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Abstract 
 

Distributed Virtual Environments (DVE’s) are used 

for purposes ranging from military simulations to 

computer games. P2P DVE’s enhance scalability, but 

are more vulnerable to attack than their client-server 

equivalents. We introduce Carbon, an auditing system 

for P2P DVE’s. Carbon uses state snapshots, per-client 

event logs, and a DVE-controlled auditing threshold to 

audit DVE participant activity for legality and 

consistency. Carbon allows most DVE work to be 

distributed amongst untrusted peers, while providing 

centralized-quality guarantees of state correctness. 

Carbon overhead against a typical MMOG traffic 

pattern is discussed with surprisingly practical results. 

For P2P DVE’s with state description and update 

characteristics similar to World of Warcraft, we show 

Carbon can produce exhaustive trusted audits with 

only 24% additional traffic per node, and sufficient 

selective audits with 1.3% additional traffic per node. 

We also show that trusted auditors can decompose 

DVE auditing problem, enabling linear audit 

scalability. 

 

 

1. Introduction 
 

Virtual Environments (VE‟s) are simulations 

typically intended to mimic a real or imagined 

environments. A simulated walkthrough of a building 

is an example of a Virtual Environment. The 

simulation is viewed from the perspective of an 

“avatar,” a point of presence representing the 

participant. VE rules determine where and how the 

avatar can interact with the simulation. The VE is 

comprised of simulation state, and rules for updating 

and rendering that state. Simulation state includes the 

avatar‟s position and orientation, environmental 

elements such as walls, floors, lights, and the position 

and orientation of dynamic elements such as doors.  

Some Virtual Environment simulations provide a 

shared interactive experience for multiple participants, 

each represented by an avatar. If participants are not 

co-located, it is usually necessary to use a Distributed 

Virtual Environment, or DVE. A DVE is distinguished 

from a VE by having state distributed among and 

rendered by more than one computational resource, for 

example a collection of networked computers.  

DVE's are used for a variety of purposes, such as 

military simulations, immersive educational and 

therapeutic environments, cyberspace such as Second 

Life, and networked games. Networked games are by 

far the most common DVE. Blizzard Entertainment's 

World of Warcraft, for example, is a DVE with more 

than eleven million paying subscribers, and more than 

a million active avatars at its busiest times. 

The distributed nature of DVE‟s introduces 

significant complications to every aspect of simulation.  

Consider Quake III Arena, a game DVE which can 

run as either a single-player VE or a multi-player DVE. 

VE mode has a single game state copy, including 

variables such as avatar location, health, and items; the 

position and actions of AI avatars; and the state of 

mutable objects within the DVE. The avatar view is 

rendered from the authoritative state, and interactions 

are resolved directly against that authoritative state.  

In multi-player DVE mode, Quake III Arena 

retains authoritative state at a central server, but it 

allows other participants to join the DVE from their 

own computers via the network. Networked 

participants interact with a local, non-authoritative 

state replica known as shadow state. Some avatar 

actions are speculatively executed and rendered against 

local shadow state, while others are resolved by 

forwarding a command to the authoritative server and 

receiving a state change in response.  

DVE‟s can be dramatically different from a single-

node VE‟s in terms of consistency and correctness. 

Shadow state lags behind authoritative state. In some 

cases shadow state is speculatively modified and 

rendered before central authority approval. In the worst 



case, these changes are rejected by the central 

authority, and the client must roll back its shadow state 

to match the authoritative state. For DVE participant 

Alice, shadow state of DVE participant Bob lags 

behind Bob‟s perception of that state by the transit time 

from Bob to the server to Alice, plus any framing and 

processing overhead. Shadow state is almost always 

out of sync in minor ways, requiring complex 

heuristics to compensate and provide participants with 

similar experiences.  

In the move from VE to DVE, security becomes a 

significant issue. In a VE, state belongs to the same 

entity rendering and interacting with it. In a DVE, 

untrusted third parties interact with state. They may 

choose to make changes or render state in a way which 

violates DVE rules. In a game DVE, this is cheating. 

A client-server DVE retains central authoritative 

state against which shadow copies are reconciled, 

helping to mitigate many attacks. When a DVE is 

implemented as a P2P distributed system, more 

security challenges arise. There is no longer a single 

server or cluster with authoritative state. Instead, state 

authority is distributed, requiring more complex state 

change and reconciliation models, and providing 

additional opportunities for attackers. 

We propose Carbon, a trusted auditing system for 

DVE‟s. Carbon helps to address security concerns 

particular to P2P DVE‟s, namely the modification of 

state in ways which violate DVE rules.  

Section 2 provides an overview of relevant DVE 

research. Section 3 outlines the Carbon auditing 

system. Section 4 evaluates Carbon‟s attributes and 

performance. Section 5 presents conclusions and future 

work. 

 

2. Related Work 
 

Relevant DVE research falls into three categories: 

full P2P DVE frameworks, DVE topology and state 

management, and DVE security. We follow this with a 

brief discussion of DVE traffic patterns for those 

unfamiliar with the domain. 

 

2.1 P2P DVE Frameworks 
 

While we are unaware of P2P DVE‟s or 

frameworks in broad use, several are proposed in 

literature. Two of the most prominent are SimMud and 

the Colyseus framework. 

SimMud[1] proposes a DVE framework based 

upon traditional P2P infrastructure. It uses the 

Pastry[2] DHT to store and retrieve key-value pairs 

and organize other overlays. The Pastry-based Scribe 

protocol[3] provides application-layer multicast, 

enabling pub-sub event distribution. This architecture 

relies upon the indifference of random strangers for 

correct operation. Authoritative state for each variable 

is stored at a master chosen by its Pastry ID. State 

updates are disseminated to subscribers through Scribe 

trees, again constructed based on Pastry ID. A well-

placed attacker can authoritatively modify state which 

does not belong to them, or prevent state from 

correctly propagating to subscribers.  

Colyseus[4] allows state to be stored at a state-

appropriate master (such as the node which „owns‟ the 

state), but leverages both traditional and range-query 

DHT‟s for indexing state location. State shadow copies 

can be created as needed, updated according to their 

access pattern. Colyseus‟ authors evaluate their 

framework by adapting Quake II to run on it. Like 

SimMud, the Colyseus framework emphasizes low 

latency and performance over security. For example, 

there are no allowances for detecting and addressing 

illegal state modification.  

There are other P2P frameworks and research 

DVE‟s, but like SimMud and Colyseus, they tend to 

focus on core performance attributes such as 

consistency and latency rather than security. 

 

2.2 Network Topology and State Distribution 
 

DVE communication patterns significantly affect 

consistency and attack vulnerability. For example, a 

client-server DVE can enforce simulation rules at the 

server, minimizing illegal state updates. Or, DVE‟s in 

which all participants have copies of all state – a P2P 

DVE with full state replication – retain continuity of 

contact and universal knowledge, making detection of 

illegal state modification easier.  

DVE‟s in which state is neither centralized nor 

universally propagated are more vulnerable to state 

attack. A typical example is region-based DVE‟s. The 

DVE participants are organized into regions based 

upon geographical coordinates. All participants in each 

region are aware of each others‟ state. A node entering 

and leaving a region is – from the perspective of other 

nodes in the region –similar to a node joining or 

leaving the DVE altogether. Without appropriate 

safeguards, an entering node can misrepresent its state 

to all other nodes in the region. In another attack, it can 

fork its state and be active in several regions 

simultaneously.  

If the DVE uses third parties to transfer state 

between the authoritative state owner and shadow state 

subscribers, a number of other attacks are enabled. 

Most notably, state can be delayed or dropped, and in 

some cases modified or forged.  



Vulnerability to all of these attacks is heavily 

influenced by the topology used for state storage and 

dissemination. The majority of solutions in current 

literature have state owners propagate state directly to 

shadow state subscribers, emphasizing topology to 

enable this. Some allow messages to be propagated via 

third parties, usually in a topology mirroring node 

location within the simulation.  

VAST[5] is an area of interest (AoI) scheme for 

organizing DVE state exchange topology. A Voronoi 

diagram is constructed based upon node positions 

within the DVE. Each node maintains a relationship – 

„enclosing neighbor,‟ „boundary neighbor,‟ or simple 

neighbor – with a subset of other DVE nodes, based 

upon adjacency and coordinate distance between the 

nodes. This relationship determines which nodes are 

connected and exchanging updates.  

[6] proposes using Delaunay Triangulation based 

upon node location to organize DVE topology. As a 

refinement, it suggests organizing highly proximate 

peers in the DVE into a cluster for more efficient 

message exchange. Delaunay Triangulation is the dual 

of a Voronoi diagram, so the overall topology is similar 

for both VAST and Delaunay Triangulation, modulo 

the cluster refinement.  

The P2P Message Exchange Scheme proposed in 

[7] and [8] uses AoI to allow a node to partition nodes 

into three sets: „active entities,‟ „latent entities,‟ and 

others. Active entities are nodes close enough to have 

full fidelity in state information exchange. Latent 

entities are further away, but still close enough to need 

lower fidelity state updates. Others are nodes too far 

away from the node to require any information. 

From a security perspective, the approaches listed 

in this section and in section 2.1 limit state update 

propagation to a dynamic subset of other DVE 

participants. DVE nodes come into and out of scope of 

other nodes, providing the opportunity for nodes to 

misrepresent their state upon introduction, or to fork 

their state, providing different state to non-overlapping 

sets of neighbors. 

 

2.3 DVE Security 
 

As mentioned earlier, P2P DVE‟s are vulnerable to 

a broader set of attacks than client-server DVE‟s. 

Significant research exists describing techniques to 

mitigate improper DVE state modification. In other 

words, preventing or detecting unauthorized state 

modification. 

There are three main approaches: protecting DVE 

software and communications, distributing state 

ownership to disinterested third parties, and auditing 

schemes.  Kabus et. al. [9] provide a good – although 

slightly out of date – overview of all three.  

Protecting software integrity and communications 

is a trusted computing base (TCB) approach. Mobile 

Guards[10] are a good example. DVE software is 

changed to require a trusted software component – a 

mobile guard – be present and operational. Portions of 

the DVE encrypted with keys only available from a 

functional mobile guard. Likewise, communications 

and data access can have integrity and confidentiality 

guaranteed with keys either contained within or 

derived from the mobile guard. As long as the mobile 

guard is not compromised, the system is guaranteed 

that its communications are unaltered, and that the 

DVE rules are being enforced as coded both locally 

and remotely. Attacker compromise of mobile guards is 

mitigated by issuing updates more frequently than the 

guards can be compromised. This is an interesting 

approach, but it is predicated on the impossibility of an 

attacker cracking a mobile guard before it is updated. 

This core requirement is one of the issues dividing 

those who accept TCB‟s as sufficient and those who do 

not.  

Distributing authoritative state ownership to 

disinterested third parties is another security technique. 

P2P DVE‟s such as SimMud, Colyseus use this 

method. A variant presented in IRS[11] allows state to 

be owned by the concerned party, but audits state 

update calculations by performing them at multiple 

untrusted nodes, then comparing the results. It assumed 

a disinterested third party has no motivation to break 

DVE rules in terms of state representation or updates, 

and that several disinterested parties are unlikely to 

collude for this purpose. Unfortunately this is not 

necessarily the case: third parties can maliciously 

tamper with data, whether it is relevant to them or not. 

For example, they can exploit their position to broker 

access to the state, requesting a fee from the data 

owner to keep the data secure. Or, the party with the 

greatest interest in a given piece of state can 

manipulate the system to ensure that control and 

auditing of that data falls to itself. The same argument 

holds true for compromising quorums of disinterested 

third parties, though of course compromising a quorum 

is usually more work than compromising a single node.  

If detecting – as opposed to preventing - illegal 

state changes is an acceptable level of mitigation, then 

auditing schemes can provide good DVE security.  

PeerReview[12] is an auditing system with good 

scalability and correctness guarantees. State changes 

and local transactions relevant to state calculations are 

stored in certified append-only local logs. Log contents 

are committed by peer exchange of signed log digests. 

Audits are performed by witnesses, who simulate 

forward from a state through a series of logged events 



to ensure correctness. Based on audit results and 

behavior, nodes are labeled as trusted, suspected, or 

exposed (bad). Audit frequency guidance is provided in 

terms of number of witnesses and the probability of 

illegal activity. 

PeerReview is a flexible, decentralized, general 

system with strong security guarantees. It is designed 

to operate in the absence of any central authority, and 

under a variety of scenarios. Our proposed system is 

similar to PeerReview, but makes the simplifying 

assumption of a trusted audit authority. Consequently 

Carbon can provide appropriate DVE security with 

fewer preconditions. For example, our system requires 

participants to log their activities, but these logs don‟t 

need to be as rigorously protected as PeerReview logs. 

PeerReview is designed to operate in parallel with the 

system it protects, while Carbon is a parasitic system 

piggybacking on the host DVE‟s messaging. Also, 

Carbon has a lighter weight commit requirement, 

needing only periodic state commit rather than full log 

commit to its authority. 

 

2.4 Network Game DVE Traffic Patterns 
 

Network Game DVE‟s are consumer-grade DVE‟s 

intended for home use, and optimized to provide an 

immersive experience with limited resources.  

These immersive experiences require instant 

response to interactions. Many of these DVE‟s are fast-

paced combat simulations, with real-time activity such 

as aiming and firing weapons, and chasing opponents. 

These applications are extremely latency sensitive, 

with latencies greater than 200 ms significantly 

degrading the experience[13][14].  

These DVE‟s need to be able to run on most 

personal computers, and over most network links, 

which typically means functioning over dial-up 

connections (33 kbps). For example, both Quake III 

Arena and World of Warcraft can function over dial-up. 

 Consumer-grade DVE‟s are characterized by low 

packet inter-arrival times (responsiveness), and very 

small packets (low resource requirement). [15] found 

Quake III  has typical packet sizes of 70-90 bytes, and 

typical inter-arrival times between 10 and 50 ms. [16] 

found World of Warcaft sends frequent, small packets, 

typically with little or no payload. Again typical packet 

size ranges between 50 and 70 bytes (our 

measurement), with 220 ms mean inter-arrival time 

(their measurement).  

There is one notable exception to this behavior in 

popular DVE‟s: Second Life. This DVE is a 

cyberspace simulation, not a game. It emphasizes user-

created content. This feature consumes significantly 

more bandwidth [17], between 10 and 1164 kbps mean 

download bandwidth consumption, and between 13 

and 74 kbps mean upload bandwidth consumption.  

Since game DVE‟s are dramatically more popular 

than any other type of DVE, we limit our analysis to 

game DVE traffic patterns. 

 

3. Carbon 
 

Distributed Virtual Environments are large 

collections of state, and rules for modifying that state. 

Carbon is an auditing system allowing DVE‟s to detect 

illegal state changes.  

DVE‟s must meet certain prerequisites in order to 

use Carbon. Section 3.1 spells out those requirements, 

and introduces nomenclature for discussing how 

Carbon interacts with eligible DVE‟s.  

Carbon consists of two types of modules: an audit 

client embedded in each DVE client node, and an 

auditor embedded in DVE code running on one or 

more trusted nodes. The auditor audits recorded DVE 

state, verifying legality of the simulation run as viewed 

at a given participant node.  

Carbon is DVE-agnostic. It doesn‟t understand the 

intricacies of how a given DVE operates. Instead, it 

provides a set of basic services a DVE uses to organize 

auditable information. In most cases enabling use of 

Carbon requires little modification of the DVE. 

The remainder of section 3 is divided into four 

parts. Section 3.1 outlines DVE requirements and 

introduces nomenclature. Section 3.2 describes Carbon 

audit client requirements and components in detail. 

Section 3.3 describes the Carbon auditor component. 

Section 3.4 provides an example illustrating behavior 

of a DVE using Carbon. Note: the reader may wish to 

skim section 3.4 before reading further, to help 

motivate nomenclature and design.  

 

3.1 Nomenclature and DVE Requirements  
 

DVE‟s run the gamut from virtual reality 

applications like Second Life to networked games like 

Quake III and World of Warcraft. Implementation 

techniques vary widely, as does nomenclature.  

Table 1 introduces the terminology we will use to 

describe DVE concepts used by Carbon.  
Table 1 – DVE Nomenclature 

Symbol Meaning 

𝑆𝑖
𝑡  State at node 𝑖 at time 𝑡 

𝐸𝑡  Event received at time 𝑡 

𝐼𝐷𝑎  DVE identity for „a‟ 

𝐿𝑖
𝑡1,𝑡2  Audit log for node i from 𝑡1 to 𝑡2  

𝑀𝑖→𝑗  Message from node 𝑖 to node 𝑗  



A node is a DVE instance running on a computing 

resource, typically providing the view and interaction 

point for a single avatar. State is the collection of all 

local authoritative and shadow state. An event is 

defined by the DVE itself, but is typically anything 

except a node state snapshot: it may be a state change, 

a user command, or anything else. A message is a 

container for DVE or Carbon information. It can 

contain state snapshots, events, audit log extracts, etc. 

Undecorated numeric or variable subscripts refer 

to a specific node. Subscripts prefixed with 𝑐 refer to 

Carbon auditors. For example, 𝑀𝑖→𝑐𝑗  describes a 

message from participant node 𝑖 to Carbon auditor 𝑐𝑗. 
In order for Carbon to operate, a DVE should be 

able to simulate forward from state snapshots using 

events, to compare states for similarity, and to 

determine whether a given event is legal to apply to a 

given state.  

Formally, a DVE is a collection of state for the 𝑁 

active nodes 𝑆 =  𝑆𝑖
𝑁
𝑖=0  and a set of rules for 

changing that state. The overall DVE state 𝑆 is a union 

of individual node state 𝑆𝑖 . Individual nodes may have 

overlapping DVE state. Ideally one copy of a given 

state variable is authoritative and the rest are shadow 

(non-authoritative) copies, but this is not required. 

An event 𝐸 is a state change or command which 

can result in state change for a given node‟s state, i.e. 

𝑆𝑖
𝑡1+𝜖 =   𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐸𝑣𝑒𝑛𝑡(𝑆𝑖

𝑡1, 𝐸𝑖
𝑡2). Given the state of 

a node at any two times in the DVE, it should always 

be possible to reach the successor state by taking the 

predecessor state and applying a series of ProcessEvent 

operations with the appropriate events.  

The DVE must be able to communicate state 

between nodes via messages. A node must be able to 

initialize itself based upon a combination of local state, 

and received state and event messages. 

DVE state changes must be deterministic. This 

doesn‟t rule out choosing state changes randomly, but 

it does mean that given a random choice must induce a 

deterministic change, and the choice is itself an event. 

 

3.2 Carbon Audit Client: “Reporter” 
 

The Carbon audit client is a small module 

implementing the DVE participant node portion of 

Carbon. We refer to this code module as the reporter. It 

is implemented as a library, invoked as required by 

DVE client code.  

The reporter provides information the auditor 

needs to perform audits. It is a store for client state 

snapshots and events both generated at and received by 

the DVE node. Events consist of any information 

material for determining state changes. This typically 

consists of outgoing and incoming DVE messages, but 

may include other information such as mouse moves 

and key clicks, depending upon the DVE‟s needs. 

From the reporter‟s perspective, both state 

snapshots and events are opaque data blobs, stored as 

simple byte arrays.  

The reporter exposes the interfaces described in 

Table 2 for the exclusive use of the DVE node. 
Table 2 - Reporter Functions 

Function Description 

Startup Initialize the reporter  

Shutdown Shut down the reporter 

Log Add an event or state to the log 

Commit Commit to the auditor 

AuditRequest Request an audit  

ProcessMessage Process a Carbon message 

RetrieveNotice Retrieve a Carbon notification 

ReleaseNotice Release a retrieved notification  

The reporter doesn‟t have a thread, and does not 

directly transmit network messages. The DVE node 

calls Startup to initialize the reporter. It provides the 

local node ID and a trusted auditor ID. It calls 

Shutdown to release any transient reporter data and 

flush data to storage.  

The DVE node submits auditable events and state 

to the reporter via the Log function. Log takes the log 

data type (event / state), DVE time, and byte array as 

parameters. The DVE node periodically calls Commit 

to submit its most recent state snapshot to the auditor.  

Upon receiving a remote message intended for the 

reporter – typically from a trusted auditor – the DVE 

node calls ProcessMessage with a sender ID and 

message payload. The two cases where this happens 

today are: 

1. Requesting an audit log extract 

2. Supplying audit results 

If the DVE node wants a remote node audited, it 

calls RequestAudit with that node‟s ID, the minimum 

DVE time range to audit, and an optional state 

snapshot. This function would typically be called when 

a DVE node is informed of state which it doubts, for 

example with the arrival of a new avatar.  

The reporter uses notices to communicate relevant 

information to the DVE node. The DVE node calls 

RetrieveNotice to retrieve a notice whenever a reporter 

call indicates a notice is waiting, and ReleaseNotice to 

free it. 

There are two reasons the audit client returns data 

to the DVE node: 

1. To request message transmission, for example in 

response to a received message, or as the result of 

a call to Commit 

2. To provide audit results to the DVE node. 

 



3.3 Carbon Auditor: “Auditor” 
 

The auditor is provided as a small library used by 

the DVE. It runs as a trusted DVE system component 

with the primary purpose of accepting state snapshots 

and performing DVE audits.  

The auditor is an advisory component. It does not 

directly make decisions. It provides a framework for 

collecting information the DVE can use to make audit 

decisions, and for disseminating the results. The DVE 

controls when an audit should be performed, audit 

success evaluation, and what action to take upon a 

successful or failed audit.  

The auditor can be embedded within an existing 

DVE server component. Or, a new purpose-built code 

base can exchange messages and perform audits on 

behalf of the auditor.  
Table 3 - Auditor Functions 

Function Description 

Startup Initialize the auditor 

Shutdown Shut down the auditor 

RequestAudit Require an audit 

CompleteAudit Provide audit results 

ProcessMessage Process a Carbon message 

RetrieveNotice Retrieve a Carbon notification 

ReleaseNotice Release a retrieved notification 

The table above lists auditor library functionsThe 

only new interface is CompleteAudit, used by the DVE 

server to return audit results to the Carbon auditor, 

along with an optional list of ID‟s to notify. 

ProcessMessage can receive three different 

messages, each of which raises a new notice the 

auditor must retrieve via a call to RetrieveNotice. 

1. A state snapshot message. 

2. An audit request message. 

3. A requested log excerpt.  

Each time the auditor receives a new state 

snapshot message, it persists the state, and retrieves the 

immediate predecessor and successor state snapshots 

for that participant – if any. This provides the basis of 

notice the DVE server can use to determine if it should 

perform an audit. For example, if the magnitude of 

changes between subsequent state snapshots seems 

very unlikely, it may trigger an audit.  

If an audit is required, the DVE calls 

RequestAudit. This call is authoritative since it is made 

by an auditor, and results in a log excerpt request for 

the specified node.  

When the log excerpt is received and raised as a 

notice, the DVE component retrieves it, and performs 

an audit based on the earlier state notice and the log 

excerpt. It notifies the auditor of the result by calling 

CompleteAudit with the final state and the audit 

success or failure. The auditor sends a corresponding 

audit result notification to the audited party, and to any 

other participant listed in the optional audit notification 

list.  

The example below illustrates the system. 

 

3.4 Carbon System Operation 
 

This section provides a detailed example of a DVE 

using the Carbon auditing system. We assume a P2P 

DVE with unique participant identities. Participants 

can connect and disconnect from the DVE at will, 

resuming their activities whenever they have time. We 

require state snapshots every 15 minutes.  

As a reminder, the system has four types of actors: 

A DVE node is a client instance. It contains a Carbon 

reporter, responsible for Carbon client activities. The 

DVE server is a trusted DVE component. It contains a 

Carbon auditor, which coordinates auditing. 

Alice wishes to continue her avatar‟s virtual life. 

She starts up her DVE node. As part of initialization, 

the DVE node code calls Startup(IDA , IDC1), 

initializing the Carbon reporter with her ID and the ID 

of a trusted auditor.  

The DVE node loads Alice‟s avatar and finishes 

integrating it into the DVE. The DVE node serializes a 

copy of Alice‟s avatar state and invokes Log(t0, 𝑆𝐴
𝑡0 ), 

which stores the state snapshot to the local audit log. 

Then it invokes Commit() which packages the latest 

state snapshot into a message for the auditor. Commit() 

signals the DVE node that a new notice is available for 

retrieval from the reporter. A call to RetrieveNotice() 

retrieves the message 𝑀𝐴→𝐶1  to send to the auditor. 

The DVE node connects to the appropriate DVE 

server, transmits the message, and calls 

ReleaseNotice(𝑀𝐴→𝐶1) to release its copy of the 

network message. 

The DVE server receives the message, and ensures 

the sender matches the message source ID. It notes that 

the message target ID belongs to its hosted auditor, and 

invokes ProcessMessage(𝑀𝐴→𝐶1). The auditor 

deserializes the message, and saves the received state 

snapshot  𝑆𝐴
𝑡0 into its state snapshot table for Alice. The 

auditor constructs a StateNotice notification triple 

𝑆𝑁 = (𝑆𝐴
𝑡0−𝑘 , 𝑆𝐴

𝑡0, ∅), and notifies the DVE server. 

The DVE server invokes RetrieveNotice() and receives 

the StateNotice. It evaluates the state snapshots, 

determines no audit is needed, and calls 

ReleaseNotice((𝑆𝑁) to return the resources back to the 

auditor. 

Alice participates in the DVE, with her DVE node 

sending and receiving network messages with state 

changes. Her DVE node also accepts and processes her 

local input. Each inbound and outbound network 



message – with the exclusion of Carbon messages - is 

considered an event, and its payload is logged to the 

reporter log via a call to Log(t, 𝐸𝑎
𝑡  ). The DVE can 

optionally record Alice‟s inputs for auditing. Input 

events can be stored in a local event queue. Each time 

a network message is sent or received, the DVE 

empties the local event buffer contents into a new „user 

input‟ event message, and Log‟s it. The reporter and 

auditor don‟t differentiate between these two categories 

of events, though the DVE server does.  

During Alice‟s session, her avatar encounters a 

new avatar Bob. When Alice‟s DVE node receives the 

message describing Bob‟s avatar‟s state 𝑆𝐵𝑡1 ⊂ 𝑆𝐵
𝑡1, it 

decides to request Bob be audited. Alice‟s DVE node 

invokes RequestAudit(t1, IDB, SB
t1

), which creates a 

new audit request message, which her node retrieves 

from the reporter and sends to the auditor on the DVE 

server. 

The auditor looks up Bob‟s state snapshots which 

fall within or immediately precede the audit interval. In 

this case, suppose there is a single previous snapshot 

𝑆𝐵
𝑡1−𝜖 . An AuditRequestNotice (𝑆𝐵

𝑡1−𝜖 , 𝑆𝐵𝑡1, 𝑡1 − 𝜖, 𝑡1) 

is created by the auditor and retrieved by the DVE 

server. The DVE server compares the states and 

timespan, and determines an audit is warranted. The 

DVE server invokes RequestAudit(IDB, 𝑡1 − 𝜖, t1) 

specifying who and over what interval to audit. The 

auditor constructs a log excerpt request (IDB, 𝑡1 − 𝜖, 

t1) and transmits it to Bob‟s reporter via a notice and 

DVE-transmitted message, as explained above.  

Bob‟s reporter constructs a serialized log excerpt 

𝐿𝑏
𝑡1−𝜖 ,   𝑡1

 of Bob‟s events between 𝑡1 − 𝜖 and 𝑡1, then 

transmits sends the auditor the excerpt as above.  

The auditor extracts the message and embeds the 

excerpt in a LogNotice. The DVE server pairs this 

excerpt with the state snapshots it already had, and 

forward simulates from 𝑡1 − 𝜖 to 𝑡1 checking the 

legality of each event as it is processed. Once the 

simulation time reaches 𝑡1, the DVE server compares 

𝑆𝐵𝑡1 with its calculated version in 𝑆𝐵
𝑡1. If the state 

variables specified in SB
t1

 match the value of the same 

state variables in 𝑆𝐵
𝑡1 then the audit passes. Otherwise it 

fails.  

If the audit was successful, the DVE server makes 

a list with Alice and Bob‟s ID‟s. If the audit failed, it 

makes a list which includes Alice, Bob, and any other 

participants the DVE server wishes to notify of the 

audit failure, such as Bob‟s neighbors.  

The auditor constructs a series of audit result 

messages containing notification of audit results, one 

per recipient in its list, and transmits the notifications 

to recipients as above.  

When a reporter receives the audit result, it creates 

an AuditResultNotice notification (IDB, 𝑡1 − 𝜖, t1, 

RESULT) and passes it to its DVE node. The DVE 

node code is responsible for performing an appropriate 

action, such as continuing simulation, or disconnecting 

from Bob. 

 

4. Evaluation 
 

P2P DVE‟s as a class have more significant 

security vulnerabilities than client-server DVE‟s. State 

storage and modification is performed on untrusted 

peers. There is no guarantee any node is executing the 

prescribed code base. As a result, DVE nodes requires 

means to ensure correctness of other nodes behavior.  

Participants in large-scale P2P DVE‟s typically 

possess only a fragment of the overall DVE state, some 

authoritative, and some cached shadow state. They rely 

upon other DVE nodes to provide them with shadow 

state at appropriate times, for example when another 

participant moves within their AoI.  

Given a set of trusted audit nodes, the Carbon 

system allows a DVE to mitigate vulnerabilities related 

to misrepresentation of state, and to detect illegal 

modification of state. More specifically, while the 

system cannot guarantee the represented state is 

correct, it can at least guarantee that the represented 

state is reachable from an earlier (trusted) state, and 

that the avatar presenting the state can produce an 

event sequence which reaches the represented state.  

The remainder of this section evaluates two 

aspects of Carbon. First, mitigation against incorrect 

state modification. Second, the overhead involved in 

using Carbon. 

 

4.1 Audit Coverage 
 

DVE‟s implement deterministic state machines. 

Given access to a state snapshot and an event, any node 

can determine the resulting state. This principle 

provides the basis of our auditing solution. 

P2P DVE nodes typically perform similar 

activities to one another, with similar levels of trust, 

ideally none. In some architectures, a node may be 

granted additional responsibilities for coordinating 

DVE activities, but such responsibilities are typically 

based upon node resources, not trustworthiness.  

Carbon provides an auditing framework for 

detecting invalid state transitions within the DVE. The 

DVE can use Carbon-provided data to perform audits, 

or more complex analysis, such as detecting illegal 

input devices. 

Carbon‟s goal is to ensure avatar integrity and 

correctness. It proved impossible to verify avatar state 

integrity in isolation: the avatar‟s state is affected by its 

environment. A system examining only avatar state 



lacks context to verify it. For example, suppose avatars 

have a „money carried‟ property, and Alice wishes to 

violate DVE rules by modifying her avatar to have a 

billion dollars. If the auditing system evaluates only 

avatars, and if there is any non-avatar source of money 

– for example money lying on the street - Alice could 

claim upon audit that her million dollars was found on 

the street, with no way the claim can be verified. By 

increasing the audit scope to include Alice‟s entire 

DVE node state, the auditor has access to context 

which can help validate or refute Alice‟s avatar state: it 

can review her node‟s simulation to learn about any 

money on the street, and can confirm the amount is 

appropriate. If that money is suspect, its source in the 

DVE can also be audited, and so on. 

Carbon can detect the following existing attacks: 

1. Illegal avatar activity, such as teleport hacks and 

speed hacks violating DVE rules for movement.  

2. Avatar edits, such as changing the resources 

associated with an avatar. Network game attacks in 

this category include „god mode,‟ duplication 

attacks, and weapon edits.  

Exhaustive auditing via Carbon reliably detects 

these attacks and has reasonable overhead, as discussed 

in section 4.2. If less expensive auditing is desired, 

DVE‟s can leverage participant affinity for their avatar, 

threatening to punish any cheaters. The DVE adjusts 

punishment and audit frequency to achieve deterrence.  

As mentioned earlier, Carbon does not directly 

evaluate DVE state correctness. Instead, it collects and 

organizes information for the DVE to determine when 

an audit should be performed. Likewise, performing 

the actual audit is left up to the DVE code itself. An 

audit can be as straightforward as verifying successive 

state transitions are legal, or as complex as correlating 

state transitions between multiple DVE views from 

multiple participants, or performing deep data mining 

to uncover more elusive DVE violations such as 

account sharing or theft[18] and dependency hacks 

such as wall hacks[19].  

 

4.2 Overhead 
 

Integrating Carbon requires relatively little effort 

for an existing DVE. However, Carbon does introduce 

significant network traffic and processing overhead.  

DVE operation can be characterized by four main 

activities:  

1. Abstract simulation. Evaluating state change and 

events. This is typically a lightweight activity. 

2. Rendering. Rendering the DVE perspective to 

present to the participant. This is usually the most 

significant activity in terms of memory, I/O, and 

processor consumption. 

3. Persistence. Storing DVE data, for example saving 

avatar state for later retrieval. Usually a very 

lightweight activity. 

4. Network traffic. DVE‟s must exchange messages 

to determine state changes and to refresh shadow 

copies of state. In a P2P DVE, this traffic is 

typically the traffic required to describe a state 

change traffic multiplied by the shadow copies. 

Carbon auditing doesn‟t influence abstract 

simulation and rendering at DVE clients, but it does 

increase persistence and network traffic workload. 

Carbon requires simulation data be retained in two 

places. The reporter on each DVE node maintains a 

local log of event and state snapshots. The auditor 

authoritatively stores state snapshots. Total storage 

consumption is significant, but can be reduced by 

flushing data past an assigned audit time horizon.  

The bulk of transmitted Carbon data comes from 

state snapshots and audit log excerpts destined for 

auditors. The scale of this activity varies according to 

DVE, but it is intuitively guaranteed to require at least 

as much network bandwidth as the packet payloads an 

efficient DVE uses transmitting state data.  

For illustration, suppose we have a DVE with the 

following attributes: 

Table 4 - Sample DVE attributes 

Function Variable 

State snapshot in kilobytes |𝑆𝑖| 
Average outgoing event rate  𝑅  𝐸𝑖  
Average shadow state copies 𝑄 

Commit interval 𝐶𝐼 
|𝑆𝑖 | is size in kilobytes for a node‟s full state 

description. This typically includes avatar position and 

attributes, and the state of objects being tracked by that 

node. 𝑅  𝐸𝑖   is the average traffic in kbps required to 

describe a node‟s state transitions to a neighbor.  𝑄 is 

the average neighbors receiving shadow state updates, 

and is one less than the average clique size (number of 

nodes in mutual interaction range). Commit interval 𝐶𝐼 
is the interval in seconds between DVE node calls to 

Commit() for committing state snapshots to the auditor. 

Incoming and outgoing non-audit bandwidth for a 

P2P DVE must be at least 𝑅  𝐸𝑖 × 𝑄: Each client 

transmits 𝑄 copies of its state changes, one to each 

clique member besides itself. Each client receives one 

copy of state updates from each of its 𝑄 fellow clique 

members. 

Per-node bandwidth required for auditing Commit 

is |𝑆𝑖|/𝐶𝐼 kBps. 

Suppose 𝑝 is probability of auditing the period 

between two state snapshots. Per-node reporter 

network overhead is (|𝑆𝑖 |/𝐶𝐼)  + 𝑝 × 𝑅  𝐸𝑖 × (𝑄 +
1). We multiply the event data rate by (𝑄 + 1) instead 



of 𝑄 because each node needs to provide the auditor 

with events it originates as well as those it receives. 

To help put the overhead in perspective, we use 

World of Warcraft (WoW) traffic models from [16] 

coupled with our own measurements obtained using 

WireShark and WoW version 3.1. We choose WoW 

because of its popularity and hence probability of 

benefiting from a reliable P2P DVE approach. WoW 

clients requires on average 2.1 kbps upload and 6.9 

kbps download bandwidth. It uses a command / state 

response model. We verified this by measuring 

bandwidth consumed by both an actor node and a node 

closely observing their acts. Hence, we consider the 

state change traffic to be 6.9 kbps per single copy of 

state changes transmitted, including network overhead.  

As mentioned in section 2.4, most game DVE 

packets have a very small or empty payload. In WoW 

57% of download packets have an empty payload. 

Analyzing our own packet trace, we found that in 821 

seconds of activity in a popular end-game zone, 3,881 

packets were received, with a total size of 284,246 

bytes. Our per-packet transport overhead for TCP and 

proxy framing was 54 bytes per packet, which is 

209,574 bytes of overhead. Our measurement shows 

74% packet framing overhead, leaving 26% actual 

event data in communications. This tells us the 

numbers from [16] provide conservative values, and 

are therefore a good benchmark for our purposes.  

Audit log extracts can be efficiently transmitted, as 

they are many MTU‟s in size. This drops transmission 

overhead from about 60% to approximately 5%. 

Translating this to aggregate event data numbers, event 

summaries for events at a given node consume 

𝑅  𝐸𝑖 = 2.9 kbps compared to the 6.9 kbps required 

for the DVE‟s operational traffic pattern.  

Based on our measurements, a full state snapshot 

as received from the server on initialization depends 

heavily upon the area entered. We measured values 

between 26 kB for a quiet area to 125 kB for a busy 

one. For this example, we set  𝑆𝑖  = 62.5 kB, roughly 

halfway between the two extremes. We assume 𝑄 is 10. 

Average bandwidth sent and received by a P2P 

DVE node in our scenario – excluding audit-related 

activities – is (6.9 * 10) inbound + (6.9 * 10) outbound  

= 138 kbps. Suppose we choose a Commit interval 

𝐶𝐼 = 15 minutes. Then we have (62.5*8 / 900) = 0.56 

kbps for state snapshots, and 𝑝 * (2.9 * (10 + 1)) = 𝑝 * 

31.9 kbps for reporting log excerpts, for a total of 32.5 

kbps for full auditing of all state transitions. In other 

words, full auditing requires 24% network bandwidth 

overhead compared to the DVE node‟s normal 

operating requirements.  

 

 

 

 
Figure 1 - Detect chance and overhead by audit chance 

Auditing lacks the immediacy of a client-server 

approach to the DVE security, but it also has 

advantages. 

1. Since each audit simulates a single node‟s 

snapshot of the world, we have proof by example 

that it can be performed by a single node. Auditing 

the entire DVE is decomposable into auditing 

individual nodes. This means auditing scales 

linearly with the number of front ends compared to 

sub-linear scale of centralized DVE servers for 

client-server DVE‟s.  

2. The fraction of state intervals audited can be 

scaled down according to the risk tolerance and 

participant avatar affinity, reducing audit cost. In 

our example the DVE could audit a small fraction 

of sessions (such as 𝑝 = 0.01). Someone who 

broke the rules only once an hour would have a 

nearly 70% chance of getting caught during their 

100-play-hour lifetime. If 𝑝 = 0.05 the probability 

of being caught and punished rises to 99.7%. 

Many game DVE‟s have avatar lifetimes measured 

in thousands of hours, not hundreds. 

The second point underscores the efficacy of 

random auditing for catching cheaters at least once in 

their expected avatar lifetime. Figure 1 shows the 

probability of catching a cheating avatar sometime in 

their lifetime for a given random audit fraction 𝑝. In 

our example, lifetime cheater lifetime detection ramps 

up to 99.9% with 7% random auditing.  

Figure 1 also shows the linear per-node audit 

bandwidth overhead for a given value of  𝑝. Bandwidth 

overhead is linear with audit fraction. Audit selection 

based on state examination and adversary-proposed 

audits should have a better success rate, but this result 

shows even random auditing can act as a deterrent for 

habitual rule violators. 

Storage overhead for client logs and for the central 

state snapshots would not be prohibitive for modern 

computers. The storage required at a node for a given 

time window is roughly the same as the auditing 

network overhead per node times the time period. In 

our example, a full week of 24-hour audit storage for a 

DVE client would consume no more than (7 * 24 * 60 

* 60) s * 32.5 kbps = 2.5 GB of audit client storage. 



Auditor storage required to track state snapshots for 

each node for the same time window would be 42 MB.  

 

5. Conclusions 
 

P2P DVE‟s are an active research area, and so far 

haven‟t been broadly deployed. One requirement for 

broad deployment is a good security solution to 

mitigate cheating, providing security guarantees 

similar to those available in DVE‟s deployed today.  

We introduced Carbon, a trusted auditing system. 

Carbon consists of a per-node audit client component 

called a reporter, and at least one trusted auditor run as 

part of a trusted DVE component. DVE‟s using Carbon 

can ensure that DVE state transitions performed by 

DVE participants are at least plausible, and that those 

participants are not forking their state or performing 

illegal state transitions such as teleport and speed 

hacks. 

We showed that Carbon overhead is significant but 

not untenable. In a scenario modeled after a P2P World 

of Warcraft DVE, we showed Carbon requires on 

average only 24% additional network traffic to perform 

exhaustive auditing. We further showed that for DVEs 

with strong participant-avatar affinity (such as World 

of Warcraft), auditing only a fraction of participant 

activity – such as 1% – still provides a good chance of 

catching state transition violations, deterring would-be 

cheaters and hackers. We also showed that carbon 

auditing can be scaled linearly with the number of 

auditor resources applied.  
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