
Privacy-Preserving Analy0cs in and
out of the Clouds

Jon	Crowcro),		
h,p://www.cl.cam.ac.uk/~jac22	

	
	

1. Private Data Center->Public Cloud

• Health	or	Finance	data,	for	example	
•  Farr/NHS	Scotland	
•  HSBC	

• MoEves	for	public	cloud	
•  Scale	out/cost	save	
•  Higher	Throughput	analyEcs	
•  Share	“access”	with	more	researchers	
•  <Yours	goes	here>	

Infrastructure Loca0on

• Keep	friends&enemies	near:	
•  Legal/Regulatory	Stuff	(incl	GDPR)	
•  Latency/Availability	etc	
•  Control	(physical	access	etc)	

• Need	to	virtualise	these	(be,er)	
•  Crypt	Data	at	rest	
•  Crypt	data	during	“processing”		
•  key	management	etc	
•  Enclave…	SGX,Trust	Zone,	AMD,	CHERI	

GDPR – 2018 – right to an explanaion

MARU….@ turing.ac.uk

• ATI	w/	Intel,	Dstl,	Docker,	Microso)	
	
•  Compare	what	is	in	SGX		

•  Enter/leave	cost,	crypt	memory	o/h	etc	
•  Hypervisor?	

•  Compare	w/	container	on	trustzone,	cheri,	AMD	etc	
•  Common	APIs	for	keys	etc	
•  Virtualize?	

•  Pen	test		
•  many	side	channel	pb	
•  What	if	weak	homomorphic	crypto	&	diff	priv?	

Outline

•  1. Motivation: Trustworthy data processing in untrusted clouds

•  2. Overview of Intel SGX

•  3. Description of SGX-LKL Design

•  4. Description of preliminary SGX-Spark Design

•  5. Source code release of Java support on GitHub

Peter Pietzuch - Imperial College London
 6

1. Motivation: Trustworthy Data Processing

Peter Pietzuch - Imperial College London
 7

Trust Issues: Provider Perspective

•  Cloud provider does not trust users

•  Use virtual machines to isolate 
users from each other and the host

•  VMs only provide one way protection

Redis

OS

VMM

Firmware

Cloud platform

Staff

…

tru
st

ed

Peter Pietzuch - Imperial College London
 8

Trust Issues: User Perspective

•  Users trust their applications

•  Users must implicitly trust  
cloud provider

•  Existing applications implicitly 
assume trusted operating system

Redis

OS

VMM

Firmware

Cloud platform

Staff

…

un
tru

st
ed

Peter Pietzuch - Imperial College London
 9

Trusted Execution Support with Intel SGX

•  Users create HW-enforced trusted
environment (enclave)

•  Supports unprivileged 
user code

•  Protects against strong attacker
model

•  Remote attestation

•  Available on 

commodity CPUs 

OS

VMM

Firmware

Cloud platform

Staff

…

un

tru
st

ed

Enclave

Peter Pietzuch - Imperial College London
 10

2. Overview of Intel SGX

Peter Pietzuch - Imperial College London
 11

Trusted Execution Environments

•  Trusted execution environment (TEE) 
in process

– Own code & data

– Controlled entry points

–  Provides confidentiality & integrity

–  Supports multiple threads

–  Full access to application memory

User process

Application
code

Application
data

Enclave

OS Enclave

Enclave
code

Enclave
data

Threads

…

Peter Pietzuch - Imperial College London
 12

Intel Software Guard Extensions (SGX)

•  Extension of Instruction Set Architecture (ISA) in recent Intel CPUs

–  Skylake (2015), Kaby lake (2016)

•  Protects confidentiality and integrity of code & data in untrusted
environments

–  Platform owner considered malicious

– Only CPU chip and isolated region trusted

Peter Pietzuch - Imperial College London
 13

SGX Enclaves

•  SGX introduces notion of enclave

–  Isolated memory region for code & data

– New CPU instructions to manipulate enclaves 

and new enclave execution mode

•  Enclave memory encrypted and integrity- 

protected by hardware

– Memory encryption engine (MEE)

– No plaintext secrets in main memory

•  Enclave memory can be accessed only by enclave code

–  Protection from privileged code (OS, hypervisor)

•  Application has ability to defend secrets

–  Attack surface reduced to just enclaves and CPU

– Compromised software cannot steal application secrets

Process

OS

Enclave

Hypervisor

✘✘
✘
✔

Peter Pietzuch - Imperial College London
 14

SGX SDK Code Sample

SGX application: untrusted code

char request_buf[BUFFER_SIZE];
char response_buf[BUFFER_SIZE];

int main()
{  
 ...
 while(1)
 {  
 receive(request_buf);  
 ret = EENTER(request_buf, response_buf);  
 if (ret < 0)
 fprintf(stderr, "Corrupted message\n");
 else
 send(response_buf);  
 }  
 ...  
}

Enclave: trusted code

char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{
 copy_msg(in, input_buf);  
 if(verify_MAC(input_buf))
 {
 decrypt_msg(input_buf);  
 process_msg(input_buf, output_buf);
 encrypt_msg(output_buf);
 copy_msg(output_buf, out);  
 EEXIT(0);  
 } else  
 EEXIT(-1);  
}

Server:

• Receives encrypted requests

• Processes them in enclave

• Sends encrypted responses

Peter Pietzuch - Imperial College London
 15

SGX Enclave Construction

Enclave populated using special instruction (EADD)

•  Contents initially in untrusted memory

•  Copied into EPC in 4KB pages

Both data & code copied before execution commences in enclave

char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{
 copy_msg(in, input_buf);  
 if(verify_MAC(input_buf))
 {
 decrypt_msg(input_buf);  
 process_msg(input_buf, output_buf);
 encrypt_msg(output_buf);
 copy_msg(output_buf, out);  
 EEXIT(0);  
 } else  
 EEXIT(-1);  
}

EPC

DRAM
1
2

3

Peter Pietzuch - Imperial College London
 16

SGX Enclave Construction

•  Enclave contents distributed in plaintext

– Must not contain any (plaintext) confidential data

•  Secrets provisioned after enclave constructed and integrity verified

•  Problem: what if someone tampers with enclave?

– Contents initially in untrusted memory

int process_request(char *in, char *out)
{
 copy_msg(in, input_buf);  
 if(verify_MAC(input_buf))
 {
 decrypt_msg(input_buf);  
 process_msg(input_buf, output_buf);
 encrypt_msg(output_buf);
 copy_msg(output_buf, out);  
 EEXIT(0);  
 } else  
 EEXIT(-1);  
}

int process_request(char *in, char *out)
{
 copy_msg(in, input_buf);  
 if(verify_MAC(input_buf))
 {
 decrypt_msg(input_buf);  
 process_msg(input_buf, output_buf);
 copy_msg(output_buf, external_buf);
 encrypt_msg(output_buf);
 copy_msg(output_buf, out);  
 EEXIT(0);  
 } else  
 EEXIT(-1);  
}

Write unencrypted response to outside memory

Peter Pietzuch - Imperial College London
 17

SGX Enclave Measurement

•  CPU calculates enclave measurement hash during enclave construction

–  Each new page extends hash with page content and attributes (read/write/execute)

– Hash computed with SHA-256

•  Measurement can be used 
to attest enclave to local or 
remote entity

CPU calculates enclave measurement hash during
enclave construction

Different measurement if enclave modified

EPC

DRAM CPU

c0 94 7d bc 35 52 ba

9a 16 a6 63 0b 72 09

0d 0f 15 0b d0 2d ae
1a 55 f9 2f a8 20 98

Peter Pietzuch - Imperial College London
 18

SGX Enclave Attestation

•  Is my code running on remote machine intact?

•  Is code really running inside an SGX enclave?

•  Local attestation

–  Prove enclave’s identity (= measurement) to another enclave on same CPU

•  Remote attestation

–  Prove enclave’s identity to remote party

•  Once attested, enclave can be trusted with secrets

Peter Pietzuch - Imperial College London
 19

Local Attestation

•  Prove identity of A to local enclave B

1.  Target enclave B measurement required for key generation

2.  Report contains information about target enclave B, including its measurement

3.  CPU fills in report and creates MAC using report key, which depends on random CPU fuses and target

enclave B measurement

4.  Report sent back to target enclave B

5.  Verify report by CPU to check that generated on same platform, i.e. MAC created with same report key

(available only on same CPU)

6.  Check MAC received with report and do not trust A upon mismatch

CPU

Enclave A Enclave B
1. Hi! I’m 5f904ba8910bff! Who are you?

0d 0f 15 0b d0 2d ae
Measurement (enclave A)

5f 90 4b a8 91 0b ff
Measurement (enclave B) 2. Please create a report for

5f904ba8910bff

0d 0f 15 0b d0 2d ae

3. Here you go!

4. Here is my report
0d 0f 15 0b d0 2d ae

5. Please give me my
report verification key

6. Here you go!

Peter Pietzuch - Imperial College London
 20

Remote Attestation

•  Transform local report to remotely verifiable “quote”

•  Based on provisioning enclave (PE) and quoting enclave (QE)

–  Architectural enclaves provided by Intel

–  Execute locally on user platform

•  Each SGX-enabled CPU has unique key fused during manufacturing

–  Intel maintains database of keys

Peter Pietzuch - Imperial College London
 21

Remote Attestation

•  PE communicates with Intel attestation service

–  Proves it has key installed by Intel

– Receives asymmetric attestation key

•  QE performs local attestation for enclave

– QE verifies report and signs it using attestation key

– Creates quote that can be verified outside platform

•  Quote and signature sent to remote attester, which communicates with
Intel attestation service to verify quote validity

Peter Pietzuch - Imperial College London
 22

SGX Limitations & Research Challenges

•  Amount of memory enclave can use needs to be known in advance

– Dynamic memory support in SGX v2

•  Security guarantees not perfect

–  Vulnerabilities within enclave can still be exploited

–  Side-channel attacks possible

•  Performance overhead

–  Enclave entry/exit costly

–  Paging very expensive

•  Application partitioning? Legacy code? …

Peter Pietzuch - Imperial College London
 23

3. Description of SGX-LKL

Peter Pietzuch - Imperial College London
 24

SGX-LKL: Supporting Managed Runtimes in SGX

•  Many applications need runtime support

–  JVM

–  .NET

–  JavaScript/V8/Node.js

• 

•  Requires complex system support

– Dynamic library loading

–  Filesystem support

–  Signal handling

– Complete networking stack 

25
Peter Pietzuch - Imperial College London

SGX-LKL: Linux Kernel Library inside SGX Enclaves

•  Based on Linux Kernel Library (LKL)

–  Implemented as architecture-specific port of mainline Linux (github.com/lkl)

–  Follows Linux no MMU architecture

–  Full filesystem support

–  Full network stack available

26
Peter Pietzuch - Imperial College London

SGX-LKL Architecture

•  Runs unmodified Linux applications in SGX enclaves

•  Applications and dependencies provided via disk image

•  Full Linux kernel functionality available

•  Custom memory allocator

•  User-level threading

–  In-enclave synchronisation 
primitives

27
Peter Pietzuch - Imperial College London

4. Description of SGX-Spark

Peter Pietzuch - Imperial College London
 28

Secure Big Data Processing

•  Processing of large amounts of sensitive information

•  Outsourcing of data storage and processing

•  Cloud provider can access processed data

– Not acceptable for number of industries

29

def main(args: Array[String]) {

 new SparkContext(new SparkConf())

 .textFile(args(0))

 .flatMap(line => {line.split(" ")})

 .map(word => {(word, 1)})

 .reduceByKey{case (x, y) => x + y}

 .saveAsTextFile(args(1))

}
O
S

T
E
E

JVM

Spark

.

.

.

OS

JVM

Spark

Task1
 Taskn

O
S

T
E
E

JVM

Spark

T
.
.
.

OS

JVM

Spark

Task1
 Taskn

O
S

T
E
E

JVM

Spark

.

.

.

OS

JVM

Spark

Task1
 Taskn

O
S

T
E
E

JVM

Spark

.

.

.

OS

JVM

Spark

Task1
 Taskn

Task 1
 Task n

Distributed File System

Peter Pietzuch - Imperial College London

Secure Machine Learning

•  Secure machine learning (ML) killer application for Maru

– Resource-intensive thus good use case for cloud usage

– Raw training data comes with security impliations

•  Complex implementations of ML algorithms cannot be adapted for SGX

– Consider Spark MLlib with 100s of algorithms

•  Challenges

–  Extremely data-intensive domain

– Must support existing frameworks (Spark, TensorFlow, MXNet, CNTK, …)

– ML requires accelerators support (GPUs, TPUs, …)

–  Prevention of side-channel attacks

Peter Pietzuch - Imperial College London
 30

State of the Art

•  Protect confidentiality and integrity of tasks and input/output data

•  Opaque [Zheng, NSDI 2017]

– Hide access patterns of distributed data analytics (Spark SQL)

–  Introduces new oblivious relational operators

– Does not support arbitrary/existing Scala Spark jobs

•  VC3 [Schuster, S&P 2015]

–  Protects MapReduce Hadoop jobs

– Confidentiality/integrity of code/data; correctness/completeness of results

– No support for existing jobs → Re-implement for VC3 

31
Peter Pietzuch - Imperial College London

SGX Support for Spark

•  SGX-Spark

–  Protect data processing from infrastructure provider

–  Protect confidentiality & integrity of existing jobs

– No modifications for end users

–  Acceptable performance overhead

•  Idea: 
Execute only sensitive parts of Spark inside enclave

– Code that accesses/processes sensitive data

•  Code outside of enclave only accesses encrypted data

–  Partition Spark

– Run two collaborating JVMs, inside enclave and outside of enclave

32

Spark

OS
 TEE

Spark

Manage-

ment

Taskn

OS
 SGX

JVM

Spark

Task1

Taskn

JVM

Peter Pietzuch - Imperial College London

Challenges & Current State

•  1. Partitioning Spark

•  2. Data movement between JVMs

•  3. Memory efficiency

33
Peter Pietzuch - Imperial College London

1. Partitioning Spark

•  Goal: Move minimal amount of Spark code to enclave 

34

Outside
 Enclave

HadoopRDD

Provide iterator over input data partition (encrypted)

MapPartitionsRDD

Execute user-provided function (f)

(eg flatMap(line => {line.split(" ")})

(i) Serialise user-provided function f
(ii) Send f and it to enclave JVM

(iv) Receive result iterator it_result

 

(iii) Decrypt input data  
(iv) Compute f(it) = it_result
(v) Encrypt result

ExternalSorter

Execute user-provided reduce function g

(eg reduceByKey{case (x, y) => x + y})

(iii) Decrypt input data  
(iv) Compute g(it2) = it2_result
(v) Encrypt result

ResultTask 
Output results

it

f,it

it2 = it_result

Peter Pietzuch - Imperial College London

g,it2

it2_result

1. Partitioning Spark

Peter Pietzuch - Imperial College London
 35

RDD

MapPartitions
RDD HadoopRDD ResultTask

Task

ItConsumer

ItProvider

ItProvider

SgxTask

SgxFirstTask SgxOtherTask SgxFct2

SgxMain

Communication Communication

ItConsumer

 Encryption Encryption Encryption Encryption Encryption

1. Partitioning Spark

Peter Pietzuch - Imperial College London
 36

HadoopRDD A

<outfile> <infile>

MapPartitions
RDD B

MapPartitions
RDD C

ResultTask

i’

j’

k’

i,j,k
A,B,C,D

Outside
Enclave

Tasks

Iterators

Iterate via shm

Communication

1. Partitioning Spark

Peter Pietzuch - Imperial College London
 37

HadoopRDD A

 ItProvider i

<outfile> <infile>

MapPartitions
RDD B

MapPartitions
RDD C

ResultTask

I ItConsumer k

j=SgxTask(B,i) SgxTask B

 ItConsumer i

SgxTask C
k=SgxTask(C,j)

i’

j’ j

k’

k

i

i,j,k
A,B,C,D

Outside
Enclave

Tasks

Iterators

Iterate via shm

ItProvider k

k

2. Data Movement between JVMs

•  Goal: Shared memory

•  Use use host OS shared memory between two JVMs

– Outside access by enclave JVM

•  Manage shared memory between outside and enclave

•  Implement high-level read/write primitives

38
Peter Pietzuch - Imperial College London

Host OS

1. Partitioning Spark

Peter Pietzuch - Imperial College London
 39

RDD

MapPartitions
RDD HadoopRDD ResultTask

Task

ItConsumer

ItProvider

ItProvider

SgxTask

SgxFirstTask SgxOtherTask SgxFct2

SgxMain

RingBuffer

 Serialisation

Shm
Communication

Manager

RingBuffer

 Serialisation

Shm
Communication

Manager

ItConsumer

shmem

Encryption Encryption Encryption Encryption Encryption

2. Distributed Analy0cs

• MoEves	e.g.	
•  Move	code	to	data	
•  Keep	data	close	to	owner/primary	user	
•  Guarantee	can	audit	trail	access	
•  Add	yours	here	

•  Challenges	
•  Depends	on	ML	technology	of	choice	&	goal	

•  PCA/Clustering,	random	forests		
•  Curve	fifgn	(regression	etc)	
•  Model	Inferencing	–	e.g.	Bayesian	inference	

•  Distrubuted	differenEal	privacy	tricky	
•  Hierarchical	versus	P2P?	

Future Proof for GDPR

•  Privacy	by	Design	and	by	Default	–	HAT	address	all	GDPR	privacy	requirement	from	its	design	principle	to	its	security	soluEon.	

•  HAT	ecosystem	data	exchange	is	based	on	fully	specified	privacy	terms	-	Eme	specific,	recipient	specific,	minimum	data	points	
specific	with	full	inten-on	disclosed.	ViolaEon	against	any	of	such	terms	may	result	a	ban	from	the	Ecosystem.	

•  Consent	by	design	and	by	default	-		
•  the	PCST	PoC	mandates	a	“specific,	informed	and	freely	given	and	unambiguous”	intension	disclosure	of	data	usage,	for	every	

single	personal	data	access	instances.		
•  HAT	technology	ensures	that	an	exchange	is	only	authorised	and	kept	valid	by	individual’s	case	specific	consent	

•  Rights	for	Individuals	by	design	and	by	default	–	encapsulated	personal	data	containers	isolated	for	each	individual,	allows	an	
individual	is	in	full	control	of	its	HAT,	hence	inherently	owns	all	of	the	following:		

•  Right	to	Access	|	Right	to	be	informed	|	Right	to	recEficaEon	|	Right	to	restrict	processing	|	Right	to	object	to	market	
•  Right	of	data	portability	|	Right	to	be	forgo,en	|	Right	to	object	to	automated	decision	making	and	profiling	

•  Accountability	and	governance	-	PCST	CoP	mandates	every	ecosystem	member	to	higher	level	of	accountability	and	governance	
pracEce.	

•  Record	keeping	–	HAT	ecosystem	automaEcally	tracks	data	exchange,	even	at	a	much	more	granular	level	than	GDPR	requires	–	
it	documents	the	exchange	parEes,	Eme	of	access,	detailed	data	points,	intension	and	T&C,	for	every	single	transacEon.	

•  Data	protecEon	by	design	and	by	default	-	The	HATDeX-serviced	HAT	is	designed	with	mulEple	layers	of	protecEon,	covering	
Data	at	Rest,	Data	in	Transit	and	Data	in	Use.	(
h,p://www.hatdex.org/wp-content/uploads/2016/06/hatdex-briefing-Issue-2_FINAL.pdf)	

•  Mandatory	breach	noEficaEon	-	HAT’s	API	driven	ecosystem	automaEcally	records	all	exchanges	breach	tracking	and	invesEgaEon	

GDPR	Roundtable	discussion	consulted	a	few	HAT	research	team	members	for	the	design	of	the	legislaEon.	HAT	ecosystem	can	ensure	GDPR	compliance,	and	further	
mandates	Eghter	terms	than	GDPR	as	entry	requirements	from	all	parEes	who	wish	to	operate	within	this	ecosystem	following	its	PCST	(Privacy,	ConfidenEality,	
Security	and	Trust)	Code	of	PracEce	(h,p://hatcommunity.org/other-resources/).	

h,p://hatdex.org	/	h,p://hatcommunity.org				 41	

Distributed Analytics outline

●  Part I: Quick Overview of Owl

●  Part II: Probabilistic Synchronous Parallel

42

What Is Owl

●  An experimental and above all scientific computing system.

●  Designed in functional programming paradigm.

●  Goal: as concise as Python yet as fast as C, and safe.

●  A comprehensive set of classic numerical functions.

●  A fundamental tooling for modern data analytics (ML & DNN).

●  Native support for algorithmic differentiation, distributed & parallel

computing, and GPGPU computing.

43

Vision Beyond Research Prototype

44

Owl

MirageO
S

Unikernel

Write code once, then deploy it everywhere …

Owl system provides us a complete set of tooling from the
powerful numerical supports in development to the deployment
on various platforms.

Owl’s Architecture

45

Owl + Actor = Distributed & Parallel Analytics

Owl provides numerical backend; whereas
Actor implements the mechanisms of
distributed and parallel computing. Two parts
are connected with functors.

Various system backends allows us to write
code once, then run it from cloud to edge
devices, even in browsers.

Same code can run in both sequential and
parallel mode with Actor engine.

Research

46

1. Jiaxin Zhao - Composable Analytical
Services using Session Types for Distributed
Personal Data

2. Ben Catterall - Probabilistic Synchronous
Parallel - A New Barrier Control Method for
Distributed Machine Learning

3. D.S.R Royson - Optimising Adaptive
Learning in Distributed Machine Learning

4. Dhruv Makwana - Memory Management
using Linear Types for High-Performance
GPGPU Numerical Computing

5. Tudor Tiplea - Deploying Browser-based
Data Analytics at Network Edge

5

1

2
4

3

6. Liang Wang - Owl: A General-Purpose Numerical Library in OCaml
Presented in ICFP’17 OCaml meeting, tutorial in CUFP’17.

6

Parallel and Distributed Computing

Parallel and distributed computing is
achieved by composing the different
data structures in Owl’s core library
with specific engines in Actor system.

47

Owl + Actor : Ndarray Example
A map function on local ndarray x in Owl looks like this

Dense.Ndarray.S.map sin x

How to implement a distributed map on distributed ndarray?

48

Owl + Actor : Ndarray Example
Like playing LEGO, we plug Ndarray into Distribution Engine to make a distributed Ndarray.

Composed by a functor in Owl_parallel module, which connects two systems and hides details.

module M = Owl.Parallel.Make (Dense.Ndarray.S) (Actor.Mapre)

M.map sin x

49

Owl + Actor : Neural Network Example

Owl.Neural.S.Graph.train network

let network =
 input [|28;28;1|]
 |> lambda (fun x -> Maths.(x / F 256.))
 |> conv2d [|5;5;1;32|] [|1;1|] ~act_typ:Activation.Relu
 |> max_pool2d [|2;2|] [|2;2|]
 |> dropout 0.1
 |> fully_connected 1024 ~act_typ:Activation.Relu
 |> linear 10 ~act_typ:Activation.Softmax
 |> get_network

Similarly, this also applies to more advanced and complicated data structures such as neural
network. This is how we define a NN in Owl:

Then we can perform training locally as below

50

Owl + Actor : Neural Network Example

module M = Owl.Parallel.Make (Owl.Neural.S.Graph) (Actor.Param)

M.train network

To enable the parallel training on a computer cluster, we can combine Graph with Param engine.

We only write code once, Owl’s functor stack generates both sequential and parallel version for us!

51

Key to Scalability
Actor implements three engines, maybe more in future.

All reply on a module called Synchronous Parallel which handles synchronisation.

Corner stone of large scale
distributed learning :)

52

Synchronous Parallel Machine

●  An abstract computer for designing parallel algorithms.

●  Three components:

○  A local processor equipped with fast memory;

○  A network that routes messages between computers;

○  A (hw/sw) component to synchronise all computers;

●  Powerful model for designing and programming parallel systems,

building block of Apache Hadoop, Spark, Hama, etc.

53

Barrier Synchronisation
The third component barrier synchronisation, is the core of SPM. It’s all about how to
coordinate computation on different computers to achieve certain consistency.

54

0 # 1 # 2

Barrier
Synchronisation

Global
state

P#0

P#1

P#2

P#3

Progress

Comm may happen here, to ensure the
consistency through the global state.

That’s where we need a central server, in
order to maintain the global state.

Progress is measured by supersteps (iterations).

Processes

Consistency Is Not Free Lunch

●  Real world iterative learning algorithm aims fast convergence.

●  Convergence rate decreases if iteration rate is slow or updates are noisy.

●  Synchronisation can reduce the noise in updates (improved consistency).

●  Tight synchronisation is sensitive to stragglers and has poor scalability.

●  Tight synchronisation renders high communication cost in large systems.

55

Existing Models in Use
●  Bulk synchronous parallel (BSP)

●  Stale Synchronous parallel (SSP)

●  Asynchronous parallel (ASP)

56

Hadoop, Spark, Parameter Server,
Pregel, Owl+Actor ...

Parameter Server, Hogwild!, Cyclic
Delay, Yahoo! LDA, Owl+Actor ...

Parameter Server, Hogwild!, Yahoo!
LDA, Owl+Actor ...

P#0

P#1

P#2

P#3

BSP
P#0

P#1

P#2

P#3

SSP

P#0

P#1

P#2

P#3

ASP

A 10,000 Foot View

57

Most strict lockstep synchronisation;
all the nodes are coordinated by a
central server.

BSP is sensitive to stragglers so is
very slow. But it is simple due to its
deterministic nature, easy to write
application on top of it.

SSP relaxes consistency by allowing
difference in iteration rate. The
difference is controlled by the
bounded staleness.

SSP is supposed to mitigate the
negative effects of stragglers. But the
server still requires global state.

Least strict synchronisation, no
communication among workers for
barrier synchronisation all all.

Every computer can progress as fast as
it can. It is fast and scalable, but often
produces noisy updates. No theoretical
guarantees on consistency and
algorithm’s convergence.

P#0

P#1

P#2

P#3

BSP
P#0

P#1

P#2

P#3

SSP

P#0

P#1

P#2

P#3

ASP

Consistency vs. Iteration Rate

58

We must balance consistency vs. iteration rate , we can
think in the following way to understand the trade-off:

Convergence Consistency Degree x Iteration
Rate

SSP aims to cover this spectrum between BSP and ASP
by parameterising the staleness.

Question: Is SSP really a generalisation of of BSP and ASP?
BSP and SSP are both centralised whereas ASP are fully distributed. It feels like
SSP has missed something in this spectrum. What is it?

Strong consistency
Slow iteration rate

Weak consistency
Fast iteration rate

C
onvergence rate

BSP ASP

SSP parameterises the
consistency by staleness.

Analytical Model

59

The model is simple: a sequence of
updates applying to an initial global
state x0. The updates can be “noisy”
hence are divided into two sets.

Although simple, it can model most
iterative learning algorithms.

u(p,t)is update(node id, timestamp), sum over all the nodes
and clock ticks ...

Decompose Synchronous Parallel Machine

60

Then we use the analytical model to
express each synchronous parallel
machine on the left.

The formulation reveals some very
interesting structures from a system
design perspective.

Let’s decompose these machines.

Decompose Synchronous Parallel Machine

61

Left part deals with the Consistency. +=
operator is the server logic about how to
incorporate updates submitted to the
central server into the global state.

Right part deals with synchronisation,
computers either communicate to each
other or contact the central server to
coordinate their progress.

Decompose Synchronous Parallel Machine

62

Inside the synchronisation part, the
synchronous parallel machine
processes two types of updates.

The deterministic one is those we
always expect if everything goes well as
in BSP.

The probabilistic one is those out of
order updates due to packet loss,
network delay, node failure, and etc.

Decompose Synchronous Parallel Machine

63

The global state is maintained by a logic
central server. In a distributed system,
this is often the bottleneck and single
point of failure.

Moreover, note that the server couples
the consistency with the synchronisation
two parts, for BSP and SSP.

ASP avoids such coupling by giving up
synchronisation, consistency
completely.

Missing Dimension in Design Space

64

Strong consistency
Slow iteration rate
Fully centralised

Weak consistency
Fast iteration rate
Fully distributed

BSP SSP

ASP

Consistency

??? the missing
dimension in

synchronisation

Key Insights from Decomposition

●  Is it necessary to couple the consistency with synchronisation? No

●  Is it necessary to give up synchronisation completely in order to

decouple consistency and synchronisation? No

●  Is it necessary to divide the updates into deterministic and

probabilistic two parts? No

●  Is SSP really a generalisation of BSP and ASP, then what is the

missing dimension in the design space? Completeness

65

Probabilistic Synchronous Parallel
●  Core idea: combine both deterministic and probabilistic components,

replace it with a sample distribution.
●  Each computer synchronises with a small group of others and the

consistency is only enforced within the group.
●  The server decides how to incorporate the submitted updates.

66

No central server to coordinate them, instead
each node synchronises within their groups.
The consistency “propagates” by the possible
overlapping of different groups.

Sampling Primitive
●  How to implement PSP atop of current data analytics frameworks?

○  Quite straightforward, add a new primitive - sample
●  How to guarantee the random sampling?

○  Organise the nodes into a structural overlay, e.g. DHT

67

The random sampling is based on the fact that node identifiers
are uniformly distributed in a name space.

Node can estimate the population size based on the allocated
ID density in the name space.

As A Higher-Order Function
●  PSP is a generalisation of BSP, SSP, ASP.
●  PSP can be applied to other synchronous machine as a higher-order function, to

further derive a fully distributed version.

68

pBSP

pSSP

Local state of sampled nodes V

Local state of sampled nodes V

Sample function ○ Barrier function

Fully compatible with existing systems due to its generality.

A Newly Discovered Dimension

69

●  The degree of consistency is enforced upon a sample rather than the whole population.

●  PSP adds a new dimension to the existing synchronous parallel models, i.e. the degree of

completeness in a sample, which renders a distribution of degree of consistency.

●  PSP allows us to parameterise the degree of completeness (or level of coordination),

ranging from a fully centralised system to a fully distributed one.

Complete view
Centralised global state

Partial view
Distributed local state

PSP parameterised completeness
by adjusting the sample size

Factorise Consistency by Completeness

70

Complete view
Centralised global state

Partial view
Distributed local state

PSP parameterised completeness
by adjusting the sample size

Convergence Consistency Degree in Sample x Completeness of Sample x Iteration Rate

Convergence Consistency Degree x Iteration Rate

Because of this new dimension, Consistency Degree is now factorised into two parts.

Trade-off in a Larger Design Space

71

Convergence = Consistency Degree in Sample x Completeness of Sample x Iteration Rate

The new dimension allows us to explore a
larger design space, which further makes it
possible to find better a trade-off to achieve
better convergence rate.

ASP doesn’t really fall on the same
Convergence - Consistency plane.

Degree of consistency along the new
dimension becomes a distribution now.

Note this figure is plotted with Owl.

ASP
SSP

BSP

pBSP

pSSP

ASP

Effects of Sampling Primitive

72

Sampling primitive decomposes the original sequence into multiple sampling
processes (assuming no replacement for simplicity), and each has a partial view of the

original one PSP

#0:A0, B0

#1:A1, B1

Effects of Smaller Samples

73

Smaller sample size results in more sampling processes, each has even less complete
view of the original one (i.e. less completeness), further reduces synchronisation level.

PSP
#0:A0, B0

#1:A1, B1

#2:A2, B2

#3:A3, B3

Revisit System Decomposition

74

PSP now bridges the gap between SSP
and ASP by unifying the deterministic
and probabilistic components with the
updates of a distribution of clock ticks.

Revisit System Decomposition

75

First two (BSP, SSP) are centralised;
whereas last two (PSP, ASP) are
distributed.

Unlike SSP, PSP decouples the
consistency and the synchronisation.

Unlike ASP, PSP does not give up
synchronisation because of decoupling.

Indication on System Design

76

With decoupling, the server becomes a
stream server, i.e. processes a
sequence of submitted updates only,
much easier to implement an efficient
system.

Nodes coordination is fully distributed,
mitigates bottleneck and single point
failure to some extent.

Increment deployment as a higher-order
function, compatible with existing data
analytics frameworks.

Comparison Summary
PSP vs BSP: faster iteration, faster convergence,
decentralised.

PSP vs SSP : faster iteration, faster
convergence, decentralised.

PSP vs ASP: stronger consistency with
synchronisation, stronger guarantees on
convergence.

77

Strong consistency
Slow iteration rate
Fully centralised

Weak consistency
Fast iteration rate
Fully distributed

BSP SSP

ASP

Consistency

C
om

pleteness PSP

Step Distribution

78

Let’s look at a system of 1000 nodes, running
stochastic gradient descent algorithm for a
linear regression task.

Step distribution reflects the level of
coordination, or how tightly the nodes are
synchronised, or degree of consistency ...

Sample size is 10, and staleness is 4. PSP
trade-off reasonable consistency for much
faster iteration rate.

Note the trade-off betw. the speed and spread!

Reduce Discrepancy

79

CDF of step distribution at a given time in the system, we experimented with different sample size from
0 to 64. Increasing the sample size make the curves shift from right to left with decreasing spread,
covering the whole spectrum from the most lenient ASP to the most strict BSP.

The smaller spread is at the price of slower iteration rate. Small sample sets seem very effective in
reducing the spread.

Tighten the Bounds

80

The smaller the area below the
curve is, the tighter the bound
becomes, leads to stronger
guarantee on convergence.

Scalability

81

Now, we increase the system size step by step, then check
how much it will degrade the performance. (Note sample size
is fixed as 10.)

Performance degradation is measured by checking the
percent of changes regarding the accuracy of regression
model at a fixed timestamp in each experiment (with varying
system sizes).

ASP is a straight line as expected, due to no synchronisation
is need so the system is very scalable. On the other hand,
BSP and SSP are both degraded.

Interestingly, PSP improves the performance. Why is that?

Robustness against Stragglers

82

Convergence Rate

83

PSP can effectively accelerate convergence rate due
to both increased iteration rate and improved
consistency.

The number of submitted updates increases due to
PSP’s faster iteration rate.

Implementation in Actor

84

type barrier =
 | ASP (* Asynchronous Parallel *)
 | BSP (* Bulk Synchronous Parallel *)
 | SSP (* Stale Synchronous Parallel *)
 | PSP (* Probabilistic Synchronous Parallel *)

val start : ?barrier:barrier -> string -> string -> unit
(** start running the model loop *)

val register_barrier : ps_barrier_typ -> unit
(** register user-defined barrier function at p2p server *)

val register_schedule : ('a, 'b, 'c) ps_schedule_typ -> unit
(** register user-defined scheduler *)

val register_pull : ('a, 'b, 'c) ps_pull_typ -> unit
(** register user-defined pull function executed at master
*)

…….

PSP and other synchronous parallel
machines are implemented in Actor
system in a very modular way.

They can be plugged into different
engines (Parameter Sever, Mapreduce)
with register_barrier function

Owl’s Performance

85

Who Am I? & lets not speculate further J

Thanks	to	EPSRC/databox	
•  &Liang	Wang,	Cambridge	 Thanks	to	Turing/Maru	

• &Peter	Pietzuch,	Imperial		

