Generational Random Graphs – a "natural" model for heterogeneous temporal networks?

Jon crowcroft 9/3/2017

Graphs aren't static or homoegenous

- Re-do two simple small world & clustered models
 - Preferential attachment & re-wiring (alpha & beta) models
- Add one simple idea, but in two guises:
 - Nodes are taken (in batches) from a sequence of generations
 - There's a birth (death) process of new (old) generations
 - To note: discrete generations, but continuous time...
- Two use cases
 - Social media/graphs parents, siblings, children
 - Tech nets (internet, transport) dialup, broadband, fiber, 3G/4,/ISP/IXP or horse, car, plane, drone...

http://www.ee.ucl.ac.uk/~mrio/papers/hamedjrnl_camera.pdf

What makes a problem graph-like?

- There are two components to a graph
 - Nodes and edges
- In graph-like problems, these components have natural correspondences to problem elements
 - Entities are nodes and interactions between entities are edges
- Most complex systems are graph-like

Friendship Network

Scientific collaboration network

Business ties in US biotech-industry

Genetic interaction network

Protein-Protein Interaction Networks

Transportation Networks

Internet

Ecological Networks

p = 1.0; $k \approx \frac{1}{2}N^2$

e of the largest connected cluster

ameter (maximum path length between nodes) of the largest cluster

erage path length between nodes (if a path exists)

Random Graphs

Erdős and Renyi (1959)

Random Graphs

Erdős and Renyi (1959)

If k < 1:

- small, isolated clusters
- small diameters
- short path lengths

At k = 1:

- a giant component appears
- diameter peaks
- path lengths are high

For k > 1:

- almost all nodes connected
- diameter shrinks
- path lengths shorten

What does this mean?

- If connections between people can be modeled as a random graph, then...
 - Because the average person easily knows more than one person (k >> 1),
 - We live in a "small world" where within a few links, we are connected to anyone in the world.
 - Erdős and Renyi showed that average path length between connected nodes is
 - * An example researcher with Erdos #=4

 $\frac{\ln N}{\ln k}$

andom Graphs Erdős and Renyi (1959)	
What does this mean?	——————————————————————————————————————
If connections between people can be	be modeled as a random graph, then

- Because the average person easily knows more than one person (k >> 1),
- We live in a "small world" where within a few links, we are connected to anyone in the world.
- Erdős and Renyi computed average path length between connected nodes to be:

 $\ln N$

 $\ln k$

The Alpha Model

Watts (1999)

The people you know aren't randomly chosen.

People tend to get to know those who are two links away (Rapoport *, 1957).

The real world exhibits a lot of *clustering*.

The Personal Map by MSR Redmond's Social Computing Group

* Same Anatol Rapoport, known for TIT FOI

The Alpha Model

Watts (1999)

Probability of linkage as a function of number of mutual friends (α is 0 in upper left, 1 in diagonal, and ∞ in bottom right curves.) α model: Add edges to nodes, as in random graphs, but makes links more likely when two nodes have a common friend.

For a manage of the linear

The Alpha Model

Watts (1999)

Clustering coefficient (*C*) and average path length (*L*) plotted against α α model: Add edges to nodes, as in random graphs, but makes links more likely when two nodes have a common friend.

For a range of α values:

- The world is small (average path length is short), and
- Groups tend to form (high clustering coefficient).

The Beta Model

atts and Strogatz (1998), circular lattice, wiring to random other link w/ probability β

People know their neighbors.

Clustered, but not a "small world"

 β = 0.125

People know their neighbors, and a few distant people.

> Clustered and "small world"

β = 1

People know others at random.

Not clustered, but "small world"

rst five random links reduce the average path length of the network by half, regardless of N!

oth α and β models reproduce short-path results of random graphs, but also allow for clustering.

nall-world phenomena occur at threshold between order and chaos.

Clustering coefficient (*C*) and average path length (*L*) plotted against β

Power Laws

Albert and Barabasi (1999)

N = 10,000 p = 0.0015 k = 15. (Curve is a Poisson curve, for comparison.) What's the degree (number of edges) distribution over a graph, for real-world graphs?

Random-graph model results in Poisson distribu

But, many real-world networks exhibit a *power* distribution.

ower Laws

Albert and Barabasi (1999)

Typical shape of a power-law distribution.

What's the degree (number of edges) distribution over a graph, for real-world graphs?

Random-graph model results in Poisson distribu

But, many real-world networks exhibit a *power* distribution.

ower Laws

Albert and Barabasi (1999)

Power-law distributions are straight lines in log-log space.

How should random graphs be generated to create a power-law distribution of node degrees?

-lint:

Pareto's* Law: Wealth distribution follows a power law.

Power laws in real networks: (a) WWW hyperlinks

- (b) co-starring in movies
- (c) co-authorship of physicists
- (d) co-authorship of neuroscientists

* Same Velfredo Pareto, who defined Pareto optimality in game a

Hippogriffically

- Spatial parameter(s) -
 - #generations e.g. 1,3, infinity
 - Alpha' (Beta') now ratio of preferential attachment (rewire) probability within and between generations –
 - e.g. between siblings, children, parents e.g. (.25, .5, .25) for 3 generations,
 - could be 1/n for n generations or could have a 1/d_i,j for distance between generations or whatever, or pick your distr...
- Temporal parameter(s) markovish...
 - #New Nodes/generation epoch
 - Removal process (perhaps)

For genes, this is a natural fit

- Generations accummulate more mutations
- There's a lot of modularity....

So lots of data out there (fb, internet topo over time)

- Fit model params
- Properties now indexed by generation (for example)
 - E.g. cliques for sibling v. family, centrality for grandparents, etc
- What other nets does this describe, intuitively?
- Is it still too complicated/complex?
- Does it make some things easier (or harder)?
- Do we need generational properties to keep global properties
 - Global mean diameter, cluster science, centrality=mean of mean each generation, etc
 - Or can they deviate in weird ways?