
Trusted Auditing for P2P Distributed Virtual Environments

John L. Miller
1,2

 and Jon Crowcroft
2

1
Microsoft Research, Cambridge, United Kingdom

E-mail: johnmil@microsoft.com
2
Computer Laboratory, University of Cambridge, United Kingdom

E-mail: jc22@cl.cam.ac.uk

Abstract

Distributed Virtual Environments (DVE’s) are used

for purposes ranging from military simulations to

computer games. P2P DVE’s enhance scalability, but

are more vulnerable to attack than their client-server

equivalents. We introduce Carbon, an auditing system

for P2P DVE’s. Carbon uses state snapshots, per-client

event logs, and a DVE-controlled auditing threshold to

audit DVE participant activity for legality and

consistency. Carbon allows most DVE work to be

distributed amongst untrusted peers, while providing

centralized-quality guarantees of state correctness.

Carbon overhead against a typical MMOG traffic

pattern is discussed with surprisingly practical results.

For P2P DVE’s with state description and update

characteristics similar to World of Warcraft, we show

Carbon can produce exhaustive trusted audits with

only 24% additional traffic per node, and sufficient

selective audits with 1.3% additional traffic per node.

We also show that trusted auditors can decompose

DVE auditing problem, enabling linear audit

scalability.

1. Introduction

Virtual Environments (VE‟s) are simulations

typically intended to mimic a real or imagined

environments. A simulated walkthrough of a building

is an example of a Virtual Environment. The

simulation is viewed from the perspective of an

“avatar,” a point of presence representing the

participant. VE rules determine where and how the

avatar can interact with the simulation. The VE is

comprised of simulation state, and rules for updating

and rendering that state. Simulation state includes the

avatar‟s position and orientation, environmental

elements such as walls, floors, lights, and the position

and orientation of dynamic elements such as doors.

Some Virtual Environment simulations provide a

shared interactive experience for multiple participants,

each represented by an avatar. If participants are not

co-located, it is usually necessary to use a Distributed

Virtual Environment, or DVE. A DVE is distinguished

from a VE by having state distributed among and

rendered by more than one computational resource, for

example a collection of networked computers.

DVE's are used for a variety of purposes, such as

military simulations, immersive educational and

therapeutic environments, cyberspace such as Second

Life, and networked games. Networked games are by

far the most common DVE. Blizzard Entertainment's

World of Warcraft, for example, is a DVE with more

than eleven million paying subscribers, and more than

a million active avatars at its busiest times.

The distributed nature of DVE‟s introduces

significant complications to every aspect of simulation.

Consider Quake III Arena, a game DVE which can

run as either a single-player VE or a multi-player DVE.

VE mode has a single game state copy, including

variables such as avatar location, health, and items; the

position and actions of AI avatars; and the state of

mutable objects within the DVE. The avatar view is

rendered from the authoritative state, and interactions

are resolved directly against that authoritative state.

In multi-player DVE mode, Quake III Arena

retains authoritative state at a central server, but it

allows other participants to join the DVE from their

own computers via the network. Networked

participants interact with a local, non-authoritative

state replica known as shadow state. Some avatar

actions are speculatively executed and rendered against

local shadow state, while others are resolved by

forwarding a command to the authoritative server and

receiving a state change in response.

DVE‟s can be dramatically different from a single-

node VE‟s in terms of consistency and correctness.

Shadow state lags behind authoritative state. In some

cases shadow state is speculatively modified and

rendered before central authority approval. In the worst

case, these changes are rejected by the central

authority, and the client must roll back its shadow state

to match the authoritative state. For DVE participant

Alice, shadow state of DVE participant Bob lags

behind Bob‟s perception of that state by the transit time

from Bob to the server to Alice, plus any framing and

processing overhead. Shadow state is almost always

out of sync in minor ways, requiring complex

heuristics to compensate and provide participants with

similar experiences.

In the move from VE to DVE, security becomes a

significant issue. In a VE, state belongs to the same

entity rendering and interacting with it. In a DVE,

untrusted third parties interact with state. They may

choose to make changes or render state in a way which

violates DVE rules. In a game DVE, this is cheating.

A client-server DVE retains central authoritative

state against which shadow copies are reconciled,

helping to mitigate many attacks. When a DVE is

implemented as a P2P distributed system, more

security challenges arise. There is no longer a single

server or cluster with authoritative state. Instead, state

authority is distributed, requiring more complex state

change and reconciliation models, and providing

additional opportunities for attackers.

We propose Carbon, a trusted auditing system for

DVE‟s. Carbon helps to address security concerns

particular to P2P DVE‟s, namely the modification of

state in ways which violate DVE rules.

Section 2 provides an overview of relevant DVE

research. Section 3 outlines the Carbon auditing

system. Section 4 evaluates Carbon‟s attributes and

performance. Section 5 presents conclusions and future

work.

2. Related Work

Relevant DVE research falls into three categories:

full P2P DVE frameworks, DVE topology and state

management, and DVE security. We follow this with a

brief discussion of DVE traffic patterns for those

unfamiliar with the domain.

2.1 P2P DVE Frameworks

While we are unaware of P2P DVE‟s or

frameworks in broad use, several are proposed in

literature. Two of the most prominent are SimMud and

the Colyseus framework.

SimMud[1] proposes a DVE framework based

upon traditional P2P infrastructure. It uses the

Pastry[2] DHT to store and retrieve key-value pairs

and organize other overlays. The Pastry-based Scribe

protocol[3] provides application-layer multicast,

enabling pub-sub event distribution. This architecture

relies upon the indifference of random strangers for

correct operation. Authoritative state for each variable

is stored at a master chosen by its Pastry ID. State

updates are disseminated to subscribers through Scribe

trees, again constructed based on Pastry ID. A well-

placed attacker can authoritatively modify state which

does not belong to them, or prevent state from

correctly propagating to subscribers.

Colyseus[4] allows state to be stored at a state-

appropriate master (such as the node which „owns‟ the

state), but leverages both traditional and range-query

DHT‟s for indexing state location. State shadow copies

can be created as needed, updated according to their

access pattern. Colyseus‟ authors evaluate their

framework by adapting Quake II to run on it. Like

SimMud, the Colyseus framework emphasizes low

latency and performance over security. For example,

there are no allowances for detecting and addressing

illegal state modification.

There are other P2P frameworks and research

DVE‟s, but like SimMud and Colyseus, they tend to

focus on core performance attributes such as

consistency and latency rather than security.

2.2 Network Topology and State Distribution

DVE communication patterns significantly affect

consistency and attack vulnerability. For example, a

client-server DVE can enforce simulation rules at the

server, minimizing illegal state updates. Or, DVE‟s in

which all participants have copies of all state – a P2P

DVE with full state replication – retain continuity of

contact and universal knowledge, making detection of

illegal state modification easier.

DVE‟s in which state is neither centralized nor

universally propagated are more vulnerable to state

attack. A typical example is region-based DVE‟s. The

DVE participants are organized into regions based

upon geographical coordinates. All participants in each

region are aware of each others‟ state. A node entering

and leaving a region is – from the perspective of other

nodes in the region –similar to a node joining or

leaving the DVE altogether. Without appropriate

safeguards, an entering node can misrepresent its state

to all other nodes in the region. In another attack, it can

fork its state and be active in several regions

simultaneously.

If the DVE uses third parties to transfer state

between the authoritative state owner and shadow state

subscribers, a number of other attacks are enabled.

Most notably, state can be delayed or dropped, and in

some cases modified or forged.

Vulnerability to all of these attacks is heavily

influenced by the topology used for state storage and

dissemination. The majority of solutions in current

literature have state owners propagate state directly to

shadow state subscribers, emphasizing topology to

enable this. Some allow messages to be propagated via

third parties, usually in a topology mirroring node

location within the simulation.

VAST[5] is an area of interest (AoI) scheme for

organizing DVE state exchange topology. A Voronoi

diagram is constructed based upon node positions

within the DVE. Each node maintains a relationship –

„enclosing neighbor,‟ „boundary neighbor,‟ or simple

neighbor – with a subset of other DVE nodes, based

upon adjacency and coordinate distance between the

nodes. This relationship determines which nodes are

connected and exchanging updates.

[6] proposes using Delaunay Triangulation based

upon node location to organize DVE topology. As a

refinement, it suggests organizing highly proximate

peers in the DVE into a cluster for more efficient

message exchange. Delaunay Triangulation is the dual

of a Voronoi diagram, so the overall topology is similar

for both VAST and Delaunay Triangulation, modulo

the cluster refinement.

The P2P Message Exchange Scheme proposed in

[7] and [8] uses AoI to allow a node to partition nodes

into three sets: „active entities,‟ „latent entities,‟ and

others. Active entities are nodes close enough to have

full fidelity in state information exchange. Latent

entities are further away, but still close enough to need

lower fidelity state updates. Others are nodes too far

away from the node to require any information.

From a security perspective, the approaches listed

in this section and in section 2.1 limit state update

propagation to a dynamic subset of other DVE

participants. DVE nodes come into and out of scope of

other nodes, providing the opportunity for nodes to

misrepresent their state upon introduction, or to fork

their state, providing different state to non-overlapping

sets of neighbors.

2.3 DVE Security

As mentioned earlier, P2P DVE‟s are vulnerable to

a broader set of attacks than client-server DVE‟s.

Significant research exists describing techniques to

mitigate improper DVE state modification. In other

words, preventing or detecting unauthorized state

modification.

There are three main approaches: protecting DVE

software and communications, distributing state

ownership to disinterested third parties, and auditing

schemes. Kabus et. al. [9] provide a good – although

slightly out of date – overview of all three.

Protecting software integrity and communications

is a trusted computing base (TCB) approach. Mobile

Guards[10] are a good example. DVE software is

changed to require a trusted software component – a

mobile guard – be present and operational. Portions of

the DVE encrypted with keys only available from a

functional mobile guard. Likewise, communications

and data access can have integrity and confidentiality

guaranteed with keys either contained within or

derived from the mobile guard. As long as the mobile

guard is not compromised, the system is guaranteed

that its communications are unaltered, and that the

DVE rules are being enforced as coded both locally

and remotely. Attacker compromise of mobile guards is

mitigated by issuing updates more frequently than the

guards can be compromised. This is an interesting

approach, but it is predicated on the impossibility of an

attacker cracking a mobile guard before it is updated.

This core requirement is one of the issues dividing

those who accept TCB‟s as sufficient and those who do

not.

Distributing authoritative state ownership to

disinterested third parties is another security technique.

P2P DVE‟s such as SimMud, Colyseus use this

method. A variant presented in IRS[11] allows state to

be owned by the concerned party, but audits state

update calculations by performing them at multiple

untrusted nodes, then comparing the results. It assumed

a disinterested third party has no motivation to break

DVE rules in terms of state representation or updates,

and that several disinterested parties are unlikely to

collude for this purpose. Unfortunately this is not

necessarily the case: third parties can maliciously

tamper with data, whether it is relevant to them or not.

For example, they can exploit their position to broker

access to the state, requesting a fee from the data

owner to keep the data secure. Or, the party with the

greatest interest in a given piece of state can

manipulate the system to ensure that control and

auditing of that data falls to itself. The same argument

holds true for compromising quorums of disinterested

third parties, though of course compromising a quorum

is usually more work than compromising a single node.

If detecting – as opposed to preventing - illegal

state changes is an acceptable level of mitigation, then

auditing schemes can provide good DVE security.

PeerReview[12] is an auditing system with good

scalability and correctness guarantees. State changes

and local transactions relevant to state calculations are

stored in certified append-only local logs. Log contents

are committed by peer exchange of signed log digests.

Audits are performed by witnesses, who simulate

forward from a state through a series of logged events

to ensure correctness. Based on audit results and

behavior, nodes are labeled as trusted, suspected, or

exposed (bad). Audit frequency guidance is provided in

terms of number of witnesses and the probability of

illegal activity.

PeerReview is a flexible, decentralized, general

system with strong security guarantees. It is designed

to operate in the absence of any central authority, and

under a variety of scenarios. Our proposed system is

similar to PeerReview, but makes the simplifying

assumption of a trusted audit authority. Consequently

Carbon can provide appropriate DVE security with

fewer preconditions. For example, our system requires

participants to log their activities, but these logs don‟t

need to be as rigorously protected as PeerReview logs.

PeerReview is designed to operate in parallel with the

system it protects, while Carbon is a parasitic system

piggybacking on the host DVE‟s messaging. Also,

Carbon has a lighter weight commit requirement,

needing only periodic state commit rather than full log

commit to its authority.

2.4 Network Game DVE Traffic Patterns

Network Game DVE‟s are consumer-grade DVE‟s

intended for home use, and optimized to provide an

immersive experience with limited resources.

These immersive experiences require instant

response to interactions. Many of these DVE‟s are fast-

paced combat simulations, with real-time activity such

as aiming and firing weapons, and chasing opponents.

These applications are extremely latency sensitive,

with latencies greater than 200 ms significantly

degrading the experience[13][14].

These DVE‟s need to be able to run on most

personal computers, and over most network links,

which typically means functioning over dial-up

connections (33 kbps). For example, both Quake III

Arena and World of Warcraft can function over dial-up.

 Consumer-grade DVE‟s are characterized by low

packet inter-arrival times (responsiveness), and very

small packets (low resource requirement). [15] found

Quake III has typical packet sizes of 70-90 bytes, and

typical inter-arrival times between 10 and 50 ms. [16]

found World of Warcaft sends frequent, small packets,

typically with little or no payload. Again typical packet

size ranges between 50 and 70 bytes (our

measurement), with 220 ms mean inter-arrival time

(their measurement).

There is one notable exception to this behavior in

popular DVE‟s: Second Life. This DVE is a

cyberspace simulation, not a game. It emphasizes user-

created content. This feature consumes significantly

more bandwidth [17], between 10 and 1164 kbps mean

download bandwidth consumption, and between 13

and 74 kbps mean upload bandwidth consumption.

Since game DVE‟s are dramatically more popular

than any other type of DVE, we limit our analysis to

game DVE traffic patterns.

3. Carbon

Distributed Virtual Environments are large

collections of state, and rules for modifying that state.

Carbon is an auditing system allowing DVE‟s to detect

illegal state changes.

DVE‟s must meet certain prerequisites in order to

use Carbon. Section 3.1 spells out those requirements,

and introduces nomenclature for discussing how

Carbon interacts with eligible DVE‟s.

Carbon consists of two types of modules: an audit

client embedded in each DVE client node, and an

auditor embedded in DVE code running on one or

more trusted nodes. The auditor audits recorded DVE

state, verifying legality of the simulation run as viewed

at a given participant node.

Carbon is DVE-agnostic. It doesn‟t understand the

intricacies of how a given DVE operates. Instead, it

provides a set of basic services a DVE uses to organize

auditable information. In most cases enabling use of

Carbon requires little modification of the DVE.

The remainder of section 3 is divided into four

parts. Section 3.1 outlines DVE requirements and

introduces nomenclature. Section 3.2 describes Carbon

audit client requirements and components in detail.

Section 3.3 describes the Carbon auditor component.

Section 3.4 provides an example illustrating behavior

of a DVE using Carbon. Note: the reader may wish to

skim section 3.4 before reading further, to help

motivate nomenclature and design.

3.1 Nomenclature and DVE Requirements

DVE‟s run the gamut from virtual reality

applications like Second Life to networked games like

Quake III and World of Warcraft. Implementation

techniques vary widely, as does nomenclature.

Table 1 introduces the terminology we will use to

describe DVE concepts used by Carbon.
Table 1 – DVE Nomenclature

Symbol Meaning

𝑆𝑖
𝑡 State at node 𝑖 at time 𝑡

𝐸𝑡 Event received at time 𝑡

𝐼𝐷𝑎 DVE identity for „a‟

𝐿𝑖
𝑡1,𝑡2 Audit log for node i from 𝑡1 to 𝑡2

𝑀𝑖→𝑗 Message from node 𝑖 to node 𝑗

A node is a DVE instance running on a computing

resource, typically providing the view and interaction

point for a single avatar. State is the collection of all

local authoritative and shadow state. An event is

defined by the DVE itself, but is typically anything

except a node state snapshot: it may be a state change,

a user command, or anything else. A message is a

container for DVE or Carbon information. It can

contain state snapshots, events, audit log extracts, etc.

Undecorated numeric or variable subscripts refer

to a specific node. Subscripts prefixed with 𝑐 refer to

Carbon auditors. For example, 𝑀𝑖→𝑐𝑗 describes a

message from participant node 𝑖 to Carbon auditor 𝑐𝑗.
In order for Carbon to operate, a DVE should be

able to simulate forward from state snapshots using

events, to compare states for similarity, and to

determine whether a given event is legal to apply to a

given state.

Formally, a DVE is a collection of state for the 𝑁

active nodes 𝑆 = 𝑆𝑖
𝑁
𝑖=0 and a set of rules for

changing that state. The overall DVE state 𝑆 is a union

of individual node state 𝑆𝑖 . Individual nodes may have

overlapping DVE state. Ideally one copy of a given

state variable is authoritative and the rest are shadow

(non-authoritative) copies, but this is not required.

An event 𝐸 is a state change or command which

can result in state change for a given node‟s state, i.e.

𝑆𝑖
𝑡1+𝜖 = 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐸𝑣𝑒𝑛𝑡(𝑆𝑖

𝑡1, 𝐸𝑖
𝑡2). Given the state of

a node at any two times in the DVE, it should always

be possible to reach the successor state by taking the

predecessor state and applying a series of ProcessEvent

operations with the appropriate events.

The DVE must be able to communicate state

between nodes via messages. A node must be able to

initialize itself based upon a combination of local state,

and received state and event messages.

DVE state changes must be deterministic. This

doesn‟t rule out choosing state changes randomly, but

it does mean that given a random choice must induce a

deterministic change, and the choice is itself an event.

3.2 Carbon Audit Client: “Reporter”

The Carbon audit client is a small module

implementing the DVE participant node portion of

Carbon. We refer to this code module as the reporter. It

is implemented as a library, invoked as required by

DVE client code.

The reporter provides information the auditor

needs to perform audits. It is a store for client state

snapshots and events both generated at and received by

the DVE node. Events consist of any information

material for determining state changes. This typically

consists of outgoing and incoming DVE messages, but

may include other information such as mouse moves

and key clicks, depending upon the DVE‟s needs.

From the reporter‟s perspective, both state

snapshots and events are opaque data blobs, stored as

simple byte arrays.

The reporter exposes the interfaces described in

Table 2 for the exclusive use of the DVE node.
Table 2 - Reporter Functions

Function Description

Startup Initialize the reporter

Shutdown Shut down the reporter

Log Add an event or state to the log

Commit Commit to the auditor

AuditRequest Request an audit

ProcessMessage Process a Carbon message

RetrieveNotice Retrieve a Carbon notification

ReleaseNotice Release a retrieved notification

The reporter doesn‟t have a thread, and does not

directly transmit network messages. The DVE node

calls Startup to initialize the reporter. It provides the

local node ID and a trusted auditor ID. It calls

Shutdown to release any transient reporter data and

flush data to storage.

The DVE node submits auditable events and state

to the reporter via the Log function. Log takes the log

data type (event / state), DVE time, and byte array as

parameters. The DVE node periodically calls Commit

to submit its most recent state snapshot to the auditor.

Upon receiving a remote message intended for the

reporter – typically from a trusted auditor – the DVE

node calls ProcessMessage with a sender ID and

message payload. The two cases where this happens

today are:

1. Requesting an audit log extract

2. Supplying audit results

If the DVE node wants a remote node audited, it

calls RequestAudit with that node‟s ID, the minimum

DVE time range to audit, and an optional state

snapshot. This function would typically be called when

a DVE node is informed of state which it doubts, for

example with the arrival of a new avatar.

The reporter uses notices to communicate relevant

information to the DVE node. The DVE node calls

RetrieveNotice to retrieve a notice whenever a reporter

call indicates a notice is waiting, and ReleaseNotice to

free it.

There are two reasons the audit client returns data

to the DVE node:

1. To request message transmission, for example in

response to a received message, or as the result of

a call to Commit

2. To provide audit results to the DVE node.

3.3 Carbon Auditor: “Auditor”

The auditor is provided as a small library used by

the DVE. It runs as a trusted DVE system component

with the primary purpose of accepting state snapshots

and performing DVE audits.

The auditor is an advisory component. It does not

directly make decisions. It provides a framework for

collecting information the DVE can use to make audit

decisions, and for disseminating the results. The DVE

controls when an audit should be performed, audit

success evaluation, and what action to take upon a

successful or failed audit.

The auditor can be embedded within an existing

DVE server component. Or, a new purpose-built code

base can exchange messages and perform audits on

behalf of the auditor.
Table 3 - Auditor Functions

Function Description

Startup Initialize the auditor

Shutdown Shut down the auditor

RequestAudit Require an audit

CompleteAudit Provide audit results

ProcessMessage Process a Carbon message

RetrieveNotice Retrieve a Carbon notification

ReleaseNotice Release a retrieved notification

The table above lists auditor library functionsThe

only new interface is CompleteAudit, used by the DVE

server to return audit results to the Carbon auditor,

along with an optional list of ID‟s to notify.

ProcessMessage can receive three different

messages, each of which raises a new notice the

auditor must retrieve via a call to RetrieveNotice.

1. A state snapshot message.

2. An audit request message.

3. A requested log excerpt.

Each time the auditor receives a new state

snapshot message, it persists the state, and retrieves the

immediate predecessor and successor state snapshots

for that participant – if any. This provides the basis of

notice the DVE server can use to determine if it should

perform an audit. For example, if the magnitude of

changes between subsequent state snapshots seems

very unlikely, it may trigger an audit.

If an audit is required, the DVE calls

RequestAudit. This call is authoritative since it is made

by an auditor, and results in a log excerpt request for

the specified node.

When the log excerpt is received and raised as a

notice, the DVE component retrieves it, and performs

an audit based on the earlier state notice and the log

excerpt. It notifies the auditor of the result by calling

CompleteAudit with the final state and the audit

success or failure. The auditor sends a corresponding

audit result notification to the audited party, and to any

other participant listed in the optional audit notification

list.

The example below illustrates the system.

3.4 Carbon System Operation

This section provides a detailed example of a DVE

using the Carbon auditing system. We assume a P2P

DVE with unique participant identities. Participants

can connect and disconnect from the DVE at will,

resuming their activities whenever they have time. We

require state snapshots every 15 minutes.

As a reminder, the system has four types of actors:

A DVE node is a client instance. It contains a Carbon

reporter, responsible for Carbon client activities. The

DVE server is a trusted DVE component. It contains a

Carbon auditor, which coordinates auditing.

Alice wishes to continue her avatar‟s virtual life.

She starts up her DVE node. As part of initialization,

the DVE node code calls Startup(IDA , IDC1),

initializing the Carbon reporter with her ID and the ID

of a trusted auditor.

The DVE node loads Alice‟s avatar and finishes

integrating it into the DVE. The DVE node serializes a

copy of Alice‟s avatar state and invokes Log(t0, 𝑆𝐴
𝑡0),

which stores the state snapshot to the local audit log.

Then it invokes Commit() which packages the latest

state snapshot into a message for the auditor. Commit()

signals the DVE node that a new notice is available for

retrieval from the reporter. A call to RetrieveNotice()

retrieves the message 𝑀𝐴→𝐶1 to send to the auditor.

The DVE node connects to the appropriate DVE

server, transmits the message, and calls

ReleaseNotice(𝑀𝐴→𝐶1) to release its copy of the

network message.

The DVE server receives the message, and ensures

the sender matches the message source ID. It notes that

the message target ID belongs to its hosted auditor, and

invokes ProcessMessage(𝑀𝐴→𝐶1). The auditor

deserializes the message, and saves the received state

snapshot 𝑆𝐴
𝑡0 into its state snapshot table for Alice. The

auditor constructs a StateNotice notification triple

𝑆𝑁 = (𝑆𝐴
𝑡0−𝑘 , 𝑆𝐴

𝑡0, ∅), and notifies the DVE server.

The DVE server invokes RetrieveNotice() and receives

the StateNotice. It evaluates the state snapshots,

determines no audit is needed, and calls

ReleaseNotice((𝑆𝑁) to return the resources back to the

auditor.

Alice participates in the DVE, with her DVE node

sending and receiving network messages with state

changes. Her DVE node also accepts and processes her

local input. Each inbound and outbound network

message – with the exclusion of Carbon messages - is

considered an event, and its payload is logged to the

reporter log via a call to Log(t, 𝐸𝑎
𝑡). The DVE can

optionally record Alice‟s inputs for auditing. Input

events can be stored in a local event queue. Each time

a network message is sent or received, the DVE

empties the local event buffer contents into a new „user

input‟ event message, and Log‟s it. The reporter and

auditor don‟t differentiate between these two categories

of events, though the DVE server does.

During Alice‟s session, her avatar encounters a

new avatar Bob. When Alice‟s DVE node receives the

message describing Bob‟s avatar‟s state 𝑆𝐵𝑡1 ⊂ 𝑆𝐵
𝑡1, it

decides to request Bob be audited. Alice‟s DVE node

invokes RequestAudit(t1, IDB, SB
t1

), which creates a

new audit request message, which her node retrieves

from the reporter and sends to the auditor on the DVE

server.

The auditor looks up Bob‟s state snapshots which

fall within or immediately precede the audit interval. In

this case, suppose there is a single previous snapshot

𝑆𝐵
𝑡1−𝜖 . An AuditRequestNotice (𝑆𝐵

𝑡1−𝜖 , 𝑆𝐵𝑡1, 𝑡1 − 𝜖, 𝑡1)

is created by the auditor and retrieved by the DVE

server. The DVE server compares the states and

timespan, and determines an audit is warranted. The

DVE server invokes RequestAudit(IDB, 𝑡1 − 𝜖, t1)

specifying who and over what interval to audit. The

auditor constructs a log excerpt request (IDB, 𝑡1 − 𝜖,

t1) and transmits it to Bob‟s reporter via a notice and

DVE-transmitted message, as explained above.

Bob‟s reporter constructs a serialized log excerpt

𝐿𝑏
𝑡1−𝜖 , 𝑡1

 of Bob‟s events between 𝑡1 − 𝜖 and 𝑡1, then

transmits sends the auditor the excerpt as above.

The auditor extracts the message and embeds the

excerpt in a LogNotice. The DVE server pairs this

excerpt with the state snapshots it already had, and

forward simulates from 𝑡1 − 𝜖 to 𝑡1 checking the

legality of each event as it is processed. Once the

simulation time reaches 𝑡1, the DVE server compares

𝑆𝐵𝑡1 with its calculated version in 𝑆𝐵
𝑡1. If the state

variables specified in SB
t1

 match the value of the same

state variables in 𝑆𝐵
𝑡1 then the audit passes. Otherwise it

fails.

If the audit was successful, the DVE server makes

a list with Alice and Bob‟s ID‟s. If the audit failed, it

makes a list which includes Alice, Bob, and any other

participants the DVE server wishes to notify of the

audit failure, such as Bob‟s neighbors.

The auditor constructs a series of audit result

messages containing notification of audit results, one

per recipient in its list, and transmits the notifications

to recipients as above.

When a reporter receives the audit result, it creates

an AuditResultNotice notification (IDB, 𝑡1 − 𝜖, t1,

RESULT) and passes it to its DVE node. The DVE

node code is responsible for performing an appropriate

action, such as continuing simulation, or disconnecting

from Bob.

4. Evaluation

P2P DVE‟s as a class have more significant

security vulnerabilities than client-server DVE‟s. State

storage and modification is performed on untrusted

peers. There is no guarantee any node is executing the

prescribed code base. As a result, DVE nodes requires

means to ensure correctness of other nodes behavior.

Participants in large-scale P2P DVE‟s typically

possess only a fragment of the overall DVE state, some

authoritative, and some cached shadow state. They rely

upon other DVE nodes to provide them with shadow

state at appropriate times, for example when another

participant moves within their AoI.

Given a set of trusted audit nodes, the Carbon

system allows a DVE to mitigate vulnerabilities related

to misrepresentation of state, and to detect illegal

modification of state. More specifically, while the

system cannot guarantee the represented state is

correct, it can at least guarantee that the represented

state is reachable from an earlier (trusted) state, and

that the avatar presenting the state can produce an

event sequence which reaches the represented state.

The remainder of this section evaluates two

aspects of Carbon. First, mitigation against incorrect

state modification. Second, the overhead involved in

using Carbon.

4.1 Audit Coverage

DVE‟s implement deterministic state machines.

Given access to a state snapshot and an event, any node

can determine the resulting state. This principle

provides the basis of our auditing solution.

P2P DVE nodes typically perform similar

activities to one another, with similar levels of trust,

ideally none. In some architectures, a node may be

granted additional responsibilities for coordinating

DVE activities, but such responsibilities are typically

based upon node resources, not trustworthiness.

Carbon provides an auditing framework for

detecting invalid state transitions within the DVE. The

DVE can use Carbon-provided data to perform audits,

or more complex analysis, such as detecting illegal

input devices.

Carbon‟s goal is to ensure avatar integrity and

correctness. It proved impossible to verify avatar state

integrity in isolation: the avatar‟s state is affected by its

environment. A system examining only avatar state

lacks context to verify it. For example, suppose avatars

have a „money carried‟ property, and Alice wishes to

violate DVE rules by modifying her avatar to have a

billion dollars. If the auditing system evaluates only

avatars, and if there is any non-avatar source of money

– for example money lying on the street - Alice could

claim upon audit that her million dollars was found on

the street, with no way the claim can be verified. By

increasing the audit scope to include Alice‟s entire

DVE node state, the auditor has access to context

which can help validate or refute Alice‟s avatar state: it

can review her node‟s simulation to learn about any

money on the street, and can confirm the amount is

appropriate. If that money is suspect, its source in the

DVE can also be audited, and so on.

Carbon can detect the following existing attacks:

1. Illegal avatar activity, such as teleport hacks and

speed hacks violating DVE rules for movement.

2. Avatar edits, such as changing the resources

associated with an avatar. Network game attacks in

this category include „god mode,‟ duplication

attacks, and weapon edits.

Exhaustive auditing via Carbon reliably detects

these attacks and has reasonable overhead, as discussed

in section 4.2. If less expensive auditing is desired,

DVE‟s can leverage participant affinity for their avatar,

threatening to punish any cheaters. The DVE adjusts

punishment and audit frequency to achieve deterrence.

As mentioned earlier, Carbon does not directly

evaluate DVE state correctness. Instead, it collects and

organizes information for the DVE to determine when

an audit should be performed. Likewise, performing

the actual audit is left up to the DVE code itself. An

audit can be as straightforward as verifying successive

state transitions are legal, or as complex as correlating

state transitions between multiple DVE views from

multiple participants, or performing deep data mining

to uncover more elusive DVE violations such as

account sharing or theft[18] and dependency hacks

such as wall hacks[19].

4.2 Overhead

Integrating Carbon requires relatively little effort

for an existing DVE. However, Carbon does introduce

significant network traffic and processing overhead.

DVE operation can be characterized by four main

activities:

1. Abstract simulation. Evaluating state change and

events. This is typically a lightweight activity.

2. Rendering. Rendering the DVE perspective to

present to the participant. This is usually the most

significant activity in terms of memory, I/O, and

processor consumption.

3. Persistence. Storing DVE data, for example saving

avatar state for later retrieval. Usually a very

lightweight activity.

4. Network traffic. DVE‟s must exchange messages

to determine state changes and to refresh shadow

copies of state. In a P2P DVE, this traffic is

typically the traffic required to describe a state

change traffic multiplied by the shadow copies.

Carbon auditing doesn‟t influence abstract

simulation and rendering at DVE clients, but it does

increase persistence and network traffic workload.

Carbon requires simulation data be retained in two

places. The reporter on each DVE node maintains a

local log of event and state snapshots. The auditor

authoritatively stores state snapshots. Total storage

consumption is significant, but can be reduced by

flushing data past an assigned audit time horizon.

The bulk of transmitted Carbon data comes from

state snapshots and audit log excerpts destined for

auditors. The scale of this activity varies according to

DVE, but it is intuitively guaranteed to require at least

as much network bandwidth as the packet payloads an

efficient DVE uses transmitting state data.

For illustration, suppose we have a DVE with the

following attributes:

Table 4 - Sample DVE attributes

Function Variable

State snapshot in kilobytes |𝑆𝑖|
Average outgoing event rate 𝑅 𝐸𝑖
Average shadow state copies 𝑄

Commit interval 𝐶𝐼
|𝑆𝑖 | is size in kilobytes for a node‟s full state

description. This typically includes avatar position and

attributes, and the state of objects being tracked by that

node. 𝑅 𝐸𝑖 is the average traffic in kbps required to

describe a node‟s state transitions to a neighbor. 𝑄 is

the average neighbors receiving shadow state updates,

and is one less than the average clique size (number of

nodes in mutual interaction range). Commit interval 𝐶𝐼
is the interval in seconds between DVE node calls to

Commit() for committing state snapshots to the auditor.

Incoming and outgoing non-audit bandwidth for a

P2P DVE must be at least 𝑅 𝐸𝑖 × 𝑄: Each client

transmits 𝑄 copies of its state changes, one to each

clique member besides itself. Each client receives one

copy of state updates from each of its 𝑄 fellow clique

members.

Per-node bandwidth required for auditing Commit

is |𝑆𝑖|/𝐶𝐼 kBps.

Suppose 𝑝 is probability of auditing the period

between two state snapshots. Per-node reporter

network overhead is (|𝑆𝑖 |/𝐶𝐼) + 𝑝 × 𝑅 𝐸𝑖 × (𝑄 +
1). We multiply the event data rate by (𝑄 + 1) instead

of 𝑄 because each node needs to provide the auditor

with events it originates as well as those it receives.

To help put the overhead in perspective, we use

World of Warcraft (WoW) traffic models from [16]

coupled with our own measurements obtained using

WireShark and WoW version 3.1. We choose WoW

because of its popularity and hence probability of

benefiting from a reliable P2P DVE approach. WoW

clients requires on average 2.1 kbps upload and 6.9

kbps download bandwidth. It uses a command / state

response model. We verified this by measuring

bandwidth consumed by both an actor node and a node

closely observing their acts. Hence, we consider the

state change traffic to be 6.9 kbps per single copy of

state changes transmitted, including network overhead.

As mentioned in section 2.4, most game DVE

packets have a very small or empty payload. In WoW

57% of download packets have an empty payload.

Analyzing our own packet trace, we found that in 821

seconds of activity in a popular end-game zone, 3,881

packets were received, with a total size of 284,246

bytes. Our per-packet transport overhead for TCP and

proxy framing was 54 bytes per packet, which is

209,574 bytes of overhead. Our measurement shows

74% packet framing overhead, leaving 26% actual

event data in communications. This tells us the

numbers from [16] provide conservative values, and

are therefore a good benchmark for our purposes.

Audit log extracts can be efficiently transmitted, as

they are many MTU‟s in size. This drops transmission

overhead from about 60% to approximately 5%.

Translating this to aggregate event data numbers, event

summaries for events at a given node consume

𝑅 𝐸𝑖 = 2.9 kbps compared to the 6.9 kbps required

for the DVE‟s operational traffic pattern.

Based on our measurements, a full state snapshot

as received from the server on initialization depends

heavily upon the area entered. We measured values

between 26 kB for a quiet area to 125 kB for a busy

one. For this example, we set 𝑆𝑖 = 62.5 kB, roughly

halfway between the two extremes. We assume 𝑄 is 10.

Average bandwidth sent and received by a P2P

DVE node in our scenario – excluding audit-related

activities – is (6.9 * 10) inbound + (6.9 * 10) outbound

= 138 kbps. Suppose we choose a Commit interval

𝐶𝐼 = 15 minutes. Then we have (62.5*8 / 900) = 0.56

kbps for state snapshots, and 𝑝 * (2.9 * (10 + 1)) = 𝑝 *

31.9 kbps for reporting log excerpts, for a total of 32.5

kbps for full auditing of all state transitions. In other

words, full auditing requires 24% network bandwidth

overhead compared to the DVE node‟s normal

operating requirements.

Figure 1 - Detect chance and overhead by audit chance

Auditing lacks the immediacy of a client-server

approach to the DVE security, but it also has

advantages.

1. Since each audit simulates a single node‟s

snapshot of the world, we have proof by example

that it can be performed by a single node. Auditing

the entire DVE is decomposable into auditing

individual nodes. This means auditing scales

linearly with the number of front ends compared to

sub-linear scale of centralized DVE servers for

client-server DVE‟s.

2. The fraction of state intervals audited can be

scaled down according to the risk tolerance and

participant avatar affinity, reducing audit cost. In

our example the DVE could audit a small fraction

of sessions (such as 𝑝 = 0.01). Someone who

broke the rules only once an hour would have a

nearly 70% chance of getting caught during their

100-play-hour lifetime. If 𝑝 = 0.05 the probability

of being caught and punished rises to 99.7%.

Many game DVE‟s have avatar lifetimes measured

in thousands of hours, not hundreds.

The second point underscores the efficacy of

random auditing for catching cheaters at least once in

their expected avatar lifetime. Figure 1 shows the

probability of catching a cheating avatar sometime in

their lifetime for a given random audit fraction 𝑝. In

our example, lifetime cheater lifetime detection ramps

up to 99.9% with 7% random auditing.

Figure 1 also shows the linear per-node audit

bandwidth overhead for a given value of 𝑝. Bandwidth

overhead is linear with audit fraction. Audit selection

based on state examination and adversary-proposed

audits should have a better success rate, but this result

shows even random auditing can act as a deterrent for

habitual rule violators.

Storage overhead for client logs and for the central

state snapshots would not be prohibitive for modern

computers. The storage required at a node for a given

time window is roughly the same as the auditing

network overhead per node times the time period. In

our example, a full week of 24-hour audit storage for a

DVE client would consume no more than (7 * 24 * 60

* 60) s * 32.5 kbps = 2.5 GB of audit client storage.

Auditor storage required to track state snapshots for

each node for the same time window would be 42 MB.

5. Conclusions

P2P DVE‟s are an active research area, and so far

haven‟t been broadly deployed. One requirement for

broad deployment is a good security solution to

mitigate cheating, providing security guarantees

similar to those available in DVE‟s deployed today.

We introduced Carbon, a trusted auditing system.

Carbon consists of a per-node audit client component

called a reporter, and at least one trusted auditor run as

part of a trusted DVE component. DVE‟s using Carbon

can ensure that DVE state transitions performed by

DVE participants are at least plausible, and that those

participants are not forking their state or performing

illegal state transitions such as teleport and speed

hacks.

We showed that Carbon overhead is significant but

not untenable. In a scenario modeled after a P2P World

of Warcraft DVE, we showed Carbon requires on

average only 24% additional network traffic to perform

exhaustive auditing. We further showed that for DVEs

with strong participant-avatar affinity (such as World

of Warcraft), auditing only a fraction of participant

activity – such as 1% – still provides a good chance of

catching state transition violations, deterring would-be

cheaters and hackers. We also showed that carbon

auditing can be scaled linearly with the number of

auditor resources applied.

References

[1] Björn Knutsson, Honghui Lu, Wei Xu, and Bryan

Hopkins, "Peer-to-Peer Support for Massively

Multiplayer Games," in INFOCOM 2004 Proc.

[2] Antony Rowstron and Peter Druschel, "Pastry: Scalable,

Decentralized Object Location, and Routing for Large-

Scale Peer-to-Peer Systems," Lecture Notes in Computer

Science, vol. 2218, pp. 329--?, 2001.

[3] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron,

"SCRIBE: A large-scale and decentralized application-

level multicast infrastructure," IEEE JSAC, vol. 20, pp.

1489-1499, 2002.

[4] Ashwin Bharambe, Jeffrey Pang, and Srinivasan

Seshan, "Colyseus: A Distributed Architecture for

Online Multiplayer Games," in NSDI '06 Proc.

[5] Shun-Yun Hu and Guan-Ming Liao, "Scalable peer-to-

peer networked virtual environment," in NetGames '04

Proc., pp. 129-133.

[6] Ernst Biersack, Christophe Diot Matteo Varvello,

"Dynamic Clustering in Delaunay-Based P2P

Networked Virtual Environments," in NetGames '07

Proc., pp. 105-110.

[7] Yoshihiro Kawahara, Tomonori Aoyama, and Hiroyuki

Morikawa, "A Peer-to-Peer Message Exchange Scheme

for Large-Scale Networked Virtual Environments,"

Telecommunication Systems, vol. 25, pp. 353-370, 2004.

[8] Nobutaka Matsumoto, Yoshihiro Kawahara, Hiroyuki

Morikawa, and Tomonori Aoyama, "A scalable and low

delay communication scheme for networked virtual

environments," in Global Telecommunications

Conference Workshops, 2004, pp. 529-535.

[9] Patric Kabus, Wesley W. Terpstra, Mariano Cilia, and

Alejandro P. Buchmann, "Addressing cheating in

distributed MMOGs," in NetGames '05: Proc., pp. 1-6.

[10] Christian Mönch, Gisle Grimen, and Roger Midtstraum,

"Protecting online games against cheating," in

NetGames '06 Proc., p. 20.

[11] Josh Goodman and Clark Verbrugge, "A Peer Auditing

Scheme for Cheat Elimination in MMOGs," in

NetGames '08 Proc.

[12] Andreas Haeberlen, Petr Kouznetsov, and Peter

Druschel, "PeerReview: practical accountability for

distributed systems," in SOSP '07 Proc., pp. 175-188.

[13] Tom Beigbeder et al., "The effects of loss and latency on

user performance in unreal tournament 2003," in

NetGames '04 Proc., pp. 144-151.

[14] Tristan Henderson and Saleem Bhatti, "Networked

games: a QoS-sensitive application for QoS-insensitive

users?," in RIPQoS '03 Proc., pp. 141-147.

[15] Tanja Lang, Philip Branch, and Grenville Armitage, "A

synthetic traffic model for Quake3," in ACE '04 Proc.,

pp. 233-238.

[16] Philipp Svoboda, Wolfgang Karner, and Markus Rupp,

"Traffic Analysis and Modeling for World of Warcraft,"

in ICC '07 Proc., pp. 1612-1617.

[17] James Kinicki and Mark Claypool, "Traffic analysis of

avatars in Second Life," , 2008, pp. 69-74.

[18] Kuan-TaChen and Li-WenHong, "User Identification

based on Game-Play Activity Patterns," in NetGames

'07 Proc., pp. 7-12.

[19] Peter Laurens, Richard F. Paige, Phillip J. Brooke, and

Howard Chivers, "A Novel Approach to the Detection of

Cheating in Multiplayer Online Games," in ICECCS '07

Proc., pp. 97-106.

