
Effective Network Complexity

Tolga Uzuner

Kings College

University of Cambridge

A thesis submitted for the degree of

Doctor of Philosophy

Yet to be decided

mailto:itu20@cl.cam.ac.uk
http://www.kings.cam.ac.uk
http://www.cam.ac.uk


DECLARATIONS

This dissertation is the result of my own work and includes nothing which is the

outcome of work done in collaboration except where specifically indicated in the

text.

This thesis does not exceed the word limit for the Computer Lab Degree Com-

mittee.

i



To my wife and parents,

in friendship, gratitude, and admiration



Acknowledgements

I would like to acknowledge my two advisors Prof. Jon Crowcroft and

Prof. Derek McAuley. A thesis is the virtual act of connecting dots.

They provided the dots.

Jon vast experience with model and systems, and the small nudges

and nods in the right direction averted certain disaster. It is difficult

to overestimate the value of his insights and gut intuition in this

thesis. He also participated in (i.e. put up with) some of the more

experimental episodes of my PhD experience at Cambridge. He is also

the original instigator of this thesis. Jon is an adventurer.

Derek has a tremendous experience with physical systems and the

research process. He laid out the methodology for this thesis, and

spent hours on the blackboard sketching out the backbone. The initial

set of questions he set out for me to answer were the compass for this

ship.

My only regret is that I was not able to spend more time with them

during these four years.

I also acknowledge helpful discussions and collaboration with Richard

Gibbens, Ian Pratt, Stephen Allott and Andrew Warfield at the Com-

puter Lab, Cambridge, Derek Stagg at Marconi, and Burkhard Stiller

and others at the Dagstuhl 2006, Internet Economics workshop. Yao

Song Ng at Credit Suisse was extremely helpful in providing the nec-

essary network data. The guidance of my undergraduate advisors

Patrick Winston and Olivier Blanchard, ,friendships with Gian Carlo

Rota and Irvin Schick, and work with Richard Marcus at the Labo-

ratory for Information and Decision Systems at MIT were part of the



inspiration for this thesis. I would also like to acknowledge helpful

guidance from my thesis committee members, Prof. Chris Cooper

and Emanuele Giovanetti.



In the sound of the bell of the Gion Temple echoes the imperma-

nence of all things. The pale hue of the flowers of the teak-tree show

the truth that those who prosper must fall. The proud ones do not

last long, but vanish like a spring night’s dream. And the mighty ones

too will perish in the end, like dust before the wind.

From the opening lines of the “Tale of the Heike”

v



Abstract

Architectural trends in the last decade are leading to increasingly

complex control logic that can boost the number of services offered

and make use of the Internet Protocols ubiquity. The result is a wider

architecture and a larger feature set in the router. Managing the

architecture of these networks necessitates a deeper understanding

and quantification of this complexity. This thesis transgresses the

boundaries of telecommunications into manufacturing and finance to

address these issues.

An argument against the naive use of financial pricing and neoclas-

sical market metaphors common in the resource allocation literature

is followed by a proposal to ReReshape the Research Agenda around

the networks’ Entropy as an objective. A complexity-centric mech-

anism for networks based on Entropic Routing is proposed, and the

computational role of institutions is investigated.

Effective Network Complexity is analysed using two models. An infor-

mation theoretic Architectural Model gives insights into typical archi-

tectural decisions faced by a network engineer. A practical, real-time

Measurement Model using techniques from contingent claims analysis

adds additional insight, and is able to separately measure idiosyn-

cratic and systematic risks, a key contribution. It can be deployed on

any network using easily available Reference Measurements. Empiri-

cal analysis follows.

Insights into the complexity of networks form the backbone of this

thesis. Implications are analysed and the vernacular required to rea-

son about and make decisions in the Complexity Plane of a network

is developed.
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Nomenclature

Roman Symbols

εi A Normally distributed noise term associated with an Element

Λ Network Precedence Matrix

λ Elements of the Network Precedence Matrix

ν Traffic Vector

Φ Cumulative Distribution function for the Standard Normal Distribution

φ Density of the Standard Normal Distribution

π Vector of operational constraints on each Elements

ψ The overall unit for measuring Architectural Complexity, summarising,

for each Traffic Flow, the resource sharing required in the network, the

scheduling requirements, and it’s overall ratio to other flows.

π̃ π normalised accross all Elements

ψ̃ ψ normalised accross all Traffic Flows, Elements, and Operations. Can be

interpreted as a probability measure.

Υ Operational Matrix

Ai Utilisation of Element i, due to systematic (M) and idiosyncratic (Xi).

When Ai exceeds Ci, a Reference Measurement of (1) is triggered. The

probability of this measurement being triggered is pi.
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LIST OF TABLES

ai A measure of the coupling between Element i and the common factor M ,

also called Implied Coupling

b number of Traffic Flows

Ci The capacity of Element i

K1 and K2 Lower and upper thresholds for the Slice metric respectively

l index of Traffic Flows

M A factor common to all Elements which drives capacity utilisation due to

systematic factors

m number of Elements

pi Trigger probability for Element i

q number of Operations

u, v index of Operations

wl Measure of the quantity of a traffic flow l

Xi A factor specific to Element i which drives usage in due to idiosyncratic

factors not common to other Elements

z index of Elements
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Chapter 1

Introduction

1.1 Motivation

For the past decade, the general approach for improving the performance of net-

works has been to build architectures with increasingly complex management

logic that can boost the number of services offered and make use of the Internet

Protocols ubiquity. The increase in complexity results from a wider architecture,

a bigger feature set in the management suite, and more complex services.

However, throughput requirements from the data plane conflict with relentless

feature creep in the router. Increasingly complex management logic requires

longer dependencies and deeper critical paths in the router architecture.

Traffic and technology trends also suggest that the number of invariants char-

acterising the network will decrease over time. Furthermore, direct and immediate

control over the high capacity trunks underlying the networks infrastructure are

likely to flood existing access architectures not designed to deal with sudden, un-

predictable increases in traffic. This suggests that increasing the feature set of

existing control units may not deliver higher performance in the future.

In summary, there is a trade-off between network management logic com-

plexity, feature set size, and network performance (speed and robustness, jointly)

that needs to be carefully examined while designing improved architectures. This

thesis examines ways to measure and understand this trade-off.

The above discussion underscores the need for investigating network archi-

tectures that judiciously use complexity for exploiting significant levels of in-
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1.1 Motivation

frastructure sharing while permitting a faster and more robust network. Such

architectures are risk-return optimised: they attempt to maximise the ratio of

risks to rewards rather than push the envelope for each term separately.

While designing for total risk and complexity effectiveness are desirable, the

question remains: how do we quantify the architectural structure of a network ?

It is commonplace to measure the performance of a new architecture, typically

by using simulation. Such simulations measure network throughput and perfor-

mance in a direct manner. However, they are limited in scope not only because of

sampling biases and the assumption related to architecture and traffic patterns,

they usually implicitly assume that network characteristics remain constant over

time. What is needed is a framework for quantifying complexity and risk under

the assumption of constant change, not in the absence of it.

This thesis takes a step in the direction of casting architectural decisions op-

timised for complexity and risk in the context of network evolution. Simple ana-

lytical models are developed that quantify the tradeoffs in terms of architectural

parameters like traffic mix, element-choice, operational flexibility and resource

sharing.

An important component of process improvement is the ability to measure.

While the need for such metrics is particularly acute during the design stages,

for example during green-field build-out for an operational network, or for design

exploration, it remains topical during the operational life-cycle as well. Further-

more, it not just network characterisations, but sensitivities to marginal changes,

and deviations from optimal control policies that are required for any optimisation

to take place around those parameters. Previous research in related fields fails

to address the overall issue of architecture: most metrics are developed specific

to un-generalisable problems in specific domains, and are too labour-intensive to

collect.

This addresses these needs through the development and implementation of

a new suite of metrics for quantifying the impact of network architecture in a

precise and novel-way. The dual concepts of complexity-neutral architectures and

Entropic Routing are introduced, to make clear the intuition behind a network

optimised around a risk-return ratio in the context of complexity.
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1.2 Formulating the Problem

This thesis attempts to solve the following problem: how does one control and

understand the complexity of large-scale networks.

But first, what is meant by the term complexity ? In the context of the

work in this thesis, the most succinct description of complexity in a network

is Interrogation Costs: the difficult of determining the state of a network at

any point in time. One easy and theoretically appealing measure of this is the

expected number of binary questions a hypothetical agent must ask in the process

of this determination.

Intensive resource sharing and element diversity is the key property of net-

works in the two decades. This makes realistic simulation of today’s networks

practically impossible (see (BT89)) . More importantly, such networks can never

provide guarantees: this applies not only to a service crossing interconnected

networks, but even to networks internally.1

This is not to say that the industry does not try to impose some semblance

of discipline: modelling approaches such as Object Modelling Technique (OMT),

Booch technique or Unified Modelling Language (UML) offer an abstract, highly

structured and understandable view of the functionality of a telecommunication

system. Established software and object-oriented design metrics are used to assess

1From the Associated Press:“New York, NY, Nov. 11, 1996 (AP) – In the latest outage
to hit the Internet, a computer glitch at AT&T’s on-line service prevented more than 200,000
customers from receiving e-mail for more than a day, AT&T Corp. said Friday.

The trouble, which started at 2:35 p.m. EST Thursday, was traced to a computer that
handles electronic mail for AT&T’s WorldNet, the nation’s second-largest provider of access to
the Internet. The problem had not been resolved by Friday night.

The problem affected about half of WorldNet’s 425,000 subscribers. It did not hurt their
ability to send e-mail, except if they tried to send mail to another WorldNet customer affected
by the brownout.

The Internet brownout was the latest in a series of challenges for AT&T, which faces fresh
competition in a de-regulated telecommunications industry and criticism from Wall Street for
recently hiring a relative unknown as president and likely heir to the chief executive’s post.

AT&T said it was the biggest problem to hit its online service since it launched WorldNet
last March.” Control mutation originating in the switching system propagated through the
signalling network causing degradation of the operation and ending in a total shutdown, the
financial loss amounting to 1 billion dollars.
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complexity and coupling. As a matter of fact, research has demonstrated positive

correlation between the complexity of individual elements, and their coupling with

risks to operational control. Such metrics have been used to identify risky areas

for redesign consideration.

There are two specific issues this thesis attempts to deal with:

• When controlling the complexity of large-scale networks, one of the real dif-

ficulties is in building reliable traffic models (see (WKZL96)). For example,

the model must be a worstcase characterisation of the source to provide

an absolute upper bound on a source’s packet arrivals. Second, the model

must be parameterised so that a source can efficiently specify its traffic

characterisation to the network. Next, the model should characterise the

traffic as accurately as possible so that the admission control algorithms

do not overestimate the resources required by the connection. Finally, the

model must be police-able so that the network can enforce a source’s traffic

characterisation.1 In todays real-world networks, it is practically impossible

to build traffic models like this. Another characterisation of the traffic is

needed.

• Another issue is understanding what large-scale networks actually look like.

However, Internet topology at the router level typically generates graphs

which are in the megabytes. Even medium-size AS graphs can be 2-300K.

It is graphically impossible to understand these graphs. Given the size and

nature of these graphs, new analysis methods have to be employed (see

(PSF+01))2.

As a final consideration, high-level analysis of a an existing large-scale network

composed of tens of thousands of existing elements already in place can be a

practical problem faced by many engineers who inheritsa legacy networks. What

if you could only look through a keyhole ? The machinery of this thesis implies

the performance and complexity characteristics of a network from empirical data,

1This suggests that policability is another candidate metric.
2The Internet and most large-scale data networks are surprisingly resilient to random link

and router failures: robustness and resilience are not considered at length.
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and hence makes decision-making possible without requiring detailed information

on every element in the network.

1.2.1 Intractability in Networks

There are three areas of difficulty in data networking:

1. Traffic predictability

2. Network characterisation

3. Optimal Control

Traffic Predictability Voice networks are governed by a number of pretty

well-defined mathematical “universal laws”:

• call arrivals are mutually independent and follow a Poisson process

• call inter-arrival times are exponentially distributed

These conjoined with the following assumptions about voice telephony make the

use of queueing mathematics highly useful and reliable:

• growth rates are highly predictable

• network controls and operations are fully centralisable

• services are strictly regulated and monitored

The resulting traffic models are mathematically tractable and sometimes obviate

the need for maintaining measurement infrastructure in voice networks. Cru-

cially, in large voice networks, the law of large numbers can be used to make the

aggregate properties of a system over a long period of time much more predictable

than the behaviour of individual parts of the system.

Queueing theory, originally developed for circuit-switched networks which ser-

viced voice traffic, is partially applicable to packet-switched networks which carry

data.
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However, a notable difference between voice networks and data networks is

self-similarity, a consequence of connections being carried between computers,

and not people. This means that packet networks, also increasingly used for voice

telephony as well, behave very differently. First of all, data traffic has statistical

characteristics which are dramatically different: usually much longer tails to the

distribution and significantly higher levels of variation. Furthermore, the use of

packet technology causes frequent and bursty congestion. The protocols used

for transmitting data all use some form of congestion control which is shaped

by the conditions connections have faced in the past. This further introduces

significant correlations across time as well as complex interactions. For references,

see (FGHW99), (PF95), (WP98) and (CB96).

Network Characterisations The third fundamental problem with current

networks is measurement.

This difficulty has two subcomponents:

1. Change: Most closed networks face changes due to shifting requirements

from applications. Interconnection with new media, such as wireless, are

another source of constant change.

2. Evasiveness: Almost all useful metrics for the purposes of understanding

something about the graph theoretic characteristics of even small networks

require that each node be visited (see (GY02)).

Optimal Control Optimising around constraints in a network is a difficult

problem. This is the starting point for most networks today, not only at the inter-

AS level, but arguably also at the intra-AS level. The sheer size and complexity

of most networks today, coupled with hardware trends which emphasise speed

over coordination, imply that certain goals are not practically attainable.

The current architecture of most networks, including the Internet, makes cer-

tain things not only practically, but also theoretically impossible.

The list below attempts to cover all the major issues:

8



1.2 Formulating the Problem

Optimal Efficiency Under the assumption of selfish nodes and the control

of central administration only at the switch level, the classic result from

(She95) is that no service discipline can guarantee optimal efficiency 1.

Optimal IP Routing Perhaps the most important result in data networking

is that associated with Optimal IP routing. Optimal IP routing is defined

over a network G(V,E), a demand matrix D and capacities ce using source

invariant routing as the problem of minimising network congestion. The

proof is based on a bijection between this problem and the subset sum (see

(GJ79)), defined as the problem of finding a subset of element i = 1, . . . , n

with size s(i) ∈ Z+ summing to B.

Optimal Flow Routing Problem The same bijection also works for the Opti-

mal Flow Routing problem, where the goal is the find a routing assignment

with maximum throughput.

Optimal Link Weights Finding optimal link weights that lead to a routing

minimising the total routing cost for a given traffic demand is a NP-Hard

problem (see (FT00)), even for the case of a linear objective function. It

is NP-hard to find a weight setting within a factor 1.77 from optimality

for arbitrary graphs. The worst case may be up to 5000 times the cost of

optimal routing.

Optimal Splitting minimum average delays for multi-path routing can be guar-

anteed using distributed computation (see (Gal77)). However, this algo-

rithm is practically impossible to implement because of its infinitely divisi-

ble and stationary traffic assumptions.

Robustness Equivalent to the task of determining the maximum number of

disjoint sets out of some given set, known to be NP-hard.

Completeness and Consistency And other issues regarding the convergence

of routing algorithms (see Section 1.7):

• Reachability (from one node to another) is NP-complete

1However, there are service disciplines which do guarantee fairness.
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• Asymmetry (of a path from one node to another, and back) is NP-

complete

• Solvability (the existence of a final state) is NP-complete, Un-solvability,

Solvability, and Un-solvability are NP-hard

• Uniqueness is NP-hard

Control-based approaches also face significant practical difficulties. Take for

example, the issue of guarantees at the flow level. No matter how the problem is

specified, the core will need to perform some kind of regulation and scheduling

based on available resources and deadlines. These are expensive calculations:

on the data path, flow classification and scheduling is difficult at today’s data

rates. On the control path, maintaining consistent and dynamic state in today’s

distributed networks spanning literally tens of thousands of network elements is

also very hard.

Control algorithms based on routing, exclusion, and scheduling are broadly

divided into two categories:

Access Control Use mechanisms at the entry point of the network to enforce

pre-agreed constraints.

Flow Control Use feedback from the network to maintain a tradeoff between

network utilisation and adherence to a pre-agreed constraint

The main difficulty with access control is knowing the state of the network:

under incomplete information, access control can lead to inefficient usage of a

network, frequently leading to worst-case performance.

Very high speeds are the primary problem with flow control, leading to prop-

agation delays in the feedback loop and algorithmic complexity. In (KL92), the

authors claim that algorithmic complexity can potentially become a bottleneck

in the future. They claim that simple controls with good enough performance

will bring a tradeoff between efficiency and complexity.

These are well-known, and frequently identified problems in networking Less

appreciated, but perhaps more important is the issue of calculating the probability

of cascading events in a network. This problem is NP-Complete: one needs to
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calculate the probability that no more than a certain number of elements in a

network trigger an event which is a Bernoulli-(0,1): Prob(X ≤ K). This is the

same as asking if there exists a subset of all elements whose trigger measurements

(a Bernoulli-(0,1)) add to K. This decision is equivalent to the SUBSET SUM

problem, SP13 in (GJ79). In Section 3.4.3, a parametric measure of network risk

is developed using conditional independence mechanics.

1.2.2 Not So Difficult Problems in Networking

That having been said, not all problems in networking are impossible to solve.

When the demand matrix or traffic conditions can be predicted, certain problems

become easy.

At the top of these are voice networks governed by the Universal laws of

Section 1.2.1. The fact that very few parameters govern their traffic models

makes them enormously tractable.

Certain issues one is faced with during green-field build-outs are relatively

easy to resolve. For example,constant-approximations for a number of layered

network design problems exist:

• Hierarchical caching, where caches are placed in layers and each layer sat-

isfies a fixed percentage of the demand (bounded miss rates)

• Multi-level facility location problems, where constant combinatorial approx-

imations exist.

• Load Balancing, where each open facility must serve at least a certain

amount of demand

These problems are typical in the domain of the Access Network Design problem.

See (CW99).

Even though most versions of the Steiner tree problem are NP-Complete, a

number of special cases with important applications are solvable:

• single-sink buy-at-bulk with variable pipe types between different sets of

nodes
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• facility location with buy-at-bulk type costs on edges

• constructing single source multi-cast trees with good cost and delay prop-

erties

There are a number of other approximation solutions to important problems

in networking, some of which are based on the idea of randomisation, and others

on limiting the space of possible configurations. (AL95) is a good compendium

of these results. For example, the problems above typically involve finding a

Steiner tree which optimises the sum of edge costs along one metric and the sum

of source-sink distances along an unrelated second metric. This problem has an

O(logk) randomised approximation scheme.

1.3 The Context

John Doyle has argued that there are two great abstractions in the 20th century:1

• Separate systems engineering into control, communications, and computing

• Separate systems from physical substrate

This has facilitated explosive growth in both mathematical theory and technology,

but has also created a “new Tower of Babel where even the experts do not read

papers or understand systems outside their subspeciality.”

Like most engineering fields, this is also true in the field of networking, where

specialisation has become so extreme that arguably, engineers focused on one

layer of the network are unable to understand what is happening in any other

layer. Wireless connectivity only adds to this complexity. This is coupled with

increased variation in usage characteristics.

The business environment is also highly competitive, subject to Red Queen

mechanics: constant innovation is needed just to survive and maintain fitness

relative to co-evolving systems (Section 6.1.2), leading to increased structural

complexity. This is a constant challenge.

1From “Theory of Complex Systems” by John Doyle
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1.4 Contributions

Contributions are both technical and qualitative.

1.4.1 Technical

This is the only work of its kind which takes two methodologies designed to deal

with large, complicated systems and pushes them all the way to their logical

conclusions in the context of networking:

Entropy This thesis explores the Entropic approach exhaustively in the context

of network control and architecture. There are very few papers which have

considered the use of Entropy as the basis for network control. The thesis

also draws parallels and highlights the links with some existing models to

clarify how the Entropic Formulation fits in with existing research.

Conditional Independence Conditional independence models are commonly

used in finance to turn hard problems associated with large systems into

easy calculations. This is the first time they are systematically applied to

large-scale network control.

The exhaustive exploration of all the issues relating to the use of these tech-

niques to control networks is the most important technical contribution of this

thesis.

The application of these techniques yield a number of meaningful Insights:

they are meant to act as a handbook for network engineers. Faced with the

practical issue of interconnected networks, changing the infrastructure in an ar-

chitectural way, and choosing amongst technologies , they are an objective guide

to the practical impact of complexity on a network. Complexity is a high level

invariant for networks, so pinning it down and being able to reason about it

is helpful. Most of the existing technical exposition is either too technical and

usually focused on very specific domains.

The insights offered in this thesis minimise the risk integral to operations

early in the system architecture life-cycle. Too often, outsiders are unable to un-

derstand why experienced network engineers make certain decisions. Sometimes,
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even experience does not help: the permutations of technology and paradigms is

large. The question of how all this can be turned into a cost function is addressed.

Main insights of the analysis presented in this thesis are in Chapter 4.

Finally, this is not the first time the use of methods based on the maximisation

of an individuals’ utility function, broadly termed the neoclassical paradigm in

microeconomics, has been criticised as a useful and valid starting point for the

analysis of problems in networking. However, this thesis points out a fundamental

information theoretic objection to the use of neoclassical techniques which goes

above and beyond the practical problems associated with this approach. This

aspect of the problem with the neoclassical paradigm in networking does not

appear in any previous research on the issue.

1.4.1.1 Complexity Measures

The Deviations from Simplicity principle, defined below, is a key contribution to

the thinking around network architecture issues. It is meant to deal explicitly

with the failings of complexity measures like Kolmogorov Complexity where the

difference between chaos and complexity are not clear. It explores the notion

that Complexity is subjective1 and promotes the exploration of complexity in the

context of a specific network model. In “Kolmogorovian” fashion, the simplest

model rich enough is chosen. . As long as the super-modular structure of the

underlying parameters relative to the complexity of the network is preserved, this

principle is exportable across domains.

Alongside this, six measures of complexity are introduced:

Operational Complexity The complexity associated with variation in opera-

tions required to carry data

Element Complexity Complexity due to element variation and interaction

1“As measures of something like complexity for an entity in the real world, all such quantities
are to some extent context-dependent or even subjective. They depend on the coarse graining
(level of detail) of the description of the entity, on the previous knowledge and understanding of
the world that is assumed, on the language employed, on the coding method used for conversion
from that language into a string of bits, and on the particular ideal computer chosen as a
standard.” Murray Gell-Mann, What is Complexity ?, (GM95).
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Scheduling Complexity Complexity due to flexibility in, and the number of

scheduling requirements in the network.

Architectural Complexity An overall complexity metric which subsumes Op-

erational and Element Complexity, crossed with the added complexity due

to scheduling requirements

Implied Complexity This is the total complexity of the network implied em-

pirically, in the absence of any model.

Network Complexity The complexity associated with what cannot be explained

easily, which is the difference between Implied Complexity and Architectural

Complexity.

Murray Gell-Man argues that the complexity of any system will contain a

strongly subjective element, in relation to the information set of the observer:

complexity exists in the presence of and in relation to an observers model of a

system. Hence, in order to measure the Effective Complexity of a network1 a

Structural Model for a network is proposed. The underlying hypothesis of this

model has strong implications, which is considered to be a positive, because it

makes it easy to separate the impact of coupling and resource sharing on the

network from other factors. Finally, ways of extending the model, and hence the

benefits of investing in modelling, are explained and analysed.

1.4.1.2 Risk: Introducing Slice

Complexity is an over-researched topic but few have noted the importance of

Risk in networks. A key point of this thesis is that architectural decisions are a

tradeoff between complexity and risk (see Chapter 4).

To make this possible, this thesis introduces the notion of a Slice of risk. This

is defined here, as the qualitative notion is used frequently, before it is formalised

in the context of an actual mathematical model.

1Formally defined in 3.1.1, and informally in Section 1.5.4.1.
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Slice1 is a risk metric which measures risks operators care about: cascading

failures2, large scale operational failures to deliver, and persistent congestion.

Using the infrastructure built around the models of Chapter 3, it is also possible

to attribute risks to individual elements.

Definition 1 (Slice) A risk metric which measures the probability that a certain

Reference Measurement of importance associated with a network will take on a

value between two thresholds, K1 and K2.

Graphically this is illustrated in Figure 1.1.

A Slice value can be calculated either empirically over a time-series of Refer-

ence Measurement realisations over a network, or can be calculated off a model

which attempts to explain the behaviour of a network in terms of some measure-

ment of concern.

In financial risk management, idiosyncratic risk refers to price changes due to

circumstances specific to a certain asset, not related to the overall market. Such

risks can be eliminated for free from a portfolio of assets through diversification,

meaning that the market pays no premium to investors who take such risks. Like-

wise, systematic risks refers to risks emanating from market-wide circumstances.

Such risks cannot be hedged, and hence pay investors a premium.

The two threshold, K1 and K2 allow one to specify whether it is idiosyncratic

risks or systematic risks which one wishes to measure. One of the key character-

istics of the models in Chapter 3 is that they make it very easy to calculate this

metric.

Some of the the technical contributions resulting from the Slice parameteri-

sation are:

Separating Risk into Components Breaking down risk into systematic and

idiosyncratic.

1Tranche is French for slice. The inspiration for Slice comes from the financial markets
which use the term Tranche to refer to classes of bonds collateralised by pools of other bonds.

2On 10 August 1996, a fault in two power lines in Oregon led, through a cascading series
of failures, to blackouts in 11 US states and two Canadian provinces, leaving about 7 million
customers without power for up to 16 hours.
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Figure 1.1: A Slice of a Distribution
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Risk Attribution Attributing the contribution of an individual elements and

other decisions (say routing decisions) to the systematic and idiosyncratic

profile of a network

1.4.1.3 Novel Concepts

The judicious use of a model-based approach leads to three novel concepts:

Entropic Routing The use of the entropy of the network as a parameter in

feedback flow control

Implied Coupling Many network models have been built which use the average

degree distribution of the graph as an input. However, these models assume

that one has perfect information about the network and few models actually

mention how degree distributions could be calculated in the absence of

detailed data about the networks topology. This thesis proposes a novel

way that this could be achieved using the concept of Implied Coupling.

Network Complexity That part of observed entropy in a network which can-

not be explained by a model.

1.4.2 Non-Technical

It is also possible to consider the architectural future of networking in a qualitative

manner using notions of increasing entropy, and a systems innovative reactions

to it. This creates a time-line for a system. Some of these implications are driven

by the axiomatic implications of information theory, and should stand the test

of time. At the very least, they are the result of pushing certain axiomatic ideas

to their logical conclusions and should provoke inquiry. These can be found in

Chapter 6.

De-regulation and increased competition increase the relevance of strategic

considerations. Strategic deliberation involves an assessment of risk. Twenty-five

years ago, Harry Markowitz showed that risk and return are two sides of the

same coin. The spot price of services in telecommunications, and the present

value of their future evolution are not constants. In a world with fluctuating
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prices, no operator can exist without risk management. This is the first work

of its kind which attempts to quantify the differences between systematic and

idiosyncratic risks in a network, the key ingredients in the analysis of the balance

of risk and return in any market.The provision of telecommunication services is

an increasingly complex one. The complexity of a network can enable or disable

what services can be offered: hence, there is a financial angle to this work1

It has been the experience of the author that most venture capitalists do not

understand why certain systems technologies succeed where others fail. A very

strong technology coupled with a seasoned management team and sound finances

can fail for entirely inexplicable reasons. This thesis argues that this usually

happens because the true complexity impact and cost of a proposed technology is

entirely misunderstood. For example, sometimes, carriers prefer more complexity

in their network because they do not know how the future will evolve or they know

their networks operate under sub-optimal control policies.

Past attempts at introducing physical trading into telecommunications have

failed: they will fail again, in networking and other technical areas, if there is

not a better of understanding of why markets exist in the first place and what

exactly is the asset that should be traded. One thing is clear, it is not point-to-

point capacity. An alternative is proposed. Slice has the potential to become the

basis of a financial contract for networks.

One of the great innovations of the last 30 years in finance is the notion of

“implied volatility”. This is the value the volatility parameter needs to take

in the standard Black-Scholes model to arrive at a traded price in the market.

1At the height of spending in 2000, ILECs spent nearly 30% of revenues on CapEx, and
the IXCs, incredibly, were over that mark. Emerging service providers spent, in aggregate,
over 100% of their revenues on CapEx. Spending anything like 30% of revenues on new capital
equipment is clearly un-sustainable. In the case of WorldCom, capital expenditure was increased
based on the common belief that demand would continue at the 8 times annual growth factor
the industry was experiencing along with expenses for line capacity, and SONET Rings via
leases. These were capitalised based on their reading of accounting regulations. 2002 brought
successive quarterly revenue declines for Worldcom (and many other carriers). In June 2002,
management concluded that billions of dollars of CapEx could not be amortised because there
were no matching revenues. The resulting shift of $7B from amortised costs to direct expenses
wiped out the profitability of this leading carrier and led to the largest bankruptcy in U.S.
history.
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Simple, yet is has become the vernacular by which an entire industry thinks and

reasons about market conditions. Similar mechanics are introduced here, termed

“implied complexity” in Section 3.5.

Finally, the study of strategy in telecommunications has long been a business

school topic, and has never been tackled from the perspective of the network

engineer. The impact of architecture on strategy is quantified.

1.5 The Approach

The key statement of this thesis is that, in modelling the macroscopic features

of networks with the dual purpose of both understanding how networks behave,

and to make decisions about networking matters in the control plane, the mod-

eller must assume that the network behaves as if to maximise the entropy of its

configurations, and not the “utility” of its agents.

The overall approach is based on:

• The use of analytical techniques from adjoining fields, such as manufactur-

ing and finance.

• Insights from the field of Communication Theory as they relate to measuring

the complexity of a system.

• The use of market metaphors for understanding networks, albeit in a novel

way

• The specific use of the technique of conditional independence to simplify

the analysis of large scale networks by tractably attributing large scale

behaviour to commonly shared factors.

1.5.1 Looking over the Fence

In 2001, the Computer Science and Telecommunications Board took a first ex-

ploratory examination of what the field of networking research might become

in Looking over the Fence at Networks: A Neighbour’s View of Networking Re-

search (see (SB01)). The main point was that ossification risked further advances

in Internet research:
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• Intellectual ossification: The pressure for compatibility with the current

Internet stifling innovative intellectual thinking

• Infrastructure ossification: That the ability of researchers to affect what is

deployed in the core infrastructure (which is operated mainly by businesses)

is limited

• System ossification: That limitations in the current architecture have led

to shoe-horn solutions that increase the fragility of the system.

It is arguable whether this workshop ever succeeded in bringing over anything use-

ful from adjoining fields. The main conclusion seems to have been that different

groups have different problems as they pertain to the Internet:

• Insiders: interested in the “ilities”: reliability, manageability, configurabil-

ity, predictability

• Outsiders: diversity in the experience, expertise, and desires from the net-

work.

• Commercial Interests: diverse roles and complex relationships that can-

not be ignored when developing solutions to current and future networking

problems

This was followed up two years later by Network Research: Exploration of Dimen-

sions and Scope (NREDS) (SIG03), in which the author was a presenter: 1 During

that workshop, the author had a chance to take the committee back in time to

the goals of the previous workshop, by using metaphors from entrepreneurship in

manufacturing as a predictor of the future for networking research. While there

1Two years ago, the Computer Science and Telecommunications Board took a first ex-
ploratory examination of what the field of networking research might become in Looking Over
the Fence at Networks: A Neighbour’s View of Networking Research. This workshop is intended
to be the next step in that process, beginning to take a more organised look. Not only is it
valuable to consider specific directions that research might move, but we also expect to explore
”meta-level” issues, such as the nature of our field, how it relates to others and how we evaluate
new research.”
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were a number of issues raised that are interesting in and of themselves, the main

takeaway was that networking is beginning to look like manufacturing.

Existing techniques from the fields of manufacturing and finance form the

mathematical backbone of this thesis. They are:

Using Entropy to Control and Measure Manufacturing Facilities The use

of information theoretic measures to control manufacturing plants is now

an established methodology in the field of manufacturing.

Conditional Independence This is a technique from the financial markets

used to measure, manage, control and price the risk associated with very

large pools of assets in finance.

1.5.2 Information Theory

The primary contribution of this thesis to the analysis and modelling of networks

is the proposal to use Entropy as the key macroscopic feature for the purposes of

control and prediction.

The concept of entropy in information theory describes how much information

there is in a signal or event. An intuitive understanding of information entropy

relates to the amount of uncertainty about an event associated with a certain

probability distribution.

The overall approach to using entropy as the basis for network control and

modelling is called the Entropic Formulation:

Definition 2 (Entropic Formulation) The use of the Entropy of a network as

the key macroscopic feature for the purposes of control and behaviour prediction.

The detailed reasoning and justification for this is given in Chapter 2. One

high-level justification is suggested by Ashby’s Law of Requisite Variety:

Principle 1 (Ashby’s Law of Requisite Variety) The larger the variety of

actions available to a control system, the larger the variety of perturbations it is

able to compensate. This implies that the more variety there is in a system the

more information has to extract from it in order to understand and control it.
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This suggests that the amount of information and the difficulty with which

that information can be extracted from a system is a key macroscopic feature.

Information theory is the machinery used for measuring the informational content

of a system and entropy is a lower bound for the interrogation costs of determining

state in a system 1 (this is related to the interpretation of binary polls as codes;

see (CT91)).

Entropy is also a suitable measure for dealing with variety in networks, such

as coupled systems, exhibiting diversity and innovations. Indeed, whenever one

deals axiomatically with variety under certain reasonable requirements (such as

continuity, certain boundary conditions), one ends up with the entropy formula-

tion as an axiomatic consequence. Shannon originally derived entropy from first

principles based on such axioms.

There are also some other practical reasons:

• There is a bijection between the entropic hypothesis and a commonly used

specification of existing agent based metaphors: log utility maximisation,

as in (GK98). This not only suggests that existing results can be reused,

but that entropy is not necessarily entirely at odds with some of the existing

body of work based on market metaphors.

• Entropy is additive, meaning that it can deal with sub-systems and can be

used for comparative decisions2.

• Entropy is fractal, and hence invariant to time scales.

• Since entropy is a strictly concave function, when the constraints are linear,

the maximisation function always has a unique interior solution, which is

practically very convenient and important.

• Shadow prices on the constraint Lagrangians can be interpreted in insightful

ways. They are also useful for calibration purposes.

1The efficiency of the agents polling requirement to infer enough information to act is
explicity dealt with in Section 2.2.1.

2 The term additive refers directly to the outer
∑

in Section 3.3.3.1, Section 3.3.3.2, and
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For these and other reasons expanded upon in Chapter 2, the argument for

re-basing the use of market metaphors in Section 2.2, the Architectural Model of

Section 3.3 and the analysis of Chapter 6 are based on Information Theory.

1.5.3 Market Metaphors

Market metaphors have been an important tool for resolving resource allocation

issues in networking research for over two decades. Networks and markets have

a lot in common:

• Agent interactions are the building block of most markets.

• Most decisions are made locally.

• The market exists to resolve constraints on resources in an economy.

• Interactions are non-linear

In these ways, networks should probably be considered as markets to begin

with (and in certain ways, markets are networks, see Section 7.1.5), where differ-

ent agents share infrastructure to achieve their own narrow goals.

Markets face strong information and transaction constraints: in real circum-

stances, agents do not participate in an infinitude of markets at zero transaction

and information costs. The same could be said of networks, where most routing

decisions are made locally as it is impossible to collect information about the

entire network at any point in time. And just like markets, networks resolve

conflicts over resources such as capacity and processing power: if everything was

in abundant supply, there would be no need for markets to begin with.

The primary source of non-linearity in markets usually has something to do

with optionality, a key characteristic of any derivative contract in the financial

markets. In the simplest derivative contracts, one agent has an option, but not

the obligation, to purchase or sell an asset at a pre-determined price. The fact

that there is no certainty about the transaction creates non-linearities.

It is quite clear that these issues were not clear to most telecommunications

operators in the late 90’s. Telecom revenues are among the most stable income
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streams in any business globally. Yet, the financial valuation of telecom compa-

nies, even those operating in the most stable businesses have been tremendously

volatile. This volatility has been driven by the perceptions about the optional-

ity in the industry associated with new technologies, such as the Internet and

the World Wide Web (WWW). There is non-linearity in the telecommunications

industry, and this indicates the existence of optionality in the underlying infras-

tructure.

Hence, the techniques in this thesis are also based on market metaphors,

however they are significantly different from the existing body of work in this

field. The existing body of work analyses network effects as the side-effects of

utility1 maximising agents. This thesis instead focuses directly on the macroscopic

features of networks, and justifies these using statistical mechanics techniques,

while still remaining in the market framework.

1.5.4 Modelling

Two models are developed:

Architectural Model This model is based on an information theoretic ap-

proach to understanding complexity issues in a network. It provides insights

into the impact of architectural decisions on the large scale complexity of

the network. We develop this model with a view to understanding how

networks work. However, the model is only useful as a tool to think and

reason with: it is not easily adapted to physical networks composed of large

numbers of elements. This infrastructure is based on taking the simplest

possible model for a network, and measuring complexity as the distance be-

tween the predictions of this model and actual observations. In that sense,

it is tied strongly to complexity arguments in (GM94).

1An economic term referring to the total satisfaction received from consuming a good or
service. Utilities in economics are represented using “utility functions”, which represent how
economic agents rank the choices over different baskets of good given to them. Rationality is
defined precisely in terms of imputed utility maximising behaviour under economic constraints.
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Measurement Model This model is meant to overcome the tractability issues

of an architectural model by using novel techniques from the actuarial sci-

ences. It can be used with standard networking tools to control and measure

the actual complexity of a network. It is easy to build, scalable, and com-

putationally tractable.

The models are complementary and occupy opposite ends of a spectrum of

tradeoffs between tractability and detail. The Architectural Model makes use of

not only the graph underlying the entire network, but also the coupling between

shared resources and the dependency between operations on data flows. All this

comes at the expense of computational and informational tractability: it is not

realistic to actually populate all the parameters of this model for any realistic

network.

The Measurement Model is simple, at the expense of making strong assump-

tions:

• All elements are homogeneous

• The coupling between elements is homogeneous

• There is one factor driving the systematic component of the networks be-

haviours

Complexity is then measured as deviations from the simple predictions of this

model. The impact of relaxing the assumptions is studied one-by-one.

The primary mathematical tools of the Architectural Model are linear algebra,

Jackson Network analysis, and Information Theory. The Measurement Model

makes use of the law of large numbers, conditional independence, numerical in-

tegration and Gram-Charlier expansions to the normal distribution.

1.5.4.1 Effective Complexity

Effective Complexity is formally defined in Section 3.1.1. Murray Gell-Mann in

(GM94) argues strongly that practical measures of complexity must contain a

subjective element (see (GM95), and also (Edm99a)). His main point is that,
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when analysing a system, any observer must evaluate the complexity in the pres-

ence of a model. If a model exists which perfectly describes a systems behaviour,

the system does not really have any Effective Complexity. The philosophy behind

the measure of complexity adapted in this thesis uses entropy in the context of

a specific model to measure the Effective Complexity of networks. This is an

important enough point that it is worth elevating to a Principle.

Principle 2 (Deviations from Simplicity) Build the simplest model possible

of the system which is just rich enough to explain all observable static character-

istics, but no richer. Measure complexity as the deviations of observed dynamics

from the predictions of this simple model using Entropy.1

1.6 What Will Not Work ?

Previous misguided attempts at solving the problem of scalable network control

are reviewed.

The specific problems associated with network control have been investi-

gated along three research areas that all share a distributed control/computation

paradigm:

1. Naive Market solutions

2. Naive Graph Theoretic Approaches

3. Negotiation-based systems:

• Agent based solutions

• Active Networking

This research has generated many interesting results. However, this the-

sis argues that is has been misguided where it has been based on neoclassical

1This is similar to the idea of looking for the shortest model as the basis of complexity,
as with Kolmogorov. However, Kolmogorov’s measure has a serious shortcoming: it attains a
maximum with random sequences, and is in that sense, is really a measure of randomness and
not really complexity in the practical sense.
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paradigms, as the assumptions are unrealistic and ignore computational and in-

formational intractability issues, primarily associated with the the tátonnement

process.

1.6.1 Naive Market Solutions

At the turn of the century, a market in traded bandwidth materialised between

a number of energy firms, investment banks, and telecom carriers. A derivative

market also appeared, in the form of traded swaps and options on fibre capacity.

The primary model for traded capacity was driven by supposed arbitrage

conditions around an underlying asset modelled as point-to-point connections. A

good example of such a model can be found in (Kep02). This market no longer

exists, for a variety of important reasons:

• There were too many tradable assets

• Information and data on all assets was difficult to centralise

• The market was severely incomplete: there was a significant mismatch be-

tween the true risks to agents in the market and the assets being traded

The real world is full of imperfect and incomplete markets1, and there are

ways to deal with them, discussed in Section 2.2. Markets can tolerate a certain

level of incompleteness. Sometimes, the very existence of liquidity in transactions

completes an otherwise incomplete market, by allowing risk transfer from risk-

averse to risk-loving agents.

However, there are limits to how much incompleteness a market can handle.

First of all, for the market to be able to step-in and play the role of the liquidity

provider of last resort, the agents participating must come from variable back-

grounds with different levels of risk aversion. This is what creates liquidity for a

transaction2.
1A market is said to be spanned by primary assets if contingent contracts in every state of

the economy can be expressed in terms of the primary assets. In the derivatives markets, the
underlying asset and a risk-less bond span the option price under the assumptions of Black-
Scholes. Option spanning and market completeness are equivalent.

2(Arr53) showed that, under some conditions, the ability to buy and sell securities can
effectively make up for missing securities and complete the market. (see Section 2.4.2)
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Furthermore, the problem with the bandwidth markets was not that there

weren’t enough assets: arguably, there were too many. Making point-to-point

connections the primary asset was probably a mistake to begin with. The problem

was that the traded assets did not properly cover the risks of participating agents.

The risks faced by most market participants in the telecommunications is not the

price of fibre capacity. This comprises a small portion of the total cost of delivery

of telecommunication services. The primary non-business risks faced by carriers

is congestion in their network, unforeseen cascading failures failure to deliver

services for operational reasons. It is these risks which the bandwidth markets

did not cover.

This is a mistake which need not be repeated. Simplistic application of mar-

ket mechanisms to standard telecommunication and computational units, such

as bandwidth, fibre-capacity, storage, and processor cycles are not likely to suc-

ceed for this reason in the future. The price or physical cost variation of these

assets do not span future states against which participants seek protection. Also,

speculators do not consider the future pricing of these units as an opportunity.

The same criticism can be levelled at simplistic applications of the neoclassical

paradigm to congestion pricing and resource allocation, such as in (FORR98).

The neoclassical paradigm is deeply flawed and does not even model real-world

markets well: not only are these assumptions usually unrealistic, the resulting

calculations required of agents are for most cases entirely intractable. This issue

is discussed at length in Section 2.1.

1.6.2 Naive Graph Theoretic Approaches

Networks are inherently difficult to understand using simple graph-theoretic tech-

niques:

1. The network diagram can be an intricate tangle.

2. The network diagram could be subject to change over time, as links are

set-up and torn down.

3. The links between nodes could be diverse, in capacity, direction, and type.
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4. The nodes could be diverse, also in type and size.

5. The nodes could have state which effects network behaviour, and this state

could be non-linear.

6. The networks layout might be dependent on historical path-dependent fac-

tors, or the connections between various parts of the network might be

influenced by the traffic going through the network at any point in time.

There are also analytical problems. In (RV76), the authors prove that every

nontrivial monotone graph property is evasive1, a conjecture originally due to

Karp (see (Ros73)). This poses a significant tractability problem for most graph-

theoretic measures of any significance. Due to their size and dynamics, it is not

possible to obtain complete graphs of even medium-sized networks, never mind

the Internet. Hence, most graph-theoretic metrics are computed under incomplete

information 2

Furthermore, graph-theoretic measures do not take into account complexity in

a network arising from operations. All graph-theoretic measures see are edges and

nodes, without taking into account the fact that delivery of a certain flow through

a network requires the execution of certain operations in exact precedence (such

as DNS lookup, routing table queries, and setting up virtual paths).

Graph-theoretic measures are also blind to traversal dynamics and cannot take

into account issues associated with aggregation and disaggregation. For example,

an application shared amongst users would trigger significant complexity in a

network: a graph theoretic measure would be invariant between a network which

was capable of delivering such a service and one which wasn’t, if they had the

same topological layout.

The need for large scale intrusive measurements must be obviated, and oper-

ational complexity cannot be ignored. This is achieved in Chapter 3.

1A function f is evasive if, in the worst case, an algorithm needs complete information
about x to compute f(x). In the context of calculating the value certain evasive property of a
graph, this is equivalent to a requirement that all nodes be visited.

2For example, the authors show that trace-route measurements create a biased view of the
Internet, in (LBCX02), casting doubt on the accepted wisdom that degree distributions of nodes
follow a power-law tail.
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1.6.3 Negotiation and Fixation on the Agent

Agents are software designed to be autonomous in pursuit of goals, capable of

collaborative and competitive interaction. They typically target complex, dis-

tributed processes.

Definition 3 (Active Networks) Active networks allow individual user, or groups

of users, to inject customised programs into the nodes of the network. ”Active”

architectures enable a massive increase in the complexity and customisation of the

computation that is performed within the network, e.g., that is interposed between

the communicating end points 1.

Agent based solutions can be seen as the result of a reductionist philosophy in

science which treats differences in market structures where the agents congregate

as second-order complications. Most telecom research has modelled “The Mar-

ket” as a relatively homogeneous and undifferentiated entity, with interactions

between agents as the primary determinant of market structure. Focus has been

on the technical microeconomics of the agent, not the detailed infrastructure of

the market.

In IP networks, making changes to the control plane require changes to for-

warding algorithms, making it very difficult to experiment with new control tech-

niques. Active networking can be seen as as response to this difficulty. In some

ways, some of the techniques from Active Networking have influenced the devel-

opment of the Multi-Protocol Label Switching (MPLS) protocol. One reason for

the development of MPLS was to allow the control plane of the IP layer to direct

Asynchronous Transfer Mode (ATM) switches (see Section 1.10.2), by integrating

Layer 2 switching with Layer 3 routing. Another achievement of MPLS was its

ability to operate on a wide variety of link-level technologies, including Frame

Relay, Packet over SONET, and also LANs such as Ethernet and token ring.

The key separation between agents and active networking is that in active

networking, the packets traversing the network make modifications to the net-

work 2. Active networking departs from traditional architectures which separate

1Active Networks web-site, MIT
2Enabled through nodes in the operating systems which support execution environments,

and in certain cases, dedicated Active hardware.
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network components from data for stability reasons.

However, neither active networks nor agent based solutions have lived up to

expectations. Their similarity based on the notion of negotiation and dynamic

interaction has sealed their combined fate. Agent-based techniques, involve au-

tomatic negotiation by rational agents who optimise an individualised, implied

“utility” function ensconced in the assumptions of neoclassical economics. The

dynamic interaction of active networks with the network they share implies in-

teraction with each other. The issue is computational intractability.

1.6.3.1 The Complexity of Negotiation

Even benign agents pose computational difficulties. Take for example the case

where the agents cooperate to achieve a common objective, such as fairness, or

throughput1 . It has been shown that computing the optimal strategies for even

cooperating agents is intractable. Furthermore, even if the constraint is relaxed

to solutions e-distant from the optimal value, i.e. approximate solutions, the

problem remains as hard as the optimal version of the problem. See (RGR02).

Automatic contract negotiation is posed as an attempt by agents sharing

resources to construct a mutually beneficial optimal reallocation through trading.

If contracts are restricted to those in which a limited number of resources can

be transferred from one agent to another and are required to be rational (in the

sense of strictly improving overall worth of an allocation), then not only is it

the case that a suitable contract-path to an optimal allocation may fail to exist,

but even deciding if a path from a given allocation to a specified more beneficial

allocation is possible is intractable. However, if the cost matrix is restricted to

trees, the problem does become tractable. See (Woo00).

1.6.3.2 The Complexity of Planning

Automated planning is the problem of determining how an agent achieves a goal

given a repertoire of actions. In the early days of agent-based research, strong

1A realistic example would be fault localisation. In large networks, errors can cross do-
mains, leading fault management systems to trigger incorrectly. Proposed distributed event
management nodes governing subsets would not be able to localise these faults collectively.
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assumptions were made about the agent’s knowledge and control over the world,

namely that its information is complete and correct, and that the results of its

actions are deterministic and known. When, these assumptions are relaxed, the

results are pretty pessimistic. For example, the classical “probabilistic planning”

problem has been shown to be formally undecidable. These results can be applied

to a broad class of stochastic optimisation problems where the agent:

1. operates over an infinite or indefinite time horizon, and

2. has available only probabilistic information about the system’s state.

The same set of un-decidability results also apply to corresponding approximation

problems with un-discounted objective functions. See (MHC03).

1.7 Focus Areas

(Mor02) gives a good overview of various traffic engineering techniques, especially

as they relate to the Internet. Network control is divided into two broad areas.

These are Network Operations and Network Architecture.

Network operations are comprised of:

1. Planning, concerned with long-term physical network planning. Its primary

input is traffic growth.

2. Network Engineering, dealing with physical link configurations to establish

capacity around existing links and nodes.

3. Traffic Engineering for optimising an existing topology to meet current

demands.

The Measurement Model in Section 3.4 has two outputs useful in all three

areas. The first is Slice, a direct measure of the current complexity of a network

that can be fine-tuned to specific specific flows. The second is the first derivative

of Slice with respect to a specific element in the network.
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The purpose of this thesis is also to aid Architectural decisions which involves

all three Network Operational functions at different time scales. Network Archi-

tecture is involved with not the implementation, but the actual selection of which

of many different ways these operations can be performed through:

• Design principles: network topology, level of resource sharing

• Technology choices: layered vs. integrated elements

• Methodologies: connection-less vs. connection-oriented routing

The Architectural Model in Section 3.3 is a qualitative model used in this

context. The emergence of new technologies, green-field build-outs, and network

upgrades are typically the junctions at which architectural decisions are made.

Engineers typically turn to experience as a guide. This model does not replace,

but complements experience by making it easy to compare decisions.

The model in Section 3.4 is quantitative, making it possible to calculate the

impact of:

• sub-system interactions

• network heterogeneity

• traffic variation, and

• the marginal cost of making changes to one element.

1.7.1 Traffic Engineering

Traffic engineering primarily uses statistical models of traffic for prediction. Using

these predictions, the underlying network is shaped to carry this traffic in the

most efficient way possible. During that process, the agents making decisions (be

they routers or people) perform an optimisation over user-visible properties of

the network in the presence of incomplete information. Traffic engineering has to

abide by constraints, such as:

• Bandwidth
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Traffic Engineering

Control Optimisation

Proactive Reactive Capacity Traffic

Figure 1.2: Traffic Engineering

• Hop Count

• Setup Priority

• Hold Priority

• Adaptability

• Resilience

• Shared Risk Link group

• Include/Exclude Resources

• Protection

Traffic engineering performs two high-level functions:

• Control:

– Proactive, meaning prevention

– Reactive, meaning correction

• Optimisation
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– Capacity management

– Traffic management:

∗ Nodal

∗ Constraint based

See Figure 1.7.1. Control can be exercised either at nodes through conditioning

and scheduling, or through the arbitration of access to network resources. Op-

timisation is achieved over parameters which determine capacity between nodes

and the direction of flow into that capacity.

Slice, can play two roles here. First of all, Slice is an indicator of the com-

plexity of a network, a desirable feature when it is know that the control policy

of a network will be suboptimal (Section 4.1.2.5). On the flipside, complexity

can be highly undesirable when the network has to give hard guarantees. Hence,

Slice can act as a measurement-feedback metric either for adaptive control, or as

a constraint requirement. This is termed Entropic Routing, covered in Section

6.1.1.

Slice, is highly tractable and can be measured in real-time, and has the po-

tential to relay information about the complexity of the network to any element

in the network at any point in time.

1.7.2 Routing

Routing is the glue holding data networks together. The complexity of routing

can be decomposed into two primary operations:

1. Data Plane: address lookup and forwarding

2. Control Plane: routing table management and signalling

Data plane operations are packet-by-packet operations whereas control plane

operations only impact the nodes of a network. There are two paradigms in

routing which determine control plane operations:

• Connection-less: Routing decisions take place at nodes. This requires heavy

coupling between the data plane and the control plane as the address space

has to be shared.
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Routing

Connectionless Connection-oriented

Distance-vector based Link-state based
RIP, EIGRP OSPF, IS-IS

ATM-PNNI
MPLS

Figure 1.3: Routing Protocols

• Connection-oriented: The end points establish and end-to-end connection

using a preliminary protocol at initiation, before any data is transmitted.

This means that the control plane can decouple from the data plane.

Connection-less routing protocols can maintain state information about the net-

work either using information about nodes, called distance vector protocols, or

using information about links, called link-state protocols (see Section 1.7.2). 1

The choice of protocol has significant implications for the complexity of a net-

work (Section 5.1.1).

The General Routing Problem (Awd99) and (FT00) provide a succinct

description of the General Routing Problem. The network is defined a directed

graph G = (N,A) whose nodes and arcs represent routers and links. Each arc

a has capacity c(a) and each network has a demand matrix D for each pair of

nodes, (s, t). The problem is the distribution of flow over paths from s to t.

The load of an arc a is l(a) and utilisation is u(a) = l(a)
c(a)

. The objective is to

keep the load within capacity limits.

1Link state protocols contain complete information about a network, while distance vector
protocols do not.
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Routing must give two guarantees:

• Consistency: meaning that every node is reachable from every other node

using local information

• completeness: meaning that every node is able calculate a path to every

other node other path

More complete information leads to faster convergence times, as the chances of

inconsistency decrease. This has an automatic computation cost, as more dis-

tributed state must be processed. This also limits scalability. As both Com-

pleteness and Consistency limit scalability, large networks have to be structured

hierarchically 1.

The most controversial feature of this specification is the existence of a demand

matrix. The mathematical framework of Section 3 , which forms the backbone

of this thesis, models the interaction between l(a) and c(a). l(a) is modelled as

being driven by an idiosyncratic component, ignored due to the Law of Large

numbers, and a systematic component related to the complexity of the network,

which cannot be ignored. The complexity of the entire network is measured indi-

rectly through the incidence of correlation between Bernoulli-(0,1) measurements

triggered when u(a) > 1.

1.7.2.1 Domain-based Routing

The primary source of scalability in the Internet is routing hierarchies based on

domains:

• Inter-domain routing: takes place between autonomous routing domains.

Currently, this is implemented with the Border Gateway Protocol (BGP),

which exchanges reachability information within and between Autonomous

Systems (ASes). These are connection-less protocols due to the lack of a

central entity in the Internet.

1As Areas in OSPF and Autonomous Systems (AS)S in BGP
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• Intra-domain routing: takes place within an AS, meaning that it is possible

for the controlling service provider to engineer its performance and use one

of a number of a different protocols depending on requirements. Typically,

intra-domain routing is usually (but not always) achieved using connection-

oriented protocols, which give the service provider higher-levels of control

over the network.

AS boundaries are stitched together using the Border Gateway Protocol (BGP).

BGP was not a protocol designed for traffic engineering, even though it has

become the de facto standard for inter-AS Internet-working. The main issues in

BGP addressable in our framework are:

• Constraints: Passing network performance requirements into BGP

• Traffic engineering: Passing congestion information into BGP

Some of these issues are dealt with in Section 5.

Intra-domain routing can be achieved via a number of alternatives, of which

two are prevalent: MPLS, a connection-oriented protocol, and Open Shortest

Path First (OSPF), a connection-less, older alternative. Relevant issues are anal-

ysed in Section 5.1.1. Issues common to both domains are:

• Multi-path routing

• Survivability

• Fault Detection and Notification

• Embedding user-interfaces/control indirectly into routing decisions

• Mapping policies to protocols

• Operating under sub-optimal control policies

• Rolling features into the addressing structure in a network, rather than as

options (see Section 5.1.3)
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1.7.3 The Internet Protocol

The structure of IP as a datagram model is simple. However, determination of

state in an IP network is very difficult, incurring significant control complexity1.

IP also has an important strategic impact on service providers: it makes it easier

for customers to unbundle services, forcing providers and end-users to participate

in combinatorial auctions 2.

In (MFMZ02), the authors argue that IP has technical shortcomings at the

core of the network, where they expect it to be replaced by optical circuit switch-

ing. This is also an implication of the entropic hypothesis of this thesis, in Section

6.1.2, albeit for different reasons. This also ties in with the claim of (LOR+01),

where the authors show that the source invariance of traditional forwarding and

routing protocols like such as RIP and OSPF are a significant source of perfor-

mance degradation, over more recent alternative schemes like MPLS, where the

forwarding is based on both the source and and the destination, in addition to

many other factors. These issues are discussed in Section 5.1.1.

1.7.4 Areas Not Addressed

Element Design Individual element design is also fruitful ground for our anal-

ysis. For example, it has been observed that the cost of a router port depends on

the amount and kind of memory it uses, its processing power, and the complex-

ity of the inter port-processor communication protocol. Furthermore, there are

trade-offs between performance, complexity, and cost. Specifically, router ports

built with general-purpose processors and complex communication protocols tend

to be more expensive than those built using ASICs and simple communication

protocols. SRAMs offer faster access times, but are more expensive than DRAMs,

while buffer memory is another parameter that is difficult to size . Careful engi-

neering of the control protocol is necessary to reduce the cost of the port control

1The model in Section 3.3 is based on entropy, implying that we equate complexity to the
number of questions (binary interrogations) needed to capture the relevant state of a network.

2In Combinatorial Auctions, bidding takes place on packages. Combinatorial auctions are
hard: there is no polynomial bound to the computational complexity of a winning bid, the
deliberation and strategic costs are cognitively complex, and strategic bidding can lead to
inefficient and counterintuitive outcomes.
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circuitry and also the loss of command packets, which will certainly need retrans-

mission, as in some designs, a centralised controller sends commands to each port

through the switch fabric and the ports internal buffers.

However, straightforward design complexity may bring interface simplicity. In

the case of equipment selection, very complicated internal design may significantly

simplify interfaces to necessary protocol features.

It is possible to adapt the framework for this purpose, but this is left for

further research. However, implications are mentioned in Chapter 6.

Facility Planning Similarly, this thesis does not deal with facility planning

and long-term traffic planning issues. In Chapter 6, it is argued however that the

traffic engineering and the long-term traffic planning functions will merge in the

future.

Furthermore, there is a vast literature dedicated to facility planning and the

broad based result of this body of work is that facility planning is not a fundamen-

tally difficult problem. Even in cases where there are computationally hurdles,

good approximation algorithms exist.

1.8 Alternative Approaches

There are two alternative practical approaches to understanding and controlling

the complexity of a network, and one theoretical variation.

Schedulability Given a set of tasks, their arrival patterns, and a schedule,

schedulability checks whether any task will miss its deadline. This is usually

done through the analysis of an automaton, checking whether a reachable

state exists in which the deadline is missed. It is possible to cast the task

of network control as one of guaranteeing schedulability. This would equate

the complexity of network control with the complexity of schedulability.

Novel Graph-Theoretic Techniques Most existing graph-theoretic measures

of complexity do not consider how difficult it is to measure the various prop-

erties they advertise. However, some recent work on the evasive properties

of graphs could remedy some of these shortcomings.
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Subjective Measures of Entropy The Entropic Formulation in this thesis is

based on the classic definition given by Shannon. Renyi has generalised this

definition, leading to a wider set of measures for complexity.

1.8.1 Scheduling Complexity as a Metric

The easiest way to reduce complexity in a routed network is to reduce the com-

plexity of scheduling algorithms. There is a natural tradeoff between the com-

plexity and the flexibility of the scheduler. The common objective is the time

complexity. Some proposals for this can be found in (ZF93) and (SZ99).

Hence, one could pose scheduling complexity as a key metric, The funda-

mental complexity vs. flexibility tradeoff means that one can replace per-flow

management with coordination, which points to a tradeoff between connection

oriented protocols and coordination protocols (discussed further in Section 5.1.1).

Work in the area of schedulability has some interesting pointers in this direc-

tion. In (KP95), the authors show that this fundamental tradeoff admits certain

hard conditions. They consider several well known non-clairvoyant scheduling

problems, including the problem of minimising the average response time, and

besteffort, firm realtime scheduling. Even though there are no deterministic on-

line algorithms for these problems with bounded competitive ratios 1, moderately

increasing the speed of the processor used by the nonclairvoyant scheduler effec-

tively gives the scheduler the power of clairvoyance. In this context, the word

clairvoyance refers to a priori knowledge of the execution and release times, and

dependencies of a specific job. The increase in processor speed allows a non-

clairvoyant scheduler to match the performance of a clairvoyant scheduler.

The alternative to speed is additional resources. (Edm99b) consider non-

clairvoyant multiprocessor scheduling of jobs with arbitrary arrival times and

changing execution characteristics. They assume that the “scheduler is in the

dark”, i.e. has no knowledge about the jobs except for knowing when a job

arrives and knowing when it completes, and prove that there exists a scheduler

1The worst case of the ratio between the cost incurred by an on-line algorithm and the
best-case cost.
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algorithm “Equipartition” which performs within a constant factor as well as the

optimal scheduler as long as it is given at least twice as many processors.

1.8.2 Novel Graph Theoretic Techniques

While graph-theoretic techniques for measuring and managing complexity fail

to capture operational complexities and do not say much about architectural

decisions, some of their shortcoming in the area of tractability could be overcome.

For example, in (GY02), the authors recognise the evasive nature of non-trivial

graph-theoretic measures, and propose a meta-metric called (γ, σ)-evasiveness

which indicates if a metric can be estimated with 1− σ accuracy by using only γ

percentage of the data.

They then proceed to discuss:

• how γ and σ vary for various oft-used graph theoretic measures

• sampling issues

Their meta-metric has the making of a complexity measure, as a more complicated

network would presumably be proportional to γ
1−σ

.

Recent developments in the use of statistical methods for the analysis of large

networks attempt to glean macroscopic features of networks that can be divorced

from the intricacies of how the network is actually wired up. They attempt

to answer questions about the network without knowing every detail about the

network. This is also an aim of this thesis.

This body of work has three aims:

1. Find statistical properties such as path lengths and degree distributions

that characterise the complexity of networked systems.

2. Create models which are explanatory.

3. Predict network behaviour as a function of measured structural properties

and local rules governing vertices.
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These methods are related to the Entropic Formulation proposed in this thesis,

as they are statistical in nature, and hence subject to the tools and mechanics

of statistical mechanics. Some of these results can be interpreted in an entropic

sense. This issue is covered in Section 2.2.2.2.

1.8.3 Alternative Entropy Formulations

To deal with the subjectivity of Complexity, the “Deviation from Simplicity” prin-

ciple juxtaposes a model of the network, and proposes true Network Complexity

as arising from that part of an empirical distribution which cannot be explained

by the model. Shannon’s measure of entropy requires the presence of a model

because it is inherently objective. Syntactically, this arises from its definition

over probability distributions, and semantically, from the additivity constraint.

A relaxation of this requirement leads to an alternative measure titled Renyi

Entropy:

H =
1

1− α
log2

∑
i

pα
i (1.1)

Renyi entropies have been successfully used to measure complexity in dy-

namic systems with subjective observers. Renyi Entropies also lead to various

uncertainty measures. More details are in Appendix B.

1.9 Related Research

Three strands of directly related research are reviewed.

1.9.1 Event Correlation

There is a large body of research dedicated to event correlations in networks. A

good exposition can be found in (SS01b). The vocabulary associated with this

literature consists of:

• events: exceptional occurrences in hardware or software

• faults: events that can be handled directly

44



1.9 Related Research

• errors: discrepancies between computed and observed values, and

• symptoms: external manifestations of faults

The primary goal of this literature is fault localisation in the presence of ambi-

guity, inconsistency and incompleteness. The main issues relate to the occurrence

of unrelated faults, multiple hypothesis, and the computational infeasiblity of pro-

cessing and managing a knowledge base of events. Computational infeasibility of

managing knowledge bases is covered in (BCFK95), and (KYY+95).

Common approaches are covered in (KP97). There are many approaches, but

the four leading alternatives are:

• Model-based reasoning incorporating a deep knowledge in the form of a

model of the underlying system, covered in (BBM+93) and (KS95)

• Fault propagation, in (HCF95)

• Case-based reasoning, in (Lew93), and

• Model traversal in (Gru98), (JP93), and (KP97)

The bulk of the research between 1990 and 2000 has focused on low-level faults

related to resources. Current challenges are multi-layer faults, real-time perfor-

mance problem diagnosis and dealing with uncertainty.

1.9.2 Networking Games

(ABEA+06) provide a very good overview of issues related to networking games

in telecommunications. This is a rich field and has resulted in interesting appli-

cations both to networking and in transport planning.

The primary tool in the use of games in networking is the concept of a Wardrop

Equilibrium. While related to Nash equilibria, the concept is generalised to cover

games with infinite players. Wardrop was an English civil engineer interested

in road traffic issues. Hence, the primary use of networking games is in the

prediction of congestion.

Wardrop defined two notions:
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1. Equilibria: No driver can unilaterally change routes to improve travel times

2. System optimality: The average journey time is at a minimum at equilib-

rium

In this context, economic arguments generally lead to the conclusion that

marginal cost road pricing leads to System Optimality.

One of the most interesting results in this field is known as Braess paradox,

which states that in a non-cooperative framework, adding capacity to bottleneck

links increases delays to all users. This happens when the equilibrium is not

optimal. This is frequently the case in non-cooperative networks, such as in

(She95) where it is shown that no network switch service discipline exists which

can guarantee optimal efficiency. Hence, the primary focus of networking games

has been the non-cooperative setting with infinite users.

The key linkage in this field is that between congestion control and pricing,

highlighted in (KM99), (CO98), and in a series of papers by Frank Kelly et

al starting with (KMT98) and (GK98) . One of the most interesting aspects

of proportional fairness is the use and implication of log utility in the agents

optimisation function. Their model is based on optimising a log utility function

associated with network flows. This is related to the entropy based model in

Section 3.3, and is discussed in Section 2.3.1 and elsewhere throughout this thesis.

The equivalence between the two models and the axiomatic basis of the Entropic

Formulation means that the choice of a log utility is not arbitrary.

1.9.3 Market-Based Metaphors

Market-based solutions received substantial attention from 1995 onwards, as the

greater use of computing technology in finance triggered an interest in the use

of market mechanisms to solve distributed computation problems. Telecom net-

works look like markets, large networks of interconnected elements which ex-

change information, share resources, optimise around constraints and try to stay

in equilibrium.

Markets have been used as a basis for survivability, as in the case of the MARX

project at the University of Michigan (see (EJK+01)). Fault-tolerance, and other
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desirable characteristics of a network are and continue to be researched in the

mathematical community, as in the case of the RAIN project at CalTECH (see

(BFL+00)). Previous literature has focused primarily on the pricing of services,

and the use of markets and prices to resolve general dynamic equilibrium problems

in resource allocation. There has also been some focus on inter-carrier competition

based on pricing strategies.

Major research projects which are most relevant are:

• George Fankhauser in (Fan00) presents a network architecture based on

Service Level Agreement (SLA) traders which integrate service allocation,

routing and pricing functions

• Neil Stratford and Richard Mortier in (SM99): use dynamic pricing as

a congestion feedback mechanism based on frequently renegotiated timed

resource contracts

• MARX Project (EJK+01) is a dynamic computational market designed to

enable adaptive allocation of resources in large-scale distributed information

systems

• Market Managed Multi-service Internet (M3I, (Man01)): the goal is to

design, implement and trial a next generation system which will enable In-

ternet resource management through market forces, specifically by enabling

differential charging for multiple levels of service

There is some overlap. For example, Stratford and Mortier talk about the

separation of local and global optimisation problems, a primary insights for the

use of market mechanisms. The MARX project has survivability as a core fo-

cus, enforcing fault-tolerance through market-mechanisms. Both the M3I and

the Fankhauser work are squarely focused on Service Provider strategies. The

congestion pricing work of Mackie-Mason (MMV94) is related to the model in

Section 3.3.

There are also differences.

• Both Stratford/Mortier and MARX project are focused on an actual design

for a system based on agents; furthermore, they are focused primarily on

resource allocation for computing and capacity
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• The M3I and Fankhauser work are primarily focused on SLA trading be-

tween counter-parties and on financial contracting between service providers.

There are doubts about the viability of these strategies, mentioned in Sec-

tion 1.6.1. However, if the traded SLA is not idiosyncratic in nature, they

may work (Chapter 6).

Also, some of the emphasis in this body of work is on demonstrating capabilities.

For example, the MARX project attempts to demonstrate the use of markets for

survivability using agents and auctions. The focus here is on mathematical tools

for reasoning and thinking about networks.

1.10 Relevant Trends

Relevant trends and developments in routing and element design are highlighted,

for context.

1.10.1 Routing

The primary trend in routing has to do with two developments that are driven

by the cost structure of most service providers:

• the removal of lower level protection mechanisms on the basis of costs, such

as SONET and SDH protection1.

• financial and SLA pressures forcing ISPs to use the shortest distance be-

tween two POPs

SDH protection is offered through a Protection Circuit, which backs up the

Active Circuit in case there is a break. In SDH, this is called Multiplexed Switch-

ing Protection and in SONET, it is called Automatic Protection Switching. As

1SONET is short for “synchronous optical network”, a standard for communicating digital
information using lasers or light emitting diodes (LEDs) over optical fibre. SDH, short for
“synchronous digital hierarchy”,is a more recent standard that is popular outside Canada and
the USA. SONET and SDH encapsulate earlier digital transmission standards, such as the PDH
standard, and can be used directly to support either ATM or Packet over SONET networking.
This means that SONET/SDH are more than just a protocol, but an all-purpose transport
container for moving both voice and data.
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the Protection Circuits do not generate any revenue, alternative solutions which

are more efficient are increasingly used.

Another common trend is the de-layering of the network to reduce the costs as-

sociated with maintaining personnel and infrastructure for multiple layers. There

are three ways to implement IP over fibre optic networks which use Dense Wave

Division Multiplexing (DWDM):

1. IP/ATM/SONET/WDM

2. IP/MPLS/SONET/WDM

3. IP/MPLS/WDM

In an IP/MPLS network running directly over DWDM without any ATM nor

SDH intermediate layers, it is necessary to achieve the restoration of data paths

at the MPLS sub-layer in case of link or node failures.

In MPLS networks, increasingly common in carrier backbones, the current

alternative consists of a centralised server which computes backup tunnels, a

technique called MPLS Traffic Engineering Fast Reroute. This occurs in the IP

layer. While a reduction in the number of layers is welcome, the central server

now becomes a potential bottleneck and a new source of risk. As a matter of

fact, the network now becomes less resilient against a planned attack as the

restoration and protection options have been reduced. This is a common finding

in small-world/power law networks, characterised by the presence of a number of

large hubs: while they are very resilient against random removals of nodes, they

becomes less resilient against a planned attack which targets the hubs. The de-

layering of the network may be opening up networks to such an attack or source

or risk.

1.10.2 MPLS Developments

Before MPLS, ATM was the preferred methodology for connection oriented rout-

ing for IP. IP itself is a hop-by-hop protocol, relying on lower levels for frame

forwarding. However, ATM networks failed for a number of reasons, which we

investigate in more detail in Section 5.1.4. Specifically, the connection-less model
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for IP dictates that the control plane and data plane share the same address

space. Because ATM was designed as an overlay model, this led to significant

complexity over alternatives1.

MPLS was designed as a merged model, taking the routing protocols for IP

and merging them with ATM’s forwarding plane. In other words, ATM’s high-

speed switches came under the control of the IP control plane, one of the original

goals of MPLS. Even though, the development of dedicated ASICs obviated this

need, nowadays, MPLS has been successfully repositioned primarily around traffic

engineering, and has become the de facto standard for meeting constraint based

routing requirement within domains.

1.10.3 Hardware

There are two conflicting trends impacting router complexity (see (Awe99)):

• demand for faster lookups and scheduling, and

• feature creep

High-speed Lookups and Scheduling Internet topology is not a tree. This

means that routers in the act of routing need to make choices between routes,

known as the longest prefix match (LPM). LPM is an expensive operation when

performed at a rate of millions of packets per second2. The primary hardware

has been the use of SRAM over DRAM, with a latency advantage of 5 ns versus

50 ns, and the overriding trend is the use of virtual output queueing where each

input has N , one for each output to enable high speed crossbar-based switching.

These techniques are leading to increasing router complexity as a result.

1The non-broadcast nature of ATM lead to inefficient multi-hop communications and there
was significant overhead associated with servicing the basic requirements for maintaining logical
adjacencies. However, an even more important contributor to the failure of ATM was the
availability of cheap 100Mb/s “fast” ethernet in the mid 1990’s

2A router has to deal with packets of minimum size 40 bytes, at link speeds of between 10
Gbits/s to 40 Gbit/s. This means the router has 32 ns to decide what to do at 10 Gbits/s, and
8 ns at 40 Gbits/s.
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Feature Creep The trends associated with speed requirements conflict with

the routers position in IP networks. In the last decade, ATM was the only

concerted effort by both the research and industrial community to introduce

features through an overlay model. However, the strong coupling between the

control and data planes of the IP protocol made this impossible (again, see Section

5.1.4). Since then, significant feature deployment has shifted to routers1. This is

perhaps the most pervasive hardware trend in networking today.

Hence routers are frequently at the front-line of feature deployment. A rough

list of features required in a modern router2 are:

• Classification

• Measurement counters

• IPSec, VPN3 and Firewalls support

• QoS4 support and traffic isolation

• Shaping and policing of traffic

• IPv6

• Denial of service prevention

• Multi-cast

• Active queue management

• QoS Integrated and Differentiated services

1It can be argued that Active Networking was also driven by this constraint: see Section
1.6.3

2with the exception of IPV6, all these features have also been implemented in switches.
However, we just maintain that they are predominantly deployed using routers, especially on
smaller networks.

3Virtual Private Network.
4Quality of Service.
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However, these trends will surely exact a cost at some point. One possibility

is that clock rates will be held back by gate speeds, meaning at most 12-19%

growth per year (see (Asson)) as deeper pipelines reach practical limits. Even if

these limits are extended, there will be significant increases in the complexity of

the logic required to maintain a large number of features on one device. This will

lead to large losses in efficiency. In Chapter 4, we maintain that highly complex

structures are very difficult to operate optimally, and this analysis almost surely

carries over to this domain.

This feature list places greater and greater processing requirements on routers.

As a results, the key architectural trend in current hardware is the offloading of

tasks to Network Processors and dedicated hardware (See (Fer03),(FBR+04), and

(TKS+02)). This trend reduces the overall complexity of the router by separating

routing from the forwarding function1. Some dedicated tasks being offloaded

include but are not limited to:

• Packet switching, such as MPLS Label Edge Routing

• Layer 3+ switching

• Aggregation

• Traffic and Qos Management

• VPN, firewalls and security management

Currently, there appear to be roughly three segments in the network router

domain:

1. Core routers with extremely high throughput

2. Network edge equipment such as traffic aggregators and VPNs

3. Access equipment, such as cable models and wireless 802.11g routers

1Even though it does not have an impact on the total complexity of the network.
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Some features are being implemented in new dedicated hardware which is defining

new segments, such as storage and firewalling. Some of this is also due to new

usage patterns which deviate from historical norms. Combined with the trends

in offloading tasks to network processors, the number of segments will increase

over time.

1.10.4 Summary

Overall, the key trends are:

• Reduction in the number of layers

• Increase in the number of segments

• Increase in IP layer complexity

• Offloading of tasks to specialised machinery

The strong coupling between the control plane and the data plane of IP is

the common thread running through these trends. Commonly, it is assumed that

the reduction in the number of layers is driven by cost considerations. This is

possibly true, but comes at the expense of increased brittleness of the network,

and gives rise to additional restoration and fault-management complexity within

the IP layer. Increases in router complexity are also a function of the difficulty of

adding new features to the control plane. Overall, the reduction in the number

of vertical layers is offset by an increase in the number of horizontal layers at the

IP level. As a result, the total complexity of the network is not being reduced,

just shifted around. This may not be resulting in a network which is easier or

cheaper to operate when all costs are taken into account.

1.11 Roadmap

The first chapter starts with a discussion regarding the unsuitability of the neo-

classical paradigm for dealing with real-world markets and networks. An alter-

native paradigm based on an Entropic Formulation for networks is proposed. An

argument is made in favour of treating the networks macroscopic characteristics
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directly as objective functions, rather than as side-effects of interactions amongst

hypothetical agents. The Entropic Formulation is justified in various ways, and

the way in which networking problems could be solved in this framework are

investigated.

Having laid out the justification for considering complexity issues using en-

tropic models, the second chapter builds on this foundation by proposing two

models: an Architectural Model which aims to illustrate complexity in action

“bit-by-bit” in the network, and a Measurement Model which is meant to be a

more practical tool for actually measuring complexity in a network with easily

measurable data. Both of the models create an entire vocabulary with which to

reason about networks, akin to the language of the financial markets. Also, a

numéraire for networks is introduced.

Chapter 4 then analyses the models in Section 3 further through various sensi-

tivity tests. Both models can give the engineer strong insights about networking

issues. There are a number of interesting points which are highlighted and anal-

ysed in this section, but three stand out for special mention: there is a tradeoff

between complexity and risk, networks with higher levels of complexity deal bet-

ter with sub-optimal control policies, while networks with low complexity are

more sensitive to changes in operational requirements.

Chapter 5 is meant to validate the models of Chapter 3. The Architectural

Model is tested with a number of typical high-level issues that come up in network-

ing: connection-oriented vs. connection-less protocols, end-to-end arguments,

and rolling new features into the addressing space. The Measurement Model is

used on actual corporate network data to show the evolution of implied complex-

ity, Implied Coupling and Network Complexity over a two year time period. This

vernacular is laid out in Chapter 3.

Chapter 6 discusses the long-term, architectural and financial implications of

the proposals in Chapters 2 and 3. The key implication is that traffic and architec-

tural complexity will increase over time, due to increased efficiencies in networks.

This is not meant to be a high-level statement: it is a direct consequence of the

increasing use of statistical inference in making networking decisions as routers

are powered by increasingly more powerful processors and have access to more

network data to make decisions.
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Section 7 concludes and points the way forward.

1.12 ReReshaping the Agenda

In (SCEH96), the authors argued for a reshaping of the research agenda around

network pricing:

As the Internet makes the transition from research testbed to com-

mercial enterprise, the topic of pricing in computer networks has sud-

denly attracted great attention. Much of the discussion in the network

design community and the popular press centres on the usagebased

vs. flat pricing debate. The more academic literature has largely fo-

cused on devising optimal pricing policies; achieving optimal welfare

requires charging marginal congestion costs for usage. In this paper

we critique this optimality paradigm on three grounds: (1) marginal

cost prices may not produce sufficient revenue to fully recover costs

and so are perhaps of limited relevance, (2) congestion costs are inher-

ently inaccessible to the network and so cannot reliably form the basis

for pricing, and (3) there are other, more structural, goals besides op-

timality, and some of these goals are incompatible with the global

uniformity required for optimal pricing schemes. For these reasons,

we contend that the research agenda on pricing in computer network

should shift away from the optimality paradigm and focus more on

structural and architectural issues.

Pricing in Computer Networks: Reshaping the Research Agenda,

S. Shenker, D. Clark, D. Estrin, S. Herzog.

However, over the ten years since (SCEH96), not much has changed. The

existing body of literature based on networking economics continues to base its

formulation broadly on the neoclassical paradigm of perfect markets and has

sidestepped issues associated with architecture and structure.
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In the meanwhile, during the decade, it has become an accepted fact that the

neoclassical paradigm of markets is not a good model for financial markets and

real world economies, even as a simple starting point.

Markets continue to function in the presence of incompleteness, inconsistency

and intractability, at odds with the assumptions of the neoclassical paradigm.

Similarly, the Internet has succeeded not because of, but in spite of market eco-

nomics, as the emphasis has been more on engineering and experimentation.

In many ways, it can be said that the existing body of literature has failed to

recognise that most medium-size networks and the Internet already operate like

markets in the real world: they have emergent properties, take shortcuts, make

mistakes, institutionalise long-term memory, and find ways of dealing with in-

completeness and inconsistency. The research agenda should focus directly on

the macroscopic characteristics of these large systems, as opposed to treating

them as side effects of interactions between hypothetical agents.

The ReReshaping the Agenda message is to refocus the research agenda back

on the network itself. A good place to start would be by appreciating that

networks are markets to begin with.
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Chapter 2

Modelling Networks

The performance and characteristics of any network are a function of its elements

and the way in which the elements interact with each other. The problems in ele-

ments design which are independent of the way the elements interact are broadly

the domain of semi-conductors, fibre-optics, and low-level hardware design. These

are not the focus areas for this thesis.

However, the way in which elements interact to form a network are. This area

of research has the aim of attributing macroscopic properties to a large system

composed of many elements as a function of the characteristics of those elements,

the way the elements are allowed to interact, and finally, the larger environment.

The systems research community has approached issues which relate to inter-

actions amongst elements using two separate techniques:

• In the pre-Internet era, Queueing Theory has been the basis for performance

analysis in networks.

• Market Metaphors have been the dominant theme in networking research

in the packet-oriented, post-Internet era.

Some researchers have considered an alternative: the use of statistical me-

chanics techniques from the the physics of thermodynamics and the related use

of Information Theory. These two are closely interrelated through the notion of

Entropy and would seem to be a natural candidate for the analysis of a large-scale

system meant to carry information efficiently. An early example of such an effort
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is the collaboration between Derek Mcauley and Ian Leslie at the University of

Cambridge, John Lewis at The Dublin Institute for Advanced Studies, and Nils

Bjorkman and Alexander Latour-Henner at Telia in the MEASURE project in

1996 (see (BLHM+96)), based on the relationship between thermodynamics and

Large Deviation Theory (see (DLO+95)). This work has been used primarily for

traffic prediction using non-parametric techniques.

Nonetheless, even the MEASURE project and related work have only focused

on the use of statistical mechanics techniques for non-parametric traffic predic-

tion. The use of information theoretic techniques to actually implement traffic

engineering on the actual graph of the network, and to drive routing in networks

is an approach which has rarely been considered. This thesis explores this third

alternative.

This chapter has two goals: to critique the existing body of research based

on market metaphors using neoclassical economics, and to introduce an alterna-

tive means for analysing large-scale networks using techniques from Information

Theory and statistical mechanics.

Appendix D contains a brief overview of the main tenets of neoclassical eco-

nomics. This Section starts out with a critique of neoclassical economics. This

is followed by the most important Section of this thesis, which proposes the ar-

gument in favour of an alternative formulation of networking problems called the

Entropic Formulation. This is followed by a smaller section which investigates

other alternatives.

2.1 Imperfect Markets

In the real world, markets do not obey most of the assumptions on which the

Neoclassical Paradigm is based. Markets are strongly imperfect in the neoclassical

sense for a number of reasons:

• Markets do not clear

• They are incomplete

• The requisite calculations are intractable
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• The requisite information is not easily attainable

• Even with perfect information and ignoring computational costs, agents

have deliberation costs

Of these, the key imperfection in real-world markets is market clearing. Even

though goods sold and bought in an economy must be equal, this does not mean

that markets have cleared, and hence market prices do not have to reflect equi-

libria. The realisation of the eventuality is most commonly experienced in the

labour markets, as Keynes noted in the early 20th Century.

2.1.1 The Tátonnement Problem

Even before Arrow-Debreu, economists wrestled unsuccessfully with the implica-

tions of Walrasian Auctions. Walrasian auctions have theoretical and practical

failings. The tátonnement1 process makes unrealistic assumptions: prices are

announced, no transactions and no production take place until an equilibrium

is achieved, prices are lowered/raised until there is no excess supply/demand,

and then reach equilibrium. The key failing of the Walrasian framework is the

assumption that no transactions take place outside of equilibrium, whereas in

the real world, most transactions take place out of equilibrium. This remains an

unresolved issue in the pure Neoclassical setting to this day.

Furthermore, Walrasian fixed point algorithms are exponentially complex in

the number of commodities in an economy. They can be ruled out as part of

equilibrium price formation in real world markets.

They are also dismissable due to their implications: for example, they obviate

the need for money. Money clearly exists, and plays an important role in all

markets. To summarise, Walrasian Auction setting has three failings:

• Information costs

• Transaction costs

• Computation costs

1Groping, finding the market price.
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2.1.2 Market Clearing

Another failing of Neoclassical Economics is the assumption that markets clear.

Market clearing either refers to the price equilibrium in an economy when demand

equals supply, or the process of getting there. In the early 20th Century, the ma-

jority of the economics profession had doubts and objections against equilibrium

assumptions: it did not come to be a standard assumption perhaps until the work

of Walras and later Arrow-Debreu became so prevalent. For 150 years prior, the

clearing of markets was also taken for granted, until the Great Depression of

the 1930s and Keynes. Keynes key contribution to understanding markets was

the notion of “price stickiness”, that rigidities can break down markets because

prices are unable to adjust. Keynes was particularly concerned with disequi-

librium conditions persisting for long periods, especially in relation to chronic

unemployment1.

2.1.3 Equilibrium and Uniqueness

Since the work of Arrow-Debreu, it has come to be understood that with an even

small relaxation of the assumptions underlying the Second Theorem (Section

D.0.2.2), multiple equilibria are possible in the Arrow-Debreu economy. This is

easily attained in even simple markets with only two goods and two agents with

homogeneous utility functions.

As a matter of fact, Keynes argues strongly in the General Theory that mar-

kets usually spend most of their time out of equilibrium, adjusting to shocks

and innovations. Any realistic model of real-world markets needs to be centred

around disequilibrium, price adjustment processes, and the costs and means of

gathering information.

Why then is equilibrium so important for neoclassical economics ? Without

equilibrium:

1. price determination through supply and demand cannot be realised, and

1Amongst other economists objecting to the notion, one can count Marshall (who invented
partial equilibria and demand/supply curves), Kaldor, Robinson, and Hahn.
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2. demand and supply function determination through prices cannot be re-

alised

. The recursive relationship between equilibrium and price determination which

clear demand and supply is fundamental, and breaking the link breaks the price

mechanism of neoclassical economics.

Yet, in the real world, very few markets are in equilibrium: prices are not

stable, even in the absence of new information, and they can exhibit significant

stickiness. Some of this stickiness is due to:

• regulation

• imperfect competition

• slow adjustment of prices, for example in the labour markets

When even one of these conditions is present, equilibrium and the assumption of

market clearing can be a bad starting point of analysis.

Demands and Transactions The existence of equilibrium is deduced via an

argument that since total quantity of goods sold must equal total quantity of

goods bought, real world prices are equilibrium prices. However, this is not a

strong argument. (DS86) point out that while obviously, the amount sold and

bought must be equal, this does not mean the market has cleared. (Ben84) sepa-

rates demands and transactions, pointing out that the latter is what is observed

in exchange markets while the former is composed of the signals transmitted to

markets by agents before a transaction is realised.

2.1.4 Incomplete Markets

The key impact that incomplete markets relates to the Second Theorem. Risk-

neutral probabilities are unique if and only if the market is complete. An incom-

plete market provides many solutions under this framework, and the problem

then arises as to which of these is the right one1

1A frequent proposal for selecting the right solution is to choose the one which minimises
the Kullback-Leibler (KL) distance between a prior. While this may seem arbitrary, it is related
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In reality, many markets are incomplete: the existing set of primary assets

do not span the entire space of contingent outcomes for the economy. This is

also true of instances when the market metaphor is applied to telecommunication

networks. Most markets that have existed or continue to exist for the provision

of actual telecommunication services generally do not allow participants to hedge

all their risks.

Related to the issue or market completeness is the existence of a fundamental

paradox with the financial markets. While a full exposition of derivatives pricing

is outside the scope of this thesis, in short, it can be said that derivatives pric-

ing is based on a replication argument. A portfolio of securities (Arrow-Debreu

Securities) is formed which dynamically replicates the value of an option at all

time periods. The value of this option is then equal to the value of the replicating

portfolio. The concept of a risk-neutral price arises out of the notion that a short

position in the replicating portfolio combined with the derivate will be risk-free.

It is this notion which creates the following paradox:

Definition 4 (Hakanssons Paradox) If markets are complete options are not

needed; if they are incomplete then according to financial theory, they cannot be

priced.

No satisfactory solution to this paradox exists within the confines of the neo-

classical paradigm.

2.1.5 Limits to Computation

Mathematics is unreasonably ineffective in solving the problems associated with

neoclassical economics 1. Until recently, the only appeal to computational com-

to the concept of an agent who maximises log-utility, which has some fundamental properties.
The Entropic Formulation proposed in Section 2.2 below is also related to this proposal.

1From (Vel05) “In this paper, I attempt to show that mathematical economics is unrea-
sonably ineffective. Unreasonable, because the mathematical assumptions are economically un-
warranted; ineffective because the mathematical formalisations imply non-constructive and un-
computable structures. A reasonable and effective mathematisation of economics entails Dio-
phantine formalisms. These come with natural undecidabilities and uncomputabilities. In the
face of this, I conjecture that an economics for the future will be freer to explore experimen-
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plexity in economics has been to impose the minimal requirement that any eco-

nomic problem be effectively computable’, i.e. that an algorithm terminate in a

finite amount of time on a finite state machine1

The two early results in this arena are:

1. Rabin (Rab57) in 1957 who proved that there exist games whose equilibrium

strategies are not effectively computable

2. Binmore (Bin92) established similar results in the area of non-cooperative

games

None of this is that profound, as it simply involves adapting the halting prob-

lem to a different context. However, effective computability is a very weak re-

quirement and the the narrower and more relevant issue of whether rational be-

haviour is possible in practical contexts is really related to intractability. The

optimisation constraint faced by a rational expectations economy is for almost

all practical purposes, intractable.

It has been the application of standard techniques from computability and in-

approximability to the field of economics since the mid-80s that has really brought

forth the issues association with calculation. On the issue of computability as it

relates to game theory, the specific set of results, in rough chronology, are as

follows:

1. Lewis, 1985, 1986, 1992: key economic concepts such as individual demand

correspondences, Walrasian general equilibria, Stackelberg equilibria, and

Hurwicizian resource allocation problems are not effectively computable,

even when we restrict attention to the class of problems where the descrip-

tions of primitives of the problem (endowments, preferences, choice sets,

etc.) are recursively presentable i.e. all functions describing preferences

and production technologies are restricted to be effectively computable and

all choice sets, etc. are restricted to be recursively enumerable.

tal methodologies underpinned by alternative mathematical structures. The whole discussion is
framed within the context of the celebrated Wignerian theme: The Unreasonable Effectiveness
of Mathematics in the Natural Sciences.”

1The Halting Problem is an example of a problem which is not effectively computable (GJ79).
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2. Tsitliklis, Athans, 1985: Team Decision Problems are NP-Hard

3. Nachbar, 1993: the problem of determining a best response to any fixed

strategy of an opponent is not effectively computable in games where the

discount factor is sufficiently close to 1, in the context of infinitely repeated

games.

Many of these problems are studied in the context of a branch of computation

termed Information Based Complexity (IBC). (Tra88) provides a good exposi-

tion. Most IBC problems suffer the ”curse of dimensionality” in the worst case

deterministic setting, meaning complexity is exponential in the dimension of the

problem.

However, in spite of these results, it is interesting that even though many

computer scientists have considered the use of market-based solutions to net-

working problems, the issue of tractability has been largely ignored. A problem

is intractable when:

comp(ε, d) = o

(
(
1

ε
)d

)
(2.1)

where comp is the complexity function representing the minimal computation

time of producing an ε-approximation with the problem dimension d.

A large number of mathematical problems including multivariate integration,

non-linear root finding, fixed point finding, solving PDEs, etc.have been shown to

be intractable in this sense. This implies that the entire infrastructure associated

with neoclassical economics is intractable, including but not limited to:

• utility maximisation

• maximising expected utility

• finding Walrasian equilibrium

• finding a Brouwer fixed point

• calculation of rational expectations equilibria

• computation of option values
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• solving infinite horizon dynamic programming problems

• calculation of Nash equilibria

Naturally, these results about the incomputability of the most basic elements

of the infrastructure of Neoclassical Economics have important implications for

mechanism design:

• social planning (FO95)

• combinatorial auctions (FLBS99)

• dynamic programming (BT00)

are all intractable.

2.1.6 Limits to Information

There are also information aspects of computational intractability. When ev-

ery agent knows the payoffs and strategies of all other agents, they have com-

plete information. Rationality implies complete information: without it, perfectly

competitive markets cannot exist as actors could not calculate the impact their

actions would have on others.

Obviously, this is not a realistic assumption. The problems are not only practi-

cal. For example, in The Team Decision Problem, teams are not able to exchange

any information, be it through a central planner or some other mechanism, and

try to solve a problem in unison: given signals Y1 and Y2, actions A1 and A2,

compute decision rules αi : Yi → Ai which minimise:

J(α1, α2) =
∑

y1∈Y1

∑
y2∈Y2

c(y1, y2, α1(y1), α2(y2))p(y1, y2) (2.2)

under a discrete probability density p(y1, y2). It has been shown that this problem

is NP-Hard, and is an important starting point for the analysis of cooperative

schemes in networking in large-scale networks where the cooperating agents do

not share the same information space.

When information can be exchanged, the problem becomes solvable in poly-

nomial time. Furthermore, not even perfect information exchange is needed. The
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“price vector” in the First Theorem of Welfare is a “sufficient statistic”, so just

knowledge of market prices would be enough.

However, this is not as promising an outcome as one would think. Solving a

simple cost function is easy, but computing a Walrasian equilibrium or a solution

to a social planning problem can be shown to be intractable even if the agents are

able to share information and an exact solution to the problem they are trying

to solve is not required, i.e. an approximate solution would do.

2.1.7 Deliberation Costs

Even in the presence of complete information, preference-formation complexity,

dubbed Deliberation Costs, can also be substantial. Agents need to have pref-

erences to participate in mechanisms. Determining preferences may have a de-

liberative overhead. In most markets, agents do not know their preferences and

must make decisions not just about prices and goods, but also about their actual

demand functions.

Deliberation overhead has important strategic and mechanism implications.

It can be shown that no direct market mechanism exists which can simultaneously

satisfy the constraints that:

• the market mechanism should not solve the agents deliberation problem

• agents should not deliberate on other agents preferences

• there should be no strategic misrepresentation of preferences

• the outcome should be affected by agents deliberations

and at the same time, allow agents to reveal their preferences truthfully (see

(LS04)). Not only is there a practical problem with understanding everyones

demand function, there are also strategic implications: agents may deliberate

strategically causing others to believe that their true preferences are impossible.

The main point is that, even if the resources were there to discover and collect all

the information necessary, the information which comes back may not be truthful.
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2.1.8 The Implication for Networking Research

A growing body of research in the last two decades has aimed to debunk the

use of Neoclassical Economics as even a starting point for economic analysis: the

failings are so fundamental and the assumptions so unrealistic that one would be

better served with an entirely different paradigm.

The issues which plague Neoclassical Economics in financial markets are equally

relevant in the realm of Telecommunications Networks:

• Any element in the network which is modelled as an agent in the Neoclas-

sical setting, be it a router or a bandwidth broker, faces the same incalcu-

lability issues faced by economic agents in financial settings.

• Similarly, markets for telecom resources are also unlikely to be complete,

or to clear. Nowhere has this been more apparent than in the markets for

traded bandwidth. However, this issue is also likely to be relevant in the

context of market-based resource allocation techniques which are based on

shadow prices1.

• Can “transactions”, i.e. allocations of bandwidth or capacity to network

elements take place outside of equilibrium ? They must, if the network is

going to operate in real-time, as there will not be enough time at each epoch

for a central auctioneer to calculate optimal allocations in the Walrasian

style.

The implications of incalculability and limits to information would imply that

according to Neoclassical theory, markets should not be functioning. Yet, in

practice, market do work. Every day, markets in the real world complete millions

of transactions, allow risks to be taken, controlled and transferred, and provide

liquidity. Furthermore, they resolve difficult problems which require cooperation

between selfish agents, like transaction and information retrieval in elegant ways.

1 Shadow prices are usually defined as the change in the objective value of an optimal solu-
tion when the constraints are relaxed by a unit. The Lagrangian multipliers usually correspond
to shadow prices.
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2.2 The Entropic Formulation

To manage the complexity of a network, a derivation of the macroscopic charac-

teristics of a network is needed.

The key building block of Neoclassical Economics is the rational agent who

maximises utility in the presence of complete, infinitely liquid, markets. Cranking

the mathematics of convex optimisation, under severe constraints and notwith-

standing intractability, leads to the First and Second Welfare Theorems, which

are the key macroscopic features of a neoclassically perfect market (see Section

D.0.2.1, and Section D.0.2.2). It is here where one must begin the process of

steering the agenda in an alternative direction.

A good example of a market metaphor being applied to networks is the cele-

brated work by Richard Gibbens and Frank Kelly in (GK98), where the network

is composed of agents maximising log utility1

The alternative to this approach, proposed here, divorces the macroscopic

analysis from the side effects of agents interactions, and instead focus on the im-

pact that informational efficiency has on he orderliness of the system, and the

probabilistically likely configurations a system can realise. These are the key

building blocks of Information Theory and statistical mechanics, and the macro-

scopic feature that is the result of this analysis is the Entropy of the configuration.

This Section attempts to justify the use of this metaphor in networking.

The argument goes briefly like this:

• In Information Theory, it can be shown that the smallest encoding of the

probability distribution of states in a system is limited to it’s entropy. The

length of the encoding is closely related to how much work it takes to fully

characterise a system. If a system were maximally efficient and arbitraged

all information such that there were no free lunches, the minimal encoding

of the system would be increased as much as possible, making it harder

and harder to characterise the system. The system would behave as if to

maximise its entropy.

1It turns out that the fortuitous use of log utility equates this framework to the alternative
paradigm proposed in this thesis. See Section 2.3.1.
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• Likewise, in statistical mechanics, entropy is related to probability: more

probable states (observations) reflect higher entropy, and the most probable

state is the one with maximum entropy. If one were to make any assumption

about which state would be the prevailing one, the one with maximum

entropy would be the right choice.

The rest of the analysis is the result of cranking the handle on the statistics

and probability of configurations and constraints specific to networking.

It can be shown that:

• Maximum Entropy is implied from the behaviour of agents utilising statis-

tical inference

• Maximum Entropy is also implied when market making agents are forced

to achieve informational efficiency

• Maximum Entropy implies market efficiency

• The Entropic hypothesis can also be based in the context of a market mi-

crostructure, and does not conflict with rationality, and can be related to a

specific instance of the Agents problem. (see Section 2.3.1).

The freedom to operate outside the Neoclassical framework brings with it

significant benefits:

• agents face information retrieval costs

• arbitrage opportunities do exist

• the market is not complete,

• markets may not clear, and

• transactions may, and frequently do, take place outside of equilibrium

• it is possible to make relatively insightful statements about a networks

behaviour outside of equilibrium
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In sum, the departure from the neoclassical framework means that modellers

should assume that the network behaves as if to maximise the Entropy of its

configurations, and not the utility of its agents.

In the following sections, the Entropic Formulation for a network model is

justified in three ways:

Minimax Approach A Minimax Approach which mirrors the rational agent

formalism of the Neoclassical Paradigm, using the setting of a zero-sum

game.

Statistical Approach A Statistical Approach which mirrors the formalisms of

thermodynamics.

Information Efficiency Approach An Information Efficiency Approach based

on the use of Maximum Entropy as a tool for Statistical Inference.

2.2.1 The Minimax Approach

In order to bridge the gap with the Neoclassical Paradigm, a good beginning

point for justifying the entropy of a networks behaviour as a macroscopic feature

is one which also uses the agent paradigm in the context of a market.

Assume that:

• A market exists for some kind of asset1

• The market is composed of Market Makers and Investors

• Market Makers broker transactions between, and interact with Investors

In a multi-period setting, the price of the asset at maturity is a random

variable, while it’s current price is a function of what Investors, as a collective,

believe the price at maturity will be. A zero-sum game unfolds between Investors

and Market-Makers as the asset is sold and bought from one period to the next.

In Game theory, a 2 Player Strategic Game is defined as a game in which :

• Each player has a strategy

1This could be capacity, o a network.
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• Each player has a payoff or utility

A Zero-Sum Game is a game in which total utility of all players is zero.

In this hypothetical setting, information discovery and transactions follow a

cycle:

1. Initially, Market Makers learn Investors beliefs by interacting with them.

Investors do not interact with each other. Hence, Market-Makers know

more.

2. Conditional on this information, they announce a Price

3. Investors update their beliefs, and transact.

4. The cycle begins anew.

Consider further that there is some kind of constraint on Market Makers

which forces them to minimise the number of questions they can ask to infer

the probability distribution associated with asset prices. This could be for the

following reasons:

• Market Makers compete with each other to announce prices as soon as pos-

sible, as the earliest to announce will win the largest number of transactions,

and transactions create profits.

• Investors do not wish to share information with Market Makers.

• Information is costly to collect and process.

Hence, this setting admits strategic behaviour by market participants, and

also transaction costs, in the form of information acquisition costs. Furthermore,

information efficiency is a source of competitive advantage: Market Makers who

reveal the most information with the least number of questions are more prof-

itable.

Definition 5 (Market-Makers problem) Find the least number of questions

to ask investors to discover their collective belief about future prices.
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In a zero-sum setting, meaning that if Market Makers profit, Investors will

lose. This means that one can use the minimax method1, where Investors have

the dual problem of making it as hard as possible for Market Makers to infer the

correct probability distribution for asset prices (for a good reference, see (FT91)).

Definition 6 (Investors Problem) Make it as hard as possible for Market Mak-

ers to infer the probability distribution of asset prices.

The Market Maker and the Investor face a reciprocal problem: the Market

Maker tries to minimise the binary poll leading to the statistical distribution of

asset prices, and Investors try to maximise the binary poll that Market Makers

must carry out. This is the Minimax problem in a zero-cost game.

A classic result from Information Theory, the Market Makers cost is well

approximated by the entropy of the assets probability distribution, H(g) to a

constant factor where g is the distribution of future prices2. The proof of this

statement is based on the use of binary codes as representations for the encoding of

a random variables values, illustrating that the expected length of any code cannot

be shorter than the entropy of the random variable, using the Kraft Inequality.

See (CT91) for an exposition.

And, leading to the key conclusion of this Section, as the Investor tries to

maximise this cost, this leads to asset prices which have the maximum entropy

possible under given constraints.

Due to the binary nature of the poll, the cost to the Market Maker can be

measured in bits: the minimum number of binary yes/no questions a Market

Maker must ask to determine price. This ties in with the notion of Interrogation

Costs playing a role in the determination of the complexity of a system, stated

in Chapter 1.

1Minimax is a method in decision theory for minimising the maximum possible loss. Alter-
natively, it can be thought of as maximising the minimum gain (maximin). It started from two
player zero-sum game theory, covering both the cases where players take alternate moves and
those where they make simultaneous moves. It has also been extended to more complex games
and to general decision making in the presence of uncertainty. See (FT91).

2In the Arrow-Debreu market, an economy reaches a market equilibrium which maximises
individuals utilities. This result hinges on firms being price-takers, and that they do not consider
the impact of their actions on prices.
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This simple setting already resolves a number of problems associated with the

Neoclassical setting:

• Transaction costs do not have to be zero

• Information costs do not have to be zero

• The market does not have to be complete for transactions to take place

• Arbitrage is possible

• Inconsistency is possible

• Multiple equilibria are permissible, depending on the a priori information

sets associated with various market makers

• Tátonnement problem of Walras (Section D.0.1.1) is also resolved

• Strategic behaviour is permissible

• The assumptions are realistic: Investors are reluctant to reveal information,

so prefer shorter polls

• It is ensconced in the classical setting of an exchange with market makers.

2.2.1.1 Minimax Applied to Networks

Here is one hypothetical ways the minimax game version of the Entropic For-

mulation could be applied practically to a common networking problem: in a

multi-path setting, a service provider and a user play a zero-sum game in which

the provider allocates resources at links to limit the transmission capacity pro-

vided to a user, using some kind of sampling. This is akin to setting probability

distributions over the set of paths from the transmitting node to the receiving

node. The user then tries to minimise the maximum probability of his packets

being hit by transmission constraints. The service provider tries to maximise the

minimum probability distribution that the user may choose.

A minimax solution for this zero-sum game exists in the Game Theoretic

framework. An optimal transmission constraint/sampling strategy can then be

devised for the service provider.
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2.2.2 The Statistical Mechanics Approach

Another approach which justifies Maximum Entropy as a macroscopic feature of

networks comes from statistical mechanics.

It is based on an analogy with the Second Law of Thermodynamics, and

in essence, posits that the maximum entropy state of the market is the most

likely outcome amongst all possible outcomes as the end result of irreversible

transformations between agents1.

The field of thermodynamics studies the behaviour of energy flow in natural

systems. From this study, a number of physical laws have been established:

Zeroth Law If system A is in thermal equilibrium with system C, and system

B is in thermal equilibrium with system C, then system A is in thermal

equilibrium with system B.

First law Total energy of a system is conserved.

Second law Entropy of an isolated system can only increase.

The Second Law is the key link between reversible and irreversible transforma-

tions in thermodynamics. In essence, it allows a system to recover irreversibility

from a model based on reversible mechanics and statistics.

1 In thermodynamics, processes that are not reversible are termed irreversible. All natural
processes, to some degree, are irreversible. The phenomenon of irreversibility results from the
fact that if a thermodynamic system of interacting molecules is brought from one thermody-
namic state to another, the configuration or arrangement of the atoms and molecules in the
system will resultantly change. A certain amount of “transformation energy”, also referred to
as “free energy”, will be used as molecules change from one state to the next. During this
transformation, energy will be lost due to intermolecular friction and collisions, energy that
will not be recoverable if the process is reversed.

Walrasian auctions, or any other monotonically utility-improving trading algorithm, represent
irreversible transformations in the language of thermodynamics. The trading history cannot
be reversed because agents will generally refuse to accept trades that reduce their utility, and
with suitable, standard assumptions, opposite sides of the same trade can never both be utility-
improving for an agent in a given initial state.

Another way thermodynamics admits transformations is to require that they be reversible:
those in which a system can be made to pass through a set of states, each arbitrarily close to some
equilibrium, in both a forward and its reverse sequence. Likewise, reversible transformations in
economics will be those that move agents within their indifference surfaces.

74



2.2 The Entropic Formulation

Analogously, it is also possible to set-down a similar set of Fundamental Laws

for networks and markets, and crank the handle of statistics to arrive at a number

of interesting macroscopic results1:

0th Law/Encapsulation Agents will not transact if their valuation for all goods

are the same.

1st Law/Constraint Goods are not created through transactions.

2nd law/Preference Agents will only do transactions that increase their util-

ity,

It is possible to conceptualise a system of markets or networks arising from

interactions between agents who have mutually advantageous trades to make or

data flows to exchange. Just as in thermodynamic system, such a system of

markets or networks would also reach an equilibrium which would be irreversible,

due the Law of Preference. But what would characterise this equilibrium ?

Instead of focusing on the actual interactions between agents, the statistical

mechanics approach focuses instead on the likelihood of configurations achievable

by an existing network. Any network, be it an actual data network, or the internal

mechanics of a router, is wired up in a specific way. This wiring and interactions

between elements in the network places limitations on achievable configurations.

If one could attribute probabilities to different equivalent configurations, it would

be possible to come up with the most likely configuration as a function of the

configuration type which can be reached in the largest number of ways. This

would be the configuration with the highest Entropy, as a result of a probabilistic

analysis of possible permutations2.

1See (Lio04) for a holistic analysis of this issue; interesting as the analogy may be, the
parallels were not the reason for considering entropy as the basis for measuring complexity in
this thesis.

2Using Stirlings Approximation a la Boltzmann. In statistical mechanics, Stirlings Ap-
proximation applied to configurations of gas molecules leads to the most likely configuration,
characterised macroscopically as that which has has the highest Entropy. A brief summary is
given in Appendix C.
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2.2 The Entropic Formulation

2.2.2.1 Relationship with Neoclassical Economics

The difference in the result of this analysis with the neoclassical framework would

be that, in the Walrasian equilibrium, the equilibrium configuration would be

the Pareto Optimal configuration, which need not be (and most likely isn’t) the

configuration with the highest Entropy.

The application of this overarching idea to networks involves the specification

of how configurations come about and what is meant by equivalent configura-

tions. In thermodynamics, two configurations of gas molecules are considered to

be equivalent configurations if in each, the same number of gas molecules occupy

certain energy states. In a network, two configurations could be considered equiv-

alent when they share some similarity in their node or edge degree distributions

if the network is able to reconfigure itself dynamically, or if they are similar in

the distribution of flows along paths.

Maximum Entropy is a much more realistic and easily justifiable assumption

for the statistical characteristics of a graph when there are no constraints. This is

the statistical mechanics basis of the argument for the use of Entropy as an objec-

tive function in network modelling and control. Where there are constraints on a

graph characteristic, one minimises the Kullback-Leibler (KL) distance between

the desired distribution and the achievable distribution.

In this formulation, unlike that of Sections 2.2.3.1 and 2.2.1 , it is important

to see that there are no “economic” forces moving the network to the maximum

entropy equilibrium: indeed, the network may arrive at other equilibria from

which no further configuration changes would happen.

However, even in the absence of dynamics, this is still an important improve-

ment over the Walrasian Auctioneer. While both Walrasian Equilibria and En-

tropic Equilibria represent configurations which no element in the network would

want to change, and hence are both Pareto Efficient, the maximum entropy

equilibrium permits bilateral exchanges between elements outside equilibrium.

Walrasian competitive equilibrium explicitly rules out trading at disequilibrium

prices. Furthermore, the maximum entropy equilibrium does not require elements

to end up in the same configuration in the network, whereas in a Walrasian equi-

librium, all elements of a given type would end up with the same configuration.
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In Walrasian equilibria, all agents of the same type end up consuming the

same bundle of goods. This implies that the entropy of a Walrasian equilibrium

is zero. This is an important difference between the Walrasian Equilibrium and

the equilibrium proposed in this setting: while the equilibrium in the Entropic

Formulation is the most likely outcome, the Walrasian Equilibrium is a probabilis-

tically highly unlikely outcome, as it has zero entropy. When one considers the

information requirements associated with this constraint, one immediately recog-

nises that the reduction in entropy in an economy with heterogeneous agents

would be enormous.

The vast amount of information required to sustain this very unlikely allo-

cation is part of the tátonnement problem associated with the Walrasian Auc-

tioneer, an agent whose only purpose was to calculate equilibrium prices without

using any of the resources of the economy, and without any actual trading was

meant to overcome this problem. Not only does the Walrasian approach assume

informational costs are zero, it also posits an equilibrium which has the high-

est informational requirement amongst all equilibria as its entropy is zero. This

formalises the informational argument against the neoclassical approach.

2.2.2.2 Statistical Mechanics Applied to Networks

In some ways, it is relatively easy and straightforward to apply statistical mechan-

ics techniques to networks. The advent of powerful computers and the availability

of communication networks, it is now not uncommon to see networks with mil-

lions of vertices. This has led to a spate of recent research in statistical techniques

for quantifying large networks.

The format for using the tools of statistical mechanics to solve networking

problems would be:

1. Enumerate all important characteristics of a network: degree distributions,

average/minimum/maximum paths between nodes, clustering coefficients,

etc.

2. Determine the constraints amongst these characteristics due to some techni-

cal requirements: for example, if one wishes to have a high level of resilience
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against the random removal of vertices, a power-law distribution would be

desired for node degrees.

3. Relate these characteristics to some function of the networks performanc

which is an objective.

4. Aim to control the network such that the desired characteristics are re-

produced and to make sure the graphs are maximally random in all other

respects.

Some important topology characteristics which could be considered include

but are not limited to:

• Distance/Geodesic (shortest path length) distribution:

– Performance parameters of most modern routing algorithms depend

solely on distance distribution

– Prevalence of short distances makes routing hard (one of the funda-

mental causes of BGP scalability concerns (86% of AS pairs are at

distance 3 or 4 AS hops))

• The replication of Small-world effects: for example, to create networks with

good search properties

• Transitivity effects, for creating networks with good clustering properties

• Degree distributions, for creating scale-free networks, which are resilient to

random node-removals and which also show good search properties

• Degree correlations, to replicate observed properties such as the linkage of

back-bone networks with other back-bone networks, the linkage between

ISPs and end-users, and the absence (or, perhaps presence depending on

the context) of linkages between end-users

A good starting point would be the degree distribution of random graphs,

which is given by:

pk =

(
n
n

)
pk(1− p)n−k ' zke−z

k
(2.3)
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where n is the number of vertices in the graph, and z = p(n−1), the mean degree

of the network.While a random graph reproduces well the small-world effect seen

in most communication (and other) networks, it fails to reproduce some other

common and desirable effects, such as:

1. Random graphs have low clustering coefficients, i.e. the probability of two

vertices being connected is p regardless of whether they are both connected

to another common vertex.

2. They have Poisson degree distributions, unlike most communication net-

works which have scale-free1/power-law properties

3. No correlation between degrees of adjacent vertices.

4. No searching properties using local algorithms.

The application of statistical mechanics probably would start with a random-

graph overlaid with these constraints to come up with likely configurations and

preferred algorithsm for attachment and detachment to and within existing net-

works. Possibly:

The Entropy of Links In analysing a network using the Entropic Formulation,

one possible candidate is to consider the entropy of the links:

Constraint Constrain the total number of links between nodes, to capture

the notion of a network limited by bandwidth.

Partition function Describes the configuration of nodes in various link-

buckets: the number of nodes with l0 links, l1 links, and so on.

The Entropy of Nodes Similarly, one could constraint the number of nodes

and consider the probabilistic configuration of the network in terms of the

entropy of the links.

Constraint Constrain the total number of links between nodes, to capture

the notion of a network limited by the number of elements.

1Any functional form f(x) that remains unchanged to within a multiplicative factor under
a rescaling of the the independent variable x.
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Partition function Describes the configuration of links in various node-

buckets: the number of links with nd0 nodes, nd1 nodes, and so on.

The constraint could be derived from the assumption that nodes prefer to

link to other nodes with higher degrees than their own. To provide for

transit/peering constraints, one could cast this in the unidirectional graph

framework.

The Entropy of Buffers While the previous two are obvious, perhaps a more

interesting candidate is to consider “free buffer” space in the network. Free

buffer space in routers will be a function of the total bandwidth of the

network less the amount of data travelling through it, and the buffer space

of individual elements.

Constraint Constrain the total amount of free buffer space available in

the routers of the network.

Partition function Describes the configuration of buffers with available

bandwidth.

This line of analysis would be most appropriate for the analysis of Quality

of Service (QoS) in networks.

Some further possibilities are listed in the Table 2.2.2.2.

2.2.3 The Informational Efficiency Approach

A key characteristic of systems in which agents face informational costs and hence

have to employ statistical inference is that the system is driven to maximum

entropy.

The argument for this is based on the realisation that the act of asking of

a question is an admission of uncertainty: hence, questions are a probability

distribution. This then begs the question of which question to ask so as to obtain

an unbiased result. The answer to this is the question which minimises entropy

the most, also known as the Maximum Entropy Method in statistics, due to

Jaynes (see (Jay57))1. The Maximum Entropy distribution for a constraint is the

1In his famous 1957 paper, Ed. T. Jaynes wrote:
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Network Characteris-
tic

Mathematical Representation Comment

The probability of a
vertex having degree k

pk =

(
n

k

)
pk(1− p)n−k ' zke−z

k! Poisson random graph,
z =

∑
k kpk is the

mean degree in the
network

The probability of a
vertex having degree k

in a small-world net-
work

pj =

(
L

j − 2k

)[
2kp
L

j−2k
] [

1− 2kp
L

]L−j+2k
Lis the number of
vertices, k is the
largest neighbour dis-
tance for small-world
attachments

The probability of a
vertex having degree k

in a power-law network

pk = 2,(m+1)
(k+2)(k+1)k In the limit of large

k, pk ∼ k−3. 2m is
the mean degree of the
network

The probability distri-
bution of the degree of
a vertex i with age a

measured as the num-
ber of vertices added
after vertex i

pk(a) =
√

1− a
n

(
1−

√
1− a

n

)k For the case m = 1.

Table 2.1: Key Characteristics of Networks
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least committal, most random, most inherently uncertain distribution, making

the smallest number of additional assumptions beyond what is known.

Under the assumption that agents use statistical inference, it can then be

shown that entropic dynamics based on statistical inference move any closed

system continuously and irreversibly along the entropy gradient. For a proof of

this statement, see (Cat01) and (Cat04).

In summary:

1. Agents use statistical inference to make decisions

2. The most unbiased form of statistical inference is the Maximum Entropy

method, re Jaynes

3. This leads the dynamics of the state along the entropy gradient: the act

of asking entropy reducing questions and acting accordingly leads to the

evolution of state to that which maximises entropy (see (Cat01)).

4. Hence, the maximum entropy objective.

2.2.3.1 Market Efficiency and Entropy

Another related way to justify the use of the entropic hypothesis is to consider

it in the context of market efficiency. A highly competitive marketplace is as-

sociated with a lack of predictability, i.e. where there are no easy opportunities

for agents to partake in profitable speculative behaviour. This does not mean

there are no opportunities: however, over time, as agents using statistical infer-

ence techniques decrease the number of opportunities, prices become increasingly

harder to predict and the systems behaviour can be characterised as leading to

maximum entropy. Low entropy implies predictability, and exploitable opportu-

nities through simple statistical inference.

Information theory provides a constructive criterion for setting up probability
distributions on the basis of partial knowledge, and leads to a type of statistical
inference which is called the maximum entropy estimate. It is least biased estimate
possible on the given information; i.e., it is maximally noncommittal with regard
to missing information.
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2.3 Dissecting the Entropic Formulation

In the financial literature, this is known as the Efficient Market Hypothesis

(EMH). The bedrock of EMH is the characteristic of asset prices being a Brownian

motion fractal. Unsurprisingly, a Brownian motion fractal has infinite entropy.

The driving force behind price changes for any commodity is new information.

In efficient markets, price adjustments take place instantaneously: this implies

they are 100% efficient Brownian motion fractals. Markets form institutions to

make this possible: they maximise the impact of new information by creating

announcement and centralisation rules. This is related to the law of inference in

the previous section, which relates inference based on entropy to the evolution of

a state towards maximum entropy.

Price adjustments do not have to be instantaneous: if there were some time

delay, entropy would be lower and there would be some predictability. Such

predictability could be exploited through faster computation, or access to more

information. There would be a simple tradeoff between the cost of this informa-

tion and the arbitrage available from exploiting it. This relates to the market

makers problem.

2.3 Dissecting the Entropic Formulation

The underlying mathematic tools used to maximise entropy are Lagrangian mul-

tipliers, as in Equation C.7. Suppose one were to find the discrete probability

distribution with maximal information entropy. Then

f(p1, p2, . . . , pn) = −
n∑

k=1

pk log2 pk. (2.4)

The sum of these probabilities equals 1, meaning g(p) = 1 with

g(p1, p2, . . . , pn) =
n∑

k=1

pk. (2.5)

At this point, Lagrange multipliers can be used to find the point of maximum

entropy (depending on the probabilities). For all k from 1 to n:

∂

∂pk

(f + λg) = 0, (2.6)
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which gives

∂

∂pk

(
−

n∑
k=1

pk log2 pk + λ
n∑

k=1

pk

)
= 0. (2.7)

Differentiating the n equations:

−
(

1

ln 2
+ log2 pk

)
+ λ = 0. (2.8)

This shows that all pi are equal (because they depend on λ only). By using the

constraint
∑
kpk = 1:

pk =
1

n
. (2.9)

As an aside, this implies, in the absence of any other constraints, that the

Uniform Distribution is the distribution with the greatest entropy.

The addition of any constraints would be carried out by adding additional

Lagrangian multipliers into Equation 2.7. Each new constraint would come with

a new multiplier. These multipliers can be interpreted as shadow prices.

The key constraints that one would posit in the context of a network might

be, from Section 2.2.2.2:

• Number of Links

• Number of Nodes

• Total availability of Buffer Space

The Lagrangian shadow prices associated with these constraints would repre-

sent the entropy prices of the links, nodes, or buffers, i.e. the increase in entropy

of the network as a result of increasing the number of links, nodes or buffer space

by one unit.

The likelihood of any configuration change for type (where type should be

interpreted as a bucketing or some other characterisation of node degree, link

capacity, or buffer space) is governed by the same entropy prices across the whole

network (or perhaps, sub-system). This reflects the fact that all elements are

indeed linked in the same network.

There are a number of interesting points to be made about the interpretation

of these entropy prices as applied to networks:
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2.3 Dissecting the Entropic Formulation

Insight 1 (Likelihood of Configuration Changes) The likelihood of a con-

figuration change is inversely proportional to its entropy value (or cost) at the

entropy prices. Specifically, configurations which involve a large amount of el-

ements are relatively unlikely. Entropy maximisation makes high entropy cost

changes in the configuration of a network unlikely because they reduce the degrees

of freedom in the assignment of other elements resources in their offer sets.

Insight 2 (Sensitivity to Entropy Price) When Entropy Prices are very high,

the network reaches an equilibrium which becomes very difficult to change.

In the context of a market metaphor: the decreasing likelihood of high entropy

cost transactions is a reflection of the fact that every transaction must have an

actual counterpart: larger transactions must satisfy more constraints in terms of

finding actual counterparts, and hence are less likely.

The last point with regards to the magnitude of entropy prices is linked to a

point which will be made in Chapter 4: networks with higher complexity are less

sensitive to changes in their architecture.

In all this, it is important to point out that:

1. The number of agents of each type must be very large, so that statistical

considerations dominate.

2. The analysis here pertains to a single epoch in the life of the network, when

the surrounding environment does not change.

The Role of the Market In the Entropic Formulation, the key role of the

network is connection between all elements through a market clearing condition,

akin to market clearing in the setting of the Neoclassical setting. In the Entropic

Formulation, the network exposes all elements to the same set of probabilities in

equilibrium. In this way, the network itself plays the role of a market.

When two elements interact in a network, the combinatorial possibilities for

other elements are reduced. However, the exact configuration realised as a result

of this exchange between two elements is statistically impossible to determine.
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The Role of the Market Maker The statistical mechanics interpretation also

posits an important role for market makers in a network. Sometimes, the reali-

sation of a specific Pareto Efficient outcome may leave open the possibility that

a higher entropy state is not realised due to network configuration constraints.

Some of these constraints and their economic impact are surveyed in (DG04).

In the thermodynamic literature, entropy is a measure of the energy available

to do work in a closed system. As entropy increases, this free energy is released,

through irreversible transformations. When all transformation become reversible,

the entropy level in a system reaches it’s maximum equilibrium. By creating

opportunities for transformations previously not possible, a market maker allows

a system to release more free energy. This free energy is the profit available to a

market maker who expands resources to bring about a higher level of entropy in

the system.

The Role of Interconnections This analysis also allows for an interpretation

of what can happen to a network which becomes interconnected with a larger

network (say, the Internet). The conservation of the resources in the network in

exchanges with the outside world shows that the entropy change in the network

must be offset by a corresponding entropy change in the larger network, just

as an entropy gain or loss of a thermodynamic system must be balanced by a

corresponding loss or gain of the reservoir. In this sense, the open network can

be interpreted as being attached to a heat reservoir at fixed temperature.

Insight 3 (The Complexity of Interconnections) If a network opens up to

the rest of the world the entropy of the world (i.e the economy and its envi-

ronment) will increase. However, the result for the smaller network is actually

indeterminate.

2.3.1 The Relationship Between Entropy and Utility

The departure from the utility based framework is a significant deviation from

accepted practice. However, the Entropic Formulation is not a construct based

on an arbitrary assumption about a market or a magical assumption about a net-

works tendencies (towards maximum entropy). Neither is it a desire to stretch the
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Second Law of Thermodynamics beyond its intended purposes. Like the neoclassi-

cal utilitarians, it is also based on rational agents who employ statistical inference

in their decision making processes. The difference with the neoclassical utilitar-

ian set-up is that the actions of these agents are distributed probabilistically

to account for real-world constraints, implying that prices are also distributed

probabilistically.

Nonetheless, there are important correspondences between utility and entropy.

The problem of finding conditions which imply the existence of a utility function

that represents a given preference relation is called a Utility Representation Prob-

lem. In two fundamental papers ((Deb54) and (Deb64)), Debreu laid out the

conditions for the existence of a continuous real-valued utility representation of

a preference relation on a topological space, using the concept of a gap1:

Theorem 1 (Debreus Theorem) Let � be a preference relation on a topolog-

ical space (X, τ) that is second countable. If � is τ -continuous then there exists

a real-valued continuous utility function on (X, τ,�).

Similarly, in (Coo67), Cooper studies the foundations of thermodynamics by

developing an appropriate mathematical order-theoretic structure. Given an ac-

cessibility relation on a state space S , the Entropy Representation Problem aims

to find general conditions on the state space S and the accessibility relation which

imply that there is a continuous order-preserving function f on S with the prop-

erty that x � y ⇔ f(x) ≤ f(y).

In (MMIC01), the authors show that the mathematical structure of the En-

tropy Representation Problem is exactly the same as that of the Utility Repre-

sentation Problem. It is similar to the method of proof used by Debreu (Deb54)

and consists in first constructing a strictly isotone function on S , which may not

be continuous, and then modifying it by removing the untoward “gaps” to get a

continuous entropy function on S.

1Let R denote the extended real line. A degenerate set in R is a set with at most one point.
A lacuna of a subset S of R is a non-degenerate interval that is disjoint from S and has a lower
bound and upper bound in S. A gap is a maximal lacuna.
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2.3.1.1 The Role of Arbitrage

There is also an important correspondence between utility and entropy in the

context of incomplete markets. In a market without any arbitrage opportunities,

a unique valuation measure exists for the pricing of all contracts and the market

is complete1. In such complete markets, there is no need for full-equilibrium

models.

However, in an incomplete market, the lack of a unique valuation operator

means that one must either work in the presence of a full-equilibrium model

(which means making ad hoc choices about the utility functions of representative

agents) to arrive at a unique valuation measure, or one must make ad hoc choices

about the probability distributions asset prices (such as maximum entropy) are

likely to follow:

• Choose a representative agent, and assume the market sets prices to max-

imise the utility of that agent. This requires an assumption about the utility

function for that agent, and further that there is one representative agent

in the entire economy.

• Choose a valuation measure which is not directly related to the utility

preferences of individual agents, but is related to the statistical properties

of asset prices. This is the method this thesis defends, and of many different

characteristics, proposes the maximum entropy of asset prices as the right

choice.

In (MP97), the authors illustrate a relationship between these two methods

by showing that behind the selection criterion for the distributions of asset prices

is its “shadow” problem, which can be shown to be connected to the utility

maximisation problem of the profits of an arbitrageur subjected to a zero budget

constraint. This is slightly different from the usual utility maximisation problems

1It can be shown that the absence of strictly acceptable opportunities among liquid assets,
i.e. the lack of arbitrage, is equivalent to the existence of a representative state price density:
this is equivalent to market completeness. An opportunity is strictly acceptable if its expected
payoff is positive in at least one set of prices Arrow-Debreu prices (a valuation measure). This
is a weaker form of arbitrage. See (Ros76).
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of agents who face budget constraints. In this case, the budget is zero, and only

self-financing portfolios are allowed. When the arbitrageur is assumed to be

maximising the utility of uncertain wealth and the utility function is exponential,

the equivalent criterion minimises the relative entropy function.

The key to this result is duality theory: Lagrange multipliers of a convex

problem are the optimal solutions of the dual problem. This permits the inter-

pretation of risk-neutral probabilities (the probability distribution to be used to

value financial contracts) to be interpreted as the normalised shadow prices of

the arbitrage profit maximisation problem for the arbitrageur with zero-budget

constraints.

The symmetry between the primal and dual problems in duality theory makes

it possible to establish a one-to-one correspondence between each selection criteria

and a particular utility function: the primal arbitrageurs problem of utility max-

imisation finds a dual problem in which a valuation operator is chosen based on a

selection criterion that is the convex conjugate of the negative of the arbitrageurs

utility function.

Nonetheless, it must be noted that, while, the entropy function of a network

in equilibrium resembles a neoclassical utility function, one must be careful not

to associate this with a representative agents preference ordering of alternative

resource bundles. The entropy function is just the maximum of the statistical

entropy over the set of probability distributions compatible with constraints on

the characteristics of the network.

2.3.1.2 Proportional Fairness

A good model to consider in light of the highlighted correspondences between util-

ity and entropy would be the log utility maximising networks of Frank Kelly et al

in (KMT98). In this paper, the authors use logarithmic utility, a common choice

due to its concavity (implying diminishing marginal utility) and monotonicity.

In the Kelly model, a utility function associated with network flows is opti-

mised. Applying Lagrangian techniques, Kelly was also able to interpret certain

variables as shadow prices and useage charges. Of all the different utility func-

tions, a logarithmic (or diminishing returns) utility function for each flow favors
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short flows more than long flows, which Kelly termed Proportional Fairness. This

resembles the shadow pricing based on Entropy in Section 2.3.

Define:

U vector of utility functions of users

A The adjacency matrix of the network

c The capacity constraints on edges

r An index for users

xr Amount of flow user r has been assigned

In this setting the Systems problem is to maximise Utility:

maximize
∑

r Ur(xr) (2.10)

Ax ≤ c

x ≥ 0

The User problem is:

maximize Ur(xr)− λrxr (2.11)

xr ≥ 0

where λr =
∑

j µj in the Lagrangian of Equation 2.11:

L1 =
∑

r

Ur(xr)−
∑

j

(∑
r

xr − cj

)
(2.12)

So, whereas in the entropic setting, the Investor is trying to learn as much as

possible about future prices while revealing as little as possible, in the log-utility

setting, the User is trying to maximise his own utility by pushing through as much

flow as possible while trying to minimise (shadow) prices which are impacted by

flows.
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The key insight in their work is that a first order condition for the maximisa-

tion of the sum total of all agents utilities in the face of congestion costs depends

only on their utility and the marginal cost of congestion, also identified as shadow

prices, and not on their preferences. The complementarity condition then leads

to the problem of minimising the congestion in the network.

This leads to the problem for the Network:

maximize
∑
wrlogxr (2.13)

Ax ≤ c

xr ≥ 0,∨r

Kelly et al use a log utility function as the basis for their argument.

There is a linkage between this implication and Kelly’s Criterion from the

world of gambling. The Kelly Criterion (see (Kel56)) maximises the long-term

growth rate of a gambler 1 engaged in repeated plays and determines that the

percentage of his wealth f ∗ that should be invested in the gamble is:

f ∗ =
(bp− (1− p))

b
(2.14)

where:

• b is the odds of the bet

• p is the probability of winning

In a perfect market, p=50% and b = 1 and the gambler bets nothing.

The goal is to maximise the expected value of growth of capital:

B(N)

NB(N)
(2.15)

as N grows without bounds.

The bankroll B(N) after N hands is equal to the product

B(0)N
i=1

∏
(1 + bi×Ri) (2.16)

1Furthermore, the Kelly gambler has no risk of ruin. Keynes, the treasurer of Kings College,
Cambridge, and arguably one of the first hedge fund managers of the century, is known to be
a Kelly investor.
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where bi is the fraction of bankroll wagered on hand i, and Ri is the per-unit result

of hand i. To maximise that product, it is sufficient to maximise its logarithm:

N∑
i

log(1 + bi ×Ri) (2.17)

which is maximised when

E[log(1 + b×R)] (2.18)

is maximised for all situations.

When moments of a random quantity Q (1 + b × R above) are known, the

expected value E[f(Q)] can be approximated for a function f (log above) if the

powers in the Taylors series for f are replaced with moments. Using Taylor’s

Expansion, and replacing the powers in the series with moments, one gets the

result above using the first two terms (E[R] and E[R2]).

Once again John Kelly’s setting is that of the log utility agent of Frank Kelly

and Richard Gibbens in (GK98) and the entropy maximising market maker of

Section 2.2.1.

2.3.2 Log Utility is Not Arbitrary

This may be more than a coincidence. In the theory of portfolio investing, it

has been shown that the entropy criterion treats the investor’s desired long-term

portfolio growth rate target as a parameter. Given a value for that, the cri-

terion determines the portfolio with the lowest probability of under-performing

that growth rate over suitably long horizons. If the investor’s target growth rate

is the maximum feasible long-term growth rate, then maximising the criterion

is equivalent to maximising expected log utility (see (KS02))1. This has been

accomplished via both Lagrangian duality techniques and using results from ge-

ometric programming. See (KS02),

1If the investor’s target growth rate is lower than the maximum feasible long-term growth
rate, then maximising the criterion is equivalent to maximising an expected power utility, with
a coefficient of risk aversion greater than (log utility’s value of) one, that is also chosen to
maximise that expected utility. The result is a more conservative portfolio that has a smaller
chance of under-performing that target than does the expected log utility maximising portfolio.
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2.3 Dissecting the Entropic Formulation

There is a particular relationship between the log-family of utilities and the

Entropy Formulation. In (FS03), the authors consider the problem of learning a

probabilistic model from the viewpoint of an expected utility maximising decision

maker/investor who would use the model to make decisions. They express each

Pareto optimal model as the solution of a strictly convex optimisation problem

and its strictly concave (and tractable) dual. Each dual problem is a regularised

maximisation of expected utility over a well-defined family of functions. Each

Pareto optimal model is robust: maximising worst-case out-performance relative

to the benchmark model. They show that the method of selecting the Pareto

optimal model with maximum (out-of-sample) expected utility reduces to the

minimum relative entropy method if and only if the utility function is a member

of a three-parameter logarithmic family.

Similarly, under the Kelly Criterion, the agent wishes to maximise terminal

wealth. Applying any monotonically increasing function to the growth of some

resource would not change it’s maximum. Of these, the log function is particularly

convenient. Growth over time is a product. However, it is easier to work with

sums than products. Specifically, one is frequently confronted with the decision

of how much utility one should add at decision epochs, rather than the more

difficult decision of what fraction to multiply wealth on average. Furthermore, it

is easier to calculate the derivative of sums than of products.

Most error scores are logarithms because one typically wants to optimise pos-

terior likelihoods conditioned on observations. For example, when one performs a

”least-squares” regression analysis, it is implicitly assumed that the noise in the

output is Gaussian, having the form,

Noise =
1√
2πs

exp(−.5x
2

s2
) (2.19)

(or it’s multidimensional counterpart), where s is the standard deviation of the

noise, and x is the difference between the predicted value and the observed train-

ing value. Working with that noise distribution to obtain the joint likelihood of

the estimates as a product of their individual likelihoods would be quite unwieldy.

So instead, one takes the logarithm , discards some additive and multiplicative

constants which do not change the maximum of the score, yielding:

Score = −
∑

x× x (2.20)
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Adding rather than multiplying leads to the familiar sum of squares error

score. This is the logarithm of assumed Gaussian noise, disregarding constants.

2.3.3 Entropy Flooding

The analysis above leads to an even stronger statement about closed systems

with entropy maximising agents. Since entropy maximising agents maximise the

long-term growth rate of their wealth, in a closed system, they will dominate the

market over time with probability one. Other agents are eventually driven out of

the market. This includes agents who base their decisions on the Capital Asset

Pricing Model (CAPM, (CH05)). Log utility is not an arbitrary choice for an

agents optimisation function, and neither is entropy maximisation.

Insight 4 (Entropy Flooding) In closed systems, the behavioural rules of agents

maximising entropy will dictate the dynamical behaviour of the system over time.

2.4 The Analysis of Non-Equilibrium States

The maximum entropy state of a network is a statement about an equilibrium

condition. In the absence of any interaction with it’s environment, a system

attains equilibrium at the most probable state, the one with maximum entropy1.

When the system is not closed and or not yet at equilibrium, the system is

characterised by non equilibrium states. An analysis of non-equilibrium states

leads to an understanding of how networks can be expected to interact with other

networks, what kind of complex adaptive systems, such as institutions, can be

expected to evolve, and what role such mechanisms play in a networks evolution.

One approach to analysing non-equilibrium states is based on the principle of

Maximum Entropy Production:

Principle 3 (Principle of Maximum Entropy Production) A system tries

to maximise entropy as fast as possible.

1In the realm of thermodynamics, if a system is closed, it will dissipate all the free energy
it has, equivalent to maximising its entropy. Thermal equilibrium is the state of maximum
entropy.

94



2.4 The Analysis of Non-Equilibrium States

In a closed system, the Second Law implies that the free energy of an isolated

system is reduced over time, and the system reaches a state of maximum entropy.

This transition to higher entropy is a transition to more probable states. Theo-

retical and applied studies have also suggested that the maximisation of entropy

production during non-equilibrium processes (see (MS06)). The term Maximum

Entropy Production has become a statement about how fast a system achieves

maximum entropy, and the various structures it can maintain to bring about

maximum entropy in a system as soon as possible.

In open systems, Ilya Prigogine has shown that the Second Law becomes a

continuity equation where the total change in entropy is the sum of the entropy

contributions from the system and it’s environment (see (PS84)). This essentially

means that organised internal states can be maintained at the expense of discard-

ing high entropy fluxes out of the system. This is also sometimes referred to as

Extropy1. Further, Dewar (Dew03) has also derived the Maximum Entropy Pro-

duction Principle and Self-Organised Criticality from Jaynes MaxEnt Formalism,

implying that Maximum Entropy Production is the most probably outcome for

certain complex systems 2.

The Principle of Maximum Entropy Production can be related to a num-

ber of interesting constructs used in the complexity literature to study complex

organisations. Maximum Entropy Production implies that:

The Choice of a Trajectory A system will evolve along trajectories which

reach maximum entropy in the fastest way possible.

Order from Chaos A system may exhibit transient internal order if this makes

it possible to attain maximum entropy states sooner3

1Coined by Tom Bell (T. O. Morrow) in 1988, extropy is a metaphor, and not a technical
term. It is not simply the opposite of entropy, but broadly refers to the extent to which an
organisational system exhibits intelligence, and functional order.

2Dewar uses Fluctuation Theory, to show that, under the assumption that non-equilibrium
process can be considered as a superposition of changes in macroscopic parameters and mi-
croscopic spontaneous processes, non-equilibrium processes, in general, are accompanied by
maximum entropy production.

3The classic example of this is sand piles in the context of the Self-Organised Criticality
literature. See (BTW88).
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Increasing Dimensions A system may increase the dimensionality of it’s vari-

ables if this allows it to achieve a higher level of entropy1

A good direct example of a model in which an increase in dimension directly

impacts network structure can be seen in the work of Giovanetti in (Gio02). Gio-

vanetti studies the impact of network interconnections on retail and access prices.

New connections between autonomous networks change the existing architecture

of the Internet, adding new dimensions in which providers who were formerly

monopolies are forced to compete against their downstream customers. When

the downstream industry is poorly differentiated, this leads to lower retail and

access prices.

Giovanetti also gives a good example of self-organised criticality in networks

in (GA98). Firms located on a mono-dimensional lattice imitate the technology of

immediate neighbours, where individual payoffs depend on local substitutability.

Adoption of new technologies take place when agents obtain higher productivity.

The length of the sequence of adoptions along the lattice is driven by the config-

uration of nodes, leading to self-organised aggregate dynamics characterised by

catastropic events over short period and inactivity over long periods.

A number of interesting insights can be gleaned from the perspective of the

principle, expanded below. These includes:

• The Role of Institutions

• The Role of Diversity

• Complex Adaptive Systems

2.4.1 The Role of Institutions

The Principle of Maximum Entropy Production justifies structural complexity as

an emergent phenomena in many complex systems which are out of equilibrium.

This is a case of transient order being established to smooth the overall systems

attainment of maximum entropy. In the case of markets, and networks as markets,

1Here, the classic example is Benard Convection. See (Swe89).
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these are institutions like Internet Corporation For Assigned Names and Numbers

(ICANN), exchanges, legal systems, rules and best-of-practice traditions.

Institutions play very important roles in the smooth functioning of market-like

structures. They:

• disseminate data

• route orders

• execute orders

• achieve efficient price discovery

• perform custodial and delivery functions

• and keep records

Perhaps, an appropriate analogy would to an operating system. Institutions solve

two fundamental problems:

• Most problems in real markets are incomputable for either theoretical or

practical reasons. Practically, if every market participant had to recalculate

the fundamental value of every firm every morning from scratch, the stock

markets could not function. The record keeping function of markets obvi-

ates this requirement. Theoretically, comparable information and records

of previous days prices act as good starting points for the non-linear op-

timisation associated with the incorporation of new information into the

valuation of a security.

• The key source of sub-optimality in systems is lack of coordination. In

most markets, system wide shared operational schema emerge over time to

resolve such sub-optimal outcomes. Such operational schema rarely operate

without any infrastructure 1. Good examples are the existence of clearing-

houses for securities, operations for sharing ATM machines amongst banks,

and ad hoc cooperative behaviour such as the LTCM bail-out of 1998 with

the aid of the Federal Reserve.
1A good counterexample is the usage of common grazing grounds in certain parts of the

United Kingdom, which are not over-grazed even in the absence of any explicit legal framework.
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Furthermore, institutional arrangements decentralise computations and infor-

mation requirements 1. In (Axt99), the authors formalise the benefits of de-

centralising computations across exchanges by showing that parallel distributed

agent based models of k-lateral exchange can restore polynomial complexity in

calculation of equilibrium prices and allocations.

Legal institutions, rights, government institutions can all be seen as consti-

tuting approximate solutions to problems: in that sense, they resemble “good”

starting points for a non-linear optimiser, in the sense that the optimal solution

is usually close-by and only small iterations are required to find it. Some of these

institutions seem to have converged to some kind of stable point, such as market

institutions, which simplify the computation burdens facing economic agents. In

this sense, they resolve the computational issue faced by the hypothetical agent,

by posing only easy and tractable calculations, as opposed to hard and intractable

ones. The raison d’etre for most market institutions is their computational effi-

ciency. Once they are in place, agents need to exercise very little intelligence to

make the right decisions.

Another advantage of institutions is that they act as carrier of knowledge

capital through time: in that sense, they perform a memoisation function. If the

problem has been solved before, the rules, regulations, and notion of best practice

directs the agent to the previously found optimal solution. Structurally complex

and efficient societies develop ways and means for transferring information and

experience through time, through their schools of higher education, notions of

best-practice, traditions and procedures.

All of this can be seen in the spirit of the Principle of Maximum Entropy

Production. Brokers, arbitrageurs, and advertising media function reduce the

likelihood of trading at disequilibrium prices by disseminating information faster.

However, it should be noted that in real markets, as in the real world of thermo-

dynamics, these devices expend real resources, establishing a practical tradeoff

1 Hayek, 1945: “We cannot expect that this problem will be solved by first communicating
all this information to a central board which, after integrating all knowledge, issues its orders .
The problem is to show how a solution is produced by interaction of people each of whom has
partial knowledge.” (see (Hay45))
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between entropy reduction and real resources available for other uses. This trade-

off is explicitly ignored in the Walrasian framework (see Section 2.2.2.1).

The neoclassical paradigms reductionist agenda and agent-based approach

makes it difficult to directly recognise the role of institutions as permanent fea-

tures of markets essential to their continued evolution.

In the case of the Internet, there is tacit agreement that monopolistic prac-

tices by incumbents and firms which enjoy market power, and the lack of liberal

telecommunication industries in developing countries contributes significantly to

both the structure of interconnections and the digital divide between Western

and emerging countries. For example, high Internet Access prices in developing

countries is a function of not only local access monopolies, but also asymmetric

relationships. Large Internet Providers refuse to sign peering agreements with

their counterparts in developing countries due to anticompetitive reasons: local

providers are in turn forced to bear the total cost of a links formation leading

to high access prices and low useage, even though the entire network benefits

through an increase in the number of users and content. Hence, there is an im-

portant and crucial role to be played by an authority which is able to monitor and

penalise anticompetitive practices, leading to lower access prices and increased

efficiencies.

2.4.2 The Role of Diversity

As pointed out in Section 1.6.1, markets can live with a certain amount of incom-

pleteness: if the market place is composed of investors with varying degrees of

risk aversion and not all risks are hedgeable, transactions will take place between

risk-averse and risk-loving investors in contracts with undhedgeable contingen-

cies. However, for this to happen, there must be significant diversity amongst

agents in terms of their risk preferences and/or endowments.

The Principle of Maximum Entropy Production also suggests a role for diver-

sity, as a means to explore alternative means of achieving higher states of entropy.

In essence, diversity in a network increases the number of trajectories by which

that system can attain maximum entropy, and may even enable even higher lev-
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els of entropy not achievable due to configuration restrictions in an otherwise

un-diversified network ecology.

In the financial markets, the agents who step in when the market is incom-

plete are called speculators. They are diverse players with agenda’s that are not

necessarily coincident with the actual raison d’etre of the market place. Yet, they

play an important role. Most importantly, shallow markets with no speculators

will not be able to deal efficiently with incompleteness.

Markets value derivatives through a replication argument: the value of the

contract is equal to the value of a dynamically replicating portfolio of alternative

assets which would end up with the same value at expiry. The value of such a

contract has a dynamic relationship with the underlying asset which is related to

the shifting probability associated with that contracts likelihood of having value

on its very last day. In the financial markets, these shifting probabilities over time

are referred to as the gamma path of the derivative contract. The replicating

portfolio is required to follow the same gamma path in all future states of the

world. However, the primary assets available for trading do not always span

the contingencies of all contracts and perfect replication is not possible. In such

cases, the market itself completes the transaction by providing a medium for the

exchange of risks between asymmetrically risk-tolerant participants.

Under the neoclassical paradigm, Arrow (see (Arr53)) showed that, under

some conditions, the ability to buy and sell securities can effectively make up for

missing securities and complete the market. The existence of diverse specula-

tors increases the transactional capability of a market. This is termed Dynamic

Completeness.

2.4.3 Complex Adaptive systems

In a recent article in the New York Times1 scientists demonstrated the step-by-

step progression of how evolution creates a new molecular machinery by reusing

and modifying existing parts. This showed how a progression of small changes

could produce the intricate mechanisms found in living cells.

1“Study, in a First, Explains Evolution’s Molecular Advance”,The New York Times, April
7, 2006
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The study of complex adaptive systems begins with the realisation that phys-

ical dynamical systems are bound by the same limitation of computation as com-

puting devices, notably the halting problem. The halting problem, encompassed

in Church’s and Gödel First Incompleteness Theorem imply that Turing machines

can produce innumerable encodings.

Yet, such encodings exist, and the area of Complex Adaptive Systems studies

them. Indeed, the existence of such encodings is held up to be a “hard” theory

of evolution as in the introductory example.

The study of Complex Adaptive Systems is a burgeoning field, and is not

central to this thesis. However, it justifies the ReReshaping argument in favour

of analysing the behaviour of the market as a whole, as opposed to the behaviour

of the constituent agents, so it is briefly covered. The central themes of the

Complex Adaptive Systems argument are:

• Innovation: Innovation plays two roles in the Complex Adaptive Systems

paradigm. First, it is nature’s panacea to increasing entropy. No market

can survive forever against the tyranny of increasing entropy, as without

diversity, there would be no transactions and prices would not emerge.

Systems develop structural complexity to combat entropy. The second role

of Innovation is as an explanation for disequilibrium.

• Self Organisation and Emergence: Institutions are a form of self-organisation

in a market. So is the emergence of money. The primary tenet of self-

organisation is that “Order is not pressure which is imposed on society

from without, but an equilibrium which is set up from within.” 1

• Decentralisation: Complex Adaptive Systems exist to make calculations for

agents easier. This happens through the emergence of decentralised algo-

rithms which turn non-polynomial problems into polynomial ones. Axtell’s

algorithm in Section 2.4.1 is one such example.

• Evolution: The focus of evolutionary economics is long-run , as opposed

to instantaneous change in response to marginal adjustments. The key

1Jos Ortega y Gasset (see (OyG27)).

101



2.4 The Analysis of Non-Equilibrium States

focus areas for evolutionary economics is variation and diversity, and the

role these play in the health of the market. Disequilibrium can persist

for arbitrarily long periods of time. For all these reasons, evolutionary

economics are much closer to real-world economies. A fundamental set of

results in evolutionary economics relate to complexity. The formation and

emergence of complexity at all levels are explained as a result of evolution

and the interactions between competing agents through Innovation.

As with transient order and other means by which a system increases it’s

ability to achieve higher levels of entropy, Complex Adaptive Systems can also be

analysed in the guiding light of the Principle of Maximum Entropy Production.

In essence, Complex Adaptive Systems are transient organisations and functions

which evolve to allow a system to explore a larger space of trajectories in more

efficient ways.
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Chapter 3

Dissecting Complexity

The main goal of this chapter is to measure Network Complexity in the spirit

of Effective Complexity. This chapter presents two analytic models: they are

too simple to capture every detail about networking, but rich enough to tell

an interesting and meaningful story. The entropic justification of the previous

chapter is used as the basis for selecting information theoretic measures as the

basis for measuring complexity.

The Architectural Model is not meant to be implemented in practice on a

any real network, but provides strong insights and is a useful tool for thinking

qualitatively about architectural decisions: comparing OSPF with MPLS, con-

sidering the separation of routing from forwarding, and element design are some

examples of when the Architectural Model can be used to systematically consider

networking issues.

The Measurement Model is simple and tractable, and is designed to be imple-

mented on a real network. It could feed the flow control in a router. It is forklifted

from the world of actuarial sciences and the trading of collateralised debt obli-

gations. This model makes strong assumptions: yet, it has the advantage that

even with a parsimony of parameters, it is able to subsume many complications

involving heterogeneity within its simple structure. The strength of its structural

assumptions may seem like a limitation but in the context of measuring Effec-

tive Complexity, it turns out to be a preferable feature. The ultimate measure

of complexity derived in this chapter, termed Network Complexity, measures the
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complexity in a network in relation to this model. The strength of the hypothesis

underlying the model makes this measure more reliable as a result.

One of the key goals of this chapter is to create a rich vernacular for thinking

and communicating in the Complexity Plane of a network. The expressiveness of

a language plays a key role in its success as a medium for communication. This

chapter aims to create such a language for communicating the complexity and

riskiness of a network.

The Architectural Model is qualitative, even though its output is in bits, pro-

portional to the number of binary questions required to determine the state of

the network. This is in keeping with the Interrogation Costs theme as a measure

of complexity. In comparison, the Measurement Model is a quantitative model

which could operate in a network in real-time.

This chapter only presents the models. The key insights and sensitivity anal-

ysis are in Chapter 4. The linkage between these two models and the entropic

setting of Section 2.2.1 is discussed later in Section 4.3, once insights and empir-

ical data illustrating applicability have been presented.

Before proceeding, Implied Complexity, already introduced as a concept in

Chapter 1, is defined precisely. Network Complexity is related to this measure

and it is a concept used throughout the Chapter.

Definition 7 (Implied Complexity) The entropy implied by the histogram of

actual network Reference Measurement data.

3.1 Overview of Complexity Measures

Before proceeding with the introduction of a new measure, an overview of existing

complexity measures for networks are presented.There are many good reviews

in the literature (for example, see (Wec97), (Edm99a),and (DFT03)), so what

follows is a brief overview.
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3.1.1 General Complexity Measures

Entropic Estimates Using the classical definition of entropyH =
∑

(−pilog(pi))

where log2 implies bit-representation (see (CT91)) as a starting point:

Approximate Entropy Given groups of N points in a series, Approxi-

mate Entropy is related to the probability that two sequences which

are similar for N points remain similar at the next point.

Sample Entropy Approximate Entropy corrected for self-matches1.

Fourier Entropy A power-spectral-density of a time series (or portion

thereof) is computed, normalised to produce a probability-like distri-

bution, and the Sample Entropy calculated as above.

Wavelet Entropy Related to the number of wavelet components needed

to fit the signal.

Renyi Entropy (the use of) Compute the time-frequency spectrogram

of a signal, then count the connected regions above some threshold

energy. The idea here is that one peak in time-frequency space is an

elementary event, so counting peaks gives an estimate of complexity.

Chaos-based estimates of complexity Using the mechanics of Chaos-based

measures.

Lyapunov Exponent Measures the rate at which the system generates

new information.

Permutation Entropy Estimate complexity as the entropy of the distri-

bution of permutations of groups of time samples. Take each member

of the group and give it a sequence number (in the series) from 1 to

n. Reorder into ascending order, note the new order of the sequence

numbers: the new order serves as a bin number into which the total

count of all groups with a given sequence is accumulated. The result is

a histogram of number occurrences of each sequence order. Normalise

to a probability distribution and compute the entropy.

1In Chapter 5, this measure is used for threshold selection.
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Kolmogorov estimates (algorithmic complexity) The grandfather of com-

plexity measures, This is the minimum length of a Turing machine program

needed to generate a pattern.

Lempel-Ziv Relate the length of the original sequence to the (generally

shorter) length of the description when repeated sequences are cor-

rectly noted and enumerated.

Hidden Markov Estimate the minimal set of Markov states which can

statistically reproduce the behaviour of a data set.

Logical depth The computational resources (chiefly time) taken to cal-

culate the results of a program of minimal length, a combination of

computational complexity and Kolmogorov complexity. Aimed at the

complexity of the process and not the results.

Thermodynamic Depth The entropy of the ensemble of possible trajec-

tories leading to the current state

Effective Complexity Length of a highly compressed description of its

regularities, meant to distinguish between regularities and those fea-

tures that are random or incidental.

State Machine Models Model as finite state-machines the system being mea-

sured, which is allowed to evolve. Complexity is measured as the ratio of

total number of states to the total number of arrows connecting states. This

is sort of an average index of branching in the system.

Graph-theoretic Measures These are divided into two: Local metrics, using

information extracted from individual nodes, and global metrics which re-

flect properties of the entire network. Metrics can be distinguished in terms

of the scope of the information they provide. Local metrics are extracted

from individual nodes, whereas global metrics reflect the properties of an

entire network. A single global value can be extracted from the local values

by using simple statistics.

Degree Defined as the number of the connections of a single node for an

undirected graph. It is a local measure.
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Clustering Coefficients defined as the percentage of connection between

neighbours of node i:

Ci =
2Ei

k(k − 1)
(3.1)

where k is the number of neighbours of node i and Ei is the existing

connections between neighbours. It is a local measure. However, the

averages for the network can be computed.

Distance Defined as the shortest hop distance between nodes. Diameter

is a global metric defined as the maximum of minimum distances be-

tween any two nodes and closeness is a local metric which measures

the connectedness of a network, defined as the average of the distances

between a node i and all other nodes. Closeness indicates the central-

ity of a node. Average path length is a global metric defined as the

average of the closeness values for all nodes.The Hop-plot Exponent,

H is the number of node pairs within h hops, and the Effective Hop

Diameter is defined as
(

N2

N+2E

) 1
H

.

3.1.2 Higher Order Methods

Any of the entropy methods above can be generalised further in the following

way: break the data into parts, whether by times series or through an arbitrary

partitioning of the network, compute the entropy of each part using one of the

information or graph theoretic measures above, then treat the values as a time

series and compute the entropy of that sequence. A good discussion of higher

order methods can be found in (GP02).

Another alternative is to adapt the measures above to different time-scales.

This can be done by analysing the data at different bandwidths, or by equiva-

lently, averaging together groups of points. For example, (TG00) estimate in-

stantaneous complexity using sliding windows of varying width.

3.1.3 System-Specific Complexity Metrics

There are a significant number of proposals which rely on system-specific metrics

to measure complexity. In (GM94), Murray Gell-Mann argues that complexity
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is subjective and defines the notion of Effective Complexity to deal with this

randomness:

It would take a great many different concepts - or quantities - to

capture all of our notions of what is meant by complexity (or its oppo-

site, simplicity.) However, the notion that corresponds most closely to

what we mean by complexity in ordinary conversation and in most sci-

entific discourse is “effective complexity.” In nontechnical language,

we can define the effective complexity (EC) of an entity as the length

of a highly compressed description of its regularities. For a more

technical definition, we need a formal approach both to the notion of

minimum description length and to the distinction between regulari-

ties and those features that are treated as random or incidental.

From “Effective Complexity”, Murray Gell-Mann and Sety Lloyd

This approach is used to a certain extent in the Measurement Model in Sec-

tion 3.4. Similar approaches that rely on system-specific complexity metrics are

reviewed below:

• In (ZHS99), the authors identify the timing constraint as the key deciding

factor amongst architectural alternatives. They introduce the concept of

states and propose to use state cycles to measure the probability of an

entire system being feasible. They find that the state based probability is a

good predictor of system timing behaviour. This has similarities with the

proposal for Entropic Routing in Section 6.1.1.

• In (TKS+02), the authors tackle the problem of evaluating network proces-

sor architectures in the face of constantly evolving applications and tech-

nologies. The main principle is termed benchmarking, which they claim

applies not only to network processors, but also to other domains as well.

This has similarities to the concept of Deviations from Simplicity introduced

in Section 1.5.2.
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• In (CKT03), the authors present a real-time calculus for analysing system

properties.

• In (TCGK02), the authors perform a search over the design space of the

architecture of a packet processor, using models specific to packet processing

tasks. They are able to measure the performance of network processors

under different traffic patterns. While this is an interesting approach in the

context of network processors and is in some ways similar to the approach

in the Architectural Model in Section 3.3, a full blown implementation for

an entire network is not realistic.

• Finally, in (AK02), the authors focus on the special conditions pertaining

to multiple wireless connections, and look at certain cost functions and

decision processes. Their approach is simulation based and considers various

controller strategies.

3.1.4 Discussion

The classic benchmark for all algorithmic complexity measures remains that of

Kolmogorov’s, the shortest program which can generate a code.

Generally, it has been shown that Kolmogorov’s measure is not computable.

Furthermore, it is now universally recognised that Kolmogorov’s measure is really

not a measure of complexity, but of randomness, as it is maximised by random

codes.

In order to fix this shortcoming, various authors have proposed variations on

the Kolmogorov theme. The first variation on Kolmogorov’s measure is Bennett’s

logical depth measure, which is the running time of the shortest program and Lloyd

and Pagels’ thermodynamic depth, the entropy of all trajectories by which one can

reach the current state from past states.

In reality, there is an overabundance of complexity measures in the complexity

literature. Usually, the measures are not related to any specific domain, or are

un-relatable in a practical way, and this is their main failing. In (GM94), the

author points out that complexity is a subjective measure, otherwise one ends up

measuring randomness: any practically useful measure needs to account for this.
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Murray Gell-Mann’s Effective Complexity is also related to Kolmogorov Com-

plexity, but is abetted with a model. This is an algorithm for relating data to a

probability distribution, and hence can be interpreted subjectively. The approach

in this thesis, termed Deviations from Simplicity follows the spirit of Gell-Mann’s

Effective Complexity with an entropic model. In that sense, it is a mixture of two

different ways of looking at complexity, the algorithmic and entropic.

3.2 The Indignity of Numerical Simulations

... of my strongest stylistic prejudices in science is that many of

the facts Nature confronts us with are so implausible given the sim-

plicities of nonrelativistic quantum mechanics and statistical mechan-

ics, that the mere demonstration of a reasonable mechanism leaves

no doubt of the correct explanation. This is so especially if it also

correctly predicts unexpected facts such as the correlation of the ex-

istence of moment with low density of states, the quenching of orbital

moment for all d-level impurities as just described, and the reversed

free-electron exchange polarisation which we shall soon discuss. Very

often such, a simplified model throws more light on the real work-

ings of nature than any number of ab initio calculations of individual

situations, which even where correct often contain so much detail as

to conceal rather than reveal reality. It can be a disadvantage rather

than an advantage to be able to compute or to measure too accurately,

since often what one measures or computes is irrelevant in terms of

mechanism. After all, the perfect computation simply reproduces Na-

ture, does not explain her.

Nobel Lecture, 1977, Philip Anderson.

A useful methodology for understanding complexity in a network must be

analytic, general enough to be applicable to a broad range of architectural, op-

erational and technical issues, yet granular enough to capture relevant specifics

and be practically useful.
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This is not possible with one model: if it is too general, it cannot easily be

applied to a real network if real results are required. At the same time, a model

meant for real-time deployment is not necessarily useful for high-level architec-

tural discussions. It is possible with two models and the spirit of universality

can be preserved if they share the same heritage. That heritage is the Entropic

Formulation of Section 2.2.1.

A complexity model must accounts:

• Interrogation/Deliberation costs , i.e. some measure of the number of ques-

tions one has to ask to deduce the state of the network

• The Riskiness of a Network.

• Domain Independence

and the model should be able to reflect what the network engineer knows

about:

• The number of relevant relationships between the system’s component

• Data-flow information, related to aggregation and disaggregation

• Operational complexity, i.e. the precedence and coupling of operations

performed on data-flows

• The number of elements

These issues are now discussed at length.

Interrogation Costs The metric must be related to the size of the computer

output needed to determine network state. For example, in the simplest case, the

complexity measure must have some congruence with the number of expected

(binary) interrogations to determine a certain fault in the network. The ideal

dynamic complexity metric would be proportional to the time required by an

agent, be it human or machine, to understand the cause of a change in the state

of the network given a set of monitoring devices. However, this would be difficult

to perform directly, so indirect methods are needed.

111



3.2 The Indignity of Numerical Simulations

Risk Attribution A good complexity model must also contribute to an un-

derstanding of the riskiness of a network. There are two things which one must

understand about risk:

1. Is it systematic or idiosyncratic

2. What is the contribution of a specific element to the idiosyncratic and

systematic risks in a network ?

Both of these goals are achieved with the Measurement Model and the notion

of a Slice. A novel idea of this thesis is the attribution of risk to individual

elements and the separation of idiosyncratic risks from systematic risk.

To understand why this matters, suppose one has two kinds of elements in

the network

• Elements which share operations with many other parts of the network

• Elements which operate almost independently

Elements of the former type would contribute more to systematic risks and the

latter to idiosyncratic risk. The Measurement Model allows this to be quantified

at the level of the individual element.

Domain Independence Networks are varied and becoming more diverse. Do-

main specific metrics cannot stand the test of time. In another domain, if the

underlying Measurement Model here were not deemed appropriate, one could just

consider an alternative but still use the same template. Naturally, one would lose

the mathematical machinery in this thesis specific to the Measurement Model but

the analysis based on Deviations from Simplicity and the overall methodology

could still be applied.

Nonetheless, the structural nature of the underlying model on which the Ef-

fective Complexity of the Measurement Model is based is relatively powerful yet

parsimonious: “as simple as possible, but not simpler”1. It is possible that this

model could be used with most systems which process data using some set of

Reference Measurements quite easily.

1Albert Einstein.
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3.3 Understanding Complexity

3.3.1 Why Another Measure of Complexity ?

There is nothing inherently wrong with the formulations of Section 3.1 for mea-

suring complexity. However, they are not suitable for the overall goals of this

thesis: the systematic analysis of architectural issues specific to networks, and

practical measurement of complexity in a live network.

Networks generate substantial time-series data, so in theory, this data could

be use to generate entropy measures. However, these measures would not have

anything to say about the architecture of the network in terms meaningful to a

network engineer:

• What is the impact of adding a new type of element ?

• What is the impact of combining layers ?

• What are the differences between connection-less and stateful protocols ?

Classical graph-theoretic measures are especially useless in this context: they

say nothing about the precedence of operational requirements in the context of

processing a specific flow through the graph. In that sense, they are “blind” to

whether resources are shared and there is significant co-dependence on shared

resources.

Finally, graph-theoretic are also blind to the characteristics of data-flow, espe-

cially in the context of multi-homed, multi-path flows. Flow state is an important

source of complexity. They do not take into account the added complexity asso-

ciated with prioritising, routing and shepherding the flow through the complex

maze of the network. In short, graph theoretic measures ignore:

• The coupling between operations (not elements)

• Aggregation and disaggregation of data flows

• Sharing of resources
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3.3.2 Why An Information Theoretic Formulation ?

The Information Theoretic Formulation
∑

i pi log pi forms the mathematical basis

for both defining theoretical architectural complexity, and also for practically

inferring the realised complexity of networks in subsequent Sections. There are

strong theoretical reasons for this choice, laid out in Chapter 2.

The Information Theoretic framework also satisfies some important and easy

to work with conditions for a complexity metric:

1. The metric is continuous in probabilities associated with states.

2. It attains its highest value when everything is equally likely, i.e. equally

random.

3. It is additive.

Axiomatically, the only functional representation of these conditions is the form

given by Shannons Entropy (see (CT91)).

Finally, from a practical standpoint, the strictly concave nature of the Entropy

function has two key benefits:

• The simple mechanics of dual optimisation can be brought to bear on op-

timisation problems with results guaranteed to be unique. The entropy

function is just the maximum of the statistical entropy over the set of prob-

ability distributions compatible with the resource constraints on mean ac-

tions. Since entropy is a strictly concave function, when the constraints

are linear, the maximisation function always has a unique interior solution.

This is a very convenient result as it relates to the existence and uniqueness

of equilibria.

• Jensen’s Inequality can be used to reason about the sub-synergistic effects

of variables1.

1Sub-synergistic Effects: Variables have sub-synergistic effects when the sum of their sepa-
rate effects is greater than their joint effect.
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3.3.2.1 An Axiomatic Definition of a Measure of Information

In order the illustrate the axiomatic nature of Shannon’s measure, suppose:

• I(p) is to be a measure of Information representing the physical occurrence

of a an event X = x, which a priori was assumed to have probability p.

• Further, posit that I(p) is always non-negative, as the occurrence of an

event at the worst would provide no Information.

• Finally, a desired property of I(p) is that it decreases with increasing p, as

there is no information provided by the occurrence of an event with 100%

probability1

If x and y are independent, then:

P (X = x) = p and P (Y = y) = q (3.2)

P (X = x;Y = y) = pq (3.3)

and hence, when X = x and Y = y are independent:

I(pq) = I(p) + I(q) (3.4)

Differentiating Equation 3.4 by p and q, and dividing one by the other, one

gets:

q

p
=

δ
δp
I(p)

δ
δq
I(q)

(3.5)

and since q and p are independent, rearranging so that q δ
δq
I(q) = p δ

δp
I(p), it is

implied that:

I(q) = −c ln(q) + A (3.6)

Since an event that happens with certainty carries no information A = 0, and

c must be positive due to the non-negativity and monotonicity of I(q). Since c is

a just a scaling factor, this can be set to c = 1, and hence:

I(p) = −ln(p) (3.7)

1The sun not rising tomorrow morning carries much more information than otherwise.
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I(p) is sometimes also known as a Surprisal, as the smaller an event’s probability,

the bigger the surprise when it occurs.

Defining Entropy as the Expected Information from the occurrence of an

event in its distribution, one gets:

H(X) =
n∑

i=1

pilog(pi) (3.8)

3.3.2.2 Interpretation

Just because a quantity can be defined or measured on a system, it does not have

to mean something, even if it is highly correlated with observable characteristics.

There are also semantic reasons for the Entropic Formulation which relate to

the way in which its results can be interpreted:

• Entropy is a measure of Interrogation costs: log base 2, it can be interpreted

as a lower bound on the number of binary questions required to determine

state.

• Entropy is a powerful statistical inference rule: maximally informative

statistics minimise the Kullback-Leibler distance between posterior distri-

butions. This coincides with an underlying microstructure which assumes

the use of statistical inference by agents facing information costs.

In the models in this chapter, Information Theory is utilised in two ways:

• Architecturally, the mathematical formulation of entropy is used as a proxy

for Interrogation Costs: this contrasts with the primary interpretation of

Entropy in Chapter 2 as a measure of the most likely configuration for a

network.

• Practically, the notion of Relative Entropy (see Section B.1) is used as a

complexity measure by metricising the distance between the predictions

a network model makes about the behaviour of a network, and actual,

empirically observed behaviours.
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Applying the ideas in information theory to a network allows the right ques-

tions to be asked, so long as there is agreement on state definitions. Furthermore,

it enables a quantitative comparison of paradigms and operational practices, so

that comparisons can be made.

3.3.3 The Architectural Model

The goal of the Architectural Model is to cast decisions about traffic flow variation,

element design (what to put in and what to take out of a network), and protocol

choice, in a single frame of reference.

The Architectural Model cannot be used in a practical network: its data re-

quirements are unrealistic. However, it can act as a sanity check for qualitative

thinking. It needs to enable quick, consistent, concise thinking about architec-

tural issues, at all levels of networking analysis: its ability to succinctly capture

and analyse such decisions is its litmus test.

The entropy of a network can be calculated by attributing probabilities to

states. As an outline, one would, for each element j:

1. Measure variations across flows

2. Classify data according to similar levels of variation

3. Calculate the probabilities for similar states

4. Obtain a complexity index by calculating the entropy of the probability

distribution

This is the starting point for a complexity metric based on Information The-

ory. In the next section, this model is successively enhanced to cover differences

between serial and parallel networks, element and operational variability, and

scheduling constraints.

The vernacular used in the following sections is as follows:

• Networks are composed of Elements, which perform Operations, on Traffic

Flows.

• There can be multiple types of each, and they can vary over time.
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• A Reference Measurement is an observation on Elements which network

engineers care about. They are not continuous, but discrete. In the case of

the simplest model below in Section 3.3.3.1, they can have more than two

values. In the context of Section 3.4, they are a Bernoulli-(0,1).

3.3.3.1 Simple Version

Formalising this with a simple model to begin with, let the complexity of the

network be measured by:

HNetwork = −
m∑

i=1

Q∑
j=1

pijlog2pij (3.9)

where:

• m is the number of elements in the network, and

• each element can take one of a number of states in set Q with probability

pij.

States can be defined as a range over levels of utilisation:

• Over-utilised: 75-100% Utilisation

• Normal: 25-75% Utilisation

• Underutilised: 0-25%

Using Jensen’s Inequality (see (CT91)), it is easy to show that complexity can

be reduced by:

• decreasing the number of elements

• decreasing the the number of states

• increasing the variability of states.

However, this simple metric has significant shortcomings:

• There is no mix of traffic: Only one kind of flow is serviced.
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• Dependence between states is not accounted for.

• Linkage between elements is not accounted for.

• Precedence requirements between operations is not accounted for.

• Each operation involves only one element.

The next section complicates this simple model to address these shortcomings.

3.3.3.2 Complicated Version

In the context of a network, infrastructure complexity is a result of the following

factors:

1. Traffic mix

2. Variety in the infrastructure of the network, like routers, switches, firewalls,

etc.

3. Interaction requirements (e.g. between the control plane, the signalling

plane, the data place, routers, etc.)

4. Sharing of infrastructure, and

5. Operational complexity, meaning precedence requirements between opera-

tions.

Any complexity measure would need to capture changes in any of these factors.

The conditions required for such a measure are that it:

• Increase with traffic mix

• Increase with operational complexity

• Increase with scheduling flexibility

• Increase with infrastructure sharing
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A more complicated version of the model in Section 3.3.3.1 can satisfy these

requirements. The framework below is also applicable across any domain which

involves transfers: in a network, traffic could be any one of IP, ATM, or Optical

traffic. In a router, it could be packets. While Elements (see below) in a network

consist of routers, switches, add-drop multiplexers, they might be an instruction

cache, a buffer, a bus, and so on in a processor.

Traffic Mixture, Operational and Element Complexity Allow for a mix-

ture of Traffic Flows represented in a Traffic Vector ν:

νl =
wl∑b

j=1wj

(3.10)

where wj is a measure of the quantity of flow j.

Operations (DNS Lookup, Routing Lookup, etc) are performed by Elements

(routes, switches, fibre, etc.) on Traffic Flows (either by destination, source or

type) where:

• b types of Traffic, indexed by l, on which

• m Elements, indexed by z, perform

• any of q Operations, indexed by u, and v.

The operational requirements for each Traffic type l are summarised in an

Operational Matrix Υ:

Υl =

 υ11 · · · υ1m
...

. . .
...

υq1 · · · υqm

 (3.11)

where υl
ij is 1 if Element z performs Operation u or v on Traffic flow l. This

matrix has Operations going top to bottom and Elements left to right.

Scheduling Constraints Operations do not happen randomly, but in certain

order. A DNS lookup is followed by a routing table prefix match followed by

a forwarding operation. The information in the Operational Matrix is used to

define the Network Precedence Matrix Λ:

Λl = λuvzl,∀u, v, z, l (3.12)
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such that, if Operation u precedes v for Traffic l on Element z, then λuvzl = 1,

else λuvzl = 0. If there is no precedence relationship, then λuvzl = λvuzl = 1.

In order to cross this information with the Traffic Vector, for each type of

Traffic l, the Traffic Precedence Matrix is defined:

λ̂uvz =
b∑

l=1

λuvzl (3.13)

Define:

ψuvzl = νlλ̂uvz (3.14)

Normalise:

ψ̃uvzl =
ψuvzl∑q

u=1

∑q
v=1

∑m
z=1

∑b
l=1 ψuvzl

(3.15)

where
∑q

u=1

∑q
v=1

∑m
z=1

∑b
l=1 ψ̃uvzl = 1.

ψ̃ can be interpreted as a probability in the frequentist sense. It represents

the likelihood of observing the Operational sequence u → v on Element z be-

ing performed on Traffic Flow l. Likewise, λ̂ represents the number of times a

particular Operational sequence on an Element is required over all Flows: it mea-

sures the similarity between sequences of Operations on Flows, and the sharing

of resources to carry out those Operations. Υ represents the complexity arising

not from the sequence of Operations, but the way in which they are spread out

amongst Elements.

Architectural Complexity of the model is defined using these tools:

Definition 8 (Architectural Complexity)

H = −
q∑

u=1

q∑
v=1

m∑
z=1

b∑
l=1

ψ̃uvzl log ψ̃uvzl (3.16)

3.3.4 Breaking Down Architectural Complexity

The intermediate steps leading to the Architectural Complexity metric admit

meaningful interpretations. Υ captures both the Operational and the Element

Complexity of the Network:
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Definition 9 (Operational Complexity) Construct a column vector by sum-

ming across each row. Calculate Operational Complexity by interpreting the sum

as a frequency of operations by elements, and normalise to a probability distri-

bution by dividing each element of the column vector by the sum of the vector.

Calculate entropy on the resulting probability distribution.

Definition 10 (Element Complexity) Same as in Operational Complexity,

but sum across columns.

λ̂ captures the complexity associated with scheduling Operations on individual

Elements. Using it, one can define:

Definition 11 (Scheduling Complexity) Construct a vector of operational con-

straints on each element:

πz =
∑
uv

λ̂uvz (3.17)

Normalise this vector (in a frequentist sense):

π̃z =
πz∑
z πz

(3.18)

Calculate its entropy:

H(π̃) = −
∑

π̃log(π̃) (3.19)

Finally, it is relatively straightforward to define Traffic Complexity as the

entropy of ν:

Definition 12 (Traffic Complexity) Define Traffic Complexity as:

H(ν) = −
∑

νlog(ν) (3.20)

An increase in any of these metrics would lead to an overall increase in Ar-

chitectural Complexity.
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3.3.5 Concluding the Architectural Model

It is relatively easy to reason about the Architectural Model, an important design

goal for any complexity metric. When confronted with any architectural issue,

one would need to consider the following:

• The impact on the number of columns in the Operational Matrix Υ, which

is related to the Element Complexity of a network.

• The impact on the number of rows in Υ, which is related to the Operational

Complexity of a network.

• The impact on the size and variability of the Traffic Vector ν which is

related directly to overall Architectural Complexity.

• The impact on the number of zeros in the Network Precedence Matrix Λ

which is related to the Scheduling Complexity of a network.

An increase in any of these sub-components will lead to an increase in the

overall Architectural Complexity of the network. This makes it easy to pin down

how and why the complexity of a network will increase due to an architectural

decision.

Furthermore, the impact of this additional complexity on the performance

and riskiness of a network can also be considered, once one knows what happens

to these parameters when the complexity of a network increase. This analysis is

in Chapter 4. An empirical evaluation is in Chapter 5.

3.4 Measuring Complexity

The Architectural Model is not a true measure of Network Complexity. While

it is a description of its static complexity arising out of the way the elements

are wired together, it says nothing of the emergent properties of the network

and how it’s complexity relates to an engineers understanding of how a network

should behave.
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A simple Sample Entropy analysis of the time series behaviour is also not a

measure of a networks complexity. Both approaches have an important short-

coming: they assume implicitly that the network engineer knows nothing about

networks. Specifically, they assume the engineer does not have a model of network

behaviour1, such as the Architectural Model here.

Hence, these are not Effective measures of Network Complexity. If a model

exists for a system which can explain a significant source of the variability in its

behaviour with a few parameters, that part of the variability which is explained

should not be deemed to be complex: by carrying out sensitivity analysis on

the model inputs, and comparing them to observed behaviour, the engineer can

determine state without incurring any interrogation costs. Complexity is that be-

haviour of the network which cannot be explained by a simple, structural model,

i.e. which incurs Interrogation Costs. This is the Deviations from Simplicity

principle in action, and the essence of Murray Gell-Manns’ notion of Effective

Complexity.

The Architectural Model is also not a practical model. It is unrealistic to

assume that any network traffic engineer could build the adjacency matrices in

Section 3.3.3.2 for any network of significant size. Also, most practitioners deal

with networks that have a significant legacy component to them: the data needed

to populate the Network Precedence and Operational Matrices is typically not

available. Even if SDL-like2 semantics were to be considered, mapping shared

resources into the matrix would be daunting.

What are easily available are measurements on elements, termed Reference

Measurements:

Definition 13 (Reference Measurements) Measurements which proxy the com-

plexity of the network and are common to all elements. These measurements

1Arguably, the same criticism can be levelled at the bulk of the “Power-Law” literature
which tries to explain the incidence of high kurtosis and skewness in observed network traffic
data solely through the existence of queues.

2Specification and Description Language (SDL) is a specification language targeted at the
unambiguous specification and description of the behaviour of reactive and distributed systems.
It is defined by the ITU-T (Recommendation Z.100.) Originally focused on telecommunication
systems, its current areas of application include process control and real-time applications in
general.
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should be easy to calculate and not specific to individual elements or technolo-

gies. Reference Measurements are Bernoulli-(0,1) and triggered when Capacity,

determined as a threshold over some characteristic of the Element, is exceeded in

usage.

It would be much more practical and realistic if a model could be built which

made use of these empirical measurements. This is the approach taken by the

Measurement Model.

Some candidate Reference Measurements are:

• Error rates, such as dropped packets

• Average Inbound/Outbound Traffic

• Throughput

• Utilisation

Using just this data, and a simple, tractable model of the network, it is possible

to extract true Network Complexity and parametric Risk Metrics.

There is another benefit to focusing the analysis of a networks complexity

and risks to common Reference Measurements: it makes it much easier to author

financial contracts based on the values they realise. This is a topic explored

further in Chapter 6.

The goals of a Measurement Model are twofold:

1. Explain network behaviour due to static complexity arising from Opera-

tional, Element, and Scheduling Complexity in a simple, easy to measure

way.

2. Characterise risk.

Even though the Measurement Model aims to be simple, it is easily extended

in many directions while remaining tractable. The key mathematical features

are:

• A central systematic factor is modelled which is meant to act as a proxy

for the inherent coupling of the network, essentially acting as a proxy for

the Network Precedence Matrix of Section 3.3
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• Very simplistic assumptions are made about the structure of Operations

and Elements as a starting point.

In section 3.3, the primary tools were from the field of manufacturing. In this

section, the primary tools are from finance and the actuarial sciences.

3.4.1 The Measurement Model

Definition 14 (Measurement Model) A parsimonious model which uses Ref-

erence Measurements, describes as much of the networks behaviour as possible,

and acts as an easy to use proxy for the Architectural Model.

The right choice of model is arbitrary, but Occam’s Razor1 narrows the

choices. This metric is built on the simplest possible model of a network:

• Networks are composed of homogeneous elements

• The level of coupling between elements is homogeneous

• The dynamics of each element has just two components:

– An idiosyncratic component

– A single systematic factor

Once again, reusing some of the same variable definitions as in Section 3.3.3.2:

• assume the network is composed of m elements. Elements could be nodes

or edges. Capacity 2, as it relates to the variable being measured, is fixed

for each element.

• let M be a factor common to all Elements which drives usage in an element

due to systematic factors.

• let Xi be a factor specific to Element i which drives usage due to idiosyn-

cratic factors not common to other Elements

1In Latin, “entia non sunt multiplicanda praeter necessitatem,” which translates to “entities
should not be multiplied beyond necessity.”

2Capacity could mean bandwidth for a link, CPU speed for a firewall, or SRAM memory.
The model is applicable in many domains.
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• let Ci be the capacity of Element i

• let ai be a measure of the coupling between Element i and the common

factor M .

The goal of the model is to characterise the multivariate distribution of the

network. Each element is modelled by a 2-state Bernoulli-(0,1), which takes the

value 1 if some utilisation threshold is cleared: this is called a trigger, and does

not have to be 100% 1

Utilisation of the the element, which would be Link Utilisation in the case of

edges and CPU utilisation or buffer space in the case of nodes, are composed of

two parts, one part idiosyncratic and one part systematic:

Ai = aiM +
√

1− a2
iXi (3.21)

where M,Xi, i = 1, ...,m are independent standard normally distributed vari-

ables.

A measurement is triggered when utilisation of an element i exceeds a certain

trigger level, Ci, implied by the element’s trigger probability pi:

pi = P [Ai ≤ Ci] = Φ(Ci) (3.22)

where Φ is the Cumulative Distribution function for the Standard Normal Dis-

tribution. Hence,

Ci = Φ−1(pi) (3.23)

This means that the probability that the ith element triggers conditional on

the factor M is:

pi(M) = Φ

(
Ci − aiM√

1− a2
i

)
(3.24)

In the actuarial literature, this is known as “conditional independence”.

ai is the sensitivity of element utilisation to some common factor, common to

all elements in the network. In the simplest specification of the mode, ai = a for

all elements. This assumption will be relaxed in Section 3.4.4.2.

1Network engineers typically set alarms at significantly lower thresholds, usually around
10%.
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All elements are homogeneous, i.e. they have the same probability of trig-

gering a Reference Measurement which also means they have the same capacity

(this assumption will be relaxed in Section 3.4.4.1). Under this assumption, the

probability of a trigger is:

p(M) = Φ

(
C − aM√

1− a2

)
(3.25)

Under the homogeneity assumption, the multivariate trigger probability Lk =
k
m
N is equal to the probability that exactly k out of m elements trigger:

P [L = Lk|M ] =

(
m
k

)
Φ

(
C − aM√

1− a2

)k (
1− Φ

(
C − aM√

1− a2

))m−k

(3.26)

This is the conditional distribution, conditional on the systematic factor M being

realised at a certain value, u. To get the unconditional distribution, integrate over

all possible values of M :

P [L = Lk] =

(
m
k

)∫ ∞

−∞
Φ

(
C − au√
1− a2

)(
1− Φ

(
C − au√
1− a2

))m−k

dΦ(u) (3.27)

This is a costly computation for large m. A common portfolio limit ap-

proximation from the insurance industry due to Vasicek significantly reduces the

computational burden: see (RO04). Consider the cumulative probability of a

percentage of the network triggering a measurement not exceeding θ:

Fm(θ) =
∑[mθ]

k=1 P [L = lk].

Substituting s = Φ
(

C−au√
1−a2

)
, one gets:

Fm(θ) =

[mθ]∑
k=1

(
m
k

)∫ 1

0

sk(1− s)m−kdΦ

(√
1− a2Φ−1(s)− C

a

)
(3.28)

Using:

limm→∞
∑[mθ]

k=1

(
m
k

)
sk(1− s)m−k =

{
0, if θ < s
1, if θ > s

the Cumulative Distribution Function (CDF) of trigger probabilities for a large

network becomes

F∞(θ) = Φ

(√
1− a2Φ−1(θ)− C

a

)
(3.29)

The advantage of this specification is parsimony: there are only two parame-

ters.
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• Average trigger probability

• Coupling

These two parameters and the model give a complete multivariate distribution

for trigger probabilities in the network.

3.4.2 Measuring Complexity

With Equation 3.29, it is possible to characterise certain aspects of the multivari-

ate distribution of a Reference Measurement in relation to a network. There is

no Effective Complexity in that characterisation (especially in the context of this

simple model). What is complex is what is not explained by this model.

Network Complexity is meant to measure what is not explained by the model.

This is the essence of using Murray Gell-Manns Effective Complexity notion in

the domain of networks. Hence, it is defined as that part of a networks Implied

Complexity which deviates from the predictions of the model the engineer has

built of the network. Ideally, the engineer would build the Architectural Model

of Section 3.3, however, that is not practical. Hence, Equation 3.29 is used as a

proxy for the engineers understanding of the networks archictecture, and Network

Complexity is quantified as the KL distance between that and the empirically

observed complexity of the network called Implied Complexity.

Quantitatively:

Definition 15 (Network Complexity) The entropic distance (in practice, the

Kullback-Leibler distance) between the empirical behaviour of the network (proxied

through Reference Measurements) and the behaviour implied by a simple model of

the network.

In practice, the steps to calculate it are:

1. Calculate the empirical distribution of the Reference Measurement across

the entire network.

2. Calibrate the average trigger probability as the empirically observed average

trigger probability of all elements
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Figure 3.1: Empirical vs. Model CDF

3. Calibrate the Coupling parameter such that the Kullback-Leibler distance

between the actual multivariate distribution and the predicted multivariate

distribution is at a minimum

4. Network Complexity of the network is the remaining entropy distance be-

tween the model and the empirical distribution.

In Figure 3.1 the empirical CDF of Average Inbound WAN statistics are

graphed against the CDF implied by Equation 3.29: due to simplicity of the

model specification and the strength of the underlying hypothesis, the architect

will have significant confidence in aspects of the network explained by the model.

In theory, there is no reason why this methodology cannot be applied to any

system which generates multivariate distributions over Reference Measurements

and where the structural model above can be reused as a meaningful approxi-

mation. some candidates are processors, routers, road traffic, a manufacturing

facility, etc.
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Figure 3.2: Empirical vs. Model Density
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3.4.3 Measuring Risk

So far, the Measurement Model only acts as a proxy for the Architectural Model.

However, the Measurement Model is also useful for analysing risk in the context

of a network.

The Measurement Model makes it easy to calculate two different kinds of risks:

Definition 16 (Idiosyncratic Risk) The risks due to the unique characteris-

tics of individual elements, as measured via Xi in Equation 3.21 1.

Definition 17 (Systematic Risk) Risks inherent to the entire market, due to

M in Equation 3.212.

3.4.3.1 A Slice of Risk

Risk is measured through Slice, defined in Chapter 1. By varying the thresholds

K1, and K2, Slice is able to characterise both systematic and idiosyncratic risks.

Furthermore, these risks can be graphically illustrated by graphing Slice with its

parameters on the sub-axis.

Mathematically:

Slice(K1,K2) =
1

K2 −K1

(∫ 1

K1

(x−K1)dF (x)−
∫ 1

K2

(x−K2)dF (x)

)
(3.30)

In the context of the homogeneous approximation above, this integral evaluates

quite simply to:

Slice(K1,K2) =
Φ2(−Φ−1(K1), C,−

√
1− a2)− Φ2(−Φ−1(K2), C,−

√
1− a2)

K2 −K1

(3.31)

where Φ2 is the bivariate normal distribution.

1In the financial markets, this is also known as the the risk of price change due to the unique
circumstances of a specific security, as opposed to the overall market. This risk can be virtually
eliminated from a portfolio through diversification. also called unsystematic risk. Hence, the
financial markets do not pay an investor a premium for taking this risk, as it can be hedged for
free using diversification. This is a key tenet of the Capital Asset Pricing Model.

2In the financial markets:”The risk inherent to the entire market or entire market segment.
Also known as ”un-diversifiable risk” or ”market risk.”
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Figure 3.3: Effect of Increasing K2

The parametric nature of Slice makes it possible to define and measure sys-

tematic and idiosyncratic risks in a network. Also, Slice permits a fine grain

picture of the complexity of the network, makes it easy to talk about the impact

of decisions on the network complexity, and is the key adjective in a vernacular

meant to make thinking about complexity, discussed in Section 3.5.3.

The relationship between Slice and idiosyncratic and systematic risks is:

• When K1 is low, Slice measures idiosyncratic risk

• When K1 is high, Slice measures systematic risk

133



3.4 Measuring Complexity

3.4.3.2 Sensitivity Analysis

The riskiness of a metric measured by slice depend on a number of factors:

Lower barrier, K1 The higher this is, the more faults have to take place before

one enters the window, lowering Slice.

Higher barrier, K2 The wider the width of the window, the more unlikely

faults it will cover, hence Slice will fall.

Marginal Probabilities of Triggering Monotonically increasing.

Time Horizon Depends on the time dependence of marginal trigger probabil-

ities. Assuming the likelihood of a trigger increases over time, this means

that a longer time horizon for this metric will mean a higher value of Slice.

Trigger Correlations If trigger correlations are high, elements tend to fault to-

gether and this increases Slice measurements with higher attachment points.

However, elements tend to survive together decreasing the values of Slice

metrics with lower attachment points.

3.4.4 Extensions

Effective Complexity, the bedrock of Network Complexity, is based on the differ-

ence between the actual behaviour and the predicted behaviour of the network:

it is that part of the networks behaviour which cannot be explained. Later,

the Implied Complexity of a network will be a term used to represent the actual

behaviour of the network, which leads to the following qualitative relationship:

Effective Network Complexity = Implied Complexity−Architectural Complexity

(3.32)

This relationship is quantified through the KL distance between the two mea-

sures.

This means that there are two contributors to Network Complexity:

Architectural Complexity The architecture of the network and traffic vari-

ability causes complexity by making it more difficult to determine absolute

state.
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Model Simplicity A simple model can not explain the total behaviour of a

model.

This means that, in addition to architectural considerations, the engineer also

needs to consider modelling. By increasing the complexity of his model, he can

reduce Effective Network Complexity.

In this spirit, extensions to the assumptions of the underlying model are inves-

tigated. The main assumptions in the Measurement model are good candidates

for extensions:

• All elements are homogeneous: they have the same trigger probability.

• The coupling between elements is homogeneous.

• The systematic factor follows a Normal Distribution.

Extensions to the model also introduce the notion of Model Complexity, de-

fined in Section 3.4.4.7.

3.4.4.1 Heterogeneity of Elements

Extending the model to cover heterogeneous elements is relatively straightforward

using a recursive model, even though it could be an unrealistic requirement in real

life: the trigger probability for each element would need to be known. One can

imagine a number of ways this could be achieved either though none are really

satisfactory. For example, trigger probabilities could be related to the number of

links for each node.

Nonetheless, this is a useful exercise because it reveals some interesting in-

sights (Chapter 4). Consider a network composed of N elements. Build the

multivariate distribution of outcomes for all elements using recursion. The dis-

tribution for just one asset is:

p1(0) = 1− p1

p1(1) = p1
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Adding another element gives:

p2(0) = (1− p1)(1− p2)

p2(1) = p1(1− p2) + p2(1− p1) = p1(0)p2 + p1(1− p2)

p2(2) = p1p2 = p1p2

Generalising:

pi+1 =
i+1∏
j=1

(1− pj) (3.33)

pi+1(k) = pi1(k − 1)pi+1 + pi(k)(1− pi+1), for 0 < k < i+ 1 (3.34)

This gives the unconditional multivariate distribution of the network. To evaluate

Slice, one would need the conditional distribution: substitute fj(pj, x) for pj

above, the trigger probability for an element given x for the systematic factor

from Section 3.24. To calculate the Slice metric, one would have to numerically

integrate the conditional multivariate distribution using Equation 3.30.

To calculate Network Complexity, one would find the nearest (in entropy

terms) coupling parameter for the unconditional distribution, and calculate the

remaining distance.

Slice Sensitivity A benefit of this recursion formula is that it allows for the

calculation of the sensitivity of both Network Complexity and Slice to a single

element. This allows for risk attribution to individual elements in a network.

This is done simply by iterating the recursion formula backwards for that one

element in Equation 3.33, and recalculating the values for Network Complexity

and Slice.

3.4.4.2 Heterogeneity of Correlations

Another assumption of the Measurement Model is that the coupling between all

elements is the same. This is equivalent to assuming a flat correlation matrix when

evaluating the multivariate distribution of a vector of Gaussian variables. It is

relatively simple to assume the correlation matrix of coupling between elements

is heterogeneous.

There are a number of ways this could be done:
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• Build the correlation matrix from pair-wise correlations, using some kind

of statistical averaging, or

• Build the correlation matrix based on factors:

– each element is grouped along factors; say sub-systems, or groups of

elements which are tightly coupled

– an assumption about correlation between each element and the group

is made

– a further assumption about correlations between groups is made

– a factor correlation matrix is generated

Once one has a correlation matrix, one now has to resort to the Indignity of

Numerical Simulations:

1. Using Cholesky Decomposition of the correlation matrix, correlated random

variables is generated for each element

2. A further random variable, signifying a realisation of the systematic factor

would is generated.

3. Using Section 3.23 and Equation 3.21, one would then generate a set of

Bernoulli-(0,1) samples

These steps can then be repeated as many times as necessary to generate a

Monte-Carlo simulation of the networks behaviour.

3.4.4.3 Heavy-tailed Distributions

An obvious extension is to challenge the distributions of the idiosyncratic and

the systematic component of Equation 3.21, both assumed to be N(0, 1). This

results in:

F∞(θ) = T

(√
1− a2T−1(θ)− C

a

)
(3.35)
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3.4.4.4 Modelling sub-systems

Networks are composed of sub-systems in a hierarchy. An interesting extension of

these models is to allow for the existence of sub-systems with elements that over-

lap multiple systems. The key output of such an analysis would be measurement

for Slice parameters.

For this, an alternative way of specifying the SliceK1,K1 metric is used

SliceK1,K1 = min(max(L−K1, 0)K2 −K1) (3.36)

An accurate means of estimating the distribution of L determines Slice. As-

sume that the multivariate distribution is approximated well by a normal distri-

bution, and solve for the conditional mean and variance:

µj|M = E[Lj|M ] =
∑

i

N j
i (1− SM

i ) (3.37)

Cov(Lj, Lj́|M) =
∑

i

N j
i N

j́
i S

M
i (1− SM

i ) (3.38)

where SM
i is the probability that the measure is not triggered on element i con-

ditional on M .

As before, take a Slice of the multivariate distribution of the inter-provider

network as specified above in Equation 3.36 as the risk metric for the network.

A closed form solution is no longer possible for the conditional value of L,

conditional on M . This once more means resorting to the Indignity of Numerical

Simulations. Thankfully, a low-dimension Monte-Carlo can generate the multi-

variate distribution from Equations 3.37 and 3.38. Once E[L|M ] is calculated, a

second step numerically integrates over M to give the unconditional distribution.

Similarly, to get SliceK1,K2 , evaluate Equation 3.27 numerically.

Note that neither the Monte-Carlo integration, nor the numerical integration

steps will be too costly. The Monte-Carlo integration is over the number of sub-

systems, not over all elements in all sub-systems: a substantial reduction in the

dimensionality of the problem. The numerical integration which forms an outer

loop to the Monte-Carl integration can be performed with something as easy as

the trapezoidal rule.

Step-by-step:
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1. Set-up an outer loop numerically integrating over the common factor M ,

say from -10 to +10 with .1 intervals.

2. In the inner loop, set-up a Monte-Carlo integration to calculate the con-

ditional value of a multi-variate normal from Equations 3.37 and 3.38, at

each value of M .

To get SliceK1,K2 , use Equation 3.27.

As an aside, this set-up gives an alternative means of calculating the Slice met-

ric for single networks. Equation 3.36 is a call spread1 on a normally distributed

variable which also has a closed form formula:

E[L|M ] = (µM −K1)Φ

(
µM −K1

σM

)
+ σMφ

(
µM −K1

σM

)
−(µM −K2)Φ

(
µM −K2

σm

)
− σMφ

(
µM −K2

σM

)
where φ is the density of the Standard Normal Distribution.

3.4.4.5 Dynamic Complexity

Another extension of this model challenges the assertion that expected trigger

probabilities are constant over time. This is clearly not a realistic assumption.

The assumption is implicit in the way the systematic factor is specified: as

can be seen from the steps required to Monte Carlo the model in Section 3.4.4.2,

the systematic factor is assumed to realise a value only once, at time=0.

A relatively straightforward way to introduce dynamics into the model would

be to allow the systematic factor to follow a Brownian motion path. Rather than

to draw a single value for the systematic factor, one would draw a sample path,

and a set of realisations of the idiosyncratic factor for each element at each time

step along the way, correlated either through a flat or a heterogeneous correlation

matrix.

Finally, the correlation matrix used along the path of the factor could also be

functional or stochastic:

1Derivatives parlance for a combination consisting of going long one call option and short
another with similar maturities but differing strikes.
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• A single correlation value could be related to the systematic factor. A

reasonable assumption would be for negative realisations of the factor to be

correlated with positive realisations of correlation.

• Correlation itself could be stochastic, meaning the model would become a

2-factor model.

3.4.4.6 Multiple Factors

Finally, it is also possible to extend the model to multiple systematic factors by

rewriting Equation 3.21 as:

Ai =
J∑

j=1

aj
iMj + εi (3.39)

where εi is the noise of Element i, and:

• M ∼ Φ(0,ΩM)

• εi ∼ N(0, ω2
i )

This simple extension could be quite useful for modelling multiple Autonomous

Systems in BGP simultaneously. A factor common to all the elements within one

AS could be used to measure risk in that domain. A separate factor could be

used for a different AS. An Internet-wide factor could still be shared amongst all

elements. This idea can be layered as many times as desired:

• On the basis of shared connections in an AS, and

• Within geographies and times zones

See (LKSS00).

3.4.4.7 Model Complexity

There is always a tradeoff associated with increased modelling complexity, en-

coded in the notion of Occam’s Razor . Model Complexity is explicitly defined so

that the engineer can keep track of the costs of the complexity introduced into a

model.
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The various extentions to the model in Section 3.4.4 lead naturally to a defi-

nition of Model Complexity:

Definition 18 (Model Complexity) Model Complexity is an information the-

oretic distance between the simplest possible model of a system and extensions

which aim to increase its explanatory power. In this context, it can be measured

as the Kullback-Leibler distance between the CDF implied in Equation 3.29 and

various extensions in Section 3.4.4.

The advantage of defining Model Complexity formally is that it allow invest-

ments in model development to be measured quantitatively. For example, using

the recursion in Equation 3.33, it may be possible to model each and every in-

dividual element in an entire network. This may not be a valuable investment if

the same effects can be more easily captured simply through the distributional

changes in Section 3.4.4.3.

Model Complexity is meant to quantify the complexity associated with ex-

tending a base model for a network to account for known details in a networks

configuration which deviate from the base case assumptions. Qualitatively:

Model Complexity = Entropy of Base Model− Entropy of Extended Model

(3.40)

This can easily be quantified as the KL distance between the two models.

3.4.5 Discussion

The distribution of the model in Equation 3.29 is Gaussian, as both the sys-

tematic factor M and the idiosyncratic factor Xi in Equation 3.21 are Normally

distributed.

This is by design: Gaussian Distributions maximise entropy among all dis-

tributions with a known mean and variance, making them the natural choice of

underlying distribution for data summarised in terms of sample mean and vari-

ance.

This implies that if we were to graph the entropy of a system and the entropy

of a Gaussian model which best fits it, the Gaussian model would have higher

entropy. This point is illustrated below in Figure 3.4 and again in Section 5.2.2.1.
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Figure 3.4: Empirical and Model Entropy, Average Latency 50ms
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In the real-world, real networks are non-random in important ways. For ex-

ample, they exhibit power-laws in their degree distributions. A totally random

graph is Poisson in its degree distribution, and hence has maximum degree dis-

tribution entropy. Deviations from this statistical distribution happen for good

reasons. For example, networks whose degrees are distributed with power-laws are

extremely resilient to random removals of vertices. Networks which are subject

to such idiosyncratic faults adapt their structure to minimise such disruptions.

3.4.5.1 The Subjective Nature of Complexity

One of the key insights of Murray Gell-Mann(GM94) is that complexity is highly

subjective and model dependent. There is no complexity in a system if the

observer finds a simple model explains a significant part of the variability in a

system.

Hence, complexity cannot be defined as a universal constant independent of

the observer. Instead complexity is a relationship between a model of a system

and an observer. A system is only complex when the observers model does not

capture the complex, emergent properties observed in a network.

This is why the complexity metric is built on deviations from the predictions of

a simple, base-case model. This model is open to criticism and could be specified

in alternative ways. However, the goal with this model was to find the simplest

model with the richest parameterisation, so any competing model would either

have to be simpler and still retain the explanatory power of this specification, or

be no more complex yet be more descriptive.

3.4.5.2 On Reference Measurements

In today’s networks, almost all networks are forced to reduce their network moni-

toring to data which is common across all elements. such data is typically limited

to:

• Utilisation rate

• Error rate

• Latency
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• Input/output measurements

In most large-scale networks, legacy and element heterogeneity would make it

absolutely impossible to build a complexity measurement metric based on any-

thing other than the most generic network measurements. Further, network be-

haviour which is not measurable, or just too difficult to measure, deserves to be

called complex anyway.

Nonetheless, which Reference Measurement to use remains an unanswered

question in this thesis. Perhaps, it is preferable to measure all of them, as the

calculations are extremely easy, and use the measurements in the right context.

To make this concrete, assume that one considered a routing protocol as an

extension of the work in this thesis which used Slice to make certain decision

about how to route traffic amongst sub-systems. In the context of the Entropic

Routing discussions of Section 6.1.1, traffic sensitive to latency could be routed

on the basis of latency complexity and risk.

3.4.5.3 Assuming Away the Idiosyncracies

One of the key lessons to be learnt from financial theory in the last 50 years is the

Capital Asset Pricing Model (CAPM, (Sha64)). While CAPM also makes some

unrealistic assumptions which are subject to the criticisms of Section 2.1, its two

primary messages are grounded in common sense:

Risk equals return More risky instruments should earn a higher rate of return.

Diversification reduces risk The market pays no premium for taking idiosyn-

cratic risk.

Most students of finance understand the first point, but do not really un-

derstand the second. The implications of the second point are pretty strong:

no market participant should ever expect to be paid for taking risks which are

entirely idiosyncratic, as under the assumptions of CAPM, these risks can be

covered through diversification for free. A very sophisticated model is not needed

to make sense of these two statements. This is the driver behind the idiosyn-

cratic/systematic separation of risks.
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3.4.5.4 On Factor Models

Models based on conditional independence1 are indispensable for a number of

reasons.

The specification of full joint trigger probabilities is a hard problem: While

there are only four joint events for two elements (none trigger, A triggers, B

triggers and both trigger), there are 2N joint default events for N elements. For

a realistic number of elements it is impossible to enumerate these probabilities.

Put another way, the calculation of the multivariate fault distribution from the

network, when each element is modelled by a 2-state Bernoulli-(0,1) which takes

the value 1 if some threshold is cleared is NP-Hard (see Section 1.2.1). This is the

main reason why conditional independence models which predict measurement

correlations from more fundamental variables must be used.

Furthermore, the conditional independence framework admits the following

requirements.:

Credible Modelling of Effects There are two main interaction effects, com-

mon factors that influence all elements, such as intra-day cycles, and id-

iosyncratic factors effecting individual elements. The model must cater to

each separately.

Efficient Computation Many models that are convenient for a single element

or a few of them may be computationally expensive to use for large net-

works. The use of classical queueing theory based models with copula de-

pendence structure are intractable when the number of elements increase.

Simulation must show little sensitivity in computational terms to the num-

ber of elements.

Ease of Calibration Together with the computational issue, a desirable prop-

erty of a model is easy calibration, essentially meaning a small number of

orthogonal factors which span well the state space of possible outcomes.

Any factor model, such as Equation 3.21 involves a systematic term(s), and

an idiosyncratic term. Conditional Independence only solves half the problem.

1The terms conditional independence and factor models are used interchangeably.
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Large-sample approximations in order to achieve efficient computational algo-

rithms have to be used where possible, to retain tractability

3.5 Implying Complexity

The concept of implied volatility is one of the most important developments in

finance in the last thirty years. Implied volatility is the value which, when used

in the Black-Scholes equation for an option, returns the current market price for

traded options.

Under the stylised assumptions of the Black-Scholes model, this parameter

is supposed to take the same value for all options. This rarely happens: usu-

ally every financial market values options with different characteristics at widely

different volatilities.

To a first order, this does not invalidate the core of the Black-Scholes model

although it does suggest extensions: using a local or a stochastic volatility model,

it is possible to re-price options in the market using one parameter for volatility,

at the expense of additional parameters (stochastic volatility, correlation, and

additional structure associated with the underlying distribution, such as skewness

and kurtosis).

There are in infinitude of reasons for why volatility is not constant, mean-

ing that the underlying simple Black-Scholes model is wrong. In any case, the

financial markets still use implied volatilities from the Black-Scholes model to

exchange pricing information about options. This vernacular is not just model

misspecification: it is part of a systems (the market) response to hard computa-

tions. By creating a formalism shared by all participants, the system reduces the

cost of transmitting information and reduces computational burdens. This point

is argued in Section 2.4.1. Such vernacular can also be seen as a case of emerging

complexity common to Complex Adaptive Systems, as in Section 2.4.3.

The same construction is possible in networking. The machinery in Section

3.4 permits a parameter space which can play the role of a vernacular for thinking

about and relaying information about complexity issues in a network in a succinct

way. Most importantly, due to the information theoretic foundations of this
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system of complexity measures, the parameters are comparable between networks,

and even systems,

Hence, it is possible to forklift the same inversion from price to parameter

into the domain of networking. This enables a language which allows network

engineers to communicate and reason about:

1. The Architectural Complexity of the network

2. Idiosyncratic and Systematic Risks in their network designs through Slice

Curves1

3. The Operational, Element, and Scheduling Complexity of their networks

through their Implied Coupling2

Combined, these mathematical relationships define the Complexity plane of

the network. A number of different ways of characterising and communicating

the complexity of a network are analysed in the rest of this Section.

3.5.1 Zero Complexity

In the Measurement Model, the systematic factor has a normal distribution. This

is chosen because from all distributions with a given variance, the normal distri-

bution has the highest entropy. It also leads to tractable, simple mathematics.

In theory, Section 3.31 could be used on Slices of the empirically observed

multivariate distribution of a network to imply a level for a. However, one would

see (see Section 5) that a different level of a would result for different instantiations

of K1 and K2. This happens because it is rare that the Measurement Model

captures the entire Implied Complexity of the network and is perfectly Gaussian.

It would be interesting to see what exact shape the factor would have to take

so that one correlation parameter, could explain all Slice measurements with one

a parameter.

An oft employed technique from the financial markets (and others), a Gram-

Charlier Type A expansion of the normal distribution 3 can be used for this

1Defined in Section 3.5.2.
2 Defined in Section 3.5.4.
3Alternatives are Type C expansions, and an Edgeworth expansion
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calculation. See (JR99). A low order version of this expansion is easy to adapt,

and the mathematics remains tractable.

Assume that the systematic factor driving the performance of individual ele-

ments can be written as:

Ai = aiM +
√

1− a2
iXi (3.41)

as before. Again, let xiÑ(0, 1) but, departing from the previous specification,

now the distribution of M is given by a Gram-Charlier Type A series expansion,

such that:

f(x) =
∞∑

j=0

cjHej(x)φ(x)

cr =
1

r

∫ ∞

−∞
f(x)Her(x)dx

φ(x) =
1√
2π
e−

x2

2

where Hei(x)φ(x) = (−D)iφ(x), Di denotes the ith derivative, and He is the

Hermite polynomial.

As before, element homogeneity is assumed, and as the network size grows,

the idiosyncratic noise xi are diversified away, each ai are identically distributed

and in the limit, the fraction of elements triggering a measurement becomes:

F ≈ Φ

(
C − au√
1− a2

)
(3.42)

exactly as before. However, now, the CDF of trigger probabilities for a large

network becomes:

F∞(θ) = ΥGCparameters

(√
1− a2Φ−1(θ)− C

a

)
(3.43)

where Φ has been replaced by ΥGCparameters, the normal distribution expanded

by Type A Gram-Charlier parameters.

So far, except for the specification of the systematic factor and the implied

CDF for the network, this is a repeat of previous results. The key result needed
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3.5 Implying Complexity

in order to implement the factor assumption is an explicit relationship between

the trigger probabilities and individual element capacity, which is as follows:

p[xi ≤ Ci] = Φ(Ci)−
∞∑

j=1

aj
icjφ(Ci)Hej−1(Ci) (3.44)

For more details, see (Sch04). To extract the implied distribution of the

factor, assume that the correlation structure is homogeneous across all elements

and truncate the Gram-Charlier Expansion after the fourth moment. Practically,

this means that the factor distribution will have non-zero skew and kurtosis.

As before, Network Complexity could then be measured as the Kullback-Leibler

distance between this distribution and a N(0, 1).

3.5.1.1 Implementation

In (JR99) , the authors point out that even though Gram-Charlier expansions

allow for a certain flexibility over skewness and kurtosis, they have the unfortunate

drawback of sometimes yielding negative densities. They then proceed to derive

various positivity constraints which can be numerically implemented. In terms of

Skewness and Kurtosis, this amounts to constraining the optimisation as follows:

Skewness = [−1.0493, 1.0493]

Kurtosis = [3, 7]

To find the exact parameters, flat correlation is assumed (ai ≡ a for all i), and

Powell’s method (PTVF92) is used to find the a, skewness and kurtosis which

best fits (squared relative error terms) the empirical distribution of the networks

measurements.

A Type A Gram-Charlier expansion is particularly easy to implement, hence

its common usage in the financial markets. The CDF of a Type A expansion is

simply:

Φ(c)− Skew

Fact(3)

d3Φ

dx3
+
Kurtosis

Fact(4)

d4Φ

dx4
(3.45)

The role of Equation 3.44 is to allow the calibration of Ci ≡ C to the skew and

kurtosis of the systematic factor so that conditional and unconditional probabil-

ities across the entire network match a certain a-priori expectation.
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3.5 Implying Complexity

3.5.2 Implied Multivariate Distribution

Another technique from the financial markets reverses the previous question:

what is the implied distribution of the systematic factor in a model with zero

complexity, i.e. a model which perfectly explains network Reference Measure-

ments data ?

In the large homogeneous model of the network used as a base case, the Law

of Large Numbers was invoked to produce a simple measurement of the network,

Slice. Slice has two parameters, K1 and K2 which are the lower and upper bound

of the cutoff of the distribution being measured.

For the percentage of the total network trigger probabilities to exceed a certain

threshold K, the systematic factor M has to be less than A(K) given by:

A(K) =
1

a

(
C −

√
1− a2Φ−1K

)
(3.46)

.

The call option1 payoffs on this distribution, known as stop-loss transforms in

the actuarial literature, are easy to calculate:

F (K) = E
[
[L−K]+

]
(3.47)

It turns out that one can use Slice to convey all the information about a

networks characteristics (in relation to a Reference Measurement) using Slice.

Consider only Slice0,K2 measurements, i.e. thicker and thicker Slices all indexed

to start at the origin of the distribution2.

A classical method from the options markets by (BL78) can then be used to

infer the multivariate distribution, given a set of Slice0,K2 measurements. Breeden

and Litzenbergers’ key insight is that Slice0,K2 can be written in a way which

resembles the payoff of a call option contract:

F (K) =

∫ 1

0

[x−K]+f(x)dx (3.48)

1A Call Option is a derivative instrument which is the right, but not the obligation, to buy
a certain security at a certain pre-specified price on a certain date in the future.

2In the markets for collateralised debt obligations, this measurement is known as “base
correlations”. The machinery here is taken directly from those markets.
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3.5 Implying Complexity

Taking derivatives:

F
′
(K) =

∫ 1

0

H(x−K)f(x)dx

F
′′
(K) =

∫ 1

0

δ(x−K)f(x)dx = f(K)

where H and δ are the Heaviside function and Dirac distribution respectively.

Using Equation 3.31 and the chain rule:

f(x) = α0 +

(
α10 + α11

da

dK
|K=x +α2

d2a

dK2
|K=x

)
(3.49)

where:

α0 =
φ(A)

√
1− a2

φ(B)a

α10 = −2φ(A)
Ca− A

a ∗
√

1− a2

α11 =
φ(A)φ(a)√

1− a2

α2 =
φ(A)φ(B)√

1− a2

and

A =
1

a

(
C −

√
1− a2Φ−1(K)

)
B = Φ−1(K)

This means that a = a(K2): the coupling parameter changes value for each

measurement Slice0,K2 . This defines the Slice Curve:

Definition 19 (Slice Curve) The coupling curve parameterised by a = a(K2)

which fits the Measurement Model in Section 3.4.1 to a series of chained Slices

of the the empirical distribution perfectly.
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3.5 Implying Complexity

3.5.3 The Complexity Plane

It can be shown that in the context of Gaussian coupling in the specification

for the Measurement Model, there is a one-to-one relationship between the cou-

pling parameter and a certain specification of a series of Slice measurements (see

(BG05)). Note that the coupling parameter in the case of the Measurement Model

is the parameter a which measures the sensitivity of element utilisation to the

systematic factor.

This makes it possible for the engineer to think about the Slope and Level of

the Slice curve as fundamentals:

Slope Architectural and routing decision which increase the slope of the Slice

curve (Section 3.5.2) simultaneously increase idiosyncratic and systematic

risks in the network, while decreasing the likelihood of intermediate states

which are complexity-neutral. This can be seen in Figure 3.5.

Level increasing the level increases systematic risks reduces idiosyncratic risks

(Section 3.5.3), but can be Complexity Neutral states unchanged. This can

be seen in 3.5.3.

This gives rise to the Complexity Plane of the network:

Definition 20 (Complexity Plane) A succinct and effective description of a

networks complexity which acts as a tool for directly relating architectural deci-

sions to the risk characteristics of a network.

3.5.4 Implied Parameters

The final parameter which can be implied from the Measurement Model is it’sImplied

Coupling.

Implied Coupling is meant to measure how tightly the elements in a network

are coupled together. In the context of the model, this is parameter a in Equation

3.21.

Definition 21 (Implied Coupling) The value of the coupling parameter (a in

Equation 3.21) in a Measurement Model which minimises the Kullback-Leibler

distance between the model and empirically observed data.
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3.5 Implying Complexity

Figure 3.5: Slice Curve slope impact on the Probability Distribution
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3.5 Implying Complexity

Figure 3.6: Changing the Level of the Slice Curve
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This is one of the most novel contributions of this thesis. Many network

models which use graph-theoretic models use the average degree distribution of

the graph as an input. However, there is scant mention of how this could be

measured on a network, or a sub-system, if one does not actually have access

to the graph. Implied Coupling of a network could easily be measured using the

Measurement Model and Reference Measurements.

Finally, to conclude this section, the concept of Complexity Neutrality is de-

fined. Complexity Neutrality is meant to encompass all architectural and control

decisions about a network which are not expected to impact the Implied Com-

plexity of the network.

Definition 22 (Complexity Neutral) Control decisions which do not impact

the Implied Complexity of the network.

This cam happen either because they do not impact trigger probabilities and the

Implied Coupling of the network, or because the impacts offset.

3.6 Models Discussion

The universal laws of Section 1.2.1 have remained valid for the last fifty years.

These models have been tremendously successful for one simple reason: their

dynamics can be described by very few parameters. This is a highly desirable

property of any network model (see (WP98) for a discussion). The primary

benefits of the model in Section 3.4 are parsimony in parameters and tractability.

An advantage of the Measurement Model is that the base case model is easily

extended to cover for its shortcomings. These extensions cover the heterogeneity

of elements, couplings, the existence of sub-systems and potentially, stochastic

complexity as well.

Another practical benefit of the specification for the Measurement Model is

that it can play a role in creating a financial market for the transfer, pricing

and insuring of network risks. In Section 1.6.1, it was pointed out that one of

the primary failings of previous attempts to introduce market metaphors into

telecommunications was the mismatch between the true risks faced by market

participants and the actual asset the markets tried to trade. The Measurement
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Model makes it possible to separate out the risks which the market is not con-

cerned about, i.e. idiosyncratic risks, from those for which the market will pay

a premium, systematic risks. Finally, the Measurement Model admits a rich ver-

nacular with which to reason about the market, a key requirement for the smooth

functioning of any financial market.

In Section 2.3.1, it is pointed out that there is an equivalence between models

based on optimising log utility and those maximising entropy. This posits the

question: why not build on the work of (KMT98) and focus instead on the log

utility framework in the context of the Architectural Model in Section 3.3 ?

This has been partially answered in Chapter 2. There is a further practical

issue which should be highlighted, which impacts model design. In reality, the

entropy function of an equilibrium system looks like a neoclassical utility function.

However, even if there were only one agents in a system, the associated entropy

function would not represent the agents preference ordering of alternative resource

bundles. Hence, when considering networking issues, this makes it possible to

abstract oneself from the need to consider the preferences of individual agents.

For any model to be practicable, this is an important requirement.

Furthermore, in Chapters 6 and 4, architectural implications of increasing

entropy in networks are discussed and various insights into the impacts of optimal

control are analysed. Many of these insights are a practical function of the concave

shape of the entropy function.

Finally, the entropy function is just the maximum of the statistical entropy

over the set of probability distributions compatible with the resource constraints

on mean actions. Since entropy is a strictly concave function, when the constraints

are linear, the maximisation function always has a unique interior solution. This

is a very convenient result in terms of tractability.

3.6.0.1 Limitations and Issues

A key limitation of the Measurement Model is its reliance on Reference Measure-

ments. This model is limited to describing and controlling the complexity of a

network that is a function of those Reference Measurements. For example, the

complexity of a network as viewed from the perspective of latency measurements
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may be different from that of thoroughput measurements. This leaves open the

question of which Reference Measurement to use.

To make progress, this is a requirement: different fields suppress certain com-

plications while highlighting others. Some of these issues were mentioned in

Section 1.6.2: the diversity in links, nodes. The relationships between the com-

plexity of a network vis-a-vis different Reference Measurements is a question left

unanswered in this thesis, and is a rich area for future research.

3.6.1 Effective Complexity: The Full Picture

The practical goal of the Engineer in the field is to understand:

• what causes complexity

• the impact of complexity on network performance, and

• how architectural decisions will impact the network due to increases and

decreases in complexity.

What is needed is some measure of the networks Architectural Complexity.

However, a full calculation of a networks Architectural Complexity may not be

possible due to the intractability of the data collection requirements. A number

of complexity measures have been introduced in this Chapter to enable these

calculations:

• The Architectural Model leads to a notion of Architectural Complexity, which

reflects the total complexity of the network due to four components:

Operational Complexity Complexity arising from the number and het-

erogeneity of Operations.

Element Complexity Complexity arising from the number and hetero-

geneity of Elements.

Scheduling Complexity Complexity arising from the scheduling of Op-

erations on Elements in order to abide by precedence requirements.

Traffic Complexity Arising from the number and heterogeneity of traffic

flows.
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• The Measurement Model gives a set of tools with which to physically mea-

sure complexity from actual network data, leading to:

Implied Complexity The entropy of the measured behaviour of the net-

work, which is further broken down and analysed as:

– Implied Coupling: A measure of how tightly the network is coupled

together and resources are shared across Operations and Elements.

– Slice Curve: A practical tool for visualising and communicating

the idiosyncratic and systematic risk inherent in the coupling of

the networks resources.

Network Complexity Describing that part of the behaviour of the net-

work which cannot be explained by a model of the network.

Model Complexity Describing the complexity of model extensions.

Hence, as an initial point of reference, Implied Complexity can be taken as

a proxy for Architectural Complexity, when it is not possible to actually build

the Precedence and Operational Matrices required for the calculations in Section

3.3. The Implied Coupling of the network is a proxy for that part of the net-

works Architectural Complexity due to the interrelationships between Operations

and Elements. The Slice Curve is a further tool which allows the engineer to

measure and visualise the networks idiosyncratic and systematic risks. The rela-

tionships outlined between the idiosyncratic and systematic risks in Section 4.3

make practical the suggestion that reasoning about complexity can impact real

traffic requirements.

The role of Network Complexity is to bring in modelling as a factor in network

management: when there is a simple model which is able to explain network data,

the networks Effective Complexity is reduced as far as the Network Engineer is

concerned. In the presence of a model, Network Complexity becomes the true

proxy for the Effective Architectural Complexity of a network. These relationships

are graphically illustrated in Figure 3.6.1.
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Architectural Complexity

Operational Complexity

Element Complexity

Scheduling Complexity

Traffic Complexity

Implied Complexity

Network Complexity

Implied Coupling

Slice Curve

Zero Complexity Model Complexity

Figure 3.7: Relationship between Complexity Measures
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Chapter 4

Insights

This Chapter performs an in depth analysis of various aspects of the Architectural

and Measurement Model. The models provide a variety of valuable insights for the

purposes of network analysis and design. The Chapter ends with an attempt to

bring together all the various components into a complete picture for the network

engineer.

A large part of information theory consists in finding bounds on certain per-

formance measures. Most of the key insights in this Chapter substitute simpler

bounds for what would otherwise be very complicated functions, had it not been

for the use of Entropy and the application of Jensen’s Inequality (see Section

B.4). As mention in the Introduction, while this does not justify the Entropic

Formulation, it is one of its great benefits.

4.1 The Impact of Complexity

4.1.1 Simple Version

Even the simple model of Section 3.3.3.1 provides some meaningful insights. Con-

sider a simple two-state system (A and B with probabilities PA, and PB)) with

just one element. Its complexity will be:

H = −PA × log(PA)− PB × log(PB) (4.1)
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Expected Flow though the system will be:

F = A× PA +B × PB (4.2)

Finally, PA + PB = 1. Manipulating, one can solve for Complexity as a function

of Flow:

H = −
(
F − A

B − A

)
log

(
F − A

B − A

)
−
(

1−
(
F − A

B − A

))
log

(
1−

(
F − A

B − A

))
(4.3)

Figure 4.1 illustrates the interacting impact of increasing flow and variability

between states (A = 1−B) highlighting two points:

• Complexity reaches a maximum when states are similar

• The impact of increasing flow on complexity is higher when there is less

variation between states.

While this insight is valuable, concentrating purely on complexity would result

in misguided judgements. Consider the impact of parallelisation, on a single

element which is able to operate either at full capacity or no capacity:

• Flow = 50%× 100% + 50%× 0% = 50%

• Complexity = −50% log(50%)− 50% log(50%) = 0.6931472

Dividing capacity equally between two elements would have no impact on flows

at the expense of added complexity:

• Flow = 25%× 50% + 50%× 50% + 25%× 0% = 50%

• Complexity = −25% log(25%)− 50% log(50%)− 25% log(25%) = 1.039721

Yet, there is still a benefit to parallelisation which is not captured by this

analysis: the riskiness of the operational characteristics of the network have de-

creased. Consider the standard deviation of flows:

• Single Element: stdev(0%× 50%, 100%× 50%) = .353

• Two elements in parallel: stdev(0%×25%, 50%×50%, 100%×25%) = 0.144
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Figure 4.1: Complexity against Throughput
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indicating a tradeoff between complexity and the riskiness of flows.

Insight 5 (Complexity and Risk) Increased complexity can reduce the riski-

ness of a network and make it more resilient.

Slice further enhances the analysis of this tradeoff by attributing risk to id-

iosyncratic and systematic factors.

4.1.2 Complicated Version

By using Jensen’s Inequality and the fact that −
∑
plogp is a concave function, it

is possible to derive a number of interesting properties of the Architectural Model.

First, note the following:

Maximum Value of the Entropy Function The entropy function takes it’s

maximum value when all values are equal in the summation sign H(p) =

−
∑n

i=1 pi log pi. For a proof, see Section B.5.

Concavity of Dimensions The entropy function is concave in the number of

dimensions of ψ

Concavity of Entropy The entropy function is concave in the values of ψ1.

This means that mathematically, to increase complexity:

• The size of the Operational Matrix can be increased:

– Increase Operational Complexity: increase the length of the matrix by

adding more Operations

– Increase Element Complexity: increase the width of the matrix by

adding more Elements

• Scheduling Complexity can be increased, essentially by decreasing the num-

ber of zeros in the Traffic Precedence Matrix:

– Decreasing precedence relationships between Operations, or

1In thermodynamics, the concavity of entropy and it’s dimensions implies that mixing two
gases of equal entropy results in a gas with higher entropy.
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– Allowing more Operations to be performed by each Element

• Traffix Complexity can be increased, by increasing the entropy of ν

These are consequences of the concavity of the entropy function and Jensen’s

Inequality. They are used below to gain valuable insights into network operations.

4.1.2.1 Impact of the Network Precedence Matrices

Insight 6 (Operational and Element Similarities Increases Complexity)

The Operational and Elements Complexity metrics in Section 3.3.3.2 are max-

imised when all operations are possible on all elements.

Insight 7 (Scheduling Flexibility Increases Complexity) Reduced precedence

requirements decrease the number of zeros in the Network Precedence Matrix.

Again, due to Jensen’s Inequality this maximises Architectural Complexity.

Both insights are a relatively straightforward application of Jensen’s Inequal-

ity to independent dimensions of the matrices.

Practically, similarity between operations or elements means that the observer

has to ask more questions to determine where something went wrong in the

systems to determine the erring element and/or operation. Similarly, a lack of

operational precedence means that anything could be happening anytime, making

it harder to determine state and increasing Interrogation Costs.

4.1.2.2 Size Matters

Furthermore, all these effects are related to the overall size of the Traffic Prece-

dence Matrix: the entropy of a (normalised) smaller matrix will be impacted more

by an increase in its size or by a decrease in the number of zeroes (see (CT91)).

Insight 8 (The Impact of Size on Complexity) The complexity of a small

system is more sensitive to architectural changes.

This is related to the point made in Section 2.3 on the magnitude of Entropy

Prices for constraints in networks: when Entropy Prices for constraints are high,

the likelihood of a configuration change becomes very low.
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4.1.2.3 Complexity and Architecture

The Traffic Precedence Matrix has sub-synergistic effects on Architectural Com-

plexity. This means that networks with a low level of complexity will experience

a larger increase in complexity from variations in operational requirements. This

is an important result when the network architect is constrained and must fo-

cus his/her efforts on sub-systems which will have the most impact. This result

implies that architectural changes will have more effect when systems are not

operated near their theoretical complexity limits.

Insight 9 (The Impact of Complexity on Architecture) Networks operat-

ing at lower levels of Architectural Complexity will respond more to changes in

their architecture.

4.1.2.4 Traffic Mix and Optimal Control Policy

Traffic can change in two ways:

• The types of traffic can increase

• The entropy of the traffic mix can increase

Either effect would cause an increase in the complexity of a system. However,

a smaller system would be impacted more by changes in the traffic mix relative

to a larger system.

Insight 10 (Traffic Mix) The complexity of a smaller network is more sensi-

tive to traffic mix changes. A smaller network will undergo a larger increase in

overall complexity if the traffic mix is varied.

Combined with the insight on the Impact of Complexity on Architecture, this

implies that it makes more sense to focus engineering efforts on smaller networks

where the complexity payoffs will be larger.
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4.1.2.5 Scheduling Complexity Insights

The best network performance for a given complexity level would be given by

an optimal control policy. Control policies are a series of decisions scheduling

Operations on Elements to maximise throughput. This section considers the

impact of complexity on control policies and performance.

In the context of a network, a control policy is equivalent to scheduling traffic

flows on the network to achieve a certain performance level. An optimal control

policy would be dynamic, and at each instant, would consider the current state

of the network as traffic flows arrive. The alternative would be a sub-optimal

scheduling policy which did not take into concern the state of the network or

traffic dynamics and followed a static control policy.

Performance is defined in terms of waiting times: when a flow arrives at an

ingress node, if it has to wait to be served by en Element, then performance will

degrade. This means that performance can be defined in terms of execution times

as follows:

p(execution times) =

[
1−

∏
i∈m

(1− pi(waiting time))

]
(4.4)

It is relatively easy to see that increasing the number of Elements, Operations

would decrease waiting times.

∏
i∈m

(1− pi(waiting time)) ≤
∏
i∈m′

(1− pi(waiting time)) (4.5)

where m′ > m.

Furthermore, increasing the number of Elements wich can perform a certain

Operation and reducing scheduling requirements also decrease waiting times. The

former correspond to an increase in the dimensions of Λ and the latter correspond

to a decrease in the number of zeros in Λ: both increase Architectural Complexity.

This leads to the following insight:

Insight 11 (Complexity increases Performance) Increasing Architectural Com-

plexity will lead to an overall increase in the performance of a network when the

network is operating under an optimal control policy.
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In some ways, this is an obvious result: there would be no reason to go for

higher complexity in networks if there wasn’t some gain. In Section 4.1.1, one

benefit to increasing complexity was reduced variability in performance. Another

is outright increased performance.

What is not so clear is what happens when the network is not operated under

an optimal control policy. There are two key insights as they relate to this issue:

1. First of all, due to the concavity of Equation 4.4, the improvement in per-

formance drops as the complexity of the network increases.

2. More importantly, the difference in the performance of a network operated

optimally and under a static control policy is greater the higher is the

complexity of the network.

The loss in performance from a static control policy is relatively easy to prove:

consider a network with no complexity, i.e. one Element processing one Operation

on one Flow at a time. The difference in network performance from any scheduling

policy is zero. However, for any other network, the difference in performance

will be positive. (a more thorough probabilistic analysis in the context of a

manufacturing plant can be found in (Kle75) based on M/M/ queueing systems).

These are important enough that they are worth formalising:

Insight 12 (Diminishing Returns from Complexity) The performance gains

from increasing complexity in a network are monotonically decreasing in the com-

plexity of the network.

Insight 13 (Deadweight Loss) Networks operating at higher levels of complex-

ity will show a higher relative performance degradation if their control policies are

not optimal.

These results have strong implications. In order to improve the performance

of a network, the network engineer may choose to increase the complexity of the

network. However, as the network becomes more and more complex, an optimal

control policy will be harder and harder to calculate. This may also happen

because Traffic Complexity may increase. In this case, the deadweight losses may

be significantly higher.
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This is one of the fundamental ideas behind Entropic Routing, analysed in

Section 6.1.1: if the objective is performance, traffic flows should be segregated

based on variability. Predictable flows should be sent down network paths that

are less complex and variable flows should be send down network paths that are

more complex. If the objective is efficiency, however, the exact opposite would be

appropriate. More variable flows should be sent down less complex paths that are

easier to optimise and more predictable flows should be send down more complex

paths that are harder to optimise.

4.1.2.6 Architectural Complexity Conclusions

Overall, this implies that small networks are more sensitive to changes in traffic,

and need to be scheduled and controlled more optimally. Hence, resources should

be spent on increasing the capabilities of the scheduler. Larger networks are less

sensitive to changes in traffic and can tolerate sub-optimal control policies.

Note that for any network, Operational Availability can be increased by:

• Increasing the number of elements, hence increasing the length of the Op-

erational Matrix

• Increasing the number of element on which an operation can be executed,

increasing the width of the Operational Matrix

• Decreasing precedence requirements between operations, decreasing the num-

ber of zeros in the Precedence Matrix

All three actions result in an increase in the Operational Availability of the

network, at the expense of increased Architectural Complexity. For an application

of some of these insights in the manufacturing domain, see (BR96).

4.2 Measurement Model Insights

The Measurement Model yields useful insights in the area of risk-control. The key

source of complexity in the Measurement Model will be due to a deviation from

it’s simplistic assumptions, which are based on homogeneity of elements. In the

context of the Measurement Model, there are two sources of heterogeneity:

168



4.2 Measurement Model Insights

• Heterogeneity of Trigger Probabilities, i.e. ai 6= a

• Heterogeneity of Couplings, i.e. Mi 6= M

Increases in idiosyncratic and systematic risks due to changes in these pa-

rameters is investigated. This is followed by a discussion of how the Implied

Complexity of a network increases with changes in the heterogeneity of elements.

4.2.1 Heterogeneity of Trigger Probabilities: Impact on

Slice

Heterogeneity of trigger probabilities increases idiosyncratic risks in a network.

To understand this, consider the case when all the elements have a coupling of

a = 1. In this case, the probability of just one element triggering a measurement

is equal to the probability of the element with the highest trigger probability. On

the other hand, if the coupling was 0, then the probability of just one element

triggering a measurement would be equal to the average trigger probability of the

network. Hence, it must be that a heterogeneity of trigger probabilities increases

the idiosyncratic risks in the network. The multivariate distributions CDF has

to add up to 1. If increasing variety increases the likelihood that one fault will

happen within a certain period, the likelihood that multiple faults will happen

must decrease.

Insight 14 (Diversity in Elements Increases Idiosyncratic Risks) Increasing

the Variety of Network Elements Decreases the Likelihood of Systematic Events.

4.2.2 Coupling Heterogeneity

The impact of coupling heterogeneity is not so clear cut: while a heterogeneity

of couplings would indicate areas of the one-factor covariance matrix implied in

Equation 3.21 which would be highly correlated, indicating an increase in the inci-

dence of clustered triggers, if average coupling were to be kept constant (i.e. links

were rearranged, none added and none taken out), then idiosyncratic risks would

also increase. Hence, heterogeneity in couplings increases both idiosyncratic and

systematic risks.

169



4.2 Measurement Model Insights

Figure 4.2: Entropy ag Trigger Probabilities

4.2.2.1 The Causes of Network Complexity ?

The root cause of Network Complexity is related to the way in which the network

is coupled together, and the heterogeneity of its elements. To illustrate this,

the entropy of implied model probability distributions is calculated for various

scenarios.

Trigger Probabilities and Entropy As trigger probabilities increase, the

entropy of the network will first decrease, and then increase. This can be seen in

Figure 4.2.

As the coupling between elements and the systematic factor increases, the

entropy of the network decreases (Figure 4.3). Combined, entropy is maximised

when a network has very low trigger probabilities and very low coupling.
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Figure 4.3: Entropy ag Beta
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Figure 4.4: Entropy ag Beta and Trigger Probability
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Figure 4.5: Entropy ag Beta and Trigger Probability, Small
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This coincides with intuition: a network with low Implied Coupling corre-

sponds to a network which is highly idiosyncratic. Highly idiosyncratic networks

possess high structural complexity. On the flip side, network which are highly

coupled possess low structural complexity.

Leading on from the insights of the previous sections, one can conclude that:

• Networks operating under sub-optimal scheduling policies should be highly

coupled: this reduces complexity and hence deadweight losses.

• Networks operating under optimal scheduling policies can afford to be lightly

coupled.

• Networks experiencing higher traffic variability operated by agents utilising

statistical inference will react by becoming decoupled. This will further

increase the entropy of the system and drive the network towards higher

entropy.

Most importantly, if network architecture capabilities are a constrained re-

source, they should be directed towards smaller networks, as increasing the schedul-

ing efficiency of smaller networks will yield greater benefits.

4.3 Completing the Circle

It is time to complete the circle between the entropic hypothesis of Section 2, the

Architectural Model, and the Measurement Model.

4.3.1 Heterogeneity, Complexity and Risk

To do this, extensions in Section 3.4.4 can be analysed to investigate the rela-

tionship between heterogeneity in the infrastructure of the network, complexity

and risks to performance.

The true nature of the linkage between the Architectural Model and the Mea-

surement Model lies in the original specification for a complexity measure: what

are the Interrogation Costs associated with determining state in a network ?
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Heterogeneity

Elements Correlations

Architectural Complexity

Idiosyncratic Risk Systematic Risk

Mesh, P2P Internet, Hub/Spoke

Figure 4.6: Relationship between Heterogeneity and Complexity

The Architectural Model was meant to answer this question qualitatively,

and to breakdown these costs into their consitutent Operational, Element, and

Scheduling components. The notion of Network Complexity which comes out of

the mechanics of the Measurement Model is meant to answer this question quan-

titatively, by positing the complexity of a network against the simplest model

imaginable for explaining network behaviour. The link between these two models

is very straightforward: networks with higher Architectural Complexity should be

proxied well by networks which realise high levels of Network Complexity.

Once the complexity of a network is determined, the next issue becomes one

of risk management: what are the risks that can be tolerated when transferring

a certain kind of data and how risky is a network, or a sub-system ? This is

answered by the insights in this Section: say that:

• Networks with higher complexity have higher idiosyncratic risks.

• Networks with lower complexity have higher systematic risks.

This can be tied in with the performance analysis of networks:
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• Networks with high complexity can tolerate sub-optimal control policies.

• Networks with low complexity have low dead-weight losses

• Small networks are more sensitive to architectural decisions.

4.3.2 Practical Issues

How are all these insights and the tools of Chapter 3 useful to an Engineer ? The

Architectural Model and the Measurement Model serve separate purposes in aiding

the operations and management of a network, and need to be used in different

ways.

4.3.2.1 Making Architectural Decisions

The insights related to the Architectural Model can be used in a disciplined manner

to guide any architectural decision related to a network in the following manner:

First, consider the impact of a specific design decision on the following factors:

Operational Complexity Will the number of operation increase or decrease ?

Element Complexity Will the number of elements increase or decrease ?

Scheduling Complexity Will the number of operations which an element can

perform increase or decrease ?

Traffic Complexity Will the variability of the traffic carried increase ?

This will lead to a conclusion about whether the Architectural Complexity of a

network will increase or not.

Once this is concluded, one can consider the impact on the network as it

relates to:

Size Smaller networks are more sensitive to changes in Architectural Complexity

.
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Control Policy More complex networks can tolerate sub-optimal control poli-

cies better: the performance loss is lower. On the flipside, the deadweight

loss from sub-optimal control is higher for more complex networks: the

efficiency loss is higher.

Traffic More variable traffic requires more complex networks.

4.3.2.2 Operating an Actual Network

This is where the Measurement Model can become very useful. First of all, dif-

ferent kinds of traffic can tolerate different kinds of risks. The tools of the Mea-

surement Model such as Network Complexity and Implied Coupling could also

be used in real-time (this is the topic of Entropic Routing, see Section 6.1.1) to

decomposed a network into sub-systems or paths with differing levels of complex-

ity. Different types of traffic could then be routed along different sub-systems

depending on what kind of risks could be tolerated.

Consider the tradeoff between quality and quantity in the delivery of data

across a network:

Quantity Constraints Traffic with real-time, high quantity delivery constraints

can tolerate idiosyncratic risks, but not systematic risks: systematic risks

effect all components in a network simultaneously and would make it harder

to meet timing constraints. The tradeoff would be that certain packets may

never be delivered. Such traffic should be routed down high com-

plexity network with low systematic risks.

Quality Constraints Traffic with quality delivery constraints can tolerate sys-

tematic risks as they are not time sensitive but cannot tolerate idiosyncratic

risks as they would require frequent resending of large packets, and/or too

much re-sequencing due to idiosyncratic networks. Such traffic should

be routed down low complexity networks with low idiosyncratic

risks.

Finally, the Implied Coupling measure is an important tool for a network

engineer. For example, the Implied Coupling of different sub-systems can be
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measured using Reference Measurements, and the engineer can decide where to

focus architectural resources accordingly, in light of the insight in Section 4.1.2.3

which says that architectural variations impact networks operating at low levels

of complexity more. This can also be used to channel traffic according to its

characteristics.
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Chapter 5

Model Evaluation

This Chapter evaluates the Architectural and Measurement Models using data

from a real network, and against real-life architectural decisions. Due to the

differences between the two models, it is not possible to evaluate the two models

within the same framework.

The Architectural Model is a tool for making systematic and consistent de-

cisions about architectural issues. It needs to be evaluated by considering real

architectures and testing it’s ability to systematically break-down the issues into

meaningful conclusions.

The Measurement Model acts on real data, so it is evaluated against a real

network. Reference Measurements from a real network are used to generate actual

entropy measurements, and an actual Slice curve is generated, to illustrate the

tools made available by this formulation.

5.1 Evaluating the Architectural Model

The Architectural Model’s purpose is to facilitate systematic thinking about high-

level issues by putting the decision process into a common framework across

domains. A number of interesting architectural questions lend themselves to the

analysis made possible by the insights of Chapter 4.

It is very straightforward to put the Architectural Model to work. When

considering an architecture, the following need to be considered:
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Impact on the width and variability of the Operational Matrix Wider,

less variable rows imply an increase in complexity due to Element Complex-

ity, making it harder to figure out which element failed and which operations

it was executing when it failed.

Impact on the height and variability of the Operational Matrix Longer,

less variable columns imply an increase in complexity due to Operational

Complexity, making it harder to figure out which operation failed on which

element.

Impact on the Number of Zeroes in the Precedence Matrix If there are

less operational precedence requirements, it will be more difficult to figure

out which operation is currently executing.

At it’s heart, all this analysis is meant to proxy for Interrogation Costs. To

illustrate the Architectural Models ability to unearth interesting insights about the

complexity implications of various design decisions, a variety of network designs

are systematically evaluated:

1. Connection-less vs. Connection-oriented paradigms

2. Multi-path routing

3. Different ways of rolling out new features into the network

4. ATM vs. MPLS

The key point of this evaluation is that it is systematic. When confronted

with any architectural issue, one considers step-by-step the impact on:

• Operational Complexity

• Element Complexity

• Scheduling Complexity

• Traffic Complexity

Combined, these lead to an overall conclusion about how the overall Architec-

tural Complexity of a network will change as a result of a certain design decision.
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5.1.1 Connection-oriented vs. Connection-less Paradigms

of Networking: OSPF and MPLS for Traffic Engi-

neering

The OSPF protocol is a link-state, hierarchical IGP, and uses Dijkstra’s algorithm

to calculate the shortest paths, using cost as a routing metric. The link state

database of the network topology is identical on all routers in a common area. In

the absence of an intermediate protocol like MPLS (MPLS is sometimes called a

2.5 Layer protocol), OSPF achieves traffic engineering objectives by varying the

weights associated with paths.

MPLS, on the other hand, emulates properties of a circuit-switched network

over packet-switched networks using labels, operating between Layer 2 (data link

layer) and Layer 3 (Network Layer). In addition to IP Traffic, MPLS can also

carry native ATM, SONET, and Ethernet frames.

MPLS and OSPF cannot be compared directly because its label forwarding

table is constructed using IGP routing protocols, of which OSPF is one of the

most popular (IS-IS being another alternative). However, MPLS makes significant

changes to the means by which traffic engineering requirements are met in an

OSPF network, and a comparison is possible between connection-oriented and

connection-less paradigms in this context. Traffic engineering requirements in a

network using MPLS are met by establishing paths for dedicated traffic, by packet

type. In theory, using configurable OSPF link weights, many MPLS paths can

be duplicated with OSPF. Besides, there is some empirical evidence indicating

that the performance difference between a network which only uses OSPF and

one which uses MPLS is not that great for working traffic (see (FT00)).

However, MPLS can distinguish packets towards the same destination IP ad-

dress and treat them differently. Furthermore, MPLS can distribute traffic un-

equally on multiple paths. Both of these characteristics makes Entropic Routing,

based on the notion of routing traffic along available paths as a function of its

statistical and risk characteristics, much easier to implement.

Furthermore, a key advantage of MPLS is network resilience. OSPF is a dis-

tributed protocol, meaning that information regarding element failure takes some

time to reach all forwarding tables. Even if the convergence of this update were
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not an issue, any traffic engineering methodology which was based on link met-

rics would require a subsequent optimisation which is likely to take a significant

amount of time. In the case of MPLS, this optimisation can be performed offline

for typical failure patterns.

The machinery of the Architectural Model can be used to unearth these is-

sues systematically. In a connection-oriented paradigm like MPLS, even though

information is transmitted through the same elements as in OSPF, there is a

significant decrease in the size of the Operational Matrix: this is because the path

computation is only performed by source elements, and not by all the intervening

elements. This triggers an architectural decrease in the complexity of the net-

work (see Chapter 4) through a reduction in the height of the Operational Matrix.

This is arguably the main reason why MPLS is preferred as the means to achieve

traffic engineering requirements over OSPFs’ native infrastructure in most small

and medium-size networks: MPLS Interrogation Costs are significantly smaller

than OSPF. Furthermore, there is also a decrease in the size of the Precedence

Matrices, as label switching is much easier than prefix matching, which places

consistency requirements across the fabric of the network.

Potentially, the MPLS intermediate layer can also resolves routing, admitting

a further reduction in entropy by obviating the need for the router function en-

tirely: this has the potential to reduce the width of the Operational Matrix. These

devices are called Label Switch Routers. However, a Complexity-Risk Tradeoff

(see Section 5) makes it harder to adopt Label Switched Routers, especially in

light of increased restoration functionality required in the IP layer.

Combinatorial Complexity In (FT00), the authors describe a heuristic which

in practice overcomes the computational intractability issues associated with

OSPF weight setting (see Section 1.2.1). They do assume that the the traffic

demand matrix is known, which one of the objections to their proposal. Another

is the requisite increase in Scheduling Complexity as the neighbourhood structure

of the local search heuristic significantly increases precedence requirements. This

is amplified because the requirements apply on a per element basis, implying

that while there may be a polynomial increase in the efficiency of the network,

there might be a combinatorial increase in it’s complexity. Hence, in spite of
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the increase in efficiency, it would not be surprising to witness that most opera-

tors would stick with the simplest rules (like inverse-capacity) for setting features

specific to individual elements.

In concluding, the machinery of the Architectural Model is systematically

applied to the connection-oriented paradigm (MPLS), in comparison with the

connection-less paradigm (OSPF):

Operational Complexity Lower because only source elements compute paths

Element Complexity Ambiguous.

Scheduling Complexity Lower, because label switching is easier than prefix

matching.

Traffic Complexity Ambiguous.

leading to lower Architectural Complexity for connection-oriented networking over

connection-less networking.

This means that, the connection-oriented paradigm is more suitable for:

Size Small networks over which the operator has total control.

Control Policy Networks which can optimally controlled.

Traffic Networks which carry predictable traffic.

5.1.2 Multi Path Routing

The same arguments apply to multi-path routing: in theory, multiple paths from

source-destination pairs have the potential to result in significant efficiencies.

However, this would again trigger a combinatorial increase in the entropy of the

Precedence Matrices, and also further, the Operational Matrices if new operations

were required of elements. Unless the routing algorithm is a Pareto Improvement

in the efficiency-complexity frontier, it is unlikely to witness significant take-up

with operators who would face significant increases in the architectural complexity

of their network as a result.

Systematically applying the machinery of the Architectural Model to multi-

path routing:
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Operational Complexity Higher because intervening elements have to carry

out more operations.

Element Complexity Ambiguous.

Scheduling Complexity Ambiguous.

Traffic Complexity Higher, because the variety of flows across an element at

any point in time will increase.

leading to overall higher Architectural Complexity.

This means that multi-path routing is more suitable for:

Size Large networks.

Control Policy Networks which may be sub-optimally controlled.

Traffic Ambiguous.

5.1.3 Rolling Features into the Address Space

There is one way to achieve multi-path routing without an increase in the Oper-

ational Complexity of the network: roll the feature into the addressing space of

the router.

The idea of rolling new features into the addressing space resolves an im-

portant complexity problem associated with the introduction of features which

require coordination with individual elements. From a complexity standpoint, the

best way,of doing this is to use existing Operations and Elements. Since routers

are already built to route, a new feature which just makes use of that function-

ality would not trigger a combinatorial increase in the size of the Operational

matrix. Obviously, the mapping from the feature to the address is an additional

operation, but this scales linearly with the number of features and not with the

number of elements. The only additional requirements are with the ingress and

egress routers.

In some ways, feature introduction through the address space is used in certain

contexts:
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• GMPLS1 treats circuits, lambdas, fibres and bundles all as labels

• Circuit Cross connect where the router only looks as far as a layer 2 ID,

pushing routing table management to the edge, reducing per-element oper-

ational requirements

Once again, evaluating systematically:

Operational Complexity Lower: while the ingress and egress nodes would

have to do more, any alternative means of introducing a feature by intro-

ducing new elements and new operations on those elements would be most

costly.

Element Complexity Much lower, as the number of elements could decrease

significantly.

Scheduling Complexity Possibly higher, as the address space will become

more crowded.

Traffic Complexity Ambiguous.

leading to lower Architectural Complexity.

Smaller networks are more susceptible to changes in architecture. This could

be an important consideration in deciding whether to admit new features into a

network using new elements or through the existing infrastructure of addressing.

5.1.4 ATM vs. MPLS: Flexibility vs. Complexity

Most of the analysis of why ATM has failed against MPLS focuses on extremely

domain specific issues, such as the complexity of PNNI2, the arbitrariness of

1Generalized MPLS (GMPLS) extends MPLS to provide the control plane (signaling and
routing) for devices that switch in any of these domains: packet, time, wavelength, and fibre.

2PNNI is a link-state routing protocol for ATM networks that automatically finds paths in
the network using neighbour discovery techniques and then assists in setting up SVCs (switched
virtual circuits) between end systems.
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boundaries between VP1 and VC Switching, and the size of ATM frames. Typi-

cally, practical difficulties associated with overlay inter-operability are also high-

lighted.

While the literature is rich with technical issues, the analysis lacks transporta-

bility, and it is difficult to learn a lesson from the ATM/MPLS experience. This

topic is a good example of how the Architectural analysis in this thesis succeeds

in being systematic and consistent.

The overall bent of the existing research claims that that ATM is actually

more complicated than MPLS. The analysis in this section debunks this claim,

where it is made. Specifically, complex MPLS label stacking would indicate that

the Precedence matrix for MPLS is significantly wider than ATM2.

There is an alternative Architectural reasons for the success of MPLS:

• Sub-optimal control policies: networks operating under sub-optimal control

policies need to be operated at higher levels of complexity (see Section

1There are two major types of ATM connections: VC (Virtual Channel) and VP (Virtual
Path). They differ in the way they are identified, and hence also in how they are switched.
VCs are uniquely identified on the port of an ATM switch by the VPI and VCI numbers. VPs
are uniquely identified on the ATM port by VPI number only.ATM cells that arrive on a VC
are switched based on both the VPI (Virtual Path Interconnect) and VCI (Virtual Circuit
Interconnect) number in the cell header. On the other hand, ATM cells that arrive on a VP are
switched based on the VPI number only. VPs consist of all VCs with a specified VPI number
on the ATM port. ATM networks rely on the Virtual Circuit (VC) and Virtual Path (VP)
concept to provide unicast connection-oriented services with Quality of Service guarantees.

2Experts call MPLS bad for ’Net VPNs based on Multi-protocol Label Switching
said to be risky. Backbone management challenges also cited. By CAROLYN
DUFFY MARSAN, Network World, 08/06/01 “ Two prominent Internet researchers
from AT&T Labs are among a growing number of experts raising red flags about Multi-protocol
Label Switching, a next-generation traffic engineering technology backed by network industry
leaders such as Cisco, Juniper Networks and AT&T itself.

The researchers - security guru Steve Bellovin and network operations expert Randy Bush
- say MPLS create serious network management challenges for Internet backbone providers.
Even more dire are their warnings about potential security and privacy problems for companies
that deploy MPLS-based VPNs.

MPLS VPNs are a ”great way to sell routers, but they greatly complicate the core of the
Internet,” Bush says. ...

Critics Bush and Bellovin claim MPLS is unnecessary because carriers can run frame relay
or ATM traffic directly over an Internet backbone.”
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4.1.2.5).

• Reduction in the Operational Matrix as the control plane is merged with IP

So, while MPLS results in a Precedence Matrix which has much higher entropy

than ATM as there are less precedence requirements, its operational efficiency in

the presence of sub-optimal control policies (especially sub-optimal in the area of

schedulability) is an overriding tradeoff.

Along these lines, the same analysis probably also applies to Lambda switch-

ing:

• Increases Scheduling Complexity,

• Is ambiguous with respect to Operational Complexity

• Probably increases overall complexity

• Enables the network to operate at higher levels of complexity

As a system response and at a higher-level of analysis, it is possible to interpret

both MPLS and Lambda Switching in the context of Maximum Entropy Produc-

tion: they are the networking communities reaction to increasing the entropy of

networks Traffic Vector through higher structural complexity. See Section 6.1.2.

Keeping to the discipline, analysing MPLS vs. ATM:

Operational Complexity Higher, as intervening elements have to carry out

more operations.

Element Complexity Slightly lower, as there is likely to be a higher require-

ment for dedicated ATM hardware over MPLS.

Scheduling Complexity Higher, as MPLS will have less precedence require-

ment over ATM.

Traffic Complexity Ambiguous.

probably leading to higher Architectural Complexity for MPLS over ATM.

This means that, MPLS is more suitable for networks that are:
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Size Larger than ATM networks.

Control Policy Networks which are harder to control optimally.

Traffic Networks which will carry variable traffic.

5.1.5 Concluding the Evaluation of the Architectural Model

One of the main goals of this thesis was to come up with a systematic way of

thinking about architectural issues that would be easy to apply step-by-step, and

would also lead to concrete proposals.

The Architectural Model seems to achieve this purpose. The existing body of

literature which compares architectures is either too domain-specific, too techni-

cal, or does not use a systematic methodology which is easily exportable across

domains. It is difficult to learn lessons from the analyses which can be reused.

This makes it hard for a network engineer to build his know-how of how

networks behave, as experiences with different technologies cannot be translated

into useful artefacts for making decisions in the future.

The step-by-step procedure by which Architectural Model breaks down a net-

working decision into it’s components and translates them into specific proposals

is meant to overcome this shortcoming.

5.2 Evaluating the Measurement Model

The Measurement Model is a tool for quantifying the complexity and risk char-

acteristics of a network. It uses Reference Measurements as a building block.

The methods of the Measurement Model relate to closed networks over which

engineers have architectural control. Hence, the Internet, or other multi-homed

networks which are under multiple control domains are not considered.

5.2.1 Source Data

The data used to illustrate the machinery in this thesis came from the corporate

Wide Area Networks of Credit Suisse, an international Investment Bank. An

overlay reporting functionality was built to collect and report daily data on the
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the categories above using sampling routers in five locations: London, New York,

Singapore, Hong Kong and Tokyo. SNMP1 was used to collect data at these

servers and the data was stored in a central database. The data sampling rate

was 144 samples/24 hours. Over a two year period, in every 24 hours epoch,

reports were generated for:

Performance Consisting of Availability, Latency, Average Latency, and the

Standard Deviation of Latency

Utilisation Consisting of Average Inbound and Outbound, and Peak Inbound

and Outbound Traffic Measurements

Errors Consisting of Availability, Drops, Errors, Inbound and Outbound Dis-

carded Packet

Data was collected on:

• an average of 240 links between 282 sites,

• a minimum of 98 links on some days

• a maximum of 282 links, and

• with a standard deviation of 25 sites.

For confidentiality and security reasons, data has been anonymised and data

collection ends at least three months before submission of this thesis.

5.2.2 The Creation and Selection of Reference Measure-

ments

The basis for utilising the Measurement Model in a statistical context are Bernoulli-

(0,1) measurements. An element creates a trigger Bernoulli-(1) measurement

when a threshold is breached. Hence, the native data sets above are not suitable

1The Simple Network Management Protocol (SNMP) is an application layer protocol that
facilitates the exchange of management information between network devices. It is part of the
Transmission Control Protocol/Internet Protocol (TCP/IP) protocol suite.
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Domain Variable Lower Threshold Upper Threshold

WAN Average Inbound Bandwidth 5 40

Average Outbound Bandwidth 5 40

Inbound Utilisation 70

Outbound Utilisation 70

Availability 99.9

Average Latency 50

Standard Deviation of Latency 200

Firewall Average Inbound Bandwidth 20 80

Peak CPU Utilisation 90

Average Availability 99

Average Latency 5

Table 5.1: Typical Thresholds for Network Measurement Data

for use as Reference Measurements, and need to go through a conversion process.

For each data set, a threshold is chosen and values above the threshold for each

element constitute a trigger.

Furthermore, the key variables in the context of the Measurement Model are

probabilities. As the model is a 1-period model (in Section 7.1), each epoch

in the data set, i.e. measurements over 24 hours, constitutes a sample of the

percentage of elements in a hypothetically infinite-sized network which trigger a

Reference Measurement: the number of elements above the threshold are counted

and divided by the number of elements in total. This constitutes one sample, and

the series of samples constitute the time series.

This lead to the issue of how to select the right:

• Network engineers typically determine thresholds to satisfy a quality con-

straint, either in the context of an interactive transfer of data between

agents or in the context of bulk data transfer. Some typical values are:

• The threshold can be chosen using Sample Entropy, the negative natu-

ral logarithm of an estimate of the conditional probability that sub-series

(epochs) of length m that match pointwise within a tolerance r also match

at the next point.
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Sample entropy is a potential idea for selecting a threshold as it relates Refer-

ence Measurements to the “health” of the network. In the study of physiological

time series, it has been observed that healthy heartbeats have high entropy and

sample entropy is the technique used to measure such biological entropies (see

(RM00)). As an analogy, a threshold with the lowest Sample Entropy could be

the most informative about an inefficiency in the network.

In any case, the most reasonable choice is the former, values typically chosen

by engineers: this relates the entropic discussion around values that matter. This

is the methodology used in this thesis.

5.2.2.1 Using the Model

The analysis that follows uses Average Latency in the network with a threshold

of 50 millisecond: hence, the time series consists of the percentage of all elements

reporting average latency above 50 milliseconds over two years. Figure 5.1 and

Figure 5.2 display the empirical Cumulative Distribution and Density of the time

series.

The Implied Complexity of the network is calculated over the empirical density

of the time series data using a 100-day sliding window. The implied density

shows smooth tendencies for the networks complexity to gradually increase and

decrease over time as the network adjusts to traffic patterns and is reconfigured

post capacity and quality reviews. This can be seen in Figure 5.3.

The Complexity of the Network is measured as the Kullback-Leibler distance

between the networks empirical density and model-implied density. To calculate

this measure, Powell’s method (see (PTVF92)) is used to calculate the best fit

Measurement Model coupling parameter to the empirical density using Kullback-

Leibler distance as a minimising objective. The complexity is then the remaining

distance between the two densities. Over a 100-day moving window, this can be

seen in Section 3.2.

The minimisation procedure is remarkably efficient. Furthermore, it can be

seen that the model does a fairly good job of explaining most of the networks be-

haviour. Once again, note that model entropy is higher than Implied Complexity

(see Section 3.4.5:
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Figure 5.1: Empirical CDF, Average Latency 50ms
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Figure 5.2: Empirical PDF, Average Latency 50ms
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Figure 5.3: Sliding Entropy, Average Latency 50ms
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Figure 5.4: Network Complexity, Average Latency 50ms
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Figure 5.5: Empirical and Model Entropy, Average Latency 50ms
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Figure 5.6: Empirical and Model Density Average Latency 50ms

An interesting parameter to observe over time is the Implied Coupling in the

network. This is the parameter a in Equation 3.21 in Section 3.4.1, also defined

in Section 3.5.4.

Ai = aiM +
√

1− a2
iXi (5.1)

One potential validation of the underlying structural model proposed in Sec-

tion 3.4 is to see if different Reference Measurement data imply the same coupling.

This is illustrated in Figure 5.8.

5.2.2.2 Calculating the Slice Curve

Using Powell’s Method (see (PTVF92)) on the sum-of-squared differences be-

tween model density from Section 3.49 and the empirical density of the Reference

Measurement, it possible to solve for the shape of the Slice Curve.

What is more interesting is to take first derivatives of this curve, which is

the instantaneous coupling rate for a very thin Slice, i.e. the coupling rate as it
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5.2 Evaluating the Measurement Model

Figure 5.7: Implied Coupling Average Latency 50ms

Figure 5.8: Implied Coupling across Reference Measurements
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5.2 Evaluating the Measurement Model

Figure 5.9: Slice Curve Average Latency 50ms

applies to SliceK1,K1+ε.

One possible assertion is that for traffic which can tolerate a medium level of

risk, the Implied Coupling of the network drops: the network operates at lower

levels of Architectural Complexity. For traffic with hard idiosyncratic constraints

or hard systematic constraints the network does not need as much structural

complexity.

5.2.3 Concluding the Evaluation of the Measurement Model

The evaluations carried out in this Chapters are not a conclusive and full eval-

uation of the tools designed in this thesis. A full analysis would cross-check

interactions between the two models over time and across different network con-

figurations.

For example, the Architectural Model would be used to predict whether one

configuration is more complex over another, and Network Complexity measures

could be used to test this assertion.

Furthermore, it would be interesting to see whether a single networks Com-

plexity changes as it’s architecture evolves over time to allow for new protocols

and elements, such as firewalls, VPNs, and so on.

This was outside the scope of this thesis for the following reasons:
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5.2 Evaluating the Measurement Model

Figure 5.10: Slice Curve, First Derivative Average Latency 50ms

Time To consider the impact of architectural changes on a network, one needs

significant time series relating to that network over all periods during which

the architecture evolves. A typical medium-sized network will go through

a major revamp once every two years at the earliest.

Data The techniques in this thesis, especially as they relate to the Measurement

Model, apply to closed networks. It is very hard to get access to such data

as most corporates are excessively protective.

Nonetheless, it has been shown that the complexity measures of Section 3.4 are

easily calculatable and they exhibit interesting aspects of a networks behaviour

over time. Specifically, the Implied Coupling parameters and the Slice curve relay

significant insights about the networks behaviour over time and it’s adaptability

to different kinds of traffic.
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Chapter 6

Implications

Network entropy will increase. This is the key implication of the entropic proposal

of Section 2.2.1 and the trends outlined in Section 1.10. The increase in entropy

will materialise primarily at the IP layer.

This can be seen as a steady progression: starting with the predictable laws

of voice networking in the late 1950’s, to the power law relationships and ex-

ponential, but predictable growth of the late 90’s, to todays unpredictable data

growth rates and bursty, fractal traffic associated with peer-to-peer and wireless

networks1.

The rest of this Chapter analyses some of the far reaching implications for

networks, networking research, and the financial marketing of telecommunications

services from the Entropic Formulation.

6.1 Networking Implications

The Entropic Formulation of Chapter 2 and the mathematical tools developed in

Section 3.4 have significant implications for the future of networking.

1Nonetheless, it must be noted that the key reason for utilising entropy is not the thermo-
dynamic implications but the information theoretic requirement to account for interrogation
costs. Increasing entropy is driven by increased efficiency and diversity due to the utilisation
of rules of statistical inference by agents with informational constraints.
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6.1 Networking Implications

6.1.1 Entropic Routing

Definition 23 (Entropic Routing) The use of a direct measure of the net-

works complexity and risk characteristics to make routing decisions.

The arguments of Section 2.2.1 and the machinery of Section 3.4 indicate that

information theoretic measures of a networks static complexity are invariants, and

hence potentially a source of feedback in flow control: this leads to the idea of

Entopic Routing.

Flow control1 offers traffic to the network based on some information about

the network state. For these purposes, Slice is a fast, easy to calculate parameter

that can be fine-tuned as an objective in a feedback flow control system.

Slice has the potential to relay a rich characterisation of the state of the

network, and can be used to match differing traffic patterns to different paths

depending on their risk characterisations. For example, in the case of two traffic

flows sending an equal amount of traffic, one bursty and time-insensitive, , and

the other a steady stream, the router would send the former down routes with

Slice characteristics indicating low idiosyncratic risk, and the latter down routes

indicating low systematic risk. Networks built to service bulk customers would

prefer the former. Networks built to service retail would prefer the latter.

Minimising Slice with a highK1 would reduce the systematic risks in a network

at the cost of increasing idiosyncratic risks, making the network more suitable

for time-sensitive traffic. Minimising Slice with low thresholds would have the

opposite effect, making the network more suitable for high-volume traffic.

Of specific interest in this context is the notion of Complexity Neutral routing

decisions: in certain contexts, the network engineer may be interested in control

decisions which do not impact the overall complexity of a network.

Here are some results an entropic ingress router could make in the presence

of information about the shape of the Slice Curve:

• If a specific traffic requirement necessitated low idiosyncratic risks, a router

may set-up a a virtual path through the network in the absence of Slice

measurements below a certain threshold (i.e. if the network was too risky

from an idiosyncratic perspective).

1Also, sometimes termed feedback flow control.
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• If a specific traffic requirement necessitated low systematic risks but could

tolerate high idiosyncratic risk, the router may prefer to route the traffic

without any dedicated resources.

• Traffic under long-term constraints would be routed using Complexity Neu-

tral Slice parameters, to prevent degradations due to configurational changes.

• Long-term traffic under peak constraints would be routed along Low Id-

iosyncratic Paths.

Complexity Neutrality can be interpreted in two ways:

Architectural Neutrality These are configuration decisions which either do

not effect Architectural Complexity. This can happen either through off-

sets between Operational, Element or Scheduling Complexity, or by making

architectural decisions outside this domain.

Network Complexity These are routing decisions which do not effect Network

Complexity: for small changes to the coupling parameter in the Measure-

ment Model in the context of the calibration process, all decisions will be

Complexity Neutral. This happens because the coupling parameter is the

result of an optimisation minimising the KL distance between the Measure-

ment Model and the realised distribution of the network1

Complexity Neutral routes and routing decisions are important for network

control. For example, in the presence of sub-optimal control policies, entropic

routers could direct their flows down Complexity Neutral routes.

Finally, the sub-systems extensions in Section 3.4.4 admits exciting possibili-

ties for Slice as a candidate for feedback flow in BGP. This was already mentioned

in Section 4.1.2.5 when considering the insights from the Architectural Model in

the presence of sub-optimal control policies.

1This is not entirely correct: underlying this assumption is that Network Complexity is not
a function of a.
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6.1.2 The Red Queen Principle and Maximum Entropy

Production

The Red Queen principle1 is the term used to explain the low level competition

between agents which resembles an arms race in a system with increasing entropy.

The main assertion is that opposing forces created by innovation and competition

bring macro stability to the system. Competition between agents increases the

entropy of a system.

A typical response of a system out of equilibrium is structural complexity.

This is a direct consequence of the Principle of Maximum Entropy Production

mentioned in Chapter 2. Red Queen type competition is one way in which inno-

vative forms and more complex organisms are created in large-scale systems. In

the Schumpeterian economic setting, this usually surfaces in the form of monop-

olistic firms which innovate to create technological barriers as the competition

draws nearer. This increases the rate of innovation in the economy in the form

of structural complexity.

The increase in Architectural Complexity emanating from an increase Element

Complexity could be seen in this light: by increasing the structural complexity

of elements and operations in a network, vendors are reacting to increased com-

petition amongst themselves, and amongst elements in a network for resources.

MPLS, a stateful protocol which introduces significant control overheads, and

feature creep in routers are symptoms of this predicament.

Feature creep can also be seen in light of the analysis in Section 4.1.2.5.

According to this analysis, feature creep is equivalent to decreasing the number

of zeros in the Network Precedence Matrix, leading to increased Architectural

Complexity in the network. In this way, feature creep is a systems response to

increased variability in the traffic mix, as posited by the Principle of Maximum

Entropy Production for dealing with non-equilibrium states. Additional features

1Lewis Carol has the following passage in his book Alice Through the Looking Glass, which
has coined the term Red Queen principle : Well in our country said Alice, still panting a little
youd generally get to somewhere else if you ran very fast for a long time as we been doing. A
slow kind of country! said the Red Queen. Now here, you see, it takes all the running you can
do, to be in the same place.” See (CM95)
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in a router increase the dimensionality of the network and make it possible for a

network to attain higher levels of entropy sooner.

Increasing static complexity can also be seen as a control response to increas-

ing variability in the Traffic Vector: under the assumptions of increasing entropy

in network traffic, increasing structural complexity is the natural response of an

operator with fixed efficiency targets.

As before, this is a cycle: as the underlying infrastructure of the network, such

as Lambda switching, increases the entropy of the network, existing devices built

around assumptions based on predictable traffic (such as limited buffer size) will

become inadequate. This leads to an arms race, increasing the segmentation and

structural complexity of the system.

6.1.2.1 Separating Routing from Routers

A potential implication of increased entropy will be that routing control and

packet level processing functions will be forced to operate at lower and lower levels

of granularity. This trend is at odds with future speed requirement which leave

roughly 8ns for each packet lookup in a router with current technologies. The

computation and speed requirements of optically switched networks can only be

met if the routing function and the forwarding function are separated and become

highly specialised, meaning that their complexity will decrease. In (FBR+04),

the authors argue “the Case for Separating Routing from Routers” based also

on increasing complexity, even though theirs is not a holistic view as the one

espoused here.

6.1.2.2 End of the End-to-End Argument

The End-to-End argument is a design principle: it suggests that the actual code

for an application and services required to execute it should be moved upward in

a layered design. This has the effect of increasing the flexibility and autonomy of

the application designer.

While the added flexibility is welcome, especially during periods of high-

growth when there is significant ambiguity about which applications will be

needed, the mechanics of Architectural Complexity imply that the End-to-End
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argument implies networks which are much more complex: the size of the opera-

tional and network precedence matrices must be much larger than otherwise due

to the layering of the network and the requirement that network elements are not

able to specialise.

This means that the End-to-End argument brings with it significant increases

in the complexity of the lower layers of the network.

What is the impact of this design decision on network performance ? Systems

with high complexity do not operate well in the presence of sub-optimal control

policies (see Section 4.1.2.5). Furthermore, it is increasingly difficult to calculate

optimal control policies when network entropy is increasing, an eventuality for all

networks, whether due to competitive pressures, or Red Queen dynamics. This

implies that there is a key weakness with the End-to-End argument, and that it

is not a design decision suitable for all contexts.

The end of the End-to-End argument has been announced many times in

the past. While this is not the stated goal of this thesis, a systematic analysis

of this design principle with respect to network performance can cast a shadow

over its suitability in contexts where manageability is important and sub-optimal

performance can be costly. The re-emergence of connection-oriented protocols

in the form of MPLS, the de-layering of network protocols, and feature creep in

routers can be seen as one manifestation of this reality,

6.1.3 Network Planning

Current networking practices separate network planning from traffic engineering

(Section 1.7). Time scale differences between capacity planning and facility lo-

cation is the main reason for this. Increasing entropy means traffic patterns will

become fractal, and differences between time scales will disappear. This could

mean that in the future, the network planning and traffic engineering functions

in telecommunication firms will merge.

6.1.4 Element Design

In Section 2.3.1, the bijection between entropy and log utility maximisation was

pointed out. Agents which maximise entropy also maximise their long-term
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growth rate. In a closed system, they will dominate with probability one. This

means that only network elements utilising some form of statistical inference

based on the principle of maximum entropy (see (Jay57)) will be viable. When

designing new elements for a network which must compete for resources, the de-

signer must take this into account: unless elements use some rudimentary form

of entropy based statistical inference for competing in non-cooperative environ-

ments, they will not be able to secure the resources required to carry out their

duties.

6.1.5 Infrastructure

Complex infrastructure in real-world markets exists as a reaction to increased

entropy and to ease the computational burdens of participating agents:

• Regulators: Decrease computational burdens on agents by dictating best

practices.

• Brokers: Decrease computational burden, and increase entropy through

data dissemination.

• Derivatives: Increased entropy through security complexity.

In the future, the infrastructure required to maintain and operate networks

will also become increasingly complex. This has already happened in the Internet,

through the formation of ICANN1, its increased pro-activity in regulating the

Internet, and the system of 75 registrars who finance its budget. This is all a

sign of increased structural complexity as a response to increasing entropy in the

Internet. Social, regulatory and technical complex adaptive systems aimed at

reigning in the increasing entropy of the Internet should be expected to increase

in the future.

1The Internet Corporation for Assigned Names and Numbers (ICANN) is an internationally
organised, non-profit corporation that has responsibility for Internet Protocol (IP) address space
allocation, protocol identifier assignment, generic (gTLD) and country code (ccTLD) Top-Level
Domain name system management, and root server system management functions.
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6.2 Financial Implications

6.2.1 Insurance

In Section 1.6.1, it was argued that trading point-to-point capacity was a mis-

guided attempt at creating markets in telecommunications, and that this was

why the markets for traded bandwidth never materialised.

There were also other problems. In the financial markets, when large-scale risk

are identified, risk transfer does not usually begin to take place initially through

trading. The first step for risk transfer in the financial markets usually begins

with insurance1. Insured risk sometimes evolves and becomes tradable, but this

is not always guaranteed.

Furthermore, due to the implications of CAPM, insurance markets typically

provide of protection for systematic risks, and not idiosyncratic risks (see Section

3.4.5.3).

From this perspective, it can be seen that the markets for telecommunications

not only started out in the wrong order, they started out with the wrong risks: the

idiosyncratic risk associated with the price of a single point-to-point link matters

even less than the overall price of capacity for most large scale telecommunication

operators: their sheer size means they are hedged against single point prices for

free due to diversity in their networks, and would not pay a premium to hedge

risks associated with point-to-point bandwidth prices.

Insurance providers rarely provide coverage for first loss risk: a provider would

then be incentivised to take out insurance in parts of the network they know asym-

metrically to be weak. this problem is identified as ‘“asymmetric information” in

economics.

1A good current example for this procession is the market for variable annuities, which
are essentially securities linked to the equity markets that have minimum guarantees. The
minimum guarantee creates a “gap” risk for the seller of the annuity, a risk which was initially
hedged in the reinsurance market, not in the equity derivatives markets. However, since the
beginning of 2005, protection on this risk has moved to the traded market for equity derivatives,
as the price of reinsurance has increased. The increase in reinsurance premiums has happened
because variable annuity sellers have been forced by regulators to cover a larger portion of their
gap risk than was previously mandated.
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The true, undhedgeable, systematic risks faced by providers of telecom services

are:

• cascading failures1

• operational failures to deliver on large scale contracts

• persistent congestion

The solution to this is subordination: insurers are never interested in insuring

first-loss risks due to asymmetric information problems, and providers are not

interested in buying first loss risk because they can hedge those risks through

diversification.

To calculate the right levels of subordination, one needs a way to work effi-

ciently with the multivariate distributions of errors and failures realised in large

scale networks. It turns out, Slice measurements characterise multivariate distri-

butions directly in terms of subordination , and hence can play the symbolic role

of a numéraire in this market. They can be used to value insurance contracts

that cover these risks. It is possible that, over time, Sliced risks from a pool of

providers could become a tradeable asset2.

6.2.2 Impact on Strategy

If a market in network insurance materialised, the financial structure of most

service providers would change substantially. Currently, large service providers

have to “insure themselves” through size, as there is not a market for network

insurance. A market for network insurance would release significant amounts of

capital and could potentially create much smaller firms.

1Typically leading to losses that can scale to $ Billions.
2Note that, even with a subordinated contract (where the telecom provider takes first losses

and the insurance provider covers losses beyond a certain point) is still subject to significant
conflicts of interest when the network provider can game the underlying network in his favour.
Through element selection (see Section 4.2.1) and network configuration (see Section 4.1.2) the
provider can increase systematic risks, borne by the insurer, and reduce idiosyncratic risks.
Any insurance market would have to contract out such risks.
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6.3 Murphy’s Law of Networks

Entropy is the result of increased efficiencies in the network, in the form of

rapid provisioning and multi-source/destination traffic. Current technical devel-

opments driving higher efficiency include multi-path routing 1, optical switching,

and multi-homed applications. They are also increasing the entropy of the net-

work, as routes are set-up and torn down with increasing frequency. This is a

cycle: increased efficiency in the network increasingly attracts interactive, bursty,

voluminous traffic, leading to a sort of Murphy’s Law for networks:

Principle 4 (Murphy’s Law of Network Traffic) Any predictability in data

traffic will decrease over time as network elements increase disorder through in-

creasing efficiencies.

There is already significant empirical support of this hypothesis. For example,

in (XZB05), the authors mention that there is an:

• increase in unwanted traffic

• emergence of disruptive applications

• emergence of new services on traditional ports, and the

• emergence of traditional services on non-standard ports.

In any case, high entropy in a network should probably be interpreted as a

good thing. It has been known for a long time that heartbeats characterised by

high entropy (see (Iga03) belong to healthy hearts: similarly, the best way to

measure the health of a network is probably to measure its entropy2.

1In (KV05), the authors shows that a decentralised sufficient condition for the local stability
of end-to-end algorithms for joint routing and rate control is restricted by the round-trip time
of of that route alone, and not other routes. If such a guarantee could be given, i.e. round-trip
time measurements stability, scalable load-sharing across paths would be possible.

2“Internet performance is improving each year with packet losses typically improving by
40-50% per year and Round Trip Times (RTTs) by 10-20% and, for some regions such as S. E.
Europe, even more. Geosynchronous satellite connections are still important to countries with
poor telecommunications infrastructure. In general for HEP countries satellite links are being
replaced with land-line links with improved performance (in particular for RTT).” January 2005
Report of the ICFA-SCIC Monitoring Working Group
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Chapter 7

Conclusions

This thesis is an attempt at changing the way we reason about networks in a

fundamental way. So far, the existing body of networking research has focused

on the network as the side-effect of interacting elements. This thesis proposes

that one should instead focus directly on the macroscopic features of networks

directly.

When a market is not complete, there is no single valuation measure for

making decisions, and agents risk preferences matter. How does one decide which

valuation measure to use when there is a continuum of alternatives ? There are

two alternative solutions to this problem:

Utility-based Choose a representative agent, and assume the market sets prices

to maximise the utility of that agent.

Pricing Kernels-based Choose a valuation measure which is not directly re-

lated to the utility preferences of individual agents, but is related to the

statistical properties of asset prices1.

One is left with the dual problem of which utility function to choose in the

case of the representative agent whose utility is to be maximised, or which ad hoc

criteria to choose as a valuation measure for making decisions. The neoclassical

set-up uses the former methodology. This thesis defends the use of the latter

methodology, argues why the entropic criteria amongst others is the right one for

networks, and proposes various ways in which this criteria could be adapted to

1A pricing kernel is the stochastic discount factor in a model of asset prices.
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networks. It then pushes the boundaries of this assumption to arrive at various

insights about the complexity of networks using two practical models.

Why the latter methodology ? The assumptions underlying the neoclassical

paradigm are very unrealistic, and this is one reason. However, many models

make unrealistic assumptions, and these can be corrected in later extensions: the

Measurement Model is one good example.

There is a much more fundamental objection to the neoclassical paradigm

which is based on the enormous information requirements associated with the

equilibrium it proposes: as the entropy of consumption bundles is zero (all agents

of the same type consume the same bundle), the neoclassical paradigm would

require that all the information available in the network would be required at all

times for equilibrium to be maintained. This is not only a difficult task, but also

means that the neoclassical paradigm has a vanishingly small probability associ-

ated with it, amongst all possible equilibriums. This information objection holds

for any network model which is based on the core assumptions of the neoclassical

paradigm, even if other issues are addresses. This argument is a core contribution

of this thesis.

Hence, the objection is not just in the small details, but is of a very fundamen-

tal nature. This also makes clear why the alternative proposed in this thesis is

perhaps much more defendable: by comparison (and by construction) the maxi-

mum entropy equilibrium is the most likely equilibrium amongst all equilibriums.

That one should focus directly on the statistical properties of network charac-

teristics as opposed to the side-effects of toy models based on utility maximising

agents is the basis for arguing that the research agenda needs ReReshaping.

The two models developed to analyse real-life networks and architectural de-

cisions are the key mathematical contributions of this thesis. They:

• illustrate that some of the key emergent characteristics of the complexity

of a network could be tied to notions of entropy, and

• show that highly tractable models could be built to proxy both the com-

plexity and the riskiness of a network.

The goal of this thesis was to create a systematic methodology for considering

networking issues. The result is a number of insights, and the implications of
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the methodology that has been built. The key results of this analysis can be

summarised as:

The Entropic Formulation Researchers should ensconce their modelling around

an Entropic Formulation of the networks configuration, on the grounds that:

1. The Micro-foundations of a zero-sum game between competing agents

implies a maximisation of a systems entropy.

2. Any system which tries to achieve maximum informational efficiency

will trend towards higher entropy.

3. A probabilistic analysis of likely configurations of a network make avail-

able the rich toolkit of statistical mechanics, which also imply that the

most likely configuration will be that which has the highest entropy.

Important Complexity Tradeoffs The Architectural Model is a rich source of

insights about the complexity of networks.

1. When the number of Elements or Operations increase, the complexity

of a network increases.

2. When the Scheduling Requirements of a network decrease, its com-

plexity increases. This could happen either because more Elements

can carry out more Operations or the sequencing requirements are de-

creased.

3. Smaller networks are more sensitive to changes in the complexity of a

network. These changes can be Operational, related to Elements or to

the Scheduling requirements in the network.

4. Increasing complexity can increase resilience and/or performance.

5. Architectural changes will impact networks operating at lower levels

of complexity more than networks operating at maximum complexity.

This means that architects should direct their resources towards sub-

systems with low complexity for maximum engineering impact.
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This last point perhaps also relates to the direction that future networking

research should take: large, complex existing systems, like the Internet, will

not show large benefits from engineering. They have already reached a high-

level of efficiency, perhaps evidenced by their complexity. The academic

community may be better served if research were targetted at smaller, less

complex networking models, where the benefits from engineering and new

techniques may reap larger rewards.

Performance and Complexity While some of the insights around complexity

tradeoffs are perhaps obvious, placing them into the networking context and

seeing how they could be applied to reasoning about architectural issues is

a core contribution of this thesis. However, what is not so obvious are the

two key insights related to network performance and complexity:

1. The increase in network performance from increasing complexity shows

diminishing returns.

2. The performance degradation from sub-optimal control policies are

higher for more complex networks.

This means that the network engineer must evaluate carefully the tradeoffs

between network performance and complexity.

Risk Associated with the complexity of a network are risks. Large systems are

open to two kinds of risks, idiosyncratic and systematic, and they relate to

the complexity of a network in different ways.

1. Highly complex networks face idiosyncratic risks.

2. Networks with low complexity face systematic risk.

Implications for Networks The Entropic Formulation posits a number of im-

portant propositions for the future evolution of networks and proposes al-

ternative explanations for why certain complex phenomena emerge:

1. The Entropy of networks, in the form of network traffic and structural

complexity, can be expected to increase over time as they become more

efficient.
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2. Entropy maximisation reveals that there are Entropy prices associated

with the constraints in a network. The analysis indicates that config-

uration changes which cause large changes in the entropy of a network

are less likely.

3. Networks may display structural complexity either in the form of emer-

gent phenomena, or in the institutions they maintain in order to func-

tion smoothly. These structure allow networks to attain Maximum

Entropy states faster.

As a final point, we point out an alternative interpretation of the Implied

Coupling metrix. Every experienced engineer knows that how tightly a network

is coupled together impacts performance, resilience and complexity. However, it

is generally very difficult to characterise and measure the actual coupling in a

network, either because the information is simply not available due to data limi-

tations, or it is hard to interpret the various alternative graph-theoretic measures,

like clustering and transivity, directly in terms of performance and complexity.

As an alternative, the Implied Coupling measure in this thesis can be interpreted

as the effective coupling of the network, rolling all the information about the net-

works performance including linkage, resource sharing, co-dependent traffic flows

into one, simple figure which is comparable across networks.

7.1 Future Work

There is significant room for expanding and validating the methodology in this

thesis, in the form of interesting and practical work for the future.

7.1.1 Empirical

While the data in this thesis illustrates that the Measurement Model is useful

for characterising network complexity, it would be useful to correlate complexity

measurements with actual network changes.
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Another obvious area for further research is correlations between network

decisions and rises and falls in idiosyncratic and systematic risks. For this, Slice

measurements need to be regressed against network decisions. Such data is also

generally hard to come by.

Further model validation is an ambitious research agenda. For full validation

of the proposals in this thesis, significant data collection in the setting of a large

autonomous system over significant periods of time would be required. Further-

more, as this is a thesis about architecture, these measurements would have to

be crossed with architectural changes. This data requirements was outside the

scope of the resources available during the writing of this thesis. Small labo-

ratory networks are not suitable for this kind of work: the large, homogeneous

approximations underlying the mathematical relationships in this thesis require

relatively large networks for the numbers to have significance. 1

Of all the findings of Section 5, the most interesting one probably relates

to the shape of the first derivative of the Slice Curve. While this is just an

assertion (and hence, potential future work), it could be that the shape of this

curve has something to do with how flexible a network is. It would be interesting

empirical research to relate the shape of this measure to network configurations

and technology which enabled automatic reconfigurability.

7.1.2 Routing

There is obvious research in the area of control related to the use of entropy to

make routing decisions. The issues that would require further analysis include:

Entropy Flooding A few routers using entropic routing may cause instability

in a network in the presence of other routers which do not. This is because

1One key problem hindering this is security: most corporate networks abide by strict secu-

rity and confidentiality requirements making it practically impossible to cross network config-

uration data with actual performance, error and utilisation data in the context of an academic

article. It would be interesting to see if an avenue for this research could be formulated. Even

when there is permission for the data to be utilised, there is a limit requiring that data used

not be current (hence, the data in this thesis is at least three months old).
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7.1 Future Work

the behaviours of the routers which do use entropic routing would speed the

ascent up the entropy gradient. While the entropy-enabled routers would be

able to adapt to the increase in the entropy of the network, other elements

in the network would be “driven to extinction”. 1

Interaction Between Complexity and Risk It is possible that entropic routers

routing on the basis of an objective function which aims to minimise idiosyn-

cratic risks in a system coupled with low complexity could cause instability.

Furthermore, data collected for the purposes of this thesis was relatively

coarse. This thesis makes the claim that it is possible for the mathematical

techniques in this thesis to be the basis for even fine grain routing of data flows

in a network. That claim would require testing with higher frequency data, more

than the 144 samples collected for use in this thesis. This is another interesting

area of research in the future.

7.1.3 Modelling

There is always useful work to be done in the direction of extending the Measure-

ment Model further. The obvious ones are:

1. Adding a time dimension to the model: the model in Section 3.4 is a one

period model.

2. Modelling traffic variability explicitly

3. Changing the coupling specification in the model from a Gaussian to some-

thing more elaborate

The final point relates to the parameter called Implied Coupling In Section

3.5.4 and in Figure 5.7. This parameter is an indication of how tightly the network

is coupled together over the many resources that are shared, and the operations

that are executed on multiple elements. In the context of the Measurement Model,

1This relates to the point made in Section 2.3.1, that in a closed system with, entropic

agents will dominate the actions of all agents.
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7.1 Future Work

this parameter has a very simple interpretation: it is the flat correlation in a mul-

tivariate Gaussian. Extending the model to incorporate non-linear dependencies

would be an interesting avenue of research,

While these are interesting extensions, they must be noted with the caveat

that one strength of the methodology is the use of a simple, yet structural model

(see Section 6). Extreme extensions to the model risk squandering the gains from

simplicity to “feature creep” in modelling requirements.

7.1.4 Applying the Entropic Formulation

In Sections 2.2.1.1 and 2.2.2.2, an outline was given for how the Entropic Formu-

lation could be applied to actual networking problems. This is perhaps the most

interesting area for future research. The Kelly and Gibbens papers apply the

minimax methodology to networks, but the entropic implications are not really

studied. It is easy to imagine many other contexts where the minimax, zero-sum

game theoretic formulation makes sense for networks, such as in denial of ser-

vice attacks. Again, it appears that the entropic angle has been missed by most

authors.

It is surprising that more has not been made of the statistical mechanics

approach to networking evidenced in this thesis, especially as there has been

significant crossover between the two fields of telecommunications research and

the physical sciences in many adjacent sub-fields. Could the diversion provided

by the neoclassical paradigm be to blame ? In any case, as networks grow in size,

become reconfigurable and the elements on networks acquire more “intelligence”

through the use of statistical inference to make control decisions, it is inevitable

that network researchers will be forced to turn to statistical techniques to make

predictions about how their networks will behave. This is the most interesting

avenue for future research into networking as a result of the work in this thesis.

7.1.5 Looking Back over the Fence

There is also interesting research in other fields which could reverse the direction

of information flow in this thesis. This thesis was built on work from neighbouring
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7.1 Future Work

fields: manufacturing and finance. The key machinery used from finance was

the actuarial practice of making homogeneity assumptions for credit risk and

measuring risk in terms of idiosyncratic and systematic risks.

A key limitation of those models, already highlighted, is the assumption of

static trigger probabilities. Networking research using queueing in stochastic

environments is one potential way to deal with this. Current approaches to

market microstructure research such as herding behaviour, order clustering, and

long-range dependencies in stock prices could also benefit from models based on

queueing theory. It would be interesting to take existing networking models to

see how they could be applied in return to the fields of finance and manufacturing.
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Appendix A

Rabbits and Traps

Work inspired by this thesis led to this essay titled “Rab-
bits and traps”, which won second place in the The John
Rose Prise, for “the best explanation of a scientific princi-
ple of general interest”.

Rabbits and traps
Imagine you are a rabbit, living a luxurious life at the edge of a carrot farm.

After raiding the farm for many months, the farmer has finally had it: he is not

taking any more chances. He is going to lay some traps.

What would you prefer ? That he lay all the traps densely in one section of

the farm, or that he spread them out evenly across ?

If you are one single rabbit, you prefer that he lay the traps bunched up

together in one section. Most of the time, you will probably be OK. If you hit

one trap, you hit them all. If you hit none in one section of the farm, chances are

there are none anywhere around.

Things change if you are a large herd of rabbits. In this scenario, you would

prefer it if he laid them out randomly. However small, there is a chance that as

you go carrot hunting, none of you will hit any traps. However, if all the traps

are bunched up together in one section of the farm, it is almost certain that some

of the rabbits will end up caught in the section with the traps..
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This simple analogy describes an important concept which is increasingly

important in our lives: the impact of correlations on large complex systems.

First things first: what is a large complex system ? You get one of these

whenever there is more than one trap, rabbit-related questions need answers, and

simply counting the number of traps and rabbits does not give a good enough

answer. Just a simple headcount is not enough to answer how one can be sure

at least a certain number of rabbits gets caught every month: one also needs

layout information. The difference between large complex systems and large

simple systems is whether basic reductionist techniques suffice when answering

important questions, or whether one also needs information about the system as

a whole.

Correlation itself is more subtle. Its about the likelihood of a rabbit being

caught if another rabbit has been caught. In the example above, when all the

traps are side-by-side, correlation is high. If one rabbit has been caught, chances

are that other rabbits in the vicinity are also suffering. On the other hand, low

correlation happens when the traps are randomly dispersed. Even if you are

dancing with the reaper, the likelihood of a a rabbit happily munching away next

door may not change then.

The Subtleties: Correlation neutral rabbits
Lets complicate things for Mr. Wabbit. First of all, it is clear that there is

an inflection point at which the dispersion of traps and the likelihood of a rabbit

being caught turns. At one extreme, traps are entirely randomly dispersed and

the likelihood of being caught by a trap is unaffected by whether the rabbit next

door is suffering in the clutches of a manacle. The other extreme makes it certain

that if your buddy has been caught, you are doomed. Most likely, no matter

which direction you hop, there is a trap.

This is the case for rabbits hopping around independently of each other. How-

ever, what about small groups of rabbits ? As the rabbits munch in groups of

two or more, interestingly enough, there is a point at which how correlated the

traps are makes no difference: the dispersion of traps offsets the correlation of

rabbits ! We can call these, correlation neutral rabbits !

This brings us to the first lesson to be learnt from rabbits: if one is facing

an adversary who has a limited number of traps but can vary their dispersion
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up and down to increase his chances of baiting , there is an optimum, medium

group size for munching which makes one invariant to how the traps are layed

out. Small groups are better then being alone and being together.

A common misunderstanding about rabbits and traps
(and correlation) !

Most people who have ever read anything about major large scale mishaps

have some intuition which tells them that very high correlations are bad. Whether

it is the 1987 market crash, the 1998 Long Term Capital Crisis, the electricity

blackouts in California, or pandemics, they know that when lots of things be-

come highly correlated with each other, bad things can happen simultaneously

to everyone. You dont need a silly story about rabbits to tell you that !

However, the fact is, in the real world, there are usually only a limited number

of traps. Herein lies the main misconception. While it is true that all the traps

may set simultaneously one day, this would mean that on other days, they were

not setting at all. This brings us to the second lesson: if one concentrates on

trying to prevent large scale losses, one is probably paying the price through

small losses which add up over time: a rabbit here and a rabbit there.

The focus on correlation is partially skewed by the reporting of extreme events.

No-one likes to report that one small rabbit got caught here and another rabbit

caught there. Much juicier if there is a farm where 30 rabbit all got caught in the

same day. Books are written about tulip crazes, not about the seemingly random

(but regular) losses by small flower growers occurring independently of each other

over long periods of time. The reporters focus on one end of the extreme and

ignore the other. While it is true that the events surrounding the Russian default

in 1998 were disastrous, they were preceded by many years when things went

fabulously for most market participants.

In rabbit-speak, this is what happens when the farmer puts all his traps in one

place. There will be large swathes of time when no rabbit get caught. Then, one

day, all the rabbits get caught together. The opposite would be a case where the

farmer caught one or two rabbits with certainty almost every month, but never

all of them.

Who cares about rabbits ?
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We should all care about rabbits. We lead lives in complicated circumstances

where the likelihood of something important happening to us is a function of

correlation and large numbers.

If you are a sole ADSL user and connectivity matters, you want to ensure

that the traps are bunched up together at BT. You want to be sure that the

smart engineers there have spent all their money on ensuring that single users

are served well and the likelihood that you will hit a spurious fault which effects

your line and only your line is low. This of course will mean that they spent less

money on ensuring that the whole system never ever goes down, as they have

limited resources.

On the other hand, if you are a large corporation, you want the exact opposite:

you prefer it if BT spent their money to ensure large scale outages which effects

many users are unlikely. If one of your many offices is losing connectivity, chances

are the other will be up and running and can take some of the excess load from

loss of connectivity to a small portion of other users.

This is the third lesson to be learnt from rabbits: While being small and simple

is nice, in certain cases there are advantages to being large and complicated when

one has no control over small, random mishaps.

Tolga Uzuner

PhD Student

Computer Lab

Kings College

Box 441

itu20@cl.cam.ac.uk
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Appendix B

Entropy

The entropy of prices, H(g) ≡ H(FT |g) of the random price Ft under g is defined

as:

H(g) ≡ −
∑

i

gilog(gi) (B.1)

in (CT91).

Broadly, entropy is a measure of the information content in a probability

distribution. Probability distributions with higher entropy have lower information

content, the meaning of which is formalised in a number of settings broadly as

to mean the number of bits required to transmit a certain message through a

communication channel when words occur with a certain probability. A language

with low entropy can be transmitted with a smaller number of bits 1.

Entropy is not randomness: seemingly chaotic messages can have very high or

very low entropy, and there is a vast literature dedicated to this topic. (GM94)

book covers these issues in detail, and in Chapter 2, we will also provide a brief

discussion of the relevant issues.

The estimation of the distribution of an underlying asset from a set of market

prices using the principle of maximum entropy is least committal with respect to

unknown or missing information and is hence the least prejudiced. As a matter

1In this context, log has base 2.
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B.1 Maximum Entropy and Relative Entropy

of fact, the maximum entropy distribution is the only information about assets

that can be inferred from price data alone.

Relative entropy and the Principle of Maximum Entropy admit a dual inter-

pretation: the relative entropy between the Uniform Distribution is the implicit

objective function one minimises when one maximises entropy. This is also why

maximising entropy is sometimes referred to as a smoothing procedure.

B.1 Maximum Entropy and Relative Entropy

The Kullback-Leibler (see (KL51)) cross-entropy measure relates distributions

through a closeness metric:

Ip−ṕ =
∑

j

Pjlog
Pj

Ṕj

(B.2)

If two distributions are identical, this measure returns 0. In many contexts,

the entropic approach to economics is posed in this measure, as opposed to max-

imising entropy. For example, (AFHS97) minimise cross-entropy to an a priori

distribution, allowing the inclusion of prior knowledge of the asset distribution.

The a priori is typically a moment constraint in the form of past realised volatility,

skewness and kurtosis in prices.

However, it easy to see that maximising entropy in the absence of a prior is

equivalent to relative entropy methods when the prior is set equal to the uniform

distribution, which has the highest entropy amongst all distributions.

Because the −log function is convex, Avg(−log(pi

qi
)) ≥ −log

(
Avg

(
pi

qi

))
due

to Jensen’s Inequality. This implies:

Ip−ṕ ≥ −log
∑

i

(
qi
pi

qi

)
= −log

∑
i

pi = −log 1 = 0 (B.3)

meaning that the Relative Entropy is strictly non-negative and equal to zero

if and only if p = ṕ.
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B.2 Axiomatic Formulations of Entropy

B.2 Axiomatic Formulations of Entropy

In his original text, Shannon used an axiomatic justification for the Entropic

Formulation. His axioms were (see (CT91)):

• Normalisation: H2(
1
2
, 1

2
) = 1

• Continuity: H2(p, 1− p) is a continuous function of p.

• Grouping: Hm = (p1, p2, ..., pm) = Hm−1(p1+p2, p3, ..., pm)+(p1+p2)H2(
p1

p1+p2
, p2

p1+p2
)

This implies that Hm = (p1, p2, ..., pm) = −
∑m

i=1 pi log2 pi for m = 2, 3, .... A

sketch of this proof from the perspective of Information can be found in Section

3.3.2.1.

B.3 Principle of Maximum Entropy

The principle of maximum entropy is based on the observation that information

entropy can be seen as a numerical measure which describes how uninformative a

particular probability distribution is from zero (completely informative) to log(m)

(completely uninformative). Of all distributions, the most uninformative distri-

bution is the Uniform distribution. Choosing a distribution with lower entropy

results in the assumption of information which one does not possess. Thus, the

maximum entropy distribution, given a priori information, is the only reasonable

distribution.

Formally, the principle of maximum entropy is a method for analyzing avail-

able information in order to determine a unique probability distribution:

Definition 24 (Principle of Maximum Entropy) Choose the probability model

f̃ which maximises the entropy of x:

H(x|πf ) = H({x = xn}N
1 |πf ) = −K

N∑
n=1

f(xn)log2f(xn) (B.4)

as this is thee least biased distribution that encodes certain given information

while remaining consistent with the given information.
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B.4 Jensen’s Inequality

Using the Wallis derivation, it is also possible to arrive at the Principle of

Maximum Entropy making no reference to information entropy as “uncertainty”

or some other subjective measure. In this derivation, the entropy function is not

assumed a priori, is found in the course of using strictly combinatorial arguments.

It is the same argument used for the derivation of partition functions in statistical

mechanics. It concludes with the finding that to maximise entropy under the

constraints of testable information is the most probable of all ”fair” random

epistemic distributions, in the limit as the probability levels go from discrete to

continuous.

B.4 Jensen’s Inequality

For a real continuous concave function:∑
f(xi)

n
≤ f

(∑
xi

n

)
(B.5)

In Economics, Jensen’s Inequality is used to show that an investor with a

concave utility function prefers a certain return to the same expected return

with uncertainty. In statistics, it is used to show that E[X2] ≥ (E[X])2. As

E[X2] − (E[X])2 is the variance, this also implies that any random variable for

which E[X2] is finite has a variance and a mean.

In Information Theory, Jensen’s Inequality makes use of the fact that−
∑

i gilog(gi)

is a concave function, to make statements about how entropy behaves as a func-

tion the properties of gi.

B.5 Properties of Shannon’s Entropy

The Shannon entropy satisfies the following properties:

• For any n, Hn(p1, ..., pn) is a continuous and symmetric function on variables

p1, p2, . . . , pn.

• Event of probability zero does not contribute to the entropy, i.e. for any n,

Hn+1(p1, . . . , pn, 0) = Hn(p1, . . . , pn).
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B.5 Properties of Shannon’s Entropy

• Entropy is maximised when the probability distribution is uniform. For all

n, Hn(p1, . . . , pn) ≤ Hn

(
1
n
, . . . , 1

n

)
.

Following from the Jensen inequality,H(X) = E
[
logb

(
1

p(X)

)]
≤ logb

(
E
[

1
p(X)

])
=

logb(n).

• If pij, 1 ≤ i ≤ m, 1 ≤ j ≤ n are non-negative real numbers summing up

to one, and qi =
∑n

j=1 pij, then Hmn(p11, . . . , pmn) = Hm(q1, . . . , qm) +∑m
i=1 qiHn

(
pi1

qi
, . . . , pin

qi

)
.

The entropy Hn

(
pi1

qi
, . . . , pin

qi

)
is the entropy of the probability distribution

conditioned on group i. This property means that the total information is

the sum of the information gained in the first step, Hm(q1, . . . , qn), and a

weighted sum of the entropies conditioned on each group.

It can be shown that the only function satisfying the above assumptions is of

the form Hn(p1, . . . , pn) = −k
∑n

i=1 pi log pi, where k is a positive constant

representing the desired unit of measurement.

B.5.1 Kraft Inequality

A particular application of Information Theory is to the practical implementa-

tion of codes. Kraft’s Inequality is condition which specifies the necessary and

sufficient conditions for the existence of prefix codes. Prefix codes are instanta-

neously decodable codes, instantaneous because no code word is a prefix of any

other, and the decoding process requires a single pass over the code.

Formally, let each source symbol from the alphabet

S = { s1, s2, . . . , sn } (B.6)

be encoded into a uniquely decodable code over an alphabet of size r with

codeword lengths

`1, `2, . . . , `n (B.7)

Then, Krafts Inequality states that:

n∑
i=1

(
1

r

)`i

≤ 1 (B.8)
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B.6 Renyi Entropy

The converse also implies that a uniquely decodable code over an alphabet of

size r exists if `1, `2, . . . , `n satisfies the Kraft Inequality.

In the context of this thesis, the prefix code would be a representation of

results for a binary poll, as it relates to Section 2.2.1. The Kraft Inequality is

then used to prove the lower bound on the length of these codes as the Entropy

of the codes.

B.6 Renyi Entropy

Renyi Entropy generalises Shannon measure of information:

Hα(x) =
1

1− α
log2

(
n∑

i=1

pα
i

)
(B.9)

for α 6= 1.

In the limit, when α = 1, one gets back Shannon’s Entropy. It has been applied

to measure complexity in dynamical systems in relation to “subjective” observers.

When α = 1, it becomes possible to separate out variables in a multivariate

distribution:

H(A,B) = Hα(A) +Hα(B) (B.10)

Hence, Renyi Entropy can be seen as a relaxation of the additivity requirements

in Section B.2.

Renyi entropies are used in various diversity indices and uncertainty measures.

For example, when α = 2, one gets a measure of information which is slightly

different from that of Shannon’s. Under Shannon, information measures the

reduction in uncertainty that results from the occurrence of an event. When

α = 2, a numerical value is assigned to not a reduction in uncertainty, but to a

transition in the probability distribution. This generalises information from the

mere occurrence of an event to the change in the probability distribution arising

from an entire ensemble of events. This special case of Renyi Entropy is dubbed

Variational Information.
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B.7 Connections to Other Areas

B.7 Connections to Other Areas

In B.2, entropy is measured with Base 2. By changing the logarithmic base to

e, one gets the Maxwell-Boltzmann-Gibbs entropy, frequently S in the physics

nomenclature. The Maxwell-Boltmann-Gibbs entropy measures the number of

ways N atoms can be arranged in m cells. Let Ni be the number of atoms

in cell i, where i = 1, . . . ,m. Letting W be the number of arrangements, and

S = logeW :

W =

[
N !∏

1≤i≤mNi!

] 1
N

(B.11)

Let pi = Ni

N
, then, using Stirling’s formula:

S ≈ −
∑

1≤i≤m

pi loge pi (B.12)

Another connection is to ergodic theory: if entropies for two spaces are the

same, there is a measure preserving map that also preserves Bernoulli shifts.
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Appendix C

Brief Overview of Statistical

Mechanics

In physics, one assumes that the system is composed of N molecules with a total

energy E. Instead of attempting the impossible by focusing on the energy of

each individual molecule, one focuses on the populations of energetic states: this

can be graphically described by imagining that one one buckets energy states

into discrete components and then tries to determine how many molecules are in

a particular bucket. In equilibrium, the number of molecules in each bucket is

constant, on average: there will be n0 molecules in the state with energy E0, n1

with E1, and so on.

Due to the fact that

N =
∑

ni (C.1)

Each of the different ways in which the energy buckets could be populated

constitute a configuration. One such configuration is N, . . . , 0, and there are

many more.

The number of arrangements, W , corresponding to a given configuration

n0, n1, . . . is given by:

W =
N !

n0!n1!n2!...
(C.2)
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corresponding to the number of distinguishable ways N objects can be sorted into

bins with ni objects in bin i.

Applying Stirling’s approximation,

lnn! ≈ n lnn− n (C.3)

and taking logs, one gets

lnW = N lnN −
∑

(ni lnni) (C.4)

where −
P

(ni ln ni)
N

is the entropy of a specific configuration.

A configuration dominates another if there are more ways to obtain it. The

most dominant configuration will be the one with the largest value of W with

respect to ni. As can be seen from Equation C.4, this is equivalent to finding the

configuration with maximum entropy.

In statistical mechanics, the partition function is an important quantity that

encodes the statistical properties of a system. Most of the thermodynamic vari-

ables of the system, such as the total energy, free energy, entropy, and pressure,

can be expressed in terms of the partition function or its derivatives. The par-

tition function encodes all the information of a system e.g. total energy/utility,

fluctuation of energy, correlation functions, etc., without the need for considering

microscopic quantities like the exact energy state of a molecule, or in the case of

a network, certain degrees of specific nodes in the network. The forms of par-

tition functions of statistical physics is analogous to a probability distribution

obtained from maximizing informational entropy when only average values are

known/given.

In order to understand the partition function, how it can be derived, and why

it works, it is important to recognize that these macroscopic properties reflect

the average behavior of the components. The partition function may be either

calculated analytically, or approximated by computer simulations.

Another important feature of statistical mechanics is the constraints operating

on the system, such as volume. Typically, the key constraints in operation in

physics are the total number of molecules and the total energy of the systems

N =
∑

ni (C.5)

E =
∑

niEi (C.6)
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where there are ni molecules in energy state Ei.

In order to find the way in which molecules are distributed by energy states,

which is equivalent to finding the number of molecules ni in energy state Ei, the

constraints are usually factored in through Lagrangian multipliers:

f(ni) = ln(W ) + α
(
N −

∑
ni

)
+ β

(
E −

∑
niEi

)
= N lnN −

∑
ni lnni − α′

(
N −

∑
ni

)
+ β

(
E −

∑
niEi

)
(C.7)
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Appendix D

Perfect Markets

The use of market metaphors to solve technical problems in telecommunication

networks have been based on the results of Neoclassical Economics for the last two

decades. While there is nothing wrong with turning to market mathematics, the

reliance on Neoclassical Economic theory is arguably misguided. A large body of

research in the last two decades has debunked the applicability of the neoclassical

paradigm to real-life financial networks, and many of these arguments are equally

applicable in the realm of networks.

The crux of this argument is based on intractability: in the hypothetical set-

ting, agents face an insurmountable task. In what is known as the Arrow-Debreu

framework, one needs a complete market for each good spanning all contingent

states of an economy. Agents then have to keep track of prices and transact in

an unrealistically large number of markets, This casts a pall over the neoclassical

paradigm, equivalent in many ways to the incalculability criticism levied on the

socialist agenda: this time, it is the economic agent, rather than the central plan-

ner, who faces an equally intractable problem in the neoclassical paradigm. This

does not even account for the fact that, in the real world, market participation

is costly: agents would face unbearable transaction costs if they were required to

participate in all markets all the time.

Markets in the real world do solve problems relevant to telecommunication

networks: efficient allocation of resources, enabling transactions between agents,
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centralising information. They just don’t solve them using the machinery of

neoclassical economics.

D.0.1 Neoclassical Economics

General equilibrium theory underlies all the major developments that have come

to be known as Neoclassical Economics. Leon Walras (1834-1910), known gener-

ally as the father of General Equilibrium Theory, formalised the building blocks

of this theory in a market system in which the prices, production and consump-

tion of all goods are interrelated. Through the effects of complementarity and

substitution, a change in the price of one good effects another: for example, a

change in the price of oil changes the price of airline tickets. This, in turn, effects

tourism.

In theory, this means that calculating the equilibrium price of just one good,

requires information on all goods and knowledge of all demand and supply func-

tions in the system. It is assumed that access to this information is cost-free and

the ensuing calculations are instantaneous (see (HK88)).

The economics profession has witnessed a progression of increasingly sophis-

ticated tools before arriving at the Arrow-Debreu formalisation. These are:

1. Adam Smith’s invisible hand

2. Walras’ auctioneer

3. Marshall’s partial equilibirum, culminating with

4. Arrow and Debreu’s proof of the existence and uniqueness of a General

Equilibrium under certain (pretty stringent) conditions.

The central conclusion of this analysis is the idea of laisser-faire: markets

allocate resources optimally in an unregulated, free economy.
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D.0.1.1 Walrasian Auctions

Walrasian auctions, are a form of a simultaneous auction in which each participant

is able to calculate a demand function for each good in an economy, submit this

to an auctioneer (Walrasian) who is then able to calculate total demand across

all agents. The auctioneer then proceeds to match perfectly total supply and

demand in the economy.

Notions of equilibrium are used to determine prices for goods across single

or multiple markets. In “partial equilibrium” aggregate demand and supply are

equalised under demand and supply functions which takes price as input. The

key simplification is independence between goods: the price of one good does not

affect another.

Walras’ key contribution was to expand partial equilibrium to general equi-

librium, when there is complementarity and substitution between goods and the

price of one good effects the prices of all other goods in the economy. It is this

calculation which the Walrasian Auctioneer performs, above and beyond that of

simple “partial equilibrium models”. However, there is a strong implications: the

solution to the system of equations which solve Walras’ problem requires market

clearing.

D.0.1.2 Arrow-Debreu

Kenneth Arrow and Gerard Debreu formulated the first set of results around the

dynamics of an equilibrium in the Neoclassical setting in their classic paper in

1954 ((Arr65; Arr71; AD54)). They were able to prove the existence of a multi-

market equilibrium in which no excess demand or supply exists. This proof is

based on the following key assumptions:

• Convexity of the Agents Utility Function

• Perfect Competition

• Demand Independence
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The implication of their result is that here will be a set of prices at which

aggregate demand and supply are matched for every good in the economy. Fur-

thermore, there will be a spot and forward price for every good, for all time

periods. This defines Maximally Complete Markets.

Arrow-Debreu Security To make their argument, Arrow and Debreu((AD54))

made use of a hypothetical construct dubbed an Arrow-Debreu Security. This

is a security which pays one unit of numéraire 1 upon the realisation of a spe-

cific, identifiable state in the economy, and otherwise pays zero. They are used

to analyse derivative contracts, whose payoffs are specified in terms of a linear

combination of Arrow-Debreu securities. These securities, by arbitrage, sum to

1, and like probabilities, are exhaustive and mutually exclusive.

The price paid today for a state price, i.e. an Arrow-Debreu security, resem-

bles a density. This is just a resemblance, because the probability has undergone

what is called a “change of measure”2, due to arbitrage. It is important to see

that they are not quite probabilities, even when translated into their continuous

price and time limit.

The Arrow-Debreu method advanced General Equilibrium theory by giving

it consistent dynamics and spatiality. Under Arrow-Debreu, equilibria is not

achieved via an auction, but via a game in which choices for each agent are speci-

fied a priori, and there exist real-valued functions which specify the agents payoff.

Each agent then acts selfishly to maximise their payoff, and the Nash Equilibrium

of this game is that from which no agent would want to deviate unilaterally. In

this context, Convexity is needed to prove existence, taking into account inconsis-

tency and lack of independence in agent choices (non-transitivity). Arrow-Debreu

markets attain Pareto Optimality if they are complete.

1French for measuring/counting. The numéraire is the money unit of measure within an

abstract macroeconomic model in which there is no actual money or currency. A standard use

is to define one unit of some kind of goods output as the money unit of measure for wages,

measuring the worth of goods and services relative to another.
2A technique to transform one stochastic process to another to simplify calculation.

237



D.0.2 Pareto Optimality

Defined as “the best that could be achieved without disadvantaging at least one

group,” a Pareto Optimal allocation amongst a set of individuals is one in which

it would not be possible to better any single individual without making someone

worse off. It is a key characterisation of equilibrium conditions. The notion of

Pareto Optimality led to the two Fundamental Theorems of Welfare Economics

which are the key contribution of Neoclassical Economics.

D.0.2.1 First Fundamental Theorem of Welfare Economics

The First Fundamental theorem makes a strong statement about free markets.

It proves that a system of free markets will lead to a Pareto efficient outcome.

The key assumptions underlying the first theorem are:

• Markets exist for all goods

• Markets are perfectly competitive

• Transaction costs are negligible

The assumptions of the First theorem are relatively weak. No convexity is

needed.

D.0.2.2 Second Fundamental Theorem of Welfare Economics

The Second Theorem reverses the First by adding equilibrium, albeit at the ex-

pense of a stronger assumption. The Second Theorem claims the inverse of the

first by proving that a set of consistent prices will exist for any efficient allocation

and an equilibrium will hold. This is because any initial distribution of goods

will eventually lead to a Pareto Optimal outcome. By definition, no deviations

will follow.

However, the second theorem does require an additional assumption: convex-

ity in Consumer preferences. This roughly implies diminishing marginal utility.

One of the important implications of the second theorem is that efficiency and

equality can be separated and do not involve a tradeoff. Convexity brings with
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it the benefit of existence, but not uniqueness. However, in a complete market,

risk neutral probabilities, and hence prices, are unique and there are is arbitrage.

D.0.3 Lack of Arbitrage and Market Completeness

An arbitrage exists if and only if either:

1. Two portfolios can be created that have identical payoffs in every state but

have different costs; or

2. Two portfolios can be created with equal costs, but where the first portfolio

has at least the same payoff as the second in all states, but has a higher

payoff in at least one state; or

3. A portfolio can be created with zero cost, but which has a non-negative

payoff in all states and a positive payoff in at least one state.

The lack of arbitrage is a key condition in the Neoclassical setting, as it is the

basis for consistency and uniqueness in the General Equilibrium.

Formally, assume an economy can take one of n states at time T . Let A = [Aij]

be the payoff matrix at time T for a set of Arrow-Debreu Securities, that of asset

j in state i. The columns of A represent the payoffs of asset j and the rows

represent state i.

If rank(A) = m, i.e. the number of linearly independent assets is equal to

the number of states, which means that m linearly independent assets can be

combined to generate any payoff at time T . This is what is meant by market

completeness.

(Ros76) proves the following:

Lack of Arbitrage 1 There is no arbitrage if and only if there exists a row

vector of strictly positive state prices q = [q1 q2 ... qm] such that p = q · A

The role of arbitrage should also not be overlooked in the real world. Arbitrage

pricing is the bedrock of derivatives pricing theory. If the payoffs of an instrument

can be replicated, statically or dynamically, by trading in a portfolio of securities,
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the value of the portfolio and the contingent must be equal. This is known as the

replication argument. Because the combination of the option and a short position

in the replicating portfolio is risk-free, the return must also be risk-free, which

gives rise to the risk-neutral1 argument2. If the prices of the primary assets are

known, the price of the derivative is a simple consequence.

Because Arrow-Debreu prices are risk-neutral probabilities and any derivative

contract can be replicated through a linear combination of Arrow securities, the

Second Theorem rules out arbitrage.

More importantly, arbitrage is the glue which holds market together, by acting

as a transmission mechanism for prices from one market to another. This is an

oft-criticised, yet important function that arbitrage plays in the world economy.

If interest rates in one country rise while falling in another, arbitrage determines

new rates of exchange of one currency for another in the forward markets 3 If

arbitrage markets did not operate, interest rates and foreign exchange markets

would not function and entire economies would not be able to balance their trade

flows. The inability to balance trade flows in the long run can and do have

disastrous results that can lead to decades of economic malaise(SS01a).

D.0.4 The Premises of Neoclassical Economics

The premises of the neoclassical set-up are an early indication of its weakness:

1. Equilibrium is attained for all prices under perfect competition

2. Movement from one equilibrium to the next is instantaneous

3. Equilibrium is “normal”

4. The optimum outcome is achieved at equilibrium

1Risk-neutral probabilities refer colloquially to the probability measure which replicates the

price (present value) of a derivatives contract when applied to the payoff profile at maturity,

even in markets known to be incomplete.
2The primary asset replicating the derivative may need to be dynamically traded to replicate

the payoff. Black-Scholes is the personification of this result.
3 A result originally due to Keynes.
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5. There is no adverse selection, no intermediation, no transaction costs and

no information.

.

Indeed, the Arrow-Debreu General Equilibrium is in one sense, a reverse-

engineered solution: the assumptions are requirements for a pre-defined adequate

solution. However, none of these assumptions bear any resemblance to reality,

especially those relating to transaction costs and information. This criticism

applies not only to the application of this framework to financial markets, but

alto the telecommunication systems. Markets are not perfect.
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Appendix E

Further Results

In Chapter 5, the Measurement Model was evaluated using time series data on

the average latency of the Credit Suisse network. Table 5.2.2 provides a number

of alternative Reference Measurements which could also be used as the basis for

analysing the complexity of a network.

There are a number of interesting issues in the right choice of Reference Mea-

surement:

• the suitability of the measure for the purposes of a certain analysis

• the relationship between various measurements

• the impact of the window used to calculate Network Complexity and Implied

Coupling trends are calculated

Some of these measures may be clearly correlated. Network Complexity mea-

sures based on the standard deviation of latency measures, for example Figure

E.1, and discarded packets, Figure E.3, seem to be negatively correlated. This

may indicate a tradeoff between the two measures of performance.

In depth analysis of these results is left as future work. A cursory exposition

of the results is graphically illustrated below.
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Figure E.1: Latency Standard Deviation, 25-day Moving Windows, 50-ms Trig-

gers
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Figure E.2: Error Rates, 25-day Moving Windows
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Figure E.3: Discarded Packets, 100-day Windows
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Figure E.4: Firewall Utilisation, 25-day Moving Windows
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Figure E.5: Firewall Average Latency, 25-Day Moving Windows
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Figure E.6: Peak Inbound Traffic, 25-day Moving Windows, 35-ms Triggers
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Glossary

Architectural Complexity A measure of the static complexity in a net-
work arising from the way in which various El-
ements perform certain Operations on a Traf-
fic Vector. It is meant to be a proxy for the In-
terrogations Costs associated with determin-
ing the state of a network at a certain point
in time. It is measured using the Architectural
Model. Formally:

H = −
q∑

u=1

q∑
v=1

m∑
z=1

b∑
l=1

ψ̃uvzl log ψ̃uvzl (E.1)

, 121
Ashby’s Law of Requisite Variety The larger the variety of actions available to

a control system, the larger the variety of per-
turbations it is able to compensate. This im-
plies that the more variety there is in a system
the more information has to extract from it in
order to understand and control it., 22

Complexity Neutral Complexity Neutral decisions refer to control
decisions in a network which do not impact
the Implied Complexity of the networks be-
haviour., 155
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Glossary

Element Complexity A sub-measure of Architectural Complexity,
meant to quantify the complexity in a net-
work associated with the variety of Elements
performing Operations on a network.The Op-
erational Matrix is used to quantify this com-
plexity., 122

Entropic Formulation The use of the Entropy of a network as the
key macroscopic feature for the purposes of
control and behaviour prediction., 22

Entropic Routing The use of measures of the networks complex-
ity and risk characteristics to make routing de-
cisions., 202

Entropy Flooding In closed systems, the behavioural rules of
agents maximising entropy will dictate the dy-
namical behaviour of the system over time., 94

Hakanssons Paradox If markets are complete options are not
needed; if they are incomplete then according
to financial theory, they cannot be priced., 62

Idiosyncratic Risk In finance, price changes due to circumstances
specific to a certain asset, not related to the
overall market., 16

Implied Complexity The complexity of a network in the absence
of any model. Formally, the entropy implied
by the histogram of actual network Reference
Measurement data., 104

Implied Coupling Implied Coupling measures how tightly the el-
ements in a network are coupled together., 152

Information, I(p) A quantitative measure of information, repre-
senting the physical occurrence of a an event
X = x, which a priori is assumed to have
probability p. Under the assumption that
I(p) is always non-negative and decreases with
increasing p, it can be shown that I(p) =
−log(p)., 115

Investors Problem Make it as hard as possible for Market Mak-
ersmarket maker to infer the probability dis-
tribution of asset prices., 72
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Glossary

Law of Constraints A characterisations of the 1st Law of Ther-
modynamics in the language of networks and
markets. It is a preservation law, which posits
that goods are not created through transac-
tions., 75

Law of Encapsulation A characterisation of the 0th Law of Ther-
modynamics in the language of networks and
markets. It essentially posits that in a system
of networks controlled by agents, no transac-
tions will take place if their valuation is the
same for all agents., 75

Law of Preferences A characterisation of the 2nd Law of Ther-
modynamics in the language of networks and
markets. Agents will only do transactions that
increase their utility., 75

Market-Makers Problem Find the least number of questions to ask in-
vestors to discover their collective belief about
future prices., 71

Measurement Model A parsimonious model which uses Reference
Measurements, describes as much of the net-
works behaviour as possible, and acts as an
easy to use proxy for the Architectural Model.,
126

Memoisation A common technique from functional pro-
gramming, in which a value is stored once it
has been computed to avoid re-evaluating the
expression., 98

Model Complexity Model Complexity is meant to quantify the
complexity associated with extending a base
model for a network to account for known de-
tails in a networks configuration which deviate
from the base case assumptions. It is an in-
formation theoretic distance between the sim-
plest possible model of a system and exten-
sions which aim to increase its explanatory
power. In this context, it can be measured as
the Kullback-LeiblerKullback-Leibler distance
between the CDF implied in Equation 3.29
and various extensions in Section 3.4.4., 141
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Glossary

Neoclassical Economics A school of economics which focuses on in-
dividual decision making based on preference
relationships amongst consumption bundles.
The maximisation of utility or profit is usu-
ally posited as an objective function. Most
mainstream microeconomics is based on the
neoclassical paradigm., 14

Network Complexity Network Complexity is meant to measure what
is not explained by the model. This is the
essence of Effective Complexity. Hence, it is
defined as that part of a networks Implied
Complexity which deviates from the predic-
tions of the model the engineer has built of the
network. Using the Measurement Model, it is
quantified as he Kullback-Leibler between the
empirical behaviour of the network (proxied
through Reference Measurements and the be-
haviour expected by the Measurement Model.,
129

Network Precedence Matrix Represents the precedence relationships be-
tween operations., 121

Operational Complexity A sub-measure of Architectural Complexity,
meant to quantify the complexity in a network
associated with the variety of Operations be-
ing performed by Elements on a network.The
Operational Matrix is used to quantify this
complexity., 122

Operational Matrix Represents the complexity arising from the
way operations are carried out by different el-
ements on the network., 121

Reference Measurement An observation on Elements which network
engineers care about. They are not contin-
uous, but discrete. They can have more than
two values, but in the context of Section 3.4,
they are a Bernoulli-(0,1)Bernoulli. Examples
are breaches of capacity utilisation thresholds
indicated by (1), and (0) otherwise., 118
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Glossary

Reference Measurements Measurements which proxy the complexity of
the network and are common to all elements.
These measurements should be easy to cal-
culate and not specific to individual elements
or technologies. Reference Measurements are
Bernoulli-(0,1) and triggered when Capacity,
determined as a threshold over some charac-
teristic of the Element, is exceeded in usage.,
125

Service Level Agreement A formal agreement made between a service
provider and a customer which defines a speci-
fied level of service, support requirements, and
penalties., 47

shadow prices Shadow prices are usually defined as the
change in the objective value of an optimal
solution when the constraints are relaxed by a
unit. The Lagrangian multipliers usually cor-
respond to shadow prices., 67

Slice A risk metric which measures the probability
that a certain Reference Measurement of im-
portance associated with a network will take
on a value between two thresholds, a lower
threshold K1 and an upper threshold K2. It
is meant to proxy Idiosyncratic Risks when
the Slice between K1 and K2 on the multi-
variate distribution associated with the Ref-
erence Measurement is located at low values
and Systematic risks when the Slice is located
at higher values., 16

Slice Curve A graphical depiction of Slice measurements
on a network. The lower threshold is always
set to zero, the upper threshold runs along
the x-axis, with the y-axis displays the corre-
sponding Slice measurement., 151

Systematic Risks In finance, refers to risks emanating from
market-wide circumstances. Such risks can-
not be hedged, and hence pay investors a pre-
mium., 16
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Glossary

Traffic Complexity A measure of the complexity of Traffic Flows
as they relate to overall Architectural Com-
plexity:

H(ν) = −
∑

νlog(ν) (E.2)

., 122
Traffic Precedence Matrix Represents the complexity arising from simi-

larities between sequences of operations on ac-
tual traffic flows and the sharing of resources.,
121
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