
Private Names & Some other stuff

Jon Crowcroft, Cristina Munoz
http://www.cl.cam.ac.uk/~jac22

Past, present, future

n  Past
n  TIB, PGM etc

n  Present
n  Private Name Spaces and Virtual Private

Concent Centric Networks
n  Future

n  Distributed Ledger & ICN chains

 1. Bit of history: who knows this?

Kernel (IP)

Repair Sub-
tree

NAK
requests

Interfaces

NCF
(yes/no)

Session
State

MBufs

PGM

MIP

GRA

SPM NCF SSPNAK

Confirm
Thread

Timer

Router
Assist
Table

……...

Router
Assist

Structure
PGM

GRA

NAK

NCF

SPM

MIP

SSP

NAK

NCF

SP

#5

Way back when, Reuters trading…

n  TIBCo (The Information Bus Company)
n  Out of Cornell
n  Pub/Sub
n  Content Based Addressing
n  Name Based Routing

n  “Multicast” Distribution in net
n  Reuters ran a global trading net & live TV
n  Bit like Bloomberg&others
n  Innovative networking

PGM, routing and congestion ctl

n  All scaled very well,Network was global
n  three fold redundant between major stock

exchanges
n  2 terrestrial, one satellite

n  Various clever tricks to manage traffic
n  Including Rizzo’s PGM Congestion Ctl

n  Not sure why it isn’t all used more J
n  Does cost money for router support…
n  Router alert can hit slow path...

To scale the network…

n  Used IP multicast, sort of
n  Including PIM & router alerts
n  Name hashes to multicast address

n  Cisco et al developed PGM
n  Pragmatic Generalized Multicast (RFC3208)
n  Cross layer transport & forwarding
n  Nack suppressor/aggregator
n  Time based window on retransmission avail
n  Redirect rtx&subscription to local cache

2.Private Name Spaces – what&why

n  Names contain rich semantics
n  and so knowing who is interested in which

named data can represent an invasion of
privacy.

n  At the sametime, name structures can
help with organising information
n  (ontologies etc) –

n  In this talk I'll discuss some ideas
about creation and use of private name
spaces.

Last year, we presented I(FIB)F

n  Iterated bloom filters
n  Multiple iterations over the name
n  Hierarchy -> flat name
n  With low collision probability
n  and lowish space needs

n  Can use forvirtual private name space?
n  Requirement is to keep map from name to

“routing” field, so we can still cache
n  But keep subscriber/content confidential

Iterated bloom filters ++

h1d(h1c||/F ield4), where || refers to concatenation.
I(FIB)F is based on Iterated Bloom Filters (IBF)

which require an iterated hash function. This design,
allows to profit previous hashes for the computation of
new ones. Some advantages of I(FIB)F include: (1) the
reduction of traffic, storage and computation overhead
when comparing with hierarchical naming and (2) the
reduction of memory and probability of false positives
when comparing with a solution based on Standard BF.
Figure 1 shows an I(FIB)F of four IBF.

Figure 1: I(FIB)F composed of four Bloom fil-
ters that require a single hash.

IBF may be designed to admit more than one hash
function hxl per iterated field, where x is a certain hash
function and l is the level of the corresponding IBF.
In this case, we repeat the previous operation using
a different hash function as many times as necessary.
Afterwards, we truncate the obtained hashes to get a
length which depends on the design of IBF. The design
is based on the analysis of network requests.
When an Interest arrives the iterated flat name is

matched with the corresponding set of IBF. Each out-
put interface has an associated I(FIB)F consisting of
a set of IBF. For the sake of simplicity, we assume a
set of four IBF per I(FIB)F. The membership test of
the first iterated field: h1a(/F ield1), h2a(/F ield1), ...
is implemented with the first IBF, the second iterated
field: h1b(h1a||/F ield2), h2b(h2a||/F ield2), ... with the
second IBF and so on. Then, the packet is forwarded
through the output interface with the higher number
of matches. Moreover, we showed [13] how iterated flat
names may be integrated in the Named-data Link State
Routing protocol (NLSR) [14].

4.3 I(FIB)F for private names
In this section, we show that ViP NDN routing may

be implemented using I(FIB)F. Currently, I(FIB)F ad-
mits iterated flat names. We show that we integrate
cryptographic iterated flat names without modifying
the original I(FIB)F.
In ViP NDN, we compute flat names using a HMAC.

Therefore, the result may be a hash output of at least
256 bytes. To adapt this output to I(FIB)F we require
to obtain truncated message digests. The NIST Stan-
dard FIPS 180-4 [15] recommends to use the left most

bits of a digest to obtain truncated hashes. In the previ-
ous example we obtained four hashes per hash function.
Additionally, we mentioned that each IBF may require
more than one hash function. Let us assume that each
I(FIB)F consists of four IBF designed to admit 2 hashes
of 20 bits each one. Therefore, we take the 160 left most
bits of the HMAC as cryptographic iterated flat name.
Finally, it is remarkable to mention that I(FIB)F ac-

cepts the use of private and non-private names without
further modifications.

5. PREVIOUS SOLUTION
In [4] a potential solution for name privacy is pre-

sented. In this proposal, flat names are used to compute
a hierarchical Bloom Filter that substitutes the hierar-
chical name. The goal of this solution is to present any
content name as a random string of bits.
Let us assume that we use this method on a hierarchi-

cal structure of four fields: /Field1/Field2/Field3/Field4.
Then, the resulting flat name is the concatenation

of four BF that save a certain part of the hierarchical
structure: BF1 for saving the first field, BF2 for the first
and the second and so on. Figure 2 shows an example
of a private name composed of four fields.

Figure 2: Private name composed of four Bloom
filters that require a single hash.

Each BF requires the computation of x hashes speci-
fied by the designer. In paper [4] it is not specified how
to compute those hashes. Let us suppose that crypto-
graphic hashes are used for security. When an eaves-
dropper NDN node receives a packet with this private
name it is able to get the four BF by separate for routing
purposes. Nevertheless, each BF is leaking information
about the output of the cryptographic hash/es used for
its construction. As a result, the eavesdropper may try
a dictionary attack [16] or the most efficient rainbow
tables attacks [17, 18]. Additionally, as each field of the
hierarchical structure has a low entropy the attack may
be implemented in a reasonable time.
Secure cryptographic hash functions require at least

256 bytes at the output. Then, the hash output was
probably truncated to obtain the corresponding posi-
tion to fill in to one in the BF. Even when truncated
cryptographic hashes are used we are leaking informa-
tion. This leakage added to the low entropy of names
and the fact that the number of required hashes for a
BF may be greater than one makes the previous attacks
feasible. For this reason, any method that pretends a

And vpn

h1d(h1c||/F ield4), where || refers to concatenation.
I(FIB)F is based on Iterated Bloom Filters (IBF)

which require an iterated hash function. This design,
allows to profit previous hashes for the computation of
new ones. Some advantages of I(FIB)F include: (1) the
reduction of traffic, storage and computation overhead
when comparing with hierarchical naming and (2) the
reduction of memory and probability of false positives
when comparing with a solution based on Standard BF.
Figure 1 shows an I(FIB)F of four IBF.

Figure 1: I(FIB)F composed of four Bloom fil-
ters that require a single hash.

IBF may be designed to admit more than one hash
function hxl per iterated field, where x is a certain hash
function and l is the level of the corresponding IBF.
In this case, we repeat the previous operation using
a different hash function as many times as necessary.
Afterwards, we truncate the obtained hashes to get a
length which depends on the design of IBF. The design
is based on the analysis of network requests.
When an Interest arrives the iterated flat name is

matched with the corresponding set of IBF. Each out-
put interface has an associated I(FIB)F consisting of
a set of IBF. For the sake of simplicity, we assume a
set of four IBF per I(FIB)F. The membership test of
the first iterated field: h1a(/F ield1), h2a(/F ield1), ...
is implemented with the first IBF, the second iterated
field: h1b(h1a||/F ield2), h2b(h2a||/F ield2), ... with the
second IBF and so on. Then, the packet is forwarded
through the output interface with the higher number
of matches. Moreover, we showed [13] how iterated flat
names may be integrated in the Named-data Link State
Routing protocol (NLSR) [14].

4.3 I(FIB)F for private names
In this section, we show that ViP NDN routing may

be implemented using I(FIB)F. Currently, I(FIB)F ad-
mits iterated flat names. We show that we integrate
cryptographic iterated flat names without modifying
the original I(FIB)F.
In ViP NDN, we compute flat names using a HMAC.

Therefore, the result may be a hash output of at least
256 bytes. To adapt this output to I(FIB)F we require
to obtain truncated message digests. The NIST Stan-
dard FIPS 180-4 [15] recommends to use the left most

bits of a digest to obtain truncated hashes. In the previ-
ous example we obtained four hashes per hash function.
Additionally, we mentioned that each IBF may require
more than one hash function. Let us assume that each
I(FIB)F consists of four IBF designed to admit 2 hashes
of 20 bits each one. Therefore, we take the 160 left most
bits of the HMAC as cryptographic iterated flat name.
Finally, it is remarkable to mention that I(FIB)F ac-

cepts the use of private and non-private names without
further modifications.

5. PREVIOUS SOLUTION
In [4] a potential solution for name privacy is pre-

sented. In this proposal, flat names are used to compute
a hierarchical Bloom Filter that substitutes the hierar-
chical name. The goal of this solution is to present any
content name as a random string of bits.
Let us assume that we use this method on a hierarchi-

cal structure of four fields: /Field1/Field2/Field3/Field4.
Then, the resulting flat name is the concatenation

of four BF that save a certain part of the hierarchical
structure: BF1 for saving the first field, BF2 for the first
and the second and so on. Figure 2 shows an example
of a private name composed of four fields.

Figure 2: Private name composed of four Bloom
filters that require a single hash.

Each BF requires the computation of x hashes speci-
fied by the designer. In paper [4] it is not specified how
to compute those hashes. Let us suppose that crypto-
graphic hashes are used for security. When an eaves-
dropper NDN node receives a packet with this private
name it is able to get the four BF by separate for routing
purposes. Nevertheless, each BF is leaking information
about the output of the cryptographic hash/es used for
its construction. As a result, the eavesdropper may try
a dictionary attack [16] or the most efficient rainbow
tables attacks [17, 18]. Additionally, as each field of the
hierarchical structure has a low entropy the attack may
be implemented in a reasonable time.
Secure cryptographic hash functions require at least

256 bytes at the output. Then, the hash output was
probably truncated to obtain the corresponding posi-
tion to fill in to one in the BF. Even when truncated
cryptographic hashes are used we are leaking informa-
tion. This leakage added to the low entropy of names
and the fact that the number of required hashes for a
BF may be greater than one makes the previous attacks
feasible. For this reason, any method that pretends a

How to boot this

n  Initial idea is to have trusted third
party provide a per session/content
HMAC and use with the I(FIB)F
n  Upside – simple
n  Downside – needs trusted third party

n  Goes somewhat against democritization goal of
ICN (as compared to CDN)

n  Could we re-decentralize the session info?...

3. DLT

30 August 2017
CONFIDENTIAL DISCUSSION DRAFT - NOT FOR PUBLICATION OR ONWARD CIRCULATION

1

Introduction to technologies underpinning blockchain/DLT �

Microsoft Cloud Computing Research Centre
Draft Paper for Discussion at the 4th Annual Symposium

12-13 September 2017

 Jean Bacon, David Michels**, Christopher Millard***

1. Introduction

There are many tutorials, reports and even books on blockchain. They usually assume that
readers are familiar with the underpinning technologies. This paper aims to introduce these
technologies and explain their role and function. The use of blockchain (more generally named
Distributed Ledger Technology (DLT)) comes with the following mandatory assumptions about
the requirements of DLT-based systems, as presented in Table 1.1

Table 1. Key assumptions for DLTs

No. Assumption Explanation
a) Long-term persistent,

indisputable record
There is a requirement for a long-term persistent,
indisputable record of transactions associated with the DLT
application.

b) Associated party or
parties can be
ascertained

For each transaction, the associated party or parties can be
ascertained. This may or may not be as conventional, real-
world identities; a pseudonym or digital identity may instead
be recorded.

� This paper has been produced by members of the Microsoft Cloud Computing Research Centre, a
collaboration between the Cloud Legal Project, Centre for Commercial Law Studies, Queen Mary
University of London and the Computer Laboratory, University of Cambridge. The authors are grateful
to members of the MCCRC team for helpful comments and to Microsoft for the generous financial
support that has made this project possible. Responsibility for views expressed, however, remains with
the authors.
 Professor Emerita of Distributed Systems, Computer Laboratory, University of Cambridge.
** Researcher, Cloud Legal Project and Microsoft Cloud Computing Research Centre, both at the Centre
for Commercial Law Studies, Queen Mary University of London.
*** Professor of Privacy and Information Law and Project Leader, Cloud Legal Project, Centre for
Commercial Law Studies, Queen Mary University of London and Senior Counsel, Bristows LLP. Joint
Director of the Microsoft Cloud Computing Research Centre.
1 Note that we have not included the D (Distributed) of DLT as a fundamental assumption.

Hash chain

30 August 2017
CONFIDENTIAL DISCUSSION DRAFT - NOT FOR PUBLICATION OR ONWARD CIRCULATION

4

If some attempted fraud led to a change in (say) Data 6, this would be evident since the hash
of Item 6 would also need to be changed, which is part of Item 7, so the hash of item 7 would
have to be changed and so on until the end of the chain. A simple chain or linked list of hashed
data items can be created in this way, as shown in Figure 1. This idea is often described in
tutorials on Bitcoin, where such a chain can represent the history of a single coin.

Fig. 1 A tamper-proof chain of Items using hash pointers

However, DLT may involve recording huge numbers of transactions, and linking them into a
single long list is not feasible for efficient management. Instead, blocks of transactions are
chained.

 Creating scalable data structures to record many transactions through
“chains” of “blocks”

For scalable management of a large number of transactions, individual transaction records
are grouped, in timestamp order, to form the body of a block. A block header is added which
includes the hash of the previous block and some metadata such as a timestamp. Blocks are
hashed as a whole, i.e. the header and the body. It is important to emphasise that the hash of
a block is created from data that includes the hash of the previous block, as introduced in
Section 2.1 and Figure 1, above. The blocks are chained using these block hashes, creating
a “blockchain”, as shown in Figure 2. The B11 hash would be incorporated into the header of
block B12, the next to be created. The figure does not represent any particular platform’s block
header in detail and is intended as an example.

In practice, for scalability and access latency, a more general "Merkle Tree" structure is used
to record the transactions within each block. This makes lookup more efficient, both for proof
that a data item exists in a block and for proof that some item does not exist. Figure 3 shows
the idea for a small number of transactions in a block. It is not essential to understand the
detail of Merkle trees, only that they allow participants to check, via the hash value of a
transaction, whether that transaction has been incorporated into a block in the DLT system

What’s hashed

Immutable bits (c.f. irmin/docker)

30 August 2017
CONFIDENTIAL DISCUSSION DRAFT - NOT FOR PUBLICATION OR ONWARD CIRCULATION

5

Fig. 2. A simple blockchain representation showing four chained blocks (B11 – B8)

Fig 3. A Merkle Tree lists hashed transactions in the body of a block (showing only four
transactions)

In the next section we consider requirement b) - how to associate a transaction record with
the party or parties concerned.

3. Determining associated parties through a Public Key Infrastructure

DLT assumes that a Public Key Infrastructure (PKI) will be used to associate parties with
transactions. A PKI can be used to establish digital identities, which may or may not be
associated with real-world identities in DLT applications.

PKI technology comprises a function to generate a key pair (to be used as a public and a
private key), a signing algorithm and a validation function to check whether a signature is
correct. The key pair has the following properties: data encrypted with the public key can only
be decrypted using the private key and vice versa (an asymmetric encryption scheme). If
data can be decrypted with the public key, this proves that the data came from (was encrypted
by) the holder of the private key. As the names imply, someone’s private key should never be
revealed; anyone who holds a private key can masquerade as its owner. Private keys should
not be transmitted, even when encrypted.3 The public key is published to represent the entity

3 An encrypted message can be used in a form of attack called a “replay attack”.

Permissioned&private

n  Need a mix of permissioned & private
n  Permissioned to link dlt to vpndn
n  Private to do re-keying

n  Needs more thought J

So what could DLT provide for ICN

n  Or ICN for DLT
1.  Off chain resources (content) in ICN

n  Scalable consensus tools for update e.g.
see Canopus at Conext 2017 or Teechan

2.  Direct p2p payment, if you really like:
3.  Cryptocurrency is the source for

HMAC for virtual private name space
n  whether used for payment or not…

Acknowledgements & References

1.  Emiliano Cristofaro et al (discussed)
https://arxiv.org/abs/1211.5183

2.  Fotiou&Polyzos , Securing Content
Sharing over ICN, ICN 2016

3.  When Encryption is not enough – Tsudik
et al, ICN 2017

4.  Fotiou&Polyzos: Decentralized name-
based Security for content distribution
using blockchains, Infocom 2016
workshop

Acknowledgements

n  Umobile&Rife EU projects – including
discussion with Ionnis Psaras & George
Pavlou of UCL of LIRA ephemeral names

n  Microsoft Cloud Computing project
http://www.mccrc.eu/

Who Am I?

http://www.mccrc.eu/

