
Mobile Crowd Computing &
Task Farming

Jon Crowcroft&Eiko Yoneki

Jon.crowcroft@cl.cam.ac.uk

Two Part Talk

• First, talk about Mobile Cloud Computing
Programming Models

• Second, talk about task farming in MCC, and
encounter statistics impact on performance

Part 1 -
Programming Distributed

Computation
in Pocket Switched

Networks (CCN/NDN etc)

came out of random (good) question by Brad Karp
during Pan Hui’s PhD defense

* Data Driven Declarative Networking

4

PSN: Dynamic Human Networks

• Topology changes every time unit

• Exhibits characteristics of Social Networks

Node
High weight edge

Low weight edge

Time unit = t

Time unit = t+1

Time unit = t+2

5

Time Dependent Networks
• Data paths may not exist at any one point in

time but do exist over time

• Delay Tolerant Communication
T
im

e

Source

Destination

Y

X

Z

6

Regularity of Network Activity

• Size of largest fragment shows network
dynamics

Tuesday5 Days

Haggle Node Architecture =
Runtime

7

 Each node maintains a data store: its current
view of global namespace
 Persistence of search: delay tolerance and

opportunism
 Semantics of publish/subscribe and an event-

driven + asynchronous operation

 Multi-platform
(written in C++ and C)
 Windows mobile
 Mac OS X, iPhone
 Linux
 Android

Unified Metadata Namespace

node

data

Search Append

• How to program distributed computation?
• Use Declarative Networking ?

• The Vodafone Story….
• Need tested or verified code….so also good…
• Three reasons:
1.No PII leakage
2.No crashes
3.No unexplained bills….

D3N Data-Driven Declarative Networking

• Declarative is not now a very new idea in networking
• e.g. Search: ‘what to look for’ rather than ‘how to look for’
• Abstract complexity in networking/data processing

• P2: Building overlay using Overlog
• Network properties specified declaratively

• LINQ: extend .NET with language integrated operations for
query/store/transform data

• DryadLINQ: extends LINQ similar to Google’s Map-Reduce
• Automatic parallelization from sequential declarative code

• Opis: Functional-reactive approach in OCaml

Declarative Networking

• How to program distributed computation?

• Use Declarative Networking

• Use of Functional Programming
– Simple/clean semantics, expressive, inherent

parallelism

• Queries/Filer etc. can be expressed as higher-order
functions that are applied in a distributed setting

• Runtime system provides the necessary native library functions
that are specific to each device

• Prototype: F# + .NET for mobile devices

D3N Data-Driven Declarative Networking

• Functions are first-class values
• They can be both input and output of other functions
• They can be shared between different nodes (code

mobility)
• Not only data but also functions flow

• Language syntax does not have state
• Variables are only ever assigned once; hence reasoning

about programs becomes easier
(of course message passing and threads encode states)

• Strongly typed
• Static assurance that the program does not ‘go wrong’ at

runtime unlike script languages
• Type inference

• Types are not declared explicitly, hence programs are less
verbose

D3N and Functional Programming I

• Integrated features from query language

• Assurance as in logical programming
• Appropriate level of abstraction

• Imperative languages closely specify the implementation
details (how); declarative languages abstract too much
(what)

• Imperative – predictable result about performance
• Declarative language – abstract away many

implementation issues

D3N and Functional Programming II

Overview of D3N Architecture

13

 Each node is responsible for storing, indexing,
searching, and delivering data

 Primitive functions associated with core D3N
calculus syntax are part of the runtime system

 Prototype on MS Mobile .NET

D3N Syntax and Semantics I
• Very few primitives

• Integer, strings, lists, floating point numbers and other
primitives are recovered through constructor
application

• Standard FP features

• Declaring and naming functions through let-bindings

• Calling primitive and user-defined functions (function
application)

• Pattern matching (similar to switch statement)

• Standard features as ordinary programming languages
(e.g. ML or Haskell)

14

D3N Syntax and Semantics II

•Advanced features

• Concurrency (fork)

• Communication (send/receive
primitives)

• Query expressions (local and distributed
select)

15

Runtime System
• Language relies on a small runtime system

• Operations implemented in the runtime system written in
F#

• Each node is responsible on data:

• Storing, Indexing, Searching

• Delivering

• Data has Time-To-Live (TTL)

• Each node propagates data to the other nodes.

• A search query w/TTL travels within the network until it
expires

• When the node has the matching data, it forwards the data

• Each node gossips its own metadata when it meets other
nodes

16

• Queries are part of source level syntax

• Distributed execution (single node programmer model)

• Familiar syntax

Example: Query to Networks

select name from poll() where institute = “Computer Laboratory”

poll()

|> filter (fun r -> r.institute = “Computer Laboratory”)

|> map (fun r -> r.name)

D3N:

F#:

Message: (code, nodeid, TTL, data)

BA

C

D

E

Example: Vote among Nodes

18

• Voting application: implements a distributed voting protocol of
choosing location for dinner

• Rules

• Each node votes once

• A single node initiates the application

• Ballots should not be counted twice

• No infrastructure-base communication is available or it is
too expensive

• Top-level expression

• Node A sends the code to all nodes

• Nodes map in parallel (pmap) the function voteOfNode to
their local data, and send back the result to A

• Node A aggregates (reduce) the results from all nodes and
produces a final tally

Sequential Map function
(smap)

19

• Inner working

• It sends the code to execute on the remote node

• It blocks waiting for a response waiting from the node

• Continues mapping the function to the rest of the nodes
in a sequential fashion

• An unavailable node blocks the entire computation

Parallel Map Function (pmap)

20

• Inner working

• Similar to the sequential case

• The send/receive for each node happen in a separate
thread

• An unavailable node does not block the entire
computation

A

B C D E F G

 pmap

Reduce Function

21

// Registering a proximity event listener
Event.register(Event.OnEncounter, fun d:device ->
 if d.nID = “B” && distance(self,d) < 3 then
 dispatch NodeEncountered(d);
)

• Inner working

• The reduce function aggregates the results from a map

• The reduce gets executed on the initiator node

• All results must have been received before the reduce can
proceed

Voting Application Code

22

Outlook and Future Work
• Current reference implementation:

• F# targeting .NET platform taking advantage of a vast
collection of .NET libraries for implementing D3N
primitives

• Future work:

• Security issues are currently out of the scope of this
paper. Executable code migrating from node to node

• Validate and verify the correctness of the design by
implementing a compiler targeting various mobile devices

• Disclose code in public domain

Part 2 - Task Farming

Progress of Computation on
Temporal Graph

Clustering

Clustering and Clique Identification

Locality

Work

Social Work

Task Matching

System Level Task Throughput

Rank Effect

Snapshot

More Rank Impact

Take Homes

• System Architecture is Data Centric

• Task Farming Can be Done

• No idea if battery use will be too strong disincentive

• Might work if we had data centers in cars :-)

• (Electric cars with data centers could use microgenerators &
Batteries to time shift energy as well as data/computation)

• Thought experiment maybe could give insights into normal
Cloud system design too - I don’t know though:)

The End

• With much thanks&acknowledgements to

• James Scott, Ebon Upton, Menghow Lim, Pan Hui

• Ioannis Baltopoulos, Shu-yan Chan

• Jing Su, Ashvin Goyal, Eyal de Lara

• Christophe Diot, Augustin Chaintreau, Richard Gass

