
Network Text Editor (NTE)
A scalable shared text editor for the MBone

Abstract

IP Multicast, Lightweight Sessions and Application Level
Framing provide guidelines by which multimedia conferenc-
ing tools can be designed, but they do not provide specific
solutions. In this paper, we use these philosophies to guide
the design of a multicast based shared editor, and examine
the consequences of taking a loose consistency approach to
achieve good performance in the face of network failures and
losses.

1 Introduction

The IP multicast[1] service model and the philosophy of Ap-
plication Level Framing[2] together hint at new ways in which
distributed applications may be developed in many areas of
networking. They do not, however, give detailed guidance
for application developers, and there is a great deal of rel-
atively unexplored territory, with just a few markers where
people have successfully been before. With this in mind,
we set out to see where IP multicast and Application Level
Framing (ALF) might lead the development of a shared edi-
tor for the MBone.

The many-to-many model of IP multicast lends itself read-
ily to distributed data applications, where everyone holds all
the data and multicasts changes to this data-set to the other
participants. ALF makes this approach powerful and ensures
that it can perform well because only the application has suf-
ficient context to cope with the consistency and reliability
problems that can occur in a sufficiently flexible manner.

These philosophies can also lead to conflicting design goals.
In this section, we discuss these goals, and the influence of
multicast and ALF. In section 2 we present the design we de-
vised to overcome these conflicts, and in section 3 we specu-
late on how some of these mechanisms might be generalized
for other applications.

1.1 Conflicting Goals

When designing a distributed data shared application such as
a shared editor, the following goals should be satisfied by the
dataset distribution mechanism:

� Many users should be able to manipulate the same
data object over time.

� Eventual consistency - the dataset should converge on
one dataset after a change (though it may be temporar-
ily inconsistent while changes are propagating due to
loss or network failures).

� Deterministic behaviour - if a user is allowed to mod-
ify a data object, they expect it to stay modified.

� Fully interactive - users usually don't want to have to
wait for locks to be granted to be able to manipulate a
data object, as this leads to indeterministic delays due
to loss or failures.

Unfortunately these goals are contradictory in a typical in-
ternet environment with unpredictable loss and failures.

Different tools choose not to satisfy one of these goals.

� LBL's shared whiteboard, wb[3], is the only multicast
based distributed data application in widescale use. It
does not allow different users to be able to manipulate
the same object.

� Dissemination applications such as multicasting web
pages[5] or Usenet news feeds[6] only have one data
source per group, and so avoid this conflict.

� Traditional distributed applications make use of lock-
ing, and suffer performance problems as a result.

� Relaxing eventual consistency is not an option.

Thus if we are to achieve performance and allow different
users to modify the same object over time, relaxing deter-
ministic behaviour seems to be worth exploring. By this we
mean that under some circumstances (that we can aim to oc-
cur rarely by careful design), the system asserts a change
that wasn't what some subset of the users expected. The hy-
pothesis is that we can make this happen rarely enough and

1

provide sufficient feedback to the users when it does occur
that it will not cause significant problems.

Simply relaxing determinism does not necessarily result in
usable applications, and there are additional mechanisms and
constraints that are required before the problems caused by
this design choice can be said to have been overcome. In par-
ticular, achieving global consistency with such a distributed
data application is not trivial. We will explore these prob-
lems in section 2 and propose solutions that aim to minimize
their frequency of occurrence and gracefully deal with them
when they do occur.

1.2 Philosophy and Background

IP multicast provides a service model by which a group of
senders and receivers can exchange data without the senders
needing to know who the receivers are, or the receivers need-
ing to know a-priori who the senders are. In addition to
providing efficient data distribution, this service model can
lead to scalable and robust applications because the mem-
bers of the group do not need come to any agreement about
who is actually in the group. This has led to the evolution
of the scalable lightweight sessions[7] model for multimedia
conferencing, where there is no explicit group membership
mechanism other than joining the multicast groups and send-
ing period session messages to indicate membership.

When it comes to designing shared applications to co-exist
with these lightweight sessions, we would like similar scal-
ing and membership properties - members of the group should
be able to come and go with minimal impact on the other
group members.

IP multicast provides a transport mechanism that is unreli-
able and non-ordered. We could attempt to provide an end-
to-end reliable transport layer over IP multicast for the appli-
cation to use, but to do so requires abandoning the lightweight
sessions model because such a general purpose transport layer
requires explicit membership to achieve reliability.

The concept of Application Level Framing[2] emerged due to
a realization that applications of this sort did not want a sin-
gle transport layer to perform everything for the application.
The ALF philosophysuggests that data should be transmitted
on the network in units which are idempotent and thus can
be utilized by the application independently of other applica-
tion data units. This is exactly what is required for multicast
based shared applications, so that loose consistency may be
maintained, and data can be presented to the user as soon
as it is available. The application can then handle reliability
and consistency issues as it sees appropriate depending on
the application context.

The ALF philosophy applies to time as well as to space. In

an ALF application, data need not arrive in a strict order to
be meaningful. This allows the application a large amount
of leeway in deciding how to provide reliability and consis-
tency. Clearly in a shared application, changes should be
sent as soon as possible to provide immediate feedback to
the users, but network failures and packet loss will ensure
that receivers end up with heterogeneous state. Such incon-
sistencies can be resolved by retransmission, but can also
be resolved using forward error correction techniques, which
can be much more flexible and appropriate with ALF.

In the current MBone, significant numbers of points in a dis-
tribution tree generate small amounts of loss, and these result
in low probabilities that a single packet reaches all the re-
ceivers in many situations. In their experiments with 12 sites,
Yajnik[8] finds that retransmission would have been neces-
sary for between 38% and 72% of packets, and this would
have been the case for around 95% of packets sent to the
much larger multicast video sessions observed by Anon[9]
if these had required a reliable multicast protocol. Thus the
use of some form of redundancy would appear to be very
desirable in designing reliable multicast applications.

1.3 Related Work

Most similar work is in the areas of CSCW and replicated
databases. In general, the majority of CSCW work has cen-
tered around preventing inconsistencies from arising. We be-
lieve that temporary inconsistencies are necessary to achieve
good performance. Some work does explicitly allow incon-
sistencies, but most of this work is in the area of so-called
“asynchronous” collaboration. Haake and Haake [10] use a
versioning system to manage parallel versions, but do not
concentrate on subsequent re-synchronisation. Munson and
Dewan[11] focus on object merging, but their techniques
are applicable only to explicit complete merges in an asyn-
chronous environment rather than the “synchronous” envi-
ronment we are considering where divergence is usually un-
foreseen, and merges need to be timely, partial and oppor-
tunistic.

Techniques from the area of operational transformation[12]
are more applicable to synchronous systems. Such schemes
use a model of multiple streams and use a transformation
matrix to transform models of remote changes before apply-
ing them locally based on the context in which the change
occurred. This is effectively a more general approach than
we take, but in its generality, it fails to resolve trivial con-
flicts where one of two changes can be automatically chosen
so long as the users are made aware of the the issue, even
though this loses information. Thus we believe that (within
limits) unexpected changes due to conflict resolution are not
substantially different than unexpected changes that cause no
conflict.

2

Distributed databases typically support a transaction model,
whereby changes are represented as a sequence of transac-
tions. In replicated databases, the focus is on detection of
transaction conflicts, and on finding an execution order that
avoids potential conflicts. Such techniques are at odds with
the simple use of redundancy that we will propose, and al-
though techniques which allow rollback of conflicting trans-
actions in the face of a conflict might be applicable in a
shared editor, we do not believe they add significant useful
functionality over rollback techniques that can be performed
without such a rigid audit trail.

In general, although there is a significant body of work in
the areas of merging inconsistent data sets, no lightweight
shared application em protocols have so far emerged. The
closest work in the internet community is the SRM[3] work
from LBNL, and this takes the more restrictive approach of
preventing inconsistencies from arising.

2 Design

To achieve resilience, we adopt a distributed, replicated data
model, with every participant holding a copy of the entire
document being shared. End-systems or links can then fail,
but the remaining communicating sites

�

still have sufficient
data to continue if desired. NTE uses IP multicast to pro-
vide unreliable many-to-many communication at near con-
stant cost to the application, irrespective of the number of
receivers. Reliability mechanisms are then the responsibility
of the application alone.

2.1 Application Data Units

NTE's data model is determined by interactivity requirements
- many users must be able to work on the same document
simultaneously - and by the observation of usage modes,
particularly the need to be able to keep annotations separate
from the primary text being worked on.

The data model is hierarchical, based around blocks of text,
each consisting of a number of lines of text. Each block is
independent of other blocks - it can overlap them if required
although this does not aid readability. An example of blocks
used for annotation, is given in figure 1.

Most annotations will not be modified by multiple users si-
multaneously, and this allows a number of users to be work-
ing simultaneously on the document in separate blocks. How-
ever, restricting users to simultaneous annotation of docu-
ments would impose too great a constraint on potential us-

�

In this paper we use the term site to indicate a single instance of the
application, wherever it is located

 :-) Smiley

 :-(Unsmiley

 :-o Smiley singing national anthem

 :-* Smiley after eating something sour

=:-) Smiley punk-rocker No, real punks don’t smile

OK, this is a real punk smiley:

Surprised smiley?

=:-(

Figure 1: An example of blocks of text used for annotation

age modes, and so each line of text is also separate entity,
allowing users to be working on separate lines in the same
block.

Taking this model further, and treating each character of a
line as independent is undesirable. Firstly, the amount of
state that needs to be kept for each separate entity to ensure
eventual consistency is significant. In addition, line ADUs
have the advantage that it is unnecessary to receive all the
individual changes to the line as a user types - the most re-
cent version of the line is sufficient, giving a large degree of
redundancy in the face of packet loss. Lastly, there are trans-
mission failure modes with either line or character ADUs
that render no globally consistent ordering for the data. Due
to the nature of text editing, these are significantly less likely
to occur with lines than with characters. We discuss this and
also the implications of simultaneous modification later, in
the light of the loose consistency model described below.

When a line is transmitted, it carries the id's of the previ-
ous and next lines and the id of the block it forms a part of.
Although lines and blocks are not completely independent,
blocks can be moved without modifying the lines contained
in the block, and lines can be created, deleted and edited in-
dependently of other lines or blocks. There are however a
number of desirable operations on lines that cannot be car-
ried out independently, and we shall discuss these and their
consequences in section 2.6.

2.2 Distributing the data model

The choice of a line as the ADU was made in part due to the
simple observation that most consecutive changes are made
to a single line - generally because a user continues to type.
Thus if the whole line is sent for every character typed the
additional overhead (over just sending the changes) is not
great, the data transfer is idempotent (assuming a version
of the block has already been received), and a great deal of
“natural” redundancy is available - so long as a user contin-
ues typing on the same line, lost packets are unimportant.
However this is only the case if we take a loose consistency
approach - changes are displayed as soon as the arrive, irre-
spective of whether other sites have received them.

3

In order to be able to use this “natural redundancy” property,
it must be possible to identify whether a version of a line
that just arrived is more recent than the copy of it we have
already. This is necessary to cope with misordered packets
from a single source, and to cope with retransmitted infor-
mation from hosts with out of date versions of the data.

If we assume synchronized clocks at all sites, recognizing
out of date information is achieved by simply timestamping
every object with the time of its last modification. Copies of
objects with out of date timestamps can be ignored at a re-
ceiver with a later version of the same data. If we wish to take
advantage of redundancy by not requiring retransmission of
many lost packets, a receiver must not care if it receives all
the changes to a object as they happen; rather it only needs
to receive the final version of an object, although receiving
changes as they happen is desirable.

In practice, we can't assume synchronized clocks, but we
can implement our own clock synchronisation protocol in
the application.

There are alternatives to this mechanism, including main-
taining a change log with each object, but they do not help
greatly. Either they require locking, or they suffer from the
same merging of changes problem that timestamping suffers
from without significantly helping solve the problem.

2.3 Clock Synchronisation

Given that all changes to a document are multicast, and that
all changes are timestamped, we have a simple mechanism
for clock synchronisation amongst the members of a group:

� if a site has not sent any data and receives data from
another site, it sets its application clock to the times-
tamp in the received message.

� if a site has not received any data, and needs to send
data, it sets its application clock to its own local clock
time.

� if a site receives a message with a timestamp greater
than its current application clock time, it increases its
application clock time to match that of the received
message.

These rules ensure that all sites' application clocks are syn-
chronized sufficiently accurately for our purposes.

Figure 2 illustrates this process: source S2 sends the first
message, and S1 and S3 synchronize to the timestamp in the
message. Neither S1 nor S3 had set their clocks before this
point. Two new sources (S4 and S5) then join, and before any
of the original sources send a message, S5 does so. As S4 has
sent no message (therefore has no data), it now synchronizes

S1

S2

S3

S4

S5

S6

Message sent by S2 syncs S1,S3

Message sent be S5 syncs S4

Message sent by
one of S1,S2,S3
syncs S4 and S5

Message sent by
S6 syncs all other
sources

Real Time

Application
Time

Figure 2: Application based clock synchronisation

to S5. The three original sources have data therefore do not
synchronize to S5. One of the three original sources then
sends, and both S4 and S5 synchronize to the timestamp in
the message.

To show this achieves the desired results, consider three sites�
, � , & � , with three application clocks ��� , ��� , and �	� , and

positive transmission delays
���� ,
��� , etc.

if A sends the first message, we have
� ��� � ���
 ���
��� � ��� �
���
if
���� ever decreases when

�
sends, then � will increase its

clock to match the new delay, and ��� and ��� become closer.

if
 ��� increases, � continues to use � �
Now consider a message sent k seconds later by � :

This message arrives at � with timestamp ����� ���
 ��� and
it arrives at time ������� ���
 ����� ��
 � � . A comparison
is made and only if
 ���"!
 �����
 ��� is the clock at �
increased to be �#�$� �%�
 ��� . Thus the clock at � can only
get closer to the clock at

�
when a message is received from

� .

The process continues so long as messages are sent.

As all messages are timestamped, clock synchronisation to
less than the minimum delay between each pair of active sites
is provided for free, and no explicit clock synchronisation
protocol is required. This assumes that all local clocks run at
the same rate.

This is a reasonable first approximation for almost all of to-
day's workstations, within the bounds that are detectable by
human reaction time. Should a clock drift by a few seconds,
then it is possible that a change made at one site may be re-
versed from another site within the bounds of the clock drift.

4

However in practice this does not happen because the sites
need to exchange data to create such an event, and this data
exchange causes a clock re-synchronization to the fastest clock.

There are algorithms that synchronize the clocks much more
accurately than this, but for the purposes of consistency con-
trol, a necessary feature is that clocks are never decreased,
and the algorithm given is simple and sufficient.

Implementation of this algorithm reveals that there is a case
where clocks do not stabilize. This occurs when two sites
with a clock tick of length � are connected by a network with
a transit delay of less than � , as illustrated in figure 3. This
can happen with some Unix workstations with a 20ms clock
resolution connected by a local ethernet. Under these cir-
cumstances, the receiver will synchronize to the sender to a
resolution of less than t. If the two clocks are not in phase,
then the receiver can be ahead of the sender for part of each
clock cycle. If their roles as sender and receiver are reversed
and the new sender now sends a packet at a point in the clock
cycle where its clock is ahead, the old sender then incre-
ments its clock to match the new sender. If both sites send
alternately, this can result in both clocks being incremented
indefinitely. This can simply be avoided if the clock tick in-
terval is known, by simply ignoring clock differences of less
than the clock tick interval.

Application
Time
(clock ticks)

Real Time
(Clock Ticks)

Clock at S1

Clock at S2

Intended maximum
of clock 1, clock 2

message sent by S1, clock 2 incremented

message sent by S1,
clock 2 incremented again

message sent by S2,
clock 1 incremented

Figure 3: Clock synchronisation failure due to clock granu-
larity being greater than transmission delay

2.4 Reliability Mechanisms

Due to the redundancy inherent in the data distributionmodel,
NTE will sometimes perform reasonably well with no mech-

anism for ensuring reliability. However, there are also many
situations where this is not the case, and so we need a mech-
anism to detect and repair the resulting inconsistencies.

Inconsistencies may result from:

� Simple packet loss not corrected by subsequent changes
(particularly where the last change to a line has been
lost, or where data was loaded from a file)

� Temporary (possibly bi-directional) loss of large num-
bers of modifications due to network partition.

� Late joining of a conference.
� Effectively simultaneous changes to the same object.

2.4.1 Inconsistency Discovery

Unlike the mechanisms used SRM [3] and INRIA's white-
board [14], inconsistencies due to simple packet loss cannot
be discovered simply from the absence of a packet as we
wish most such changes to be repaired by redundancy, and
therefore do not need to see every packet at a receiver.

Instead we use a mechanism that ensures inconsistencies are
resolved, irrespective of the number of packets lost. There
are three parts to this inconsistency discovery scheme.

Two mechanisms are based on the session messages each in-
stance of the application sends periodically to indicate con-
ference membership. These session messages are sent by
each site with a rate that is dependent on the total number of
sites in the conference, so that the total session message rate
is constant and low. To detect inconsistencies, each session
message carries two extra pieces of information - the times-
tamp of the most recent modification seen, and a checksum
of all the data. If the timestamp given by another site is later
than the latest change a receiver has seen, the receiver can re-
quest all changes from the missing interval without knowing
what that data actually was. This may not fill in sufficient
information to ensure consistency, and so the checksum is
a last resort to discover that a problem has occurred. This
is followed by an exchange of checksums to discover which
blocks the differences are in, and then a summary of the line
timestamps in the inconsistent block.

The third mechanism is designed to prevent the above mech-
anisms from needing to be used where possible. We have a
concept of the current site - this is the site which has most
recently been active. If more than one site is active, any of
those sites can be chosen as current site. The current site pe-
riodically multicasts out a summary packet giving the times-
tamps and IDs of all the most recently changed objects. If a
receiver has a different version of one of these objects then
it is entitled to either request the newer version from the cur-
rent site, or to send its newer version.

5

The current site may change at the end of each retransmis-
sion round (see section 2.5.1) each time a new user modifies
the document; however the rate that these summary pack-
ets are sent is a constant whilst any users are modifying the
document - a new current site simply takes over from the pre-
vious one. If two sites both think they are the current site, the
one with the lowest IP address stops sending. Once a docu-
ment becomes quiet, the rate of sending summary packets is
backed off exponentially to a low constant rate.

An alternative to sending explicit summary packets might
be for session and data packets to have an additional object
ID and its modification timestamp added to them, and for
all sites to take turns to report the state of the most recently
modified objects. Indeed, this may be preferable for some
applications, but because of the retransmission scheme cho-
sen and the dynamics of text editing, we have not used such
a mechanism.

2.5 Scalable Retransmissions

When a receiver discovers there is an inconsistency between
its data and that of another site, it cannot just send a message
to resolve the inconsistency immediately because there is a
high probability that its message would be synchronized with
identical messages from other receivers and cause a NACK
implosion. Instead we require a mechanism to ensure that
approximately one site sends the message. If this message
is an update, it should be multicast as this may update other
sites with out of date information. If this a message is a re-
transmission request, it should also be multicast, as then the
reception of the request can be used at other sites to suppress
their retransmission requests.

SRM[3] uses a mechanism by which retransmission requests
are delayed by a random period of time partially dependent
on the round-trip time between the receiver and the original
source. To work most effectively, this requires all partici-
pants to calculate a delay (round trip time) matrix to all other
sites, and this is done using timestamps in the session mes-
sages.

As it has no redundancy mechanism, SRM is more depen-
dent on its retransmission mechanism than NTE is, and thus
it requires its retransmission scheme to be extremely timely.
NTE does not wish its retransmission scheme to be so timely,
as it expects most of its loss to be repaired by the next few
characters typed. This results in very significantly fewer
packet exchanges because in a large conference on the cur-
rent MBone, the probability of at least one receiver losing
a particular packet can be very high. Thus what we require
is a retransmission scheme that ensures that genuine incon-
sistencies are resolved in a bounded length of time, but that
temporary inconsistencies due to loss which will be repaired

anyway do not often trigger the retransmission scheme.

SRM can be tailored for redundancy by adding a “dead time”
to the retransmission timer to allow a window during which
the next change could arrive. If we used SRMs random-
ized time based scheme, then we would probably opt for not
sending summary messages but instead adding ID/timestamp
pairs to the session messages as described above. These
would then tend to spread the retransmission requests more
evenly.

At the time NTE was designed and implemented, SRMs mech-
anism has not been described in detail, and we used a differ-
ent sender driven retransmission request scheme. For most
purposes we believe SRM is superior, but there are uses for
which NTE's sender-controlled scheme is desirable.

2.5.1 Sliding Key Triggered Retransmissions

When a instance of NTE sends a summary packet, it starts
upon the process of sending a sequence of keys. When a re-
ceiver matches a key sent by the sender, it can immediately
send its retransmission request (which can be many objects
if necessary) along with the key that was matched. On re-
ceiving this request, the sender then starts the retransmission
of the missing data.

The sender generates a random integer (key) when it cre-
ates its summary message. Upon receipt of the summary
message, the receiver also generates a random key. Then
the sender sends its key along with a key mask which in-
dicates the bits in the sender's key that must be matched in
order for the receiver to send a retransmission request. This
key/mask pair is sent several times, and if no retransmission
request is forthcoming, the bits indicated by the mask are
reduced by one, and the key/new-mask pair is sent again.
If no retransmission request is forthcoming by the time the
mask indicates no bits need to be matched, then the process is
started again with a new random key, a new summary report,
and possibly a new current site. If no change has occurred
since the previous summary report, the rate of sending slid-
ing keys is reduced to half the rate for the previous round
until it reaches a preset lower rate limit. This process is il-
lustrated in figure 5.

This is loosely based on a scheme[13] devised by Wakeman
for congestion control in multicast based adaptive video.

As the session messages give a reasonable approximation of
the size of the conference at the point when we generate the
summary message, the sliding key can be started close to the
point where it would be expected to elicit the first response
if all receivers need a retransmission. The delay then before
receiving a retransmission request scales � ������� ��� ��� where �
is the number of participants. This is shown in figure 4. For

6

1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 Key

Mask

1 0 1 1 0 1 0 0 0 1 0 1 1 1 011 0 1 1 0 1 1 0 1 0 0 0 1 0 1 10 1 0 0 0 1 0 1 1 1 0 1 1 0 11

Sender chooses a random key, and a mask
appropriate for the size of the conference.
Receivers also choose a random key.

Sender

Receiver 1 Receiver 2 Receiver 3

1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1

1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1

1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1

1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1

1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1

1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7 - Receiver 2 matches key

Key Matches

Each round, the sender reduces the mask by one,
and sends the key/mask pair again.

Receiver 2 can now request a retransmission

Figure 5: Sliding Key Triggered Retransmission Requests

10 20 30 40 50 60 70 80 90100
10

100

1000
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Receivers with loss (%)

No. of Receivers

Delay (seconds)

Figure 4: Expected delay before a retransmission request
(RTT=250ms)

a typical 1000 way conference, where only one receiver re-
quires a retransmission, with each key/mask pair sent twice
per round and an estimated worst case RTT of 250ms, this
results in 4 (small) packets per second and a maximum delay
of 5 seconds before requesting retransmission. If the confer-
ence was smaller, or more sites had suffered loss, this time
would be reduced.

2.6 Limitations of the Data Model

We have described a data model and a distribution model
which are oriented towards building a scalable distributed
shared text editor. However, these models impose a set of
limitations on the functionality of the shared editor, or on the
way this functionality is implemented.

Whilst a data model based on blocks and lines allows dif-
ferent blocks or lines to be modified simultaneously without
any problem, the lock-free distribution model and the choice
of a line as ADU mean that it is possible for more two or
more users to attempt to modify the same line effectively si-
multaneously.

In addition, network partitions can result in more complex
inconsistencies arising. We show below that careful design
choices can result in all such more complex inconsistencies
becoming equivalent to a detectable case of effectively si-
multaneous insertion of lines into the same place, and that
this can be resolved.

Deletion of Lines of Text

Deleted lines need to be maintained in the data structures,
with a marker that they are no longer visible. If they were
not stored as actual objects, then they may be re-asserted by
sites which have missed seeing the deletion event. Deleted
line ID's and deletion times must be transmitted to and stored

7

at all sites (including sites joining after the deletion event)
to prevent unintentional re-assertion after sites that saw the
deletion have left the conference.

If an entire block of text has been deleted, sites only need
hold the ID and deletion time of the block - the holding of
information about lines within the block is unnecessary.

The most significant design decision here concerns the ef-
fects of network partitioning - if a user at a site in one parti-
tion deletes a line, and subsequently another user in the other
partition modifies the line, we have two choices when the
partition is resolved:

� Rely only on modification time (i.e. treat deletion as
just another modification that can be changed later)

� Make deletion irreversible so that deletion always pre-
vails over modification.

Treating deletion as modification leads to a number of sce-
narios where it is difficult to achieve eventual consistency.

We took the decision that deletion is irreversible, as this pro-
vides a mechanism that is irrespective of causal ordering in a
partitioned network, and this causal ordering independence
provides a mechanism which we can utilize to achieve even-
tual global consistency.

To achieve inconsistency detection, there is one further re-
quirement; deleted lines must not only be kept at all sites to
prevent re-assertion of the line from other sites, but they must
also be kept in their original place in the list of lines at each
site. For example, a line preceding a deleted line must still
be transmitted with its “next line” field indicating the deleted
line. This ensures simultaneous insertion is a detectable sit-
uation.

Effectively Simultaneous � Changes to the Same Line

NTE is designed for use in multimedia conferences where
there are additional channels of communication between users.
Thus two users attempting to modify the same line will nor-
mally see the change made by the later site being substituted
for the change made by the earlier site. If such changes do
not involve adding a line break to the middle of a line, then
no lasting confusion should remain, and the loser will be no-
tified of what is happening. Typically, at this point the users
will talk to each other and decide who should actually make
the change.

It should be noted that although there are circumstances when
�

By “effectively simultaneous” we mean changes to the same line where
due to network delay, or partitioning, two users attempt to change the same
line without seeing the effects of the others changes first. Thus the times-
tamps of the changes may not be identical.

one site does not even see the change made by the other site
(for example, Site 1 does not see Change 2 in figure 6), the
user interface should signal that another user is attempting to
modify the line, so that both users do realize exactly what is
happening.

Site 1 Site 2

change 1

change 2

change 3

Changes 1 and 3 prevail. Change 2 is seen briefly at site 2, then disappears.
Site 1 never sees Change 2 - it is already too old when it arrives at site 1.

Figure 6: Two users attempting to simultaneously modify the
same line

If one of the users adds a line break to the middle of a line,
this could be mapped into a truncation of the existing line,
and the creation of a new line after the existing line with the
remainder of the text. The overlapping request, if it happens
after the line break insertion, but before the receipt of the
message (see figure 7) will then re-assert the previous line.
This will be confusing for users, as suddenly text has been
duplicated.

Site 1 Site 2

change 1

change 2

change 1 results in a line being split in two, creating a modified line and a new line.
change 2 modifies the original line.
In a simple scheme, the new line from change 1 and the modfied original from
change 2 remain. This is most likely with a network partition, but could also occur
due to simple transmission delays.

Figure 7: Undesirable behaviour due to simultaneously split-
ting a line and modifying it.

However, if deletion is an irreversible operation (i.e., dele-
tion overrides modification), then deleting the line to be split
and inserting two new lines in its place prevents this undesir-
able behaviour at the expense of additional state. These dele-
tion and insertion operations can be atomic. We shall show
later that simultaneous insertion of lines is also detectable.

In the case of simultaneous modification due to transmission
delay it is easy to inform users of the problem, but we can-

8

not do so in the case of simultaneous modification due to
network partitioning.

If only single lines have been modified, there is no real prob-
lem, as the later change will be asserted, and although this
may not be what the user whose change just got replaced ac-
tually wants, at least the document ends up in a consistent
state.

It is possible to keep a local copy of the state of any line we
have modified at the time we last modified it in order to be
able to re-assert the state if the conflict resolution was not
what we actually wanted. However, it is easy to envisage
ways to defeat such a scheme if it were to be performed au-
tomatically, so such a re-assertion should only be performed
with explicit consent from the user for each step, and should
not be the primary consistency mechanism.

Moving of sections of text

There are two ways to view the moving of a chunk of text:

� Deletion and then insertion of the contents of the deleted
text

� Changing the bordering lines neighbours (sending mod-
ifications of the top and bottom lines of text specifying
new neighbours)

Deletion and then re-insertion is wasteful of bandwidth and
causes extra state to have to be held (and sent) for the deleted
lines. We are sure however that no-one can have already
changed the new lines, and so the original lines cannot be
re-asserted.

Modifying the context information of the bordering lines and
just re-sending this information has the possible advantage
that someone modifying the moved text in its old position
due to temporary partitioning sees her changes reflected in
the new positioning after the partitioning has been resolved.
However, it is possible that one or more of the bordering
lines are modified in a partitioned site after the move has
occurred, and that the resolution of the partition then undoes
or partially undoes the move, resulting in a block where no-
one knows the correct line ordering.

Allowing the possible situation of no-one knowing the cor-
rect line ordering is extremely undesirable, and so we treat
moving as deletion and subsequent re-insertion, despite the
additional overheads this entails.

Garbage Collection and Check-pointing

Irreversible deletion allows for check-pointing of blocks and
for garbage collection of deleted lines by deleting a block,

and then re-asserting the same data as a new block and new
lines. For the additional cost of keeping a deleted block, we
no longer need to store the deleted lines that used to be in
the block. In addition, it means that in any subsequently re-
solved network partitioning, changes made in the other par-
tition will not be asserted. This has to be implemented care-
fully, as the users in the other partition may not wish to see
their changes simply discarded, but there are times when it is
desirable to assert the current state. If both partitions check-
point the same block, then the block will be duplicated at the
time of partition resolution, which then allows user interven-
tion.

a null b

b

c

d

a c

b d

c e

e e null

f

g

b g

f d

Lines added in our partition

Lines added in the other partition.

Region of inconsistency

ID: Payload: Prev: Next:

Figure 8: Simultaneous Insertion is a Detectable Situation

Effectively Simultaneous Insertion of Lines

Effectively simultaneous modification of a single line always
results in a block that is internally consistent and the docu-
ment in a globally consistent state. We've shown that irre-
versible deletion allows combinations of moving, deletion,
line splitting and so forth to be performed, with the side-
effect that some circumstances can result in effectively si-
multaneous insertion of lines.

Effectively simultaneous insertion of lines not only results
in a document that is not internally consistent (we have two
copies of essentially the same lines) but also a document is
not globally consistent either (different sites can have dif-
ferent views of the document). This occurs because two or
more lines each have the same neighbouring lines. It can be
detected at all sites, because a set of lines is received that
should fit in the same place in a block as a set of lines we
already have.

9

Known Inconsistent State

?

?

?

Unknown Consistency State Consistently
Resolvable State

Figure 9: Known consistency, unknown state, and known inconsistency

nullb

c

d

b

b d

c e

e d null

f

g

b g

f c

Lines added in other partition

DELETED

Line deleted in our partition

Figure 10: Simultaneous Deletion and Insertion - no incon-
sistency

When a modified line arrives, we may have seen the line it
says is its previous line, the line it says is its following line,
neither or both. It also may be the start or end of a block.

Thus we may temporarily not know whether we have incon-
sistencies such as those shown in figure 9. If we have un-
known consistency, we should not display the received line
until we reach a state of known consistency or known incon-
sistency. Figure 8 shows in more detail detectable inconsis-
tency caused by simultaneous insertion.

Figures 10 and 11 illustrate why deleted lines must be kept in
place in the data structures to make inconsistency detectable.

As a result of these rules, inconsistencies such as shown fig-
ure 8 and 11 can only occur when alternative new lines were
inserted effectively simultaneously. Thus the question comes
down to which of the two sets of lines to keep and which to
delete. We must also ensure that the block is globally consis-
tent including the position of the deleted lines or we may not

nullb

c

d

b

b d

c e

e d null

f

g

b g

f d

Lines added in other partition

DELETED

Line deleted in our partition

Lines added in our partition

Figure 11: Simultaneous Deletion and Insertion resulting in
inconsistency

be able to detect further inconsistencies at all sites. However,
we do not care about the order within a set of consecutive
deleted lines, so instead of deleting one of the two alterna-
tive sets of lines, we must actually delete both alternative sets
of lines and re-insert one of them again before global consis-
tency can be restored to the block.

Although the decision to perform the deletion can be made
locally, the decision as to which alternative to choose cannot
be easily be made consistently and locally in a manner that
is likely to choose the better option. We could use arbitrary
criteria based upon the data itself (but not on its modification
time), although this seems undesirable.

The choice of which alternative set of lines to retain can be
made automatically (by the “current site”) or it can be made
clear to the users that there is a problem that requires res-
olution. Centralizing the decision in this way allows easier
selection of policies based on the duration of partition, size
of changes, etc. In a short partition with few changes, and au-

10

tomatic solution is preferable. In a long partition, it is more
likely that a use should be involved. Either way, if more than
one site attempts to resolve the conflict, the cycle is simply
repeated again.

To illustrate this process, assume a consistent dataset com-
prising doubly linked list��� � � � ����������� �
	 � ,
and that a partition then occurs. After some changes, two
new consistent states

� � and
� � result:

� ��� ��� � ��������� �
� ��� � �������������� ����� � ��������� � 	 �� ��� � � � �������� �
� ��� � �������������� ����� � ��������� � 	 �
At partition resolution, this is a detectable inconsistency as
there are two paths from � � to � ��� � . The inconsistency is
resolved by deletion of the loop with consecutive deleted ob-
jects forming a single set-element, and re-insertion of one of
the alternatives:

� � � ��� � ��������� �
� ����� � ����������������� � �����������������
� � ��������� ��� � �
��� � ��������� � 	#�

where � � ���������� � � �! � � � ������������� � � � � � ������������� � � �
Should this mistakenly be performed by more than one site,
the process will be repeated as the new inconsistency is de-
tected.

Any additional partitions that may have separated from
� �

or
� � during the original partition can also be re-merged.

For example,
�#"

may have partitioned from
� � during the

original partition:
� " � ��� � �������� ��� ��� � �����������%$&�
 � ��������
�' ���%$ ��(�������������&�

�
��� � �������� � 	 �

where)+*-,.* �/, �10 � *32
On re-merging, the resultant dataset becomes:
�#4 � ��� ���������� � � ����� ������������ � ��� ������������� � � � ����������� � � �

 �����������
 ' ����5 ������������5�67� � ��� ����������� �
	 �
where

� 5 ������������5�6 �! � � � ������������� � � � � � ������������� � � �
� � � �����������%$8�
 � ���������
�' ���%$ ��(������������� � �

In practise, it is rare that this mechanism is required.

Inconsistency Avoidance Mechanisms

To summarize the limitations necessary to ensure eventual
consistency after the resolution network partitioning:

� Deletion must always override modification, irrespec-
tive of the timing of the two operations.

� Deleted items must be transmitted to and stored at all
sites to prevent re-assertion.

� Deleted lines must be kept in their original place in
a block, and must remain referenced by their neigh-
bouring lines - this is a precondition for simultaneous
insertion detection.

� Moving of text must be performed by deleting all the
original lines containing the text to be moved and in-
serting the same text as new lines, thus preserving the
original line ordering.

� If all the above are performed, line ordering within
a block is only changed by adding new lines. This
makes simultaneous insertion of lines during a net-
work partition a detectable and resolvable situation.

These restrictions will ensure that eventual consistency is
achievable, even in the face of continuing modification dur-
ing a network partitioning. However, they are not always
sufficient to ensure that the contents of the document even-
tually converge on what all of the users actually wish it to
be. Although this could be achieved by locking of blocks
to ensure that only one person can modify the a block at
a time, we believe this restriction is often unnecessary and
would restrict usage of the editor. Indeed, under many cir-
cumstances, the usage patterns of the editor are likely to be
such that large scale simultaneous editing of a block during a
network partitioning will not happen because the vocal dis-
cussion needed to do so will not be possible. If users are
concerned about simultaneous editing of a block during a
network partition, they should checkpoint the block to ensure
no unseen changes can be made to it. For paranoid users, this
check-pointing procedure could be automated, although we
do not believe this is normally desirable or necessary.

3 Generalizing the Models

NTE, its data model, and its underlying protocol were all de-
signed to solve one specific task - that of shared text editing.
We used general design principles - those of IP multicast,
light-weight sessions, and application level framing as start-
ing points. However, the application data model is intended
only for text. The data distribution model uses the redun-
dancy achieved through treating a line as an ADU combined
with the fact that most successive modifications are to the
same line to avoid the need for most retransmissions.

However, the restrictions the data distribution model impose
on a data structure consisting of a ordered doubly linked list
of application data units can perhaps be generalized some-

11

what. The imposition of a strict ordering of ADUs, com-
bined with marking deleted ADUs whilst leaving them in
position in the ordering, allows the detection of inconsisten-
cies caused by network partitioning in a loose consistency
application.

The stacking order of blocks in NTE is a local issue so that
overlapping blocks can be edited. In a shared drawing tool,
stacking order is a global issue, allowing the overlaying of
one object over another to produce a more complicated ob-
ject. In such a tool, each drawing object (circle, polygon,
rectangle, line, etc) is the drawing equivalent of a line of text.
The concept of a block does not exist as such, but there is a
strict ordering (analogous to line ordering in a block) which
is imposed by the stacking order. Thus, the same set of con-
straints that apply to lines of blocks in NTE should also be
applied to the stacking order of drawing objects. We believe
many shared applications have similar requirements.

The retransmission mechanism used in NTE is novel, and
its requirements are perhaps atypical of shared applications
because of the wish to exploit redundancy. For many ap-
plications, SRM is a more appropriate choice of retransmis-
sion mechanism, as, given a stream of packets with sequence
numbers, it is likely to be more timely. However, for ap-
plications where retransmission is a relatively rare phenom-
ena due to redundancy or other relaxed consistency require-
ments, or where we desire a sender controlled system, NTE's
retransmission scheme has some possible benefits. Although
we do not use the property in NTE, sliding key schemes can
be used to ration retransmission requests - this might be use-
ful where the reverse path from receivers to senders is band-
width limited. In addition, for multicast networks that only
support one-to-many multicast with a unicast back channel
such as some satellite networks, a sender initiated retrans-
mission request scheme is required.

4 Future Work

The consistency mechanisms implemented in NTE can be
generalized as described above, and combined with more
traditional deterministic mechanisms and SRM in a single
reliable-multicast framework for building shared applications.
The goal is that different applications and indeed different
objects within the same application can require different re-
liability modes at different times by relaxing different con-
straints from section 1.1.

One area that NTE does not address adequately is the issue
of congestion control. Although NTE maintains a bandwidth
budget, and shapes it's transmissions within this budget, no
current mechanism allows us to set this budget effectively
and NTE operates with a default budget of 8Kbps. We are

investigating mechanisms to allow better congestion control
mechanisms within the extended framework to allow higher
bandwidths to be used safely when conditions allow.

References

[1] S.Deering and D.Cheriton. “Multicast routing in data-
gram internetworks and extended LANs.” ACM Trans-
actions on Computer Systems, pp. 85–111, May 1990.

[2] D.D. Clark, D.L. Tennenhouse, “Architectural Con-
siderations for a New Generation of Protocols”, Proc
ACM SIGCOMM '90, Philadelphia, Pa, 1990.

[3] S. Floyd, V. Jacobson, S. McCanne, C-G. Liu, L.
Zhang, “A Reliable Multicast Framework for Light-
weight Sessions and Application Level Framing”, Proc
ACM SIGCOMM 1995, Cambridge, Ma.

[4] S. Casner, S. Deering, “First IETF Internet Audiocast”,
ACM Computer Communication Review, Vol. 22, No.
3, pp. 92-97, July 1992.

[5] J. Cooperstock and S. Kotsopoulos, “Why use a fish-
ing line when you have a net? an adaptive multicast
data distribution protocol,” in Proc. of Usenix Winter
Conference, 1996.

[6] K. Lidl, J. Osborne, J. Malcolm: “Drinking from the
Firehose: Multicast USENET News”, Proc USENIX
Winter 1994, San Francisco, Ca., Jan. 17-21, 1994.

[7] V. Jacobson, “Multimedia Conferencing on the Inter-
net”, Tutorial Notes - ACM Sigcomm 94, London, Sept
1994.

[8] M. Yajnik, J. Kurose, D. Towsley, “Packet Loss Cor-
relation in the MBone Multicast Network” Proc IEEE
Global Internet Conf. , London, Nov. 1996.

[9] reference omitted to preserve anonymity

[10] A. Haake, J. Haake, “Take CoVer: Exploiting Version
Management in Collaborative Systems”, in Proc. Inter-
CHI'93, Amsterdam, Netherlands, 1993.

[11] J. Munson, P. Dewan, “A Flexible Object Merging
Framework”, Proc. ACM CSCW '94, Chapel Hill,
North Carolina, 1994.

[12] C. Ellis, S. Gibbs, “Concurrency Control in a Group-
ware System”, in Proc. ACM SIGMOD '89, Seattle,
Wa., 1989

[13] J. Bolot, I.Wakeman, T.Turletti, “Scalable feedback
control for multicast video distribution in the Internet”,
Proc ACM SIGCOMM 1994, London, UK

12

[14] W. Dabbous, B. Kiss, “A Reliable Multicast Proto-
col for a White Board Application”, RR-2100, INRIA,
Sophia Antipolis, France, Nov. 1993.

[15] M.R. Macedonia, , D.P. Brutzman, “MBone Provides
Audio and Video Across the Internet”, IEEE Computer,
Vol.27 No.4, April 1994, pp. 30-36.

13

