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Partially static data as free extension of algebras

JEREMY YALLOP, University of Cambridge, England
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Partially-static data structures are a well-known technique for improving binding times. However, they are of-
ten defined in an ad-hoc manner, without a unifying framework to ensure full use of the equations associated
with each operation.

We present a foundational view of partially-static data structures as free extensions of algebras for suitable
equational theories, i.e. the coproduct of an algebra and a free algebra in the category of algebras and their
homomorphisms. By precalculating these free extensions, we construct a high-level library of partially static
data representations for common algebraic structures. We demonstrate our library with common use-cases
from the literature: string and list manipulation, linear algebra, and numerical simplification.

Additional Key Words and Phrases: multi-stage compilation, metaprogramming, partial evaluation, partially
static data, universal algebra

1 INTRODUCTION
The defining feature of multi-stage programming is putting fine-grained control over beta reduc-
tion in the hands of the programmer. For example, the multi-stage programming language Typed
Template Haskell [Peyton Jones 2016] extends Haskell with two constructs. The first construct,
quotation (written J e K), prevents beta reduction, turning an arbitrary expression into a value:

J f x K -- f x should not be reduced

The second construct, antiquotation (written $e), re-enables beta reduction inside a quotation:

J f $(g x) K -- g x should be reduced

A notable property of this style of quotation is support for reduction under lambda, with support
for quoting open terms:

J \x → $(f JxK) K -- f JxK should be reduced

This fine-grained control over evaluation provides a basis for optimisation. In the execution
of a multi-stage program, each stage executes code constructed from quoted expressions in the
previous stage. Careful insertion of quotations and antiquotations allows terms depending only
on known values to be reduced during generation, leaving only terms depending on unknown
values to be reduced in the following stage.

The standard introductory example of multi-stage programming [Taha 2003] is the power func-
tion, implemented in terms of multiplication:

power :: Int → Int → Int

power x 0 = 1

power x n = x * power x (n - 1)
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104:2 Jeremy Yallop, Tamara von Glehn, and Ohad Kammar

Under the assumption that the exponent nwill be available to the generating stage, the program-
mer adds staging annotations and changes the types accordingly. (Here Code, an alias for Typed
Template Haskell’s Q (TExp a), is the type of quoted expressions):

power :: Code Int → Int → Code Int

power x 0 = J1K
power x n = Jx * $(power JxK (n - 1))K

Now power is no longer a function on integers, but a code generator: the application of power to
a variable x and an integer n evaluates to an expression specialized to the exponent, in which the
overhead of the recursive call and the branch have been eliminated:

J \x → $(power JxK 6) K { J x * (x * (x * (x * (x * (x * 1))))) K
However, while the generated code is likely to outperform the unstaged power, there is evidently

room for further improvement. First, there is a needless multiplication by 1. More significantly, the
number of multiplications can be further reduced by let-binding intermediate results:

J let y = x * x in let z = y * y in z * y K
Evidently, beta reduction alone will not perform these simplifications, no matter how we coax

it by inserting quotation and antiquotation annotations. No series of beta reductions will perform
these simplifications, which are justified by the algebraic properties of multiplication — in this
case, that integers with multiplication form a monoid.

Similar difficulties occur in a wide variety of staged programs, as we illustrate in §4. In programs
that are staged by quoting expressions the structure of the generated code is determined by the
evaluation structure of the generator, and algebraic laws play no part in code generation.

Howmight you deal with this difficulty? First, youmight change restructure the source program
(e.g. defining power via an auxiliary function square). However, relying on the programmer to take
account of algebraic laws does not scale well. Second, you might post-process generated code to
perform algebraic simplifications. However, this risks giving up the most desirable properties of
multi-stage programming: namely that code transformations can be implemented by the program-
mer within the language itself. Finally, you might introduce specialized numeric representations
that simplify generated code using laws of the underlying algebraic structure. This is, in our view,
the most promising approach, and is widely used in the multi-stage programming literature (§7).

This paper builds on this third approach, re-examining the foundations of these partially-static
structures, which are typically approached in ad-hoc fashion, and conceptualising them with a sin-
gle universal property, in terms of the operations and equations we utilise. Universality translates
into a functional specification which we need to implement and validate, and replaces the uncer-
tainty of designing a new data structure with the precise activity of implementing a specification.

For concreteness we present our approach as a Haskell library, frex; however, the formulation
transfers straightforwardly to other settings.

The frex library has a number of appealing features. First, frex applies algebraic simplification
during the normal evaluation of a generating stage of a multi-stage program— i.e. it turns algebraic
simplification into beta reduction, improving the performance of generated programs. Second, frex
provides drop-in replacements for many common algebraic structures that make it possible to re-
purpose existing polymorphic code for staging. Third, by unifying a wide variety of partially-static
structures under the single concept of a free extension, frex exposes a tiny user-facing interface con-
sisting of just three simple functions together with existing algebraic classes.

The contributions of this paper are as follows:
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Partially static data as free extension of algebras 104:3

• §2 provides a general introduction to the principles underlying partially-static structures
with algebraic laws, starting with binary operations without no equations, and showing the
effect on the representation of adding associativity and commutativity laws.

• §3 shows how the considerations in §2 identify each partially static structure with a free
extension — i.e. the coproduct of an algebra and a free object in the appropriate category.
The unifying view provided by free extensions transforms programming with partially-static
data, as monads have transformed programming with effects: it guides the definition of in-
stances and programs, clarifies semantic properties, and provides a high-level framework in
which many common patterns can be uniformly abstracted.

• §4 uses free extensions to define a variety of partially-static instances for algebraic structures:
monoids (§4.1), commutative monoids and abelian groups (§4.5), sets (§4.8), commutative
rings and semirings (§4.11), distributive lattices (§4.13) and algebraic data types (§4.15).
In each case we illustrate the structures with examples drawn from the literature, showing
how frex can be applied to programming problems such as arithmetic, pretty-printing, linear
algebra and list manipulation, to improve generated code by algebraic simplifications.
As the representative benchmarks in §6 demonstrate, these simplifications translate directly
into faster running times.

• The major part of this paper is intended to be accessible, since we hope that frex and its
techniques will be widely adopted by functional and multi-stage programmers, as well as in
other settings such as compiler optimisation and partial evaluation. However, readers with
some familiarity with universal algebra will find a more formal justification for using free
extensions to represent partially-static structures in §5.

• §7 contextualizes our contributions among the work on partially-static data.
• Finally, Appendix A sketches a second implementation of frex in the multi-stage language
BER MetaOCaml [Kiselyov 2014].

2 DEFINING PARTIALLY-STATIC STRUCTURES
How might we build implementations of algebraic operations that support computation with
partially-static data? This section sketches a general approach to defining these partially-static
algebras that can be used as drop-in replacements for standard instances in type-class polymor-
phic code. §4 describes the implementation of this approach as a high-level, modular and extensible
library, which applies directly to several examples drawn from the literature.

We start with the simplest non-trivial algebraic structure. Amagma consists of a set a alongwith
a binary operation. We define a Haskell class Magma and introduce a picture form, representing the
binary constructor • as a binary branch in a tree:

class Magma a where (•) :: a → a → a

•

There are many instances of Magma, since any binary operation for a type forms a magma. The
most general instance simply represents the tree structure directly:

data Tree a where

Leaf :: a → Tree a

Branch :: Tree a → Tree a → Tree a

instance Magma (Tree a) where

(•) = Branch

Any binary operator for a type gives rise to a magma. For example, here is a Magma instance
for multiplication for integers, using a type isomorphism Int× to distinguish the instance from
magmas for other integer operations such as addition or subtraction:

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 104. Publication date: September 2018.



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

104:4 Jeremy Yallop, Tamara von Glehn, and Ohad Kammar

newtype Int× = Int× Int

instance Magma Int× where (Int× x) • (Int× y) = Int× (x × y)

Then we can define trees using the Magma operation together with integer values, and interpret
those trees using the Magma instance for Int×:

•
•
32

1
×
×
32

1
6

instantiate reduce

So the reduced form of a magma term instantiated to Int× is (isomorphic to) a single integer.
We would also like to compute with open terms containing free variables x1, x2, such as these:

x0

•
x11

•
•
x23

2
•
x4x3

The type Tree (Either Int (Code Int)) gives a simple representation for these mixed trees.
However, this representation keeps all trees, even those without free variables, in unreduced form.
Free variables and binding-time analysis In our setting free variables correspond to what
are called dynamic variables in the partial evaluation literature, and integer values correspond to
static values. The division into static and dynamic also extends to terms: dynamic terms are terms
that mention some dynamic variables; other terms are static.

•
•

32
•

1xdy
na
m
ic

st
at
ic

dy
na
m
ic

Fig. 1. Binding-time analysis

A classification of terms into static and dynamic is called a
binding-time analysis. Fig. 1 shows a binding-time analysis for a
magma tree. The left child contains a dynamic variable, and so it
is classified as dynamic. The right child contains only static val-
ues, and so it is classified as static. The root tree has a dynamic left
child, and so it is classified as dynamic.

The aim of the binding-time analysis is to identify static sub-
terms, since it is only those terms that can be reduced. Here is an
illustration: the right sub-term is static, and consequently reduced,
but no further reduction can take place, since all remaining terms are dynamic:

•
•
32

•
1x

×
×
32

×
1x

×
6×

1x

instantiate reduce

Even before instantiation it was evident that the dynamic terms would block reduction.
We can define a representation for mixed trees that takes binding-times into account, allowing

reduction of static sub-trees. We start with a definition of binding-times, BindingTime, and an in-
dexed type BT that reflects BindingTime at the type level, so that we can enforce constraints about
binding-times in representations of data:

data BindingTime =

Sta

| Dyn

data BT :: BindingTime → * where

BTSta :: BT Sta

BTDyn :: BT Dyn

Using BindingTime we define an indexed type SD to stand in for Either a (Code a), and a func-
tion btSD that computes the binding time for an SD value:
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Partially static data as free extension of algebras 104:5

data SD :: BindingTime → * → * where

S :: a → SD Sta a

D :: Code a → SD Dyn a

btSD :: SD bt a → BT bt

btSD (S _) = BTSta

btSD (D _) = BTDyn

Finally, the Mag type represents magma terms that do not contain unreduced static subtrees.
Leaves may be static or dynamic (LeafM); if the left branch of a tree is static then the right must be
dynamic (Br1); if the left branch is dynamic then the right may be static or dynamic (Br2):

data Mag :: BindingTime → * → * where

LeafM :: SD bt a → Mag bt a

Br1 :: Mag Sta a → Mag Dyn a → Mag Dyn a

Br2 :: Mag Dyn a → Mag r a → Mag Dyn a

btMag :: Mag bt a → BT bt

btMag (LeafM m) = btSD m

btMag (Br1 _ _) = BTDyn

btMag (Br2 _ _) = BTDyn

Here is the magma instance itself. The definition of • uses binding times to reduce the number
of cases to the three circumstances of interest: the case where both operands are static (in which
case the elements must be coalesced), and the two cases that correspond to Br1 and Br2:

instance Magma a ⇒ Magma (Exists Mag a) where

E a • E b = case (btMag a, btMag b, a, b) of

(BTSta, BTSta, LeafM (S a), LeafM (S b)) → E (LeafM (S (a • b)))

(BTSta, BTDyn, l, r) → E (Br1 l r)

(BTDyn, _ , l, r) → E (Br2 l r)

The Mag instance uses an existential type to hide the BindingTime index in order to conform to the
Magma interface. Existential types will come in useful on several occasions, so we define a general
Exists type that hides the first parameter of a binary type constructor, using kind polymorphism
to support arbitrary index kinds:

data Exists (f :: k1 →k2 →*) a where E :: f b a → Exists f a

Equality and associativity Trees are considered equal if they have the same shape and if cor-
responding leaves are equal. Furthermore, trees are considered equal if they reduce to equal trees.

Adding laws to the algebraic structure groups trees into larger equivalence classes. For example,
an associativity law equates trees with different branching structures:

•
•
cb

a
•

c•
ba

≡

Here a, b, c stand for arbitrary terms.
An magma with associativity is called a semigroup. We introduce a corresponding Haskell class,

Semigroup, with the same members as Magma, and an additional obligation for instances, stated in
a comment: the implementation of • must be associative:

class Magma a ⇒ Semigroup a -- a • (b • c) ≡ (a • b) • c

For example, the instance for integers with multiplication can be made into a valid Semigroup

instance, since multiplication is associative:

instance Semigroup Int×
Magmas for non-associative operations, such as subtraction, do not give rise to semigroups.
Standard Haskell does not provide a way of ensuring that instances obey the laws of their class.

However, some extensions, such as Liquid Haskell, provide various means of checking that in-
stances are law-abiding.

With the associativity law, trees are equal if they have the same sequence of leaves; branching
structure is no longer relevant.
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•

•

•

x4x3

x2

x1

Equivalence and normal forms It is convenient to pick a canonical represen-
tative of each equivalence class, i.e. a normal form. Without the associativity law
the canonical representative of each class is the tree that has been reduced asmuch
as possible.
For trees without any free variables the most-reduced tree is a single static el-

ement, such as an element of Int×. For trees with only free variables, there is no
reduction, and a normal form is a fully right-associated tree — equivalent to a non-empty value of
type [Code a]. (This is called the free semigroup.)
What is the normal form for a tree with both integers and free variables? Formagmas the normal

form is represented by Mag, which ensures that static subtrees are reduced. For semigroups it is
additionally possible to reassociate the tree to make adjacent nodes (i.e. nodes that are adjacent in
the left-to-right leaf order) into siblings (i.e. nodes with the same parent):

•
•
x23

•
2x1

•
•
x2•

32

x1

reassociate

Making adjacent static nodes into siblings makes it possible to reduce the parent node. So a
normal form for trees with both static and dynamic elements is a fully right-associated tree with
no adjacent static nodes:

•
•
x2•

32

x1

•
•
x26

x1

reduce

In the partial evaluation literature, a change in term structure that increases the number of static
terms is called a binding-time improvement.

As with Magma, we can define a datatype for mixed semigroup trees in normal form. Besides
ensuring that there should be no unreduced static subtrees the Semi type adds a new constraint
that all trees are kept in right-associated form, by making the first arguments of the two binary-
branching constructors ConsS and ConsD atoms rather than trees:

data Semi :: BindingTime → * → * where

LeafS :: SD bt a → Semi bt a

ConsS :: a → Semi Dyn a → Semi Dyn a

ConsD :: Code a → Semi r a → Semi Dyn a

It is convenient to define auxiliary functions that add static and dynamic elements to the left
of the tree. The consS function adds a static element to a Semi tree; if there is a static element in
leftmost position already, consS combines the two elements using •:

consS :: Magma a ⇒ a → Exists Semi a → Exists Semi a

consS h (E (LeafS (S s))) = E (LeafS (S (h • s)))

consS h (E t@(LeafS (D _))) = E (ConsS h t)

consS h (E (ConsS s t)) = E (ConsS (h • s) t)

consS h (E t@(ConsD _ _)) = E (ConsS h t)

The consD function is simpler, because dynamic elements may be added to the left of any tree:
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Partially static data as free extension of algebras 104:7

consD :: Code a → Exists Semi a → Exists Semi a

consD h (E t) = E (ConsD h t)

Finally, here are Magma and Semigroup instances for Semi:

instance Semigroup a ⇒ Magma (Exists Semi a)

where E (LeafS (S s)) • l = consS s l

E (LeafS (D d)) • l = consD d l

E (ConsS h t) • l = consS h (E t • l)

E (ConsD h t) • l = consD h (E t • l)

instance Semigroup a ⇒
Semigroup (Exists Semi a)

The final two cases of • may traverse the entire left operand to handle the case where the final
static element on the left should be coalesced with the initial static element on the right:

•
•
2x1

1
•

•
4x2

3
•

•
•

•
4x2

2×3
x1

1
•

Commutativity Adding an associativity law made trees equivalent that were previously dis-
tinct and made trees reducible that were previously irreducible. Adding a second law for commu-
tativity coalesces more equivalence classes and adds further opportunities for reduction:

•
ba

•
ab≡

The CSemigroup class adds a law to make • commutative:

class Semigroup a ⇒ CSemigroup a -- a • b ≡ b • a

Since many types of element have no notion of ordering, we must represent ordering directly
in the tree structure. We introduce a new tree constructor, with an unordered bag of n children:

a
bc

The ability to reorder subtrees significantly simplifies the normal form. Since all the static ele-
ments can be moved to one end, and subsequently reduced, the normal form for a mixed static-
dynamic commutative semigroup is simply a pair of an optional single static element and an un-
ordered bag of dynamic variables:

•

s x1
x2x3

Here is the normal form in Haskell, using the standard multiset to represent bags:

data CSemi a = CSemi (Maybe a) (MultiSet (Code a))

Then l • r is a pair whose components are built from the corresponding parts of l and r using
• for the underlying magma lifted into the Maybe applicative for the static component and multiset
union for the bag of dynamic variables:
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class (algebra a, algebra b, algebra (Coprod algebra a b)) ⇒ Coproduct algebra a b

where data family Coprod algebra a b :: *

inl :: a → Coprod algebra a b

inr :: b → Coprod algebra a b

eva :: algebra c ⇒ (a → c) → (b → c) → Coprod algebra a b → c

Fig. 2. The Coproduct interface

instance CSemigroup a ⇒ Magma (CSemi a) where

CSemi s1 d1 • CSemi s2 d2 = CSemi (liftA2 (•) s1 s2) (union d1 d2)

3 PARTIALLY-STATIC DATA: A GENERAL INTERFACE
§2 introduced the ideas behind computing with partially-static algebra. We now look at how to
turn these ideas from a design pattern into an general abstraction that can be instantiated with
particular algebras to support partially-static computation that turns algebraic equations into beta
reduction. The general abstraction is the core of our Haskell library, frex, which provides an ex-
tensible and modular interface to partially-static data. The ideas behind frex are not tied to any
particular language, and we also describe a second implementation of frex in MetaOCaml (Appen-
dix A).

3.1 Partially-static data: requirements
With the aim of constructing an interface PS to partially static data, we start with a list of require-
ments, distilled from the discussion up to this point.

First, the PS type is intended to work with a variety of algebraic structures, and so we parame-
terise it by an algebraic structure and the type of the data it represents:

PS :: (* → Constraint) → * → *

The first parameter is a constraint that stands for a type class such as Magma or CSemigroup.
Next, it should be possible to use partially-static values in place of either fully-static or fully-

dynamic values, and so PS should support injections from static and dynamic data:

sta :: algebra a ⇒ a → PS algebra a

dyn :: Code a → PS algebra a

(We will extend these type signatures with further constraints in §3.3.) In §2, sta and dyn took
various forms: LeafM (S -) and LeafM (D -) for magmas, and LeafS (S -) and LeafS (D -) for
semigroups. For commutative semigroups the injections can be written as follows

staCS = λs → CSemi (Just s) empty

dynCS = λd → CSemi Nothing (singleton d)

Furthermore, PS algebra itself should be an instance of algebra, since it is intended to stand in
for contexts where an algebra instance is expected. For example, the partially-static structure for
semigroups should be a semigroup instance.

3.2 Coproducts
These considerations suggest designing frex around coproducts — that is, not the familiar binary
sums that Haskell calls Either, but the more general notion of coproducts in a category, whose
representation varies according to the category.

Fig. 2 defines the coproduct interface as a Haskell type class, Coproduct, with three parameters
and four components.
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Partially static data as free extension of algebras 104:9

class algebra (FreeA algebra x) ⇒ Free algebra x where

data family FreeA algebra x :: *

pvar :: x → FreeA algebra x

pbind :: algebra c ⇒ FreeA algebra x → (x → c) → c

Fig. 3. Free algebraic structures, Free

The three parameters algebra, a, and b, respectively represent a type class for a particular alge-
braic structure and the two types that comprise the coproduct. For example, Coproduct Monoid Int String

represents the coproduct of Int and String in the category of monoids. The first two class con-
straints algebra a and algebra b constrain the instantiation of the parameters to types that have
instances of algebra. For example, the instantiation Coproduct Monoid Int String is only allowed
if there exist type class instances of Monoid for Int and String.
The first component, Coprod, is the type of values of the coproduct of a and b in the cate-

gory algebra. Coprod is an associated data type [Chakravarty et al. 2005], whose definition varies
with each instance of the Coproduct class. For example a coproduct in the category of monoids,
Coprod Monoid Int String, is an alternating sequence similar to the Semi type of §2 (and defined
more precisely in §4.1), whereas the type Coprod Set Int String, a coproduct in the category of
sets, is the familiar binary sum type (§4.8).
The final class constraint algebra (Coprod algebra a b) ensures that each instantiation of Coprod

is an instance of the algebraic structure algebra — for example, there must be a Monoid instance
for the type Coprod Monoid a b. The second and third components, inl and inr, inject values of a
and b into Coprod. The final component eva is a kind of fold that generalizes the standard either

function, producing a value of type c from a value of type Coprod and functions from a and b to c.
For example, if algebra has an operation • then eva behaves as follows:

eva f g (inl s1 • inr d1 • inl s2 • . . . ) { f s1 • g d1 • f s2 • . . .
where the • operations on the left are from Coprod algebra a b and the • operations on the right
are from c. (In particular, eva inl inr is the identity.) The constraint algebra c in the type of
eva ensures that c is also an instance of the algebraic structure associated with the instance: for
example, a coproduct of monoids can only be eliminated into a monoid.

3.3 Free objects and free extensions
§3.2 provides a general interface to coproducts. However, computing with partially-static data
requires a particular form of coproduct, where the left type is some type a and the right type is
generated by quoted terms Code a. Furthermore, while there are no constraints on the left algebraic
structure, the right structure is always free, since Code values do not have computational behaviour
or additional equations.

In other words, we are interested in what are called free extensions: coproducts of algebras and
free objects. This section defines a general interface to free algebras and shows how they combine
with Coproduct to give free extensions.

Fig. 3 defines a type class Free indexed by a constraint, algebra, and a type x. An instance
Free algebra x represents the free algebra for algebrawith variables in x; for example, Free Semigroup

(Code Int) represents the free semigroup with variables in Code Int.
There are three class members. First, FreeA is the type of values in the free algebra; as with

Coprod, the definition of the type varies with each instance. For instance, the free algebra for
Semigroup is a non-empty list of variables, while the free algebra for CSemigroup is a non-empty
multiset. Second, pvar injects a variable into FreeA. Finally, the monadic pbind maps a value of
FreeA into another algebra c via a function that injects variables into c. The class constraint
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FreeExtC :: (* → Constraint) → * → Constraint

type FreeExtC algebra a = Coproduct algebra a (FreeA algebra (Code a))

FreeExt :: (* → Constraint) → * → *

type FreeExt algebra a = Coprod algebra a (FreeA algebra (Code a))

Fig. 4. Free extensions: constraint alias FreeExtC and type alias FreeExt

algebra (FreeA algebra x) stipulates that there must be an algebra instance for FreeA so that,
for example, the type FreeA Semigroup m must also support the operation • in addition to pvar.

Fig. 4 shows how the Coproduct and Free classes combine to give the definition of a free ex-
tension as a coproduct of an algebra and a corresponding free algebra. There are two definition:
FreeExtC defines a constraint that may appear to the left of a fat arrow (⇒), while FreeExt names
the type associated with the FreeExtC instance. For example, FreeExt Semigroup Int defines the
type of the free extension of semigroups for integers as an alternating sequence (the coproduct)
of integers and lists of integer code values (the free algebra).

The definitions of Fig. 4 form a crucial part of the general partially-static data interface (§3.5).
It is worth emphasizing that the free extension structure may look quite different from both

the static and the dynamic instance. For example, in the semigroup of integers with multiplication
each expression reduces to a single integer; in the free semigroup each expression reduces to a non-
empty sequence of names; in the semigroup free extension each expression reduces to a sequence
of integers and names, with the additional constraint that there are no adjacent integer elements.

These considerations lead to new definitions for sta and dyn. We drop the provisional name PS

in favour of using FreeExt directly, and write:

sta :: (algebra a, FreeExtC algebra a) ⇒ a → FreeExt algebra a

sta = inl

dyn :: (Free algebra (Code a), FreeExtC algebra a) ⇒ Code a → FreeExt algebra a

dyn = inr . pvar

The first definition defines sta, the function that builds partially-static representations from static
values, as the left injection into the free extension of an algebra. The second definition defines dyn
as the composition of the injection into the free object and the injection into the free extension.
The constraints ensure that there are algebra and Free algebra instances available for the static
and dynamic components and FreeExtC algebra instances available for the results.
Viewing partially-static algebraic structures as free extensions makes explicit some additional

requirements on the implementation of instances. For example, sta should be a homomorphism
with respect to each operation •, i.e.:

sta x • sta y ≡ sta (x • y)

Furthermore, eva should preserve the laws of the algebra, so that terms that are equivalent under
the laws remain equivalent when eva is applied.

3.4 From partially-static to fully dynamic
The eva function is a general-purpose destructor for coproducts. Themost common use of evawith
partially-static data is residualization: turning partially-static values into fully-dynamic values.
A residualization function can be obtained from eva as follows. First, specialize eva to FreeExt,

where the second type parameter to Coproduct is instantiated to FreeA algebra (Code a):
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FreeExtC :: (* → Constraint) → * → Constraint

type FreeExtC algebra a = Coproduct algebra a (FreeA algebra (Code a))

FreeExt :: (* → Constraint) → * → *

type FreeExt algebra a = Coprod algebra a (FreeA algebra (Code a))

sta :: (algebra a, FreeExtC algebra a) ⇒ a → FreeExt algebra a

sta = inl

dyn :: (Free algebra (Code a), FreeExtC algebra a) ⇒ Code a → FreeExt algebra a

dyn = inr . pvar

cd :: (Lift a, Free algebra (Code a), algebra (Code a), FreeExtC algebra a) ⇒
FreeExt algebra a → Code a

cd = eva tlift (`pbind` id)

Fig. 5. frex’s generic interface to partially-static data

evaFE :: (FreeExtCon algebra a, algebra c) ⇒
(a → c) → (FreeA algebra (Code a) → c) → FreeExt algebra a → c

evaFE = eva

Next, instantiate the return type of evaFE to Code a:

evaCode :: (FreeExtCon algebra a, algebra (Code a)) ⇒
(a → Code a) →(FreeA algebra (Code a) → Code a) →FreeExt algebra a →(Code a)

evaCode = evaFE

Finally, supply suitable arguments for the first two parameters of evaCode. The first argument to eva

converts static values to code; this is the purpose of tlift, a typed variant of Template Haskell’s
lift function that provides an interface to cross-stage persistence:

tlift :: Lift a ⇒ a → Code a

tlift = liftM TExp . lift

The second argument to eva builds Code values from values of a free object; this can be accom-
plished with pbind (§3.3).

This series of specializations produces the following residualization function, which is the final
component of frex’s general interface to partially-static data.

cd :: (Lift a, Free algebra (Code a), algebra (Code a), FreeExtC algebra a) ⇒
FreeExt algebra a → Code a

cd = eva tlift (`pbind` id)

Here is cd in action:

cd ((dyn JxK • sta 2) • (sta 3 • dyn JyK)) { Jx × 6 × y K
And, of course, cd preserves the laws of the algebra, since eva does, so that equivalent partially-

static computations are residualized to equivalent code.

3.5 Using frex
Fig. 5 summarises frex’s interface to partially-static data.

How does one use frex to write programs? In order to use frex to program with partially-static
representations for an algebraic structure such as Monoid or Ring, two things are needed: a free
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class Monoid t where

1 :: t

(⊛) : t → t → t

1 ⊛ x ≡ x ≡ x ⊛1

x ⊛ (y ⊛ z) ≡ (x ⊛ y) ⊛ z

Fig. 6. Monoids and their laws

extension instance for the structure, and instances of the structure for particular types such as Int
or String. In many cases, these requirements will be met by the combination of frex and existing
Haskell libraries. Here are some common scenarios:
Using frex with existing instances Frex includes pre-defined free extensions for a number of
structures, including sets, monoids, commutative rings, distributive lattices, abelian groups, and
F-algebras. If frex already defines a free extension for a structure and some other library provides
instances of the structure for types in the program, using frex is typically a matter of inserting sta,
dyn and cd.
For example, since the standard library provides a String instance for Monoid, nothing more is

needed to write programs involving partially-static strings:

cd ((dyn JxK `mappend` sta "abc") `mappend` (sta "def" `mappend` dyn JyK))
{ Jx `mappend` "abcdef" `mappend` yK

Creating new instances to use with frex Similarly, no special work is needed to add new
instances to frex when the free extension is already defined. For example, adding a CMonoid instance
for () (building on the existing Monoid instance) is sufficient to enable frex’s commutative monoid
simplifications:

instance CMonoid ()

Addingnew classes to frex Finally, adding new structures to frex is amatter of defining suitable
Coproduct and Free instances; again, no modifications to frex internals are needed. §4 provides a
number of examples, building on the discussion in §2.

4 INSTANCES AND APPLICATIONS
With the general interface in place (Fig. 5), we now turn to the implementation of free exten-
sions for common algebraic structures: monoids 4.1, commutative monoids and abelian groups 4.5,
sets 4.8, commutative rings 4.11, distributive lattices 4.13, and F-algebras 4.15.

In many cases the general coproduct for the structure and the free object can be defined sepa-
rately, then combined to give the free extension. However, in some cases (e.g. §4.11) where it is
not possible to give a general form for the coproduct, we define the free extension directly.

4.1 Coproduct of monoids
Fig. 6 defines a Monoid class. The free extension for monoids is an instance of the more general
coproduct of monoids, and a slight variant of the partially-static structure for semigroups (§2).

Fig. 8 gives the Coproduct instance for the Monoid class constraint, built from Monoid instances a
and b. As with Semi, the Coprod type is defined as a sequence of alternating a and b elements (Fig. 7),
indexed by the type of the first element in the list, and with the index hidden by an existential
(here M) to allow either a-prefixed or b-prefixed sequences. Unlike semi, the sequencemay be empty,
since Monoid adds an identity element. The inl and inr injections create singleton sequences, and
eva is a fold over the sequence, using the ⊛ operation of the target monoid to combine the results.
As a small optimization, eva does not map the Empty constructor to 1 except in the case where the
input sequence has no elements.

The constraints in the Coproduct class specify that each data instance Coprod alg a b is an
instance of alg. For example the type Coprod Monoid a b should be an instance of Monoid.
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data AorB = A | B

data Alternate :: AorB → * → * → * where

Empty :: Alternate any a b

ConsA :: a → Alternate B a b → Alternate A a b

ConsB :: b → Alternate A a b → Alternate B a b

Fig. 7. An alternating sequence of a and b elements

instance (Monoid a, Monoid b) ⇒ Coproduct Monoid a b where

data Coprod Monoid a b where M :: Alt _ a b → Coprod Monoid a b

inl a = M (ConsA a Empty)

inr b = M (ConsB b Empty)

eva (f :: a → d) (g :: b → d) (M c) = eva' c

where eva' :: Alternate start a b → d

eva' Empty = 1

eva' (ConsA a Empty) = f a

eva' (ConsB b Empty) = g b

eva' (ConsA a m) = f a ⊛ eva' m

eva' (ConsB b m) = g b ⊛ eva' m

Fig. 8. The coproduct of monoids

instance (Monoid a, Monoid b) ⇒ Monoid (Coprod Monoid a b) where

1 = M Empty

M l ⊛ M r = l `mul` r

where mul :: (Monoid a, Monoid b) ⇒
Alternate s a b → Alternate s' a b → Coprod Monoid a b

mul l Empty = M l

mul Empty r = M r

mul (ConsA a m) r | M m' <- mul m r = M (consA a m')

mul (ConsB b m) r | M m' <- mul m r = M (consB b m')

consA :: Monoid a ⇒ a → Alternate s a b → Alternate A a b

consA a Empty = ConsA a Empty

consA a (ConsA a' m) = ConsA (a ⊛ a') m

consA a r@(ConsB _ _) = ConsA a r

consB :: Monoid b ⇒ b → Alternate s a b → Alternate B a b

consB b Empty = ConsB b Empty

consB b (ConsB b' m) = ConsB (b ⊛ b') m

consB b r@(ConsA _ _) = ConsB b r

Fig. 9. The coproduct of monoids is a Monoid

Fig. 9 defines the Monoid instance for Coprod Monoid a b, where a and b also have instances of
Monoid.
The 1 and ⊛ operations respectively construct an empty sequence and concatenate two se-

quences. Prepending an a element to an a-prefixed sequence combines the element with the head
of the sequence using the ⊛ operation of the a monoid, and similarly for b, mutatis mutandis.
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instance Free Monoid x where

newtype FreeA Monoid x = P [x] deriving (Monoid)

pvar x = P [x]

P [] `pbind` f = 1

P xs `pbind` f = foldr ((⊛) . f) 1 xs

Fig. 10. Free instance for Monoid

ConsD

ConsS

ConsD

Empty[x1]
2

[x1]
Empty ConsD

ConsS

ConsD

Empty[x1]
2

[x1]
⊕

Fig. 11. Partially-static monoid: dropping 1

ConsD

ConsS

Empty3
[x1]

ConsS

ConsD

Empty[x2]
4

ConsD

ConsS

ConsD

Empty[x2]
3⊛4

[x1]
⊕

Fig. 12. Partially-static monoid: coalescing adjacent static values

4.2 Free monoids and the free extension
Fig. 10 shows the Free instance for Monoid. The free monoid with variables in x is simply a list of
x values. The pbind function maps a free monoid value into any other monoid:

(pvar x1 ⊛ pvar x2 ⊛ ... ⊛ pvar xn) `pbind` f { (f x1 ⊛ f x2 ⊛ ... ⊛ f xn)

Type class resolution combines the Free and Coproduct instances to form the free extension FreeExt.
Figs. 11 and 12 illustrate how frex’s partially-static monoid performs static reductions using the

monoid laws.

4.3 Example: improving printf with partially-static monoids
To show the Monoid free extension in action, we consider an example from the functional program-
ming literature [Asai 2009; Danvy 1998]: typed sprintf. It is straightforward to use staging to turn
sprintf from a function into a code generator [Yallop andWhite 2015]; however, a naive approach
results in code that contains too many catenations.

For example, the following call to sprintf generates a function that prints two integer arguments
with "ab" interposed:

sprintf ((int ++ lit "a") ++ (lit "b" ++ int))

When sprintf is staged using a simple binding time analysis the result contains four catenations:

J λx y →((("" ++ show x) ++ "a") ++ "b") ++ show y K
Since strings form a monoid under catenation, switching to frex’s partially static operations

generates the following more efficient code:

J λx y →show x ++ ("ab" ++ show y) K
(In fact, as we shall see, Frex can also generate the more efficient code that makes a single call

to an n-ary catenation function).
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class Format f where

type Acc f a :: *

lit :: String → f a a

cat :: f b a → f c b → f c a

int :: f a (Acc f Int → a)

str :: f a (Acc f String → a)

sprintf :: f (Acc f String) a → a

Fig. 13. Format signature

instance Format Fmt where

type Acc Fmt a = a

lit x = Fmt $ \k s →k (s ++ x)

f `cat` g = Fmt (fmt f . fmt g)

int = Fmt $ \k s x →k (s ++ show x)

str = Fmt $ \k s x →k (s ++ x)

sprintf p = fmt p id ""

Fig. 14. An unstaged Format implementation

instance Format FmtS where

type Acc FmtS a = Code a

lit x = FmtS $ \k s →k J $s ++ x K
f `cat` g = FmtS (fmtS f . fmtS g)

int = FmtS $ \k s x →k J $s ++ show $x K
str = FmtS $ \k s x →k J $s ++ $x K
sprintf p = fmtS p id J "" K
Fig. 15. An staged Format implementation

instance Format FmtPS where

type Acc FmtPS a = Code a

lit x = FmtPS $ \k s →k (s ⊛ sta x)

f `cat` g = FmtPS (fmtPS f . fmtPS g)

int = FmtPS $ \k s x →k (s ⊛ dyn J show $x K)
str = FmtPS $ \k s x →k (s ⊛ dyn x)

sprintf (FmtPS p) = p cd 1

Fig. 16. A partially-static Format implementation

Fig. 13 gives aminimal interface for formatted printing. The type constructor f represents format
specifications; its two parameters respectively represent the result and the input type of a sprintf
instantiation. The following three operations construct format strings: lit s is a format string that
accepts no arguments and prints s; cat x y catenates x and y; int is a format string that accepts
and prints an integer argument. Finally, sprintf combines a format string with corresponding
arguments to construct formatted output. Asai [2009] gives further details.
Here is an implementation of Fig. 13 in continuation-passing style, using an accumulator:

newtype Fmt r a = Fmt {fmt :: (String → r) → String → a }

With this implementation, a format string Fmt is a function accepting a continuation argument
of type String → r and an accumulator of type String. Both lit and int call k directly, passing
an extended string; cat is simply function composition. The function sprintf passes the identity
function as a top-level continuation along with an empty accumulator (Fig. 14).
Staging sprintf is straightforward (Fig. 15). We treat format strings statically; arguments and,

consequently, the accumulator, are dynamic. The cat function is unchanged, and the rest of the
implementation is annotated in accordance with the assignment of static and dynamic classifica-
tions:

newtype FmtS r a = FmtS {fmtS :: (Code String → r) → (Code String → a)}

The generated code (shown at the beginning of this section) is sub-optimal because the staging
is simplistic: every catenation is delayed, even when both operands are statically available.

Staging using frex’s partially-static monoid is also straightforward (Fig. 16). The steps are as
follows, starting from the unstaged implementation: replace String with FreeExt Monoid String,
replace cat and "" with ⊛ and 1, insert sta and dyn to inject static and dynamic expressions, and
replace the top-level continuation with the residualization function described above:

newtype FmtPS r a = FmtPS { fmtPS :: (PS Monoid String → r) → PS Monoid String → a }

This implementation statically constructs a canonical representation before residualizing, elimi-
nating nesting and redundant catenationswith 1; the result (shown at the beginning of this section)
contains only two catenations rather than the original four.
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class Monoid m ⇒ CMonoid m

class CMonoid c ⇒ CGroup c where cinv :: c → c

1 ⊛ x ≡ x

x ⊛ (y ⊛ z) ≡ (x ⊛ y) ⊛ z

x ⊛ y ≡ y ⊛ x

cinv x ⊛ x ≡ 1

Fig. 17. Commutative monoids and abelian groups

§4.4 gives a second residualization function for partially-static string monoids that generates a
single call to n-ary concat rather than a sequence of binary catenations.

4.4 Residualization for monoids
It is often possible to give a more efficient residualization function for a particular instance of a
structure. Herewe sketch how to give an alternative residualization function for the partially-static
monoid of strings. There is no need to step outside the framework provided by frex; it is sufficient
to instantiate the residualizing call to eva with an alternative Monoid instance.
The Monoid interface (Fig. 6) exposes nullary and binary constructors 1 and ⊛. However, for

some monoids it is most efficient to combine more than two elements in a single operation. The
partially-static monoid structure generates the following code for the printf example in §4.3:

J s1 ++ $d ++ s2 K
However, depending on the representation of strings, it may be more efficient to generate a single
call to an n-ary catenation function. (For example, n-ary catenation is more efficient in OCaml,
where strings are strict arrays, but not in Haskell, where strings are lazy lists by default.)

J concat [s1, $d, s2] K
It is straightforward to write an alternative to cd specialized to themonoid of strings that generates
this more efficient code. (See the Printf.cdStrings function in the supplementary material.)
The opportunity to improve code generation at the point of residualization is one of the advan-

tages of the free extensions view over existing ad-hoc approaches to partially-static representa-
tions.

The interface to partially-static data in earlier work (e.g. [Kaloper-Meršinjak and Yallop 2016])
typically provides cd as the only way to inspect partially-static data. The coproduct view improves
on this approach, providing two additional ways of inspecting partially-static values: the eva func-
tion, and (in the Haskell implementation) the Coprod type. With eva and Coprod it becomes possible
to perform further optimizations at the point of code generation.

§6 shows how frex’s simplifications to the code generated by the staged printf function example
lead to significant performance improvements.

4.4.1 Practical considerations: canonicity. Ideally the partially-static representation should be
canonical: expressions that are statically equivalent under the laws of the algebra should have the
same representation in PS.

Unfortunately, it is not always possible to achieve full canonicity; for example, ConsS can store
empty monoid elements, even though these could be eliminated according to the unit elimination
laws. This kind of deviation from canonicity is sometimes unavoidable, since it is not always possi-
ble to determine whether a monoid element should be considered empty. (For example, the monoid
of endofunctions does not support equality.)
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instance (CMonoid a, CMonoid b) ⇒ Coproduct CMonoid a b where

data Coprod CMonoid a b = C a b

inl a = C a 1

inr b = C 1 b

eva f g (C a b) = f a ⊛ g b

Fig. 18. The coproduct of commutative monoids

instance Ord x ⇒ Free CMonoid x where

newtype FreeA CMonoid x = CM (MultiSet x)

pvar = CM . singleton

CM b `pbind` f = emit (toList b)

where emit [] = mempty

emit [x] = f x

emit (x:xs) = f x `mappend` emit xs

instance Ord x ⇒ Free CGroup x where

newtype FreeA CGroup x = CG (Map x Int)

pvar x = CG (singleton x 1)

CG b `pbind` f = emit (toList b)

where emit [] = mempty

emit [(x,1)] = f x

emit ((x,0):xs) = emit xs

emit ((x,n):xs) | n < 0 = cinv (f x) `mappend` emit ((x,n+1):xs)

| otherwise = f x `mappend` emit ((x,n-1):xs)

Fig. 19. Free instances for commutative monoids and abelian groups

4.5 Coproducts of commutative monoids and abelian groups
Fig. 17 shows the interface to commutative monoids (CMonoid) and abelian groups (CGroup). The
CMonoid inherits the methods from the Monoid interface and adds the commutativity law. The only
difference between Monoid and CMonoid is the set of laws tacitly associated with the class.
However, adding the commutativity law to the monoid interface leads to quite a different co-

product structure (Fig. 18). As with the transition from semigroups to commutative semigroups
(§2), applying commutativity to the alternating sequence structure of the monoid coproduct allows
the elements of each constituent monoid to be brought together and coalesced. The alternating se-
quence consequently collapses into a two-element sequence — i.e. a Cartesian product of sets. (The
coproduct of abelian groups is isomorphic to the commutative monoid coproduct, and not shown.)

4.6 Free commutative monoid and abelian group
Fig. 19 shows implementations of free algebras for commutative monoids and abelian groups.

The CMonoid and CGroup free algebras are multisets (bags) and finite maps (dictionaries) with
integer values, respectively:

pvar x ⊛ cinv (pvar y) ⊛ pvar x ⊛ cinv (pvar y) { { x 7→ 2, y 7→ -2 }

In each case the implementation of pbind maps f over each element in the representation and
combines the results using mappend; the pbind implementation for abelian groups additionally ap-
plies cinv to each output element when the count associated with the element is negative:
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class Set a

instance Set a

instance Coproduct Set a b where

data Coprod Set a b = Inl a | Inr b

inl = Inl

inr = Inr

eva f g (Inl x) = f x

eva f g (Inr y) = g y

Fig. 20. The coproduct of structures with no equations

(pvar x ⊛ cinv (pvar y) ⊛ pvar x ⊛ cinv (pvar y)) `pbind` f

{ f x ⊛ f x ⊛ cinv (f y) ⊛ cinv (f y)

As for monoids, the Free and Coproduct instances combine to form the free extension.

4.7 Example: power with partially-static commutative monoids
We are ready to revisit the staged power function from the introduction. The naively-staged power

function generates code with a linear sequence of multiplications that concludes with an unneces-
sary multiplication by 1:

J \x → $(power JxK 6) K { Jx * (x * (x * (x * (x * (x * 1))))) K
Here is an implementation of power suitable for use with frex:

power :: CMonoid m ⇒ m → Int → m

power x 0 = 1

power x n = x ⊛ power x (n - 1)

This new definition illustrates two benefits of frex. First, there are no more low-level staging
annotations; it is sufficient to make the code more polymorphic by defining power for an arbitrary
commutative monoid, then instantiate with frex’s predefined free extension. Second, frex’s simpli-
fications improve the generated code. With a cd function specialized to commutative monoids (in
the same vein as the specialized monoid cd of §4.4), the six multiplications in the naively-staged
version can be reduced to three:

cdPower (power (dyn JxK) 6) { Jlet y = x*x in let z = y*y in y*z K
As in the previous example, these improvements depend only on a specialized cd; the implemen-

tation of power and the partially-static representations are untouched. The specialized cd can be
implemented in terms of eva by supplying a suitable CMonoid instance, or directly on the CoProd

representation.

4.8 Coproduct of sets
One special case of an algebraic structure is Set, the structure with no equations.

Fig. 20 shows the instance for Coproduct in the category of sets. The Set class has no con-
straints or methods, and a single instance that encompasses every Haskell type. Consequently,
the Coproduct instance for Set has no constraints, since all the Coproduct class constraints are sat-
isfied by the single Set instance. The associated Coprod type is simply the familiar type of binary
sums (called Either in the Haskell standard library), with inl and inr as its two constructors, and
eva corresponding to the familiar either function1.

4.9 Free algebra for sets
Fig. 21 shows the free algebra for sets, where a value is a single variable, and pbind is application.

1https://hackage.haskell.org/package/base-4.10.0.0/docs/Data-Either.html
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instance Free Set x where

newtype FreeA Set x = F x

pvar = F

F x `pbind` k = k x

Fig. 21. Free instance for Set

class Ring a where

(⊕), (⊗) :: a → a → a

rneg :: a → a

0, 1 :: a

(a ⊕ b) ⊕ c ≡ a ⊕ (b ⊕ c)

a ⊕ b ≡ b ⊕ a a ⊕ 0 ≡ a

a ⊕ rneg a ≡ 0
(a ⊗ b) ⊗ c ≡ a ⊗ (b ⊗ c)

a ⊗ b ≡ b ⊗ a a ⊗ 1 ≡ a

a ⊗ (b ⊕ c) ≡ (a ⊗ b) ⊕ (a ⊗ c)

Fig. 22. Commutative rings

data Multinomial x a = MN (Map (MultiSet x) a)

instance Ord x ⇒ Free Ring x where

newtype FreeA Ring x = RingA (Multinomial x Int) deriving (Ring)

pvar x = RingA (MN (Map.singleton (MultiSet.singleton x) 1))

RingA xss `pbind` f = evalMN initMN f xss

Fig. 23. Free commutative rings

Although the Set free extension is a rather impoverished structure, it is perhaps the most fre-
quently used representation for partially-static data in themulti-stage programming literature. The
Set free extension does not take advantage of any equations; nevertheless, switching from a binary
binding-time classification (in which each expression is fixed as always-static or always-dynamic)
to the possibly-static world of the Set free extension (in which an expression may switch between
static and dynamic on different executions) is a significant improvement for many applications.

4.10 Example: possibly-static data
Here is a simple example of possibly-static data. The isDigitPS function classifies a possibly-static
character using the standard isDigit function. If the character is static then the classification is
performed immediately; if it is dynamic then the classification is deferred to the next stage.

isDigitPS :: FreeExt Set Char →FreeExt Set Bool

isDigitPS (Inl c) = Inl (Char.isDigit c)

isDigitPS (Inr c) = Inr JChar.isDigit $c K
Without partially-static data it would be necessary either to have two functions for the static

and dynamic cases, or to convert every character to a dynamic value, losing the opportunity to
perform further static computation on the result.

The idea naturally generalizes to lift arbitrary functions to operate on possibly-static values.

4.11 Free algebra and free extension of commutative rings
Fig. 22 shows the interface Ring and the axioms for commutative rings.

Fig. 23 defines the free commutative ring on a set x, defined as multinomials — i.e finite sums
of products of variables in x with integer coefficients (). The call pvar x builds a representation of
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instance (Ring a, Ord x) ⇒ Coproduct Ring a (FreeA Ring x) where

newtype Coprod Ring a (FreeA Ring x) = CR (Multinomial x a)

inl a = CR (MN (singleton empty a))

inr (RingA (MN x)) = CR (MN (map initMN x))

eva f g (CR c) = evalMN f (g . pvar) c

Fig. 24. The coproduct of a commutative ring and a free commutative ring

dot [sta 1, sta 0, sta 2, dyn JxK] [dyn JxK, dyn JyK, dyn JzK, dyn JxK]
{ (sta 1 ⊗ dyn JxK) ⊕ (sta 0 ⊗ dyn JyK) ⊕ (sta 2 ⊗ dyn JzK) ⊕ (dyn JxK ⊗ dyn JxK)
{ 1x1 + 2z1 + x2 { x + 2*z + x*x

Fig. 25. Reducing partially-static commutative ring expressions

the trivial polynomial x, whose exponent and coefficient are both 1. The call evalMN initMN f in
the definition of pbind interprets both the variables and the coefficients in an arbitrary ring, and
combines the results using the ring operators. (See the supplementary material.)

It is not always possible to give a closed form for the coproduct of general algebras. However, we
can still sometimes define the free extension, as is the case with commutative rings. The coproduct
of a commutative ring A with a free commutative ring consists of multinomials with coefficients
in A (Fig. 24).

inlmaps an elementb ofA to the constant termb, while inrmaps each termwith coefficient n to
the same term with coefficient (1 ⊕... ⊕1) (n times, or using ⊖ for negative n). As with the pbind
operation for the free commutative ring, eva evaluates the multinomial using the ring operations
for addition and multiplication:

eva f g (a + bx2y) { f a ⊕ (f b ⊗ g x ⊗ g x ⊗ g y)

A free commutative semiring (an algebra for the operations and axioms of a ring except those
involving ⊖) is the same but with natural number coefficients instead of integers, and the free
extension is defined analogously.

4.12 Example: linear algebra with partially-static rings
Linear algebra offers many opportunities for optimization via multi-stage specialization and nu-
merical simplification such as the Fast Fourier Transform [Kiselyov et al. 2004], Gaussian elimi-
nation [Carette and Kiselyov 2011a], and matrix-vector multiplication [Aktemur et al. 2013]. The
inner product illustrates the general principle: given a statically-known vector s = [1, 0, 2] and
a dynamic vector d = [x, y, z], a naively-staged inner product function might generate the fol-
lowing code:

J (1 * x) + (0 * y) + (2 * z) K
There are clear opportunities for improvement: the multiplication by one in the first summand

can be ommitted, and the multiplication by zero should annihilate the middle summand altogether.
As with power (§4.7), switching from hand-inserted staging annotations to frex’s high-level ap-

proach means that dot can be written as a polymorphic function with no mention of staging:
dot :: Ring r ⇒ [r] → [r] → r

dot xs ys = sumr (zipWith (⊗) xs ys)

sumr :: Ring r ⇒ [r] → r

sumr = foldr (⊕) 0
Fig. 25 illustrates the behaviour of dot when the Ring constraint is instantiated to frex’s free

extension instance: the call to dot constructs multinomials that residualize to multiplications and
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additions. Returning to the example at the beginning of this section, frex’s ring simplifications lead
to the following simpler code:

J x + (2 * z) K
§6 considers further examples involving linear algebra, and shows that frex’s simplifications

lead to significant performance improvements.

4.13 Coproduct of distributive lattices
A distributive lattice is a commutative semiring (A,0, ⊕,1, ⊗) with additional absorption rules:

a ⊗ (a ⊕ b) ≡ a a ⊕ (a ⊗ b) ≡ a .

For example, booleans form a distributive lattice with && as ⊗ and | | as ⊕.
As in the case of commutative rings, the coproduct of a distributive latticeA and a free distribu-

tive lattice on a set X consists of multinomials over X with coefficients in A. However, the fact
that multiplication is idempotent (a ⊗ a ≡ a) means that duplicates of variables within a term can
be ignored, so the MultiSet of Fig. 24 is replaced with Set. In addition, the second absorption rule
means that any term of the sum which is a multiple of another term with the same coefficient is
redundant and can be dropped.

4.14 Example: all and any with partially-static distributive lattices
The examples so far all involve constructing and then residualizing partially-static values. It is also
sometimes useful to compute with partially-static values before residualization.

The all function takes a predicate p and a list l, and returns true iff every element of l satisfies
p. Frex supports defining a variant of all that operates on partially-static lists, with interleaved
static and dynamic portions, and that produces partially-static booleans. Since a single element
that does not satisfy p is enough to determine the result of all, the result may be static even where
the input is partially unknown:

allPS even (sta [2, 4] ++ var JxK ++ sta [3])

{ sta (even 2) ⊛ sta (even 4) ⊛ dyn J all even x K ⊛ sta (even 3)

{ sta false

The allPS function operates on frex’s representations, turning a partially-static monoid (the input
list) into a partially-static distributive lattice (the output boolean). The distributive lattice laws,
used in frex’s free extension instance, reduce the expression to the value false, even though one
element in the sequence is dynamic. The dual function anyPS can be defined similarly.

4.15 Coproduct of initial F-algebras
In addition to the familiar structures discussed above, the algebraic approach naturally subsumes
earlier work on staged algebraic data types [Jones et al. 1993; Kaloper-Meršinjak and Yallop 2016;
Sheard and Diatchki 2002] that is discussed further in §7.

An algebraic data type is the initial algebra for a presentation consisting of a functor F and no
axioms. In other words it is constructed as the free F-algebra over the empty set.

For any algebraic structure, the coproduct of two free algebras is easy to calculate: it is given
by the free algebra on the coproduct of their underlying sets. Fig. 26 shows this coproduct for the
case of F-algebras.

The free extension of an algebraic data type T := FreeA (Alg f) Empty is thus of this form,
where the type a is the empty type and b is Code(T).

For example, the signature functor

IList X := 1 + Int × X
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instance Functor f ⇒ Coproduct (Alg f) (FreeA (Alg f) a) (FreeA (Alg f) b) where

newtype Coprod (Alg f) (FreeA (Alg f) a) (FreeA (Alg f) b) =

L (FreeA (Alg f) (Coprod Set a b))

inl x = L (fmap Inl x)

inr y = L (fmap Inr y)

eva g h (L e) = e `pbind` eva (g . pvar) (h . pvar)

Fig. 26. The coproduct of two free F-algebras

has as initial algebra the type IntList of integer lists. The free extension of IntList is isomorphic
to the free IList-algebra over Code IntList.

4.16 Example: partially-static algebraic datatypes
More generally, inductive algebraic datatypes can be seen as initial algebras for a multi-sorted
signature, i.e. free algebras of operations without laws. These datatypes are useful in programs
that perform staged computation. Lists with possibly-dynamic tails are a common example of a
more general family of partially-static datatypes [Inoue 2014; Kaloper-Meršinjak and Yallop 2016;
Sheard and Diatchki 2002].

The free extension for F-algebras in frex can be used to define a variant of sum that operates on
partially-static lists by traversing the initial portion of a list, leaving traversal of the dynamic tail
for later:

cd (sumps (1 :s 2 :s 3 :s dyn JtK)) { J6 + sum tK
4.17 Practical considerations: duplicating and discarding code
Since the aim of partially-static data structures is to avoid unnecessary computation in generated
code, it is important to avoid duplicating or discarding expressions. In languages where the evalu-
ation of an expression may have side effects, duplication and discarding are even more crucial to
avoid. However, in some of our examples, such as power and dot, quoted expressions injected with
dyn may appear either several times or not at all in the output of cd.

Fortunately, there are standard techniques available to address this issue. It is common in partial
evaluators and multi-stage programming languages to convert programs into a form where every
non-trivial expression is let-bound [Carette and Kiselyov 2011b; Kiselyov 2014; Yallop 2017] using
a function (commonly named genlet) that accepts a dynamic expression e, inserts a let-binding
for e at some higher point in the code, and returns the bound variable:

g (genlet J f x K) { Jlet y = f x in ... $(g JyK)
Automatic conversion to ANF form in the LMSmulti-stage programming framework [Rompf 2016]
serves a similar purpose

let-insertion combines straightforwardly with partially-static data; however, we have omitted
it from the exposition for simplicity. The MetaOCaml implementation (Appendix A) uses let-
insertion to avoid duplication.

5 UNIVERSALITY: FREE EXTENSION OF ALGEBRAS
§3 and the examples in §4 show that free extensions, i.e. coproducts with free algebras, provide a
natural representation for partially-static data structures. Here we justify more formally why this
representation is valid in terms of the universal property of free extensions. We first recall some
basic universal algebra, which allows us to discuss classes of algebraic structures uniformly.
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5.1 Rudimentary universal algebra
Like datatypes, descriptions of algebraic structures consist of an interface and a functional specifi-
cation for this interface. The interface is given by an algebraic signature Σ: consisting of a set OΣ

of operation symbols where each symbol is assigned a natural number called its arity. For example,
monoids use the signature where Omon B {1,⊛}, 1 has arity 0, and ⊛ has arity 2. Given a signa-
ture Σ, the functional specification is given by a set of axioms: equations between terms built from
the operation symbols in Σ and according to their corresponding arities. For example, the monoid
axioms Axmon are given in Fig. 6.
Put together, the description of an algebraic structure is called a presentation P, given by a

signature ΣP and a set AxP of axioms over this signature. The example signature and axioms
above form mon — the presentation of monoids.

An algebra for a presentation is a mathematical implementation of such specifications. Formally,
given a presentation P, a P-algebraA is a pair (|A| ,−A) consisting of a set |A|, called the carrier of
the algebra, and, for each operation symbol f of arity n in ΣP , an n-ary function fA : |A|n → |A|,
such that all the axioms in AxP hold. For example, noting that a nullary function is a constant, a
mon-algebra is a monoid.

Finally, given two P-algebras A, B, a P-homomorphism h : A → B is a function between the
carriers h : |A| → |B | that respects the operations: for each operation symbol f : n in ΣP , and for
every n-tuple ®a = (a1, . . . ,an) of |A|-elements, we have h(fA(a1, . . . ,an)) = fB (h(a1), . . . ,h(an)).
For example, a mon-homomorphism h : A → B is a function that satisfies h(1A) = 1B and
h(x ⊛A y) = h(x)⊛B h(y), i.e. the familiar notion of a monoid homomorphism.

For each presentation P, the collection of P-algebras and P-homomorphisms between them
forms a category P-Alg, with the identities and composition given by the identity functions and
the usual composition of functions. We have an evident functor |−| : P-Alg → Set that forgets the
algebra structure on objects and the homomorphism requirement on morphisms.

The forgetful functor |−| always has a left adjoint FP : Set → P-Alg, the free P-algebra functor.
Concretely, its object map on a set X yields the term algebra over X : the set of ΣP-terms with
variables inX , quotiented by the deductive closure ofAxΣ under the derivations of equational logic.
For example, the free monoid over X is the set of finite sequences with X -elements, as described
in §4.2. The unit of the adjunction, ηP : X → |FPX | maps an element x ∈ X to its equivalence
class as a term. For mon, ηmon(x) is the one-element sequence [x]. The adjunction itself assigns
to every function f : X → |A| its homomorphic extension >>=P f : FPX → A, which evaluates
(the equivalence class of) a term in the algebraA, with X -variables substituted according to f . For
example, taking A to be the integers with multiplication:

[x ;y; z] >>=mon {x 7→ 2,y 7→ 3, z 7→ 4} = 2 · 3 · 4 = 24

The categories P-Alg have coproducts A ⊕ B, and their concrete structure is given as follows.
The carrier |A ⊕ B | is the ΣP-term algebra over the disjoint union |A| + |B | quotiented by the de-
ductive closure of the axioms in P, together with the equations of the form f (ι1a1, . . . , ι1an) ≡
ι1 fA(a1, . . . ,an) for every f of arity n in ΣP , a1, . . . ,an in |A|, and analogous equations for B. The
coproduct injection ι⊕1 : A → A ⊕ B maps a to the equivalence class of ι1a, and similarly for B.
For every pair of homomorphisms h1 : A → C , h2 : B → C , the unique cotupling homomorphism
[h1,h2] : A ⊕ B → C interprets a term over |A| + |B | as the corresponding |C |-element, once each
variable ιix is substituted by hi (x). For example the coproduct of monoidsA and B has as its carrier
the set of sequences of alternating elements of |A| and |B |.
A free extension of an algebraA by a setX is the coproduct of the algebraAwith the free algebra

over X , namely FreeExt(A,X ) B A ⊕ FPX . The coproduct injection ι : FPX → FreeExt(A,X )
corresponds under the adjunction to a function ιX : X →

��FreeExt(A,X )
��. So combining the
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universal properties of coproducts and adjunctions, a free extension is characterised by an al-
gebra FreeExt(A,X ) together with a homomorphism ιA : A → FreeExt(A,X ), and a function
ιX : X →

��FreeExt(A,X )
��, such that for every other pair of a homomorphism h : A → C and

a function e : X → |C |, there exists a unique homomorphism eva(h, e) : FreeExt(A,X ) → C
satisfying

eva(h, e) ◦ ιA = h
��eva(h, e)�� ◦ ιX = e .

5.2 Conceptual justification
Now suppose the algebra A stands for a static datatype, and the set X stands for a collection of
dynamically-known values. §3 sets out the minimum requirements we would want for the corre-
sponding partially-static datatype: an algebra ps(A,X ) together with inclusions

sta : A → ps(A,X ) dyn : X → ps(A,X )
such that sta is an algebra homomorphism, and a residualization map

cd : ps(A,X ) → X

satisfying cd ◦ dyn = id and cd ◦ sta = lift where lift is the function A → X lifting static values to
dynamic ones.

Certainly the free extension FreeExt(A,X ) meets these requirements when X is the algebra
Code A, defining

sta B ιA dyn B ιX cd B eva(lift, id)
as described in 3.4. With just the requirements above it is not the only possible choice. However,
there are at least two ways in which we could impose reasonable extra conditions on the partially-
static datatype which would only be satisfied by the free extension.

Firstly, we could ask that in addition to residualization partially-static data should allow post-
processing. As ps(A,X ) is an algebra, we can consider homomorphisms from ps(A,X ) into other
algebras C . It is natural to expect that a homomorphism h : A → C and a function e : X → |C |
should lift to a homomorphism eva(h, e) : ps(A,X ) → C acting as expected on purely static and
dynamic values. The homomorphism should be unique for a minimal representation of the data.
This corresponds exactly to the characterization of FreeExt(A,X ) above.

Alternatively, we could impose a uniformity condition on the collection of partially-static datatypes
for all algebrasA. The datatype should store representations of static elements in a uniformway so
that homomorphisms of static data lift to homomorphisms of partially-static datatypes. So assume
that given a set X ,

• partially-static datatypes with sta and dyn exist for every algebra A,
• for any instantiation e : X → A of variables in X as elements of A, there is a unique homo-
morphism eva(id, e) : ps(A,X ) → A extending e and preserving static values,

• for every pair of algebras A,B and homomorphism h : A → B, there is a unique homomor-
phism ps(h,X ) : ps(A,X ) → ps(B,X ) which acts as h on static values and leaves dynamic
values unchanged.

Then an algebraic argument shows that ps(A,X ) together with sta, dyn and eva(h, e) B eva(id, e)◦
ps(h,X ) has the universal property of the free extension FreeExt(A,X ).

6 PERFORMANCE EVALUATION
The central contribution of this paper is a unification of various existing optimizations based
around partially-static data, although many of the structures and several of the examples in our
study are novel. Our focus up to this point has been on a rationalised interface to partially static
data, on the representations for particular algebraic structures, and on the simplifications that they
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produce in code generated by multi-stage programs. It is reassuring to discover that the simplifi-
cations introduced by frex lead directly to improved performance over both the original unstaged
program and naively staged versions that make no use of partially-static data.

We consider two representative examples:matrixmultiplication, inHaskell, and printf inOCaml.
The measurements in this section were taken on a Debian Linux system running the 4.9.0 kernel

on an AMD FX(tm)-8320 eight-core processor with 16GBmemory. Haskell code was compiled with
GHC 8.0.2 using the -O3 optimization flag, and OCaml code with BER MetaOCaml n104.

6.1 Matrix multiplication
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s

Matrix multiplication
unstaged (naive)
unstaged (linear)
staged (naive)
frex

Fig. 27. Matrix multiplication improvements

Fig. 27 shows the performance of four implementations of 10x10matrixmultiplication inHaskell.
The naive implementation is a one-line function based on a list-of-lists representation of matrices:

mmmul m n = [[dot a b | b <- transpose n] | a <- m]

The figures for linear represent the performance of a popular Haskell library of the same name,
based on a vector representation. There are two staged implementations, both of which are instan-
tiations of the one-line function above with appropriate instances. The naive staging unrolls the
loop, turning the list traversal into an arithmetic expression. The partially-static version takes a
static and a dynamic input vector, and converts both to lists of lists before passing them to mmul:

mmmul [ [sta s1, sta s2, . . .]. . .] [[dyn Jd!0!0K, dyn Jd!0!1K . . .]. . .]
Instantiating mmul with frex’s free extension instance results in automatic algebraic simplification.

The graph showsmeasurements for various sparsities (i.e. for matrices with various proportions
of zero elements). As the sparsity of the matrix increases, the algebraic simplifications performed
by the partially static version significantly increase its advantage over naive staging.
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Fig. 28. Printf performance improvements

6.2 Printf
Fig. 28 shows the performance of three implementations of the printf function in MetaOCaml
— unstaged, staged, and partially static (using frex’s free extension for monoids with improved
residualization (§4.4)).
In each case the benchmark measures the time to run a call to printf with the given number of

parameters and a format string that parenthesizes each parameter in the output:

sprintf ((lit "(" ++ str ++ lit ")") ++ (lit "(" ++ str ++ lit ")"))

Once again, the partially-static version gains an edge as the opportunities for algebraic simpli-
fication increase — in this case, as the number of subexpressions to reassociate and the number of
adjacent static strings to merge grows.

7 RELATEDWORK
We consider two main classes of related work — previous structured approaches to partially-static
data and ad-hoc implementations of particular partially-static structures — before touching briefly
on the use of partially-static data in supercompilers, optimizing compilers, and other tools.

Structured approaches to partially-static data. The existence of general schemes for partially-
static structures without laws — i.e. datatypes — is well-known. The standard partial evaluation
textbook [Jones et al. 1993] informally describes how to generalize partially-static list representa-
tions to arbitrary recursive types. Sheard and Diatchki [2002] describe a similar, but more concrete,
scheme for deriving the staged versions of particular datatypes in the multi-stage programming
language MetaML [Taha and Sheard 1997]. Kaloper-Meršinjak and Yallop [2016] turn Sheard’s
scheme into a generic programming framework based on the initial algebra view of datatypes.

The present work builds on these foundations, showing how partially-static datatypes arise as
an instance of the general view of partially-static algebraic structures as free extensions of algebras.

There have been fewer previous attempts to construct a general view of partially-static struc-
tures with laws. Thiemann [2013] considers partially static operations, which incorporate algebraic
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laws, in a partial evaluation context. Thiemann’s [2013] vision of specialization that considers al-
gebraic structure is an inspiration for this work. However, the implementation is quite different:
Thiemann’s [2013] design operates via repeated rewriting, whereas the structures described in the
present work are reduced using the evaluationmechanism of the host language. It appears unlikely
that this approach to rewriting is suitable for direct use in multi-stage programming.

Partially-static data in partial evaluation. Partially-static data has been used in partial evaluation
from early times. Mogensen [1988] introduced the concept in a study of partially-static lists, and
several authors followed suit (e.g. [Hughes 1999; Jones et al. 1993]. Sheard and Diatchki [2002]
notes that the term acquired the more specific meaning of static containers with dynamic elements.

Partially-static data in multi-stage programming. Partially-static data is frequently employed
in multi-stage programming, where eliminating unnecessary operations is an essential aspect of
generating optimal code.

The seminal finally tagless work by Carette et al. [Carette et al. 2009] uses a static-dynamic type
— i.e. a record that holds a dynamic representation and, optionally, an additional static value of the
same value — to improve generated code in a staged embedded lambda calculus. The implementa-
tion additionally uses partially-static representations that implement ring simplification rules for
zero addition and unit multiplication. Similar unit simplifications for vectors are implemented as
smart constructors in Rompf et al.’s [2013] staging-based compiler optimization framework.
Inspired by abstract interpretation, [Kiselyov et al. 2004] build a staged FFT implementation that

uses partially-static representations that distinguish values from computations and that support
simplification using various laws, including the distributive property, and trigonometric identities.
Carette and Kiselyov [2005, 2011b] describe a modular decomposition of Gaussian Elimination

that abstracts over staged and unstaged implementations of numeric signatures and other aspects
of the algorithm. Partially-static data is used pervasively, primarily in the form of static-dynamic
values. Combining the techniques in this paper with Carette and Kiselyov’s [2005] modular ap-
proach by instantiating numeric signatures with free extensions is a promising avenue for future
exploration.
Yallop [2017] uses several partially-static structures in the staging of an implementation of

the Scrap Your Boilerplate generic programming library, including a partially-static structure for
monoids that reassociates subexpressions similarly to the free extension presented here.

Drawing lessons from supercompilation, Inoue [2014] uses partially-static data that is updated
to reflect equalities between values during the static exploration of the dynamic branches of a
staged program. The primary partially-static structure is a list with a possibly-dynamic tail.

8 CONCLUSION AND FURTHERWORK
We have used free extensions of algebras as a functional specification of partially-static data, and
described a high-level library, frex, that uses them to produce efficient staged code. Our approach
combines the following attributes:
Extensible and modular: The partially-static interface (sta, dyn, cd) operates uniformly over
algebraic structures. Adding Coproduct and Free instances for an algebraic structure is sufficient
to make the structure available for use in optimizations.
Similarly, adding an instance of an algebraic class interface is sufficient to make the type available
for use in optimizations. For example, since the standard library provides a Monoid instance for
the Maybe type of optional values, frex will use the monoid laws to optimize programs involving
Maybe even though frex itself makes no mention of Maybe.
Unifying: Partially-static data is a well-known technique for binding-time improvement, and
ad-hoc implementations of structures that implement some algebraic simplifications are found
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throughout the literature (§7). The observation that partially-static data can be viewed as free ex-
tensions of algebras exposes and clarifies the structure underlying these ad-hoc implementations.
Reusable: This paper explores a universal view of partially-static data using a concrete library
(frex) in a particular language (Haskell). However, the underlying ideas can be reused in many
contexts: free extensions can be used to structure optimizers in other multistage languages, opti-
mizing compilers, partial evaluators, supercompilers, program generators, and so on.
Practical: The effectiveness of algebraic optimization using free extensions for partially-static
data is evident both from the simplified generated code, and from benchmarks (§6).
In the future we would like to use free extensions of free theories to partially evaluate code

using effect handlers [Bauer and Pretnar 2015].
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A METAOCAML IMPLEMENTATION
Several features of Haskell — type classes, abundant polymorphism, typed quotation, succinct
syntax — make it a convenient language for expounding the ideas in this paper. However, the
view of partially-static data structures as free extensions of algebras is independent of any lan-
guage, and transfers straightforwardly to a variety of settings. This appendix sketches a second
implementation in the multi-stage programming language BER MetaOCaml [Kiselyov 2014]. The
implementation is included as supplementary material.

Haskell is a lazy, pure language with support for compile-time metaprogramming, in which pro-
grams are structured using implicitly-resolved instances of type classes. In contrast, BER MetaO-
Caml is an eager, impure language with support for run-time metaprogramming, in which pro-
grams are structured using explicitly combined modules. Despite these differences, both languages
provide the basic ingredients for implementing partially-static data structures as free extensions:
the ability to define datatypes and a distinction between static and dynamic values.

A.1 Parameterization
The various generic components — definitions of coproducts, free extensions and so on, are defined
within a signature Sig containing a parameterized module Ops that builds an interface with a set
of operations for a type:

module type Sig = sig

module Ops (X: TYPE) : sig module type OP end

...

The partially-static representation for each algebraic structure instantiates Ops appropriately.
For example, here is the definition of the monoid interface:

module Monoid_ops (T: TYPE) = struct

module type OP = sig

type t = T.t

val 1 : t

val (⊛) : t → t → t

end

end

module S : Sig with module Ops := Monoid_ops

A.2 Algebras
Each additional element in Sig depends on Ops. An algebra is a pair of a type and a set of operations
for the type:

module type Algebra = sig

module T : TYPE

module Op : Ops(T).OP

end

A.3 Coproducts
A coproduct is an aggregation of three instances T, A, B, of an algebra, together with injections
from A and B into T and an evaluation function that maps values from T into any other algebra C:
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module type COPRODUCT = sig

module T : Algebra

module A : Algebra

module B : Algebra

val inl : A.T.t → T.T.t

val inr : B.T.t → T.T.t

module Eva (C: Algebra) : sig

val eva : (A.T.t → C.T.t) → (B.T.t → C.T.t) → T.T.t → C.T.t

end

end

The various coproduct implementations are expressed as parameterized modules that build in-
stances of COPRODUCT, constraining A and B to match the parameters. Here is the signature of the
parameterized module that builds a coproduct of monoids:

module Coproduct_monoid (A : S.Algebra) (B : S.Algebra) :

S.COPRODUCT with module A.T = A.T with module B.T = B.T

A.4 Presentations and free algebras
A presentation of an algebra is a definition of the free algebra with a function var for injection of
variables, and a bind function that performs substitution:

module type PRES = sig

module Free(X : Setoid) : sig

module Alg : Algebra

val var : X.t → Alg.T.t

end

module Bind(X : Setoid) (C : Algebra) : sig

val (>>=) : Free(X).Alg.T.t → (X.t → C.T.t) → C.T.t

end

end

The partially-static structure for an algebra A aggregates A, a second implementation of the
algebra, the var and sta injections, and the cd and eva destructors. Since MetaOCaml is an impure
language, it is crucial to avoid duplicating or discarding expressions, and so dynamic injections
are from a distinct type var rather than arbitrary code values (Cf. §4.17).

module type PS = sig

module A : Algebra

include Algebra

val sta : A.T.t → T.t

val var : A.T.t var → T.t

val cd : T.t → A.T.t code

module Eva (C : Algebra) : sig

val eva : (A.T.t → C.T.t) → (A.T.t var → C.T.t) → T.t → C.T.t

end

end
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A.5 Programming with partially-static data
Although the set of abstraction mechanisms available in the language leads to a structure that is
quite different from the Haskell implementation, the programming experience is rather similar.
For example, the sprintf example is expressed identically:

sprintf ((int ++ lit "a") ++ (lit "b" ++ int))

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 104. Publication date: September 2018.


	Abstract
	1 Introduction
	2 Defining partially-static structures
	3 Partially-static data: a general interface
	3.1 Partially-static data: requirements
	3.2 Coproducts
	3.3 Free objects and free extensions
	3.4 From partially-static to fully dynamic
	3.5 Using frex

	4 Instances and applications
	4.1 Coproduct of monoids
	4.2 Free monoids and the free extension
	4.3 Example: improving printf with partially-static monoids
	4.4 Residualization for monoids
	4.5 Coproducts of commutative monoids and abelian groups
	4.6 Free commutative monoid and abelian group
	4.7 Example: power with partially-static commutative monoids
	4.8 Coproduct of sets
	4.9 Free algebra for sets
	4.10 Example: possibly-static data
	4.11 Free algebra and free extension of commutative rings
	4.12 Example: linear algebra with partially-static rings
	4.13 Coproduct of distributive lattices
	4.14 Example: all and any with partially-static distributive lattices
	4.15 Coproduct of initial F-algebras
	4.16 Example: partially-static algebraic datatypes
	4.17 Practical considerations: duplicating and discarding code

	5 Universality: free extension of algebras
	5.1 Rudimentary universal algebra
	5.2 Conceptual justification

	6 Performance evaluation
	6.1 Matrix multiplication
	6.2 Printf

	7 Related work
	8 Conclusion and further work
	Acknowledgments
	References
	A MetaOCaml implementation
	A.1 Parameterization
	A.2 Algebras
	A.3 Coproducts
	A.4 Presentations and free algebras
	A.5 Programming with partially-static data


