Signpost: Trusted, Effectful Internet names

Jon Crowcroft from original slides by Anil Madhavapeddy, University of Cambridge
Keynote for U-Net@ICC, Ottawa, 11.6.2012
BACKGROUND: 1980

PC B

Internet

ISP

AOL

Yahoo!

12.13.14.15

PPP
BACKGROUND:
1990

PC A <-> 14.15.16.17 (PPP) <-> ISP

PC B <-> 12.13.14.15 (PPP) <-> ISP

Internet <-> AOL
Internet <-> Yahoo!

Thursday, 1 March 2012
BACKGROUND:
2000

PC A 14.15.16.17
ISP

PC B 192.168.0.2
NAT 192.168.0.1
PC C 192.168.0.3

12.13.14.15
ISP

AOL
Yahoo!

BACKGROUND:
2000

Thursday, 1 March 2012
BACKGROUND:
2010

10.0.0.2 → NAT → 14.15.16.17 (PPP) → ISP

192.168.0.2 → NAT → 192.168.0.1 → 12.13.14.15 (PPP) → ISP

Google
Facebook
Skype

Thursday, 1 March 2012
BACKGROUND: 2012

PC A 10.0.0.2

NAT 10.0.0.1 14.15.16.17

PPP

ISP

192.168.0.2

PC B

192.168.0.1

NAT

192.168.0.3

PC C

12.13.14.15

PPP

ISP

14.15.16.17

Internet

STUN port punch

Skype supernode

BACKGROUND: 2012

Thursday, 1 March 2012
BACKGROUND:
EDGE COMPLEXITY

home PC
work PC
iPhone
iPad
BACKGROUND: EDGE COMPLEXITY

- home PC
- NAT
- work PC
- "CL sysadmin"
- iPhone
- 3G
- wifi
- iPad
- wifi
- NAT
- "wgb"
- firewall
- proxy
- firewall
- firewall
- firewall
- JANET
- JANET
- Virgin Media
- Cable/DSL
- O2
- ISP 1

Thursday, 1 March 2012
BACKGROUND: THE CLOUD

- home PC
- work PC
- iPhone
- iPad

NAT → Cable/DSL → Virgin Media

“CL sysadmin” → firewall → JANET

proxy → firewall → O2

3G

wifi

NAT

“wgb” → firewall → ISP 1

Google

Facebook

Dropbox

Thursday, 1 March 2012
BACKGROUND: THE CLOUD

Thursday, 1 March 2012
Identity: high-level, easy-to-use device registration ("my iPhone", "work computer").

Visibility: only outbound connections required.

Reliability: an army of professional sysadmins to worry.

Social: cloud services can connect to each other.
Privacy: all data controlled by third-party, with their own policies (Google real name!).

Security: one leak is all it takes. Irrevocable loss.

Cost: orders of magnitude more resources on edge networks (e.g. bandwidth/latency).

Availability: what if your house is disconnected?

Energy: cost of moving data to/from edge and cloud.
Why can’t we all have our own cloud between our devices and networks?

- #1: we have no identity online.
- #2: lack of end-to-end connectivity limits visibility.
- #3: who hosts our stuff reliably?
- #4: why bother? What new services does this enable?
SIGNPOSTS

- **The minimum coordination infrastructure** required to establish routes between edge devices.

- DNS is woefully under-used to date. (ab)use it for global signalling through middleboxes.

- Work offline and support lazy synchronisation

- Support confidential lookups

- **Desired user experience:** when I address a device by its hostname, the result should just work (e.g. iphone.anil)
PROBLEM #1: IDENTITY

- home PC: anil/home
- work PC: anil/work
- iPhone: anil/phone
- iPad: anil/fluffy

Dropbox: dropbox.com
PROBLEM #1: IDENTITY

- home PC: home.anil.recoil.org
- work PC: work.anil.recoil.org
- iPhone: phone.anil.recoil.org
- iPad: fluffy.anil.recoil.org
- Anil PC: anil.cl.cam.ac.uk
- Steve PC: hand.cl.cam.ac.uk
- Cecilia PC: cecilia.cl.cam.ac.uk

signpost anil.recoil.org

signpost cl.cam.ac.uk

Thursday, 1 March 2012
PROBLEM #1: IDENTITY

name.

anil. seb. haris.

ipad. phone
PROBLEM #1: IDENTITY

- Anil
- Seb
- Haris
- Cam
- Tigger
- iPad
- Phone
- Work

Thursday, 1 March 2012
Identity: every individual has a domain name hierarchy

- DNSSEC means you register a single public/private key (anil.recoil.org)

- Proxy identity to social networks (anilmadhavapeddy.facebook.com)

- Use address book to invisibly associate names to DNSSEC domain keys.

- Bind devices to your domain ("resurrected duckling")
LET A MILLION CLOUDS BLOOM!

- Why can’t we all have our own cloud between our devices and networks?
 - #1: we have no identity online.
 - #2: lack of end-to-end connectivity limits visibility.
 - #3: who hosts our stuff reliably?
 - #4: why bother? What new services does this enable?
PROBLEM #2: CONNECTIVITY

- iPhone
- NAT
- ISP
- DNSSEC
- Signpost
- PC
- iPad
- NAT
- ISP

Thursday, 1 March 2012
PROBLEM #2: CONNECTIVITY

NAT ISP

me: 12.13.14.15
me: 12.13.14.17
me: 100.10.12.13

PC NAT

me: 12.13.14.15
me: 12.13.14.17

iPad ISP

DNSSEC Signpost

Thursday, 1 March 2012
PROBLEM #2: CONNECTIVITY

Q: pc.anil.recoil.org
A: 12.13.14.15

Thursday, 1 March 2012
PROBLEM #2: CONNECTIVITY

A: 12.13.14.15 (TTL 0)
PROBLEM #2: CONNECTIVITY

- Parallel Routing Tactics for p2p:
 - **NAT punching**: act as a 3rd party STUN server
 - **UPnP** or other NAT control protocols
 - **Rendezvous** zeroconf discovery of peers
 - **IPSec setup**: VPN (great for “dumb” devices)
 - **HTTP/SMTP proxy**: corporate networks
 - **Wifi hotspot?** IP-over-DNS works (iodine)
 - Last resort: tunnel traffic to the cloud

- Your signpost is the ultimate dirty fighting middleboxer!
“Effectful” name lookups

When a name is looked up, the Signpost executes tactics to discover and establish routes.

- Tactics form a simple dataflow graph of goals. E.g.:
 - “ipad wants to connect to iphone”
 - “iphone” requires a VPN tunnel or a NAT punch
 - attempt NAT punch - FAIL
 - attempt VPN setup - SUCCESS. Return IP to “iPad”.

- Tactics are composed via functional reactive programming. Lets us inspect why a route exists based on successful tactics.
Routing tactics can auto derive other security keys from global public key!

- **L2**: Ethernet authentication (802.1X), WPA certificates
- **L3**: IPSec, L2TP, OpenVPN
- **L4**: SSL (Notaries), TCPcrypt
- **L7**: HTTPS (Google Chrome), SSH (RFC4255), IMAP, CalDAV, WebDAV
- **“L8”**: Browser passwords, file encryption
PROBLEM #2: CONNECTIVITY

- anil
 iPhone
- anil.recoil.org
 Signpost
- seb
 PC
- seb
 iPad
- seb.eide.name
 Signpost

Thursday, 1 March 2012
PROBLEM #2: CONNECTIVITY

Q: ipad.seb.eide.name
PROBLEM #2: CONNECTIVITY

anil

iPhone

A: 190.10.23.45

anil.recoil.org

Signpost

seb

PC

190.10.23.45

seb.eide.name

Signpost

seb

iPad

VPN

Thursday, 1 March 2012
PROBLEM #2: CONNECTIVITY

anil
iPhone

anil.recoil.org
Signpost

A: 190.10.23.45

VPN

seb
PC

190.10.23.45

seb.eide.name
Signpost

seb
iPad

seb.eide.name
Signpost

anil.recoil.org
Signpost

seb.eide.name
Signpost

Thursday, 1 March 2012
LET A MILLION CLOUDS BLOOM!

- Why can’t we all have our own cloud between our devices and networks?
 - #1: we have no **identity** online.
 - #2: lack of end-to-end **connectivity** limits visibility.
 - #3: who hosts our stuff **reliably**?
 - #4: why bother? What **new services** does this enable?

Thursday, 1 March 2012
PROBLEM #3: RELIABILITY

Mobile
- anil iPhone
- anil.recoil.org
- Signpost

Home
- anil PC
- anil iPad
- anil Fridge
- anil TV
- anil.recoil.org
- Signpost

Cloud
- anil.recoil.org
- Signpost

Work
- anil.recoil.org
- Signpost

Thursday, 1 March 2012
PROBLEM #3: RELIABILITY

- All signposts stay in communication and sync data
- Eventually consistent lazy replication (Bayou)
- Natural fit to DNS consistency model
- Coordination data only: very low bandwidth
- Request resolution is a dataflow graph, where the nodes represent possible tactics (e.g. STUN or route setup).
Why can’t we all have our own cloud between our devices and networks?

- #1: we have no identity online.
- #2: lack of end-to-end connectivity limits visibility.
- #3: who hosts our stuff reliably?
- #4: why bother? What new services does this enable?
PROBLEM #4: WHY BOTHER?

- **Efficiency:** Apple devices support “sleep proxies” and multicast DNS http://en.wikipedia.org/wiki/Bonjour_Sleep_Proxy

 Devices register DNS services records (e.g. iTunes sharing or website) and go to sleep.

 Router proxy wakes them up (Time Capsule or Airport Extreme).

- **Evaluation #1:** run Bittorrent to share files between two phones. Cycle between two spots in Cambridge: we hit eduroam, 3G, wgb wifi.
PROBLEM #4: WHY BOTHER?

- **Low latency services**, simply not possible with cloud.
- Sub-millisecond image processing
- Real-time video stitching (concerts, Olympics)
PROBLEM #4: WHY BOTHER?

- Low latency services, simply not possible with cloud.
PROBLEM #4:
WHY BOTHER?

- **Low latency services**, simply not possible with cloud.
 - Sub-millisecond image processing
 - Real-time video stitching (concerts, Olympics)

- **Evaluation #2**: multipath video streaming is trivial with Signposts, as they take care of route setup and failover.
PROBLEM #4: WHY BOTHER?

- Democratise our infrastructure!
 - Hardware printing now possible (diydrones.com), Arduino, Raspberry Pi.
 - Not practical to hook things up to Twitter and Facebook at scale.
 - Machine-to-machine trust via Signpost gets more secure as it grows (see Perspectives, USENIX Security)

- Evaluation #3: middlebox probing and enable most efficient path security (TCPcrypt, IPSec).
 - “Policies in the ends, middlebox probing in the middle”
SUMMARY

- “An architecture for dynamic routing across distributed clouds via middlebox-controlled context-dependent naming”

- or: Network names that “just work”!

- Related work: Intentional names (MIT), Named Data Networking, Perspectives, Internet Indirection Infrastructure (I3)