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Abstract
We describe deriving, a system of extensible generic functions
for OCaml implemented as a preprocessor and supporting library.
We argue that generating code from type-definitions has signifi-
cant advantages over a combinator approach, taking serialisation
as an example application: our generate-your-boilerplate design re-
sults in a system that is easy to use, has comprehensive coverage
of types and handles cyclic values without imposing a burden on
the user. Users can extend generic functions with specialised im-
plementations at particular types; we show how this can lead to
dramatically improved performance in the serialisation task with-
out the user writing a single line of serialisation code.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Design

Keywords OCaml, Deriving, Generic Programming

1. Introduction: generic functions
Generic programming offers a form of polymorphism which lies
between the extremes of parametric and ad-hoc. The behaviour of
a parametrically polymorphic function, such as length, is the same
at every type. The behaviour of an ad-hoc polymorphic function,
such as sum, is different at each type at which it is defined. The
behaviour of a generic function, such as eq, also varies at each type,
but in a way that is related to the type structure.

Put another way, parametric polymorphic functions are param-
eterised by type, ad-hoc polymorphic functions by instance, and
generic functions by the shape of types. For example, eq is defined
in the same way for every (immutable) record type: two values of a
record type are equal if the values of corresponding fields are equal.
The definition of eq varies with the shape of its argument type: in
the case of records it is a function of the set of fields in the type.

The tool described in this paper, deriving, adds generic func-
tions to OCaml by means of a Camlp4 syntax extension which oper-
ates on the syntax of types to generate functions. A user can request
deriving to generate a function by adding the deriving keyword
to the end of a type definition, followed by a list of the functions
which should be generated. For example, we can define a pair of
datatypes with an eq operation as follows:
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type α tree =
Empty

| Node of α × (α forest)
and α forest =

Nil
| Cons of (α tree) × (α forest)
deriving (Eq)

We can then compare values involving trees and forests using
deriving’s <>-notation to apply eq at the appropriate type.

Eq.eq<bool tree list> [Node (true, Nil)] [Empty]
=⇒ false

Finally, deriving also extends the syntax of signatures. A module
that exports a type for which a function such as Eq has been derived
can also export an interface to the generated function by adding
deriving (Eq) after the type definition in the signature. The
derived function may then be invoked in the usual way.

module type Trees = sig
type α tree

deriving (Eq)
type α forest

deriving (Eq)
...

end
...

Eq.eq<Trees.tree> t

The design of deriving is outlined in Sections 3-6.

1.1 Camlp4

The implementation of deriving relies on Camlp4, the Caml Pre-
Processor-Pretty-Printer, to provide an interface to the syntax trees
of Objective Caml programs. Camlp4 includes an OCaml parser
which can be extended with new syntactic constructs or syntax-
tree transformations. Camlp4 extensions are written in OCaml it-
self, augmented with a system of quotations and antiquotations
which make it easy to switch between the object language and
the metalanguage, while using OCaml syntax for both. Camlp4
may be viewed as a macro system with a level of abstraction
somewhere between C macros [33] and Scheme macros [19];
unlike C’s #define construct, Camlp4 operates on abstract syn-
tax, not on token sequences; unlike macros written with Scheme’s
syntax-rules, Camlp4 extensions may capture variables (adver-
tently or otherwise). Camlp4 is thus somewhat similar to Common
Lisp’s defmacro [34], but with complexity commensurate with
that of OCaml’s syntax.

Other Camlp4 extensions available include Carette and Kise-
lyov’s pa monad [2], which adds Haskell-like do-syntax to OCaml,
Jambon’s pa tryfinally [16], which adds Java’s try . . . finally, and
de Rauglaudre’s IoXML, which generates XML parsing and print-
ing functions for types.

The current version of deriving is available from

http://code.google.com/p/deriving/.
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2. Introduction: serialisation
The development of deriving was motivated by the search for a
robust solution to the serialisation problem. The need for seriali-
sation — converting values to and from some external format —
typically arises in a distributed setting, where values must be trans-
ferred between nodes.

We impose several requirements on acceptable serialisers:

1. Serialisation must be efficient. Space efficiency is of primary
importance to keep network traffic low, and to avoid imposing
too great a burden on clients.

2. Serialisation must be type-safe. Applying a serialisation func-
tion to invalid data should never cause an irrecoverable program
crash.

3. Serialisation must be extensible. Most of the time an out-of-the-
box serialiser will be sufficient, but there is sometimes a need
for a user to supply a specialised implementation of serialisation
at a particular type.

4. Serialisation must be low-cost. A solution which requires the
user to write and maintain large amounts of code to perform
basic serialisation is not acceptable.

The second portion of this paper (Sections 7-9) describes a se-
rialiser developed for the web programming language Links [5],
which is implemented in OCaml. During the execution of a Links
program a computation may be suspended and transmitted over the
network to a client to be retrieved and resumed at some future time.
Transmitting the computation involves capturing its state as a se-
quence of bytes which can later be turned back into a value. Serial-
isation is thus a basic requirement of the Links implementation.

We first consider two existing approaches to serialisation: the
standard OCaml module Marshal, and pickler combinators.

2.1 Marshal

The OCaml standard library includes a module, Marshal, with
functions

val to_string : ∀α. α → extern_flags list → string
val from_string : ∀α. string → int → α

that allow almost any value to be serialised and reconstructed.
While Marshal is certainly easy to use, its design is problematic
when judged for flexibility and safety. The encoding of values is
unspecified and fixed, leaving no way to specialise the encoding
at a particular type. The type of the to string function places no
restrictions on its input, delaying detection of attempts to serialise
unserialisable values until runtime.

# Marshal.to_string (lazy 0) [] ;;
Exception: Invalid_argument

"output_value: abstract value (outside heap)".

Most seriously of all, it is easy to use Marshal to write programs
that crash by interpreting a reconstructed value at the “wrong” type.

# (Marshal.from_string
(Marshal.to_string 0 []) 0 : float) ;;

Segmentation fault

These flaws make Marshal most suitable for use as a basis for a safe
implementation that includes some independent means of verifying
the integrity and suitability of marshalled data.

2.2 Pickler combinators

Compositionality is perhaps the greatest benefit of functional pro-
gramming [14], so it is natural to seek a combinator approach to
the serialisation problem. There is a natural way to structure a

combinator library for serialisation, as evinced by the similarity
of proposed designs by Kennedy for Haskell [20] and Elsman for
SML [7]. A parameterised type of serialisers

type α pu

together with serialisers for primitive types

val unit : unit pu
val bool : bool pu

and combinators for parameterised types that take serialisers to
serialisers

val list : ∀α. α pu → α list pu
val pair : ∀α, β. α pu×β pu → (α × β) pu

and a function which takes conversions between types to conver-
sions between serialisers

val wrap : ∀α, β. (α → β) → (β → α) → α pu → β pu

are sufficient to encode a wide variety of datatypes. To serialise
user-defined algebraic types we need some way of discriminating
between the constructors. The typical solution is to provide a com-
binator (called data in [7], alt in [20]) whose argument maps con-
structors to integers:

val alt : ∀α.(α → int) → α pu list → α pu

We might then write a pu for OCaml’s option type as follows:

let option : ∀α. pu → α option pu =
fun a ->

alt
(function None -> 0 | (Some _) -> 1)
[wrap (fun () -> None) (fun None -> ()) unit;
wrap (fun v -> Some v) (fun (Some v) -> v) a];

The combinator approach has none of the problems seen with
Marshal: the user can choose the encoding at each type, and there
is no lack of type-safety. There are, however, serious drawbacks
particular to this approach. It is tedious to recapitulate the structure
of each user-defined type to obtain a serialiser: this is a prime ex-
ample of the “boilerplate” which much recent research has sought
ways to “scrap” [22]. The requirement for the user to supply a map-
ping from constructors to integers can lead to errors that are hard
to track down. Finally, there are difficulties in handling both cyclic
values, which can arise in ML through the use of references, and
mutually recursive datatypes. The refCyc combinator described
in [7] supports cyclic values, but requires the user to supply a
“dummy” value to start off the cycle:

val refCyc : ∀α. α → α pu → α ref pu

Not only is this a rather unpleasant imposition, but it is not ap-
parent whether it can be readily generalised to the OCaml situa-
tion, where the language primitive for mutability is not the ref
type, but records with arbitrary numbers of mutable fields. Karvo-
nen notes [18] that the need for a dummy value can be eliminated
by using an additional generic function that constructs witnesses
for types.

Can we combine the flexibility and safety of the combinator
approach with the ease of use of Marshal? The deriving system
aims to do precisely that by building on the combinator approach
with a tool that derives functions for serialisation and other generic
functionality automatically from type declarations.

The rest of this paper is divided into two parts. Part I (Sec-
tions 3-6) introduces generic functions as provided by deriving.
Section 3 gives an example of the use of deriving. The translation
strategy from generic functions into standard OCaml is outlined in
Section 4, followed by the specification of a generic function for
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(*pp deriving *)
type point = { mutable x : int; mutable y : int }

deriving (Eq)
type α seq =

Nil
| Cons of α * (α seq)
deriving (Eq)

let eq =
Eq.eq<point seq>

(Cons ({ x = 10; y = 20 }, Nil))
(Cons ({ x = 10; y = 20 }, Nil))

Figure 1. Using generic equality

equality in Section 5 and a brief summary of related work in Sec-
tion 6. Part II (Sections 7-9) gives the design of a generic serialiser.
Section 7 describes the use of deriving for value-oriented serial-
isation. Section 8 explores the design and spacewise performance
of a generic structure-sharing serialiser. Section 9 lists work related
to generic serialisation. Section 10 concludes.

Part I: Generic Functions
3. Generic functions: an example
We now introduce generic functions in deriving using generic
equality as an illustrative example.

The simple program in Figure 1 illustrates the use of deriving.
The clause deriving (Eq) that appears after type definitions of
the types point and seq indicates that the deriving preproces-
sor should generate an equality predicate for each type. The term
Eq.eq<point seq> is a use of the generic equality function at the
type point seq: that is, it denotes a function of type

point seq → point seq → bool

Since OCaml already boasts two polymorphic equality predicates
— = and ==, which test for structural and physical equality respec-
tively — generic equality may seem like a relatively useless addi-
tion. However, there are situations in which neither of the built-in
functions is suitable. The structure-sharing serialiser described in
Section 8 requires a predicate that equates structurally-equal im-
mutable values (unlike ==) and distinguishes physically equal mu-
table values (unlike =). Without the first it will share too little;
without the second it would share too much, since conflating dis-
tinct mutable values changes the semantics of programs. (In OCaml
sharing of immutable values is detectable as well, using ==, but the
precise behaviour is not specified; we are therefore unconcerned
about changing the semantics of programs that depend on its use.)
In short, we need an equality predicate corresponding to = in Stan-
dard ML.

Generating instances of Eq is straightforward: for records with
mutable fields equality is defined as physical equality (==); for
other values equality is defined inductively, i.e. in terms of the
definition of Eq on component types. As for most other classes,
deriving will signal an error on encountering an attempt to gen-
erate an instance for Eq at a function type.

The commented phrase (*pp deriving *) at the top of Fig-
ure 1 is a convenient way to indicate to the OCamlMakefile build
system that the program should be preprocessed with deriving
before compilation.

4. Generic functions: compilation
Figure 2 shows the result of processing the program in Figure 1
with deriving. (We have taken the liberty of increasing legibility a
little by shortening generated names and removing trivial bindings,
but it is operationally identical to the actual code generated.)

type point = { mutable x : int; mutable y : int }
module rec Eq_point

: Eq.Eq with type a = point =
Eq.Defaults(struct

type a = point
let eq = Pervasives.(==)

end)
type α seq =

Nil
| Cons of α * (α seq)

module Eqs (A : Eq.Eq) =
struct

module rec Eq_seq
: Eq.Eq with type a = A.a seq =

Eq.Defaults
(struct

type a = A.a seq
let eq l r = match l, r with
| Nil, Nil -> true
| Cons (x1, x2), Cons (y1, y2) ->

(let module M =
struct

type a = A.a * A.a seq
let eq (x2, x1) (y2, y1) =
A.eq x2 y2 && Eq_seq.eq x1 y1 && true

end
in M.eq) (x1, x2) (y1, y2)

| _ -> false
end)

end
module Eq_seq (A : Eq.Eq) =
struct

module P = Eqs(A)
include P.Eq_seq

end
let eq =

(let module Eq =
struct

module rec Eq_inline
: Eq.Eq with type a = point seq =
Eq.Defaults(Eq_seq(Eq_point))

include Eq_inline
end

in Eq.eq)
(Cons ( x = 10; y = 20; , Nil))
(Cons ( x = 10; y = 20; , Nil))

Figure 2. Figure 1, processed with deriving

In place of each deriving (Eq) clause, deriving inserts a
module definition: Eq_point following the definition of point,
and Eq_seq following the definition of seq. Each module imple-
ments a signature with two components:

type a
val eq : a → a → bool

The definition of Eq_point.eq is simply Pervasives.(==),
the physical equality predicate, since point values have mutable
fields. The definition of eq for seq is dependent on the functor
argument: another structure implementing equality. This matches
our intuition that to compare values of t seq we must first know
how to compare values of type t.

The call to Eq.eq<point seq> is expanded into a local module
definition: yet another structure implementing the Eq signature.
The definition is constructed by application of the functor Eq_seq
to the structure Eq_point, mirroring the application of the type
constructor seq to the type point.

Having given a particular example, we move on to describe the
general principles behind the translation.
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(a) Classes
class Eq a where module type Eq = sig
eq :: a → a → Bool type a

val eq : a → a → bool
end

(b) Instances
instance Eq Int where module EqInt
eq = eqInt : Eq with type a = int =

struct
type a = int
let eq = eqInt

end

(c) Instances for parameterised types
instance (Eq a) => Eq [a] module EqList (A : Eq)

where eq l r = : Eq with type a = A.a list =
and (zipWith eq l r) struct

type a = A.a list
let eq = and (zipWith A.eq l r)

end

(d) Default method implementations
class Eq a where module EqDefaults
eq, neq :: a → a → Bool (A : sig
neq l r = not (eq l r) type a

val eq : a → a → bool
end) =

struct
include A
let neq l r = not (eq l r)

end

(e) Superclasses
class (Show a,Eq a) => Num a module type Num = sig
where (+), (-) :: a → a → a type a

module Show
: Show with type a = a

module Eq
: Eq with type a = a

val (+) : a → a → a
val (-) : a → a → a

end

Figure 3. Correspondence between type classes and modules

4.1 Modules and type classes

The basic design of deriving is inspired by the construct of
the same name in Haskell [25]. Haskell’s deriving is tied to type
classes, which have no direct parallel in OCaml. However, there is
a well-known correspondence [6, 21, 30] between ML’s modules
and Haskell’s type classes, which we use to guide our design. The
relevant facets of the correspondence are illustrated in Figure 3:

(a) A class in Haskell maps to a signature in OCaml with a type
component to specify the overloaded type and a set of value
components to specify the methods.

(b) An instance of the class maps to a structure implementing the
signature, with sharing constraints to expose the representation
of the overloaded type.

(c) An instance for a parameterised type maps to a functor which
takes for each type parameter a structure satisfying the class
signature and yields another such structure.

(d) The set of default methods for each class maps to a functor
which takes a structure containing the user-defined methods
and returns a structure implementing the full signature.

(e) A superclass maps to a signature which contains the superclass
module type as an element.

We will use the language of type classes to describe our design
in the remainder of this paper, referring to the signatures used by

d ::= type (α1,. . . αn) t1 = r1 declarations
. . .
and (α1,. . . ,αn) tm = rm

r ::= representations
{ f1 〈; . . . ; fn 〉 } record
c1 | . . . | cn sum
[ ts1 | . . . | tsn ] polymorphic variant
e type expression

e ::= type expressions
α type variable
e1 × . . .× en tuple
e’

e’ (e1,. . . , en) c constructor applications
ts ::= tag specs

‘T 〈 of e 〉 tag
e’ constructor application

f ::= 〈mutable〉 l : e field specs
cs ::= C 〈 of e1 . . . en 〉 constructor specs

Figure 4. Type language of OCaml (restricted)

deriving as “classes”, to generated structures as “instances”, and
so on.

4.2 Summary of OCaml’s type system

Figure 4 shows a subset of the OCaml grammar for type definitions
that is accepted by deriving. Some of the constructs not listed
here are accepted by deriving in certain circumstances: for in-
stance, private types (which expose constructors that can appear in
patterns, but not expressions) are permitted for classes such as Eq
which do not construct values.

In the full OCaml language, polymorphic variant type expres-
sions can occur anywhere within type expressions, and admit an
optional binder as ’a to enable recursion. Neither of these fea-
tures brings any additional expressive power, so deriving uses a
normalised form internally which eliminates both by introducing
additional top-level definitions, leading to a simpler implementa-
tion and a reduction in generated code size.

There is one additional restriction not captured by the grammar:
we require types to be regular for reasons described in the following
section.

4.3 Recursive functors

Here we encounter our first hurdle. Under the correspondence de-
scribed in Section 4.1, the natural encoding of a parameterised
mutually-recursive type

type α tree =
Empty

| Node of α × (α forest)
and α forest =

Nil
| Cons of (α tree) × (α forest)

is a group of mutually-recursive functors

module rec Eq_tree(A : Eq)
: Eq.Eq with type a = A.a tree =

struct
...

end
and Eq_forest(A : Eq)

: Eq.Eq with type a = A.a forest =
struct

...
end
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module IntSet : sig
type t
val empty : t deriving (Eq)
val add : int → t → t
val mem : int → t → bool

end =
struct

type t = int list
let empty = []
let add i l = i :: l
let mem = List.mem
module Eq_t : Eq with type a = t =
struct

type a = t
let eq l r = Eq.eq<int list>

(sort l) (sort r)
end

end

Figure 5. Integer sets using integer lists

OCaml does not permit recursive functors, so an alternative en-
coding is needed. While recursive functors are prohibited, there is
no problem with functors whose bodies contain recursive modules
as components; we can therefore encode the recursive group as a
single functor whose body is a group of recursive modules, then
project out the modules separately.

module Eq_tree_forest(A : Eq) =
struct

module rec Eq_tree
: Eq.Eq with type a = A.a tree =

struct
...

end
and Eq_forest

: Eq.Eq with type a = A.a forest =
struct

...
end

end
module Eq_tree(A : Eq)

= Eq_tree_forest(A).Eq_tree
module Eq_forest(A : Eq)

= Eq_tree_forest(A).Eq_forest

This solution requires that all types in the group have the same
parameters and that every occurrence of the type constructors on
the right hand side of the definition is applied to exactly those
parameters in the same order. We therefore adopt this restriction
for types to be processed by deriving.

4.4 Specialisation of generated functions

One of our complaints about OCaml’s Marshal was the lack of a
facility for specialisation: providing behaviour at a particular type
that differs from the default. This is accomplished in deriving
by writing a module definition with a particular name and type in
place of adding the deriving annotation to the type. For example,
consider the implementation of integer sets given in Figure 5, in
which unordered lists of integers are used as the representation
type. Using deriving we can define equality on IntSet to consider
two sets equal if the result of sorting their representing lists is equal.
The builtin equality operator regards such sets as unequal, exposing
the fact that there are various representations for values that the
abstraction considers equivalent:

let onetwo = IntSet.add 1 (IntSet.add 2 (IntSet.empty))
let twoone = IntSet.add 2 (IntSet.add 1 (IntSet.empty))
Eq.eq<IntSet.t> onetwo twoone =⇒ true
onetwo = twoone =⇒ false

(Precisely the same problem arises with the set implementation
provided in the OCaml standard library: sets considered equal
under the set equality predicate do not always satisfy =.) Using
deriving’s Eq, our abstraction-respecting definition of equality
will be used wherever values of IntSet.t are compared with Eq;
in particular, it will be used where they occur in some larger data
structure:

Eq.eq<IntSet.t list> [onetwo; twoone] [twoone; onetwo]
=⇒ true

5. Generic functions: implementation
Figures 6 and 7 give a specification for Eq. The meta-functions eq,
eq-rep and eq-def operate on the syntax of types to construct terms.
The notation is reminiscent of that used in the actual implementa-
tion, but more concise: in the specification we use ellipses where
the implementation uses folds, for example. The eq function takes
the representation of a type t to a term of type t → t → bool.
The eq-def function constructs a module Eq_t satisfying the Eq
signature (Figure 3) for each type t in a set of mutually-recursive
type definitions. The << >> notation introduces a quoted OCaml
term; there is also an anti-quotation $ $ for inserting computed
terms into quoted terms.

Figure 7 defines the translation of angle bracket syntax (<>) for
the class Eq.

6. Generic functions: related work
There is a significant body of literature on generic programming. A
common approach [3, 13, 31] is to reflect types as values. Generic
functions can then be written by case analysis on the structure of
these values. An alternative view [10, 17] treats datatypes as fixed
points of regular functors, exposing the recursive structure in a way
that allows a variety of traversals to be expressed generically. A
third approach [22], particularly suited to generic transformations,
uses a type-safe cast operator to locate nodes of particular types
within larger values. Hinze et al give a useful comparison of designs
based on these and other approaches [11].

The preprocessor-based approach to deriving instances of generic
functions is used in the Haskell tools DrIfT [32] and Derive [24];
several Camlp4 extensions involve the generation of functions from
type declarations, including Martin Jambon’s json-static [15], Mar-
tin Sandin’s Tywith [27], and Daniel de Rauglaudre’s IoXML [26].

Part II: Generic Serialisation
7. Serialisation: a value-oriented serialiser
We now return to the topic of serialisation introduced in Section 2.
We begin, in this section, with a description of a simple serialiser,
Dump. The following sections present the design of Pickle, a more
realistic serialiser based on Dump, which supports features such as
compression, structure-sharing and serialisation of cyclic values.

At the heart of the problems with the combinator approach to
serialisation is the fact that ML-style types are constructed from a
variadic algebra. We can construct tuples of arbitrary size, but the
type of n-tuples is unrelated to the type of n + 1 tuples; similar
properties hold for records and variants. Since OCaml provides
no means to parameterise functions by the size of a tuple, any
combinator library that processes tuples must be either limited
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1. Records with mutable fields

eq << { ... ; mutable lj : $_$ ; ... } >> =
<< Pervasives.(==) >>

2. Records with no mutable fields

eq << { $l1$ : $t1$ ; ... ; $ln$ : $tn$ } >> =
<< fun { $l1$ = x1 ; ... ; $ln$ = xn }

{ $l1$ = y1 ; ... ; $ln$ = yn } ->
Eq.eq<t1> x1 y1 && ... && Eq.eq<tn> xn yn

&& true >>

3. Sums

eq <<$C1$ 〈of $t1
1,...,t

1
m$〉 |...| $Cn$ 〈of $tn

1 ,...,t
n
m$〉>> =

<< fun l r -> match l, r with
| $C1$ 〈(x1,...,xm)〉, $C1$ 〈(y1,...,,ym)〉 ->

〈Eq.eq<$t1
1×...×t1

m$> (x1,...,xm)(y1,...,ym) &&〉
true

...
| $Cn$ 〈(x1,...,xm)〉, $Cn$ 〈(y1,...,ym)〉 ->

〈Eq.eq<$t1
n×...×t1

n$> (x1,...,xm) (y1,...,ym) &&〉
true

| _ -> false >>

4. Polymorphic variants

eq << [ $‘T1$ 〈of $t1$〉 |...| $‘Tn$ 〈of $tn$〉
| ($t1

1, ..., t1
m$) $c1$ | ...

| ($tn
1 , ..., tn

m$) $cn$ ] >> =
<< fun l r -> match l, r with

| $‘T1$ 〈x〉, $‘T1$ 〈y〉 -> Eq.eq<$t1$> x y
...

| $‘Tn$ 〈x〉, $‘Tn$ 〈y〉 -> Eq.eq<$tn$> x y
| (#$c1$ as x), (#$c1$ as y) ->

Eq.eq<($t1
1, ..., t1

m$) $c1$> x y
...

| (#$cn$ as x), (#$cn$ as y) ->
Eq.eq<($tn

1 , ..., tn
m$) $cn$> x y

| _ -> false >>

5. Tuples

eq << $t1$ * ... * $tn$ >> =
<< fun (x1,...,xn) (y1,...,yn) ->

Eq.eq<$t1$> x1 y1 &&...&& Eq.eq<$tn$> xn yn && true >>

6. Type constructors
eq << ($t1, ..., tn$) c >> =
<< let module E = Eq_$c$($eq t1$) ... ($eq tn$) in

E.eq >>
7. Type definitions

eq-def << type ($α1,...αn$) $t1$ = $r1$
...

and ($α1,...αn$) $t1$ = $rm$ >> =
<<
module Eqs (A1 : Eq) ... (An : Eq) =
struct

module rec Eq_r1 : Eq with type a = $r1$[Ai/αi]
= $eq-rep r1[Ai/’ai]$
...
and Eq_rn : Eq with type a = $rn$[Ai/αi]
= $eq-rep rn[Ai/αi]$

end
module Eq_r1(A1 : Eq)...(An : Eq)

= Eqs(A1)...(An).Eq_r1

module Eq_rm(A1 : Eq)...(An : Eq)
= Eqs(A1)...(An).Eq_rm >>

eq-rep t =
<< Eq.Defaults(struct

type a = $t$
let eq = $eq t$

end
>>

Figure 6. Specification of Eq

Eq.eq<t> = let module Eq =
struct

type t’ = $t$ deriving (Eq)
include Eq_t’

end in Eq.eq

Figure 7. Translation of <> notation (at method Eq.eq)

to accepting a finite subset of tuple types or dependent on user-
supplied functions to convert between isomorphic types. The need
for the user to supply a function to map constructors of a sum type
to integers seen in Section 2.2 has the same problem at root. If n-
ary sums were defined in terms of binary sums there would be no
need for such functions.

The Dump class provides value-oriented serialisation for OCaml
values. Serialising a value involves serialising its subvalues in turn;
at primitive types serialisation operates by ad-hoc conversion to
a sequence of bytes. There are similarities to the combinator ap-
proach in the sense that a serialiser at a compound type is defined
in terms of serialisers at its component types. However, by using an
external meta-language (i.e. the defining language of the preproces-
sor) rather than a set of combinators we escape the arity tarpit and
achieve full generality.

For reasons of efficiency the functions generated by deriving
for Dump instances operate on extensible buffers (for the output) and
character streams (for the input). The Defaults functor applied
to each instance produces more convenient operations to_string
and from_string, which produce and consume strings.

type α bush = Leaf of α
| Fork of (α bush) × (α bush)

deriving (Dump)
Dump.to_string<char bush>

(Fork (Fork (Leaf ’a’, Leaf ’b’), Leaf ’c’))
=⇒ "\001\001\000a\000b\000c"
Dump.from_string<char bush> "\001\001\000a\000b\000c"
=⇒ Fork (Fork (Leaf ’a’, Leaf ’b’), Leaf ’c’)

While the coverage of Dump is superior to that of the combina-
tor approach, the general design is somewhat naive. There is no
attempt to increase or even preserve sharing between values: a sub-
value that appears twice in the input tree has a serialised represen-
tation that appears twice in the output. However, primitive values
are serialised fairly efficiently: the size of the representation of in-
tegers increases with their value; small integers (by far the most
common, since we use sequentially numbered integers to serialise
constructors) use only a single byte.

7.1 Specialisation

As noted in 4.4, deriving operations can be customised at par-
ticular types. We make use of this facility in the Links implemen-
tation to shrink the representation of continuations sent between
server and client, essentially serialising a code pointer rather than a
representation of code. Deserialisation then involves resolving the
pointer to the full expression. Only the Dump instance at the expres-
sion type need be customised; when instances for types that contain
expressions can be derived, the custom instance will be used au-
tomatically. Further examples of specialisation in serialisation are
given in Section 8.5.

8. Serialisation: a structure-sharing serialiser
The Pickle class of deriving offers serialisation for cyclic values
and structure sharing. The essential idea is to build a graph repre-
senting a value which is written out (using Dump) when complete.
Representations are reused where possible by starting serialisation
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1. Pickle at record types

pickle << { $l1$ : $t1$; ...; $ln$ : $tn$ } >> =
<< fun ({ $l1$ = $l1$; ...; $ln$ = $ln$ } as obj) ->

W.allocate obj
(fun id ->

Pickle.pickle<$t1$> v1 >>= fun v1 ->
...
Pickle.pickle<$t1$> vn >>= fun vn ->
W.store_repr id (Repr.make [v1; ...; vn])) >>

2. Unpickle at record types

unpickle << { $l1$ : $t1$; ...; $ln$ : $tn$ } >> =
<< let module Mutable =

struct
type t = { mutable $l1$ : $t1$;

...;
mutable $ln$ : $tn$ }

end in
R.record $n$
(fun self -> function

| [ v1; ...; vn ] ->
let mself : Mutable.t = Obj.magic self in
Pickle.unpickle<$t1$> v1 >>= fun v1 ->
...
Pickle.unpickle<$tn$> vn >>= fun vn ->
mself.Mutable.l1 <- v1;
...
mself.Mutable.l1 <- vn;
return self

| _ -> raise UnpicklingError) >>

Figure 8. Specification of Pickle at record types

of each value with a comparison to values of the same type already
serialised.

A specification for Pickle is given in Figure 8 for record types
and in Figure 9 for polymorphic variants. Other cases are similar
in the essential details and so omitted. (For the definition of <> see,
mutatis mutandis, the translation given for Eq in Figure 7.) The def-
inition at each type consists mostly of straightforward uses of the
allocate and store repr functions described in the next section. One
difference from the definition of Dump deserves comment: rather
than representing polymorphic variant tags as sequentially num-
bered integers we use a hash function which guarantees a consis-
tent global mapping from tag names to numbers. This allows us to
safely equate polymorphic variant tags which are compatible, but
declared differently (see Section 8.2). Tags are also represented by
OCaml as a hash of their names [9]. The OCaml type checker re-
jects types containing tags, such as ‘squigglier and ‘premiums,
whose hash numbers collide; using the same hash function guaran-
tees that we will not be troubled by collisions. The type compatibil-
ity problem comes from the need to share structure between values
of compatible types, so it did not arise with Dump.

8.1 The pickling algorithm

The pickling algorithm requires three pieces of state, which we
represent as a record and thread through the computation using a
state monad [29]. The use of a monad to organise computation in an
impure functional language is unusual, but the benefits are familiar:
essential properties such as the order of accesses to state encoded in
types rather than in terms; convenient access to computation-scope
data without explicit state-passing; compositionality at the level of
computations, making it easy to piece together an algorithm from
smaller components.

1. Pickle at tags

pickle-pcase << ‘$T$ >> =
<< ‘$T$ ->

W.allocate obj
(fun id ->
W.store_repr id (Repr.make ~ctor:$hash T$ [])) >>

pickle-pcase << ‘$T$ of $t$ >> n =
<< ‘$T$ x -> Pickle.pickle<$t$> p >>= fun id2 ->

W.allocate obj
(fun id ->
W.store_repr id (Repr.make ~ctor:$hash n$ [id2])) >>

2. Pickle at constructor application tag specifications

pickle-pcase << ($t1, ..., tn$) $c$ >> =
<< #$c$ as obj ->

Pickle.pickle<$(t1, ..., tn) c$> obj >>

3. Pickle at polymorphic variant types

pickle << [ $t1$ | ... | $tn$ ] >> =
<< function

$pickle-pcase t1$
...

| $pickle-pcase tn$ >>

4. Unpickle at tags

unpickle-tag1 << ‘$T$ >> =
<< ($hash T$, []) -> return ‘$T$ >>
unpickle-tag1 << ‘$T$ of $t$ >> n =
<< ($hash T$, [obj]) ->

Pickle.unpickle<$t$> obj >>= fun obj ->
return (‘$T$ obj) >>

5. Unpickle at constructor application tag specifications

unpickle-tag2 << $t1$ | ... | $tn$ >> =
<< (n,_) -> try ... try (raise UnknownTag)

with UnknownTag ->
(Pickle.unpickle<$t1$> :> a Read.m)

...
with UnknownTag ->

(Pickle.unpickle<$tn$> :> a Read.m) >>

6. Unpickle at polymorphic variant types

unpickle << [‘$T1$ 〈 of $t1$ 〉 | ... |‘$Tn$ 〈 of $tn$ 〉
$tn+1$ | ... | $tm+1$ ] >> =

<< R.sum (function
$unpickle-tag1 <<‘$T1$ 〈 of $t1$ 〉>>$
...

| $unpickle-tag1 <<‘$Tn$ 〈 of $tn$ 〉>>$
| $unpickle-tag2 <<$tn+1$ | ... | $tm+1$ >>$ >>

Figure 9. Specification of Pickle at polymorphic variant types

type s = {
nextid : Id.t;
objmap : Id.t DynMap.t;
id2rep : Repr.t IdMap.t;

}

The nextid field is a source of fresh identifiers, objmap maps val-
ues to identifiers, and id2rep maps identifiers to their serialised
representations. The work is performed by two functions: allocate,
which allocates identifiers for values, and store repr, which stores
the association between an identifier and its serialised representa-
tion. (The allocate function depends on auxiliary definitions for
equality as described in Sections 3-5 and dynamic typing as de-
scribed in the following section.)
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let allocate o f =
let obj = T.make_dynamic o in
get >>= fun ({nextid=n;objmap=objs} as s) ->

match DynMap.find obj objs with
| Some id -> return id
| None ->

let id, n = n, Id.next n in
put {s with

objmap = DynMap.add obj id comparator objs;
nextid = n} >>

f id >>
return id

let store_repr id repr =
get >>= fun state ->
put state with idmap = IdMap.add id repr state.idmap

After converting the input to type dynamic, allocate searches the
map objmap to determine whether the value has been previously se-
rialised. If it finds a match it returns the identifier already allocated;
if there is no match then a fresh identifier is allocated, the asso-
ciation between identifier and value is recorded and the argument
function f is called to serialise the value. This strategy of allocating
identifiers before serialising subvalues is sufficient for serialisation
of cyclic values: the next time a reference to this node is encoun-
tered there will be an identifier in the map, so serialisation will not
loop.

8.2 Dynamic typing

The objmap map used in the algorithm in Section 8.1 is used to
store values of arbitrary type. To achieve this, deriving includes
support for a form of dynamic typing. The Typeable class provides
an upcast operation to a universal type, dynamic, and safe down-
cast operations from dynamic to each instance type.

module type Typeable =
sig

type a
val mk : a → dynamic
val cast : dynamic → a option
val throwing_cast : dynamic → a

end

Typeable.cast<int>
(List.hd [Typeable.mk<int> 3; Typeable.mk<unit> ()])

=⇒ Some 3
Typeable.cast<int>

(List.hd [Typeable.mk<unit> (); Typeable.mk<int> 3])
=⇒ None

There are well-known techniques for implementing dynamic typ-
ing in pure SML (see p105-106 of [8], for example), but these deal
only with generative types. Following [22], we use instead an im-
plementation based on pairs of values and representations of their
types together with an unsafe cast that is performed only if type
representations match, which allows us to test types for structural
equality where appropriate. Our implementation divides types into
nominal (or “generative”) types (sums, records), which are repre-
sented as a string for the type constructor and a sequence of ar-
gument types, and structural types — i.e. polymorphic variants—
which are represented as lazy infinite trees. Tuples are treated as
nominal, using the arity as the type constructor.

module TagMap = Map.Make(Interned)
type t =

[‘Variant of (delayed option TagMap.t)
|‘Gen of Interned.t×delayed list ]

×int
and delayed = unit → t

Nominal types are considered equal if they have the same construc-
tors and equal arguments. Polymorphic variant types are consid-

ered equal if they have the same set of labels and if the arguments
to corresponding labels are equal. Recursive polymorphic variant
types have infinite representations; termination of the equality test
is assured by associating an identifier with each node — the int
component of the type representation — which is used to record
which nodes have been visited, i.e. to detect cycles. Since poly-
morphic variant types are always regular all recursion eventually
passes through an already visited node.

Polymorphic variant types which are considered equivalent in
the OCaml type system are treated as equivalent by deriving
regardless of how they are declared, so the following cast will
succeed:

type α seq = [‘Nil | ‘Cons of α×α seq]
deriving (Typeable)

type nil = [‘Nil]
deriving (Typeable)

type intlist = ([nil| ‘Cons of int×α ] as α)
deriving (Typeable)

Typeable.cast<intlist>
(Typeable.mk<int seq>

(‘Cons (1, ‘Cons (2, ‘Cons (3, ‘Nil)))))
=⇒ Some (‘Cons (1, ‘Cons (2, ‘Cons (3, ‘Nil))))

Similarly, the type representation used by Typeable does not re-
spect module abstraction boundaries, so the following cast will also
succeed:

module M : sig
type t

deriving (Typeable)
val v : t

end =
struct

type t = int
deriving (Typeable)

let v = 0
end
Typeable.cast<int> (Typeable.mk<t> M.v)

This is a deliberate design decision: Typeable’s raison-d’être is
to maximise sharing, which is best achieved by identifying types
which can easily be determined to have the same representation.
However, casts between nominal types never succeed, even if they
are likely to have the same memory layout; the following will fail:

type cartesian = { x : float ; y : float }
type polar = { r : float ; t : float }
Typeable.cast<polar>

(Typeable.mk<cartesian> { x = 1.0; y = 3.0 })

This difference can be accounted for by the fact that a programmer
can cause a single value to have different types using module
abstraction, but there is no way for a value to receive more than one
sum or record type in a program that does not use unsafe operations.

There are two further operations in Typeable, for testing
whether a dynamic value belongs to a particular type, and for re-
trieving the type representation.

val has_type : dynamic → bool
val type_rep : unit → TypeRep.t

Extension of equality on the type representation to a total ordering
makes TypeRep values suitable for use as keys in finite maps.

module TypeRep :
sig

type t
val compare : t → t → int
val eq : t → t → bool
...

end
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To distinguish nominal types at runtime, deriving constructs a
unique string for each type constructor:

type α r = R of α deriving (Typeable)
=⇒
module Typeable_r (V_a : Typeable.Typeable)

: Typeable.Typeable with type a = V_a.a r
Typeable.Defaults
(struct

type a = V_a.a r
let type_rep =

TypeRep.mkFresh "t.ml_2_1381210804.870562_r"
[V_a.type_rep]

end)
end

The string is constructed from the source file name, the type name
and the time. A significant shortcoming in the current implementa-
tion is the lack of any guarantee that the same string will be emitted
by different runs of the program (in fact, there is a guarantee that
this will not happen!). Appending the time is intended to compen-
sate for the fact that the file name and type name are not alone suffi-
cient to guarantee global uniqueness; there is only limited informa-
tion about the context available to deriving when the definition is
seen. A solution to this problem is given in [1] in the context of a
modification to the OCaml compiler, but a solution based on local
syntactic transformations remains elusive.

8.3 Storing the map

We now resume the description of the pickling algorithm.
Section 8.1 outlined the construction of the graph id2rep. Once

this graph has been fully constructed it is serialised using Dump,
discarding the other components of the state record. The imple-
mentation performs two operations to reduce the size of the output:

(i) Stripping constructors from the representation type.

During serialisation, each OCaml value is represented as ei-
ther an opaque byte string or as a pair of an optional construc-
tor and a sequence of subvalue identifiers.

module Repr : sig
type t = Bytes of string

| CApp of (int option×Id.t list)
...
val make : ?ctor:int → Id.t list → t
val of_string : string → t

end

To avoid storing extra bytes alongside every value to indicate
whether it should be deserialised as a Byte, a CApp with an
int tag or an untagged CApp the unpickling code splits the
map into three separate maps, one for each alternative.

t IdMap.t =⇒
string IdMap.t

× (int×Id.t list) IdMap.t
× (Id.t list) IdMap.t

(ii) Removing explicit identifiers.

Finally, before Dump is applied, identifiers are removed by en-
coding the information implicitly using the ordering of seri-
alised values. For example, given the graph

{4 => "k"; 3 => "p"}, {1 => (2,[4;3])}, {2 => [1;4]}

listing the nodes in sequence gives

(4,"k"), (3,"p"), (1,(2,[4;3])), (2,[1;4])

and then systematically replacing each identifier with its
position in the sequence gives

(1,"k"), (2,"p"), (3,(2,[1;2])), (4, [3;1])

Since the identifiers associated with each node are now or-
dered they contribute no information and we are free to dis-
pense with them:

Dump.to_string<string list
×(int×(int list))
×int list>

(["k","p"], [(2,[1;2])], [[3;1]])

There remain many opportunities for shrinking the output value.
For example, the smallest unit that can be written in the current
implementation is a full byte; we might instead use a single bit to
indicate which constructor of a binary sum is present.

8.4 Unpickling

Detecting cycles is straightforward; reconstructing cycles is trick-
ier. Values in OCaml are constructed from subvalues: the subval-
ues must exist first, but this breaks down if the value is among its
own subvalues (either directly or as a more distant descendent). As
we saw in Section 2.2, Elsman solves this problem by requiring
the user to supply an initial value to start the recursion going. Our
solution is to use low-level primitives to allocate an uninitialised
value whose address can be used in constructing subvalues. In gen-
erated code the risk of a mistake in memory manipulation is low,
whilst the advantages — increased abstraction and ease of use —
are great.

The unpickling algorithm is based on three combinators, corre-
sponding to the three possible configurations for serialised values
seen in Section 8.3:

val sum : (int×id list → T.a m) → id → T.a m
val tuple : (id list → T.a m) → id → T.a m
val record : (T.a → id list → T.a m) → int → id

→ T.a m

The sum operator takes a function and an identifier and returns a
monadic computation that returns the deserialised value associated
with the identifier when run. Running sum applies the function to a
constructor number and a list of subvalue identifiers, enabling the
function to construct the value. The tuple operator is identical to
sum except for the omission of the constructor argument. The type
of the record operator reflects the fact that records with mutable
fields allow cycles to arise. The second argument to record lists
the number of fields, which is sufficient information to allocate a
blank object. The object is passed to the argument function, which
initialises it by supplying a value for each field.

The specification in Figure 8 gives more details. The generated
instance for a record type r includes a type structurally similar to
r, but with every field declared mutable. The uninitialised value
passed in to the argument to record is cast to the mutable type, al-
lowing fields to be assigned values after all subvalues have been
reconstructed. This is sufficient to handle all cycles based on mu-
tability; there is no attempt to handle the immutable cycles which
arise from OCaml’s value recursion extension. As a side effect of
the implementation, immutable cycles which pass through records
successfully reconstruct objects; other immutable cycles cause the
unpickling algorithm to loop.

8.5 Specialisation example: alpha-equivalence

The equality predicate specified in Section 5 enables the Pickle
serialiser to introduce sharing between immutable values that have
identical structure, potentially shrinking the serialised representa-
tion. Since equality can, like all operations provided by deriving,
be customised at a particular type, there is room for even greater
compression if we can specialise the definition of equality to a
more inclusive predicate. For example, if we have a representation
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Figure 10. Sharing lambda terms

of λ terms we might reasonably consider all α-equivalent terms
as equal. If we introduce an instance of Eq which is visible to the
Pickle instance for λ terms then when terms are serialised only
one member of each α-equivalence class will be written out.

Here we encounter a small technical difficulty with the current
design of deriving. The preprocessor inserts generated instance
definitions immediately following the definition of the associated
type. Further, since Eq is a superclass of Pickle, the Eq instance
for a type must be visible within its Pickle instance. Our definition
of Eq must follow the type definition for the constructors to be visi-
ble, but the preprocessor will insert the Pickle definition between
the definition of the type and the definition of Eq. We can dodge
the difficulty using a recursive module, which allows us to bring a
definition of Eq into scope within the preceding Pickle definition,
but this is a rather distasteful necessity. We intend to address the
difficulty in future versions of deriving.

The code for making the α-equivalence test visible to Pickle
appears in Figure 11. Parts (a) and (b) of Figure 10 show a call-
by-value fixpoint combinator represented as a value of the exp
datatype and the sharing introduced by Pickle.

There is one more opportunity to increase the potential for shar-
ing. OCaml strings are mutable, so the default definition of equal-
ity compares their physical addresses rather than their contents. A
value-oriented instance of Eq for strings (taking OCaml’s = for eq)
leads to further sharing under Pickle, as seen in Figure 11 (c).

There is one further point of interest here. Our notation for
overloaded operations is generally more cumbersome than in a
language such as Haskell where there is no necessity to specify
the type at each call. In this case the burden becomes an advantage:
deriving selects instances according to the declared name of a
type, so we can use different instances for a given type at various
points in the program by introducing a type alias for each instance.
For example, we can supply and use our new instance of Eq for
strings as follows:

type istring = string
module Eq_istring = struct

type a = istring
let eq = (=)

end
...
type exp = Var of istring

| App of exp×exp
| Lam of istring×exp

deriving (Eq)

module Env = Env.Make(String)
module rec Exp :
sig

type exp = Var of string
| App of exp * exp
| Lam of string * exp

deriving (Dump, Eq, Pickle, Typeable)
end =
struct

module Eq_exp = struct
open Exp
type a = exp
let eq (l : a) (r : a)
= let rec alpha_eq (lenv, renv as envs) n =

function
| Var l, Var r ->

(match Env.mem l lenv, Env.mem r renv with
| true, true ->

Env.find l lenv = Env.find r renv
| false, false -> l = r
| _ -> false)

| App (fl,pl), App (fr,pr) ->
alpha_eq envs n (fl, fr)

&& alpha_eq envs n (pl, pr)
| Lam (vl,bl), Lam (vr,br) ->

alpha_eq
(Env.add vl n lenv, Env.add vr n renv)
(n+1)
(bl, br)

| _ -> false
in alpha_eq (Env.empty, Env.empty) 0 (l,r)

end
type exp = Var of string

| App of exp * exp
| Lam of string * exp

deriving (Dump, Typeable, Pickle)
end

Figure 11. Using α-equivalence as equality to increase sharing

This definition allows Eq.eq<exp> to use structural equality for
string comparisons, but has no effect on the rest of the program. (A
similar point is made in [6], which couples Haskell-style overload-
ing with an operation for explicitly making a particular instance
“canonical” in a certain scope.)

8.6 Relative compactness of serialised data

We measured the spacewise performance of the serialisers de-
scribed in Sections 7 and 8 in two applications. First, we used
Camlp4 to parse a selection of variously-sized OCaml files (path.ml
(1.8k), predef.ml (7.6k) and includemod.ml (15k)) from the
OCaml distribution, passed the resulting syntax trees to the Marshal,
Dump and Pickle serialisers, and compared the size of the output.
Next, we compared the sizes of the representations generated for
lambda terms by each serialiser on lambda terms, using the α-
equivalence-aware serialiser developed in Section 8.5 and three
collections of randomly-generated open lambda terms published
with [23]. The results of both tests are shown in Table 1.

Since Marshal has access to the low-level representations of
values we might expect that its output will be the most compact.
Indeed, the results of the “OCaml” test bear this out: both Dump
and Pickle performed significantly (although not disastrously)
worse. Surprisingly, on the “Lambda” test, the naive Dump se-
rialiser consistently outperformed Marshal, albeit only slightly.
Most gratifyingly, however, the α-equivalence-enhanced Pickle
surpassed both, yielding output between two and four times smaller
(and up to eleven times smaller than the uncustomised Pickle
serialiser). These results suggest that it is worthwhile exploring
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Marshal Dump (× Marshal) Pickle (× Marshal) Pickle (specialised) (× Marshal)
OCaml (path.ml) 5752 9904 1.72 9178 1.59 - -

OCaml (predef.ml) 27890 48918 1.75 39596 1.42 - -
OCaml (includemod.ml) 53292 108016 2.03 75839 1.42 - -

Lambda (reg.) 8732 8447 0.97 21948 2.51 5233 0.60
Lambda (med.) 34993 33906 0.97 89990 2.57 10045 0.29
Lambda (big.) 63513 61557 0.97 176811 2.78 15259 0.24

Table 1. Comparative size in bytes of the output of Dump, Pickle and Marshal serialisers on various inputs.

domain-specific solutions to serialisation problems, and that exten-
sibility to incorporate domain knowledge is a valuable facet of the
design of a serialiser.

8.7 Safety

We saw in Section 2.1 the disastrous effects of passing invalid data
to the Marshal functions. Since Pickle and Dump are type-aware,
no such problems arise. If the string passed to Pickle.from string
is a valid representation of the declared return type then it will be
interpreted at that type; if it is not, an exception will be raised. The
Dump serialiser behaves similarly.

Pickle.from_string<float> (Pickle.to_string<int> 0)
=⇒ 0.0
Pickle.from_string<Exp.Exp.exp>

(Pickle.to_string<int> 0)
=⇒ Exception: Pickle.Pickle.UnpicklingError

"Error unpickling constructor".

Although this behaviour is “safe” in the sense that it will not cause
a program crash, it may be that it is not quite what is desired. For
some applications it might be more appropriate to ignore represen-
tation compatibility, and raise an exception whenever there is a mis-
match between serialisation and deserialisation types. It would be
straightforward to add this behaviour by serialising a representation
of the type along with the value, but until the difficulty with map-
ping type constructors to unique names described in Section 8.2
is resolved it would only be possible to check equality of serialised
types within the same compiled instance of the program which pro-
duced them.

9. Serialisation: related work
The serialisation problem has received considerable attention
in the ML community. The HashCaml [1] project extends the
OCaml bytecode compiler with type-passing to make the standard
Marshal operation type-safe. Cohen and Herrmann [4] discuss
the implementation of a staged serialiser in MetaOCaml which
bears some similarity to our preprocessor-based approach, with
even more reliance on unsafe low-level operations, used by the se-
rialiser to break through abstraction barriers. Tack, Kornstaedt and
Smolka [28] describe the addition of serialisation as a primitive ser-
vice to Alice ML, giving an elegant account of their serialisation
algorithm in terms of a domain-specific instruction set.

We discussed two libraries of serialisation combinators [7, 20]
in Section 2.2. Karvonen [18] discusses ways to address some
of the deficiencies in Elsman’s library. Finally, serialisation has
been a common example program in the generic programming
community: see for example [12]. One disadvantage suffered by
our approach in comparison to almost all alternatives is a certain
lack of type-safety: it is easy to use Camlp4 to generate code that
subsequently fails to compile. Although it would be preferable
to detect the error at an earlier stage, we do not view this as a
serious drawback, since it does not lead to the execution of ill-typed
programs.

10. Conclusions and future work
We have described the design and implementation of deriving, a
system for generating generic functions from type definitions, and
its particular application to the serialisation problem. In contrast
to similar systems for OCaml, deriving requires no support from
tools outside the standard OCaml distribution, which makes it easy
to incorporate into existing projects. The deriving encoding of
serialisation places a much lower burden on the user and much
greater coverage than the combinator approach; it offers greater
safety and flexibility than standard OCaml marshalling. Perhaps
most enticingly, the specialisation property, which allows a user
to supply an alternative implementation for a derived function at a
particular type, makes it possible to improve serialisation using do-
main knowledge without writing any serialisation code, leading to
a considerable reduction in the size of serialised data. Generated in-
stances produce acceptably compact output compared to Marshal,
even without specialisation.

We have shown how an understanding of the correspondence
between modules and type-classes can guide software design and
described techniques to make it viable in the absence of a full sys-
tem of recursive modules. We have outlined various other tech-
niques discovered during the development of deriving that should
be transferable to similar projects, such as the simulation of regular
recursive functors by functors and recursive modules.

We have several future directions in mind for deriving. The
simplest is the addition of new classes for various tasks: parsing,
traversals and random value generation, for instance. The perfor-
mance of the Pickle serialiser could be greatly improved by bas-
ing sharing on hashing rather than equality; the current implemen-
tation requires a linear search to detect sharing. A convenient facil-
ity for writing functions which are parameterised over the instances
of a class would significantly improve the usefulness of deriving:
it is presently possible to write such functions using functors but the
syntax is cumbersome. Finally, deriving currently provides more
support for using the generic functions supplied with the implemen-
tation than for writing new generic functions. It is obviously desir-
able to eliminate this bias. The deriving implementation provides
a fairly convenient framework for expressing generic functions in a
Camlp4 extension, but it would be preferable to write generic func-
tions directly in OCaml. One possible approach is to use deriving
to generate general value-level representations of datatypes which
can then be used by generic functions to traverse values of those
types.
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