
 
Opportunity is the Mother of Invention 

 
How Personal Delay Tolerant Networking led to Data 
Centric Networking & Understanding Social 
Networks. 

  

Jon Crowcroft 

Jon.crowcroft@cl.cam.ac.uk 

 



Outline Narrative History of Haggle 

1. Haggle Software Architecture 

2. How we got to Declarative Data Driven Nets 

3. Why we got diverted into Social Networks 



 email  WWW  phone... 

SMTP  HTTP  RTP... 

TCP  UDP… 

 

IP 

 

  ethernet   PPP… 

CSMA  async  sonet... 

 copper  fiber  radio... 

The 
Internet 
Protocol 
Hourglass 
(Deering) 



 email  WWW  phone... 

SMTP  HTTP  RTP... 

TCP  UDP… 

IP + mcast 

+ QoS +... 

ethernet   PPP… 

CSMA  async  sonet... 

 copper  fiber  radio... 

Putting 
on 
Weight 

• requires more 

functionality 

from underlying 

networks 



 email  WWW  phone... 

SMTP  HTTP  RTP... 

TCP  UDP… 

 

IP4           IP6 

 

  ethernet   PPP… 

CSMA  async  sonet... 

 copper  fiber  radio... 

Mid-Life 
Crisis 

• doubles number 

of service 

interfaces 

• requires changes 

above & below 

• major interoper-

ability issues 



Give it to me, I have 

1G bytes phone flash. 

I have 100M bytes of 

data, who can carry 

for me? 

I can also carry for 

you! 

Thank you but you are in 

the opposite direction! 

Don’t give to me! I 

am running out of 

storage. Reach an access 

point. 

Internet 

Finally, it 

arrive… 

Search La 

Bonheme.mp3 for 

me 

Search La 

Bonheme.mp3 for 

me 

Search La 

Bonheme.mp3 for 

me 

There is one 

in my 

pocket… 



1. Motivation 2001-2004 

• Mobile users currently have a very bad experience with 
networking 

• Applications do not work without networking infrastructure such 
as 802.11 access points or cell phone data coverage 

• Local connectivity is plentiful (WiFi, Bluetooth, etc), but very 
hard for end users to configure and use 

• Example: Train/plane on the way to London 

• How to send a colleague sitting opposite some slides to review? 

• How to get information on restaurants in London? (Clue: 
someone else is bound to have it cached on their device) 

• Ad Hoc Networks were a complete washout 

• Failed to account for heavy tailed density distribution 

• Use of 802.11 as radio was at best misguided. 

 



Underlying Problem 

• Applications tied to network details and operations 
via use of IP-based socks interface 

• What interface to use 

• How to route to destination 

• When to connect 

• Apps survive by using directory services 

• Address book maps names to email addresses 

• Google maps search keywords to URLs 

• DNS maps domain names to IP addresses 

• Directory services mean infrastructure 



Phase transitions and networks 

• Solid networks: wired, or fixed wireless mesh 

•  Long lived end-to-end routes 

• Capacity scarce 

• Liquid networks: Mobile Ad-Hoc Networking (MANET) 

• Short lived end-to-gateway routes 

• Capacity ok (Tse tricks with power/antennae/coding) 

• Gaseous networks: Delay Tolerant Networking (DTN), Pocket 
Switched Networking (PSN) 

• No routes at all! 

• Opportunistic, store and forward networking 

• One way paths, asymmetry, node mobility carries data 

• Capacity Rich (Grossglauser&Tse) (but latency terrible… … …) 

• Haggle targets all three, so must work in most general case, 
i.e. “gaseous” 

 



Decentralisation&Disconnectivity 

• Absence of infrastructure for  

• Routing, searching, indexing 

• Names, Identity, Currency 

• When everything‟s adhoc, even pagerank has to be 

• Hence “Ad Hoc Google” -> “Haggle” Intel Cam 2004. 

• Bad joke about french pronunciation of “Haddock” 

• As early pub/sub systems, interest itself is data 

• So we take event/notify+pub/sub and apply to  

• Discovery of users, nodes, routes, interest 

• everyone soaks it all up and runs ego-centric pagerank 



Current device software framework 

Interfaces 

Delivery (IP) 

Protocol 

App logic + GUI 

User Data 

Application 

Networking 

File System 

Synchronous, 

node-centric API 

Isolated from 

network 

App has two 

orthogonal parts 

Delivery uses 

anonymous IP 



Haggle framework design 

Interfaces 

Haggle 

Applications 

Resource 

Mgmt 

Protocols 

App Logic + GUI 

Less work for new 

app developers 

Asynchronous, 

data-centric API 

Not tied to one app; 

exposed metadata 

Key component 

missing before 

Multiple protocols 

usable for each task 



Data Objects (DOs) 

• DO = set of attributes = {type, 
value} pairs  

• Exposing metadata facilitates 
search 

• Another bad (Diot) joke 

• Can link to other DOs 

• To structure data that should be 
kept together 

• To allow apps to 
categorise/organise 

• Apps/Haggle managers can 
“claim” DOs to assert ownership 

DO-Type Data 

Content-Type message/rfc822 

From James Scott 

To Richard Gass 

Subject Check this photo out! 

Body [text] 

DO-Type Data 

Content-Type image/jpeg 

Keywords Sunset, London 

Creation time 05/06/06 2015 GMT 

Data [binary] 

Message 

Attachment 



DO Filters 

• Queries on fields of data objects 

• E.g. “content-type” EQUALS “text/html” AND 
“keywords” INCLUDES “news” AND “timestamp” 
>= (now() – 1 hour) 

• DO filters are also a special case of DOs 

• Haggle itself can match DOFilters to DOs – apps 
don‟t have to be involved 

• Can be persistent or be sent remotely… 



DO Filter is a powerful mechanism 

One-Off Persistent 

Local “Desktop” Search 

(find mp3s with 
artist “U2”) 

Listen  

(wants to receive 
webpages) 

Remote “Web” Search 

(find “london 
restaurants”) 

Subscribe 

(send all photos created by 
user X to X‟s PC) 



Layerless Naming 

• Haggle needs just-in-time binding of user level 
names to destinations 

• Q: when messaging a user, should you send to 
their email server or look in the neighbourhood for 
their laptop‟s MAC address?  

• A: Both, even if you already reached one.  E.g. you can 
send email to a server and later pass them in the corridor, 
or you could see their laptop directly, but they aren‟t 
carrying it today so you‟d better email it too… 

• Current layered model requires ahead-of-time 
resolution by the user themselves in the choice of 
application (e.g. email vs SMS) 



Name Graphs comprised of Name 
Objects 
• Name Graph represents full variety 

of ways to reach a user-level name 

• NO = special class of DO  

• Used as destinations for data in 
transit 

• Names and links between names 
obtained from 

• Applications 

• Network interfaces 

• Neighbours 

• Data passing through 

• Directories 

DO-Type Name 

Name James Scott 

DO-Type Name 

Name jamesscott@acm.org 

DO-Type Name 

Name 00:0E:F6:23:91:34 



Forwarding Objects 

• Special class of DO used for 
storing metadata about 
forwarding 

• TTL,expiry, etc 

• Since full structure of 
naming and data is sent, 
“intermediate” nodes are 
empowered to: 

• Use data as they see fit 

• Use up-to-date state and 
whole name graph to make 
best forwarding decision 

 

FO 

DO 
DO 

DO 
DO 

NO 
NO 

NO 

NO 



Connectivities and Protocols 

• Connectivities (network interfaces) say which 
“neighbours” are available (including “Internet”) 

• Protocols use this to determine which NOs they 
can deliver to, on a per-FO basis 

• P2P protocol says it can deliver any FO to neighbour-
derived NOs if corresponding neighbour is visible  

• HTTP protocol can deliver FOs which contain a DOFilter 
asking for a URL, if “Internet” neighbour is present 

• Protocols can also perform tasks directly 

• POP protocol creates EmailReceiveTask when Internet 
neighbour is visible 



Forwarding Algorithms 

{Protocol, Name, Neighbour} 

FOs 
x x 

x x 

x 

x x 
x 

algorithm 1 
algorithm 2 
x = scalar 
“benefit” of 

forwarding task 

• Forwarding algorithms create Forwarding Tasks to 
send data to suitable next-hops 

• Can also create Tasks to perform signalling 

• Many forwarding algs can run simultaneously 



Aside on security etc 

• Security was “left out” for version 1 in this 4-year EU project, 
but threats were considered 

• Data security can reuse existing solutions of 
authentication/encryption  

• With proviso that it is not possible to rely on a synchronously 
available trusted third party 

• Some new threats to privacy 

• Neighbourhood visibility means trackability 

• Name graphs could include quite private information 

• Incentives to cooperate an issue 

• Why should I spend any bandwidth/energy on your stuff? 

• Did address later (Social Nets 2009-2011)  

• see safebook.us by Eurecom folks… 

 



D3N*  
2. Programming 

Distributed Computation  
in Pocket Switched 

Networks (CCN/NDN etc) 

* Data Driven Declarative Networking 



23 

PSN: Dynamic Human Networks 

• Topology changes every time unit 

• Exhibits characteristics of Social Networks  

 

 
Node 

High weight edge 

Low weight edge 

Time unit = t 

Time unit = t+1 

Time unit = t+2 



24 

Time Dependent Networks 
• Data paths may not exist at any one point in 

time but do exist over time 

• Delay Tolerant Communication 

 

 

 

 

 

 

T
im

e
 

Source 

Destination 

Y 

X 

Z 



25 

Regularity of Network Activity 

• Size of largest fragment shows network 
dynamics 

Tuesday 5 Days 



Haggle Node Architecture 

26 

 Each node maintains a data store: its current 
view of global namespace 
 Persistence of search: delay tolerance and 

opportunism 

 Semantics of publish/subscribe and an event-
driven + asynchronous operation    

 Multi-platform 
(written in C++ and C) 
 Windows mobile 
 Mac OS X, iPhone 
 Linux 
 Android 

 

Unified Metadata Namespace 

node 

data 

Search Append 



•How to program distributed computation? 
• Use Declarative Networking ? 

• The Vodafone Story…. 
• Need tested or verified code….so also good… 
 

D3N Data-Driven Declarative Networking 



• Declarative is new idea in networking 

• e.g. Search: „what to look for‟ rather than „how to look for‟ 

• Abstract complexity in networking/data processing 

• P2: Building overlay using Overlog 

• Network properties specified declaratively 

• LINQ: extend .NET with language integrated operations for 
query/store/transform data 

• DryadLINQ: extends LINQ similar to Google‟s Map-Reduce 

• Automatic parallelization from sequential declarative code 

 

• Opis: Functional-reactive approach in OCaml 

 

Declarative Networking  



• How to program distributed computation? 
 

• Use Declarative Networking 

• Use of Functional Programming 

– Simple/clean semantics, expressive, inherent 
parallelism 

• Queries/Filer etc. can be expressed as higher-order 
functions that are applied in a distributed setting 

• Runtime system provides the necessary native library functions 
that are specific to each device 

• Prototype: F# + .NET for mobile devices 

 

D3N Data-Driven Declarative Networking 



• Functions are first-class values 
• They can be both input and output of other functions 
• They can be shared between different nodes (code 

mobility) 
• Not only data but also functions flow 

• Language syntax does not have state 
• Variables are only ever assigned once; hence reasoning 

about programs becomes easier 
(of course message passing and threads  encode states) 

• Strongly typed 
• Static assurance that the program does not „go wrong‟ at 

runtime unlike script languages 
• Type inference 

• Types are not declared explicitly, hence programs are less 
verbose 

D3N and Functional Programming I  



• Integrated features from query language 

• Assurance as in logical programming 
• Appropriate level of abstraction 

• Imperative languages closely specify the implementation 
details (how); declarative languages abstract too much 
(what) 

• Imperative – predictable result about performance 
• Declarative language – abstract away many implementation 

issues 

D3N and Functional Programming II  



Overview of D3N Architecture 

32 

 Each node is responsible for storing, indexing, 
searching, and delivering data 

 Primitive functions associated with core D3N 
calculus syntax are part of the runtime system 

 Prototype on MS Mobile .NET 



D3N Syntax and Semantics I 
• Very few primitives 

• Integer, strings, lists, floating point numbers and other 
primitives are recovered through constructor 
application 

• Standard FP features 

• Declaring and naming functions through let-bindings 

• Calling primitive and user-defined functions (function 
application) 

• Pattern matching (similar to switch statement) 

• Standard features as ordinary programming languages 
(e.g. ML or Haskell) 

 

33 



D3N Syntax and Semantics II 

•Advanced features 

• Concurrency (fork) 

• Communication (send/receive 
primitives) 

• Query expressions (local and distributed 
select) 

34 



Runtime System 
• Language relies on a small runtime system 

• Operations implemented in the runtime system written in F# 
• Each node is responsible on data: 

• Storing 

• Indexing 

• Searching 

• Delivering 

• Data has Time-To-Live (TTL) 

• Each node propagates data to the other nodes.  

• A search query w/TTL travels within the network until it 
expires 

• When the node has the matching data, it forwards the data 

• Each node gossips its own metadata when it meets other 
nodes 

35 



 

• Queries are part of source level syntax 

• Distributed execution (single node programmer model) 

• Familiar syntax 

Example: Query to Networks  

select name from poll() where institute = “Computer Laboratory” 

 poll()  

 |> filter (fun r -> r.institute = “Computer Laboratory”) 

 |> map (fun r -> r.name) 

D3N: 

F#: 

Message: (code, nodeid, TTL, data) 

B A 

C 

D 

E 



Example: Vote among Nodes 

37 

 • Voting application: implements a distributed voting protocol of 
choosing location for dinner 
 

• Rules 

• Each node votes once 

• A single node initiates the application 

• Ballots should not be counted twice 

• No infrastructure-base communication is available or it is 
too expensive 

• Top-level expression 

• Node A sends the code to all nodes 

• Nodes map in parallel (pmap) the function voteOfNode to 
their local data, and send back the result to A 

• Node A aggregates (reduce) the results from all nodes and 
produces a final tally 

 



Sequential Map function 
(smap) 

38 

 • Inner working 

• It sends the code to execute on the remote node 

• It blocks waiting for a response waiting from the node 

• Continues mapping the function to the rest of the nodes 
in a sequential fashion 

• An unavailable node blocks the entire computation 

 

 



Parallel Map Function (pmap) 

39 

• Inner working 

• Similar to the sequential case 

• The send/receive for each node happen in a separate 
thread 

• An unavailable node does not block the entire 
computation 

 

 A 

B C D E F G 

    pmap 



Reduce Function 

40 

Event.register( Event.OnEncounter, fun d:device -> 
  if d.nID = “B” && distance(self,d) < 3 then 

    dispatch NodeEncountered(d); 

) 

 • Inner working 

• The reduce function aggregates the results from a map 

• The reduce gets executed on the initiator node 

• All results must have been received before the reduce can 
proceed 

 



Voting Application Code 

41 



Outlook and Future Work 
 • Current reference implementation: 

• F# targeting .NET platform taking advantage of a vast 
collection of .NET libraries for implementing D3N 
primitives 

• Future work: 

• Security issues are currently out of the scope of this 
paper. Executable code migrating from node to node 

• Validate and verify the correctness of the design by 
implementing a compiler targeting various mobile devices 

• Disclose code in public domain 

 



3. Connectivity and Routing & How 
I Got into Social Nets #1 

• Motivation and context 

• Experiments 

• Results 

• Analysis of forwarding algorithms 

• Consequences on mobile networking 



Three independent experiments 

• In Cambridge 

• Capture mobile users interaction. 

• Traces from Wifi network : 

• Dartmouth and UCSD 



iMote data sets 

• Easy to carry devices 

• Scan other devices every 2mns  
– Unsync feature 

• log data to flash memory for each contact 
– MAC address, start time, end time 

• 2 experiments 
– 20 motes, 3 days, 3,984 contacts, IRC employee 

– 20 motes, 5 days, 8,856 contacts, CAM students 



What an  iMote looks like 



 What we measure  

• For a given pairs of nodes: 

• contact times and inter-contact times. 

 

 

 

 

 

 

Duration of the experiment 

an inter-contact a contact time  

t 



What we measure (cont’d) 

• Distribution per event.  
≠ seen at a random instant in time. 

• Plot log-log distributions. 

• We aggregate the data of different pairs. 

(see the following slides). 

 



Example: a typical pair  

α 

cutoff 



Examples : Other pairs  



Aggregation (1): for one fixed 
node  
  



Aggregation (2) : among iMotes 



Summary of observations 

• Inter-contact time follows an approximate power-
law shape in all experiments. 

• α < 1 most of the time (very heavily tailed). 

• Variation of parameter with the time of day, or 
among pairs. 



Problem 

• Given that all data set exhibit approximate power 
law shape of the inter-contact time distribution: 

 

• Would a purely opportunistic point-to-point  forwarding 
algorithm converge (i.e. guarantee bounded transmission 
delays) ? 

• Under what conditions ? 



Forwarding algorithms 

• Based on opportunities, and “Stateless” : 

• Decision does not depend on the nodes you meet. 

• Between two extreme relaying strategies : 

• Wait-and-forward. 

• Flooding. 

• Upper and Lower bounds on bandwidth: 

• Short contact time. 

• Full contact time (best case, treated here). 



Two-hop relaying strategy 

• Grossglauser & Tse (2001) : 

 

 

 

 

 

 

• Maximizes capacity of dense ad-hoc networks. 

• Authors assume nodes location i.i.d. uniform. 

 



Our assumptions on Mobility 

• Homogeneity 

• Inter-contact for every pairs follows power law. 

 

• No cut-off bound. 

• Independence 

• In “time”: contacts are renewal instants. 

• In “space”: pairs are independent. 



Two-hop: stability/instability  

•  > 2 
The two hop relaying algorithm converges, and it achieves a finite 

expected delay. 

•  < 2 
The expected delay grow to infinity with time. 

 



Two-hop: extensions 

• Power laws with cut-off: 

• Large expected delay.  

• Short contact case:  

• By comparison, all the negative results hold. 

• Convergence for α > 3 by Kingman’s bound. 

• We believe the same result holds for α > 2.  



The Impact of redundancy 

• The Two-hop strategy is very conservative. 

• What about duplicate packet ? Or epidemics forwarding ? 

 

• This comes to the question: 

 

 

 



Forwarding with redundancy: 

• For  > 2 
Any stateless algorithm achieves a finite expected delay. 

• For   and                           : 
There exist a forwarding algorithm with m copies and a finite expected 

delay. 

• For  < 1 
No stateless algorithm (even flooding) achieve a bounded delay (Orey’s 

theorem).  

 



Forwarding w. redundancy (cont’d) 

• Further extensions: 

• The short contact case is open for 1<α<2. 

• Can we weaken the assumption of independence between 
pairs ?  

 



Consequences on mobile 
networking 

• Mobility models needs to be redesigned 

• Exponential decay of inter contact is wrong. 

• Mechanisms tested with that model need to be analyzed 
with new mobility assumptions. 

• Stateless forwarding does not work 

• Can we benefit from heterogeneity to forward by 
communities ? 

• Scheme for peer-to-peer information sharing. 

 

 



Give it to me, I have 

1G bytes phone flash. 

I have 100M bytes of 

data, who can carry 

for me? 

I can also carry for 

you! 

Thank you but you are in 

the opposite direction! 

Don’t give to me! I 

am running out of 

storage. Reach an access 

point. 

Internet 

Finally, it 

arrive… 

Search La 

Bonheme.mp3 for 

me 

Search La 

Bonheme.mp3 for 

me 

Search La 

Bonheme.mp3 for 

me 

There is one 

in my 

pocket… 

3b Connectivity&Routing Ever More 
Social 



K-clique Communities in Cambridge 
Dataset 



K-clique Communities in Infocom06 Dataset 

Barcelona Group 

Paris Group A 

Paris Group B 

Lausanne Group 

Paris Groups Barcelona Group 

Lausanne Group 

K=4 



Human Hubs: Popularity 

Reality Cambridge 

Infocom06 HK 



Forwarding Scheme Design Space 
Explicit Social Structure 

Structure in Degree 

Structure in 

Cohesive Group 

Label 

Rank, Degree 

Clique 

Label 

Bubble 

Network Plane 

H
u

m
a
n

 

D
im

e
n

s
io

n
  



Ranking 

Source 

Destination 

Global Community 

Sub community 

Sub community 

Subsub community 



Use affiliation+hubs to fwd 
inter+intra cliques    



Give it to me, I have 1G 
bytes phone flash. 

I have 100M bytes of 
data, who can carry for 
me? 

I can also carry for 
you! 

Thank you but you are in 
the opposite direction! 

Don’t give to me! I 
am running out of 
storage. Reach an access 

point. 

Internet 

Finally, it 
arrive… 

Search La 
Bonheme.mp3 for me 

Search La 
Bonheme.mp3 for me 

Search La 
Bonheme.mp3 for me 

There is one in 
my pocket… 

3c Connectivity&Routing 3 - 
Community Detection 



Community improves forwarding 

• Identifying communities (e.g. affiliations) 
improves forwarding efficiency. [label] 

• Evaluate on Infocom06 data. 



Centralized Community Detection 

• K-clique Detection[Palla04] 

• Weighted Network Analysis[Newman05] 

• Betweenness [Newman04] 

• Modularity [Newman06] 

• Information theory[Rosvall06] 

• Statistical mechanics[Reichardt] 

• Survey Papers[Danon05][Newman04] 



K-clique Detection 

• Union of k-cliques reachable through a series of adjacent k-
cliques  

• Adjacent k-cliques share k-1 nodes 

• Members in a community reachable through well-connected well 
subsets 

• Examples 

• 2-clique (connected components) 

• 3-clique (overlapping triangles) 

• Overlapping feature 

• Percolation threshold 

 pc (k)= 1/[(k-1)N]^(1/(k-1)) 



 

K-clique Communities in 
Infocom06 Dataset 

Barcelona Group 

Paris Group A 

Paris Group B 

Lausanne Group 

Paris Groups 
Barcelona Group 

Lausanne Group 

K=3 



 

K-clique Communities in 
Infocom06 Dataset 

Barcelona Group 

Paris Group A 

Paris Group B 

Lausanne Group 

Paris Groups Barcelona Group 

Lausanne Group 

K=4 



 

K-clique Communities in 
Infocom06 Dataset 

Barcelona Group 

(Spanish) 

Paris Group A (French) 

Paris Group B (French) 
Italian 

K=5 



Weighted network analysis (WNA) 

1. Calculate the unweighted edge betweenness. 

2. Divide each calculated betweenness value by its weight. 

3. Remove the edge with the highest edge betweenness. and 
repeat from 1 until there are no more edges in the 
network. 

4. Recalculate the modularity value of the network with the 
current community partitioning. Select those splitting with 
local maxima of modularity. 



Community Detection using WNA 



Distributed Community Detection 

• SIMPLE, K-CLIQUE, MODULARITY 

• Terminology : Familiar Set (F), Local Community 
(C) 

• Update and exchange local information during 
encounter 

• Build up Familiar Set and Local Community 

• CommunityAccept( ), MergeCommunities( ) 



SIMPLE 

CommunityAccept ( vi) 

MergeCommunities ( Co, Ci) 



K-CLIQUE 

• CommunityAccept ( vi) :   

•  MergeCommunities( Co, Ci): 

CommunityAccept ( vi) 



MODULARITY 

• Boundary Set 

• Local Modularity 

• Measure of the sharpness of local community 



MODULARITY 

• CommunityAccept ( vi ) : 

 

•  MergeCommunities( Co , Ci ): for each vk in set 
K,  

 

 

 

or 

or 



Results and Evaluations 

Data Set SIMPLE K-CLIQUE MODULARITY 

Reality 0.79/0.81 0.87 0.89 

UCSD 0.47/0.56 0.55 0.65 

Cambridge 0.85/0.85 0.85 0.87 

Complexity O(n) O(n2) O(n4)/O(n2k2) 

Newman weighted analysis 

Palla et al, k-Clique 



Results and Evaluations 

UCSD MIT 

Distributions  

of 

 Local Community Views 



Outlook 

• Evolution of communities 

• More general Familiar Set threshold (e.g. hours per day) 

• Detection of different categories of relationship by 
specifying contact duration and number of contacts 

• Dynamic selection of Familiar Set threshold (e.g. fuzzy 
logic) 

• Aging effect 

• Temporal communities 

• Evaluation on more data sets (e.g. Dartmouth WiFi, iMote 
experiments) 

 

 



The End 

• With much thanks&acknowledgements to 

• James Scott, Ebon Upton, Menghow Lim, Pan Hui 

• Eiko Yoneki, Ioannis Baltopoulos, Shu-yan Chan 

• Jing Su, Ashvin Goyal, Eyal de Lara 

• Christophe Diot, Augustin Chaintreau, Richard Gass 


