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ABSTRACT

In this paper we seek to improve understanding of the structure of
human mobility, with a view to using this for designing algorithms
for the dissemination of data amongst mobile users.

Cooperation binds but also divides human society into commu-
nities. Members of the same community interact with each other
preferentially. There is structure in human society. Within society
and its communities, individuals have varying popularity. Some
people are more popular and interact with more people than others;
we may call them hubs. Popularity ranking is one facet of the pop-
ulation. In many physical networks, some nodes are more highly
connected to each other than to the rest of the network. The set
of such nodes are usually called clusters, communities, cohesive
groups or modules. There is also structure to social networking.
Different metrics can be used such as information flow, Freeman
betweenness, closeness and inference power, but for all of them,
each node in the network can be assigned a global centrality value.

1. INTRODUCTION

We consider the first generation of human network models to be
the Erdos-Renyi random graphs [2]. More recently, we might view
the introduction of heterogeneity into models through the use of
power-law and small-world graphs, as a second generation. This
has been used, for example, in analysis of the AS-level of the In-
ternet [4] [5]. It is well known that some nodes may be more
highly connected to each other than to the rest of the network. The
set of such nodes are usually called clusters, communities, cohe-
sive groups or modules. Many different approaches to commu-
nity detection in complex networks have been proposed such as k-
clique [20], betweenness [18], modularity [17] and more recently
information theory [23]. Other kind of methods can be found in the
survey paper [16]. Community detection can help us understand
the local structure in mobility traces, and therefore help us design
good strategies for information dissemination. It may be that com-
munities detected from mobility data do not actually match well to
real social communities, but still help with improved forwarding.
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We believe that it is time to move to a third generation of human
mobility models, understanding heterogeneity in both space, and
time, at multiple levels of detail.

Wireless networking has moved from a first generation of wire-
less access provided by 802.11 LANSs and cellular services, through
a second generation of Mobile Ad Hoc Networking, now on to a
third generation: Pocket Switched Networks(PSN) [9] are a cate-
gory of Delay Tolerant Network [7] aimed at supporting applica-
tions for human-to-human communications, through the so-called
ferrying paradigm. Previous work [3] established the inter-contact
intervals, and contact durations for a wide range of typical human
mobility patterns and for a variety of today’s radio devices. Crit-
ically, it was shown that stateless forwarding schemes would not
provide a bounded expected mean delivery latency across such sys-
tems. On the other hand, flooding packets has a very high cost, not
just in link-utilisation, but for other resources such as node storage
and battery life, which are likely to be highly valued by users.

When we have a better understanding of mobility, it will be much
easier to devise efficient forwarding algorithms for PSNs which
take advantage of both a priori and learned knowledge of the struc-
ture of human mobility, to provide improved performance trade-off
between delivery probability, latency and cost.

Society naturally divides into communities according to needs
for cooperation or selection. In sociology, the idea of “correlated
interaction” is that an organism of a given type is be more likely to
interact with another organism of a same type than with a randomly
chosen member of the population [19]. If the correlated interaction
concept applies, then our intuition is that using this community in-
formation to influence forwarding paths may be advantageous. To
date, though, there have been few results to support this conjecture
that we are aware of, except a very preliminary analysis by Hui et
al. [10] on the use of as users’ affiliation.

Searching using node degree rank was first introduced for peer-
to-peer networks. Adamic et al. [1] describe a method for searching
in networks, where the node degrees follow a power-law distribu-
tion, when the power law coefficient is sufficiently close to 2. Their
strategy is to choose a node at each step with highest degree among
all neighbors of the current node, quickly finding the highest de-
gree node. Once the highest degree node has been visited, it will be
avoided, and a node of approximately second highest degree will be
chosen. Effectively, after a short initial climb, the search descends
the degree sequence. The claim is that this is the most efficient way
to do this kind of sequential search. This is a good incentive for us
to look at this approach in PSNs as well. However, as we know,
a PSN is very different from the Internet, which is largely fixed in

"We will find out later that they actually match quite well.



structure. A PSN is a dynamic temporally varying network [11];
nodes move, connect and depart from time to time; the concept of
degree is not simple to define. Is the degree of a node in a PSN the
number of other nodes it has met in one second, one minute, one
hour or one day? Why not 6 hours?

Freeman [8] defined several centrality metrics to measure the im-
portance of a node to the network. “Betweenness” centrality mea-
sures the number of times a node falls on the shortest path between
two other nodes. This concept is also valid in a temporal network.
In a PSN, it can represent the importance of a node for relaying
traffic for others in the system. Hence, we will look at whether the
hierarchical search works with this centrality metric, and how to
acquire the metric in a practical, decentralised way.

The rest of this paper is structured as follows. We describe the
experients and data gathered. Then we use the correlation of con-
tact duration and number of contacts to classify human relation-
ships in a PSN into four categories. Next we use k-clique commu-
nity detection algorithms on several real traces, to explore the na-
ture of human community in different mobile environments. Sub-
sequently, we show empirically that identifying nodes according to
their centrality or ranking can improve delivery cost-effectiveness
over a greedy approach. After that we present some early results of
human predictability. Finally we discuss future work.

2. METHODOLOGY
2.1 Experimental Data Sets

We use four experimental data sets gathered by the Haggle Project
by two years referred to as Hong-Kong, Rummidge, Infocom035,
Infocom06, and one other dataset from the MIT Reality Mining
Project [6], referred to as Reality. Previously the characteristics of
these datasets such as inter-contact and contact distribution, have
been explored in several studies [3] [9] [14], to which we refer the
reader for further background information.

e In Hong-Kong, the people carrying the wireless devices were
chosen independently in a Hong-Kong bar, to avoid any par-
ticular social relationship between them. These people have
been invited to come back to the same bar after a week. They
are unlikely to see each other during the experiment.

e In Rummidge, the iMotes were distributed mainly to two groups

of students from University of Rummidge Computer Labo-
ratory, specifically undergraduate yearl and year2 students,
and also some PhD and Masters students. In addition to this,
a number of stationary nodes were deployed in various lo-
cations that is expected many people to visit, such as gro-
cery stores, pubs, market places, and shopping centers in
and around the city of Rummidge, UK. However, the data
of these stationary iMotes will not be used in this paper. This
dataset covers 11 days.

e In Infocom05, the devices were distributed to approximately
fifty students attending the Infocom student workshop. Par-
ticipants belong to different social communities (depending
on their country of origin, research topic, etc.). However,
they all attended the same event for 4 consecutive days and
most of them stayed in the same hotel and attended the same
sections (note, though, that Infocom is a multi-track confer-
ence).

o In Infocom06, the scenario was very similar to Infocom05 ex-
cept that the scale is larger, with 80 participants. Participants

were selected so that 34 out of 80 form 4 subgroups by aca-
demic affiliations. In addition, 20 more long range iMotes
were deployed at several places in the conference site to act
as access points. However, the data from these fixed nodes is
also not used in this paper.

e In Reality, 100 smart phones were deployed to students and
staff at MIT over a period of 9 months. These phones were
running software that logged contacts with other Bluetooth
enabled devices by doing Bluetooth device discovery every
five minutes, as well as logging information about the cellu-
lar tower they are associated with (a total of 31545 different
towers were logged).

The five experiments are summarised in Table 1.

3. CHARACTERISTICS OF OUR CONTACT
GRAPHS

Our first contribution is to introduce the notion of “contact graph”
as a way to help represent the mobility traces, and to choose a
threshold for community detection. The way we convert human
mobility traces into weighted contact graphs is based on the num-
ber of contacts and the contact duration, although we could use
other metrics. The nodes of the graphs are the physical nodes from
the traces, and the edges are the contacts. The weight of the edges
are the values based on the metrics specified such as the number of
contacts during the experiment.

We measure the relationship between two people by how many
times they meet each other and also how long they stay with each.
We naturally think that if two people spend more time together or
see each other more often, they are in closer relationship. In this
work we are not going to provide a specific threshold to infer actual
social context: we just use these two metrics to produce some maps
which may prove useful to guide forwarding.

Here we explore further properties of the experimental scenar-
ios, and present statistics concerning the contact graphs for each
dataset.

3.1 Weight Distribution of Contact Graphs

First we would show that the statistical properties for the two
conference scenario are quite similar. Figure 1(a) and 1(b) show
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Figure 1: Contact duration distribution for Infocom06 and In-
focom05

the contact duration distribution for Infocom06 and InfocomO5 re-
spectively. We can see that their distributions are quite similar, with
a mean different as small as 0.0003(0, 0.0633). More similarities
will be seen in the next section as well. Because of space limita-
tion, and these similarities, the later sections we only selectively



Experimental data set InfocomO5 | Hong-Kong | Rummidge | Infocom06 | RealityMining
Device iMote iMote iMote iMote Phone
Network type Bluetooth Bluetooth Bluetooth | Bluetooth Bluetooth
Duration (days) 3 5 11 3 246
Granularity (seconds) 120 120 600 120 300
Number of Experimental Devices 41 37 54 98 97
Number of External Devices 264 868 11,357 14,036 0
Number of internal contacts 22,459 560 10,873 191,336 54,667
Average # Contacts/pair/day 4.6 0.084 0.345 6.7 0.024
Number of external contacts 1,173 2,507 30,714 63,244 0

Table 1: Characteristics of the five experimental data sets

show one as example, in most cases Infocom06, since it contains
more participants, We show more results in a separate technical re-
port.

Figure 2 and Figure 3 show the contact duration and number
of contacts distribution for each pair in four experiments. For the
HongKong experiment we include the external devices, but for other
three experiments we use only the internal devices. We show later
that for HongKong experiments we need to use the external devices
to help to forward the data because of network sparseness.
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Figure 2: The contact duration distribution for each pair in
four experiments.

3.2 Correlation between Regularity and Fa-
miliarity

We assume contact duration indicates familiarity. Two people
sharing the same office might hate each other, and not talk, but
we will ignore this kind of extreme situation here. The number of
times two people meet each other implicitly reveals the pattern with
which they meet. In this work, we infer regularity of meetings from
the number of contacts. Two people might meet a lot of times in a
short period (e.g. a day), and then not at all. However, short periods
with many contacts are less likely to contribute to the upper quarters
of the distribution, and here we will ignore these too as outliers.

Figure 4 shows the correlation between regularity and familiarity
in the Rummidge data set. Here the regularity is positively corre-
lated to the familiarity with a correlation coefficient of 0.9026. We
define four kinds of relationships between a pair of nodes: Com-
munity, Familiar Strangers, Strangers, and Friends. A pair of nodes
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Figure 3: The number of contacts distribution for each pair in
four experiments.
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Figure 4: Number of contacts versus the contact durations for
pairs of Rummidge Students.



which has long contact duration (high familiarity) and large num-
ber of contacts (high regularity) is likely to belong to the same com-
munity. A pair of nodes which meet regularly but don’t spend time
with each other, could be familiar strangers [21] meeting everyday.
People who don’t meet regularly and don’t spend time with each
other would be in the category of strangers. Finally, for node pairs
which don’t meet very frequently but spend quite a lot of time to-
gether for each meeting, we count as friends. It is not necessary
that the division of the four quarters are exactly at the middle. It
is here acting as a reference or example. A clear cut division may
need more empirical experimental results. But here we provide the
methodology to classify these four kind of relationship based on
pure contact duration and frequency. Additional difficulties faced
by empirical social network research are well described in work by
Watts [27].

Figure 5 shows the correlation between the number of contacts
and contact durations for the other four experiments. We can see
that conference environments are quite similar, both with a narrow
stripe in the left bottom quarter. This stripe shows that people in
the conference tend to meet each other more often than spend long
time together. That is typical conference scenario, since people
may meet each other many times in coffee breaks, corridors, regis-
tration desk etc. They may stand together and chat for a while, and
then shift to chat with others instead of spending all the times to-
gether. Infocom06 contains double the number of participants, and
hence more data points. The Reality set is similar to the Rummidge
one, with most of the points lying on or above the diagonal line.
However, it also seems that people have more contacts instead of
spending times together. In the HongKong figure, we can find two
pairs of friends, two pairs of close community members, and two
pairs of familiar strangers. All the other pairs lie in the strangers
quarter. This is in line with our expectations for an experiment de-
signed to contain little social correlation.
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Figure 5: Number of contacts against contact durations for all
pairs in the four datasets, with correlation coefficient.

4. ON HUMAN HETEROGENEITY

In many mobility models such as the random way-point, nodes
are assumed, explicitly or implicitly, to have homogeneous speed
distributions, importance and popularity. Our intuition is that the

last two assumptions, at least, are not true. People have differ-
ent levels of popularity: salesmen and politicians meet customers
frequently, whereas computer scientists may only meet a few of
their colleagues once a year. Homogeneity might favour different
forwarding strategies for PSNs. In contrast, we want to employ
heterogeneous popularity to help design more efficient forwarding
strategies: we prefer to choose popular hubs as relays rather than
unpopular ones. To date we are not aware of any empirical evidence
for using human popularity or node centrality for information dis-
semination in mobile networks.

A temporal network is a kind of weighted network. The central-
ity measure in the traditional weighted network may not work here
since the edges are not necessary concurrent. Hence we need a dif-
ferent way to calculate the centrality of each node in the system.
Our approach is as follows: First we carried out a large number
of emulations of unlimited flooding with different uniformly dis-
tributed traffic patterns created using the HaggleSim emulator.

Then we count the number of times a node acts as a relay for
other nodes on all the shortest delay deliveries. Here the shortest
delay delivery refers to the case when a same message is delivered
to the destination through different paths, where we only count the
delivery with the shortest delay. We call this number the “between-
ness centrality” of this node in this temporal graph®. Of course,
we can normalize it to the highest value found. Here we use un-
limited flooding since it can explore the largest range of delivery
alternatives with the shortest delay. We believe that this definition
is similar in spirit to the definition of the Freeman centrality [8].

Initially, we only consider a homogeneous communications pat-
tern, in the sense that every destination is equality likely, and we
do not weight the traffic matrix by locality. We then calculate the
global centrality value for the whole homogeneous system. Later,
we will analyze the heterogeneous system, once we have under-
stood the community structure.
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Figure 6: Number of times a node as relays for others on four
datasets.

Figure 6 shows the number of times a node fall on the shortest
paths between all other node pairs. We can simply treat this as the

2We have calculated the weighted node centrality for each node,
but found out that the weighted centrality is not well correlated
to the centrality on the temporal graph. Nodes have very high
weighted centrality may have very low temporal centrality.



centrality of a node in the system. We observed a very wide hetero-
geneity in each experiment. This clearly shows that there is a small
number of nodes which have extremely high relaying ability , and
a large number of nodes have moderate or low centrality values,
across all experiments. One interesting point from the HK data is
that the node showing highest delivery power in the figure is actu-
ally an external node. This node could be some very popular hub
for the whole city, i.e. postman or a newspaper man in a popular
underground station, which relayed a certain amount of cross city
traffic. The 30, 70 percentiles and the means of normalized individ-
ual node centrality are shown in Table 2 and the distributions are
show in Figure 7.

Experimental data set | 30 percentile | Mean | 70 percentile
Rummidge 0.052 0.220 0.194
Reality 0.005 0.07 0.05
Infocom06 0.121 0.188 0.221
Hong Kong 0 0.017 0

Table 2: Statics about normalized node centrality in 4 experi-
ments

Reality N Cambridge

.
“L’

BN

01 \\ 01

o

i

iy

o \\—‘

o001 o001
o o1 001
c:normalized centrality

Pl>=c]

o1
c:normalized centrality

Infocom 06 HK

o1
am \LH;
1

oo oo01
o1 01 o1
c: normalized centrality

c]
c]

P[>
P[>

01
c:normalized centrality

Figure 7: Distribution of normalized node centrality on four
datasets.

S. FINDING K-CLIQUE COMMUNITIES

Our second contribution is the identification of community struc-
tures using k-cliques. We have calculated all the results by using
both contact duration and number of contacts on all five experi-
ments but because of space limitations we just show two cases of
contact duration and two cases of number of contacts.

5.1 K-Clique Community Detection

We use the k-clique community algorithm proposed by Palla et
al. [20] in their work, since overlapping of communities are al-
lowed, and we believe that in human society one person may be-
long to multiple communities. They define a k-clique community
as a union of all k-cliques (complete subgraphs of size k) that can
be reached from each other through a series of adjacent k-cliques,
where two k-cliques are said to be adjacent if they share k-1 nodes.
Their definition is based on their observation that an essential fea-
ture of a community is that its members can be reached through

well-connected subsets of nodes, and that there could be other parts
of the whole network that are not reachable from a particular k-
clique, but they potentially contain further k-clique communities.

To illustrate this further, the k-clique-communities of a network
at k = 2 are equivalent to the connected components, since a 2-
clique is simply an edge and a 2-clique-community is the union of
those edges that can be reached from each other through a series
of shared nodes. Similarly, a 3-clique-community is given by the
union of triangles that can be reached from one another through a
series of shared edges. As k is increased, the k-clique-communities
shrink, but on the other hand become more cohesive since their
member nodes have to be part of at least one k-clique. The method
is used for a binary network, and a weighted network is turned into
binary network by setting a threshold.

5.2 K-Clique University Communities

In the visualization, an edge is added between two nodes if they
are direct neighbors to each other in the community. The length of
the edges is not proportional to any property of either the commu-
nities or the nodes. However the width of the edges is proportional
to the link-weight that is the number of shared nodes between the
two communities.

Figure 8 shows the k-clique communities detected from the Rum-
midge student data using number of contacts.

Figure 8: Communities based on number of contacts with
weight threshold =29, k=3,4,5, and 10 (Rummidge).

The duration of the experiment is 11 days. For the number of
contacts, we used a threshold of 29 contacts, which represents an
average of 3 contacts per day.® In this case, around 8.5% of all the
edges are taken into account. We observe that the nodes mainly
split into two communities of size 11 respectively with k as high as
10. Next we examine lower values of k. We can see also from Fig-
ure 8, when k£ = 3 there is a big community of 31 nodes, and when
k = 4 the big community splits into two overlapping communi-
ties of sizes 14 and 17 with overlapping size = 1, and when k = 5
the two overlapping communities split into two disjoint communi-
ties of size 14 and 16 respectively. The two disjoint community
structures stay visible until £ = 11, with a gradual decrease in the
community size. For the contact duration metric, we set the contact
duration threshold to be 10 hours for the whole 11 days of exper-
iment. We also observe mainly two communities when using this
metric. The membership of these two communities is more or less
the same as that when using the number of contacts metric. This

3Considering some students may be taking the same courses, be
in the same supervision group, and live in the same College, and
hence using same dining hall, this value is reasonable.



agrees with Figure 4 that the contact duration and number of con-
tacts for Rummidge data is highly correlated.

Figure 9: Communities based on contact durations with weight
threshold = 10 hours, k=3,5,7, and 11 (Cambridge).

The output from the algorithm clearly illustrates that the partici-
pants can be seen as two communities in this case. When we look at
the experimental data, the two communities classified by this algo-
rithm match well with the two groups of Yearl and Year2 students
selected for the experiment. Of course, in each group of students
tend to know each other and meet each other, and hence the clique
size can be as large as 10.

5.3 K-clique Communities in Reality Mining

This is another campus environment but the environment is more
diverse than the Rummidge one. Out of 100 participants, 75 are ei-
ther students or faculty in the MIT Media Laboratory, while the re-
maining 25 are incoming students at the adjacent MIT Sloan busi-
ness school. Of the 75 users at the Media lab, 20 are incoming
masters students and 5 are incoming MIT freshmen. So we can
see unlike the Rummidge data consisting mainly of two classes of
students, this dataset consists of more groups.
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Figure 10: Communities based on contact durations with
weight threshold = 388800 seconds, k=3,4,5, and 7 (Reality).

First we look at communities detected by using threshold of

388800 seconds or 108 hours on the 9 months Reality Mining dataset.
Here we assume 3 lectures per week and 4 weeks per month and
for a total of 9 months, we get this threshold value (2% of the total
links are taken into consideration). Research students in the same
office may stay together all the time a day so their contact duration
threshold could be very large. For students attending lectures, this
estimation can be reasonable. A looser threshold still detects the
links with much stronger fit. We observe 8§ communities of size
(6,3,7,7,16,5,4,7) when k = 3 in this case. The 4-size one overlap
at one node with the 16-size which also overlap with another 7-
size community at another nodes. Two other 7-size nodes overlap
each other with overlapping size 1. The other three communities
are disjoint. When k£ = 4, the 3-clique community is eliminated
and other communities shrink or are eliminated, and only 5 com-
munities of size (4,13,5,5,7) left. All of these 5 communities are
disjoint. When k£ = 5, 3 communities of size (9,6,5) remains, the
9-size one and the 5-size one are split from the 13-size one in the 4-
clique case. Moving to k = 6 and k = 7, there are 2 communities
and 1 community respectively.

W648000, k=4

W648000, k=3

Figure 11: Communities based on contact durations with
weight threshold = 648000 seconds, k=3,4 (Reality).

We are also interested in knowing about small groups which are
tightly knit. We set a strict threshold of 648000 seconds, that is on
average 1 hour per weekday, 4 weeks per month, and for a total
of 9 months. Around 1% of the links are taken into account for
the community detection. When & = 3, there are three disjoint
communities of size (12,7,3). When k = 4, there are only two
communities left of size (8,6). Figure 11 shows the 3-cliques and
4-clique communities of 648000 seconds threshold with its counter
parts of 388800 seconds. A single 7-size community remains in
k = 5 and k = 6 cases, this 7-clique community is the same as
in the 388800 second case. These 7 people could be people from a
same research group, they know each other and have long contact
with each.

5.4 K-clique Conference Communities

In this section, we will show the community structures in a con-
ference environment. Here we take Infocom06 as an example since
it contains more participants than Infocom05 and we have more
participants information. Infocom is a multiple-track conference
with several programs running at the same time. We don’t expect
all our 80 experimental participants to attend the same sessions, so
will not expect the clique size to be as big as the Rummidge data.



The total dataset only covers 3 days, hence we will not expect the
threshold to be very big. People usually socialise during confer-
ences in a small groups so we expect clique sizes of 3, 4 or 5 to
be reasonable. And for Infocom06, the participants were specially
selected so that 34 out of 80 form four subgroups according to aca-
demic affiliations. Out of these four groups, there were two groups
from institutes in Paris with size of four and ten respectively(named
Paris Group A and Paris Group B), and there is one group from
Lausanne Switzerland of five people, and another, larger group of
15 people from the local organization in Barcelona. But for this
local organization group, the volunteers are from different local in-
stitutions and also responsible for different sessions in the confer-
ence so we will not expect them to be all together. After collecting
the data, for privacy purpose, all the personal information about the
participants are deleted except the Node ID, the affiliation and the
nationality.

Figure 12 shows the 3-clique communities with threshold 20000
seconds, that is approximately 1.85 hours per day. 1.68% of all
edges are taken into account for the community calculation. We
observe 6 communities of size (25,11,6,6,5,3) in this case. The 25-
size one overlap at one node with a 6-size one which also overlap
with the 11-size community at another node and the 3-size one at
another node. The 2nd 6-size community also overlap the 3-size
and 11-size at another two nodes. The 5-size community stands
alone. Although we know that during a conference where the peo-
ple from different sub-communities tend to mix together and hence
the boundary of affiliation communities would become less clear.
We still find the hints of the original affiliation communities from
the figure. The algorithm correctly classified the nodes belonging
to the local organizers into a community, see the Barcelona Group
at the right hand side of the figure, and also the members of the
Lausanne Group into another community. There are several nodes
which not belonging to these affiliations are also “false positively”
classified into the same communities, but this also truly reflects the
nature of a conference, to socialize with people in other institutions.
The two Paris groups are also clearly identified, they tend to social-
ize with each other. Nodes 47 is belonging to both groups, from the
same figure, it is important to link this two groups together. There
are many members in the 25-size group not belonging to a com-
mon institution but they are here linked together by different small
groups of mixing together in conference.

Barcelona Group

Paris Groups

e
Bar celona Group L
Paris Group A
ParisGroup B

-
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Figure 12: 3-clique communities based on contact durations
with weight threshold equals 20000 seconds (Infocom06).

When we increase k from 3 to 4, it splits into 8 communities
of size (8,6,6,5,5,4,4,4). The number of nodes decrease a lot, but
we can also see that the tight of the affiliation communities are
quite strong. The Barcelona Group and the Lausanne group are
still there, just the number change from 7 to 5 and 5 to 4 respec-

tively. The links from node 47 linking two detected communities
containing Paris Groups members disappear, but we still observe a
mixing of five Paris Group A and Group B nodes together to form
a community structure.

O ParisGroup A (French)

@ [talian O Barcelona Group (Spanish)

A ParisGroup B (French)
Figure 13: 5-clique communities based on contact durations
with weight threshold equals 20000 seconds (Infocom06).

Figure 13 shows the communities when k is equal to 5. There
are now only 3 communities of size (5,5,5). All small communities
size less than 5 in k =4 case are eliminated. We can observe that the
Barcelona Group and a Paris Group are still there. Another group
mainly consists of Italian speaking people overlaps with the French
group. We do not want to claim that the division by the k-clique
community algorithm matches perfectly to real social groups, but
at least it gives us rich information about the underlying human
interaction. A preliminary conclusion here is that, affiliation or
even nationality have a very strong tie to human contacts, even in
the conference, a highly mixed environment.

Figure 14: Communities based on number of contacts with
weight threshold = 3 and k=3 (HK).

5.5 K-clique Metropolitan Communities

As we can see from Figure 5, most pairs have low number of
contacts and contact duration. We didn’t expect to discover a rich
social structure from this data. However in this case, we can see
how some internal nodes without much social correlation are nev-
ertheless connected together by external Bluetooth devices, by con-
sidering all of the 869 nodes detected, including 37 iMotes and 832
external devices.



The experiment lasted 6 days. First we set the threshold to be
3 encounters which is equal to an average of one encounter per 2
days, around 8% of the total links will are taken into consideration.

In this case we observed 10 communities sized (8,4,3,18,3,10,6,5,6,3)

respectively when k = 3, which is shown on the Figure 14.

From the same figure we also see that the internal nodes are
usually joined together by external nodes. They themselves may
not have social correlation at all, but are connected together by
these unknown external devices which may belong to colleagues
or friends or familiar strangers of the iMote owners. This gives us
optimism about the possibility of city-wide PSN data communica-
tion.

When k£ = 4 communities shrink to only two small communities
of size 4 and 5 respectively. It seems that £ = 4 is too strong in
this case. We tried to increase the number of contacts to be 6, on
average one contact per day; in this case on 2.4% of the links are
taken into consideration. There are only 6 small communities of
size (4,3,3,3,6,4) respectively, with only two overlapping with each
other at a single node. This again confirms the very sparse social
cohesion in the experiment.

6. INTERACTION AND FORWARDING

We have shown the existence of heterogeneity at the level of in-
dividuals and groups, in all the mobility traces. This motivates us
to consider a new heterogeneous model of human interaction and
mobility.

Categories of human contact patterns Human relationships can
be modelled by using correlation of contact duration and
number of contacts. We defined four types of human re-
lationship based on the correlation of contact duration and
number of contact.

Cliques and Community We explored the community structures
inside different social environments, and found these com-
munity structures match quite well to the real underlying so-
cial structures.

Popularity Ranking We shall see that popular hubs are as useful
in the PSN context as they are in the wireline Internet and in
the Web.

We also provide details of the statistics of interactions in the ex-
periments so that they can be used by other researchers in future
modeling, or to bootstrap larger experiments consisting of compos-
ites of these.

We now conjecture how can we use this information to make

smart forwarding decisions. The following three pre-existing schemes

provide lower and upper bounds in terms of cost and delivery suc-
cess. All of these schemes are inefficient because they assume a ho-
mogeneous environment. If the environment is homogeneous then
every node is statistically equivalent, and every node has the same
likelihood of delivering the messages to the destination. As we
showed in the first half of this paper, the environments and nodes
are diverse, and hence all these naive schemes are doomed to have
poor performance. We need to design algorithms which make use
of this rich heterogeneity.

WAIT Hold on to a message until the sender encounters the recip-
ient directly. Cheap, but unbounded expected mean delay.

FLOOD Messages are flooded throughout the entire system.

MCP Multiple-Copy-Multiple-Hop.Multiple Copies are sent sub-
ject to a time-to-live hop count limit on the propagation of

messages. By exhausted emulations, 4-copy-4-hop MCP scheme

is found to be most cost effective scheme in term of delivery
ratio and cost for all naive schemes among all the datasets
except the HK data. Hence for fair comparison, we would
like to evaluate our algorithms against the 4-copy-4-hop MCP
scheme in most of the cases.

The Mobile network has a dual nature: it is both a physical net-
work and at the same time it is also a social network. A node in
the network is a mobile device, and also associated with a mobile
human.

Figure 15 shows the design space for the forwarding algorithms
in this paper. The vertical axis represents the explicit social struc-
ture, that is facets of nodes that can specifically identified such as
affiliation, organization or other social context. This is the social
or human dimension. The two horizontal axes represent the net-
work structural plane, which can be inferred purely from observed
contact patterns. The Structure-in-Cohesive Group axis indicates
the use of localized cohesive structure, and the Structure-in-Degree
axis indicates the use of hub structure. These are observable phys-
ical characteristics. In our design framework, is not necessary that
physical dimensions are orthogonal to the social dimension, but
since they are represent two different design parameters, we would
like to separate them. The design philosophy here is to include both
the social and physical aspects of mobility into considerations.
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Figure 15: Design space for forwarding algorithms.

LABEL Explicit labels are used to identify forwarding nodes that
belong to the same organization. Optimizations are exam-
ined by comparing label of the potential relay nodes and the
label of the destination node.This is in the human dimension,
although an analogous version can be done by labelling a k-
clique community in the physical domain.

RANK This is analogous to the degree of a node in a fixed network;
we use a modified ranking scheme, namely the node central-
ity in a temporal network. It is based on observations in the
network plane, although it also reflects the hub popularity in
the human dimension.

DEGREE A heuristic based on the observed average of the degree
of a node over some longer interval.



BUBBLE The Bubble family of protocols combines the observed
hierarchy of centrality of nodes with explicit labels, to de-
cide on the best forwarding nodes. Bubble is an example
algorithm which uses information from both the human as-
pects and also the physically observable aspects of mobility.

In future work, we will show how can we make use of these
different metrics to improve forwarding performance in a hetero-
geneous system and also when they will fail. In this paper we only
show the greedy RANK type of algorithms.

7. GREEDY RANKING ALGORITHM

The third contribution of this paper is to modify the greedy rank-
ing search scheme over power law networks to apply to our tempo-
ral graphs, and evaluate the resulting algorithm.

7.1 The Power of Greedy Ranking

Here we use a greedy strategy analogue to the one Adamic et al.
introduced in [1]. A PSN is not like Internet: we do not know when
a global or local maximum is reached since the next encounter is
unexpected. We cannot employ precisely the same strategy as they
propose.Here we also assume each node knows only its own rank-
ing and the rankings of those it encounters, but does not know the
ranking of other nodes it does not encounter, and does not even
know which node has the highest rank in the system. Our strategy,
which we call RANK, is very simple: we keep pushing traffic on all
paths to nodes which have a higher ranking than the current node,
until either the destinations are reached, or the messages expire.

If a system is small enough, the global ranking of each node is
actually the local ranking. If we consider only the Rummidge Com-
puter Laboratory System Research group, this is the the ranking of
each node inside the group. If we consider the whole Computer
Laboratory, we are considering a larger system of many groups,
but they all still use the same building. A homogeneous ranking
can also work. But when we consider the whole city of Rum-
midge, a homogeneous ranking would exclude many small scale
structures. In this section we show that in relative small and homo-
geneous systems, a simple greedy ranking algorithm can achieve
good performance.
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Figure 16: Comparison of delivery ratio (left) and cost(right) of
MCP and greedy RANK on 4 copies and 4 hops case (Reality).

Figure 16(a) shows that the simple greedy ranking perform al-
most as well as MCP for delivery. Figure 16(b) also shows that the
cost is only around 40% that of MCP, which represents a marked
improvement.

Hierarchical organization is a common feature of many complex
systems. The defining feature of a hierarchical organization is the
existence of a hierarchical path connecting any two of its nodes.
Trusina et al. [26] address how to detect and measure the extent of

the hierarchy manifested in the topology of a given complex net-
work. They defined the hierarchical path based on node degrees,
a path between two nodes in a network is called hierarchical if it
consists of an “up path” where one is allowed to step from node ¢
to node 7 only if their degrees k;, k; satisfy k;u < k;, followed by
a “down path” where only steps to nodes of lower or equal degree
are allowed. Either the up or down path is allowed to have zero
length. Because of the good achievement from the greedy ranking
algorithm, we are going to analyse the percentage of hierarchical
paths inside all the shortest paths. Table 3 summarises the results.

Experimental data set | % hierarchical paths
Rummidge 87.2 (-2.4,+4.3)
Reality 81.9 (-3.1,+3.3)

Infocom05 62.3 (-2.5,42.5)
Infocom06 69.5 (-4.1,+2.4)
Hong Kong 33.5 (-4.0,+4.0)

Table 3: Hierarchical Paths analysis of all shortest paths

The percentage of hierarchical paths is calculated as the number
of hierarchical paths divided by the number of non-direct transfer
deliveries. We can see that for Rummidge data and Reality Mining,
the percentage of hierarchical paths is very high, so our strategy of
pushing the messages up the ranking tree can probably find a lot
of these paths, and the performance of the ranking strategy here is
not much different from the MCP. For Infocom06 and Infocom05,
the percentages of hierarchical paths is also high, so the greedy
RANK strategy can also discover many of the shortest paths. How-
ever, for Hong Kong experiment, the network is too sparse and a
lot of shortest paths are hidden, because we could not know the
devices detected by the external devices, and most of the resulting
paths used for delivery are actually not the shortest . We can see
that percentage of hierarchical paths controls the delivery success
that is achieved by the greedy RANK algorithm. We conclude from
this that a very high percentage of the shortest paths are actually
hierarchical paths.

7.2 Where the Greedy Ranking Fails

For the Hong Kong dataset, the 37 participants are intentionally
selected without any social correlation. They live and work dis-
tributively throughout the whole city. Relying on direct contact,
less than 4% of the messages can be delivered. Unlike all the previ-
ous datasets, here all the external Bluetooth devices detected need
to be used for constructing the paths. But because we don’t know
the devices detected by all these external devices so a lot of poten-
tial paths not found.
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Figure 17: Comparison of delivery ratio and cost of MCP and
Greedy RANK on no constraints case (HK).

Figure 17(a) and Figure 17(b) show the delivery ratio and deliv-
ery cost using flooding, and using unlimited greedy ranking. We



can see that using flooding, we can deliver more than 40% of the
total traffic across the whole city by using only the 37 iMotes and
the external devices detected by these iMotes without knowing the
devices detected by the external devices, that will be a huge num-
ber of paths out of these 869 devices. However the cost is also very
high: to deliver one message, we need to make around 180 copies.
But in this case, greedy ranking can only deliver 10% of the mes-
sages, although the cost is much lower as well. In terms of delivery
and cost, greedy ranking is still more cost-effective than flooding,
but clearly the delivery success rate is still too low. One explana-
tion for this low performance is that since the participants have no
social correlation, and belong to different social communities, high
global ranking of a node may not represent a good choice of re-
lay for some local communities. Messages keep being pushed up
to some globally higher ranking nodes, and getting stuck at some
maxima, rather than then trickling down to some local community.
Figure 18(a) shows that the maximum number of hops for greedy
Rank is 4 hops and after that the messages get stuck. Figure 18(b)
shows the rank distribution of the source, destination and dead-end
of all the undelivered messages, we can see that these “dead-end
nodes” have relatively high ranking, and this supports our hypoth-
esis concerning messages stuck at maxima. An analogue is like in
real society, a politician could be very popular in the city of Rum-
midge, but not a member of the Computer Laboratory, so would
not be a very good relay to deliver message to the member in the
Computer Laboratory.
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Figure 18: The hop distribution of the delivered(left) and the
rank distribution of undelivered(right) on HK data.

8. MAKING CENTRALITY PRACTICAL

Although the greedy RANK algorithm fail sometimes in very
heterogenous system to deliver messages to a member in a small
group, it reduce a lot of the cost at the same time. And we would
think it to be a good bootstrap step for other forwarding algorithms
to push traffics away from the source node. If we want to deliver a
message to somebody, first try to give it to someone who you know
to be popular. So we would not doubt that centrality is an important
metrics for a PSN. Then we would ask these questions: How can
each node know its own centrality in a decentralised way? How
well does past centrality predict the future.

The final contribution of this paper is to provide early answers to
these two questions.

8.1 Approximating centrality

We found that the total degree (unique nodes) seen by a node
throughout the experiment period is not a good approximation for
the node centrality. Instead the degrees per unit time (for example
the number of unique nodes seen per 6 hours) and the node cen-
trality has a high correlation value. We can see from Figure 19
that some nodes with a very high total degree are still not good
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Figure 19: Correlation of rank with total degree and rank with
unit time degree (Reality).

carriers. It also shows that the per 6 hour degree is quite well cor-
related to the centrality value, with correlation coefficient as high
as 0.9511. The means that how many people you know doesn’t
matter too much, but how frequently you interact with these people
matters.

In order to verify that the average unit-time degree is as good as
or close to RANK, we run another sets of emulations using greedy
average unit-time degree(or we simply call it DEGREE) instead of
the pre-calculated centrality. Figure 20(a) and Figure 20(b) com-
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Figure 20: Comparisons of delivery(left) and cost(right) of
RANK and DEGREE on Reality Mining dataset, all groups.

pare the delivery ratio and delivery cost of using greedy RANK and
greedy DEGREE. We can see that RANK and DEGREE perform al-
most the same with the delivery and cost lines overlapping each
other. They not only have similar delivery but also similar cost.

However, the average unit-time degree calculated throughout the
whole experimental period is still difficult for each node to calcu-
late individually. We then consider the degree for previous unit-
time slot( we call this the slot window) such that when two nodes
meet each other, they compare how many unique nodes they have
met in the previous unit-time slot (e.g. 6 hours). We call this
approach the single window (S-Window). Another approach is
to calculate the average value on all previous windows, such as
from yesterday to now, then calculate the average degree for ev-
ery 6 hours. We call this approach the accumulative window (A-
Window). This technique is similar to a statistics technique called
exponential smoothing [28] and we would like to do further theo-
retical investigation.

The S-Window approach reflects more recent context and achieves
maximum of 4% improvement in delivery ratio than DEGREE, but
at double the cost. The A-Window approach measures more of the
accumulative effect, and gives more stable statistics about the aver-
age activeness of a node. However, its accumulative measurement
is not as good an estimate as DEGREE, which averages throughout



the whole experimental period. It does not achieve as good delivery
as DEGREE (not more than 10% less in term of delivery), but it also
has lower cost.

All these approaches, (DEGREE, S-Window and A-Window) can
provide us with a decentralised way to approximate the centrality
of nodes in the system, and hence help us to design appropriate
forwarding algorithms.

8.2 Human Predictability

The second question above can be transferred to a more general
question: how much can human interaction be predicted from the
previous contact history? In this section, we would use the vertex
similarity which have been well studied in citation network to study
the predictability of human interaction from the contact graph. And
after that we will also run some emulation of the traces on how
much the previous centrality can predict the future centrality.

8.2.1 Vertex Similarity

There are several ways to compare structural vertex similarity in
the previous works. Two vertices are considered structural equiva-
lence if they share many of the same network neighbors.
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Where T'; is the neighborhood of vertex i in a network, which is
the set of vertices connected to vertex i via an edge. |I';| is the
cardinality of the set I';, that is equal to the degree of the vertex i.
The Jaccard index [22] above was proposed by Jaccard over hun-
dred years ago, and the cosine similarity has a long history of study
on citation networks [24]. Here we use the vertex similarity to
measure the predictability of human interaction, such as we can
compare the vertex similarity of the contact graphs of two days and
tell how much similar between the human interaction on these two
days. Average over all the vertexes, we get an estimation for the
whole population. We call this simple graph similarity. We have
studied all the three metrics, but the trend variation is similar so
we just present the results of the most classic Jaccard measurement
here.

We look at the dataset of the Reality Mining data from 1st Febru-
ary to 30th April 2005. The reason for choosing this period is that
it is far from the new academic year so the human relationship are
already relatively stable and also it is term time so the participants
will be more active in the campus. We study the vertex similar-
ity and also simple graph similarity for every two consecutive days
and also for everyday pair with the date 1st February for these three
months. We will look at it as binary graph, that is we don’t consider
weight for the edges but just consider the existence of an edge. The
above three metrics proposed don’t consider a weighted graph.

Figure 21 shows the Jaccard vertex similarity of an active node,
i.e. a node with high centrality value, for the 88 consecutive day
pairs. The horizontal line at the middle shows the average value.
In our calculation, when two comparing vertexes have both cardi-
nalities equal to 0, we count their similarity to be 1, the maximum
Jaccard similarity. We can see that the trough(minimum) points
are corresponding to a change from weekday to weekend and also
weekend to weekday; and the peak(maximum) points are corre-
sponding to a transition from Saturday to Sunday, so there is al-
ways a peak surrounded by two troughs. So here we can know that

&)

Ocosine =

@

Omin =

11

vl i
L Y L
IR AR
o I A

10 20 30 40 50 60 70 80
Consecutive Day Pair
Figure 21: Vertex similarity of every consecutive day pairs of a
single node

Vertex Similarity

the nodes met by this node is very during weekday is very different
from the nodes meet during the weekend. For weekend, the nodes
meet have a very high probability to meet them during the second
weekend day. But even during week day, there is around 50% of
the nodes meet one day will meet again the second day. This is the
case for the active nodes, but for the less active node, i.e. the nodes
with low centrality value, we find out that they have the highest
vertex similarity value 1 almost everyday. These nodes usually see
exactly the same nodes everyday, this also explain why they have
low centrality values.

Figure 22 shows the simple graph similarity for the contact graphs
of every consecutive day. We can see that the average value is as
high as 0.7, that is for the whole population studied the human in-
teraction pattern of whom with whom is quite predictable for every
two consecutive days. The peaks here are also corresponding to the
transition from a Saturday to a Sunday.
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Figure 22: Simple graph similarity of every consecutive day
pairs

In order to see more clear about the phase transition from week-
day to weekend and also look at whether there is any long term
attenuation for the human interaction in this system. We compare
every day with the first day of this period we studied, which is 1st
February and it is a weekday. Figure 23 shows the vertex similarity
of every day pair corresponding to the first day of the study period.
We can see that the vertex similarity drops to zero from a weekday
to a weekend transition and stay zero for the whole weekend. And
we didn’t see the long term attenuation effect from the graphs we
produced. Similar trend of changes are also observed in the graph
similarity graph.

But if we want to further look at whether the same node pair
stay similar time together for a day pair and also whether they meet
similar number of times everyday, we need to consider a weighted
version of measurement for this kind of similarity. Since we cannot
find the useful metrics from the literature, so we need to invent our
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Figure 23: Vertex similarity of every day pairs with a randomly
chosen weekday of a single node
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where n = |I'; JT';|, min(w;¢) is the minimum of the weight
for an edge connecting node i and one of its neighbor in the two
graphs, and maz(w;) is the maximum of the weight for an edge
connecting node i and one of its neighbor in the two graphs. If there
is no an edge in graph, we count its weight to be 0. Here we count
number of contacts as the weight and calculate the vertex similarity
for all nodes and also the graph similarity. Figure 24 shows the
weighted vertex similarity for every consecutive day pair for the
same node as show in the previous. We still observed the transition
from weekday to weekend and vice versa. The horizontal lines in
the middle shows the average. It is around 0.3, that is not very
high but the reason is because of the transition from weekday to
weekend and weekend to weekday would produce two O values.
But if we look at the whole population in Figure 25, we can see
that even the contact frequency of two consecutive days are quite
predictable, with an average of close to 0.7.
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Figure 24: Weighted vertex similarity for every consecutive day
pair of a single node

We will look at the similarity of different time durations, the im-
pact of different period of the day, i.e. the nodes see during the
day time should be different than the nodes during night time, and
different data analysis technics such as correlation and matrix anal-
ysis will be used. And this result may only limited to a academic
campus but we will also look at more complex environments in the
future. But an early conclusion we can make here is that daily hu-
man interaction is quite predictable in the unit of per day, nodes
meet on one day have quite high probability to meet again in the
next day. This provide an indirect answer to the predictability of
centrality as well.

8.2.2 Predictability of Centrality
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Figure 25: Vertex similarity of every day pairs with a randomly
chosen weekday of a single node

In order to further verify whether the centrality measured in the
past is useful as a predictor for the future. We extracted three tem-
porally consecutive 3-week sessions from the Reality dataset and
then run a set of greedy RANK emulations on the last two data ses-
sions, but using the centrality values from first session.
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Figure 26: Delivery ratio(left) and cost(right) of RANK algo-
rithm on 2nd data session, all groups (Reality)

Figure 26(a),(b) show the delivery ratio and cost of RANK on
the 2nd data session using the centrality values from the 1st data
session. It seems that the performance of RANK is not far from
MCP but with much lower cost. The performance is as good as
in the original dataset. Similar performance is also observed in the
3rd data session. These results imply some level of human mobility
predictability, and show empirically that past contact information
can be used in the future.

9. RELATED WORK

Newman et al. used betweenness [18] and modularity [17] to
detect community structure in complex networks. The betweenness
of an edge is defined as the number of shortest paths between vertex
pairs that run along it, summed over all vertex pairs. They calculate
the betweenness of all edges in the network, remove the one with
highest betweenness, and repeat the process until no edge remain.
They also introduce a measure called modularity to evaluate how
good a particular division is. For a division with g groups, they
define a gzg matrix e whose component e;; is the fraction of edges
in the original network that connect vertices in group % to those in
group j. Modularity is defined as:
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where ||e?|| indicates the sum of all element of e



This measures the fraction of edges that are within the same com-
munity, less the expected value of the same quantity in a network
with the same community division but random connection between
the vertices. The difference between this algorithm and k-clique
is that the k-clique approach allows overlapping community to ex-
ist, but the Newman method divides nodes into completely disjoint
communities. This is the reason that we choose k-clique in our
work. We have also implemented the Newman algorithm for a
weighted network but for space reasons this is left to be reported
in other work.

For distributed search for nodes and content in power law net-
works, Sarshar et al. [25] proposed using a probabilistic broadcast
approach: sending out a query message to an edge with probabil-
ity just above the bond percolation threshold of the network. They
show that if each node caches its directory via a short random walk,
then the total number of accessible contents exhibits a first-order
phase transition, ensuring very high hit rates just above the perco-
lation threshold.
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Figure 27: The degree distribution for four experiments.

10. CONCLUSION AND FUTURE WORK

Networks exhibit power law node degree distributions, and scale-
free networks appear to be an important model for graphs which
evolve through preferential attachment and re-wiring. In this pa-
per, we extend this modelling to mobile ad hoc and delay tolerant
networks through experimental study of PSNs. We use this work
to confirm the original conjecture that the use of social preferential
attachment is a good heuristic for forwarding algorithms for tem-
poral graphs in a number of ways, whether by a priori labels or
through use of social structures inferred through observation.

A k-clique community can be built up by distributed gossip-
ping [12]. For a complete analysis of gossipping in PSN, we model
a PSN as a temporal graph with edges between two nodes that
come and go following a power law distribution with certain co-
efficient. The power law model for edges is based on prior mea-
surement work reported in [3] and [9]. We would like to consider
several network topologies for degree attachment including simple
plane lattice [12], Erdos-Renyi random graph, scale-free network
and also the mobility traces we have.

Figure 27 shows the degree distribution of four experiments.
Here degrees count the total number of unique internal nodes met

for the whole periods of Infocom05, Rummidge and HK and also a
3 weeks period for Reality Mining. We can see that the degree dis-
tributions here are not typical ER or SF. Research based on these
classic graphs would complement our study, however, for space
limitations reasons, we do not include that here. We just present
results for simple plane lattice gossipping.

In [12], two different gossipping approaches are introduced:
uniform gossip and neighbor flooding. Supposed that on a lattice
of VN x VN region of the plane, for uniform gossip, in each
step, each node u chooses a node v uniformly at random, and for-
wards to v all the messages it knows about. A well known-result
states that with high probability all nodes will receive a copy of
a given message m within O(logN) step of its initial appearance.
For neighbor flooding, in each step, each node u chooses one of its
closest neighbors v in the plane, and forwards to v all the messages
it got. In this case, any node at distances d from the origin of a
message will receive a copy of the message within o(d) steps of its
initial appearance. But the time takes for all nodes to obtain a given
message is ©(v/IN ). We leave the study of distribute k-clique com-
munity building on temporal graphs with different topologies for
future work.

Other forwarding algorithms [15] [13] have and will be devised
for DTNs, and should be evaluated in the context of the mobil-
ity and social models we have described here. Use of additional
resources such as geographic location data, and of infrastructural
nodes to assist in forwarding must be invstigated.

In section 8.1 we chose 6 hours from the intuition that daily life
is divided into 4 main periods, morning, afternoon, evening and
night, each almost 6 hours. This appears to work, however, future
work will look at how sensitive the system is to the choice of this
period.

Current k-clique algorithm only support binary graphs, a weighted
version should be targeted to eliminate the manual involvement of
choosing the weight thresholds.

Further experimental work involving larger scale experiments is
required to confirm our results with more confidence in a wider va-
riety of settings. Furthermore, we believe that it should be possible
to abstract mathematical models of mobility that match our empiri-
cal results that can be used to generate further data sets with which
to evaluate our and other forwarding systems. Further investigation
on human predictability will be done by using other statistical and
matrix analysis techniques.
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