
Opportunity is the Mother of Invention

How Personal Delay Tolerant Networking led to Data
Centric Networking & Understanding Social
Networks.

Jon Crowcroft

Jon.crowcroft@cl.cam.ac.uk

Outline Narrative History of Haggle

1. Haggle Software Architecture

2. How we got to Declarative Data Driven Nets

3. Why we got diverted into Social Networks

Give it to me, I have
1G bytes phone flash.

I have 100M bytes of
data, who can carry
for me?

I can also carry
for you!

Thank you but you are in
the opposite direction!

Don’t give to me! I
am running out of
storage. Reach an

access point.

Internet

Finally, it
arrive…

Search La
Bonheme.mp3 for
me

Search La
Bonheme.mp3 for
me

Search La
Bonheme.mp3 for
me

There is one
in my
pocket…

1. Motivation 2001-2004

• Mobile users currently have a very bad experience with networking
• Applications do not work without networking infrastructure such as

802.11 access points or cell phone data coverage

• Local connectivity is plentiful (WiFi, Bluetooth, etc), but very hard for
end users to configure and use

• Example: Train/plane on the way to London
• How to send a colleague sitting opposite some slides to review?

• How to get information on restaurants in London? (Clue: someone else is
bound to have it cached on their device)

• Ad Hoc Networks were a complete washout
• Failed to account for heavy tailed density distribution

• Use of 802.11 as radio was at best misguided.

Underlying Problem

• Applications tied to network details and operations
via use of IP-based socks interface
• What interface to use

• How to route to destination

• When to connect

• Apps survive by using directory services
• Address book maps names to email addresses

• Google maps search keywords to URLs

• DNS maps domain names to IP addresses

• Directory services mean infrastructure

Phase transitions and networks
• Solid networks: wired, or fixed wireless mesh

• Long lived end-to-end routes

• Capacity scarce

• Liquid networks: Mobile Ad-Hoc Networking (MANET)

• Short lived end-to-gateway routes

• Capacity ok (Tse tricks with power/antennae/coding)

• Gaseous networks: Delay Tolerant Networking (DTN), Pocket Switched
Networking (PSN)

• No routes at all!

• Opportunistic, store and forward networking

• One way paths, asymmetry, node mobility carries data

• Capacity Rich (Grossglauser&Tse) (but latency terrible… … …)

• Haggle targets all three, so must work in most general case, i.e.
“gaseous”

Decentralisation&Disconnectivity

• Absence of infrastructure for
• Routing, searching, indexing

• Names, Identity, Currency

• When everything’s adhoc, even pagerank has to be
• Hence “Ad Hoc Google” -> “Haggle” Intel Cam 2004.

• Bad joke about french pronunciation of “Haddock”

• As early pub/sub systems, interest itself is data
• So we take event/notify+pub/sub and apply to

• Discovery of users, nodes, routes, interest

• everyone soaks it all up and runs ego-centric pagerank

Current device software framework

Interfaces

Delivery (IP)

Protocol

App logic + GUI

User Data

Application

Networking

File System

Synchronous,
node-centric API

Isolated from
network

App has two
orthogonal parts

Delivery uses
anonymous IP

Haggle framework design

Interfaces

Haggle

Applications

Resource
Mgmt

User

Data

Delivery

(Names)
Protocols

App Logic + GUI

Less work for new
app developers

Asynchronous,
data-centric API

Not tied to one app;
exposed metadata

Key component
missing before

Multiple protocols
usable for each task

Data Objects (DOs)

• DO = set of attributes = {type,
value} pairs

• Exposing metadata facilitates
search

• Another bad (Diot) joke

• Can link to other DOs

• To structure data that should be
kept together

• To allow apps to
categorise/organise

• Apps/Haggle managers can
“claim” DOs to assert ownership

DO-Type Data

Content-Type message/rfc822

From James Scott

To Richard Gass

Subject Check this photo out!

Body [text]

DO-Type Data

Content-Type image/jpeg

Keywords Sunset, London

Creation time 05/06/06 2015 GMT

Data [binary]

Message

Attachment

DO Filters

• Queries on fields of data objects

• E.g. “content-type” EQUALS “text/html” AND
“keywords” INCLUDES “news” AND “timestamp”
>= (now() – 1 hour)

• DO filters are also a special case of DOs

• Haggle itself can match DOFilters to DOs – apps
don’t have to be involved

• Can be persistent or be sent remotely…

DO Filter is a powerful mechanism

One-Off Persistent

Local “Desktop” Search

(find mp3s with artist
“U2”)

Listen

(wants to receive webpages)

Remote “Web” Search

(find “london
restaurants”)

Subscribe

(send all photos created by
user X to X’s PC)

Layerless Naming

• Haggle needs just-in-time binding of user level
names to destinations

• Q: when messaging a user, should you send to
their email server or look in the neighbourhood for
their laptop’s MAC address?
• A: Both, even if you already reached one. E.g. you can

send email to a server and later pass them in the corridor,
or you could see their laptop directly, but they aren’t
carrying it today so you’d better email it too…

• Current layered model requires ahead-of-time
resolution by the user themselves in the choice of
application (e.g. email vs SMS)

Name Graphs comprised of Name
Objects
• Name Graph represents full variety

of ways to reach a user-level name

• NO = special class of DO

• Used as destinations for data in
transit

• Names and links between names
obtained from

• Applications

• Network interfaces

• Neighbours

• Data passing through

• Directories

DO-Type Name

Name James Scott

DO-Type Name

Name jamesscott@acm.org

DO-Type Name

Name 00:0E:F6:23:91:34

Forwarding Objects

• Special class of DO used for
storing metadata about
forwarding

• TTL,expiry, etc

• Since full structure of naming
and data is sent,
“intermediate” nodes are
empowered to:

• Use data as they see fit

• Use up-to-date state and
whole name graph to make
best forwarding decision

FO

DO
DO

DO
DO

NO
NO

NO

NO

Connectivities and Protocols

• Connectivities (network interfaces) say which
“neighbours” are available (including “Internet”)

• Protocols use this to determine which NOs they
can deliver to, on a per-FO basis
• P2P protocol says it can deliver any FO to neighbour-

derived NOs if corresponding neighbour is visible

• HTTP protocol can deliver FOs which contain a DOFilter
asking for a URL, if “Internet” neighbour is present

• Protocols can also perform tasks directly
• POP protocol creates EmailReceiveTask when Internet

neighbour is visible

Forwarding Algorithms

{Protocol, Name, Neighbour}

FOs
x x

x x

x

xx
x

algorithm 1
algorithm 2
x = scalar
“benefit” of

forwarding task

• Forwarding algorithms create Forwarding Tasks to
send data to suitable next-hops

• Can also create Tasks to perform signalling

• Many forwarding algs can run simultaneously

Aside on security etc

• Security was “left out” for version 1 in this 4-year EU project, but threats
were considered

• Data security can reuse existing solutions of authentication/encryption

• With proviso that it is not possible to rely on a synchronously available trusted
third party

• Some new threats to privacy

• Neighbourhood visibility means trackability

• Name graphs could include quite private information

• Incentives to cooperate an issue

• Why should I spend any bandwidth/energy on your stuff?

• Did address later (Social Nets 2009-2011)

• see safebook.us by Eurecom folks…

Haggle S/W Architecture Details #1

• Motivation for doing mobile networking differently

• Problem definition for mobile networking: “Pocket
Switched Networking”

• A set of guiding principles behind our PSN solution,
named Haggle

• A 39000 feet overview of Haggle’s initial desig

Motivation: Mobile users currently have
a very bad experience of networking

• Applications do not work without infrastructure

• Local connectivity is plentiful (WiFi, Bluetooth, etc),
but very hard to use transparently

• E.g. messaging/file transfer to others in this room?

• E.g. If I had used a modem to get some cached
web content (e.g. news) earlier, and you wanted to
access it, how can we share it?

The wireless networking research community has
failed to support our end users

Pocket Switched Networking (PSN):
 Scenario for Mobile (DTN) Humans

• Study/define problem before attempting solution

• Pocket Switched Networking: the scenario that the
mobile user of consumer IT apps faces every day

• Humans carry one or more devices with them, each with
wireless networking capabilities and storage

• These devices experience neighbourhood (e.g. Bluetooth)
and infrastructure (e.g. 802.11 AP) connection
opportunities (with differing bandwidths, costs, etc)

• Human mobility generates these opportunities as they
move around with their normal mobility patterns.

Pocket Switched Networking:
 Application traffic
• In PSN, we can identify two classes of application traffic:

known-sender where one node needs to transfer data to a user-level
destination (not a network-level address), e.g.:

• Another user (who may own many nodes)
• All users in a certain place/with a certain interest
• Users with a certain role (e.g. “police”), etc.

known-recipient in which a device requires content of some sort, but it
is irrelevant where the data comes from, e.g.:

• Publicly distributed content such as “current news webpage”
• Media files, e.g. “songs by the Scissor Sisters”
• Locally generated information, e.g. traffic news

• For known-sender, there may be many recipients; for known-
recipient, there may be many sources.

• Yes, it’s very Pub/Sub (therefore CCN/NDN/PSIRP/LIPSIN etc)

Why status quo (IP) does badly in PSN

• IP doesn’t handle many-recipient well, and does not handle
many-source at all

• IP’s strict layering means infrastructure lookups to find
endpoint addresses before data transmission begins

• TCP/IP’s stream abstraction means that apps have to
implement app-layer protocols; these rely on access to
specific infrastructures

• E.g. email user wants “message to James” but email client
implements “message to IP address of MX DNS record of
James’s email domain”

• IP cannot handle non-contemporaneous connectivity, e.g. use
of human mobility as data transfer opportunity

• Packet switching means that app-layer data is lost to the
network; further exchanges of the same data means insertion
of the data into the network by an application

Design principles for Haggle

A. Forward using application layer information

B. Asynchronous operation

C. Empower intermediate nodes

D. Message switching

E. All user data kept network-visible

F. Build request-response into the network

G. Exploit all data transfer methods

H. Take advantage of brief connection opportunities

I. Empowered and informed resource management

J. Use and integrate with existing application infrastructure
where possible

A. Forward using application layer
information

• Use names meaningful to apps, e.g. human names,
keywords for documents, parameters for content
wanted (mime-type, etc)

• Delivery of data is accomplished by using the data
itself to choose forwarding path, rather than
artificial meaningless-to-the-user addresses such
as IP.

B. Asynchronous operation

• Apps can indicate network actions when natural to
them; actual transfers can happen asynchronously
when suitable connectivity occurs

• Late binding of user-level names to network-level
addresses means that up-to-date context
information can be used, e.g. dynamic IP address

• Support non-contemporaneous, store-and-forward
connections

C. Empower intermediate nodes

• Much content is public/sharable – e.g. webpages

• Thus any intermediate node may also be a valid
destination, e.g. it’s user might also be interested
in the webpage later

• Additionally, the intermediate node can be a
source for that data too – e.g. it meets another
node who is interested in the webpage

D. Message switching

• Message switching is useful for principles A,B,C

• Application layer forwarding information applies to
whole messages

• With variability inherent in non-contemporaneous
data paths, packet switching would result in lots of
useless half-messages arriving, wasting bandwidth

• Intermediate nodes cannot gain benefits unless
entire data units are made available to them

• Aside - looks like DTN Bundles but it isn’t

E. All user data kept network visible

• Data should not be stored privately by applications, but kept
in the Haggle framework where it can be shared with other
devices.

• Even your most personal data can be shared – with your other
devices. Encryption can be used to prevent unauthorised
parties snooping.

• Painful data synchronisation systems (e.g. phone/PC) can be
made obsolete!

• Public data is often popular and duplicated locally, so making
this visible allows us to find more sources for it

• {Looks a bit like all browsers are p2p or caches/proxies also}

• Think original IP arch + plutarch

F. Build request-response into the
network

• User-level tasks are sometimes inherently two-way,
e.g. a request for content and the response
including the content

• Supporting this in the network framework itself
rather than in apps allows all nodes to be used for
the “turnaround point”

• I.e. all nodes can cache application data (even if
they do not run any app that can understand it),
and respond to a request for that data

G. Exploit all data transfer methods

• Different transfer methods have different
properties

• Synchronous (Bluetooth), asynchronous (SMS)

• Zero cost (neighbourhood), cost-per-hour (WiFi hotspot),
zero cost till monthly limit hit (SMS)

• Physical-layer bandwidths, latencies, loss rates, etc

• A given transmission may be sent using multiple
diverse paths, e.g. by email and later by Bluetooth
directly.

• C.f. Plutarch

H. Take advantage of brief connection
opportunities

• Connection opportunities can be fleeting
• E.g. driving past an AP or another car

• Must optimise transmissions to maximum user
benefit

• N.B. current protocols such as Web, SMTP, are
really bad at this (work to be presented in WMCSA
2006)

I. Empowered and informed resource
management

• Haggle has the potential to use up all your device’s
resources and really piss you off

• It also has the potential to do resource
management correctly, something today’s devices
don’t do

• Storage: your disk is not full, why not?

• Networking: your WiFi interface has one queue, why?

• Battery: why use static levels for “plenty” and “little”?

• Resource management must be put centre stage in
Haggle

J. Use and integrate with existing
application infrastructure where possible

• Incremental deployability if a Haggle node can
interact with another node’s legacy apps

• Can reuse existing (familiar and complex) apps via
pretending to be a legacy protocol rather than
having to push out new ones

• Leverage vast infrastructures that are already
deployed – e.g. email servers, IM servers, the
Google index, etc

Delivery using user-level names

• Names come from:
• Network, e.g. using neighbour discovery (12:AB:23:98:BE:FF)
• Applications, e.g. Jon Crowcroft » jon.crowcroft@cl.cam.ac.uk

• Some names are also “addresses” i.e. data can be delivered
to that name using one of the protocols available

• Delivery engine needs to:
• Sense “nearby” addresses (e.g. Bluetooth inquiry gives MAC

addresses, Internet connectivity means all email addresses are
deliverable)

• Known-sender: Map between ADU’s destination name(s) and
addresses of suitable next-hop nodes

• Known-recipient: Determine suitable nearby nodes which may
be sources or help find sources for requested data

• Describe these potential transfers and their benefits to the
resource manager

http://www.thomson.net/
http://www.thomson.net/
http://www.thomson.net/

Resource management using tasks

• Resource management uses a list of tasks mainly
provided by delivery engine

• E.g. perform discovery on interface I

• E.g. send ADU X to neighbour Y on interface Z

• Each task has an associated benefit and cost
• Benefit is specified by task provider. May be time-

dependent (i.e. using a pointer-to-function)

• To get cost, resource use is estimated, and then the
“cost” is a function of the resource use * the resource
scarcity

• Resource manager then schedules execution of tasks in
order of highest benefit/cost ratio.

D3N*
2. Programming

Distributed Computation
in Pocket Switched

Networks (CCN/NDN etc)

* Data Driven Declarative Networking

 38

PSN: Dynamic Human Networks

• Topology changes every time unit

• Exhibits characteristics of Social Networks

Node
High weight edge

Low weight edge

Time unit = t

Time unit = t+1

Time unit = t+2

39

Time Dependent Networks
• Data paths may not exist at any one point in

time but do exist over time

• Delay Tolerant Communication

T
im

e

Source

Destination

Y

X

Z

40

Regularity of Network Activity

• Size of largest fragment shows network
dynamics

Tuesday5 Days

Haggle Node Architecture

41

// Registering a proximity event listener
Event.register(Event.OnEncounter, fun d:device ->
 if d.nID = “B” && distance(self,d) < 3 then
 dispatch NodeEncountered(d);
)

 Each node maintains a data store: its current
view of global namespace
 Persistence of search: delay tolerance and

opportunism
 Semantics of publish/subscribe and an event-

driven + asynchronous operation

 Multi-platform
(written in C++ and C)
 Windows mobile
 Mac OS X, iPhone
 Linux
 Android

Unified Metadata Namespace

node

data

Search Append

•How to program distributed computation?
• Use Declarative Networking ?

• The Vodafone Story….
• Need tested or verified code….so also good…

D3N Data-Driven Declarative Networking

•Declarative is new idea in networking

• e.g. Search: ‘what to look for’ rather than ‘how to look for’

• Abstract complexity in networking/data processing

•P2: Building overlay using Overlog

• Network properties specified declaratively

•LINQ: extend .NET with language integrated operations for
query/store/transform data

•DryadLINQ: extends LINQ similar to Google’s Map-Reduce

• Automatic parallelization from sequential declarative code

•Opis: Functional-reactive approach in OCaml

Declarative Networking

•How to program distributed computation?

•Use Declarative Networking

• Use of Functional Programming
– Simple/clean semantics, expressive, inherent parallelism

• Queries/Filer etc. can be expressed as higher-order
functions that are applied in a distributed setting

•Runtime system provides the necessary native
library functions that are specific to each device

• Prototype: F# + .NET for mobile devices

D3N Data-Driven Declarative Networking

• Functions are first-class values
• They can be both input and output of other functions

• They can be shared between different nodes (code mobility)

• Not only data but also functions flow

• Language syntax does not have state
• Variables are only ever assigned once; hence reasoning about

programs becomes easier
(of course message passing and threads  encode states)

• Strongly typed
• Static assurance that the program does not ‘go wrong’ at runtime

unlike script languages

• Type inference

• Types are not declared explicitly, hence programs are less verbose

D3N and Functional Programming I

• Integrated features from query language

• Assurance as in logical programming
•Appropriate level of abstraction

• Imperative languages closely specify
the implementation details (how);
declarative languages abstract too
much (what)

• Imperative – predictable result about
performance

• Declarative language – abstract away
many implementation issues

D3N and Functional Programming II

Overview of D3N Architecture

47

 Each node is responsible for storing, indexing,
searching, and delivering data

 Primitive functions associated with core D3N
calculus syntax are part of the runtime system

 Prototype on MS Mobile .NET

D3N Syntax and Semantics I
•Very few primitives

• Integer, strings, lists, floating point numbers and other
primitives are recovered through constructor application

•Standard FP features

• Declaring and naming functions through let-bindings

• Calling primitive and user-defined functions (function
application)

• Pattern matching (similar to switch statement)

• Standard features as ordinary programming languages
(e.g. ML or Haskell)

48

D3N Syntax and Semantics II

•Advanced features

• Concurrency (fork)

• Communication (send/receive
primitives)

• Query expressions (local and distributed
select)

49

D3N Language (Core Calculus
Syntax)

50

// Registering a proximity event listener
Event.register(Event.OnEncounter, fun d:device ->
 if d.nID = “B” && distance(self,d) < 3 then
 dispatch NodeEncountered(d);
)

Runtime System
• Language relies on a small runtime system

• Operations implemented in the runtime system written in F#

•Each node is responsible on data:

• Storing

• Indexing

• Searching

• Delivering

• Data has Time-To-Live (TTL)

• Each node propagates data to the other nodes.

• A search query w/TTL travels within the network until it expires

• When the node has the matching data, it forwards the data

• Each node gossips its own metadata when it meets other nodes

51

•Queries are part of source level syntax

• Distributed execution (single node programmer
model)

• Familiar syntax

Example: Query to Networks

select name from poll() where institute = “Computer Laboratory”

poll()

|> filter (fun r -> r.institute = “Computer Laboratory”)

|> map (fun r -> r.name)

D3N:

F#:

Message: (code, nodeid, TTL, data)

BA

C

D

E

Example: Vote among Nodes

53

// Registering a proximity event listener
Event.register(Event.OnEncounter, fun d:device ->
 if d.nID = “B” && distance(self,d) < 3 then
 dispatch NodeEncountered(d);
)

•Voting application: implements a distributed voting protocol of choosing
location for dinner

•Rules

• Each node votes once

• A single node initiates the application

• Ballots should not be counted twice

• No infrastructure-base communication is available or it is too expensive

•Top-level expression

• Node A sends the code to all nodes

• Nodes map in parallel (pmap) the function voteOfNode to their local data,
and send back the result to A

• Node A aggregates (reduce) the results from all nodes and produces a final
tally

Sequential Map function
(smap)

54

// Registering a proximity event listener
Event.register(Event.OnEncounter, fun d:device ->
 if d.nID = “B” && distance(self,d) < 3 then
 dispatch NodeEncountered(d);
)

• Inner working

• It sends the code to execute on the remote node

• It blocks waiting for a response waiting from the node

• Continues mapping the function to the rest of the nodes
in a sequential fashion

• An unavailable node blocks the entire computation

Parallel Map Function (pmap)

55

• Inner working

• Similar to the sequential case

• The send/receive for each node happen in a separate
thread

• An unavailable node does not block the entire computation

A

B C D E F G

 pmap

Reduce Function

56

// Registering a proximity event listener
Event.register(Event.OnEncounter, fun d:device ->
 if d.nID = “B” && distance(self,d) < 3 then
 dispatch NodeEncountered(d);
)

• Inner working

• The reduce function aggregates the results from a map

• The reduce gets executed on the initiator node

• All results must have been received before the reduce can
proceed

Voting Application Code

57

Outlook and Future Work

// Registering a proximity event listener
Event.register(Event.OnEncounter, fun d:device ->
 if d.nID = “B” && distance(self,d) < 3 then
 dispatch NodeEncountered(d);
)

•
Current reference implementation:

•
F# targeting .NET platform taking advantage of a vast collection of .NET libraries for
implementing D3N primitives

•
Future work:

•
Security issues are currently out of the scope of this paper. Executable code migrating from
node to node

• Validate and verify the correctness of the design by implementing a compiler targeting
various mobile devices

•
Disclose code in public domain

http://www.cl.cam.ac.uk/~ey204
Email: eiko.yoneki@cl.cam.ac.uk

3. Connectivity and Routing & How
I Got into Social Nets #1
• Motivation and context

• Experiments

• Results

• Analysis of forwarding algorithms

• Consequences on mobile networking

Three independent experiments

• In Cambridge
• Capture mobile users interaction.

• Traces from Wifi network :
• Dartmouth and UCSD

iMote data sets

• Easy to carry devices

• Scan other devices every 2mns
– Unsync feature

• log data to flash memory for each contact
– MAC address, start time, end time

• 2 experiments
– 20 motes, 3 days, 3,984 contacts, IRC employee
– 20 motes, 5 days, 8,856 contacts, CAM students

What an iMote looks like

 What we measure

• For a given pairs of nodes:
• contact times and inter-contact times.

Duration of the experiment

an inter-contact a contact time

t

What we measure (cont’d)

• Distribution per event.
≠ seen at a random instant in time.

• Plot log-log distributions.

• We aggregate the data of different pairs.

(see the following slides).

Example: a typical pair

α

cutoff

Examples : Other pairs

Aggregation (1): for one fixed
node

Aggregation (2) : among iMotes

Summary of observations

• Inter-contact time follows an approximate power-
law shape in all experiments.

• α < 1 most of the time (very heavily tailed).

• Variation of parameter with the time of day, or
among pairs.

Problem

• Given that all data set exhibit approximate power
law shape of the inter-contact time distribution:

• Would a purely opportunistic point-to-point forwarding
algorithm converge (i.e. guarantee bounded transmission
delays) ?

• Under what conditions ?

Forwarding algorithms

• Based on opportunities, and “Stateless” :
• Decision does not depend on the nodes you meet.

• Between two extreme relaying strategies :
• Wait-and-forward.

• Flooding.

• Upper and Lower bounds on bandwidth:
• Short contact time.

• Full contact time (best case, treated here).

Two-hop relaying strategy

• Grossglauser & Tse (2001) :

• Maximizes capacity of dense ad-hoc networks.

• Authors assume nodes location i.i.d. uniform.

Our assumptions on Mobility

• Homogeneity
• Inter-contact for every pairs follows power law.

• No cut-off bound.

• Independence
• In “time”: contacts are renewal instants.

• In “space”: pairs are independent.

Two-hop: stability/instability

• α > 2
The two hop relaying algorithm converges, and

it achieves a finite expected delay.

• α < 2
The expected delay grow to infinity with time.

Two-hop: extensions

• Power laws with cut-off:
• Large expected delay.

• Short contact case:
• By comparison, all the negative results hold.

• Convergence for α > 3 by Kingman’s bound.

• We believe the same result holds for α > 2.

The Impact of redundancy

• The Two-hop strategy is very conservative.
• What about duplicate packet ? Or epidemics forwarding ?

• This comes to the question:

Forwarding with redundancy:

• For α > 2
Any stateless algorithm achieves a finite

expected delay.

• For and :
There exist a forwarding algorithm with m

copies and a finite expected delay.

• For α < 1
No stateless algorithm (even flooding) achieve

a bounded delay (Orey’s theorem).

Forwarding w. redundancy (cont’d)

• Further extensions:
• The short contact case is open for 1<α<2.

• Can we weaken the assumption of independence between
pairs ?

Consequences on mobile
networking
• Mobility models needs to be redesigned

• Exponential decay of inter contact is wrong.

• Mechanisms tested with that model need to be analyzed
with new mobility assumptions.

• Stateless forwarding does not work
• Can we benefit from heterogeneity to forward by

communities ?

• Scheme for peer-to-peer information sharing.

Give it to me, I have
1G bytes phone flash.

I have 100M bytes of
data, who can carry
for me?

I can also carry
for you!

Thank you but you are in
the opposite direction!

Don’t give to me! I
am running out of
storage. Reach an

access point.

Internet

Finally, it
arrive…

Search La
Bonheme.mp3 for
me

Search La
Bonheme.mp3 for
me

Search La
Bonheme.mp3 for
me

There is one
in my
pocket…

3b Connectivity&Routing Ever More
Social

K-clique Communities in Cambridge
Dataset

K-clique Communities in Infocom06 Dataset

Barcelona Group
Paris Group A
Paris Group B
Lausanne Group

Paris Groups Barcelona Group

Lausanne Group

K=4

Human Hubs: Popularity

Reality Cambridge

Infocom06 HK

Forwarding Scheme Design Space
Explicit Social Structure

Structure in Degree

Structure in
Cohesive Group

Label

Rank, Degree

Clique
Label

Bubble

Network Plane

H
um

an
D

im
ension

Ranking

Source

Destination

Global Community

Sub community

Sub community

Subsub community

Use affiliation+hubs to fwd
inter+intra cliques

Give it to me, I have
1G bytes phone flash.

I have 100M bytes of
data, who can carry
for me?

I can also carry
for you!

Thank you but you are in
the opposite direction!

Don’t give to me! I
am running out of
storage. Reach an

access point.

Internet

Finally, it
arrive…

Search La
Bonheme.mp3 for
me

Search La
Bonheme.mp3 for
me

Search La
Bonheme.mp3 for
me

There is one
in my
pocket…

3c Connectivity&Routing 3 -
Community Detection

Community improves forwarding

• Identifying communities (e.g. affiliations)
improves forwarding efficiency. [label]

• Evaluate on Infocom06 data.

Centralized Community Detection

• K-clique Detection[Palla04]

• Weighted Network Analysis[Newman05]

• Betweenness [Newman04]

• Modularity [Newman06]

• Information theory[Rosvall06]

• Statistical mechanics[Reichardt]

• Survey Papers[Danon05][Newman04]

K-clique Detection

• Union of k-cliques reachable through a series of adjacent k-
cliques

• Adjacent k-cliques share k-1 nodes

• Members in a community reachable through well-connected well
subsets

• Examples
• 2-clique (connected components)
• 3-clique (overlapping triangles)

• Overlapping feature

• Percolation threshold
pc (k)= 1/[(k-1)N]^(1/(k-1))

K-clique Communities in
Infocom06 Dataset

Barcelona Group
Paris Group A
Paris Group B
Lausanne Group

Paris Groups
Barcelona Group

Lausanne Group

K=3

K-clique Communities in
Infocom06 Dataset

Barcelona Group
Paris Group A
Paris Group B
Lausanne Group

Paris Groups Barcelona Group

Lausanne Group

K=4

K-clique Communities in
Infocom06 Dataset

Barcelona Group
(Spanish)

Paris Group A (French)
Paris Group B (French)

Italian

K=5

Weighted network analysis (WNA)

1. Calculate the unweighted edge betweenness.

2. Divide each calculated betweenness value by its weight.

3. Remove the edge with the highest edge betweenness. and
repeat from 1 until there are no more edges in the
network.

4. Recalculate the modularity value of the network with the
current community partitioning. Select those splitting with
local maxima of modularity.

Community Detection using WNA

Distributed Community Detection

• SIMPLE, K-CLIQUE, MODULARITY

• Terminology : Familiar Set (F), Local Community
(C)

• Update and exchange local information during
encounter

• Build up Familiar Set and Local Community

• CommunityAccept(), MergeCommunities()

SIMPLE

CommunityAccept (vi)

MergeCommunities (Co, Ci)

K-CLIQUE

• CommunityAccept (vi) :

• MergeCommunities(Co, Ci):

CommunityAccept (vi)

MODULARITY

• Boundary Set

• Local Modularity
• Measure of the sharpness of local

community

MODULARITY

• CommunityAccept (vi) :

• MergeCommunities(Co , Ci): for each vk in set K,
or

or

Results and Evaluations

Data Set SIMPLE K-CLIQUE MODULARITY

Reality 0.79/0.81 0.87 0.89

UCSD 0.47/0.56 0.55 0.65

Cambridge 0.85/0.85 0.85 0.87

Complexity O(n) O(n2) O(n4)/O(n2k2)

Newman weighted analysis

Palla et al, k-Clique

Results and Evaluations

UCSDMIT

Distributions

of

 Local Community Views

Outlook

• Evolution of communities

• More general Familiar Set threshold (e.g. hours per day)

• Detection of different categories of relationship by specifying
contact duration and number of contacts

• Dynamic selection of Familiar Set threshold (e.g. fuzzy logic)

• Aging effect

• Temporal communities

• Evaluation on more data sets (e.g. Dartmouth WiFi, iMote
experiments)

The End

• With much thanks&acknowledgements to

• James Scott, Ebon Upton, Menghow Lim, Pan Hui

• Eiko Yoneki, Ioannis Baltopoulos, Shu-yan Chan

• Jing Su, Ashvin Goyal, Eyal de Lara

• Christophe Diot, Augustin Chaintreau, Richard Gass

Backup Slides
S/W Arch + Contact Graphs

Haggle S/W Architecture Details #2

• Proposed Haggle Framework (changed)

• Data Object (DO) app interface

• Names and their use in delivery

• Neighbour discovery

• Send DO / DO reception

• Solicit DO

Proposed Haggle Framework

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

Connectivity Manager
Discover neighbours and instruct interfaces

to provide needed connectivity

Interfaces with:

• Name Mgr to insert Names for
discovered neighbours

• Protocol Mgr to indicate that neighbours
are nearby (thus turning some names
into deliverable addresses)

• Resource Mgr to add tasks asking for
neighbour discovery to occur

Application

Interface

Protocol Manager

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

Application

Interface

Encapsulates all protocols
available for forwarding data to
next hops.

Interface with:
• Conn Mgr to detect neighbours
 and determine which names can
 be delivered to
• Forward Mgr to inform it about
 deliverable addresses and
 accept requests for forwarding
 data to next hops
• Name Mgr if it discovers any new
 names

Forwarding Manager
The Forwarding Mgr is responsible for
deciding suitable next hops for data in
transit, and interfacing with the app to
 allow it to ask for data to be sent or
solicited

Interfaces with:
• Name mgr to determine destinations for
 data and possible paths by which it can
 get there
• Protocol mgr to find out which next-hops
 are nearby and thereby what forwarding
 can be done, as well as to send out data
 to a next-hop
• Resource Mgr to propose forwarding
 tasks and get approval
• Data mgr to store persistent forwarding
 state

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

Application

Interface

Name Manager

Allows Names to be
created, linked to each
other, and queried

Interfaces with:
• Application or any other
 Mgr which needs to use
 Name information
• Data Mgr to store Names
persistently

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

Application

Interface

Data Manager

Data Mgr provides persistent
storage of Data Objects (DOs),
and allows the database to be
queried. Also provides a
callback interface so that arriving
DOs matching a DOFilter can be
proactively found.

 Interfaces with:
• Application or any other
 manager needing to use
 persistent storage or
 search/register interest in DOs.

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

Application

Interface

Resource Manager

All network usage is
approved by the resource
manager. Provides a “task”
abstraction and compares
costs of tasks with benefit
in order to decide next task.

Interfaces with:
• Connectivity Mgr (for
 neighbour discovery tasks)
• Forwarding Mgr (for
 forwarding tasks)

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

Application

Interface

Outline

• Data Object (DO) app interface

• Names and their use in delivery

• Neighbour discovery

• Send DO / DO reception

• Solicit DO

Data Mgr interface (insert/claim)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. App calls
insertDO(DO) when it
has new data to store
persistently

2. Data Mgr stores this
data and returns a
DOID

3. App calls
claimDO(DOID) to claim
the data is of interest to
it, and ensure that the
data is not deleted
prematurely

Data Mgr interface (search)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. App calls
search(DOFilter) to
find DOs which are
currently in the
database

2. Data Mgr applies
search filter and returns
list of DOIDs matching

Data Mgr interface (callback)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

2. (At any point later)
DO arrives from
internal or external
source.

3. Data Mgr matches
DO against DOFilter –
match found!

5. App uses Claim(DOID) if it
wants to claim the DO

1. App calls
addInterest(DOFilter) to
ask for callbacks if DOs
matching the filter are
found

4.InterestingDO(DOID)
call back

Outline

• Data Object (DO) app interface

• Names and their use in delivery

• Neighbour discovery

• Send DO / DO reception

• Solicit DO

Name Objects

DO-ID 002

DO-Type Name

Schema Bluetooth

Identifier ab:cd:ef:01:23:45

Link null

• Name objects comprise at least a
Schema, Identifier and Link type
entries. All values can be null.
• Name records can be created by
the Application, the Connectivity
Mgr, the Forwarding Mgr, the
Protocol Mgr, etc via an interface
provided by the Name Mgr
•Name objects can be annotated
with any other fields, e.g. to keep
track of forwarding state

DO-ID 003

DO-TYPE Name

Schema String

Identifier James Scott

Link 001,002

DO-ID 001

DO-Type Name

Schema Email

Identifier James.w.scott@intel.com

Link null

Example use of naming in delivery

Name Name Protocol Interface

Protocol

Interface
Bluetooth Name

Email Name
Email 802.11 (or any

internet-
attached
interface)

Bluetooth
Serial

Bluetooth

Name“James Scott”

General use of naming in delivery

Name
(address)

Name
(address)

Protocol Interface

Protocol Interface

Name

Name
(not address)

Create Name Data (App)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1.Create name record
DO

Create Name Object (App)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1.Create name record
DO

2.Store Name Record
DO

Create Name Object (Network)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1.Notify
discovered
connectivity

Create Name Object (Network)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1.Notify
discovered
connectivity

2.Create Name
Record DO

Create Name Object (Network)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1.Notify
discovered
connectivity

2.Create Name
Record DO

3.Store Name Record
DO

Name Linking (App)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Link Name to Name

Name Linking (App)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Link Name to Name

2. Use DO “claim”
mechanism to link the
Names

Name Linking (Forward Mgr)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr
1. Forwarding engine
discovers name mapping
through forwarding
metadata

Name Linking (Forward Mgr)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

2.Link Name DO to
Name DO

1. Forwarding engine
discovers name group
through forwarding
metadata

Name Linking (Forward Mgr)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr
1. Forwarding mgr
discovers name group
through forwarding
metadata

2.Link Name to Name

3. Use DO “claim”
mechanism to link the
Names

Outline

• Proposed Haggle Framework (changed)

• Data Object (DO) app interface

• Names and their use in delivery

• Neighbour discovery

• Send DO / DO reception

• Solicit DO

Neighbour Discovery

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Insert tasks into
resource manager which
propose using network
interfaces for neighbour
detection

Neighbour Discovery

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Insert tasks into
resource manager which
propose using network
interfaces for neighbour
detection

2. When cost/benefit
dictates, allow connectivity
manager to perform
neighbour discovery on a
given network interface

Neighbour Discovery

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Insert tasks into
resource manager which
propose using network
interfaces for neighbour
detection

2. When cost/benefit
dictates, allow connectivity
manager to perform
neighbour discovery on a
given network interface

3.Perform neighbour
discovery and update a
list of nearby
neighbours and
potential internet
connectivity.

Neighbour Discovery

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Insert tasks into
resource manager which
propose using network
interfaces for neighbour
detection

2. When cost/benefit
dictates, allow connectivity
manager to perform
neighbour discovery on a
given network interface

3.Perform neighbour
discovery and update a
list of nearby
neighbours and
potential internet
connectivity.

4. Using connectivity mgr’s
neighbour list and internet
access information,
determine if particular
addresses are nearby or not

Outline

• Data Object (DO) app interface

• Names and their use in delivery

• Neighbour discovery

• Send DO / DO reception

• Solicit DO

Send DO (App insertion)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1.Application calls
SendDO(DOID[] data,

DOID[] name)

Send DO (App insertion)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1.Application calls
Send DO(DOID[] data,

DOID[] name)

2. Create a Send DO
with forwarding

algorithm metadata

Send DO (App insertion)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1.Application calls
Send DO(DOID[] data,

DOID[] name)

2. Create a Send DO
with forwarding

algorithm metadata

3.Store Send DO and
make this DO claim the
payload DOs and the
recipient name DOs

Next-Hop decisions

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Keep track of
addresses which are
“nearby” as these are

potential next-hop
nodes for outstanding

send DOs

Next-Hop decisions

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Keep track of
addresses which are
“nearby” as these are

potential next-hop
nodes for outstanding

send DOs

2. At some point (can
be delayed), the

forwarding algorithm
sees a nearby name
which is a good next
hop for a given DO

Next-Hop decisions

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Keep track of
addresses which are
“nearby” as these are

potential next-hop
nodes for outstanding

send DOs

2. At some point (can
be delayed), the

forwarding algorithm
sees a nearby name
which is a good next
hop for a given DO 3. Insert a task to

forward the DO to the
next-hop

Send DO (Network tx)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. If task’s costs are
acceptable, and
cost/benefit shows this
is the most worthwhile
task, respond with a
“go”

Send DO (Network tx)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. If task’s costs are
acceptable, and
cost/benefit shows this
is the most worthwhile
task, respond with a
“go”

2. Execute task, i.e. pass
outgoing DO to specific
protocol with specific
next-hop name

Send DO (Network tx)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. If task’s costs are
acceptable, and
cost/benefit shows this
is the most worthwhile
task, respond with a
“go”

2. Execute task, i.e. pass
outgoing DO to specific
protocol with specific
next-hop name

3. Protocol sends data
to next hop

Receiving DO

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Protocol receives DO
and passes to
Forwarding Mgr

Receiving DO

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

2. Forwarding Mgr
decides on benefit of
receiving this DO, using
Data Mgr matches
Interest call if necessary

1. Protocol receives DO
and passes to
Forwarding Mgr

Receiving DO

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

2. Forwarding Mgr
decides on benefit of
receiving this DO, using
Data Mgr matches
Interest call if necessary

1. Protocol receives DO
and passes to
Forwarding Mgr

3. Forwarding Mgr
queries Resource Mgr
specifying benefit and
cost of receiving DO

Receiving DO

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

2. Forwarding Mgr
decides on benefit of
receiving this DO, using
Data Mgr matches
Interest call if necessary

1. Protocol receives DO
and passes to
Forwarding Mgr

3. Forwarding Mgr
queries Resource Mgr
specifying benefit and
cost of receiving DO

4. (If Resource Mgr
approves resource use)
Forwarding Mgr
completes reception of
DO and inserts it into
Data Mgr

Outline

• Data Object (DO) app interface

• Names and their use in delivery

• Neighbour discovery

• Send DO / DO reception

• Solicit DO

Solicit DO (App insertion)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1.Application calls Solicit
DO(DOFilter)

Solicit DO (App insertion)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1.Application calls Solicit
DO(DOFilter)

2. Inject and claim a
Solicit DO with
DOFilter metadata

Solicit DO (App insertion)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1.Application calls Solicit
DO(DOFilter)

2. Inject and claim a
Solicit DO with
DOFilter metadata

3. Call addInterest(DOFilter,
AppID)

Solicit DO (Propagate)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Keep track of
addresses which are
“nearby” as these are
potential next-hop
nodes for outstanding
send DOs

Solicit DO (Propagate)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Keep track of
addresses which are
“nearby” as these are
potential next-hop
nodes for outstanding
send DOs

2. At some point (can
be delayed), the
forwarding algorithm
sees a nearby name
which is a good next
hop for a given DO

Solicit DO (Propagate)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Keep track of
addresses which are
“nearby” as these are
potential next-hop
nodes for outstanding
send DOs

2. At some point (can
be delayed), the
forwarding algorithm
sees a nearby name
which is a good next
hop for a given DO 3. Insert a task to

forward the DO to the
next-hop

Solicit DO (Propagate)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Keep track of
addresses which are
“nearby” as these are
potential next-hop
nodes for outstanding
send DOs

2. At some point (can
be delayed), the
forwarding algorithm
sees a nearby name
which is a good next
hop for a given DO 3. Insert a task to

forward the DO to the
next-hop

4. Forwarding
proceeds as for Send
DO case

Solicit DO (Network arrival)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Solicit DO arrives from
network

Solicit DO (Network arrival)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Solicit DO arrives from
network

2. Forwarding mgr
decides to admit
Solicit DO

Solicit DO (Network arrival)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Solicit DO arrives from
network

2. Forwarding mgr
decides to admit
Solicit DO

3. Insert the solicit
DO into the data
mgr for persistent
store

Solicit DO (Network arrival)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Solicit DO arrives from
network

2. Forwarding mgr
decides to admit
Solicit DO

3. Insert the solicit
DO into the data
mgr for persistent
store

4. Call
addInterest(DOFilter) to
obtain callback if
matching data arrives
or already exists

Solicit DO (Data found)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Data mgr calls
InterestingDO if/when the
matching data arrives on
the node (from internal or
external source)

Solicit DO (Data found)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Data mgr calls
InterestingDO if/when the
matching data arrives on
the node (from internal or
external source)

2. Forwarding Mgr
constructs Send
DO from Solicit

Solicit DO (Data found)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Data mgr calls
InterestingDO if/when the
matching data arrives on
the node (from internal or
external source)

2. Forwarding Mgr
constructs Send
DO from Solicit

3. Forwarding Mgr
inserts Send DO
and claims it.

Solicit DO (Data found)

Application

Interface

Protocol
Mgr

Re
so

ur
ce

M
gr

Connectivity

M
gr

Name
Mgr

Data
M

gr

Fo
rw

ar
din

g
M

gr

1. Data mgr calls
InterestingDO if/when the
matching data arrives on
the node (from internal or
external source)

2. Forwarding Mgr
constructs Send
DO from Solicit

3. Forwarding Mgr
inserts Send DO
and claims it.

4. Forwarding
proceeds as before

Pocket Switched Networks

Human-to-Human

Use of dynamic human
connectivity

http://www.cl.cam.ac.uk/~ey204/Haggle/Vis/

 Topology changes every time unit
 Node 35 is a hub

Inter-contact with External nodes

Inter-contact time for WiFi traces

Inter-contact time during the day

Inter-contact time during the day

	 Opportunity is the Mother of Invention How Personal Delay Tolerant Networking led to Data Centric Networking & Understanding Social Networks.
	Outline Narrative History of Haggle
	PowerPoint Presentation
	1. Motivation 2001-2004
	Underlying Problem
	Phase transitions and networks
	Decentralisation&Disconnectivity
	Current device software framework
	Haggle framework design
	Data Objects (DOs)
	DO Filters
	DO Filter is a powerful mechanism
	Layerless Naming
	Name Graphs comprised of Name Objects
	Forwarding Objects
	Connectivities and Protocols
	Forwarding Algorithms
	Aside on security etc
	Haggle S/W Architecture Details #1
	Motivation: Mobile users currently have a very bad experience of networking
	Pocket Switched Networking (PSN): Scenario for Mobile (DTN) Humans
	Pocket Switched Networking: Application traffic
	Why status quo (IP) does badly in PSN
	Design principles for Haggle
	A. Forward using application layer information
	B. Asynchronous operation
	C. Empower intermediate nodes
	D. Message switching
	E. All user data kept network visible
	F. Build request-response into the network
	G. Exploit all data transfer methods
	H. Take advantage of brief connection opportunities
	I. Empowered and informed resource management
	J. Use and integrate with existing application infrastructure where possible
	Delivery using user-level names
	Resource management using tasks
	D3N* 2. Programming Distributed Computation in Pocket Switched Networks (CCN/NDN etc)
	PSN: Dynamic Human Networks
	Time Dependent Networks
	Regularity of Network Activity
	Haggle Node Architecture
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Overview of D3N Architecture
	D3N Syntax and Semantics I
	D3N Syntax and Semantics II
	D3N Language (Core Calculus Syntax)
	Runtime System
	Slide 52
	Example: Vote among Nodes
	Sequential Map function (smap)
	Parallel Map Function (pmap)
	Reduce Function
	Voting Application Code
	Outlook and Future Work
	3. Connectivity and Routing & How I Got into Social Nets #1
	Three independent experiments
	iMote data sets
	What an iMote looks like
	 What we measure
	What we measure (cont’d)
	Example: a typical pair
	Examples : Other pairs
	Aggregation (1): for one fixed node
	Aggregation (2) : among iMotes
	Summary of observations
	Problem
	Forwarding algorithms
	Two-hop relaying strategy
	Our assumptions on Mobility
	Two-hop: stability/instability
	Two-hop: extensions
	The Impact of redundancy
	Forwarding with redundancy:
	Forwarding w. redundancy (cont’d)
	Consequences on mobile networking
	3b Connectivity&Routing Ever More Social
	K-clique Communities in Cambridge Dataset
	K-clique Communities in Infocom06 Dataset
	Human Hubs: Popularity
	Forwarding Scheme Design Space
	Slide 85
	Use affiliation+hubs to fwd inter+intra cliques
	3c Connectivity&Routing 3 - Community Detection
	Community improves forwarding
	Centralized Community Detection
	K-clique Detection
	Slide 91
	Slide 92
	Slide 93
	Weighted network analysis (WNA)
	Community Detection using WNA
	Distributed Community Detection
	SIMPLE
	K-CLIQUE
	MODULARITY
	Slide 100
	Results and Evaluations
	Slide 102
	Outlook
	The End
	Backup Slides
	Haggle S/W Architecture Details #2
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Outline
	Data Mgr interface (insert/claim)
	Data Mgr interface (search)
	Data Mgr interface (callback)
	Slide 118
	Name Objects
	Example use of naming in delivery
	General use of naming in delivery
	Create Name Data (App)
	Create Name Object (App)
	Create Name Object (Network)
	Slide 125
	Slide 126
	Name Linking (App)
	Slide 128
	Name Linking (Forward Mgr)
	Slide 130
	Slide 131
	Slide 132
	Neighbour Discovery
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Send DO (App insertion)
	Slide 139
	Slide 140
	Next-Hop decisions
	Slide 142
	Slide 143
	Send DO (Network tx)
	Slide 145
	Slide 146
	Receiving DO
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Solicit DO (App insertion)
	Slide 153
	Slide 154
	Solicit DO (Propagate)
	Slide 156
	Slide 157
	Slide 158
	Solicit DO (Network arrival)
	Slide 160
	Slide 161
	Slide 162
	Solicit DO (Data found)
	Slide 164
	Slide 165
	Slide 166
	Pocket Switched Networks
	Inter-contact with External nodes
	Inter-contact time for WiFi traces
	Inter-contact time during the day
	Inter-contact time during the day

