struction, MPC’06, pages 180–208, Berlin, Heidelberg, 2006. Springer-
Verlag. ISBN 3-540-35631-2, 978-3-540-35631-8.

P. Johann and N. Ghani. Foundations for structured programming with
GADTs. In Proceedings of the 35th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2008. ACM,
2008.

M. P. Jones. Dictionary-free overloading by partial evaluation. Lisp Symb.
Comput., 8(3):229–248, Sept. 1995.

N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Auto-
matic Program Generation. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1993. ISBN 0-13-020249-5.

Y. Kameyama, O. Kiselyov, and C.-c. Shan. Shifting the stage: Staging with
delimited control. J. Funct. Program., 21(6):617–662, Nov. 2011. ISSN
0956-7968.

O. Kiselyov. Delimited control in OCaml, abstractly and concretely. Theor.
Comput. Sci., 435:56–76, June 2012. ISSN 0304-3975.

O. Kiselyov. The design and implementation of BER MetaOCaml. In
M. Codish and E. Sumii, editors, Functional and Logic Programming,
volume 8475 of Lecture Notes in Computer Science, pages 86–102.
Springer International Publishing, 2014. ISBN 978-3-319-07150-3.

R. Lämmel and S. P. Jones. Scrap your boilerplate: A practical design
pattern for generic programming. In Proceedings of the 2003 ACM
SIGPLAN International Workshop on Types in Languages Design and
Implementation, TLDI ’03, pages 26–37, New York, NY, USA, 2003.
ACM. ISBN 1-58113-649-8.

R. Lämmel and S. P. Jones. Scrap more boilerplate: Reflection, zips,
and generalised casts. In Proceedings of the Ninth ACM SIGPLAN
International Conference on Functional Programming, ICFP ’04, pages
244–255, New York, NY, USA, 2004. ACM. ISBN 1-58113-905-5.

X. Leroy. A proposal for recursive modules in Objective Caml. INRIA
Rocquencourt, May 2003. Version 1.1.

A. Löh and R. Hinze. Open data types and open functions. In Proceedings
of the 8th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, PPDP ’06, pages 133–144, New
York, NY, USA, 2006. ACM.

J. P. Magalhães. Optimisation of generic programs through inlining. In
Accepted for publication at the 24th Symposium on Implementation and
Application of Functional Languages (IFL’12), IFL ’12, 2013.

S. Mechtaev. Eliminating boilerplate code in Objective Caml programs.
System Programming, 6(1), 2011. In Russian.

K. Nielsen and M. H. Srensen. Call-by-name CPS-translation as a binding-
time improvement. In STATIC ANALYSIS, NUMBER 983 IN LECTURE
NOTES IN COMPUTER SCIENCE, pages 296–313. Springer-Verlag,
1995.

B. C. d. S. Oliveira, R. Hinze, and A. Loeh. Extensible and modular generics
for the masses. In H. Nilsson, editor, Trends in Functional Programming.
2007.

The GHC Team. The Glorious Glasgow Haskell Compilation System User’s
Guide, 7.10.2 edition, July 2015.

T. L. Veldhuizen. Active Libraries and Universal Languages. PhD thesis,
Indiana University Computer Science, May 2004.

L. White, F. Bour, and J. Yallop. Modular implicits. ACM Workshop on
ML 2014 post-proceedings, September 2015.

J. Yallop and L. White. Modular macros. OCaml Users and Developers
Workshop 2015, September 2015.

A. Installation Instructions
The staged SYB library is written using a fork of the OCaml distri-
bution that combines the ongoing work on BER MetaOCaml (Kise-
lyov 2014) and modular implicits (White et al. 2015) in a single
compiler. OPAM users can install the compiler by running the fol-
lowing command:

opam switch 4.02.1+modular-implicits-ber

The staged SYB library implementation may be installed by
running the following command:

opam pin add metaocaml-syb \
https://github.com/yallop/metaocaml-syb

The code is available to browse and download at the same URL.

96

