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Graphs aren’t sta&c or homoegenous

• Re-do	two	simple	small	world	&	clustered	models	
•  Preferen?al	a@achment	&	re-wiring	(alpha	&	beta)	models	

• Add	one	simple	idea,	but	in	two	guises:	
•  Nodes	are	taken	(in	batches)	from	a	sequence	of	genera?ons	
•  There’s	a	birth	(death)	process	of	new	(old)	genera?ons	
•  To	note:	discrete	genera?ons,	but	con?nuous	?me…	

•  Two	use	cases	
•  Social	media/graphs	–	parents,	siblings,	children	
•  Tech	nets	(internet,	transport)		-	dialup,	broadband,	fiber,	3G/4,/ISP/IXP	or	
horse,	car,	plane,	drone…	
h@p://www.ee.ucl.ac.uk/~mrio/papers/hamedjrnl_camera.pdf	



What	makes	a	problem	graph-like?	

!  There are two components to a graph 
!  Nodes and edges 

!  In graph-like problems, these components have natural 
correspondences to problem elements 
!  Entities are nodes and interactions between entities are edges  

!  Most complex systems are graph-like 



Friendship	Network	



Scien?fic	collabora?on	network	



Business	?es	in	US		
biotech-industry	



Gene?c	interac?on	network		



Protein-Protein	Interac?on	Networks	



Transporta?on	Networks	



Internet	



Ecological	Networks	



Random Graphs & Nature 

N nodes 
 
A pair of nodes has probability p of being 

connected. 
 
Average degree, k ≈ pN 
 
What interesting things can be said for 

different values of p or k ? 

 (that are true as N ! ∞) 
 
 

Erdős and Renyi (1959) 
p = 0.0 ; k = 0 

N = 12 

p = 0.09 ; k = 1 

p = 1.0 ; k ≈ ½N2 



Random Graphs 
Erdős and Renyi (1959) 

p = 0.0 ; k = 0 

p = 0.09 ; k = 1 

p = 1.0 ; k ≈ ½N2 

p = 0.045 ; k = 0.5 

1.  Size of the largest connected cluster 
2.  Diameter (maximum path length between nodes) of the largest cluster 
3.  Average path length between nodes (if a path exists) 



Random Graphs 
Erdős and Renyi (1959) 

p = 0.0 ; k = 0 p = 0.09 ; k = 1 p = 1.0 ; k ≈ ½N2 p = 0.045 ; k = 0.5 

Size of largest component 

Diameter of largest component 

Average path length between nodes 

1 5 11 12 

0 4 7 1 

0.0 2.0 4.2 1.0 



Random Graphs 

If k < 1: 
•  small, isolated clusters 
•  small diameters 
•  short path lengths 

 

At k = 1: 
•  a giant component appears 
•  diameter peaks 
•  path lengths are high 

 

For k > 1: 
•  almost all nodes connected 
•  diameter shrinks 
•  path lengths shorten 

 

Erdős and Renyi (1959) 
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Random Graphs 

What does this mean? 
 
•  If connections between people can be modeled as a random graph, then… 

•  Because the average person easily knows more than one person (k  >> 1), 

•  We live in a “small world” where within a few links, we are connected to anyone in the world. 

•  Erdős and Renyi showed that average  
 path length between connected nodes is   

* An example researcher with Erdos #=4 

Erdős and Renyi (1959) 
David 

Mumford Peter 
Belhumeur 

Kentaro 
Toyama * 

Fan 
Chung 

k
N

ln
ln



Random Graphs 

What does this mean? 
 
•  If connections between people can be modeled as a random graph, then… 

•  Because the average person easily knows more than one person (k  >> 1), 

•  We live in a “small world” where within a few links, we are connected to anyone in the world. 

•  Erdős and Renyi computed average  
 path length between connected nodes to be:   

Erdős and Renyi (1959) 
David 

Mumford Peter 
Belhumeur 

Kentaro 
Toyama 

Fan 
Chung 

k
N

ln
ln

BIG “IF”!!! 



The Alpha Model 

The people you know aren’t randomly chosen. 

 

 

People tend to get to know those who are two 
links away (Rapoport *, 1957). 

 

 

The real world exhibits a lot of clustering. 

Watts (1999) 

* Same Anatol Rapoport, known for TIT FOR TAT! 

The Personal Map 
by MSR Redmond’s Social Computing Group 



The Alpha Model 
Watts (1999) 

α model:  Add edges to nodes, as in random 
graphs, but makes links more likely when two 
nodes have a common friend. 

 

 

For a range of α values: 

 
•  The world is small (average path length is short), 

and 

•  Groups tend to form (high clustering coefficient). 

 

 

Probability of linkage as a function 
of number of mutual friends 

(α is 0 in upper left, 
1 in diagonal, 

and ∞ in bottom right curves.) 



The Alpha Model 
Watts (1999) 
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Clustering coefficient (C) and  
average path length (L) 

plotted against α

α model:  Add edges to nodes, as in random 
graphs, but makes links more likely when two 
nodes have a common friend. 

 

 

For a range of α values: 

 
•  The world is small (average path length is short), 

and 

•  Groups tend to form (high clustering coefficient). 

 

 



The Beta Model 
Watts and Strogatz (1998), circular lattice,  
rewiring to random other link w/ probabilityβ 

β = 0 β = 0.125 β = 1 

People know 
others at 
random. 

 
Not clustered, 

but “small world” 

People know 
their neighbors, 

and a few distant people. 
 

Clustered and 
“small world” 

People know  
their neighbors. 

 
 

Clustered, but 
not a “small world” 



The Beta Model 

 

First five random links reduce the average path 
length of the network by half, regardless of N! 

 

 

Both α and β models reproduce short-path results of 
random graphs, but also allow for clustering. 

 

 

Small-world phenomena occur at threshold between 
order and chaos. 

Watts and Strogatz (1998) Nobuyuki 
Hanaki 

Jonathan 
Donner 

Kentaro 
Toyama 
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Clustering coefficient (C) and average  
path length (L) plotted against β



Power Laws 
Albert and Barabasi (1999) 

Degree distribution of a random graph, 
N = 10,000   p = 0.0015   k = 15. 

(Curve is a Poisson curve, for comparison.)

 

What’s the degree (number of edges) distribution 
over a graph, for real-world graphs? 

 

 

Random-graph model results in Poisson distribution. 

 

 

But, many real-world networks exhibit a power-law 
distribution. 

 



Power Laws 
Albert and Barabasi (1999) 

Typical shape of a power-law distribution.

 

What’s the degree (number of edges) distribution 
over a graph, for real-world graphs? 

 

 

Random-graph model results in Poisson distribution. 

 

 

But, many real-world networks exhibit a power-law 
distribution. 

 



Power Laws 
Albert and Barabasi (1999) 

 

Power-law distributions are straight lines in log-log 
space. 

 

 

How should random graphs be generated to create a 
power-law distribution of node degrees? 

 

Hint:   

 Pareto’s* Law:  Wealth distribution follows a power 
law. 

 

Power laws in real networks: 
(a) WWW hyperlinks 
(b) co-starring in movies 
(c) co-authorship of physicists 
(d) co-authorship of neuroscientists

* Same Velfredo Pareto, who defined Pareto optimality in game theory. 



Hippogriffically

•  Spa?al	parameter(s)	–		
•  #genera?ons	–	e.g.	1,3,	infinity	
•  Alpha’		(Beta’)	now	–	ra?o	of	preferen?al	a@achment	(rewire)	probabilty	
within	and	between	genera?ons	–		

•  e.g.	between	siblings,	children,	parents	e.g.	(.25,	.5,	.25)	for	3	genera?ons,		
•  could	be	1/n	for	n	genera?ons	or	could	have	a	1/d_i,j	for	distance	between	
genera?ons	or	whatever,	or	pick	your	distr…	

•  Temporal	parameter(s)	markovish…	
•  #New	Nodes/genera?on	epoch	
•  Removal	process	(perhaps)	



For genes, this is a natural fit

• Genera?ons	accummulate	more	muta?ons	
•  There’s	a	lot	of	modularity….	



So lots of data out there (F, internet topo 
over &me)
•  Fit	model	params	
• Proper?es	now	indexed	by	genera?on	(for	example)	

•  E.g.	cliques	for	sibling	v.	family,	centrality	for	grandparents,	etc	
• What	other	nets	does	this	describe,	intui?vely?	
•  Is	it	s?ll	too	complicated/complex?	
• Does	it	make	some	things	easier	(or	harder)?	
• Do	we	need	genera?onal	proper?es	to	keep	global	proper?es	

•  Global	mean	diameter,	cluster	science,	centrality=mean	of	mean	each	
genera?on,	etc	

•  Or	can	they	deviate	in	weird	ways?	


