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1. Private Data Center->Public Cloud


• Health	or	Finance	data,	for	example	
•  Farr/NHS	Scotland	
•  HSBC	

• MoEves	for	public	cloud	
•  Scale	out/cost	save	
•  Higher	Throughput	analyEcs	
•  Share	“access”	with	more	researchers	
•  <Yours	goes	here>	



Infrastructure Loca0on


• Keep	friends&enemies	near:	
•  Legal/Regulatory	Stuff	(incl	GDPR)	
•  Latency/Availability	etc	
•  Control	(physical	access	etc)	

• Need	to	virtualise	these	(be,er)	
•  Crypt	Data	at	rest	
•  Crypt	data	during	“processing”		
•  key	management	etc	
•  Enclave…	SGX,Trust	Zone,	AMD,	CHERI	



GDPR – 2018 – right to an explanaion
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• ATI	w/	Intel,	Dstl,	Docker,	Microso)	
	
•  Compare	what	is	in	SGX		

•  Enter/leave	cost,	crypt	memory	o/h	etc	
•  Hypervisor?	

•  Compare	w/	container	on	trustzone,	cheri,	AMD	etc	
•  Common	APIs	for	keys	etc	
•  Virtualize?	

•  Pen	test		
•  many	side	channel	pb	
•  What	if	weak	homomorphic	crypto	&	diff	priv?	



Outline


•  1. Motivation: Trustworthy data processing in untrusted clouds


•  2. Overview of Intel SGX


•  3. Description of SGX-LKL Design


•  4. Description of preliminary SGX-Spark Design


•  5. Source code release of Java support on GitHub 
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1. Motivation: Trustworthy Data Processing
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Trust Issues: Provider Perspective


•  Cloud provider does not trust users


•  Use virtual machines to isolate 
users from each other and the host


•  VMs only provide one way protection
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Trust Issues: User Perspective


•  Users trust their applications


•  Users must implicitly trust  
cloud provider


•  Existing applications implicitly 
assume trusted operating system
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Trusted Execution Support with Intel SGX


•  Users create HW-enforced trusted 
environment (enclave)


•  Supports unprivileged 
user code


•  Protects against strong attacker 
model


•  Remote attestation

•  Available on 

commodity CPUs 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Enclave
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2. Overview of Intel SGX
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Trusted Execution Environments


•  Trusted execution environment (TEE) 
in process


– Own code & data

– Controlled entry points

–  Provides confidentiality & integrity

–  Supports multiple threads

–  Full access to application memory
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Intel Software Guard Extensions (SGX)


•  Extension of Instruction Set Architecture (ISA) in recent Intel CPUs

–  Skylake (2015), Kaby lake (2016)


•  Protects confidentiality and integrity of code & data in untrusted 
environments


–  Platform owner considered malicious

– Only CPU chip and isolated region trusted
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SGX Enclaves


•  SGX introduces notion of enclave

–  Isolated memory region for code & data

– New CPU instructions to manipulate enclaves 

and new enclave execution mode

•  Enclave memory encrypted and integrity- 

protected by hardware

– Memory encryption engine (MEE)

– No plaintext secrets in main memory


•  Enclave memory can be accessed only by enclave code

–  Protection from privileged code (OS, hypervisor)


•  Application has ability to defend secrets

–  Attack surface reduced to just enclaves and CPU

– Compromised software cannot steal application secrets


Process 

OS 

Enclave 

Hypervisor 

✘✘
✘
✔
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SGX SDK Code Sample

SGX application: untrusted code

char request_buf[BUFFER_SIZE];
char response_buf[BUFFER_SIZE];

int main()
{  
  ...
  while(1)
  {  
    receive(request_buf);  
    ret = EENTER(request_buf, response_buf);  
    if (ret < 0) 
      fprintf(stderr, "Corrupted message\n");
    else
      send(response_buf);  
  }  
  ...  
}

Enclave: trusted code

char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{
  copy_msg(in, input_buf);  
  if(verify_MAC(input_buf))
  {
    decrypt_msg(input_buf);  
    process_msg(input_buf, output_buf);
    encrypt_msg(output_buf);
    copy_msg(output_buf, out);  
    EEXIT(0);  
  } else  
    EEXIT(-1);  
}

Server:

• Receives encrypted requests

• Processes them in enclave

• Sends encrypted responses
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SGX Enclave Construction


Enclave populated using special instruction (EADD)

•  Contents initially in untrusted memory

•  Copied into EPC in 4KB pages

Both data & code copied before execution commences in enclave


char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{
  copy_msg(in, input_buf);  
  if(verify_MAC(input_buf))
  {
    decrypt_msg(input_buf);  
    process_msg(input_buf, output_buf);
    encrypt_msg(output_buf);
    copy_msg(output_buf, out);  
    EEXIT(0);  
  } else  
    EEXIT(-1);  
}

EPC 

DRAM
1 
2 

3 
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SGX Enclave Construction


•  Enclave contents distributed in plaintext

– Must not contain any (plaintext) confidential data


•  Secrets provisioned after enclave constructed and integrity verified

•  Problem: what if someone tampers with enclave?


– Contents initially in untrusted memory


int process_request(char *in, char *out)
{
  copy_msg(in, input_buf);  
  if(verify_MAC(input_buf))
  {
    decrypt_msg(input_buf);  
    process_msg(input_buf, output_buf);
    encrypt_msg(output_buf);
    copy_msg(output_buf, out);  
    EEXIT(0);  
  } else  
    EEXIT(-1);  
}

int process_request(char *in, char *out)
{
  copy_msg(in, input_buf);  
  if(verify_MAC(input_buf))
  {
    decrypt_msg(input_buf);  
    process_msg(input_buf, output_buf);
    copy_msg(output_buf, external_buf);
    encrypt_msg(output_buf);
    copy_msg(output_buf, out);  
    EEXIT(0);  
  } else  
    EEXIT(-1);  
}

Write unencrypted response to outside memory
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SGX Enclave Measurement


•  CPU calculates enclave measurement hash during enclave construction

–  Each new page extends hash with page content and attributes (read/write/execute)

– Hash computed with SHA-256


•  Measurement can be used 
to attest enclave to local or 
remote entity


CPU calculates enclave measurement hash during 
enclave construction

Different measurement if enclave modified




EPC 

DRAM CPU

c0 94 7d bc 35 52 ba

9a 16 a6 63 0b 72 09

0d 0f 15 0b d0 2d ae
1a 55 f9 2f a8 20 98
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SGX Enclave Attestation


•  Is my code running on remote machine intact?

•  Is code really running inside an SGX enclave?


•  Local attestation

–  Prove enclave’s identity (= measurement) to another enclave on same CPU


•  Remote attestation

–  Prove enclave’s identity to remote party


•  Once attested, enclave can be trusted with secrets
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Local Attestation


•  Prove identity of A to local enclave B


1.  Target enclave B measurement required for key generation

2.  Report contains information about target enclave B, including its measurement

3.  CPU fills in report and creates MAC using report key, which depends on random CPU fuses and target 

enclave B measurement

4.  Report sent back to target enclave B

5.  Verify report by CPU to check that generated on same platform, i.e. MAC created with same report key 

(available only on same CPU)

6.  Check MAC received with report and do not trust A upon mismatch




CPU

Enclave A Enclave B
1. Hi! I’m 5f904ba8910bff! Who are you? 

0d 0f 15 0b d0 2d ae
Measurement (enclave A) 

5f 90 4b a8 91 0b ff
Measurement (enclave B) 2. Please create a report for 

5f904ba8910bff 

0d 0f 15 0b d0 2d ae

3. Here you go! 

4. Here is my report 
0d 0f 15 0b d0 2d ae

5. Please give me my 
report verification key 

6. Here you go! 

Peter Pietzuch - Imperial College London
 20




Remote Attestation


•  Transform local report  to remotely verifiable “quote”


•  Based on provisioning enclave (PE) and quoting enclave (QE)

–  Architectural enclaves provided by Intel

–  Execute locally on user platform


•  Each SGX-enabled CPU has unique key fused during manufacturing

–  Intel maintains database of keys
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Remote Attestation


•  PE communicates with Intel attestation service

–  Proves it has key installed by Intel

– Receives asymmetric attestation key


•  QE performs local attestation for enclave

– QE verifies report and signs it using attestation key

– Creates quote that can be verified outside platform


•  Quote and signature sent to remote attester, which communicates with 
Intel attestation service to verify quote validity
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SGX Limitations & Research Challenges


•  Amount of memory enclave can use needs to be known in advance

– Dynamic memory support in SGX v2


•  Security guarantees not perfect

–  Vulnerabilities within enclave can still be exploited

–  Side-channel attacks possible


•  Performance overhead

–  Enclave entry/exit costly

–  Paging very expensive


•  Application partitioning? Legacy code? …
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3. Description of SGX-LKL
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SGX-LKL: Supporting Managed Runtimes in SGX


•  Many applications need runtime support

–  JVM

–  .NET

–  JavaScript/V8/Node.js


•   

•  Requires complex system support


– Dynamic library loading

–  Filesystem support

–  Signal handling

– Complete networking stack 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SGX-LKL: Linux Kernel Library inside SGX Enclaves


•  Based on Linux Kernel Library (LKL)

–  Implemented as architecture-specific port of mainline Linux (github.com/lkl)

–  Follows Linux no MMU architecture

–  Full filesystem support

–  Full network stack available


26
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SGX-LKL Architecture


•  Runs unmodified Linux applications in SGX enclaves

•  Applications and dependencies provided via disk image

•  Full Linux kernel functionality available


•  Custom memory allocator

•  User-level threading


–  In-enclave synchronisation 
primitives


27
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4. Description of SGX-Spark
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Secure Big Data Processing


•  Processing of large amounts of sensitive information

•  Outsourcing of data storage and processing

•  Cloud provider can access processed data


– Not acceptable for number of industries
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def main(args: Array[String]) { 

  new SparkContext(new SparkConf()) 

    .textFile(args(0)) 

    .flatMap(line => {line.split(" ")}) 

    .map(word => {(word, 1)}) 

    .reduceByKey{case (x, y) => x + y} 

    .saveAsTextFile(args(1)) 

} 
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Secure Machine Learning


•  Secure machine learning (ML) killer application for Maru

– Resource-intensive thus good use case for cloud usage

– Raw training data comes with security impliations


•  Complex implementations of ML algorithms cannot be adapted for SGX

– Consider Spark MLlib with 100s of algorithms


•  Challenges

–  Extremely data-intensive domain

– Must support existing frameworks (Spark, TensorFlow, MXNet, CNTK, …)

– ML requires accelerators support (GPUs, TPUs, …)

–  Prevention of side-channel attacks
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State of the Art


•  Protect confidentiality and integrity of tasks and input/output data


•  Opaque [Zheng, NSDI 2017]

– Hide access patterns of distributed data analytics (Spark SQL) 

–  Introduces new oblivious relational operators

– Does not support arbitrary/existing Scala Spark jobs


•  VC3 [Schuster, S&P 2015]

–  Protects MapReduce Hadoop jobs

– Confidentiality/integrity of code/data; correctness/completeness of results

– No support for existing jobs → Re-implement for VC3 



31
Peter Pietzuch - Imperial College London




SGX Support for Spark


•  SGX-Spark

–  Protect data processing from infrastructure provider

–  Protect confidentiality & integrity of existing jobs

– No modifications for end users

–  Acceptable performance overhead


•  Idea: 
Execute only sensitive parts of Spark inside enclave


– Code that accesses/processes sensitive data


•  Code outside of enclave only accesses encrypted data

–  Partition Spark

– Run two collaborating JVMs, inside enclave and outside of enclave
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Challenges & Current State


•  1. Partitioning Spark


•  2. Data movement between JVMs


•  3. Memory efficiency


33
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1. Partitioning Spark

•  Goal: Move minimal amount of Spark code to enclave 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Outside
 Enclave


HadoopRDD

Provide iterator over input data partition (encrypted)


MapPartitionsRDD

Execute user-provided function (f)

(eg flatMap(line => {line.split(" ")})

(i) Serialise user-provided function f 
(ii) Send f and it to enclave JVM

(iv) Receive result iterator it_result 



 


(iii) Decrypt input data  
(iv) Compute f(it) = it_result  
(v) Encrypt result


ExternalSorter

Execute user-provided reduce function g

(eg reduceByKey{case (x, y) => x + y})


(iii) Decrypt input data  
(iv) Compute g(it2) = it2_result  
(v) Encrypt result


ResultTask 
Output results


it 

f,it 

it2 = it_result 
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1. Partitioning Spark
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1. Partitioning Spark
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1. Partitioning Spark
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2. Data Movement between JVMs


•  Goal: Shared memory


•  Use use host OS shared memory between two JVMs

– Outside access by enclave JVM


•  Manage shared memory between outside and enclave

•  Implement high-level read/write primitives


38
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Host OS 

1. Partitioning Spark
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2. Distributed Analy0cs


• MoEves	e.g.	
•  Move	code	to	data	
•  Keep	data	close	to	owner/primary	user	
•  Guarantee	can	audit	trail	access	
•  Add	yours	here	

•  Challenges	
•  Depends	on	ML	technology	of	choice	&	goal	

•  PCA/Clustering,	random	forests		
•  Curve	fifgn	(regression	etc)	
•  Model	Inferencing	–	e.g.	Bayesian	inference	

•  Distrubuted	differenEal	privacy	tricky	
•  Hierarchical	versus	P2P?	



Future Proof for GDPR

•  Privacy	by	Design	and	by	Default	–	HAT	address	all	GDPR	privacy	requirement	from	its	design	principle	to	its	security	soluEon.	

•  HAT	ecosystem	data	exchange	is	based	on	fully	specified	privacy	terms	-	Eme	specific,	recipient	specific,	minimum	data	points	
specific	with	full	inten-on	disclosed.	ViolaEon	against	any	of	such	terms	may	result	a	ban	from	the	Ecosystem.	

•  Consent	by	design	and	by	default	-		
•  the	PCST	PoC	mandates	a	“specific,	informed	and	freely	given	and	unambiguous”	intension	disclosure	of	data	usage,	for	every	

single	personal	data	access	instances.		
•  HAT	technology	ensures	that	an	exchange	is	only	authorised	and	kept	valid	by	individual’s	case	specific	consent	

•  Rights	for	Individuals	by	design	and	by	default	–	encapsulated	personal	data	containers	isolated	for	each	individual,	allows	an	
individual	is	in	full	control	of	its	HAT,	hence	inherently	owns	all	of	the	following:		

•  Right	to	Access	|	Right	to	be	informed	|	Right	to	recEficaEon	|	Right	to	restrict	processing	|	Right	to	object	to	market	
•  Right	of	data	portability	|	Right	to	be	forgo,en	|	Right	to	object	to	automated	decision	making	and	profiling	

•  Accountability	and	governance	-	PCST	CoP	mandates	every	ecosystem	member	to	higher	level	of	accountability	and	governance	
pracEce.	

•  Record	keeping	–	HAT	ecosystem	automaEcally	tracks	data	exchange,	even	at	a	much	more	granular	level	than	GDPR	requires	–	
it	documents	the	exchange	parEes,	Eme	of	access,	detailed	data	points,	intension	and	T&C,	for	every	single	transacEon.	

•  Data	protecEon	by	design	and	by	default	-	The	HATDeX-serviced	HAT	is	designed	with	mulEple	layers	of	protecEon,	covering	
Data	at	Rest,	Data	in	Transit	and	Data	in	Use.	(	
h,p://www.hatdex.org/wp-content/uploads/2016/06/hatdex-briefing-Issue-2_FINAL.pdf)	

•  Mandatory	breach	noEficaEon	-	HAT’s	API	driven	ecosystem	automaEcally	records	all	exchanges	breach	tracking	and	invesEgaEon	

GDPR	Roundtable	discussion	consulted	a	few	HAT	research	team	members	for	the	design	of	the	legislaEon.	HAT	ecosystem	can	ensure	GDPR	compliance,	and	further	
mandates	Eghter	terms	than	GDPR	as	entry	requirements	from	all	parEes	who	wish	to	operate	within	this	ecosystem	following	its	PCST	(Privacy,	ConfidenEality,	
Security	and	Trust)	Code	of	PracEce	(h,p://hatcommunity.org/other-resources/).	

h,p://hatdex.org	/	h,p://hatcommunity.org				 41	



Distributed Analytics outline 

●  Part I: Quick Overview of Owl 

●  Part II: Probabilistic Synchronous Parallel 
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What Is Owl 

●  An experimental and above all scientific computing system. 

●  Designed in functional programming paradigm. 

●  Goal: as concise as Python yet as fast as C, and safe. 

●  A comprehensive set of classic numerical functions. 

●  A fundamental tooling for modern data analytics (ML & DNN). 

●  Native support for algorithmic differentiation, distributed & parallel 

computing, and GPGPU computing. 
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Vision Beyond Research Prototype 
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Owl 

MirageO
S 

Unikernel 

Write code once, then deploy it everywhere …  

Owl system provides us a complete set of tooling from the 
powerful numerical supports in development to the deployment 
on various platforms. 



Owl’s Architecture 
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Owl + Actor = Distributed & Parallel Analytics 
 
Owl provides numerical backend; whereas 
Actor implements the mechanisms of 
distributed and parallel computing. Two parts 
are connected with functors. 
 
Various system backends allows us to write 
code once, then run it from cloud to edge 
devices, even in browsers. 
 
Same code can run in both sequential and 
parallel mode with Actor engine. 
 



Research 
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Presented in ICFP’17 OCaml meeting, tutorial in CUFP’17. 
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Parallel and Distributed Computing 

Parallel and distributed computing is 
achieved by composing the different 
data structures in Owl’s core library 
with specific engines in Actor system. 
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Owl + Actor : Ndarray Example 
A map function on local ndarray x in Owl looks like this   

Dense.Ndarray.S.map sin x 

How to implement a distributed map on distributed ndarray? 
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Owl + Actor : Ndarray Example 
Like playing LEGO, we plug Ndarray into Distribution Engine to make a distributed Ndarray. 

Composed by a functor in Owl_parallel module, which connects two systems and hides details. 

module M = Owl.Parallel.Make (Dense.Ndarray.S) (Actor.Mapre) 

M.map sin x 
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Owl + Actor : Neural Network Example 

Owl.Neural.S.Graph.train network 

let network = 
  input [|28;28;1|] 
  |> lambda (fun x -> Maths.(x / F 256.)) 
  |> conv2d [|5;5;1;32|] [|1;1|] ~act_typ:Activation.Relu 
  |> max_pool2d [|2;2|] [|2;2|] 
  |> dropout 0.1 
  |> fully_connected 1024 ~act_typ:Activation.Relu 
  |> linear 10 ~act_typ:Activation.Softmax 
  |> get_network 

Similarly, this also applies to more advanced and complicated data structures such as neural 
network. This is how we define a NN in Owl: 

Then we can perform training locally as below 
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Owl + Actor : Neural Network Example 

module M = Owl.Parallel.Make (Owl.Neural.S.Graph) (Actor.Param) 

M.train network 
 

To enable the parallel training on a computer cluster, we can combine Graph with Param engine.  

We only write code once, Owl’s functor stack generates both sequential and parallel version for us! 
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Key to Scalability 
Actor implements three engines, maybe more in future.  
 
All reply on a module called Synchronous Parallel which handles synchronisation. 

Corner stone of large scale 
distributed learning :) 
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Synchronous Parallel Machine 

●  An abstract computer for designing parallel algorithms. 

●  Three components: 

○  A local processor equipped with fast memory; 

○  A network that routes messages between computers; 

○  A (hw/sw) component to synchronise all computers; 

●  Powerful model for designing and programming parallel systems, 

building block of Apache Hadoop, Spark, Hama, etc. 
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Barrier Synchronisation 
The third component barrier synchronisation, is the core of SPM. It’s all about how to 
coordinate computation on different computers to achieve certain consistency. 
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# 0 # 1 # 2 

Barrier 
Synchronisation 

Global 
state 

P#0 

P#1 

P#2 

P#3 

Progress 

Comm may happen here, to ensure the 
consistency through the global state. 

That’s where we need a central server, in 
order to maintain the global state. 

Progress is measured by supersteps (iterations). 

Processes 



Consistency Is Not Free Lunch 

●  Real world iterative learning algorithm aims fast convergence. 

●  Convergence rate decreases if iteration rate is slow or updates are noisy. 

●  Synchronisation can reduce the noise in updates (improved consistency). 

●  Tight synchronisation is sensitive to stragglers and has poor scalability. 

●  Tight synchronisation renders high communication cost in large systems. 
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Existing Models in Use 
●  Bulk synchronous parallel (BSP) 

●  Stale Synchronous parallel (SSP) 

●  Asynchronous parallel (ASP) 
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Hadoop, Spark, Parameter Server, 
Pregel, Owl+Actor ... 

Parameter Server, Hogwild!, Cyclic 
Delay, Yahoo! LDA, Owl+Actor ... 

Parameter Server, Hogwild!, Yahoo! 
LDA, Owl+Actor ... 

P#0 

P#1 

P#2 

P#3 

BSP 
P#0 

P#1 

P#2 

P#3 

SSP 

P#0 

P#1 

P#2 

P#3 

ASP 



A 10,000 Foot View 
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Most strict lockstep synchronisation; 
all the nodes are coordinated by a 
central server.  
 
BSP is sensitive to stragglers so is 
very slow. But it is simple due to its 
deterministic nature, easy to write 
application on top of it. 

SSP relaxes consistency by allowing 
difference in iteration rate. The 
difference is controlled by the 
bounded staleness.  
 
SSP is supposed to mitigate the 
negative effects of stragglers. But the 
server still requires global state. 

Least strict synchronisation, no 
communication among workers for 
barrier synchronisation all all.  
 
Every computer can progress as fast as 
it can. It is fast and scalable, but often 
produces noisy updates. No theoretical 
guarantees on consistency and 
algorithm’s convergence. 

P#0 

P#1 

P#2 

P#3 

BSP 
P#0 

P#1 

P#2 

P#3 

SSP 

P#0 

P#1 

P#2 

P#3 

ASP 



Consistency vs. Iteration Rate 
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We must balance consistency vs. iteration rate , we can 
think in the following way to understand the trade-off: 
 
Convergence      Consistency Degree x Iteration 
Rate 
 
 
SSP aims to cover this spectrum between BSP and ASP 
by parameterising the staleness. 

Question: Is SSP really a generalisation of of BSP and ASP? 
BSP and SSP are both centralised whereas ASP are fully distributed. It feels like 
SSP has missed something in this spectrum. What is it? 

Strong consistency 
Slow iteration rate 

Weak consistency 
Fast iteration rate 

C
onvergence rate 

BSP ASP 

SSP parameterises the 
consistency by staleness. 



Analytical Model 
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The model is simple: a sequence of 
updates applying to an initial global 
state x0. The updates can be “noisy” 
hence are divided into two sets. 
 
Although simple, it can model most 
iterative learning algorithms. 

u(p,t)is update(node id, timestamp), sum over all the nodes 
and clock ticks ... 



Decompose Synchronous Parallel Machine 
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Then we use the analytical model to 
express each synchronous parallel 
machine on the left. 
 
The formulation reveals some very 
interesting structures from a system 
design perspective. 
 
Let’s decompose these machines. 



Decompose Synchronous Parallel Machine 
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Left part deals with the Consistency. += 
operator is the server logic about how to 
incorporate updates submitted to the 
central server into the global state. 
 
Right part deals with synchronisation, 
computers either communicate to each 
other or contact the central server to 
coordinate their progress. 



Decompose Synchronous Parallel Machine 
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Inside the synchronisation part, the 
synchronous parallel machine 
processes two types of updates. 
 
The deterministic one is those we 
always expect if everything goes well as 
in BSP.  
 
The probabilistic one is those out of 
order updates due to packet loss, 
network delay, node failure, and etc. 



Decompose Synchronous Parallel Machine 
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The global state is maintained by a logic 
central server. In a distributed system, 
this is often the bottleneck and single 
point of failure. 
 
Moreover, note that the server couples 
the consistency with the synchronisation 
two parts, for BSP and SSP. 
 
ASP avoids such coupling by giving up 
synchronisation, consistency 
completely. 



Missing Dimension in Design Space 
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Strong consistency 
Slow iteration rate 
Fully centralised 

Weak consistency 
Fast iteration rate 
Fully distributed 

BSP SSP 

ASP 

Consistency 

??? the missing 
dimension in 

synchronisation 



Key Insights from Decomposition 

●  Is it necessary to couple the consistency with synchronisation? No 

●  Is it necessary to give up synchronisation completely in order to 

decouple consistency and synchronisation? No 

●  Is it necessary to divide the updates into deterministic and 

probabilistic two parts? No 

●  Is SSP really a generalisation of BSP and ASP, then what is the 

missing dimension in the design space? Completeness 
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Probabilistic Synchronous Parallel 
●  Core idea: combine both deterministic and probabilistic components, 

replace it with a sample distribution. 
●  Each computer synchronises with a small group of others and the 

consistency is only enforced within the group. 
●  The server decides how to incorporate the submitted updates. 
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No central server to coordinate them, instead 
each node synchronises within their groups. 
The consistency “propagates” by the possible 
overlapping of different groups. 



Sampling Primitive 
●  How to implement PSP atop of current data analytics frameworks? 

○  Quite straightforward, add a new primitive - sample 
●  How to guarantee the random sampling? 

○  Organise the nodes into a structural overlay, e.g. DHT 
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The random sampling is based on the fact that node identifiers 
are uniformly distributed in a name space. 
 
Node can estimate the population size based on the allocated 
ID density in the name space. 



As A Higher-Order Function 
●  PSP is a generalisation of BSP, SSP, ASP. 
●  PSP can be applied to other synchronous machine as a higher-order function, to 

further derive a fully distributed version. 
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pBSP 

pSSP 

Local state of sampled nodes V 

Local state of sampled nodes V 

Sample function ○ Barrier function 

Fully compatible with existing systems due to its generality. 



A Newly Discovered Dimension 
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●  The degree of consistency is enforced upon a sample rather than the whole population. 

●  PSP adds a new dimension to the existing synchronous parallel models, i.e. the degree of 

completeness in a sample, which renders a distribution of degree of consistency. 

●  PSP allows us to parameterise the degree of completeness (or level of coordination), 

ranging from a fully centralised system to a fully distributed one. 

Complete view 
Centralised global state 

Partial view 
Distributed local state 

PSP parameterised completeness 
by adjusting the sample size 



Factorise Consistency by Completeness 
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Complete view 
Centralised global state 

Partial view 
Distributed local state 

PSP parameterised completeness 
by adjusting the sample size 

Convergence       Consistency Degree in Sample x Completeness of Sample x Iteration Rate 

Convergence      Consistency Degree x Iteration Rate 

Because of this new dimension, Consistency Degree is now factorised into two parts. 



Trade-off in a Larger Design Space 
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Convergence = Consistency Degree in Sample x Completeness of Sample x Iteration Rate 

The new dimension allows us to explore a 
larger design space, which further makes it 
possible to find better a trade-off to achieve 
better convergence rate. 
 
 
ASP doesn’t really fall on the same 
Convergence - Consistency plane. 
 
 
Degree of consistency along the new 
dimension becomes a distribution now. 

Note this figure is plotted with Owl. 

ASP 
SSP 

BSP 

pBSP 

pSSP 

ASP 



Effects of Sampling Primitive 
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Sampling primitive decomposes the original sequence into multiple sampling 
processes (assuming no replacement for simplicity), and each has a partial view of the 

original one PSP 

#0:A0, B0 

#1:A1, B1 



Effects of Smaller Samples 
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Smaller sample size results in more sampling processes, each has even less complete 
view of the original one (i.e. less completeness), further reduces synchronisation level. 

PSP 
#0:A0, B0 

#1:A1, B1 

#2:A2, B2 

#3:A3, B3 



Revisit System Decomposition 
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PSP now bridges the gap between SSP 
and ASP by unifying the deterministic 
and probabilistic components with the 
updates of a distribution of clock ticks. 
 
 



Revisit System Decomposition 
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First two (BSP, SSP) are centralised; 
whereas last two (PSP, ASP) are 
distributed. 
 
Unlike SSP, PSP decouples the 
consistency and the synchronisation. 
 
Unlike ASP, PSP does not give up 
synchronisation because of decoupling. 



Indication on System Design 
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With decoupling, the server becomes a 
stream server, i.e. processes a 
sequence of submitted updates only, 
much easier to implement an efficient 
system. 
 
Nodes coordination is fully distributed, 
mitigates bottleneck and single point 
failure to some extent. 
 
Increment deployment as a higher-order 
function, compatible with existing data 
analytics frameworks. 
 
 



Comparison Summary 
PSP vs BSP: faster iteration, faster convergence, 
decentralised. 

 

PSP vs SSP : faster iteration, faster 
convergence, decentralised. 

 

PSP vs ASP: stronger consistency with 
synchronisation, stronger guarantees on 
convergence. 
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Strong consistency 
Slow iteration rate 
Fully centralised 

Weak consistency 
Fast iteration rate 
Fully distributed 

BSP SSP 

ASP 

Consistency 

C
om

pleteness PSP 



Step Distribution 
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Let’s look at a system of 1000 nodes, running 
stochastic gradient descent algorithm for a 
linear regression task. 
 
Step distribution reflects the level of 
coordination, or how tightly the nodes are 
synchronised, or degree of consistency ... 
 
Sample size is 10, and staleness is 4. PSP 
trade-off reasonable consistency for much 
faster iteration rate. 
 
Note the trade-off betw. the speed and spread! 



Reduce Discrepancy  
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CDF of step distribution at a given time in the system, we experimented with different sample size from 
0 to 64. Increasing the sample size make the curves shift from right to left with decreasing spread, 
covering the whole spectrum from the most lenient ASP to the most strict BSP. 
 
The smaller spread is at the price of slower iteration rate. Small sample sets seem very effective in 
reducing the spread. 



Tighten the Bounds 
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The smaller the area below the 
curve is, the tighter the bound 
becomes, leads to stronger 
guarantee on convergence. 



Scalability 
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Now, we increase the system size step by step, then check 
how much it will degrade the performance. (Note sample size 
is fixed as 10.) 
 
Performance degradation is measured by checking the 
percent of changes regarding the accuracy of regression 
model at a fixed timestamp in each experiment (with varying 
system sizes). 
 
ASP is a straight line as expected, due to no synchronisation 
is need so the system is very scalable. On the other hand, 
BSP and SSP are both degraded. 
 
Interestingly, PSP improves the performance. Why is that?  
 
 



Robustness against Stragglers 
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Convergence Rate 
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PSP can effectively accelerate convergence rate due 
to both increased iteration rate and improved 
consistency. 
 
 
 
 
 
 
 
 
The number of submitted updates increases due to 
PSP’s faster iteration rate. 



Implementation in Actor 

84 

type barrier = 
  | ASP    (* Asynchronous Parallel *) 
  | BSP    (* Bulk Synchronous Parallel *) 
  | SSP    (* Stale Synchronous Parallel *) 
  | PSP    (* Probabilistic Synchronous Parallel *) 
 
val start : ?barrier:barrier -> string -> string -> unit 
(** start running the model loop *) 
 
val register_barrier : ps_barrier_typ -> unit 
(** register user-defined barrier function at p2p server *) 
 
val register_schedule : ('a, 'b, 'c) ps_schedule_typ -> unit 
(** register user-defined scheduler *) 
 
val register_pull : ('a, 'b, 'c) ps_pull_typ -> unit 
(** register user-defined pull function executed at master 
*) 
 
……. 
 

PSP and other synchronous parallel 
machines are implemented in Actor 
system in a very modular way. 
 
They can be plugged into different 
engines (Parameter Sever, Mapreduce) 
with register_barrier function 



Owl’s Performance 
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Who Am I? & lets not speculate further J 

Thanks	to	EPSRC/databox	
•  &Liang	Wang,	Cambridge	 Thanks	to	Turing/Maru	

• &Peter	Pietzuch,	Imperial		


