
Channel Islands -
joining the dots
between content
distribution &

multicast

Jon Crowcroft

Jon.Crowcroft@cl.cam.ac.uk

http://www.cl.cam.ac.uk/homes/jac22

May 21, 2002

Networks 2002

Channel Islands
This is a two part talk. Part I is about overlay
networks, and how networks evolve in general,
through the well-worn example of multicast
networking and transport. Part II is about
applications and middleware and how they might use
multicast as it evolves.

More specifically, and as an example of how
incremental deployment may be done, this talk is
about group communication services at the lower
layers, and the tension between the pressing need for
scalable services and the back-pressure from network
providers for stability lead to a form of network
deployment known to modern Darwinist theory as
punctuated equilibrium

We examine then how to make the sudden
changeover this type of scenario entails, smoother,
through the use of some of ideas that might be
exported to higher levels such as overlay networks
and reflective open interfaces):

Abstract for part I

The Reliable Multicast Transport group in the IETF
http://www.ietf.org/html.charters/rmt-charter.html
has taken a radical approach to designing a set of
multicast protocols to suit the variety of application
and service requirements for group communications.

Instead of designing monolithic protocols (in the
style of TCP) a family of protocol profiles is being
evolved, together with a set of building blocks. The
building blocks are somewhat like micro-protocols ,
with very open interfaces. There are three
one-to-many protocols that are being specified using
these, namely a NACK-based protocol, a Tree-based
ACK protocol and an Open Loop protocol that uses
Forward Error Correction. Building blocks include
Generic Router Assist, a tree-building protocol, a
layered coding transport scheme, and two novel
congestion control schemes.

We note that the set of solutions entail a spectrum
of mix of router changes and end system
functionality. Interesting results (e.g. Papadopoulos)
show that the majority of the performance gains are
achieved by edge deployment of router changes only!
This bodes well for the future of incremental
network service deployment.

Abstract for part II

These are suitable for content distribution, streaming
media, software or events, as well as being composed
together to form many-to-many services later.

Important interactions with other layers include
considerations of: Group Security (access control,
authentication, key distribution and re-keying for
privacy services etc etc). Internet multicast routing
(e.g. dense, sparse or source specific, or lack of
multicast and inter-domain problems of MSDP, and
general state and router cost of IGMP).

Part I:- Network and
Transport

History

IP multicast was devised by Steve Deering at
Stanford/PARC, in 1988.

It delivers any-to-many across a variety of
distribution tree types, built by an enhanced IP
routing layer. Source, Shared and hierarchical trees
can be built, relatively efficiently. The algorithms are
quite general (e.g. CMU work on application layer
multicast used same as DVMRP- SCRIBE used
OCBT, effectively:-)

It’s best effort. So you need a multicast equivalent
of TCP.

What is equivalent is the big question.

The IRTF Reliable Multicast Research Group spend
a while chasing the holy grail, and then decided
”One Size Does Not Fit All”:

General Purpose Reliable Multicast is an oxy-moron.

Three particular protocols emerged from the
sandstorm... PGM, RMTP and ALC, which we
will discuss more later.

Barriers to Deployment

Christophe Diot et al at Sprint wrote eloquently
about the barriers to deployment:

• Economic models

• Traffic Engineering

• Security

• Application Pull

• Diagnostic Tools

• Provider Skills

• I would add: network implementation maturity

However, all this applies to IP
unicast too!

IP was once an overlay on the POTS/PSTN.

Overlays are a generic approach to evolving systems.

Successful overlays migrate into the infrastructure.

Too early a migration is a bad idea (viz multicast,
mobility, QoS)

So, thats the real story about multicast.

Now, what can we do (assuming we ignore this
minor deployment problem) to make it ready for
eventual prime time???

Reliable Multicast

So we’ve done a lot to make IP multicast routing
work well. Apart from RTP based applications, what
other class of applications do we see in the Net?

Well, clearly reliable ones dominate (HTTP/TCP
dominates unicast for now).

What can we do to make life painless for the
application writer (make multicast as easy or easier
to use than unicast?)?

Design Space

When we looked at RMTP, PGM and RLC, we found some
ideas that could be useful in other, future protocols.
This suggested that we should disassemble the 3
protocols, and reverse engineer them out of pieces,
but leave the pieces available to other people.

Having worked on micro-protocols (e.g. HIPPARCH
project, the x-kernel, click-router, etc), and also
having used this approach for realtime multicast and
unicast multimedia (rtp, rtcp, sip, sap, etc), we
decided to take it to the limit.

However, we also decided that any-to-many
applications were not compelling in the Big I
Internet. We decided to limit our scope to
one-to-many, bulk transfer (i.e. not “RPC for
groups”, or p2p (e.g. game) transport protocols).

Having said that, it is not obvious that the pieces
aren’t also useful for many to many, with a higher
level coordination.

Non Requirements

What it does mean is that we don’t have to solve
the atomic broadcast, or global ordering problem
(pace isis/horus), but can concentrate on partial
ordering in a one-to-many stream.

We also decided that authentication, access control
and privacy could probably be added along side,
although we keep a watching brief on this. It must
be said that denial of service and traffic analysis are
more of a concern with the IP-multicast underlay
model that with unicast.

Since we started, PIM-SSM has emerged at the IP
layer which, with IGMPv3 (source specific join, if
authenticated) goes a long way to making the IP
multicast deployment less dangerous for service
providers, but also tends to limit us to one-to-many
anyhow, and with no address/service advertisement,
implies long lived flows.

Requirements/Design Space
RFC 2887 defines these:

• Does the application need to know that
everyone received the data?

• Does the application need to constrain
differences between receivers?

• Does the application need to scale to large
numbers of receivers?

• Does the application need to be totally reliable?

• Does the application need ordered data?

• Does the application need to provide low-delay
delivery?

• Does the application need to provide
time-bounded delivery?

• Does the application need many interacting
senders?

• Is the application data flow intermittent?

• Does the application need to work in the public
Internet?

• Does the application need to work without a
return path (e.g. satellite)?

• Does the application need to provide secure
delivery?

Non functional requirements:-)

So then we have requirements that arise indirectly
from the nature of the IP multicast model:

• ack implosion leads to nack aggregation

• tree dependence

• router support (# groups, packet filter,
leave/join rate, special?)

• rate and congestion management - e.g. single or
multiple rate

Building Block Rationale

Being computer scientists bought up in the 80s, we
were 2 decades ahead of the comms hackers, but 1-2
decades behind modern software engineering. But
we do believe in a few late 20th century principles:

• Specification Reuse.

• Reduced Complexity.

• Reduced Verification and Debugging Time.

• Easier Future Upgrades.

• Common Diagnostics.

• Reduces Effort for New Protocols.

• Parallelism of Development.

However, we did recognize risks too:

• Delaying Development

• Increased Complexity.

• Reduced Performance.

• Abandoning Prior Work

Functional Decomposition

Data Reliability (ensuring good throughput) |
| - Loss Detection/Notification
| - Loss Recovery
| - Loss Protection

Congestion Control |
| - Congestion Feedback
| - Rate Regulation
| - Receiver Controls

Security

Group membership |
| - Membership Notification
| - Membership Management

Session Management |
| - Group Membership Tracking
| - Session Advertisement
| - Session Start/Stop
| - Session Configuration/Monitoring

Building Blocks

• nack based reliability

• FEC coding

• congestion control

• generic router support

• tree configuration

• data security

• common headers

Protocol Instantiations

PGM (uses GRA) - novel features - e.g. active nets
(dynamic filters), and window advance with time
(was original Reuters/TIBCO/Cisco TIB
requirement, after all:-)

RMTP2 (uses TRACK and NORM and can use
GRA) - novel features -builds a parameterized tree
amongst peers.

ALC (uses FEC and can use GRA) - novel features -
multi-rate, massive scale, no return path needed etc
etc

Summary & Conclusions to Part I

Did it work?

We don’t know yet - we are just doing the
instantiations.

It worked in the sense of making our documents (see
http://www.ietf.org/html.charters/rmt-charter.html)
clearer.

We haven’t seen anyone try to take a BB and use it
in another layer - please do

Note on overlays as incremental deployment for
other services: It is not at all clear whether hard
performance guarantees (int-serv) could be offered
as an overlay service (overlay QoS). However, it is
quite possible that statistical guarantees could be
achieved through overlay routing, admission, policing
and shaping. Watch this space!

Future Stuff Part I...

• Security - biggest problem is re-keying..

1. Access control and authentication of sender
(and receiver in IGMP join or invite) is easy

2. Privacy looks easy until you realise that to
scale, you use PKC for join,m then a shared
key for data distribution, but re-keying when
someone leaves scales badly, even with
hierarchy of 1 way functions and key graph...
DOS seems hard (esp. for receiver driven
protocols without auth/gra)

• APIs will be interesting - e.g. reflection... ...
...see next part of talk

Big Picture Stuff Part I...

Network evolution is a rare thing (analog to digital
PSTN tool 30 years...still happening)

More common to work though overlays and parallel
development.

Multicast needs to be deployed in this way - the
Mbone was the right path, and we forced the change
to native mode too soon.

Think about Vinyl to CD, VHS to DVD, Book to
Phone, Film to TV, Library to Web and so on

Stay virtual as late as possible!

Part II:- Applications and
Middleware

One person’s middleware is another persons
application...

News/Bboard/Mail lists

NNTP is a natural for multicast - in fact this has
been noted (c.f. Usenix paper on drinking from the
firehose).

Unit of transfer is a posting

Ordering not needed outside this

Not really bulk (total NNTP traffic is ¡¡ 1% of the
net)

Not hard ,but also not very interesting...

Software Distribution

Jim Gemmell noted that Microsoft corp. saturates a
1.2Gbps link 24*7*52.

But if you total the capacity on www.Microsoft.com,
and take 1 year to send it, you get 10kbps.

Mirror sites deal with time shifting.

Looks like a case for ALC, but PGM or RMTP also
work very well - depends on customer sites (satellite,
varying rate, behind ALGs/Firewalls/Proxies, Tivo,
Settopbox etc etc)

Share Trading

This is what PGM was designed for - single rate.

Sell by date dealt with by window.

Buy by date. - is a different session, so can be dealt
with otherwise completely

Note PGM (as an exceptional behaviour) does have
a notion of local repair servers, but poorly developed
compared with say RMTPII.

Games

Right now there are about 3500 half-life and quake
servers out there with paying customers. They aren’t
multicast. There could be a LOT more game players
if they were peer2peer, but:

Games, or DIS are just about the hardest case.

you need at least ABCAST semantics

you need minimum rate

you need delay bounding

General cheating problem (c.f. nice work by Levine
et al)

Won’t happen on the Internet as we know it, Jim,
well not yet anyhow...

Event Distribution

c.f. scribe..... could use lower level multicast if
reliable and timely

looks like a case for PGM...with local repair

probably not really ALC (although multi-rate events
might be ok if the rate was semantically associated
with sub-streams...actually TIBNET has a hack for
this in PGM too)

almost certainly (for 2.5 and 3G phone use) are
behind ALG/proxy, so RMTP works too...

Generic Peer-to-peer

Not clear - do s/w, music/dvd rip/pirates overlap in
time?

eternity and oceanstore might use ALC though...

see also CAN for multicast from ratnasamy at UC
Berkeley.

Aside on Content Name
Spaces

It is clear that apart from multicast, one thing that
all of these applications have in common is the
requirement for a content naming and subscription
specification service.

We need to be able to advertise, and withdraw
graph-based names - these specify the relationship of
content on a multicast channel, and associate it with
attributes so that subscribers to the channel can
express predicates about their interests and about
performance related parameters such as proximity.

For example:

Net News We say we want to read article 27, on
bboard alt.foo.

Events We are interested in restaurants near Pisa
with tables free for 4 at 8pm.

Software distribution/subscription We would like
the RPM for magicpoint 4 for Linux Red Hat
2.4.7, from the highest bandwidth server near
Cambridge.

Games We want to play Half Life on a server near
here with at least 15 other players at Kill Level
99.

A property of such a naming and filtering service is
that it should be implemented using the channel
architecture itself.

Channel Islands

What if there is only partial IP
multicast deployment?

Solution space:

• ALGs - reflectors, tree builders

• Tunnels

• Multicast Address Translation (including m2u
and u2m)

This latter is a hack of mine - we have NATs so why
not have MATs (translate mcast addresses between
realms. A realm can loan multicast space to
someone else that doesn’t have it, or hasn’t enough
addresses, or wants to do privacy, or aggregation
with it....

What if we use deep reflection?

I.e. pull out behaviours of net, transport and tree
building and use them in higher levels (in reflective
middleware).

For location, route, loss/repair, ordering, traffic
management, etc etc.

Reflective Routing Services

So the idea is that we create, join groups from
receiver locations, as if they use the underlying
addresses, and we ask the IP routers, which know
the underlying topology (link metrics, traffic
conditions etc), to compute (they know how to do
Dijkstra:-) routes to our receiver sets from our
sender sets, but, but but

We ask them to allow for non multicast capable
regions (i.e. to say where they need someone to
replicate packets for them.

Need some nice s/w engineering here...

Then we’re done.

Summary and Conclusions Part II

We don’t want to re-invent wheels, we want to
rediscover which type of wheel is useful where.

The end to end [to end]* design principle can be
re-stated for multicast as “don’t replicate functions
that need to know lower level details in higher levels,
but don’t expect pervasive deployment of higher
level functions everywhere - use open APIs and
reflection, and mix and match.”

