
Safe and efficient generic functions with MacoCaml

Dmitrij Szamozvancev
University of Cambridge

ds709@cam.ac.uk

Leo White
Jane Street Capital

leo@lpw25.net

Ningning Xie
University of Toronto

ningningxie@cs.toronto.edu

Jeremy Yallop
University of Cambridge

jeremy.yallop@cl.cam.ac.uk

Abstract

We apply MacoCaml, an extension of OCaml with support for
compile-time user-specified code generation, to the generic func-
tion problem. MacoCaml’s combination of macros with phase
separation and code quotations neatly addresses what is a recur-
ring challenge for OCaml developers: how to write safe and effi-
cient functions over type representations?

Our solution to the challenge also illustrates some recently-
established formal guarantees offered by MacoCaml, including
soundness and phase distinction.

1. Generic functions in OCaml: two approaches
Generic functions — that is, operations such as equality and pretty-
printing defined over the structure of arbitrary data types — are
a frequent need in OCaml programs. At the time of writing, the
most-viewed post on the OCaml Discourse forum asks about the
availability of generic functions1 and the most-commented thread this
year discusses how to write them2.

There are presently two main approaches to writing generic func-
tions, with complementary advantages and drawbacks. The static ap-
proach uses preprocessors such as ppx to manipulate parse trees dur-
ing compilation. Here is an excerpt of a typical example3, which gen-
erates code for an equality function on lists by mapping syntax for
types [%type ...] to syntax for expressions [%expr ...]:

| [%type: [%t? typ] list] →
[%expr let rec loop x y =

match x, y with
| [], [] → true ...]

Defining generic functions by code generation has a clear benefit:
generated functions can be as efficient as handwritten code. How-
ever, using untyped AST manipulation has drawbacks: there are no
guarantees that the generated code is well-scoped or well-typed.

The dynamic approach involves functions defined over represen-
tations of types. Here is a typical type representation:

type ’a prim = Int: int prim | Float: float prim | ...
type ’a t = Primitive of ’a prim

| Var of ’a var
| Sum: ’a t * ’b t → (’a, ’b) either t
| Prod: ’a t * ’b t → (’a * ’b) t
| Iso: (’a,’b) iso * ’a t → ’b t

type ’a ty = Ty of ’a var * ’a t

A value of type prim represents a predefined OCaml primitive type
such as int or float. A value of type t represents either a primitive
type p, a reference x to a type definition, a sum t1 + t2, a product
t1 × t2, or a representation of a type that is isomorphic to some other
representation. A value of type ty attaches a variable x4 to a repre-
sentation t, making it possible to build recursive definitions µx.t. For
example, the type list-of-a is represented using the isomorphism to
µx.1 + (a× x):

1 How does one print any type?, https://discuss.ocaml.org/t/-/4362
2 Idea: Standard OCaml runtime type representation, https://discuss.
ocaml.org/t/-/12051
3 from ppx_deriving https://github.com/ocaml-ppx/ppx_deriving
4 Variables, and corresponding functions to resolve them in environments, are
defined using type identifiers, which Daniel Bünzli recently added to OCaml
(Add Type.Id, ocaml/ocaml#11830); we omit the details here.

let list: type a.a t → a list t =
fun a → let x = var () in
Ty (x, Iso {out=outList; in_=inList),

(Sum (Primitive Unit,
Prod (Var (tyname a), Var x))))

These type representations can be used to define generic functions.
For example, eqt, defined inductively on type representations t, acts
as an equality function at the corresponding type:

let rec eqt: type a.env → a t → a → a → bool =
fun env t x y → match t with
| Primitive p → eqprim p x y
| Var v → lookup v env x y
| Sum (l,r) → ...
| Prod (l,r) → let a,b = x and c,d = y in

eqt env l a c && eqt env r b a
| Iso ({out; in_}, i) → eqt env i (in_ x) (in_ y)

The first parameter, of type env, maps names to equality functions.
The top-level function eqty adds an entry to that environment for each
recursive type definition, allowing recursively-defined functions:

let eqty: type a.env → a ty → a → a → bool =
fun env (Ty (v,ty)) →
let rec eq x y = eqt (Bind (v,eq,env)) ty x y) in eq

Now eqty can be used to compare values of arbitrary type:

eqty Nil (Prod (bool, int)) (true, 4) (true, 4) true
eqty Nil (list int32) [3l; 4l] [4l; 5l] false

Since eqty is a normal function, OCaml ensures that it has no
scoping or typing errors. However, inspecting type representations at
runtime may introduce unacceptable performance costs.

2. A new approach: generic macros in MacoCaml
MacoCaml, an extension of OCaml that we are developing, sup-

ports a third approach to the generic function problem. Like the static
approach above, it uses quotations to generate code; however, Maco-
Caml’s quotations come with strong type safety guarantees. Like the
dynamic approach above, it involves defining functions inductively
on type representations; however, MacoCaml ensures that the type
representations are not used at runtime.

Figure 1 shows the eqty example, transformed to use MacoCaml’s
macros. There are two key changes to eqt and eqty: they are defined
using macro rather than let, and they have been annotated with
quotes << e >> and splices $e to turn them into code generators.

The macro keyword is an example of MacoCaml’s support for
phases, inspired by Racket (Flatt 2002). Phases are times, such as
compile time or run time, when expressions may be evaluated. Defi-
nitions bound with macro make expressions available for evaluation
at compile time, while definitions bound with let make expressions
available for evaluation at run time. MacoCaml also supports control-
ling the phase of code using the module system; we refer the reader
to our recent paper (Xie et al. 2023) for details.

MacoCaml’s quotations support safe generation of typed code.
Inspired by quotations in MetaOCaml (Kiselyov 2014), they en-
joy the same strong guarantees: generated code is guaranteed to be
well-typed and well-scoped. As in MetaOCaml, a quoted expression
<< e >> builds a representation of e (with type t expr if e has type t)
rather than evaluating it, and a splice $e evaluates e (of type t expr)
to generate code that is inserted at the splice location.

https://discuss.ocaml.org/t/-/4362
https://discuss.ocaml.org/t/-/12051
https://discuss.ocaml.org/t/-/12051
https://github.com/ocaml-ppx/ppx_deriving
https://github.com/ocaml/ocaml/pull/11830

macro rec eqt env t x y = match t with
| Primitive p → eqprim p x y
| Var v → << $(lookup v env) $x $y >>
| Sum (l,r) → (* ... *)
| Prod (l,r) → << let a,b = $x and c,d = $y in

$(eqt env l <<a>> <<c>>)
&& $(eqt env r <> <<d>>) >>

| Iso ({out; in_}, i) → eqt env i (in_ x) (in_ y)

macro rec eqt env t x y = match t with
| Primitive p → eqprim p x y
| Var v → << $(lookup v env) $x $y >>
| Sum (l,r) → (* ... *)
| Prod (l,r) → << let a,b = $x and c,d = $y in

$(eqt env l <<a>> <<c>>)
&& $(eqt env r <> <<d>>) >>

| Iso ({out; in_}, i) → eqt env i (in_ x) (in_ y)

(Erased!)

macro eqty: type a.env → a ty → (a → a → bool) expr
= fun env (Ty (v,ty)) →

<< let rec eq x y =
$(eqt (Bind (v,<<eq>>,env)) ty <<x>> <<y>>)

in eq >>

macro eqty: type a.env → a ty → (a → a → bool) expr
= fun env (Ty (v,ty)) →

<< let rec eq x y =
$(eqt (Bind (v,<<eq>>,env)) ty <<x>> <<y>>)

in eq >>

(Erased!)

let eq_list_int32: int32 list → int32 list → bool =
$(eqty (list int32))

let eq_list_int32: int32 list → int32 list → bool =
let rec eq x y = match inList x, inList y with
| Left l, Left r → true
| Right l, Right r → let a,b = l and c,d = r in

Int32.eq a c && eq b d
| _ → false
in eq

erase

erase

expand

Figure 1. Compilation: preserve types, erase static computations, expand splices and discard the static heap

However, there are also important differences between Maco-
Caml’s quotations and MetaOCaml’s. First, MacoCaml supports top-
level splices, which allow code generated by a macro to be inserted
at program top level, as illustrated in the definition of eq_list_int32
in Figure 1. Second, MacoCaml’s careful phase management means
that cross-stage persistence (quoting values in scope within a code
generator so that they appear in generated code) is not allowed; only
identifiers that are bound either in the generated code (such as eq in
the definition of eqty) or in top-level let bindings can be quoted.

Figure 1 also illustrates compilation in MacoCaml. During compi-
lation, expressions in top-level splices are evaluated to generate code
which is inserted in place, and macros are erased, producing the stan-
dard OCaml program shown on the right of the figure.

The generated code for eq_list_int32 illustrates a key advantage
of MacoCaml’s approach: it is manifestly free of the overhead of
matching type representations5. It is easy to verify that the macros
on the left of the figure never generate code involving type represen-
tations, since the constructors of t do not appear within quotes.

3. MacoCaml’s safety and efficiency properties
The example in Figure 1 illustrates two key guarantees provided
by MacoCaml: type soundness and phase distinction. We briefly
describe them here; our recent paper (Xie et al. 2023) gives details.

3.1 Safety
As with other languages in the MetaML family, like MetaML it-
self (Taha et al. 1998) and Typed Template Haskell (Xie et al. 2022),
MacoCaml enjoys type soundness. For a language with quotations,
soundness guarantees that generated code is never ill-typed or ill-
scoped. For programmers, type soundness is an important guarantee:
it means that MacoCaml guarantees basic correctness properties of
code generators such as eqty, so that it is never necessary to debug
type errors in the generated code.

3.2 Efficiency
MacoCaml also enjoys a distinctive phase separation guarantee that
has not been established for related languages such as MetaML or
Typed Template Haskell. Phase separation says that if a program
P evaluates to V , then the erasure of P evaluates to the erasure

5 The code is, however, somewhat less efficient than it could be due to various
naivities in the type representation; more sophisticated approaches to repre-
senting types (e.g. Yallop (2017)) do not suffer from this drawback.

of V ; it justifies discarding the compile-time heap (used to evaluate
macros) and erasing compile-time macro bindings after compilation.
For programmers, phase separation is also valuable, since it ensures a
clean separation between code that manipulates generation-time val-
ues such as type representations, and generated code, where those
values cannot appear. For generic functions such as eqty, phase sep-
aration represents an efficiency guarantee, since run-time inspection
of type representations carries a performance cost.

4. Status and future plans
Since our last OCaml Users and Developers Workshop presenta-
tion (Yallop and White 2015) we’ve formalised our core design and
implemented MacoCaml6. As Xie et al. (2023) outline, in the current
implementation compilation overhead appears to be fairly modest.

In the future we plan to extend the formalism to support OCaml’s
full module system, including functors and signatures with abstract
types and subtyping, and to bring the implementation to a state where
it can be merged into the main OCaml distribution.

References
M. Flatt. Composable and compilable macros: You want it when? In

Proceedings of the Seventh ACM SIGPLAN International Conference on
Functional Programming, ICFP ’02, page 72–83, 2002. .

O. Kiselyov. The design and implementation of BER MetaOcaml. In
M. Codish and E. Sumii, editors, Functional and Logic Programming.
Springer International Publishing, 2014. .

W. Taha, Z. Benaissa, and T. Sheard. Multi-stage programming: Axiomatiza-
tion and type safety. In K. G. Larsen, S. Skyum, and G. Winskel, editors,
Automata, Languages and Programming, 25th International Colloquium,
volume 1443 of Lecture Notes in Computer Science. Springer, 1998. .

N. Xie, M. Pickering, A. Löh, N. Wu, J. Yallop, and M. Wang. Staging with
class: a specification for Typed Template Haskell. Proc. ACM Program.
Lang., 6(POPL):1–30, 2022. .

N. Xie, L. White, O. Nicole, and J. Yallop. MacoCaml: Staging composable
and compilable macros. Proc. ACM Program. Lang., 7(ICFP), 2023.
Conditionally accepted.

J. Yallop. Staged generic programming. Proc. ACM Program. Lang., 1(ICFP):
29:1–29:29, 2017. .

J. Yallop and L. White. Modular macros. OCaml Users and Developers
Workshop, September 2015.

6 The implementation was largely developed by Olivier Nicole, and is avail-
able here: https://github.com/modular-macros/

https://github.com/modular-macros/

	Generic functions in OCaml: two approaches
	A new approach: generic macros in MacoCaml
	MacoCaml's safety and efficiency properties
	Safety
	Efficiency

	Status and future plans

