The science of guessing
 analyzing an anonymized corpus of 70 million passwords

Joseph Bonneau
 jcb82@cl.cam.ac.uk

Computer Laboratory

IEEE Symposium on Security \& Privacy
\approx OAkland, CA, USA
May 23, 2012

Why do password research in 2012?

Compatible Time-Sharing System, MIT 1961

Research goal

Precisely compute the guessing difficulty of a given population's password distribution

Research goal

Compare the guessing difficulty of password distributions chosen by different populations

Research goal

Compare the guessing difficulty of password distributions chosen by different populations

vs.

Research goal

Compare the guessing difficulty of password distributions chosen by different populations

Research goal

Compare the guessing difficulty of password distributions chosen by different populations

Password
Retype Password

VS.

[For a more secure password:

- Use both letters and numbers
- Add special characters (such as @, ?, \%)
- Mix capital and lowercase letters

Research goal

Compare the guessing difficulty of password distributions chosen by different populations

Approach \#1: Semantic password evaluation

- How long are the passwords?
- Do they look like English words?
- What kind of characters do they contain?

Approach \#1: Semantic password evaluation

	94 Character Alphabet			10 char. alphabet		94 char alphabet
Length Char.	No Checks	Dictionary Rule	Dict. \& Comp. Rule			
1	4	-	-	3	3.3	6.6
2	6	-	-	5	6.7	13.2
3	8	-	-	7	10.0	19.8
4	10	14	16	9	13.3	26.3
5	12	17	20	10	16.7	32.9
6	14	20	23	11	20.0	39.5
7	16	22	27	12	23.3	46.1
8	18	24	30	13	26.6	52.7
10	21	26	32	15	33.3	65.9
12	24	28	34	17	40.0	79.0
14	27	30	36	19	46.6	92.2
16	30	32	38	21	53.3	105.4
18	33	34	40	23	59.9	118.5
20	36	36	42	25	66.6	131.7
22	38	38	44	27	73.3	144.7
24	40	40	46	29	79.9	158.0
30	46	46	52	35	99.9	197.2
40	56	56	62	45	133.2	263.4

NIST "entropy" formula

Approach \#2: Cracking experiments

Approach \#2: Cracking experiments

Methodological problems with password analysis

semantic cracking

external validity no operator bias no demographic bias repeatable easy

	\checkmark
\checkmark	
$?$	
\checkmark	$?$
\checkmark	$?$

My approach

- Collect password data on a huge scale
© Compare populations as probability distributions
© Test hypotheses using different populations

My approach

(1) Collect password data on a huge scale
(2) Compare populations as probability distributions

My approach

STAND BACK

I＇M GロING Tロ TRY与ㄷIENㄷㅌ

（1）Collect password data on a huge scale
（2）Compare populations as probability distributions
（0）Test hypotheses using different populations

Goal \#1: collect a massive data set

- with cooperation from Yahoo!
- privacy-preserving collection \odot
- histograms only
- demographic splits collected

Collecting large-scale data at Yahoo!

Collecting large-scale data at Yahoo!

- Experiment run May 23-25, 2011
- 69,301,337 unique users
- 42.5\% unique
- 328 different predicate functions

Goal \#2: model guessing as a probability problem

- Assume perfect knowledge of the distribution \mathcal{X}
- \mathcal{X} has N events (passwords) x_{1}, x_{2}, \ldots
- Events have probability $p_{1} \geq p_{2} \geq \ldots \geq p_{N} \geq 0$
- Each user chooses at random $X \underset{\leftarrow}{\leftarrow} \mathcal{X}$

Question: How hard is it to guess X ?

Shannon entropy

$$
H_{1}(\mathcal{X})=-\sum_{i=1}^{N} p_{i} \lg p_{i}
$$

Interpretation: Expected number of queries "Is $X \in \mathcal{S}$?" for arbitrary subsets $\mathcal{S} \subseteq \mathcal{X}$ needed to guess X. (Source-Coding Theorem)

Guesswork (guessing entropy)

$$
G_{1}(\mathcal{X})=E[\# \text { guesses }]=\sum_{i=1}^{N} p_{i} \cdot i
$$

Intepretation: Expected number of queries "ls $X=x_{i}$?" for $i=1,2, \ldots, N$ (optimal sequential guessing)

G_{1} fails badly for real password distributions

Random 128-bit passwords in the wild at RockYou ($\sim 2^{-20}$)

```
ed65e09b98bdc70576d6c5f5e2ee38a9
e54d409c55499851aeb25713c1358484
dee489981220f2646eb8b3f412c456d9
c4df8d8e225232227c84d0ed8439428a
bd9059497b4af2bb913a8522747af2de
b25d6118ffc44b12b014feb81ea68e49
aac71eb7307f4c54b12c92d9bd45575f
9475d62e1f8b13676deab3824492367a
92965710534a9ec4b30f27b1e7f6062a
80f5a0267920942a73693596fe181fb7
76882fb85a1a8c6a83486aba03c031c9
6a60e0e51a3eb2e9fed6a546705de1bf ...
```


$G_{1}($ RockYou $)>2^{107}$

Attackers might be happy ignoring the hard values

α-work-factor

$$
\mu_{\alpha}(\mathcal{X})=\min \left\{\mu \in[1, N] \mid \sum_{i=1}^{\mu} p_{i} \geq \alpha\right\}
$$

Intepretation: Minimal dictionary size to succeed with probability α

α-guesswork

$$
G_{\alpha}(\mathcal{X})=(1-\lceil\alpha\rceil) \cdot \mu_{\alpha}(\mathcal{X})+\sum_{i=1}^{\mu_{\alpha}(\mathcal{X})} p_{i} \cdot i
$$

Intepretation: Mean number of guesses to succeed with probability α

Guessing curves visualise all possible attacks

More intuitive after converting to bits

Sample size is a major problem for passwords...

Predict our confidence range by bootstrapping

Extrapolation w/ truncated Sichel-Poisson distribution

Goal \#3: Analyze Yahoo! passwords

Goal \#3: Analyze Yahoo! passwords

Goal \#3: Analyze Yahoo! passwords

Demographic trends: nationality

Demographic trends: age

Credit card details make little difference

Password strength meter makes little difference

Demographic summary

- there is no "good group" of users
- differences small but statistically significant
- online attack 6-9 bits ($\tilde{\lambda}_{10}$)
- offline attack 15-25 bits ($\tilde{G}_{0.5}$)

Surprisingly little language variation

		dictionary										$\begin{aligned} & \bar{\circ} \\ & \text { 응 } \end{aligned}$
		de	en	es	fr	id	it	ko	pt	zh	vi	
$\begin{aligned} & \overleftarrow{\Phi} \\ & \stackrel{0}{\top} \\ & \hline \end{aligned}$	de	6.5\%	3.3\%	2.6\%	2.9\%	2.2\%	2.8\%	1.6\%	2.1\%	2.0\%	1.6\%	3.5\%
	en	4.6\%	8.0\%	4.2\%	4.3\%	4.5\%	4.3\%	3.4\%	3.5\%	4.4\%	3.5\%	7.9\%
	es	5.0\%	5.6\%	12.1\%	4.6\%	4.1\%	6.1\%	3.1\%	6.3\%	3.6\%	2.9\%	6.9\%
	fr	4.0\%	4.2\%	3.4\%	10.0\%	2.9\%	3.2\%	2.2\%	3.1\%	2.7\%	2.1\%	5.0\%
	id	6.3\%	8.7\%	6.2\%	6.3\%	14.9\%	6.2\%	5.8\%	6.0\%	6.7\%	5.9\%	9.3\%
	it	6.0\%	6.3\%	6.8\%	5.3\%	4.6\%	14.6\%	3.3\%	5.7\%	4.0\%	3.2\%	7.2\%
	ko	2.0\%	2.6\%	1.9\%	1.8\%	2.3\%	2.0\%	5.8\%	2.4\%	3.7\%	2.2\%	2.8\%
	pt	3.9\%	4.3\%	5.8\%	3.8\%	3.9\%	4.4\%	3.5\%	11.1\%	3.9\%	2.9\%	5.1\%
	zh	1.9\%	2.4\%	1.7\%	1.7\%	2.0\%	2.0\%	2.9\%	1.8\%	4.4\%	2.0\%	2.9\%
	vi	5.7\%	7.7\%	5.5\%	5.8\%	6.3\%	5.7\%	6.0\%	5.8\%	7.0\%	14.3\%	7.8\%

With 1000 guesses, greatest efficiency loss is only 4.8 (fr/vi)

Joseph Bonneau and Rubin Xu.
Of contraseñas, סיסמאות and 密码: Character encoding issues for web passwords Web 2.0 Security \& Privacy, 2012.

Comparing password analysis methods

semantic cracking statistical

external validity
no operator bias
no demographic bias
repeatable
easy

Comparing password analysis methods

semantic cracking statistical

external validity		\checkmark	$?$
no operator bias	\checkmark		\checkmark
no demographic bias	?		\checkmark
repeatable	\checkmark	$?$	\checkmark
easy	\checkmark	$?$	\checkmark
works w/small data	\checkmark	\checkmark	

The picture so far

For more information

my email jcb82@cl.cam.ac.uk

my dissertation
Guessing human-chosen secrets

Acknowledgements

	Elizabeth Zwicky Henry Watts Ram Marti Clarence Chung Christopher Harris
	Ross Anderson
CAMBERSITY OF	Richard Clayton
Computer Laboratory	Frank Stajano
	Sarkus Kuhn
	Sandrew Lewis
	Paul van Oorschot
	Cormac Herley
	Arvind Narayanan

Converting metrics to bits

- Find the size of a uniform distribution \mathcal{U}_{N} with equivalent security
- Easy case:

$$
\tilde{\mu}_{\alpha}(\mathcal{X})=\lg \left(\frac{\mu_{\alpha}(\mathcal{X})}{\lceil\alpha\rceil}\right)
$$

- More complicated:

$$
\tilde{G}_{\alpha}(\mathcal{X})=\lg \left[\frac{2 \cdot G_{\alpha}(\mathcal{X})}{\lceil\alpha\rceil}-1\right]-\lg (2-\lceil\alpha\rceil)
$$

- Sanity check:

$$
\tilde{\lambda}_{\beta}\left(\mathcal{U}_{N}\right)=\tilde{\mu}_{\alpha}\left(\mathcal{U}_{N}\right)=\tilde{G}_{\alpha}\left(\mathcal{U}_{N}\right)=\lg N
$$

Sample size is a major problem for passwords...

Poor password implementations

Results from a study of password authentication in the wild:

- 29-40\% of websites don't hash passwords during storage
- 41% of websites don't use any encryption for password submission
- 22% do so incompletely
- 84\% of websites don't rate-limit against guessing attacks
- 97% of websites leak usernames to simple

Joseph Bonneau and Sören Preibusch.
The password thicket: technical and market failures in human authentication on the web.
Workshop on the Economics of Information Security, 2010.

