Mobile Crowd Computing &
Task Farming

Jon Crowcroft&Eiko Yoneki
Jon.crowcroft@cl.cam.ac.uk

58 UNIVERSITY OF
4P CAMBRIDGE

Two Part Talk

e First, talk about Mobile Cloud Computing
Programming Models

e Second, talk about task farming in MCC, and
encounter statistics impact on performance

Part 1 -
Programming Distributed
Computation
in Pocket Switched
Networks (CCN/NDN etc)

came out of random (good) question by Brad Karp
during Pan Hui’s PhD defense

* Data Driven Declarative Networking

PSN: Dynamic Human Networks

e Topology changes every time unit

e Exhibits characteristics of Social Networks

Node
— High weight edge
Low weight edge

Time unit = t

Time unit = t+1

Time unit = t+2 4

Time Dependent Networks

e Data paths may not exist at any one point in
time but do exist over time

e Delay Tolerant Communication

——

Destination

Source

__

Largest Frangment Size

50

40 |

30

20

10 +

0

Regularity of Network Activity

e Size of largest fragment shows network

dynamics

|

0

100 200 300 400 500 600 700
5 Days activities in Bath Trace (time unit = 600 seconds)

5 Days

Largest Frangment Size

50

40 |

30

20

10

M$Wm M

480 500 520 540 560 580 600
Tuesday in Bath Trace (time unit = 600 seconds)

Tuesday

Haggle Node Architecture =
Runtime

» Fach node maintains a data store: its current

view of global namespace

= Persistence of search: delay tolerance and
opportunism

= Semantics of publish/subscribe and an event-
driven + asynchronous operati

= Multi-platform

(written in C++ and C)
= Windows mobile

Mac OS X, iPhone 4“ data

Linux

Search Append

Android node

e How to program distributed computation?
* Use Declarative Networking ?

e The Vodafone Story....
* Need tested or verified code....so also good...
* Three reasons:
1.No PII leakage
2 .No crashes
3.No unexplained bills....

Declarative is not now a very new idea in networking
®* e.g. Search: ‘what to look for’ rather than ‘how to look for
* Abstract complexity in networking/data processing

P2: Building overlay using Overlog
* Network properties specified declaratively

LINQ: extend .NET with language integrated operations for
query/store/transform data

DryadLINQ: extends LINQ similar to Google’s Map-Reduce
* Automatic parallelization from sequential declarative code

4

Opis: Functional-reactive approach in OCaml

e How to program distributed computation?

e Use Declarative Networking

* Use of Functional Programming

— Simple/clean semantics, expressive, inherent
parallelism

* Queries/Filer etc. can be expressed as higher-order
functions that are applied in a distributed setting
e Runtime system provides the necessary native library functions
that are specific to each device

* Prototype: F# + .NET for mobile devices

Functions are first-class values
* They can be both input and output of other functions
* They can be shared between different nodes (code
mobility)
* Not only data but also functions flow
Language syntax does not have state
* Variables are only ever assigned once; hence reasoning
about programs becomes easier
(of course message passing and threads = encode states)
Strongly typed
® Static assurance that the program does not ‘go wrong’ at
runtime unlike script languages
Type inference

* Types are not declared explicitly, hence programs are less
verbose

e Integrated features from query language

* Assurance as in logical programming
e Appropriate level of abstraction

* Imperative languages closely specify the implementation
details (how); declarative languages abstract too much
(what)

* Imperative — predictable result about performance

* Declarative language - abstract away many
implementation issues

Overwew of D3N Architecture

Each node is responsible for storing, indexing,
searching, and delivering data
= Primitive functions associated with core D3N
calculus syntax are part of the runtime system
= Prototype on MS Mobile .NET

Application

D3N Kernel

Timer
Event Handler

Network
Monitor v

. =
=}

anand juaag

AYVHEEll N .d

Auno3s | H

buipiemiog

21035 &1eq |

Functional Components

F#

13

.NET Framework

D3N Syntax and Semantics I

e Very few primitives

Integer, strings, lists, floating point numbers and other
primitives are recovered through constructor
application

e Standard FP features

Declaring and naming functions through let-bindings

Calling primitive and user-defined functions (function
application)

Pattern matching (similar to switch statement)

Standard features as ordinary programming languages
(e.g. ML or Haskell)

14

D3N Syntax and Semantics II

e Advanced features
* Concurrency (fork)

* Communication (send/receive
primitives)

* Query expressions (local and distributed
select)

15

Runtime System

e Language relies on a small runtime system

* Operations implemented in the runtime system written in
F#
e Each node is responsible on data:

* Storing, Indexing, Searching

* Delivering

* Data has Time-To-Live (TTL)

* Each node propagates data to the other nodes.

* A search query w/TTL travels within the network until it
expires

* When the node has the matching data, it forwards the data

* Each node gossips its own metadata when it meets other
nodes

16

e Queries are part of source level syntax
* Distributed execution (single node programmer model)
* Familiar syntax

D3N: select name from poll() where institute =

F#: poll()
|> filter (fun r -> r.institute =)

|> map (fun r -=> r.name)

Message: (code, nodeid, TTL, data)

Example: Vote among Nodes

e \oting application: implements a distributed voting protocol of
choosing location for dinner

e Rules
* Each node votes once
* A single node initiates the application
* Ballots should not be counted twice

e No infrastructure-base communication is available or it is
too expensive
e Top-level expression

e Node A sends the code to all nodes

* Nodes map in parallel (pmap) the function voteOfNode to
their local data, and send back the result to A

* Node A aggregates (reduce) the results from all nodes and
produces a final tally 8

Sequential Map function
(smap)

e Inner working
e Tt sends the code to execute on the remote node

* Tt blocks waiting for a response waiting from the node

* Continues mapping the function to the rest of the nodes
in @ sequential fashion

* An unavailable node blocks the entire computation

let rec smap f Ist =// Sequential map
match Ist with

1 =11

| n::ns — send f n;receive n :: smap f ns

19

Parallel Map Function (pmap)

e Inner working
* Similar to the sequential case

* The send/receive for each node happen in a separate
thread

e An unavailable node does not block the entire
computation

let rec pmap f Ist = // Parallel map
match Ist with

1 —11 @

ln:ns — pmap

fork (fun () —
send f n;receive n
) :: pmap ' ns ®© O | E_

20

Event.register(Event.OnEncounter, fun d:device ->
if d.nID = “B” && distance(self,d) < 3 then
dispatch NodeEncountered(d);

| Reduce Function

e Inner working
* The reduce function aggregates the results from a map
* The reduce gets executed on the initiator node

e All results must have been received before the reduce can
proceed

let rec reduce f se Ist =// Reduce with starting element
match Ist with
[[] —se
| x::xs — f X (reduce { se xs)

21

Voting Application Code

type ballot = { locationA : int: locationB : int }

let emptyBallot = { locationA = 0: locationB =0 }:

let graph = getSocialGraph():

let voteForA():ballot = { locationA = 1: locationB =0 }
let voteForB():ballot = { locationA = 0O; locationB =1 }

Tet rec smap f Ist = // Sequential map
match Ist with

' —10

| n::ns — send f n:receive n :: smap fns

~ let rec pmap f Ist = // Parallel map
match Ist with
[0 —1
|n::ns —
fork (fun () —
send f n:receive n
) :: pmap fns

let rec reduce f se Ist = // Reduce with starting element
match Ist with
| [] —se
| X::xs — f X (reduce f se xs)

let countVote (bl:ballot) (b2:ballot):ballot =
{ locationA = bl.locationA + b2.locationA:
locationB = b1l.locationB + b2.locationB }

reduce countVote emptyBallot (pmap voteOfNode graph)

Outlook and Future Work

e Current reference implementation:

* F# targeting .NET platform taking advantage of a vast
collection of .NET libraries for implementing D3N
primitives

e Future work:

® Security issues are currently out of the scope of this
paper. Executable code migrating from node to node

* Validate and verify the correctness of the design by
implementing a compiler targeting various mobile devices

* Disclose code in public domain

Part 2 - Task Farming

B
.

» Sensor readings
* Media
e Web cache

* User knowledge
B R

@ DD
@ ool Bl

Progress of Computation on
Temporal Graph

a0 %, (07 N

Devices
(]

= L

Clustering

Fiedler Clustering

2JURISIQ

Clustering and Clique Identification

Fiedler Clustering

Distance

Locality

Can tn Cn+1

Party Hub: Same Time and Space

Eanr tn En+1

Date Hub: Different Time and /or Space

Work
1

, 08
b
O

g @

N
5100
2

§ o
3

= 04
=
O

=i,

o |

|deal case m Task farming

A

Master Node

Social Work

Task farming e T

g

it yearstudents o

Task Matching

Work done

0.8
0.6
0.4
0.2

10
Queue length

100

1000

10000

100

100000

10000
1000 Task duration

System Level Task Throughput

P(x <X)

300000

1 I T I r—
Workers per timeslot »
1 /
2
4
8
0.8 |
’}"
0.6 |- / |
/ /
/ /
f
i
/ > o
J "/
04 " ;'Jr /‘/r =l
."/ /,r
o
g - ,—fH
I _J p P
/ //
0.2 | 4 i
J /)
of sl
','()/! s
’.” / e
.‘/" ,’ﬁ/ s
0 — —:;’ e |/ 1 1 1
0 50000 100000 150000 200000 250000
Total tasks executed (highly ranked workers)

Rank Effect

Total Tasks

® @
®
- e ed ¢ -
1e+007 [X X 8 o
X
K X X
X e XXX
° KPS
X
X X
1e+006 1 Executed
.] 1 Collectedl
250 200 150 100 50

Rank of Nodes

Snapshot

Totla Tasks Executed

250000

200000

150000

100000

50000

T

T

g Node 34 (rank=252) —&— |
Node 18 (rank=250) ----&3---
Node 6 (rank=200) - %
. Node 1 6(rank=1159) A
0 2 4 6 8 10

Number of Workers: Random Selection

More Rank Impact

250000 B I ' ’ T -
= 200000 f
)
=
&)
)
& 150000 r
)]
-
)]
o
100000 | i
g L
@)
|_
- Node 34 (rank=252) —&— |
RRERs Node 18 (rank=250) ----£3----
Node 6 (rank=200) ---%---
, ~ Node 16(rank=159) -
° < 4 6 8 10

Number of Workers: High Rank Selection

Take Homes

e System Architecture is Data Centric

e Task Farming Can be Done

e No idea if battery use will be too strong disincentive
e Might work if we had data centers in cars :-)

o (Electric cars with data centers could use microgenerators &
Batteries to time shift energy as well as data/computation)

e Thought experiment maybe could give insights into normal
Cloud system design too - I don’t know though:)

The End

e With much thanks&acknowledgements to

e James Scott, Ebon Upton, Menghow Lim, Pan Hui

e Joannis Baltopoulos, Shu-yan Chan

e Jing Su, Ashvin Goyal, Eyal de Lara

e Christophe Diot, Augustin Chaintreau, Richard Gass

