
Extending OCaml’s open

Runhang Li
Twitter, Inc

rli@twitter.com

Jeremy Yallop
University of Cambridge Computer Laboratory

jeremy.yallop@cl.cam.ac.uk

We propose a harmonious extension of OCaml’s open construct
with many useful applications.

1. open vs include

OCaml provides two operations for introducing names exported
from one module into another module:

open M include M

Both operations introduce M’s bindings into the current scope;
include also re-exports the bindings from the current scope.

A second difference between open and include concerns the
form of the argument. The argument to open is a module path:

open A.B.C

The argument to include can be any module expression:
include F(X) include (M:S) include struct . . .end

This note proposes1 extending open to eliminate that second dif-
ference, so that both open and include accept an arbitrary mod-
ule expression as argument (Fig. 1). In practice, allowing the form
open struct . . . end extends the language with a non-exporting
version of every type of declaration, since any declaration can ap-
pear between struct and end.

The extended open has many applications, as we illustrate with
examples condensed from real code (§2). Our proposal also re-
solves some problems in OCaml’s signature language (§3). We
touch briefly on restrictions and other design considerations (§4).

2. Extended open in structures: examples
Unexported top-level functions The extended open construct sup-
ports bindings that are not exported. In the code on the left, x is
available in the remainder of the enclosing module, but it is not
exported from the module, as shown in the signature on the right:

open struct let x = 3 end
let y = x

(* no entry for x *)
val y : int

A workaround for type shadowing One common programming
pattern is to define a type t in each module. However, this style
leads to problems when the definition of one such t must refer to
another. For example, in the following code, t1 and t2 cannot both
be renamed t, since both names are used within a single scope,
where all occurrences of t must refer to the same type.

type t1 = A
module M = struct

type t2 = B of t2 * t1 | C
end

The extended open construct resolves the difficulty, making it pos-
sible to give an unexported local alias for the outer t:

type t = A
module M = struct

open struct type t’ = t end
type t = B of t * t’ | C

end

Local definitions scoped over several functions A common pat-
tern involves defining one or more local definitions for use within
one more more exported functions2. Typically, the exported func-

Current design: only basic paths are allowed
open M.N

Our proposal: arbitrary module expressions are allowed:
open M.N open F(M) open (M:S) open struct . . . end

Figure 1. The open construct and our proposed extension

tions are defined using tuple pattern matching. Here is an example,
defining f and g in terms of an auxiliary unexported function, aux:

let f, g =
let aux x y =

. . .
in (fun p → aux p true),

(fun p → aux p false)

This style has several drawbacks: the names f and g are separated
from their definitions by the definition of aux; the unsugared syntax
fun x →. . . must be used in place of the sugared syntax let f

x = . . .; and the definition allocates an intermediate tuple. With
extended open, these problems disappear:

include struct
open struct let aux x y = . . . end
let f p = aux p true
let g p = aux p false

end

Local exception definitions OCaml’s let module construct sup-
ports defining exceptions whose names are visible only within a
particular expression3. Limiting the scope of exceptions supports a
common idiom in which exceptions are used to pass information
between a raiser and a handler without the possibility of intercep-
tion [3]. (This idiom is perhaps even more useful for programming
with effects [1], where information flows in both directions.)

Limiting the scope of exceptions can make control flow easier
to understand and, in principle, easier to optimize; in some cases,
locally-scoped exceptions can be compiled using local jumps [2].

The extended open construct improves support for this pattern.
While let module allows defining exceptions whose names are vis-
ible only within particular expressions, extended open also allows
limiting visibility to particular declarations. For example, in the fol-
lowing code, the Interrupt exception is only visible within the
bindings for loop and run:

include struct
open struct exception Interrupt end
let rec loop () = ... raise Interrupt
let rec run = match loop () with

| exception Interrupt → Error "failed"
| x → Ok x

end

Shared state Similarly, extended open supports limiting the scope
of global state to a particular set of declarations:

open struct
open struct let counter = ref 0 end
let inc () = incr counter
let dec () = decr counter
let current () = !counter

end

Restricted open It is sometimes useful to import a module under a
restricted signature4. For example, the statement



open (Option : MONAD)

imports only those identifiers from the Option module that appear
in the MONAD signature.

However, there is a caveat here: besides excluding identifiers
not found in MONAD, OCaml’s module ascription also hides concrete
type definitions behind abstract types, which is typically not the
desired behaviour for open. Transparent signature ascription, an
independently-useful extension, would address this difficulty.

3. Extended open in signatures: examples
In signatures, as in structures, the argument of open is currently
restricted to a qualified module path (Figure 1). As in structures,
we propose extending open in signatures to allow an arbitrary
module expression as argument. However, while extended open in
structures evaluates its argument; open in signatures is used only
during type checking.

This section presents examples of signatures that benefit from
extended open. Our examples all involve type definitions, but it
is possible to construct similar examples for other language con-
structs, such as functors and classes.
Unwriteable, unprintable signatures The OCaml compiler has a
feature that is often useful during development: passing the -i flag
when compiling a module causes OCaml to display the inferred
signature of the module. However, users are sometimes surprised
when a signature generated by OCaml is subsequently rejected by
OCaml, because it is incompatible with the original module, or
even because it is invalid when considered in isolation.

Here is an example of the first case. The signature on the
right is the output of ocamlc -i for the module on the left:

type t = T1
module M = struct

type t = T2
let f T1 = T2

end

type t = T1
module M : sig

type t = T2
val f : t → t

end

The input and output types of M.f are different in the module, but
printed identically. That is, the printed type for f is incorrect.

Here is an example of the second case, again with the origi-
nal module on the left and the generated signature on the right:
type t = T
module M = struct

type ’a t = ’a
let f T = T

end

type t = T
module M : sig

type ’a t = ’a
val f : t → t

end

This time the generated signature is ill-formed because the type
M.t requires a type argument, but is used without one.

If these problems arose from a shortcoming in the implementa-
tion of the -i flag then there would be little cause for concern. In
fact, they point to a more fundamental issue: many OCaml modules
have signatures that cannot be given a printed representation. It is
impossible to generate suitable signatures; more importantly, it is
impossible even to write down suitable signatures by hand.

The problem in both cases is scoping: an identifier such as t

always refers to the most recent definition, and there is no way to
refer to other bindings for the same name. The nonrec keyword,
introduced in OCaml 4.02.2, solves a few special cases of the
problem, by making it possible to refer to a single other definition
for t within the definition of t itself. But most such problems,
including the examples above, are not solved by nonrec.

The extended open solves the problem entirely, by making it
possible to give internal aliases to names. For example, here is a
valid signature for the first case above using extended open.

type t = T1
module M = struct

type t = T2
let f T1 = T2

end

type t = T1
open struct type t’ = t end
module M : sig

type t = T2
val f : t’ → t

end

The OCaml compiler might similarly insert a minimal set of
aliases to resolve shadowing without the need for user intervention.

And, of course, extended open also makes it possible for users
to write those signatures that are currently inexpressible.
Local type alias in a signature Even in cases with no shadowing,
it is sometimes useful to define a local type alias in a signature5. In
the following code, the type t is available for use in x and y, but not
exported from the signature.

open struct type t = int → int end
val x : t
val y : t

4. Restrictions and design considerations
Dependency elimination OCaml’s applicative functors impose a
number of restrictions on programs beyond type compatibility. One
such restriction arises in functor application: types defined in the
argument of a functor must be “eliminable” in the result [4]. For
example, given the following functor definition

module F(X: sig type t val x: t end) =
struct let x = X.x end

the following application is not allowed
F(struct type t = T let x = T end);;

since the result of the application cannot be given a type, as there
is no suitable name for the type of x.

The extended open construct has a similar restriction. For exam-
ple, the following program is rejected by the type-checker because
the only suitable name for the type of x, namely t, is not exported:

open struct type t = T end
let x = T

Here is the error message from the compiler:
Error: The module identifier M#0 cannot be

eliminated from val x : M#0.t

Evaluation of extended open in signatures Here is a possible ob-
jection to supporting the extended open in signatures: although lo-
cal type definitions are useful within signatures, local value defini-
tions are not, and so it would be better to restrict the argument of
open to permit only type definitions.

For example, the following runs without raising an exception:
module type S = (* no exception! *)
sig open struct assert false end end

Within a signature, open’s argument is used only for its type, and
so the expression assert false is not evaluated.

In fact, this behaviour follows an existing principle of OCaml’s
design: module expressions in type contexts are not evaluated.
For example, the module type of construct, currently supported
in OCaml, also accepts a module expression that is not evaluated:

module type S = (* no exception! *)
module type of struct assert false end

And similarly, functor applications that occur within type expres-
sions in OCaml are not evaluated:

module F(X: sig end) =
struct assert false type t = int end

let f (x: F(List).t) = x (* no exception! *)

Local open It would be also be possible to extend expression-local
open constructs of the form let open M.N in e. However, since
expressions, unlike declarations, do not export names, it does not
appear very useful to do so.



Acknowledgments
We would like to thank Leo White for his helpful comments and
suggestions.

Notes
1A modified compiler implementing this design can be tested out at:

http://ocamllabs.io/iocamljs/open-struct.html
2 See draw_poly, draw_poly_line and dodraw in the OCaml

Graphicsmodule for an example. https://github.com/ocaml/ocaml/
blob/4697ca14/otherlibs/graph/graphics.ml, lines 105–117

3 OCaml 4.04 adds a more direct construct [2]
4 Drawn from a proposal by Leo White on the compiler hacking

tasks: https://github.com/ocamllabs/compiler-hacking/wiki/
Things-to-work-on#signatured-open-command

5 For example, the functions comment, maintainer, run, cmd, user,
workdir, volume, and entrypoint in the Dockerfile module would
benefit from such an alias. https://github.com/avsm/ocaml-dockerfile/
blob/e0dad1a/src/dockerfile.mli

References
[1] Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and

Anil Madhavapeddy. Effective concurrency through algebraic effects.
OCaml Users and Developers Workshop 2015, September 2015.

[2] Alain Frisch. Pull request: Turn local exceptions into jumps. https:
//github.com/ocaml/ocaml/pull/638, June 2016.

[3] Robert Harper. Exceptions are shared secrets. https:
//existentialtype.wordpress.com/2012/12/03/
exceptions-are-shared-secrets/, December 2012.

[4] Xavier Leroy. A modular module system. Journal of Functional
Programming, 10(3):269–303, 2000.

http://ocamllabs.io/iocamljs/open-struct.html
https://github.com/ocaml/ocaml/blob/4697ca14/otherlibs/graph/graphics.ml
https://github.com/ocaml/ocaml/blob/4697ca14/otherlibs/graph/graphics.ml
https://github.com/ocamllabs/compiler-hacking/wiki/Things-to-work-on#signatured-open-command
https://github.com/ocamllabs/compiler-hacking/wiki/Things-to-work-on#signatured-open-command
https://github.com/avsm/ocaml-dockerfile/blob/e0dad1a/src/dockerfile.mli
https://github.com/avsm/ocaml-dockerfile/blob/e0dad1a/src/dockerfile.mli
https://github.com/ocaml/ocaml/pull/638
https://github.com/ocaml/ocaml/pull/638
https://existentialtype.wordpress.com/2012/12/03/exceptions-are-shared-secrets/
https://existentialtype.wordpress.com/2012/12/03/exceptions-are-shared-secrets/
https://existentialtype.wordpress.com/2012/12/03/exceptions-are-shared-secrets/

	[basicstyle=]open vs [basicstyle=]include
	Extended [basicstyle=]open in structures: examples
	Extended open in signatures: examples
	Restrictions and design considerations

