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Abstract
Group-communication applications are a very promis-

ing opportunity for developing valuable MANET-based ap-
plications. However, real-world experimental studies are
required to indicate the best solutions to implement them.
We have implemented a real prototype in which alterna-
tive networking stacks can be used to support a distributed
Whiteboard application. By means of experimental results
we show that a standard P2P solution based on Pastry and
Scribe is not suitable for MANET environments. We also
show that a cross-layer P2P system optimised for MANETs
(i.e., CrossROAD) is able to overcome many of the problems
experienced with Pastry.

1 Introduction
Even though research on MANETs has been very ac-

tive in the last decade, real applications addressed to people
outside the research community still have to be developed.
The typical simulation-based approach for the performance
evaluation of MANETs is one of the main reasons of this.
Often, simulation results turn out to be quite unreliable if
compared to real-world measurements [1, 7], and real-world
experiments are highly required for MANET applications to
become reality, despite their high costs (in terms of time to
set up) and intrinsic limitations (number of nodes).

By leveraging the self-organising nature of MANETs,
group-communication applications can be an outstanding
opportunity from this standpoint. In this paper, we focus on
a significant example of this class of applications, and we
evaluate complete networking solutions that could be used
to develop it. Specifically, we consider the Whiteboard ap-
plication (WB), which implements a distributed whiteboard
among MANET users. WB allows users to share drawings,
messages and other dynamically generated contents. Such a
self-organising distributed application can be naturallysup-
ported by P2P systems. In our prototype, WB uses Scribe
[2] to share WB contents among users via application-level
multicast trees. Scribe requires a P2P overlay network
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based on a DHT. Our prototype includes two alternative
P2P solutions, i.e., Pastry [8] and CrossROAD [5]. Both
of them provide the same functionalities toward above lay-
ers through the P2P commonAPI [11], but CrossROAD is
explicitly designed for MANET environments. It reduces
(with respect to Pastry) the network overhead related to the
overlay management by exploiting cross-layer interactions
with a proactive routing protocol. Specifically, CrossROAD
implementation is compliant to the cross-layer framework
described in [4]. Finally, the prototype includes OLSR [9]
and AODV [10] at the routing level. Pastry performances
are evaluated on top of both routing protocols while Cross-
ROAD is evaluated on top of OLSR, since CrossROAD is
designed to exploit a cross-layer interaction with a proactive
routing protocol.

The main contribution of this paper is evaluating through
real experimentscomplete networking solutions for devel-
oping distributed applications such as WB in real-world
MANETs. We evaluate our prototype at two different lev-
els, i.e., we quantify i) the QoS perceived by WB users, and
ii) the quality of the multicast tree generated by Scribe. First
of all, we show how a proactive routing protocol performs
better than a reactive one with regard to this kind of applica-
tions. Then, we highlight that a solution based on Pastry and
Scribe is not suitable for MANET environments. WB users
perceive unacceptable high data loss and delays. Further-
more, both the Pastry overlay network and the Scribe mul-
ticast tree get frequently partitioned. This results in some
WB users to be completely isolated from the rest of the net-
work. Finally, we show that some of these problems can
be avoided by using CrossROAD. Specifically, the structure
of the Scribe tree is quite more stable when CrossROAD
is adopted, and partitions problems experienced with Pastry
completely disappear. Thus, CrossROAD turns out to be a
very promising P2P system for MANET environments.

2 WB and its middleware support
The Whiteboard application was originally designed in

[6], and then we adapted it to work on top of Pastry and
CrossROAD. It implements a distributed whiteboard, that



can be used to share dynamically generated contents (e.g.,
drawings, messages, . . . ). Each user runs a WB instance on
her mobile device, and selects atopic she wants to associate
to (i.e. “treasure hunting”). Each topic is linked with a can-
vas on which she can draw strokes or type text. On the same
canvas, the user directly sees strokes and text generated by
others. Being a simple example of group-communication
applications, WB allows us to understand how such appli-
cations can be successfully developed in MANETs.

WB needs a subject-based multicast protocol to build
groups (i.e., identify all nodes whose users are interested
into the same topic), and disseminate WB data to the group
members. Specifically, in our testbed, Scribe [2] is used
as the multicast protocol, since it has shown to outperform
other similar solutions [3]. Scribe is designed to work on
top of Pastry, but it can be used with any P2P system pro-
viding a commonAPI-compliant overlay network, such as
CrossROAD.

2.1 Pastry and CrossROAD
Pastry is a P2P system based on a DHT to build a struc-

tured overlay network (ring) at the middleware level. A log-
ical identifier (node id) is assigned to each node hashing one
of its physical identifiers (e.g., IP address, hostname). Mes-
sages are sent on the overlay by specifying a destination key
k belonging to the logical identifiers’ space. Pastry routes
these messages to the node whose id is numerically clos-
est tok value. To route messages, Pastry nodes maintain
a limited subset of other nodes’ logical ids in their internal
data structures (middleware routing tables). Periodic data
exchange between nodes of the overlay are needed to up-
date the state of the overlay. Finally, in order to initially
join the overlay network, each Pastry node executes a boot-
strap procedure, during which it initialises its middleware
routing table by collecting portions of other nodes’ routing
tables. Specifically, each nodes has to connect to an already
existing Pastry node (i.e., it needs to know its IP address) in
order to correctly start the bootstrap procedure.

The bootstrap phase and the periodic data exchange be-
tween nodes constitute the main network overhead of Pas-
try. CrossROAD, that is a Pastry-like P2P system explicitly
designed for MANETs, drastically reduces the Pastry over-
head by exploiting cross-layer interactions with a proac-
tive routing protocol. Specifically, CrossROAD defines a
cross-layer Service Discovery protocol in order to broad-
cast information about upper-layer services (e.g. Scribe)
through the proactive flooding of routing packets, and to
maintain an association between nodes’ IP addresses and
provided services. Hence, each CrossROAD node can au-
tonomously build the overlay, by simply hashing the IP
address of nodes providing the same service. In this way
the overlay network related to a particular service is main-
tained with almostnegligible network overhead in compari-

son with Pastry. Furthermore, CrossROAD i) is completely
self-organising, since it does not require any bootstrap pro-
cedure, and ii) correctly manages cases of network parti-
tioning and topology changes with the same delays of the
routing protocols.

2.2 Scribe
Scribe exploits Pastry-like routing to build multicast

groups. From the standpoint of the application running on
Scribe, the group is identified by atopic. Scribe uses the
hash function provided by Pastry (or CrossROAD) to gen-
erate the topic id (tid) in the logical space of node ids. In
order to join the Scribe tree, nodes send ajoinmessage on
the overlay with key equal totid. This message reaches the
next hop (say,N ) towards the destination on the overlay net-
work. The node originating thejoin message is enrolled
as a child ofN . If not already in the tree,N itself joins the
tree by generating ajoin message anew. Eventually, such
a message reaches the node whose id is the closest one to
tid and is not propagated further. This node is defined as the
root of the Scribe tree.

Application messages are sent on the overlay with key
equal totid. Hence, they reach the Scribe root, which is
in charge of delivering them over the tree. To this end, it
forwards the messages to its children, which further forward
them to their children, and so on.

Finally, the Scribe maintenance procedure is as follows.
Each parent periodically sends aHeartBeat message to
each child1. If a child does not receive any message from
the parent for a given time interval (20 s in the default case),
it assumes that the parent has given up, and re-executes the
join procedure. This simple procedure allows node to dis-
cover parent failures, and re-join the tree, if the case.

3 Experimental Environment
The experiments reported in this paper are based on a

static MANET. This allows us to highlight limitations that
originate from Pastry and Scribe design, rather than to mo-
bility. Extending the results in the case of mobility is subject
of future work.

The experiment testbed is as depicted in Figure 1. We
set up an indoor MANET consisting of 8 nodes. To have an
homogeneous testbed, all nodes are IBM ThinkPad R50 lap-
tops. We use the built-in Intel PRO-Wireless 2200 802.11
card, withipw2200 driver (on Linux 2.6 kernel). The data
rate is set to 11 Mbps. In addition the transmission power
of each card has been adjusted to reproduce the topology
shown in the figure and obtain a multi-hop ad hoc network.
During the experiments, nodes marked A through to F par-
ticipate in the overlay network, and run the WB applica-
tion (they will be throughout referred to as “WB nodes”).

1Application-level messages are used as implicitHeartBeats.
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Figure 1. Map of the experiment setup

Nodes marked with “R” are used just as routers. It is
worth pointing out that this setup lies within the “802.11
ad hoc horizon” envisioned in [7], i.e. 10-20 nodes, and 2-3
hops. Therefore, it is a valid example of possible real-world
MANETs.

In order to have a controllable and reproducible setup, a
human user at a WB node is represented by a software agent
running on the node. During an experiment, each software
agent interleaves active and idle phases. During an active
phase, it draws a burst of strokes on the canvas, which are
sent to all the other WB nodes through Scribe2. During an
idle phase, it just receives possible strokes from other WB
nodes. After completing a given number of suchcycles (a
cycle is defined as a burst of strokes followed by an idle
time), each agent sends aClose message on the Scribe,
waits for gettingClose messages of all the other nodes,
and shuts down. Burst sizes and idle phase lengths are sam-
pled from exponentially distributed random variables. The
average length of idle phases is 10 s, and is fixed through
all the experiments. On the other hand, the average burst
size is defined on a per-experiment basis. As a reference
point, we define a traffic load of 100% as the traffic gener-
ated by a user drawing, on average, one stroke per second.
Finally, the number of cycles defining the experiment dura-
tion is fixed through all the experiments. Even at the lowest
traffic load taken into consideration, each agent draws – on
average – at least 50 strokes during an experiment. For the
performance figures defined in this paper (see below) this
represents a good trade-off between the experiment dura-
tion and the result accuracy.

Some final remarks should be pointed out about the ex-
periment start-up phase. Nodes are synchronised at the be-
ginning of each experiment. Then, in the Pastry case, the
Pastry bootstrap sequence occurs as follows3: node C starts

2Please note that in our experiment each stroke generates a new mes-
sage to be distributed on the Scribe tree.

3The same schedule is also used to start CrossROAD, even though a
CrossROAD node doesnot need to bootstrap from another node.

first, and generates the ring. Nodes E and D start 5 seconds
after C, and bootstrap from C. Node B starts 5 seconds after
E and bootraps from E. Node A starts 5 seconds after B and
bootraps from B. Finally, node F starts 5 seconds after D and
bootraps from D. After this point in time, the Scribe tree is
created and, finally, WB instances start sending application
messages (herafter, WB messages). This way, the Scribe
tree is built when the overlay network is already stable, and
WB starts sending when the Scribe tree is completely built.

3.1 Performance Indices
Since Pastry and Scribe have been conceived for fixed

networks, we investigate if they are able to provide an ade-
quate Quality of Service to users in a MANET environment.
To quantify the ”WB user satisfaction” we use two perfor-
mance indices:

Packet Loss: at each nodei, we measure the number of
WB messages received and sent (Ri andSi, respec-
tively) during an experiment; the packet loss experi-
enced by nodei is defined aspli =

Ri∑
i
Si

.

Delay: the time instant when each packet is sent and re-
ceived is stored at the sending and receiving node, re-
spectively. This way, we are able to evaluate the de-
lay experienced by each node in receiving each packet.
If dij is the delay experienced by nodei in receiving
packetj, andNi the total number of packets received
by i during an experiment, the average delay experi-

enced by nodei is defined asDi =

∑
j

dij

Ni
.

Furthermore, we define two more indices, to quantify the
quality of the multicast tree created by Scribe.

Node Stress: for each node, it is defined as the average
number of children of that node. Iftij is the time
interval (within an experiment) during which nodei
hasnj children, the average node stress of nodei is

NSi =

∑
j

njtij∑
j

tij

.

Re-subscriptions: for each node, we count the number of
times (during an experiment) this node sends new sub-
scriptions requests, because it can’t communicate with
the previous parent anymore.

4 Performance with Pastry
The results we report in this section are obtained by us-

ing Pastry as DHT, and either OLSR or AODV as routing
protocol. Experiments are run by increasing the traffic load
starting from 20% up to 80%.

Before presenting the results in detail, let us define what
herafter will be referred to as “crash of the Scribe Root
Node”. In our configuration Pastry assigns node ids by
hashing the IP address and the port used by Scribe on the
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Figure 2. Packet Loss w/o MSRN crash
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Figure 3. Delay w/o MSRN crash

node. Hence, each node always gets the same node id. Fur-
thermore, the topic used by the WB users is always the
same. Under the hypothesis that Pastry generates a single
ring encompassing all WB nodes, the Root of the Scribe tree
(i.e., the node whose id is closest to the WB topic id) is the
same through all the experiments, and is node C in Figure 1.
This node will be throughout referred to as the Main Scribe
Root Node (MSRN). Due to the Scribe algorithm, each WB
message to be distributed on the tree is firstly sent to MSRN,
and then forwarded over the tree. Often, this is an exces-
sive load for MSRN, which, after some point in time, be-
comes unable to deliver all the received messages. Instead,
messages are dropped at the MSRN sending queue. We re-
fer to this event as a crash of MSRN. Of course, since the
application-level traffic is randomly generated, the MSRN
crash is not a deterministic event.

4.1 User Satisfaction
Figures 2 and 3 show the packet loss and the delay in-

dices experienced by the WB nodes considering experi-
ments were MSRNdoes not crash. Specifically, we con-
sider AODV experiments with 10% and 20% traffic load,
and OLSR experiments with 20%, 50% and 80% traffic

load, respectively. There is no point in running AODV ex-
periments with higher traffic load, since performances with
AODV are quite bad, even with such a light traffic load. In
the figure legend we also report the rings that Pastry builds
during the bootstrap phase (please note that, theoretically,
just one ring should be built, encompassing all WB nodes).
Finally, an “x” label for a particular node and a particu-
lar experiment denotes that for that experiment we are not
able to derive the index related to the node (for example,
because some component of the stack crashed during the
experiment).

Figure 2 allows us to highlight an important Pastry weak-
ness. If a WB node is unable to successfully bootstrap, it
starts a new ring, and remains isolated for the rest of the
experiment. In MANET environments, links are typically
unstable, and the event of a WB node failing to contact the
bootstrap node is quite likely. Clearly, once a node is iso-
lated, it is unable to receive (send) WB messages from (to)
other nodes for the rest of the experiment, and this results in
packet losses at all nodes. In the “AODV 10%” experiment,
nodes A and F are isolated, and create their own rings. This
results in packet loss of about 80% at those nodes (i.e., they
just get their own WB messages, which is about one sixth of
the overall WB traffic), and about 33% at nodes B, C, D and
E. Similar remarks apply to the “OLSR 50%” experiment.
It is more interesting to focus on the “AODV 20%” experi-
ment. In this case, node A is isolated, while nodes B, C, D,
E and F belong to the same ring. As before, A’s packet loss
is about 80%. The packet loss at the other nodes due to the
isolation of node A is about 18% (one sixth of the overall
traffic). It is interesting to notice that nodes B and D expe-
rience ahigher packet loss, meaning that they are unable to
get WB messages generated within the “main” Pastry ring
(i.e., nodes B, C, D, E, F). Finally, in the case “OLSR 20%”,
Pastry is able to correctly generate a single ring, and the
packet loss is quite low. In the case “OLSR 80%” nodes A
and F crash. However, the packet loss experienced by the
other nodes is negligible.

Similar observations can be drawn by focusing on the
delay index (Figure 3). First of all, it should be pointed out
that the delay related to nodes that are the sole member of
their own ring (e.g., node A in the “AODV 10%” case) is ob-
viously negligible. Even though – in general – the delay in
this set of experiments is low, it can be noted that better per-
formances are achieved by using OLSR instead of AODV.
Finally, it should be noted that MSRN (node C) always ex-
periences a lower delay with respect to the other nodes in
the same ring.

Figures 4 and 5 show the packet loss and the delay in-
dices in cases of MSRN crash. The packet loss experienced
by nodes in thesame ring becomes higher than in cases
where MSRN does not crash. In the first three experiments,
node A isolation causes a packet loss of about 18% on the
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Figure 4. Packet Loss w/ MSRN crash
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Figure 5. Delay w/ MSRN crash

other nodes. Hence, MSRN crash is in charge of the re-
maining 60% packet loss. Quite surprisingly, OLSR with
80% traffic load shows better performance than OLSR with
50% traffic load. It is also interesting to note that the packet
loss at MSRN is always lower than at other nodes in the
same ring. This highlights that MSRN is able to get, but un-
able todeliver over the Scribe tree WB messages generated
by other nodes. Similar observations can be drawn by look-
ing at Figure 5, as well. The delay experienced by nodes B,
D, E and F can be as high as fewminutes, either by using
AODV or OLSR. Finally, the delay experienced by MSRN
is very low in comparison to the delay experienced by the
other nodes.

To summarise, the above analysis allows us to draw the
following observations. The Pastry bootstrap algorithm is
too weak to work well in MANETs, and produces unre-
coverable partitions of the overlay network. This behav-
ior is generally exacerbated by AODV (in comparison to
OLSR). Furthermore, MSRN is clearly a bottleneck for
Scribe. MSRN may be unable to deliver WB messages
also with moderate traffic loads, resulting in extremely high
packet loss and delay. Moreover, the performance of the
system in terms of packet loss and delay is unpredictable.
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With the same protocols and traffic load (e.g., OLSR and
50% traffic load), MSRN may crash or may not, resulting
in completely different performance figures. In cases where
MSRN crashes, packet loss and delay are clearly too high
for WB to be actually used by real users. However, even
when MSRN does not crash, the high probability of WB
users to be isolated from the overlay network makes Pastry-
based solutions too unreliable. These results suggest that
Pastry and Scribe need to be highly improved to actually
support group communication applications such as WB in
MANET environments.

4.2 Multicast Tree Quality
In this section we analyse the node stress and re-

subscription indices, with respect to the same experiments
used in the previous section.

Figures 6 and 7 plot the average node stress with and
without MSRN crashes, respectively. In both cases, the
node stress is significantly higher at MSRN than at any
other node. This means that the Scribe tree is a one-level
tree, and MSRN is the parent ofall the other nodes. This
behavior is expected, and can be explained by recalling
the way Scribe works. In our moderate-scale MANET, all
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nodes are in the Pastry routing table of each other. Hence,
Scribejoin messages reach MSRN as the first hop, and
MSRN becomes the parent of all other nodes (in the same
ring). Together with the way application-level messages are
delivered, this phenomenon explains why MSRN is a bot-
tleneck, since it has to send a distinct message toeach child
when delivering WB messages over the tree. This is a major
limitation of the Scribe algorithm, and optimisations of the
P2P system are clearly not sufficient to cope with it.

In Figures 6 and 7 we have added “R” labels to indicate
nodes that occur to become Scribe Root during the corre-
sponding experiment. When MSRN does not crash (Fig-
ure 6) other nodes become Scribe root only as a side ef-
fect of a failed Pastry bootstrap. On an isolated WB node,
Scribe builds a tree which consists only of the node itself,
that is thus the root. However, Scribe partitions may also
occur due to congestion at the Pastry level in cases where
MSRN crashes. By looking at Figure 7, it can be noticed
that nodes other than MSRN may become root also if they
belonged (after the Pastry bootstrap phase) to the same over-
lay network of MSRN. This phenomenon occurs, for exam-
ple, at node A in the OLSR 80% case, and at node B and
F (whenever they become root). It should be noted that a

node with idn1 (other than MSRN) becomes root when i)
it looses its previous parent, and ii) the Pastry routing table
does not contain another node idn2 such thatn2 is closer
to the WB topic id thann1. Figure 7 shows that the con-
gestion at the Pastry level is so high that the Pastry routing
table of some nodes becomes incomplete (i.e., MSRN dis-
appears from other nodes’ routing table). Thus, the Scribe
tree gets partitioned in several isolated sub-trees. Clearly,
this contributes to the high packet loss measured in these
experiments. Another effect of Pastry congestion during
MSRN crashes is a possible reshaping of the Scribe tree.
Figure 7 shows that the average Node Stress of E is close
to 1 in the “AODV 20%” and “OLSR 80%” cases. This
means that MSRN disappears from the Pastry routing table
of some node, which – instead of becoming a new root –
finds node E to be the closest one to the WB topic id. This
phenomenon could be considered a benefit, since it reduces
the MSRN node stress. However, it derives from an incor-
rect view of the network at the Pastry level, originated from
congestion.

Figures 8 and 9 show the re-subscription index for the
same set of experiments. Figure 8 shows that, when MSRN
does not crash, the Scribe tree is quite stable. Most of the
re-subscriptions occur at node F, which is the “less con-
nected” node in the network (see Figure 1). In these experi-
ments, the performance in the AODV cases is worse than in
OLSR cases. Furthermore, upon MSRN crashes (Figure 9),
the number of re-subscriptions increases drastically, even
in case of “well-connected nodes” (i.e., node B, D and E).
MSRN crashes make other nodes unable to get messages
from their parent (i.e., MSRN itself), increasing the number
of re-subscriptions. It is interesting to point out that this is
a typical positive-feedback control loop: the more MSRN
is congested, the more re-subscriptions are sent, the more
congestion is generated.

To summarise, the multicast tree generated by Scribe on
top of Pastry is quite unstable, especially in cases of MSRN
crashes. The tree may get partitioned in disjoint sub-trees,
and many re-subscriptions are generated by nodes. Further-
more, Scribe is not able to generate a well-balanced multi-
cast tree, since MSRN is the parent of all other nodes.

5 Improvements with CrossROAD
In this section we show that using a P2P system opti-

mised for MANETs is highly beneficial to the stability of
the Scribe tree. In this set of experiments, we use Cross-
ROAD instead of Pastry, and set the traffic load to 20%,
50% and 100%, respectively. We concentrate on the per-
formance figures related to the quality of the multicast tree,
i.e., the average node stress (Figure 10) and the number of
re-subscriptions (Figure 11). A complete evaluation of the
User Satisfaction parameters, as well as further optimisa-
tions of the Scribe algorithm, are subjects of future work.
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The first main improvement achieved by using Cross-
ROAD is that neither the overlay network nor the Scribe
tree get partitioned. CrossROAD is able to build asingle
overlay network in all the experiments. Furthermore, even
at very high traffic loads (e.g., 100%), MSRN is theonly
root of the Scribe tree. Therefore, CrossROAD is able to
overcome all the partition problems experienced when Pas-
try is used.

Figure 10 clearly shows that the node stress still remains
quite unbalanced among the nodes. MSRN is typically the
parent of all other nodes, and this contributes to make it a
bottleneck of the system, as highlighted above. This behav-
ior is expected, since it derives from the Scribe algorithm,
and cannot be modified by changing P2P system.

Finally, Figure 11 shows that the Scribe tree is more sta-
ble (i.e., requires less re-subscriptions) using CrossROAD
instead of Pastry. To be fair, we have to compare Fig-
ure 11 with both Figures 8 and 9. It is clear that Cross-
ROAD outperforms Pastry when used on top of AODV. The
“20%” case of CrossROAD should be compared with the
“OLSR 20%” case of Figure 8, since in both experiments
the overlay network is made up of all nodes. The num-

ber of re-subscriptions measured at node F is the same in
both cases, while it is higher at node E when Pastry is
used. The CrossROAD “50%” case shows a higher num-
ber of re-subscriptions with respect to the “OLSR 50%”
case in Figure 8. However, it should be noted that in the
latter case the overlay network encompasses less nodes,
and hence the congestion is lower. It should also be noted
that, with the same nodes in the overlay network, with the
same protocol stack and traffic load, Pastry experiments
may suffer MSRN crashes (Figure 9). In this case, the num-
ber of re-subscriptions is much higher than in the Cross-
ROAD case. Finally, results in the CrossROAD “100%”
case should be compared with the “OLSR 80%” case of
Figure 9, since the overlay network is the same in both ex-
periments. CrossROAD achieves comparable performance,
and at some nodes it outperforms Pastry, even if the appli-
cation traffic is significantly higher.

5.1 Overlay management overhead
In the previous section we have shown that adopt-

ing CrossROAD significantly improves the performance of
Scribe. In this section we highlight that one of the main
reasons for this improvement is the big reduction of the net-
work overhead. This is a key advantage in MANET envi-
ronments.

Figure 12 shows the network load experienced by nodes
A, C and by the two nodes which just act as routers, dur-
ing the Pastry “OLSR 80%” experiment in which MSRN
crashes4. Each point in the plot is computed as the ag-
gregate throughput (in the sending and receiving directions)
over the previous 5-seconds time frame. We take into con-
sideration the traffic related to the whole network stack,
from the routing up to the application layer. Specifically,
nodes A and C are representative for WB nodes, pointing
out the difference with nodes that just work as routers. The
discrepancy between the curves related to node A and C
confirms that the MSRN node has to handle a far greater
amount of traffic with respect to the other WB nodes, due
to the Scribe mechanisms. Furthermore, it should be noted
that the curves related to the two routers can hardly been
distinguished in Figure 12, since they are about400Bps.
This means that the lion’s share of the load on WB nodes is
related to Pastry, Scribe and the WB application.

Figure 13 plots the same curves, but related to the
“100%” CrossROAD experiment. Also in this case, MSRN
(node C) is more loaded than the other WB nodes. However,
by comparing Figures 13 and 12 we can highlight that the
Pastry network load is far higher than the CrossROAD net-
work load. By considering the average value over all nodes
in the MANET, the Pastry load is about 3 times greater than
the CrossROAD load. More specifically, the average load

4We do not take into account AODV experiments, since OLSR has
clearly shown to outperform AODV.
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Figure 12. Network Load with Pastry
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Figure 13. Network Load with CrossROAD

of C and A is 48.5 KB/s and 16.5 KB/s in the Pastry case,
while drops to 21.1 KB/s and 2.96 KB/s in the CrossROAD
case. The reduction of the network load achieved by Cross-
ROAD is thus 56% at node C and 82% at node A. Since the
other stack components are exactly the same, CrossROAD
is responsible for this reduction5. Furthermore, it should be
noted that, during several time intervals, the load of node
A is just slightly higher than that of “routing” nodes. This
suggests that the additional load of CrossROAD manage-
ment with respect to the routing protocol is very limited.

6 Conclusions
Results presented in this paper allows us to draw the

following conclusions. Pastry and Scribe seem not to be
good candidates to support group communication applica-
tions in MANET environments. Pastry is particularly weak
during the bootstrap phase, causing the overlay network to
be partitioned into several subnetworks, and some nodes to
be unable to join application services. Further partitions
may occur in the Scribe tree due to congestion at the Pas-
try level. Finally, the delivery algorithm implemented by

5The actual reduction is even higher, since the application-level traffic
is 100% in the CrossROAD case.

Scribe generates a severe bottleneck in the tree, which is
highly prone to get overladed. All these limitations result
in unacceptable levels of packet loss and delay for applica-
tions. Many of these problems can be avoided by adopting
a cross-layer optimised P2P system such as CrossROAD.
Thanks to the interactions with a proactive routing protocol
CrossROAD is able to avoid all the partition problems ex-
perienced with Pastry, and to drastically reduce the network
overhead. Clearly, CrossROAD cannot solve the problem
of bottlenecks in the Scribe trees. Therefore, optimised ver-
sion of Scribe are required for group communication appli-
cations such as WB to be really developed in MANETs.
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