
A FRAMEWORK FOR CONFERENCE CONTROL FUNCTIONS

NADIA KAUSAR

PHD THESIS

SUPERVISOR: JON CROWCROFT

UCL

2

Chapter 1

Introduction

This thesis presents a new framework for multimedia conferencing systems. The recent

advances in computer technology and data networking have made video conferencing a

popular medium for users to interact with each other from remote locations. The term

“conferencing” is used in two different ways: firstly to refer to bulletin boards and mail

list style asynchronous exchanges of messages between multiple users; secondly, to refer

to synchronous or real-time conferencing including audio, video, shared whiteboards and

other applications[Schooler93]. This thesis focuses on the architecture and the

functionality required for the latter application and the former one will be ignored from

now on.

Conferencing

Asynchronous Synchronous

Loosely coupled Tightly coupled

 Conference control Conference control

There are two main types of conferences: tightly coupled and loosely coupled. Broadly

speaking, in the former, referred to as formal/tightly coupled conferencing, the

recipients are aware of who the other participants are and it is mainly used for business

meetings, one-to-one sessions etc. That is to say, it employs a centralised control of

activities. In contrast, in the informal/loosely coupled conferencing the sender is not

aware of who the receivers are, no strict floor control is necessary and it is mainly used

by the research community [Kausar(a)]. Both models require a control mechanism which

provides functions to establish, run, and terminate conferences as well as to allow the

participants to move into and out of conferences, provide consistency etc[Kausar(a)]. In

recent years, two different views of conference control have been proposed by two

3

prominent standard bodies: the International Telecommunication Union (ITU) and the

Internet Engineering Task force (IETF).

The underlying architecture of these two types of conference is inherently different. The

IETF model uses a distributed approach where no chairman role for a conference is

necessary. The senders are not aware of all the receivers, so this type of conferencing can

scale to a large number of participants. The ITU’s model of tightly coupled conferencing

is designed mainly for the circuit switched networks and different channels are used for

the chairman role and the media distribution. The knowledge of all participants and the

applications involved are necessary in this model. The consequence of having these two

distinctive systems is that they are not easily interoperable. As a result users end up

supporting several tools and multiple protocol stacks because the nature of a particular

type of conference may change or the users may decide to use a different set of tools half

way through a conference. For example, three participants in a research conference may

decide that the conference they are currently holding should really be a brainstorming

session and a lot more people are need to be involved. At present, it is very difficult to

change from a tightly coupled conferencing scenario to loosely coupled and vice versa.

Also it is difficult to manage and maintain various applications and operating systems

associated with extremely different models and the difficulty of changing from one

system to the other shows the inflexibility of today’s conferencing model.

ITU and IETF have an extensive amount of work going on to produce different

components of conferencing, such as different applications, tools and their various

features. Useful work by [Handley] and [Ott] discuss IETF based conferencing

infrastructures where a structured conference control is absent and normally has been left

to human consensus. In 1992, Schooler et al [Schooler91] focused on conference control

as a way to provide intercommunication between separate tools. Conference control has

not just been used as a way to co-ordinate users and different tools but as a desktop

remote controller to set and change audio/video level, delay and volume etc [Perry] in

remote locations. In the late 1990s, the ITU Study Group 16 produced a tightly coupled

approach to conference control where different users have a common set of capabilities

4

and minimum required resources to join a conference. However, there has been little

work on the full range of possible architectures of different conference control and

management. A “common control” architecture will provide a full range of essential

features so that systems based on that will be easy to design, implement and maintain.

The users then do not have to maintain multiple stack technologies in order to switch

from one model to the other.

The purpose of this thesis is to examine how communication using different conference

control mechanisms can be seamlessly integrated into a single mechanism, and to

propose the Common Conference Control Services (CCCS) that provides a set of

functions and services in a framework that is essential for any conferencing system. The

aim to develop a communication infrastructure rather than a specific groupware

application has several implications. First of all, no assumptions about the environment

can be made[Ott]. The infrastructure has to be portable across different hardware and

operating systems platforms and has to provide the foundation necessary to achieve

interoperability between different conferencing systems. Therefore, the author of this

thesis proposed a system that operates on the session layer. The other advantages of a

session layer based protocols are : a) it is transparent to network support b) it has

minimum impact on applications, and c) the design is extensible. As an example of

extensibility, the design of the CCCS is able to support additional functionalities that are

not directly applicable, such as charging[Kausar (b)].

There is no comprehensive set of design principles that would lead to a satisfactory

solution to all the problems that can be observed for users in different tasks. However, as

pointed out in [Sasse], designers of multimedia conferencing systems should not

determine the nature of interaction between users, but should support many possible

interaction styles and let the users decide which is most appropriate. At the same time, a

set of defaults should be available for novice users. The architecture of CCCS uses this

approach. The functions have been implemented and tested over the Internet.

5

1.1 The different phases of group communication

Specific types of group cooperation can be decomposed into asynchronous collaboration,

followed by a synchronous collaboration phase as shown in Figure 1.

 Stage 4

 asynchronous discovery of a problem
 collaboration

 Stage 3 phase
 asynchronous -individual work (email)
 conference Stage 1
 postprocessing synchronous
-generation of minutes conference

preparation
-distribution phase

- date, venue, participants

Stage 2
 synchronous

end of a conference collaboration start of a conference
 phase
 -presentation, discussion

Figure 1: The four phases of group collaboration

Synchronous interaction requires the presence of all cooperating users while

asynchronous cooperation occurs over a longer time period and does not require the

simultaneous interaction of all users[Rodden]. In this thesis we concentrate on the

synchronous collaboration phase (stage 2). This phase covers the entire course of a

conference with two or more participants. A conference may include presentations,

discussions, reviews, voting, cooperating work sessions (e.g joint editing etc.). Due to

the immediate interactions, the synchronous collaboration phase is also best-suited for

updating group members about the latest developments, current project status, etc.

Therefore, this cooperation phase is crucial to the entire process of group collaboration.

As Ott et al [Ott] pointed out, in this idealized model, each activity of any of the group

members may be assigned to one of the four phases, and the phases progress cyclically.

6

In reality, the borders between the phases are soft: individual phases may overlap with

others. Depending on the situation, phases may also be very short or even left out

entirely.

The next section gives an overview of conferencing and discusses different conference

parameters and components and their positions in different layers of OSI.

1.2 Conference parameters and components

Figure 2 shows different meeting types that present the type of conference on the left

hand side, a simplified correlation with meeting types, a set of meeting

parameters[Schooler92]like interactivity between participants, and the number of

participants that may be involved. These parameters and components make up a

canonical model of conferencing which is the guideline for designing either a distributed

or a centralised model of conferencing (discussed further in section 1.3).

In the following, the set of parameters that are shown in Figure 2 are discussed. These

parameters may be used to describe the characteristics of all meeting types [Schooler92]:

• Interactivity - Traditionally, a highly interactive conference tends to be a telephone

call, or a hallway meeting where number of participants is low and it has higher

coordination.

• Group size - Ranges from two to more than a million (TV broadcast), for most review

type of meetings or small panel discussions, groups of up to twenty are common.

• Conference duration – Ranges from minutes to hours.

• Geographic distribution – participants could be located on the same floor, in the same

building, conference room or different countries.

• Establishment – conferences can be established in an ad-hoc manner or in advance, it

may start at a planned time or it may start when the invitee has joined the phone call.

Big conferences like seminars are normally planned in advance whereas telephone

calls take place in an ad hoc manner.

• Admission policy – Anybody may enter an open conference or a closed conference is

limited to a predefined set of participants (may require passwords)

7

• Floor control -Floor control, a metaphor for "assigning the floor to a speaker", which

is applicable to any kind of sharable resource within conferencing and collaboration

environments. The tighter the floor control is, the conference type is classified more

as a formal conference or tightly coupled conference.

Meeting type Main characteristics Interactivity no of

Participants1

Point-to-point call high coordination high 2

 rigid

Hallway meeting small sessions high 2-6

Review meeting static high 2-20

(e.g. boardroom meeting)

Classroom less coordination medium-low 10-100

Panel discussion low 10-100s

Seminar

 few policies low 10s-1000s

Lecture low overhead

 Large sessions

TV broadcast dynamic (receivers change) 1,000,000s

Figure 2 Meeting Types[Source: Schooler [Schooler91]]

• Conference policy – A conference policy describes how strictly a conference is

managed and issues of conductorship (as described below) and privacy issues. User

characteristics influence a policy, for example, a policy might be user-dependant and

role dependant. A chairperson role might allow a single person to mediate floor

control decisions, or priorities associated with users might help resolve conflicting

1 A typical range is presented here, these numbers may vary in different situations

8

requests for control. A policy might implement a single global thread of control for a

whole application, or it might provide independent control over individual parts of an

application (i.e. objects) [Boyd]. A conference architecture has to accommodate both

extremes as far as these policies can be actively supported by technology[Boyd].

Privacy policies control whether other clients can learn of the sessions existence, its

attributes and the identities of the current session participants.

• Conduct management - A conference may be chaired by a participant (the chair

person may be prearranged) or the conductor role may be passed around. A

conference may also switch between conducted and non-conducted mode depending

on the task being performed.

• Coupling mode – Coupling mode refers to the consistency of state information about

a teleconference at the various participating sites. In a tightly coupled scenario, all

participants are aware of the participant list, their roles, what applications are there

and why and how they are being used, e.g. a small meeting room. In a loosely

coupled scenario, consistency is not explicitly provided for. Participant lists are not

exactly known, all the applications may not be used by everyone at every site. An

example of this could be a talk with an audience of hundreds of listeners.

 The next section is a detailed overview of conference control and its association with

different levels.

1.3 Conference control requirements and different perspectives

Most of the conferencing models need to fulfil some basic system requirements:

a) Application interaction – Applications for multimedia conferencing, e.g. video tool,

whiteboard etc. need to be started with the correct initial state, and the knowledge of

their existence must be propagated across all participating sites. Applications may

need to cooperate (for example to achieve audio and video synchronisation)

b) Membership control – Who is currently in the conference ? [Handley]

c) Floor Management – Who or what has the control over the input to particular

applications?

9

d) Network Management - Request to set up the connections between end-points and

request from the network to change bandwidth usage.

e) Session management - Startup and Finish Conference, inviting people, joining, side

sessions etc.

f) Ordering - Process ordering and ordering of the resource requests, so avoid all

necessary deadlock situations.

g) Reliability – Sending applications need to be sure that the destinations received the

messages. Whether all the messages sent out have to be acknowledged or the n out of

m destinations picked up the message is a design issue within the conference control.

Depending on users’ activities in different styles of conferencing, the services expected

from conference control vary from application level to network level. So for example, in

a tightly coupled conferencing membership control and its consistency is very critical to

the user in the application layer. The network should be reliable to support this activity

but it is not up to the network to provide that information. On the other hand, in a loosely

coupled conferencing, the network must be able to handle a large number of participants.

In this framework consistency arises slowly by virtue of the periodic updates sent by

network nodes (details in Chapter 4). Table 1, 2 and 3 outline the different services

provided by conference control at user, application and network level.

Table 1 outlines the services expected from two types of conference control and their

differences from a user viewpoint. The users define conference policies and they expect

the application (detailed in Table 2) to meet their requirements. As shown in Figure 2, as

the number of participants increases, the activities tend not to have a strict management

policy and a looser floor control. In these cases the conference control tends to be left to

human consensus. When there are only few people in a conference, users expect to have

the exact list of participants and the applications that are in use. The conference control

tends to be more formal in these scenarios.

10

Services Formal/strict/tightly coupled Informal/loosely coupled

Activities a) Business meeting (with

limited number of

participants)

b) Panel discussion, where

there are few speakers, but

a number of listeners

c) One-to-one meeting

a) Lectures (with larger

number of participants)

b) Research meeting (with

several active speakers)

Floor control Requires a floor control; if one

common video channel is there,

it follows the floor of the

conference so that it is the video

signal originating from the

current floor-holder site. Let a

requester speak.

Human chair (if the policy

specifies), but normally anyone

can speak at any time.

Application interaction/control Symmetric: require all

participants to use the same set

of media for communication

Asymmetric: receiver driven,

whatever the recipients are

capable of running

Membership control Knowledge of all participants, at

least the speakers in the panel

sessions.

Senders do not have to know

about receivers.

Session control a) Need to have a strict

start/finish time, date etc.

b) The session does not start

till the chairman initiates

the conference.

Someone has to create a

conference and start it; it does

not matter when the receivers

join.

Reliability Guarantee of service required Depends on the type of

application/networks

Table 1: Human level of conference control

11

Table 2 shows different features of conference control in the application level.

Conference control in this level is expected to provide user visible functions such as

update a registry when a participant joins or leaves, request a floor via a user interface

etc. It is also in the application layer where the conference control provides management

functions such as interoperability between non-compliant software, address translation

and refuse a floor to an unauthorised speaker.

Services Formal/strict/tightly-coupled Informal/Loosely

Floor control Checks the Registry. If the

requester is a valid speaker

assign it to him.

May not be needed

Application

Interaction/control

Exchange capabilities to start

with. Check application

registry, If valid control

application session.

Capabilities exchange still

applies, but no application

control.

Membership control Update the registry. Includes

Join, Leave, Invite, Exclude and

authentication control.

Use RTCP[Schulzrinne] to

inform about the participants

Session control Profile definition(conference

name, description, password

protected/not, listed/unlisted,

conductible/nonconductible),

setup & termination, tear down

connection at finishing time

Conference name, password (if

applies), description, media to

be used, setup & termination by

the initiator

Reliability The floor control and session

control needs to be run on TCP/

some reliable transport protocol

Depends on the policy of the

conference

Table 2: Application level of conference control

Different types of conferences are designed for different types of networks. There are

point-to-point, point-to-multipoint and multipoint-to-multipoint conferences which may

or may not run on packet based networks (e.g. Internet) or circuit-switched networks (e.g.

ISDN/PSTN). It is not possible to design the services required from all types of

12

networks. We have taken into consideration which networks may provide a particular

type of conference and the methods for it:

Criteria Pt-to-pt Pt-to-multipt Multipt-to-multipt

Network type ISDN/PSTN/CSTN ISDN/PSTN/CSTN

IP IP

Methods of

building

connection

ISDN B channel & D

channel

Unicast

B channel & D channel

Unicast/Multicast

Multicast/

Broadcast

Media

transmission

ISDN multiplexer e.g.

H.221PSTN- H.223

Same

RTP/RTCP

IP based datagram,

RTP/RTCP

Reliability Q.922 signalling

TCP/MTP/MTP-2

RMP(?)

Same

TCP/MTP/MTP-2/

SRM

TCP

RMP

SRM

Table 3: Network level of conference control

In order to conduct a point-to-point or point-to-multipoint conference, we need to create

certain types of channels which convey the services. The conferences based on Circuit

Switched networks have separate channels for call connection/control and media

transmission. For example, for two people to exchange audio, two logical channels must

be opened, one from caller to callee, and vice versa. Also in order to carry media, two

different channels must be opened from both side. This is done to ensure reliable

delivery of media.

To summarise, the tightly coupled conferencing normally seen in ITU emphasizes

reliability, tighter policies and centralised control whereas the latter type of conference

seen in IETF is less concerned about tight co-ordination and reliability, instead it focuses

on scalability and it employs fewer policies. In Chapter 2, the centralised and the

distributed models of conferencing and their different issues mentioned above are further

discussed. However, this leads to the question of what a canonical model of conferencing

13

looks like. A typical desktop conferencing always shows certain activities as seen in

Figure 3.

Conference creation (assignment of a conference ID)

Advertise the conference Invite participant

Participant chooses to enter conference Invitee is notified

Reject invitation

Admission control (negotiate capabilities/codecs etc.)

Join conference (if password is needed, provide it)

Media flow (if different media then media gateway is used)

Floor control (send media if the current participant is the floor holder)

End of a conference / participants leave

 Tear down connection

Figure 3: Activities in a canonical conference

A conference needs to be created by either a system or a user with the following

parameters: subject topic, estimated number of participants (or a precise list of

participants), policies such as admission policy, charging policy (if applicable), security

and floor control. Then depending on the policy either the conference is advertised or

the participants are invited. When participants start to join the conference, admission and

security policies are applied and negotiation of capabilities take place. Therefore, the

participants might be required to pay a certain fee, or provide a password to join and need

a common set of tools to participate. Once the media such as audio and video start to

flow there may need to be mechanisms to provide desired quality of service and a media

gateway to provide a consistent format of audio and video. Floor control will ensure that

14

the requestor gets to speak or transmit data and this process is fair (i.e. consistent with the

conference policy). The minimum quality that is expected from a conference is the

reliable delivery of data. After the conference terminates, the appropriate channels for

media or signaling are successfully closed down.

Based on the above canonical model of conferencing, it can be concluded that the

minimum number of essential activities that a control mechanism needs to cater for are:

• Creation of a conference

• Facilities to join a conference

• Invite a participant

• Floor control

• Reliability

• Leave a conference

Most of the activities shown in Figure 3 are supported in CCCS proposed in this thesis.

1.4 Contributions

Different coordination and control tasks associated with separate conferencing models

can be integrated into one architecture. CCCS is a generic framework for that type of

architecture which can demonstrate the following:

a) It identified parts in specific architectures where components are missing. For

example: reliable data delivery for conferencing control functions on the Internet

model has not been investigated and lacks a solution. A suitable transport protocol

has been proposed that will provide the requirements of conference control, like

congestion control, membership control and reliability over the Internet (Chapter 5).

b) It can be used to help identify components that can be unified easily: e.g pricing,

naming services and security. The author has investigated pricing issues and a

charging model has been proposed that will fit in the CCCS framework. This

framework can be used by any type of conferencing and most other distributed

interactive applications (Chapter 6).

c) Finally, a CCCS implementation has validated the concept of interoperability of

different conferencing models. As an example of CCCS’ s gateway functionalities, a

15

meaningful subset of IETF’ s SIP and ITU’ s H.323 call control functions have been

interworked (Chapter 3).

1.5 Thesis Outline

Chapter 2 describes related work on protocols and architectures for multimedia

conferencing and control. Chapter 3 contains the architecture and design of the Common

Conference Control Services. Reliable multicast protocols for supporting conference

control are analysed in Chapter 4. Chapter 5 focuses on requirements of conference

control and different facets of conference control from network perspective. Chapter 6 is

an analysis of session based charging for conferencing and the final chapter is the

conclusion.

16

Chapter 2

Related Work

This thesis and the related work that we discuss here, concerns different models of

conferencing, its structure and requirements. In this chapter in particular we discuss the

design, implementation and requirements of conferencing in Application and Session

layer. We do not discuss network or transport layer requirements in details here.

We primarily focus on the circuit switched ITU and the packet switched IETF model of

conferencing, since these two models of conferencing dominate the research community

and the commercial industry. In the process, the shortcomings and the strengths of both

models are pointed out. Then we focus on other conferencing architectures and

conference control protocols that have been researched and implemented. Finally we

look at some gateway protocols that are currently being analysed and implemented as a

result of a dramatic change in telecommunication industry. The most significant change

in the last twenty years has been the move from using circuit switched networks for

multimedia data towards packet-switched networks and the Internet in particular for

multimedia data[Handley 97]. More recently, ITU’ s original design of conferencing has

evolved to include packet networks, and a more loosely coupled and distributed approach

to conference control.

2.1 The ITU architecture for multimedia conferencing

The design of ITU’ s conferencing and the controls associated with it originated in

person-person video telephony, across the POTS (Plain Old Telephone System) or its

digital successor, ISDN. This is a circuit model, where one places a call using a

signalling protocol with several stages and the link resources are allocated at the call

setup. The resources such as communication channels are released at the end of a call.

The general assumption is that all participants are consistent about the status of other

participants, applications and applications’ capabilities.

17

The ITU multimedia conferencing architecture essentially consists of two parts: (low

level) network specific protocols for establishing and multiplexing physical connections;

and a (high level) network independent conferencing infrastructure for multipoint

communication, conference control, and support of conferencing applications[Ott97].

The low level protocols have been primarily designed for point-to-point audiovisual

communication, in particular video telephony. They define the communication procedure

for placing a multimedia call between two systems which are network dependant. The

low level protocols which are network specific are developed by Study Group 15 of the

ITU2 and are defined in several series of recommendations:

• The H.310 series of recommendation for ATM networks,

• The H.320 series of recommendations for ISDN

• The H.321 recommendation for use of H.320 on top of ATM

• The H.323 series of recommendations for corporate (inter) networks, and

• The H.324 series of recommendation for analogue telephone networks and mobile

systems.

Along with the definitions of the system components, system operation, and

communication procedure, a set of audio and video encoding recommendations has been

defined3. Wenger [Wenger95] discusses various encoding schemes and especially the

H.320 series of recommendations.

2.1.1 T.120 recommendations

The high level conferencing infrastructure for ITU is described in the T.120 series of

recommendations. Its development started around 1990 with the first recommendation of

the series being approved by the ITU in 1993. At the time of writing, ten

2The work started in the late 1980s for video telephony over ISDN

18

recommendations have been approved that define multipoint communication and

conference control functionality as well as application protocols. The T.120 model is

composed of a communications infrastructure and application protocols that make use of

it. The ITU Secretariat maintains a list of the currently valid ITU Recommendations

(T.121 - T.127). Each layer provides services to the layer above and communicates to its

peer(s) by sending Protocol Data Units (PDU) via services provided by the layer below.

Application Protocol
Recommendations

ITU-T T.120 Infrastructure Recommendations

Multipoint Communications Service (MCS)
T.122/125

Network Specific Transport Protocols
T.123

Generic Conference Control (GCC)
T.124

Node
Controller

User Application(s)
(Using Both Standard and Non-Standard Application Protocols)

User Application(s)
(Using Non-Std Protocols)

User Application(s)
(Using Std. Appl. Protocols)

...

...

Non-Standard Application
Protocol Entity

...

T.126 (SI)
T.127 (MBFT)

ITU-T T.120

Application Protocol Entity

Figure 4: T.120 recommendation infrastructure [T.12]

3 Audio encodings include G.711, G.722, G.723.1, G.728 and G.729; video encodings comprise H.261,
H.262 and H.263

19

2.1.1.1 Different components of T.120 based conferencing

In a T.120 conference, nodes connect up-ward to a Multipoint Control Unit (MCU). The

MCU model in T.120 provides a reliable approach that works in both public and private

networks. Multiple MCUs may be easily chained together in a single domain. Figure 5

illustrates a potential topology structures.

GCC
Provider

Node 2 Node 3 Node 4

Node 1

MCS Connections

Top GCC
Provider

Node
Controller

Application
Protocol

Entity

GCC
Provider

GCC
Provider

Node
Controller

Node
Controller

Node
Controller

Application
Protocol

Entity

Figure 5: Hierarchy structure of T.120 nodes connecting up to a single MCU [T.120]

As it can be seen from the above diagram, each domain has a single Top Provider or

MCU (marked as Node 1) that houses the state information of all other nodes in the

domain and is critical to the conference. If the Top Provider either fails or leaves a

conference, the conference is terminated. If a lower level MCU (i.e., not the Top

Provider) fails, only the nodes on the tree below that MCU are dropped from the

conference.

• Generic Conference Control (GCC)

T.124 Generic Conference Control provides a comprehensive set of facilities for

establishing and managing the multipoint conference. It is with GCC that we first see

20

features that are specific to the electronic conference. At the heart of GCC is an

important information base about the state of the various conferences it is servicing. One

node, which may be the MCU itself, serves as the Top Provider for GCC information.

Any actions or requests from lower GCC nodes ultimately filter up to this Top Provider.

Using mechanisms in GCC, applications create conferences, join conferences, and invite

others to conferences. As endpoints join and leave conferences, the information base in

GCC is updated and can be used to automatically notify all endpoints when these actions

occur. GCC also knows who is the Top Provider for the conference. However, GCC does

not contain detailed topology information about the means by which nodes from lower

branches are connected to the conference.

Every application in a conference must register its own application ID with GCC. This

enables any subsequent joining nodes to find compatible applications. Furthermore, GCC

provides robust facilities for applications to exchange capabilities and arbitrate feature

sets. In this way, applications from different vendors can readily establish whether or not

they can interoperate and at what feature level. GCC also provides conference security.

This allows applications to incorporate password protection or "lock" facilities to prevent

uninvited users from joining a conference.

Another key function of GCC is its ability to prevent conflicts for resources such as

tokens and channels. Its ability to manage shared resources ensures that applications do

not step on each other by attaching to the same channel or requesting a token already in

use by another application. Finally, GCC provides capabilities for supporting the concept

of strict floor control in a conference. GCC allows the application to identify the floor

controller and a means in which to transfer the holder’ s token.

 The design and the structure of T.120 based conferencing imply that when the number of

clients and applications increase, the size of GCC’ s register containing information of

capabilities and various features of clients grow with it. The Top Provider becomes a

21

bottleneck and the performance of the MCU decreases. In order to address some of these

problems, T.124 has been revised.

• T.124 Revised

The ITU has completed a draft revision of T.124. The new version, called T.124 Revised,

introduces a number of changes to improve scalability. The most significant changes

address the need not to distribute GCC’ s registry information (referred to as its roster) to

all nodes participating in a conference any time a node joins or leaves a conference. This

registry contains detailed information on applications, other nodes’ capabilities and their

details.

To improve the distribution of roster information, the concept of Node Categories was

introduced. These categories provide a way for a T.124 node to join or leave a conference

without affecting the roster information that was distributed throughout a conference. In

addition, the Full Roster Refresh, which was previously sent any time a new node joined

a conference, was eliminated by sending out roster details from the Top Provider. These

changes will not affect backward compatibility to earlier revisions of T.124.

2.1.1.2 Sequence of actions in T.120 based conferencing

The pattern of a T.120 based conference is:

a) Create the conference

b) Invite a participant to the conference

c) The participant accepts and joins the conference

d) Update the roster/application/membership registry

e) Terminate the conference

The events described in the ITU specification for joining a T.120 based conferencing are

as follows:

22

ConferenceJoinRequest

ConferenceJoinResponse

GCC-Conference-Join.request

MCS-Connect-Provider.request

Controller Provider
GCCNode

Provider
MCS

Controller Provider
Top GCC Node

Provider
MCS

MCS-Connect-Provider.indication

GCC-Conference-Join.indication

GCC-Conference-Join.response

MCS-Connect-Provider.response

MCS-Connect-Provider.confirm

GCC-Conference-Join.confirm

MCS-Attach-User.request

MCS-Attach-User.confirm

MCS-Channel-Join.confirm

(GCC-Broadcast-Channel)
MCS-Channel-Join.request

MCS-Channel-Join.confirm

(Node ID Channel)
MCS-Channel-Join.request

MCS-Send-Data.request

UserIDIndication

MCS-Send-Data.indication

Figure 6: Joining an existing conference when directly connected to TOP GCC provider [T.120]

Since, this type of conference was initially designed to work on a circuit switched

network on a point-to-point basis, the specification looks very complex. The above

diagram displays the complexity and the enormous number of messages that are passed

between two T.120 capable nodes when the callee node is joining a conference.

2.1.2 H.323 conferencing

 H.323 is an umbrella recommendation from the ITU which is designed to extend

traditionally circuit based audio visual and multimedia conferencing services into packet

(i.e. IP-based) networks. The H.323 system aggregates a number of standards, which

together allow establishing and controlling point-to-point calls as well as multipoint

conferencing. It provides a tightly controlled communication model, with explicit control

and media connections set up between participants.

23

 Although H.323 is minimally defined to operate utilising only peer H.323 terminals, the

recommendation defines a number of additional logical H.323 elements. These elements

are: terminals, gatekeepers, gateways, and multipoint control units (MCUs). Their main

functions are:

• Terminal- clients/endpoints that provide two-way communication

• Gateway- an optional element to provide interoperability (H.320 compliant

terminals over (ISDN, H.324 over PSTN)

• Gatekeeper – performs a number of tasks: address translation, bandwidth

management, and charging for calls.

• Address translation – gatekeeper acts as a central point for a H.323 zone

address translation from LAN aliases to IP or IPX.

• Bandwidth management – it is up to the gatekeeper to ensure that calls made

to H.323 terminals via a gatekeeper have enough bandwidth to complete the

call.

• Charging – work is currently in progress [Gary] to allow calls to be routed to

the gatekeeper so that they can be charged.

• MCU- supports conferences between three or more terminals, mainly consists of

MC (multipoint controller) and MP (multipoint processor). MC handles capability

negotiations and MP deals with media streams like media mixing, switching

and processes conversion between different codecs and bit rates

 Although H.323 clearly defines services and interactions between all of these logical

elements, there are no specific hardware or software requirements mandated. Figure 7

depicts an environment of H.323 in terms of the logical system components and also

shows a sample network topology which interoperates with the circuit switched networks

(ISDN, PSTN) based conferencing

24

Figure 7: Environment of H.323 and sample network topology

2.1.2.1 Scope of H.323

Figure 8 illustrates a conference stack of H.323 showing all the core protocols. Although

H.323 is specified to work over any packet based networks, only IP network is currently

best in practice. In order to ensure reliable delivery of call setup signalling over IP, TCP

is used, while for transporting audio and video, unreliable connection (UDP) is specified.

T.120 specification is used for data.

The initial connection is made from the caller to a well-known port on the callee. H.323

has specified the call signaling and bearer capability control in two separate protocols,

H.225 and H.245. H.225[H.225] covers the call setup and the initial call signalling. The

H.225 document embodies two sub protocols: Registration, Admission and Status (RAS)

and the call control messages are derived from Q.931. H.245[H.245] is the media control

3

 H323 terminal H.323 MCU

 Packet Based Network
 Gatekeeper
 Gateway

 Switched circuit H.320 (ISDN)
 Networks

 Speech Only

 Internet H.324 (POTS)

 H.323 Network

H.323 Conferencing Architecture

25

Figure 8: Conference stack for H.323

 protocol that H.323 system utilises after the call establishment has completed. The

addressing information required to create the separate H.245 protocol channel is passed

in the call control message during the Q.931 call establishment phase. H.245 is used to

negotiate and establish all of the media channels carried by RTP/RTCP. The H.245

protocol forms the common basis for media and conference control for a number of ITU

multimedia communication systems. The functionality offered by H.245 that is used by

H.323 falls into four categories:

a) Master slave determination

b) Capability exchange

c) Media channel control

d) Conference control

2.1.2.2 Sequence of operations in H.323 based conferencing

 When the H.323 based conference runs over UDP it uses RAS (Registration, Admission

and status) to setup the call. When the underlying transport protocol is TCP, the call setup

messages are sent on the first TCP connection and the caller establishes the callee. Four

setup messages: Setup, Alerting, Connect and Release Complete are necessary. Their

operations and syntax are defined in detail in the Q.931 and H.225 specifications. The

call signalling specified in H.225 over TCP follows a set of setup messages, which is

based on the Q.931 protocol. H.245 uses the reliable H.225 call signalling channel to

perform H.245 control functions, such as master/slave determination and conference

control. During the terminal capability exchange procedure, both ends based on their

R A S
(H .225)

A u dio
S tream

IP

T C P U D P

R TP/R T CP
(H .225)

X .224 C lass 0

V ideo
S tream

Q .931
(H .225)

H .245 T.12 0

26

own terminal capability, set up the mutual acceptable bearer service to the network.

Logical channel(s) are opened to provide the bearers, for example, two channels for video

and one for audio. This procedure is very similar to the bearer capability request in the

ISDN Q.931 and SS7 ISUP.

 Figure 9 shows the sequence of actions for setting up a conference in H.323. The caller

sends Setup to initiate the conference immediately after establishing TCP connection.

The Setup message contains the caller’ s name and IP address. The callee sends Alerting

after notifying the user of the incoming call, if the call will not be accepted without user

intervention. It uses the Release Complete message if it refuses the call. Otherwise, the

connect message contains the address and port on which the callee is listening for the

H.245 connection.

 Site A Callee (Site B)

 H.225/Q.931 setup message (conf name, IP addr)

 Call proceeding

 Alerting
 Connect (IP addr, port)

 H.245 (terminal capability/master slave determination)
 {e.g. H.261, G.723}
 Accept

 Open/close logical channel

 RTP

 RTP/RTCP
 (End Session)

Figure 9: Message sequence in a H.323 based conferencing

27

2.1.2.3 Netmeeting – A product based on H.323

NetMeeting from Microsoft supports the H.323 standard for audio and video

conferencing, which includes the H.263 video codec. NetMeeting enables users to share

applications, exchange information between shared applications through a shared

clipboard, transfer files, collaborate on a shared whiteboard, and communicate with a

text-based chat feature. Also, its support for the T.120 data conferencing standard allows

NetMeeting to interoperate with other T.120-based products and services. The Microsoft

Internet Locator Server (ILS), uses an LDAP (Lightweight Directory Access Protocol)

interface for NetMeeting directory services. Users can view the ILS directory from

within NetMeeting or from a Web page, and review a list of people currently running

NetMeeting. Then, they can choose to connect to one or more of the listed people or

select another person by typing their location information. One can access the ILS and

perform server transactions such as logging on and off and creating a directory listing of

available users.

2.1.3 H.Loosely Based Conferencing

 ITU based conferencing does not scale to very large numbers of participants because it

uses a centralised architecture relying on a Multipoint Control Unit MCU to distribute

media or data to multiple clients. The concept of H.Loosely coupled conferencing has

been introduced to address the scalability problem. The main idea is to separate passive

“listening” participants from interactive participants.

As shown in Figure 10, there is a panel in this type of conferencing, which consist of

active participants who are senders and receivers of data and/or audio. The main

principles of tightly coupled conferencing apply to the panel members. This panel

consists of a small H.323 conference connected to a large number of RTP receiving

terminals via RTP/RTCP. Within the panel, full interaction is allowed. Interaction could

be through social- or chair- control.

28

H.323

M C
H.323

H.323

Sm all H .323 Panel
Tightly-Coupled Conference
(Decentralized model shown)

RTP/RTCP Audio Session

RTP/RTCP Video Session

H.245

Chair
H.323

H.245

H.245

Large RTP/RTCP-Based Loosely-Coupled Conference

RTP
Receiver

RTP
Receiver

RTP
Receiver

RTP
Receiver

RTP
Receiver

RTP
Receiver

RTP
Receiver

RTP
Receiver

RTP
Receiver

RTP
Receiver

RTP
Receiver

RTP
Receiver

RTP
Receiver

RTP
Receiver

RTP
Receiver

Figure 10: A large conference consisting of an H.323 Panel and RTP/RTCP based Receivers

Outside the panel, the participants are passive; they are essentially receivers who are not

allowed to interact. If they wish to interact, they have to join the panel or get invited by

the panel. Inside the panel any H.323 model - centralised, decentralised, or hybrid - can

be used. But outside the panel multicast is used in order to provide the scalability

required for the H.Loosely coupled conference. This can be achieved by using a

MultiPoint MP to multicast media streams to the RTP receiving terminals.

2.2 The IETF architecture for multimedia conferencing

Although H.Loosely was trying to solve the scalability problem of the ITU based Internet

conferencing, it still uses a central point like MP to distribute data to multiple clients.

Also, if a conference consist of a large number of active participants, a tightly coupled

panel cannot be formed and the H.Loosely coupled model is no longer effective. The

IETF conferencing architecture eliminates this scalability problem by being completely

distributed.

Various working groups have contributed to the development of a teleconferencing

architecture in the IETF. These efforts started in the late 1980s with the work on

multicasting for the Internet protocol in order to support group communication

[Deering91]. Afterwards, improvements to the multicast routing infrastructure – the

29

Multicast Backbone, Mbone (see section 2.3.1)[Deering et al 1996] have been achieved

and resource reservation mechanisms to achieve a reasonable service quality have been

worked out [Zhang et al 93]. The Mbone has been used for a number of applications

including multimedia (audio, video and shared workspace) conferencing. These

applications involved vat (LBL’ s Visual Audio Tool), ivs (INRIA Video Conferencing

system), rat (UCL’ s Robust Audio Tool), nv (Xerox’ s Network Video Tool), wb (LBL’ s

shared whiteboard), and vic (LBL’ s) among others. The main distinctions between this

type of architecture and the ITU’ s video conferencing architecture are a) in the IETF

based conferencing architecture, all the protocols use a distributed architecture b) these

protocols mainly work over IP and the control of conferences is very loosely coupled.

2.2.1 IETF’ s basic requirements and design

As mentioned above, the IETF based conferencing architecture consists of several

independent protocols which operate in a stand-alone manner. For example, the protocol

that is used to advertise a conference is called SAP (Session Announcement Protocol),

and RTP (Real-time Transport Protocol) is used to carry audio and video. The design of

the IETF’ s conferencing system have been made in a modular fashion. In ITU’ s

architecture, an H.323 conference combines the audio, video, invitation functions (H.225)

and conference control (H.245) to provide a complete solution for a conferencing. In

contrast, IETF’ s audio tool is separated from the video tool and the protocol for

advertising can be separated from the signaling protocol (Session Initiation Protocol).

The protocols used in the IETF conferencing architecture are designed such that

conferencing will scale effectively to large numbers of participants. It is clear that, with

the unreliable network such as the Internet, these applications cannot achieve complete

consistency between all participants, and so they do not attempt to do so[Handley95]- the

conference control they support usually consists of:

• Periodic (unreliable) multicast reports of receivers

• The ability to locally mute a sender if one does not wish to hear them.

30

2.3 Related protocols

The following sections describe all the major components and the protocols that

contribute towards the IETF based conferencing architecture.

2.3.1 Mbone

The multicast backbone, or Mbone[Mbone], implements IP multicast . During 1991, IP

multicast was deployed on the DARTnet testbed network. In spring 1992, the

DARTnet’ s native multicast network was extended to cover a small number of additional

sites by tunnelling IP multicast across parts of the Internet without native multicast

support. As a temporary measure, the Mbone (Multicast Backbone) was put together to

allow reception of live audio from the IETF meeting in San Diego. Forty subnetworks in

4 countries and three continents were able to receive audio and talk back to the meeting.

Although the audio quality was poor, the principle had demonstrated, and sufficient

interest shown that the Mbone was not taken down again.

When a host wants to join an Mbone session or a multicast group in general, it issues a

request to do so and then receives packets transmitted to the specified multicast address.

A host transmits packets to a multicast address without knowing which sites will receive

them; the receivers have the responsibility of joining the group. To limit the scope of a

multicast packet, a time-to-live (TTL) value is specified. The TTL is decremented each

time it goes via a router. When the TTL is less than the link threshold, the packet is not

forwarded. By convention, a TTL between 1 and 16 would be used to keep packets

within a single network while a TTL of 127 would be specified for global traffic[Mbone].

2.3.2 Session Directory Protocol (SDP)

A session description expressed in SDP [SDP] is a first generation of conference control

for Mbone based conferencing in the manner of a Session Directory – comparable to a

TV program listing. SDP is a short structured textual description of the name and

31

purpose of a conferencing session. SDP lists the media, protocols, codec formats, timing

and transport information that are required to decide whether a session is likely to be of

interest and to know how to start media tools to participate in the session.

SDP is purely a format for session description - it does not incorporate a transport

protocol, and is intended to use different transport protocols as appropriate, including the

Session Announcement Protocol (discussed in section 2.3.3), Session Initiation Protocol

(section 2.3.4), Real-Time Streaming Protocol, electronic mail using the MIME

extensions, and the Hyper-Text Transport Protocol (HTTP).

Figure 11: Annotated SDP Session Description

In Figure 11 the session entitled ‘‘Multimedia Seminar’’, will use audio, video and an

application called ‘‘wb’’, and that someone called ‘‘Mark Handley’’ is responsible for the

session.

32

However, this SDP also indicates the precise timing of the session (the ‘‘t=’’ line gives

start and stop times), that the session is multicast to group 224.2.17.12 with a TTL of

127, the audio is 8KHz law carried by RTP to UDP port 491, the video is H.261 encoded,

also over RTP but to port 51372, and the whiteboard program should be started up in

portrait mode using port 32416.

Thus SDP includes the session name and a description of its purpose, the times the

session is active, the media comprising the session, and information to receive those

media (addresses, ports, formats and so on).

As resources necessary to participate in a session may be limited, some additional

information may also be desirable, including information about the bandwidth to be used

by the conference and contact information for the person responsible for the session.

In general, SDP must convey sufficient information to be able to join a session (with the

possible exception of encryption keys) and to announce the resources to be used to non-

participants that may need to know.

2.3.3 Session Announcement Protocol (SAP)

The Session Announcement Protocol (SAP)[Handley/Whelan] must be one of the

simplest protocols around. To announce a multicast session, the session creator merely

multicasts packets periodically to a well-known multicast group carrying an SDP

description of the session that is going to take place. People that wish to know which

sessions are going to be active simply listen to the same well-known multicast group, and

receive those announcement packets. SAP and SDP are based on a concept where it is not

possible to invite a certain user to a conference on demand.

2.3.4 Session Initiation Protocol (SIP)

33

The problem of not being able to invite users was solved by the second generation of

conference control tools. The required functionality is provided by the Session Initiation

Protocol SIP[SIP]. It is a simple, one step conference initiation protocol with basic

support for address resolution, call forwarding and redirection. It is currently under

development within the IETF MMUSIC (Multiparty Multimedia Session Control)

working group. The protocol format is derived from SDP with elements from Hypertext

Transfer Protocol (HTTP). SIP is a very lightweight signaling protocol with 6 methods

and 20 header fields, mostly self-describing. Also it is meant to scale better (uses DNS)

than signalling protocols designed in ITU.

east.isi.edu Rin
g

Rin
g

isi.edu

ns.isi.edu

INVITE eve@isi.edu

whereis eve? eve is at east

ISI

200 OK
Contact:
 eve@east.isi.edu

200 OK
Contact: eve@east.isi.edu

INVITE
 eve@east.isi.edu

 Figure 12: SIP Request Being Relayed

As illustrated in Figure 12, when eve@isi.edu is being called, an application (or phone

exchange) looks up isi.edu in the Domain Name System (DNS) and looks for a SIP

service record giving the address of the SIP server (in this case ns.isi.edu) for ISI. It then

sends the SIP request to that machine. The server consults a database and discovers that

Eve is logged onto east.isi site , and that the SIP server for CS is east.isi.edu. It then sends

the SIP request on to east.isi.edu, which again consults a database. This new database

happens to be built dynamically by SIP clients registering when people log on. It turns

out that Eve’ s workstation is not capable of multimedia conferencing. Instead east.isi.edu

routes the call to her regular telephone and it acts as a gateway into the department PBX.

34

The example above uses proxies that relay the SIP call. Relaying is often performed

when the gateway or firewall to a site wishes to hide any search that goes on internally

from the caller’s machine.

2.4 Audio and video components

• RTP/RTCP

The Internet transport protocol for real-time flows is RTP [RTP]. This provides a

standard format packet header which gives media specific timestamp data, as well as

payload format information and sequence numbering amongst other things. RTP is

normally carried using UDP. It does not provide or require any connection setup, nor

does it provide any enhanced reliability over UDP. For RTP to provide a useful media

flow, there must be sufficient capacity in the relevant traffic class to accommodate the

traffic. How this capacity is ensured is independent of RTP.

Every original RTP source is identified by a source identifier, and this source id is carried

in every packet. RTP allows flows from several sources to be mixed in gateways to

provide a single resulting flow. When this happens, each mixed packet contains the

source id’s of all the contributing sources.

Each RTP flow is supplemented by Real-Time Control Protocol (RTCP) packets. There

are a number of different RTCP packet types. RTCP packets provide the relationship

between the real time clock at a sender and the RTP media timestamps, and provide

textual information to identify a sender in a session from the source id.

Figure 13 depicts a summary of most of the protocols discussed above for Mbone based

Internet conferencing.

35

Shared
Tools

Audio VideoConference
Control SDP

SDAP HTTP SMTP

TCPUDP

IP

Integrated Services Forwarding

RTP and RTCPRSVP

Session Directory

Figure 13: Internet conferencing protocol stack

2.5 Other conferencing systems

In Mbone based conferencing there are no actual conference control tool that will co-

ordinate and manage users and applications or meet other criteria discussed in chapter 1

(section 1.3) for conference control. This is because, IETF based conferencing was

designed for broadcasting IETF meetings over the Internet using “best-effort” quality

targetting the research and the academic community, where strict control is not required.

However, as the popularity of the Internet grows, the number of users of Mbone based

conferencing increases with it and today users of conferencing applications demand

comfortable session initiation and session control functionality. Also Mbone based

conferencing does not provide any mechanisms for ensuring QoS in conferencing.

Therefore, a number of independent conferencing architectures and control mechanisms

have been developed outside the IETF and the ITU standard bodies. Some of these

systems will be briefly mentioned here:

2.5.1 The CAR conferencing systems

Around 1990 – 1991 when H.320 was being developed, the European RACE CAR

project was developing a multi-party multimedia conferencing system. CAR used ISDN

channels, with one channel for audio/video data and the second ISDN one for IP data. A

centralised conference control ran over this secondary channel permitting users to join

36

and leave the session, video switch, floor control, and introduce control of shared

applications. These applications included existing X-window based tools shared using

Shared-X and a shared sketchpad which used the TCP based protocol.

CAR was more advanced than H.320, but suffered badly from unstable nature of ISDN

services and terminals available at that time. In particular, its centralised architecture,

and its use of a TCP-based remote procedure call (RPC) mechanisms did not deal with

failure that well.

Shared-X also taught a lesson in how not to design a collaboration mechanism. It

consisted of a “bridge” which acted as an X server to the client application to be shared

and mapped all the X resources and identifiers for connections to multiple real X-servers.

In addition to causing traffic concentration, this centralised model attempts to keep all X-

servers in step. Shared-X coped with the failure of a site, it locked up all participants

displays for around 90 seconds whilst it timed out the failed connection[Handley (t)].

2.5.2 The LAKES architecture

The Lakes architecture has been developed at the IBM research laboratories as an

“architecture for collaborative networking”[IBM94]. The goal of the Lakes architecture

is to provide multimedia group communication services independent of underlying

networks and specific personal computer platforms.

The Lakes architecture defines a platform that offers a uniform API towards collaborative

applications. The focus is not specifically on teleconferencing but more general on setup

and handling of information stream(s) between groups of application entities and/or

hardware devices. The functionality for (real-time) stream management include:

• Call control between groups of application entities, i.e. setup and teardown of

communication

37

• Provision of unidirectional transmission facilities (channels) from a single source to

one or more destinations with application-defined transmission requirements, such as

QoS, signal type (analogue or digital), data class etc.

• Synchronisation and resource sharing by means of (global and as well as per-

application) tokens

• Maintenance of node information in a Lakes network in an address book.

The services offered by the Lakes platform may be categorised into:

- application services

- synchronisation services

- transport layer services

- call manager services – name resolution, placing outgoing calls and accepting

incoming calls and implementation of policies for these two functions.

The LAKES Architecture was heavily influenced by ITU’ s MCU design topology. In

order to join a LAKES architecture of conferencing, a machines needs to have certain

software installed in it and hardware changes made to it. This could be an expensive

process for the users.

2.6 Conference Control

Conference control has some basic system requirements (discussed in chapter 1, section

1.3) but it has several other usages. It can be used for:

• Address book and Session listing - Looking up addresses of users and directory

listing service like LDAP and SDP

• Negotiation – Among other conference control functions, one of the main uses of

ITU’ s H.245 and T.124 is to negotiate and exchange capabilities of end systems

38

• Media control – IETF’ s Message Bus[Ott/Perkins] is used as a way to synchronise

locally situated applications. CONFCTRL is used as a remote controller to set and

change audio volumes, video rate etc. in remote locations.

• Address resolution – H.323’ s gatekeeper provides address translation from one

format to the other. So for example, if a user enters an email address of a user that

can be translated as the user’ s IP or machine address.

• Interoperability – A conference controller can be used to provide interoperability

between incompatible systems. This thesis looks at details of such usage.

• Security and charging – The services provided by a conference needs to be charged

for. Hence security mechanisms are required to ensure the correct user is billed for

and the charging mechanism needs to be an attractive one for users. In chapter 6,

such a charging model is analysed although the security requirements are not

discussed in this thesis.

• Intelligent Network function – A conference controller can provide functions like

Call Waiting when a user is busy, Call Forwarding, Call Logging, Malicious Call

Identification and Call Transfer among others. Confman 2.0 [Fromme] looked at

some of these functions although currently no conference control tools provide IN

functions.

• Resource management – A conference controller can be used to manage bandwidth or

distribute calls to different servers depending on the load on various servers. H.323

gatekeeper is a prime example of such usage.

Below, a list of conference control mechanisms are briefly discussed. These conference

control systems provide one or more of the services listed above. Most of these

conference control systems were researched as a compliment of IETF’ s model of

conferencing. In other words, systems like MMCC, Confman 2.0 and CCCP (discussed

below) all came into being because the IETF model of conferencing did not provide a

mechanism for co-ordinating and managing users or applications, address resolution or

media control. Therefore, the related work discussed below, are compilemntary to

SIP/SAP and SDR and they have been experimented with Mbone tools like vic, vat, rat

etc.

39

2.6.1 MMCC

Multimedia Conference Control Program (MMCC)[Schooler91] from USC/ISI was

developed as a prototype session orchestration tool for point-to-point and multipoint

multimedia conference. Its main functions are to supply session creation and

maintenance services and to manage media. The media tools are separate application and

can include vat, nv, and wb. Built on a distributed, peer-to-peer model, MMCC is meant

to execute continuously on a workstation residing at each conference site. The media

tools may be executed on a separate machine. Conference participation is by invitation

only.

Figure 14: Coordinated Management of separate services

To establish a conference, a user enters the required information and invites other users to

participate. MMCC allows a caller to explicitly invite others to join a conference and

alerts them to accept or reject the invitation. When a user creates a session, MMCC

assigns a conference address and identifier, spawns the selected media tools with the

40

specified configuration (e.g. device, bandwidth, and coding algorithm) if it can be met,

and alerts the callee to accept or decline invitations.

When a participant leaves the conference, MMCC tears down the media channels.

MMCC allows limited remote control of data rate and hardware devices (e.g. cameras,

codecs, and monitors). Although the actual data flow is left to the individual media

components, MMCC passes session and control information to them and to other

MMCCs as shown in Figure 14. This information includes lists of participants and

timing information for inter-media synchronisation. MMCCs use the connection Control

Protocol (CCP) to communicate with each other. Multicasting of control information is

via sequential unicast rather than via the Mbone.

MMCC was designed to be an effective tool for conference control over the Mbone.

However, it did not deal with issues like security or other conferencing tools that do not

run over the Mbone.

2.6.2 CCCP

The Conference Control Channel Protocol (CCCP) [Handley95] is used to bind different

conference components together that are otherwise stand-alone on the Mbone as a

common communication channel. This offers facilities and services for the application to

send to each other. This is akin to the interprocess communication facilities offered by

the operating system. CCCP runs on a bus model, passing all messages around a single

multicast group per conference. The CCC naming schemes is based upon the attributes

of an application that could be used in deciding whether to receive a message. Some base

types are needed to ensure that common applications can communicate with each other.

The following have been suggested for this purpose:

• Audio.send – the application is interested in messages about sending audio

• Video.send – the application is interested in messages about sending video

• Video.recv – the application is interested in messages about receiving video

41

• Session.remote – the application is interested in knowing the existence of remote

applications

• Floor.manager – the application is a floor manager

There are different levels of reliability and ordering in CCCP. The main constraint for

CCCP is that it can communicate with different Mbone based applications but it does not

specify how it should deal with applications that are not capable of running on top of IP

multicast.

2.6.2 CONFCNTLR

Confcntlr[Perry] is a Mbone tool that works in conjunction with other videoconference

tools to enhance the usability of video and audio. Mbone tools like vic and vat have

separate interfaces and none can be controlled remotely. Also most of the tools do not

allow a user at one host to launch or stop the video conference tools on another host or to

change the parameters on the remote host once the tools have started. Confctrl is

designed to overcome these shortcomings by allowing local and remote control of the

audio and video tools and provides a single interface to vic and vat. Users at one site can

start a video or audio session at another site and can specify the parameter values. Once

vic or vat is running, remote users can change the audio or video settings without

stopping and restarting tools and they can turn video transmission on or off without

stopping and restarting vic.

2.6.3 SCCP

Simple Conference Control Protocol for tightly coupled conferencing is based on the

Internet Multimedia Conferencing Architecture[Ott96]. SCCP was designed as a proposal

for a model of tightly coupled conferencing over the Mbone. The functions provided are

based on the services offered by the ITU-T recommendations of the T.120 and H.320

series. The aim of SCCP is to define a simple conference control protocol that is rich

enough to allow construction of gateway to the T.120 world. Also the protocol is

42

intended to be robust to failures. In contrast to the ITU-T recommendations, it allows the

use of IP multicast both for multimedia information and for other applications and

control streams. The main functions of SCCP are:

- Management of the set of members participating in the conference

- Management of the set of applications/media that constitute the conference

- Floor control

- Assignment of a special “ conductor” role to one participant

Conferences that are controlled by SCCP may be convened using an invitation protocol

such as SIP.

SCCP is based on the idea of maintaining a common state for the entire conference, the

conference context, at all participants. This state is partitioned into objects. SCCP

distinguishes four types of objects:

- variables, which are general repositories for global stet that does not fit elsewhere,

such as conference policy;

- sessions, which are a special kind of variable that represents global state about an

application session;

- tokens, which are a special kind of variable that allows synchronisation operations;

and

- members, which represent the information specific to a single member.

The design concepts of SCCP are very efficient and a lot of it is very relevant for the

CCCS. However, SCCP especially has been designed as a conference controller for

tightly coupled conferencing and not for all types of conferencing. For scalability, the

“ conductor” or the “ receptionist” role of SCCP can be a conflicting concept. For

example, when a user wants to join a conference it must send a JOIN request to the group

and it is upto the receptionist for answering the JOIN request, unless this user happens to

be the first participant in this group. The receptionist role cannot be duplicated without

43

proper handover. Therefore, if the receptionist host‘s link is down, the new participant of

a conference may never receive a confirmation for his/her JOIN request.

2.6.4 Confman

Confman [Fromme98] allows easy setup and handling of multimedia conferences

(especially Mbone based) over the Internet. The Confman core system is divided in

subsystems which support different services. The conference control is one of these

services. The functionality of conference control services include initiation of

conference, an address book facility which stores addresses of conference members, a

session directory that contains the Mbone broadcast announcements like SAP and some

basic telephone services like call waiting and call forwarding.

The Confman system is divided in two parts: the core system and the user interface. The

system uses its own communication protocol, called Confman Conference Control

Protocol (CCCP). This protocol handles all data exchanges that take place when starting

and stopping of conference medias, joining and leaving of conference members, and the

start and termination of a conference. The core system contains all core functionality

parts of the Confman system such as protocol handling, address book management,

conference management and tool control. The user interface contains code for the

graphical user interface and for user intercation.

Both parts of the system are interconnected by object-oriented middleware called Remote

Object Invocation (ROI). As the ROI uses the TCP, it allows scenarios where the

Confman user interface is loaded from a WWW server and run in a browser. The user

interface will be running in a Java interpreter and will be connected to the core

component via Confman proxy by ROI as shown in Figure below:

44

Figure 15: Confman running in a WWW server

As shown in Figure 15, the core system can be divided in four main parts:

• The Registry component starts and initialises the system and it holds configuration

parameters.

• The Address book component allows access to directory servers and to local file-

based address books. Directory servers are accesses by using the Lightweight

Directory Access Protocol (LDAP).

• The major component is the Conference Control part. It contains address resolution,

session initiation and conference control protocols allowing information exchange

with other conference-control systems for conference setup and protocol.

• The fourth part is the Tool control component. It handles the start and control of

media tools such as audio or video transmission components by using Confman Tool

Control Protocol (CTCP). CTCP uses local scope multicast to communicate with the

tools its functionality is similar to the conference bus in vic.

The architecture and services provided by Confman is based on object oriented design

and it has a high potential for further developments. The design is very flexible and a

system like this can provide useful input for future developments of CCCS which will be

Confman Core
Address tool conf registry
book control control

Confman
Proxy

process on www
server

Confman UI
runs as JAVA

applet in browser

ROI

ROI

toolsCTCP

 network

 OS

45

discussed in the next chapter. It should be pointed out that Confman and the documents

associated with it have been released only recently, a significant time after the work on

CCCS has started.

2.7 Gateways

Recently, there has been a great interest in protocols and procedures for interworking

between different conferencing protocols. This is particularly important as conference

models move from circuit switched to packet switched environments. Among these, the

SGCP and the SS7 ISUP gateways are discussed below because the specification of these

gateways provide useful and relevant input for designing CCCS’ s gateway functions :

2.7.1 H.323 and SS7 ISUP Gateway

Currently there is work in progress to interwork conventional telephones with PC based

conferencing. These conferences are H.323 based and the SS7 ISUP protocol is used in

circuit based networks. One of the most important differences between packet based IP

network and circuit based network is that there is no actual channel, such as ISDN B-

channel or PSTN trunk circuit, in the IP network. In other words, the H.323 terminals

can have more “ channels” ; logical channels to carry more than one application such as

audio, video and data in one call. Because of this difference, the call control specified in

ITU’ s H.323 is more complicated[Ma]. In circuit-based network, the call signaling (i.e.,

setup and teardown) and bearer capability control are processed in one protocol, Q.931

for ISDN and ISUP for SS7 network. However, since different H.323 terminals may

have different logical channel capabilities, ITU’ s H.323 has specified the call signaling

and bearer capability control in two separate protocols, H.225 and H.245.

Interworking between SS7 ISUP and H.323 (actually H.225 and H.245) is quite

straightforward. For a signaling gateway between packet based network and circuit

network, the information from the bearer capability information element in the H.225

SETUP message is enough to set up a call in the ISDN or PSTN through SS7 ISUP.

46

H.245 is just used for logical channel setup based on bearer capability carried in the

H.225 SETUP message. The H323-ss7 gateway is specifically designed for interworking

the PSTN and the IP based network. Although this gateway performs its job as a

signaling gateway quite adequately and sets up a voice connection between a PC and a

telephone, the call control elements that are required in a PC based conference are absent

from it.

2.7.2 Simple Gateway Control Protocol (SGCP)

It is a protocol for controlling voice over IP (VoIP) gateways from external call control

elements. The SGCP assumes a call control architecture where the call control

“ intelligence” is outside the gateways and handled by an external entity. In the SGCP

model, the VoIP gateways focus on the audio signal translation from circuit switched

networks to IP, while a call agent handles the call signalling and call processing

functions. SGCP will be used to control and process several calls coming through

different H.323 and SS7 ISUP gateways discussed above for example; in other words,

SGCP defines connection and endpoint handling of a VoIP gateway.

The services of SGCP consist of connection and endpoint handling commands for a

gateway. It instructs a gateway to watch for specific events such as DTMF busy tone on

a special endpoint, answerphone etc. In order to implement proper call signalling, the

SGCP must keep track of the state of the gateways, and the gateway must make sure that

events are properly reported to the call agent. An endpoint may need to provide

necessary authentication to the local call agent in order to communicate with a gateway

or send audio or data on the network. The Call Agent uses the SGCP to provision the

gateways with the description of connection parameters such as IP addresses, UDP port

and RTP profiles [SGCP].

SGCP messages are transmitted over UDP. Commands are sent to one of the IP

addresses defined in the DNS for the specified endpoint. The responses are sent back to

the source address of the commands. SGCP messages being carried over UDP, may be

47

subject to losses. In the absence of a timely response, commands are repeated. SGCP

entities are expected to keep in memory a list of responses that they sent to the recent

transaction, i.e. a list of all the responses they sent over the last 30 seconds, and a list of

the transactions that are currently being executed. The transaction identifiers of incoming

commands are compared to the transaction identifiers of the recent responses. If a match

is found, the SGCP entity does not execute the transaction, but simply repeats the

response. The retransmission timer values are typically network dependant. Although

SGCP contained some good design features of a gateway control protocol, the SGCP

does not deal with race conditions very well. Also, the security features needed to be

enhanced.

2.8 Conclusion

In this chapter, different models of conferencing, conference control and gateways have

been reviewed. We observed that H.323 is aimed (along with all the other H series) at

extending the ISDN videoconferencing standards to unreliable packet LANs, but it is not

aimed at solving the scaling problems of WANs. These sort of conferencing over the

Internet has a large amount of baggage associated with it. The nature of call setup

messages and control of multiplexing show that it is not for conferencing but telephony.

However, there is little reason to expect a direct derivative of a standard like H.323 that

was introduced in 1990, standardised with the design of special purpose hardware for

videoconferencing over circuit-switched telephone networks, to be a good guide to the

1999 design of software that runs on general purpose desktop computers connected by a

best-effort packet-switched data network. The contexts are fundamentally different.

Nevertheless, there is a huge support for H.323 for providing a complete solution for

video, data and audio in a monolithic package. These sets of standards will remain in the

market for a distant future.

On the other hand, the IETF’ s model of conferencing provides scalability and it is

especially suited to work over the Internet. However, this standard body does not provide

48

a conference control by which users could apply a floor control mechanism or provide

charging and accounting information for the usage of a conference if they wish to.

Therefore it can be concluded that, currently, the Internet based conferencing is lacking a

conference control function and the ITU based conferencing seems to be a “ heavy

weight” protocol that does not scale effectively over the Internet. Therefore, a

compromise is required for a “ control protocol” that is designed to be distributed over

different networks but at the same time it can control and coordinate the activities of

multiple users and applications. Also, as pointed out in section 2.6, one of the uses of

conference control is to be able to support and interwork different protocols which is

currently not provided in any system. One way to unify different protocols is to interwork

the existing protocols and combine the main call control functions that are available in all

of them. However, it is impossible to design a true generic conference protocol that can

unify all conferencing architectures ever designed. So, an attempt to gather the main

design principles of most commonly available conferencing architectures is done in the

next chapter.

49

Chapter 3

Common Conference Control Services (CCCS)

This chapter is divided into three main parts. The first part describes a framework that

provides the basis for group communication in multimedia conferencing systems. The

second part describes conference control and its position in that framework. The final

part describes the Common Conference Control Services (CCCS), its design, operation

and performance.

Conference control which is an integral part of conferencing, includes two types of

services: user visible services, and internal management services. User visible services

are user invoked and range from user interaction to application interaction, while other

services are for internal management of a conference [Kausar (c)]. The latter include

services like media control (discussed in chapter 2), consistency and interoperability

between different architectures. These architectures could be either explicit control based

conferencing normally seen in ITU standards or implicit control, as with conferencing

systems dominating IETF’ s standards. The purpose of the CCCS is to enable the

interaction of different conferencing systems and allow them to be integrated into one

complete architecture.

3.1 The Basis of Group Communication: A conference protocol stack

Various conference control communication services discussed throughout this thesis can

be represented in a conference protocol stack. This stack can be considered as a design

model which can be used as a basis of a generic framework for a conferencing system. It

allows the design of a complete solution for a conferencing system, as well as it enables

one to concentrate on specific details if required. The basis of group communication for

conferencing, the conference protocol stack follows a layered architectural pattern which

50

is suitable for designing a system whose dominant characteristic is a mix of low and high

level issues. In this pattern high level operations rely on the lower level ones.

This generic architecture can be divided into three main sublayers shown in Figure 14.

The top layer is divided into two segments: a) conference management and b) groupware

applications. The CCCS discussed in this chapter mainly falls under the category of

conference management. Both applications and management on the top layer of the

stack require services from the Session and Resource Management. The charging model

discussed in chapter 6 is used alongside session management for a conference. The

Resource Management part performs resource allocation such as bandwidth and delay

(beyond the scope of this thesis). The third layer provides communication services

provided by the network itself. As shown in chapter 4 and chapter 5, network services

can be adapted to meet the requirements of conference management. Examining

individual layers in more detail reveals that they are complex entities consisting of

different components. Components in each layer need to interact with each other. So for

example, the applications need to cooperate with the conference control tasks.

 Conference Groupware Application
 Management

 Session and Resource Management

 Network

Figure 16 Conference protocol stack

3.1.1 Components of the architecture

Ott et al [Ott] presented a Multipoint Communication Layer (MCL) which is a

communication platform that aims at supporting Groupware applications and integrating

them into a desktop multimedia system. MCL’s design architecture shows a similar

pattern to that presented in Figure 16.

51

The components in Figure 16 show the following:

a) Conference Management: The conference management deals with all functions

related to coordination and management of a conference. These functions could be

visible or invisible to users and are the set of functions that facilitate the user’ s

requirements (discussed in chapter 1, section 1.3 and 2.6).

b) Groupware application: This represents a set of separate applications that can be used

to convey audio, video (such as vic, rat, vat) or a monolithic conferencing application

like CUSeeMe.

c) Session and Resource Management: The Session and Resource Management cover

generic transport and synchronization mechanisms. This comprises a set of protocols

that can guarantee the QoS by reserving resources such as RSVP[RSVP] for the

Internet or Q.2931 for ATM. This layer can also be used to conceal most network

specifics from the transport service user for a given transport connection. For

example, error control can be adjusted, flow control added etc. so that a high quality

level can be demanded at the transport service interface. The synchronization

functionality of this layer can be used to synchronize different servers that are

managing different conference control services at different locations.

d) Network layer: The underlying network can be private, PSTN or the IP based

Internet.

In the following sections, the conference management part of the architecture is expanded

on; it deals with the analysis, design, requirements and implementation issues of this

layer.

 3.1.2 Conference administration services

Conference control has two different types of interactions:

• Inter-system communication occurs between peer entities running on different

systems: the conference management entities communicate with one another using a

52

conference management protocol over the network. The set of application entities

exchange information within application sessions. These application sessions are

isolated from one another and they may or may not be controlled by the conference

management entity. The peer applications may need to have compatible attributes,

for example, they will need the same codecs.

• Intra-system communication is used to coordinate the otherwise unrelated local

groupware applications on each teleconferencing systems and integrate them with the

conference management entity as well as to provide access to the conference control

services. Examples of intra system communication system includes systems like

mbus[Ott/Perkins] or LBL’ s message bus.

Figure 17 is an example of a system model that shows the interactions between two

teleconferencing systems in a point-to-point conference and the various protocols in use.

In this model CCCS provides inter-system communications labeled as Conference

Management protocol.

 Access to conference control

Controlled by conference management Application specific

Conference management protocol

Figure 17: Components for conference management services

application

User
interface

Conference
management

Internal
management

User
interface

Conference
management

Application
Application

Application

User Visible User Visible

Internal
management

53

Users access different types of visible services, such as inviting another user, or joining a

conference (discussed in section 3.2) via an Application Programming Interface (API).

The services provided by the CCCS is broken into two main parts: the user visible part

referred as MCS (Main Control Services) and Gateway Services (GS). The MCS is

responsible for membership control, floor control and authentication. If one user is

inviting another user who happens to be in a different type of conference, the internal

management functions of CCCS, the GS part perform the interoperation. Also the visible

part of the CCCS, Main Control Services (MCS) supplies connection management in the

form of session establishment, maintenance and disconnection. The CCCS performs these

tasks remotely with peer connection management entities in remote units using a

connection control protocol (TCP or UDP over IP as underlying transport protocol).

3.2 CCCS’s user visible services

The user visible services of a conference control service are divided into different

functional groups as shown in Table 3.1. These are: conference configuration,

participation management, floor control and security[Ott96].

• Conference configuration: Conference Configuration essentially refers to defining a

conference profile. Means for specifying and enforcing conference policies are also

provided. Specifying conference name, number or list of participants, required

resources and access modes such as users password, joining fee etc. are part of this

service. A conference profile can also define permissible participants, available roles

(e.g. chair, speaker) and associated permissions. The role assignment by either a

system or a user follows: a) assign role initially or b) request role and then

grant/deny/share role.

• Participation management: Participation management comprises services for setting

up conferences, point-to-point calls, group or individual invitation, and termination.

 Furthermore, functions for charging the membership of a conference are included.

Participants may join or leave a conference on their own, or they may be invited or

excluded from a conference. Changing from one conference to another is included in

this function as well.

54

• Floor control: Floor control is a metaphor for "assigning the floor to a speaker",

which is applicable to any kind of sharable resource within conferencing and

collaboration environments[Dommel]. A floor is an individual temporary access or

manipulation permission for a specific shared resource, e.g., a telepointer or voice-

channel, allowing for concurrent and conflict-free resource access by several

conferees.

• Security functions: Security functions are value added options for conference control

and are a part of participation management as well as conference configuration.

Authentication is performed when a participant enters the conference and may be

repeated arbitrarily during the conference course.

Functional group Conference control services semantics

Profile definition -Define permissible
participants
-Billing/charging reqs
-Available roles and
associated permission

Role assignment -Assign role initially
-request role
-deny/grant/share role

Join Join a conference
Leave Leave a conference
Invite -Invite a participant

-invite a group
Exclude -Exclude participants as

part of conf termination
Floor assignment -Assign floor initially

-request floor
-grant/deny floor
-give up floor

Conference configuration

Participation management

Floor control

Security
Authentication -check password upon

joining
-distribution of session key

Table 4: Summary of user-visible services of a conference control[Ott]

Among the user visible functions mentioned above, the MCS (Main Control Services)

part of the CCCS facilitates a set of services that are common in any conferencing

system. These functions are: join, invite, leave (participation management), floor control

55

and basic error controls. As pointed out in chapter 1 these activities are present in any

canonical model of conferencing. Although MCS supports most of the visible services

listed in Table 3.1, using MCS directly a participant can join or leave a conference, invite

another participant and provide floor control.

When a conference is created it can be advertised. The MCS does not perform the

advertising itself because different conferencing applications have their own way of

advertising conferences like SDR[SDP] or LDAP. The job of the MCS starts when the

participants are trying to invite another participant. If the invitee is already logged on, an

invitation message appears on their screen. Otherwise, MCS returns a message indicating

they are not contactable. If the participants have a conferencing application loaded on

their machine (which could be H323 compliant or Mbone[Mbone] based application) the

invitation message or the equivalent of telephone “ ring” appears on their machine in the

format that is specified within that particular architecture. If the initiator/caller is using

an architecture that is different to callee’ s, the Gateway Services (GS) translates those

call control functions (CCCS’ s gateway functionality is discussed in details in section

3.3.5).

 3.3 Internal management

The user-visible conference management services described in the previous section

provide functionality to control the source of a teleconference and reflect the participants’

behaviour. Normally users carry out these functions using a conferencing/ groupware

application. These groupware applications are considered independent entities rather

than merged with a conference control tool. Currently most of the Mbone based

conferencing applications – audio, video communication tools as well as signaling

operate in a stand-alone manner, i.e. without a conference management entity.

It is the task of the internal management services of conference control to integrate the

different types of conference management entities in order to make them appear as

coherent teleconferencing system[Schooler93]. As discussed in 3.2.1, inter-system

communication and intra-system communication are two ways to solve the

56

synchronisation and integration aspects of conferencing. In order for the intersystem

communication to accomplish the integration and provide a richer set of services, it must

perform: a) interoperability b) consistency.

Interoperability means that users from two or more different application systems can

collaborate. Regardless of the supplier of the application, if there are a number of tools

and media available to the users they should be able to negotiate and determine a

common set of tools to exchange information. The level of interoperability can vary. For

example, user A from system 1 can only receive and send audio, whereas user B from

system 2 can receive audio and video. So there must be a capability exchange

mechanism to find out if they can both at least send and receive audio. Therefore, it can

be said that there are mainly two types of gateway involved in this situation : a) the call

control or signalling gateway b) the media gateway. The call control gateway maps the

call control functions (e.g. SIP and H.225) from one client to the other to set up a call

whereas a media gateway performs different types of codec conversion for different

media.

Consistency provides a way to report a list of different types of applications, participants,

and their status. A conference could be in paused (i.e. people are on break), closed or at

the beginning stage. As the number of participants scale to thousands over the Internet, it

becomes very difficult to get an exact list of all the participants and their status.

Therefore, it may be possible to get the status of a number of participants at one time

from one link which may not be consistent with the number appearing to another link at

the same time. There are ways to address the problem[Schulzrinne/Rosenberg 98] like

statistical sampling or a timer backoff algorithm for example. The section below

discusses the issues related to CCCS’ s interoperability functions.

3.3.1 Design model of the CCCS’ s Interoperability functions

The design approach of the CCCS’ s main internal management function, interoperability

follows a well known software engineering design pattern. The development is based

57

around the BROKER (also referred as DISPATCHER) architectural pattern. The broker

architectural pattern can be used to structure distributed software systems with decoupled

components that interact by remote service invocations [Buschman]. A broker

component is responsible for coordinating communication, such as forwarding requests,

as well as for transmitting results and exceptions. This type of architectural pattern is

especially suitable where the environment is a distributed and possibly a heterogeneous

system with independent cooperating components.

A broker component introduces better decoupling of clients and servers. Servers or

clients register themselves with the broker, and make their services available to clients

through Application Programming Interfaces (API). Clients access the functionality of

servers or other clients by sending requests via the broker. For example, a H.323 client

can access the services a SIP proxy server provides via CCCS. So if a H.323 client wants

to contact a client who has a setup where the calls are redirected to his/her home PC, the

H.323 client’ s request is processed by a SIP redirect server. However, the H.323 client

contacted the SIP redirect server via CCCS without knowing the details of the redirect

server’ s operations. Therefore, in this case CCCS is the BROKER or the DISPATCHER.

By using the broker pattern, an application can access distributed services simply by

sending message calls to the appropriate object, instead of focusing on low-level inter-

process communication. In addition, the broker architecture is flexible, in that it allows

dynamic change, addition, deletion, and relocation of objects.

The Broker system offers a path to the integration of two core technologies: distribution

and object technology. They also extend object models from single applications to

distributed applications consisting of decoupled components that run on heterogeneous

machines and that can be written in different programming languages.

Structure: the Broker architectural pattern comprises six types of participating

components: clients, servers, brokers, bridges, client-side proxies and server-side

proxies. Figure 18 shows a typical Broker’ s responsibility and the participating

components. Among these components, this system implemented mainly three types:

58

clients, servers and brokers. In the context of the Broker pattern, the clients are the

available Conferencing Applications (independent of their underlying architectural

stack). They can be scattered on different types of networks and they can be connected to

the Internet either using a gateway or rely on Internet providers to offer connectivity.

When they need to connect to each other they do so using CCCS’ s call control and

signalling functions. If a network comprises of lot of different clients and servers, either

one of the client or the server or proxy as shown in figure 18 may connect to CCCS and it

acts as a broker to register the entities and transfer messages between two or more

incompatible entities. Depending on the requirements of the whole system, additional

services – such as naming services can be integrated into the broker. Name services

provide association between names and objects. To resolve a name, a name service

determines which server is associated with a given name.

Class
Broker Collaborators

Responsibility - client
- (Un) Register servers - server
- transfers messages - client-side proxy
- offers API - server-side proxy
- error recovery - Bridge
- locates servers/clients

Figure 18: Responsibility and collaborators of a Broker

CCCS, which is an example of a broker system, is involved in forwarding requests and

responses from different clients. It is also up to the broker to find the location of

appropriate server or a client that has been requested for. The dynamics of figure 19 can

be described as below:

• The broker (in this case the CCCS) is started in the initialisation phase of the system.

The broker enters its event loop and waits for incoming messages.

• The user, or some other entity, starts a server application. First, the server executes

its initialisation code. After initialisation is complete, the server registers itself with

the broker.

59

• The broker receives the incoming registration request from the server. It extracts all

necessary information (see section 3.4 for a list of information required for this type

of operation) and stores it into one or more repositories. These repositories are used

to locate and activate servers. An acknowledgment is sent back to the requesting

servers after registration is complete.

• After receiving the acknowledgement from the broker, the server enters its main loop

waiting for incoming client requests.

Client side proxy transfer msg Broker server-side
* Proxy *

Pack_data Main_event_loop pack_data
Unpack_data Update_repository call_service
Send_req Register_service send_response
Return acknowledgment

Find_server
Find_client
Forward_request
Forward_response

Calls calls

Client Server

Call_server initialise
Start_task register_service
Use_broker_API uses API enter_main_loop
 Run_service

Use_broker_API

* optional/ not discussed in this thesis

 Methods used in CCCS as part of architectural design

Figure 19: Objects involved in a broker system

3.3.2 Main operation of the CCCS

The CCCS follows a number of steps to accomplish its function as gateway and a

conference control provider. The functionality of the CCCS as a broker can be divided

into three categories: a) initialisation and registry update b) client registration and c)

session management

• state transition diagram

60

Figure 20: State Transition diagram of CCCS

Initialisation and registry update

The CCCS is initialised to process messages. When a client processes a CONNECT

[Stevens], (the socket system call to establish a connection with the server), GS part of

CCCS updates its registry. The registry must keep a track of the following:

• Protocol type - the protocol types of conferences (e.g H.323, SIP or CONFCTRL)

• Number of participants – the number of participants for which GS maintains some

information and can forward packets

• Participants’ IP addresses – the address where the data can be forwarded to

61

• Participants’ port number - CCCS associates different types of applications with

different well-known ports. For example, the H323 stack uses port number 1720

whereas a SIP initiator will use port no 5060 for delivering control messages like

invite a participant, request floor, leave etc.

• Current status (e.g. floor holder) – if a participant/port is sending data/audio that is

not current floor holder dot forward the packets to anybody else as a part of

conference policy.

• Link status (e.g. broken link, slow link if possible etc.) – if a “ Keep Alive” message

didn’ t appear then delete the link

Client registration

A client must register itself with the CCCS before it can issue a request to the system or

participate in a session. So for example, if a “ CONNECT” call came from a reserved

system port that is associated with a H.323 client, CCCS knows it will be a H.323 based

client. The Gateway Services (GS) of the CCCS updates the registry with the port

number of the conferee, the type (in this case H.323), the IP address, floor holder status

(could be 0 or 1) and the link status (which is 1 if the link is alive). The GS continues to

perform the operations of updating and adding the registry as participants come and go.

Session management

A client creates a session by specifying the initial attributes (passwords, policies for floor

etc.). Creation of a new session involves two stages: negotiation of capabilities (like

codecs) and allocation of resources. When a client wants to invite another client, the

CCCS has to make sure that they both have at least an intersection of capabilities, for

example, both are capable of understanding text or ascii values for data. The issues

related to resource allocation is beyond the scope of this thesis. Session management

also involves deploying a floor control policy. When a conference actually starts, MCS

checks the floor holder status. If one of the ports is sending data that is not the current

floor holder, GS does not forward the packets to all the other participants as a part of an

62

implementation policy for floor control. Figure 21 is a representation of GS as a broker

system interoperating three different types of clients based on different architectures.

This figure briefly illustrates the main operations discussed above.

 CCCS

Figure 21: Topology of three different types architectures interoperating using CCCS

In the following section, the call setup and gatewaying different conferencing messages

are discussed.

3.3.3 The CCCS’ s interoperability services

Out of the two features of internal management mentioned in section 3.3, the CCCS

mainly provides interoperability, and this service is known as GS (Gateway Services).

The job of providing the list of participants and their network information consistently is

left up to Real-Time Transport Control Protocol (RTCP) up to a certain extent (RTCP

provides a list of participants’ geographic location in an RTP session in every few

seconds. The interval gets longer if the number of participants get bigger). However, if

GS receives a GS_LIST request then it sends out a list of participants that joined a

conference via GS regardless whether they are capable of receiving RTP or not.

Join, leave,
password
floor
event1
.
.
Policy (e.g billing,
 chair person)

invite j@x.com
Register_service

find_client
forward_req

response

H.323

Call proceeding
Open logical channel

RTP

 Call
Agent

SGCP

RTP

gateway

ss7

SIP CCCS

Call control/signaling messages

Media flow

63

 As an example of interoperability, the following section focuses mainly on the

interoperability of IETF’ s SIP and ITU’ s H.323. As mentioned in chapter two, IETF and

ITU’ s viewpoint on conferencing is almost opposite. Therefore, when designing a

gateway that translates different functions between two completely different

architectures, there are certain considerations have to be taken into account. The

following sections look at these aspects of a conference control gateway.

3.3.4 Main conference control contrast between H.323 and SIP

To provide interoperability in conference control level between H.323 and SIP, the

following issues are the most difficult to resolve.

• Modularity - The conferencing applications based on H323 provide a complete

package in one module. In other words, a H323 based conferencing like Intel’ s

Proshare will deliver audio, video and signaling facilities as a monolithic package.

By contrast, as mentioned in section 2.3, Mbone based audio and video

communication tools as well as a signaling protocols are independent protocols.

They can operate as standalone packages. SIP is a session layer call control protocol

for creating, modifying and terminating sessions with one or more participants. It is

used to invite users and invitations used to create sessions carry session descriptions

which allow participants to agree on a set of compatible media types. These similar

function are also provided in H323, but they cannot be separated as a different

module.

• Supporting protocols - In H323 based systems, support for voice is mandatory, while

data and video are optional. However, if data and video are supported, the ability to

use a specified common mode of operation is required; so that all terminals in a

conference can interwork. These modes of operation described in the ITU

specifications are not necessarily provided in the Mbone based conferencing

specifications. Recommendations in the H.323 series include H.225.0 packet and

synchronization, H.245 control, H.261 and H.263 video codecs, G.711, G.722, G.728,

64

G.729, and G.723 audio codecs, and the T.120[T.120] series of multimedia

communications. SIP mainly matches some of the functionality provided by H.225

and H.245 but also performs some other call control functions that are not supported

in H.323.

• Advertising – H.323 does not use a standardized protocol to advertise its sessions

whereas Mbone based conferencing uses Session directory Announcement Protocol)

SAP to advertise the sessions using IP multicast. NetMeeting uses Lightweight

Directory Access Protocol (LDAP) to list the participants and their availability.

Therefore, a publicly available seminar can be advertised over the Mbone will not be

visible by a H323 based application.

• Messaging – H.323 uses a binary representation for its messages, based on ASN.1

and the packet encoding rules (PER). ASN.1 generally requires special code-

generators to parse. This makes it harder to debug the messages generated by H.323.

SIP encodes its messages as text[Schulzrinne/Rosenberg NOSSDAV].

• Multicasting- H.323 supports UDP or multicast for user location, it does not currently

provide for group invites. Therefore, although an IP multicast may be running as a

transport protocol, H323 cannot take the advantage from the network layer. SIP

requests can be sent via multicast.

In conclusion, the main procedures to design a gateway like the GS are as follows: a)

first of all, identify the functions that are incorporated in H323 which are similar to SIP’ s

main three requests (INVITE, ACK and BYE) . This will allow SIP users to at least join

a common session. b) After that, follow the modes of operations that are described in the

respective specifications. c) Identify if the user can use multicast capabilities. d) Finally,

discard invalid messages and appropriate error messages should be sent different entities

involved.

65

3.3.5 Basic Call set-up between H.323 and SIP

The following example shows interactions that takes place when a H.323 client invites a

SIP client using the GS. Call signalling messages in H.323 may be passed in two ways.

The first method is Gatekeeper Routed Call signaling (GRC). In this method, call

signaling messages are routed through the gatekeeper between the endpoints. The second

method is DiRect Call Signalling (DRC). In this method the call Signalling messages are

passed directly.

In figure 22, the calling endpoint Bell sends a set-up message to the well known port of

callee (in this case, the GS on behalf of watson receives the calls to start with). The

gateway then informs the caller that the call is being processed followed by the

capabilities of the receiving terminal. It is not necessary that a terminal understands or

stores all incoming capabilities; those that are not understood, or can not be used shall be

ignored[H245]. Once the reliable H.225 control channel has been established, CCCS

places the invite message in SIP format to the callee (watson) who is able to process SIP

messages.

Terminal (Bell) Gateway SIP (Watson)
 H.225 TCP SYN

 X1 X1: gccp gateway/server opens
 TCP messages port 1720 and receives message

 H225 SETUP
 Invite watson@x.com

 X2
*180 ringing X2: gccp delivers Invite message

Alerting To SIP’ s port no 5060

 Connect 200 OK
 H.225 Connect

ACK
 H245 SYN : dynamic port

 H245 SYN ACK
H.225 call setup messages

 ACK using Q931
 Capabilities/Master Slave

Msg only generated from
GS

Connect H.245 messages

 Figure 22: Messages exchanged between H.323 and SIP for “ Invite”

66

Once the callee answers the call and both parties are prepared to interact, additional

channels for audio, video, and data are established on the caller’ s side (based on the

outcome of the capability exchange).

* For two-party Internet phone calls, In the example above, Bell calls Watson which is
being translated by GS. A sample SIP response to the invitation above is shown below. For more details
see Appendix B. The Via headers are replaced as the req moves hop by hop towards invitee. Call-ID is
unique in this invite.
SIP/2.0 180 Ringing
Via: SIP/2.0/UDP csvax.cs.caltech.edu;branch=837 ;uaddr=128.16.16.16;ttl=16
From: Bell <sip:Bell@cs.ucl.ac.uk>
To: Watson <sip:Watson@x.com> ;tag=9883472 Call-ID: 296331305 Case: 1 INVITE

The response from GS to the caller is as follows:
SIP/2.0 200 OK
 Via: SIP/2.0/UDP csvax.cs.caltech.edu;branch=837 ;uaddr=128.16.16.16;ttl=16
 From:Bell <sip:Bell@cs.ucl.ac.uk>
 To: Watson<sip:watson@x.com> ;tag=37462311 Call-ID: 9883472
 CSeq: 1 INVITE

SIP (watson) Gateway Bell (H.323)
(UDP)
Invite bell@cs.ucl.ac.uk X1 H.225 TCP SYN X1: gccp gateway/server opens port

X2 5060 and receives Invite
 TCP SYN ACK

 X2: gccp delivers H.225 msg to H.323
ACK Terminal port 1720

 H.225 setup

180 ringing Alerting

200 OK H225 Connect
 H.245 SYN

ACK X3 X3: dynamic port
 H.245 SYN ACK

ACK
 H.225

 Capabilities /master slave H.245

 Messages only generated from GS

Figure 23: Messages exchanged between SIP and H.323

67

Figure 24 shows an example of the topology where at least three different types of

architectures can interconnect using GS. CCCS client is an example of a conferencing

architecture which can send basic CCCS compliant messages (discussed in the section

below) and is capable of understanding CCCS conference control messages. This

example illustrates the number of steps involved when the client sends a CCCS_INVITE

message to invite a SIP client. The number of steps involved are as below:

• CCCS client sends a CCCS_INVITE message via GS server to invite a client

(bell@x.com) who is logged on the machine which has an IP address 128.16.8.88

• The server looks up its register to find that bell@x.com is a SIP compliant host

• GS server sends an Invite message to the SIP client. The format of this Invite

messsage will be as described in SIP specification.

• Once the SIP client receives the Invite, it sends either a REJECT or an ACCEPT. If

the CCCS client receives an ACCEPT, these two hosts are in a conference.

• Let us assume, that this conference is publicly advertised, therefore another client

wants to join this conference. This client happens to be H.323 compliant.

CCCS client Gateway SIP client Gateway

CCCS_Invite bell@x.com
 Invite bell@x.com H.225 TCP SYN

 X2 :
 TCP SYN ACK port 1720

ACK
H.225 setup

180 ringing Alerting

 200 OK
CCCS_JOIN ACK H225 Connect

 H.245 SYN
 X3 : dynamic

 H.245 SYN ACK
ACK H.225

CCCS_JOIN
Capabilities /master slave H .245

 CCCS_FLOOR_REQ
 Msg only

 From GS
Figure 24: A typical scenario of interoperation between a SIP client, a H.323 and CCCS client

68

• When the H.323 client sends a H.225 message, GS receives that message in port 1720

and maps appropriate functions so that, H.323 client knows that the message is being

processed.

• H.323 join request is mapped to CCCS client as CCCS_JOIN_REQ. If the client

accepts, a CCCS_JOIN message is generated and three different architectures are in a

common conference.

3.4 GS message format

The CCCS is a text based protocol because it is easy to debug and monitor. Any request

or response sent to the GS server or received from the server must contain certain fields

in the following format in the following order:

 Identifier Value

 “ ID” : ConfID – this is the conference ID of a particular conference (randomly

generated ascii values) , 6 bytes long

 “ DestAddr” : Destination Address- the IP address of where the messages should be

delivered to in ascii text format

 “ SrcAddr” : Source Address - the IP address of where the message came from in ascii

text format

 ” ConfType” : ConferenceType – the type of conference stack, normally upto 8 charecters

long. Currently defined values are: H.323, MARS, CCCS, SIP, MBUS

 ” M” : Message - It consists one of the following control messages:

CCCS_JOIN

CCCS_LEAVE

CCCS_INVITE

69

CCCS_LIST -request to see the participants in a conference

CCCS_FLOOR_REQ/ CCCS_FLOOR_ACC/CCCS_FLOOR_REJ

 ” R” : Reserved – Left blank at the moment (for future purposes)

 ” V” : Version – the version of GCCP server running

All the above fields are separated by reserved delimiters. A typical CCCS message for

joining a conference would look like below:

8099111:128.16.8.88:192.8.9.0:H.323:CCCS_JOIN::2.0

ConfID:Destination IP:Source IP:Conference type:Message:Blank:Version of GCCP

Token objects by convention have upper case names, e.g., “ FLOOR” . Token can have

zero or more holders(members). CCCS is responsible for maintaining (to a certain

degree) a consistent list of all current participants and the applications that are in use.

3.5 Performance measures

Table 5 shows average number of messages that were transferred between a H323

capable terminal and a SIP terminal via CCCS. In this scenario the SIP client was based

in USA and the Netmeeting i.e. H.323 client and the CCCS server were on the same LAN

in UCL, London. The average setup time taken for a SIP capable client to connect to a

Netmeeting client using CCCS is 5 seconds.

CCCS

Time No.of messages to setup connection type of connection

3 50 LAN

7 55 WAN

Table 5: Number of messages transferred interconnecting SIP and H.323 using CCCS

70

SIP

Time 4 No. Of messages type of connection

2 6 LAN

2 10 Dialup

5 5 WaveLan

H.323

Time No. Of messages type of connection

5.50 30 LAN

4 25 Dialup

3 38 WaveLan

Table 6: Number of messages transferred and time taken between two H.323 terminal and two SIP

terminals without a gateway

Figure 25: Average messages passed between H.323 and SIP terminals

Figure 25 depicts average number of messages transferred between two H.323 compliant

terminals and two SIP compliant terminals. Table 6 shows the number of messages that

4 Time (in seconds) taken to exchange control messages to set up the initiation

0

5

10

15

20

25

30

35

5 7 15

time

m
es

sa
g

es H323

SIP

71

are transferred between these terminals on different type of connections like over a LAN,

a Dialup connection and WaveLan.

The tables show the number of messages that are to be expected. H.323 has a higher

number of messages than SIP because H.323 has a sophisticated capability exchange

mechanism by which the parties involved in the call can negotiate information like codec,

speed and user information. Also, H323 based applications are actually used to transfer

audio, whereas SIP is used as a signalling protocol. However, we were interested in the

actual number of messages that are exchanged between the caller and the callee. It is

observed that, on average SIP has at least half the number of messages that are needed to

be exchanged to set up the call. Both SIP and H.323 use TCP as the underlying transport

protocol here. If we counted all the messages sent by H.323 after the setup has finished

it is observed that on average in 8secs 85 UDP messages are sent (this is because the

application is sending the silence packets).

The setup time between a H.323 terminal and SIP terminal which is running in the USA

using CCCS is surprisingly low. The measurements were taken in the mornings in the

UK time when the USA’ s network is less congested. However, the number of messages

exchanged in order to perform the translation between two different architectures is quite

high (shown in Table 5). That is because the GS is to translate simple JOIN, INVITE etc.

messages in three different syntaxes. It translates for a CCCS compliant client as shown

in Figure 24 and for a SIP and H.323 client.

 3.6 Error control

The CCCS checks for system call failures and errors in user input. Fatal errors include

failures in creating the socket systems calls on which to listen for TCP connection

requests and failures to listen to multiple sockets due to blocking calls. If these occur, a

message is written to standard error and the program exits. Nonfatal errors include errors

in creating sockets for sending requests and reading or writing sockets. If a nonfatal error

occurs, CCCS writes a message to standard error, sends an error code in its reply, or

displays a message on the screen (depending on the error). For example, TCP sockets

72

read errors include reading a request that is unrecognized or formatted such that it does

not correspond with the formats shown in section 3.4. If the socket is open, an error

message is generated to the transmitter and the socket is closed.

Different conferencing stacks have different ways to handle failures. For example,

normally, in H.323 the underlying reliable protocol of the H.245 Control Channel uses

appropriate effort to deliver or receive data on the channel before reporting a protocol

failure. Therefore, if a protocol failure is reported on the channel, the H.245 Control

Channel, and all associated logical channels shall be closed. This will be done as if the

endpoint had issued the H.245 endSessionCommand. With SIP there are mainly two

places where error can be generated; either the server or the client. When a client

generates a Status code 400, it means the request contains bad syntax or cannot be

executed at this server.

If CCCS receives any of the above error codes or messages it maps appropriate error

messages to underlying protocol (e.g., it can send a 500 status code to SIP or send

endSessionCommand for H.323).

3.7 Transport services

In a group communication scenario, any number of senders may be distributing

information to the group or to a subset of the group. Each piece of information may be

destined for any number of recipients. These messages can be either control messages or

data. CCCS needs a way to distinguish the control messages from media data.

Any control messages (for example, CCCS_JOIN, INVITE , BYE etc.) will be sent to

the GS server on the Unicast channel. For example, when H323 sends one of its control

messages, it uses the H.245 logical channel (see Figure 22-24). (If control messages

arrive on a multicast port, the GS ignores those messages as control messages).

However, if data arrives in multicast channel then the GS forwards those packets to all

the possible recipients. If the clients are capable of receiving multicast messages, the GS

73

multicasts it to them otherwise it uses the Unicast channel to forward data. This process

allows the clients to be consistent.

Figure 26: Methods of forwarding and receiving packets in CCCS

The simple diagram shown above scales only to a few number of clients per server.

Beyond this, it is suggested that other peer servers be used to load balance the number of

clients. However, the support for peering servers and issues related to this is beyond the

scope of this thesis.

3.8 Intelligent Network operations

This section is an extension of section 3.3.2. The future of CCCS entails in integrating

some of the Intelligent Network (IN) features, like authentication (AUTC), call logging

(LOG) and Call forwarding (CF) in it. Therefore, it is useful to review the features that

are already available in H.323 and SIP and highlight the features that are appropriate and

needed to be implemented in either one of the architectures or in CCCS in future.

IN is an architecture for systems that provides services to enhance the basic call on a

telephone network. ITU study group 11 published its accumulated descriptions of

services and service features in annex B of ITU Q.1211,” Introduction to Intelligent

Network capability set” [Q.1211]. Q.1211 divides the services it describes into two broad

CCCS

H323
client

H323
client

Unicast

Unicast
(media data)
Unicast control
message

SIP
client

Multicast
(media data)

SIP
client

74

categories: “ services” , which are what an Intelligent Network vendor would actually wish

to provide to customers; and “ service features” , which are lower-level building blocks

used to construct the services. In section 3.8.1 the service features specified under CS-1

which are mainly appropriate for conferencing are listed. This section also provides a

comparison list of whether SIP or H.323 are capable of providing these services and if it

is already performs these tasks.

3.8.1 Service features

• Abbreviated calling (ABD)

Abbreviated dialing allows the definition of short (e.g. two digit) digit sequences to

represent the actual dialing sequence for a public or private numbering schemes.

This translation could be performed by having end systems configured to consult a local

database server (running e.g. LDAP) for address-translation queries.

This translation could also be performed by a local proxy or redirection server which the

end system always sends it outgoing call requests. This facility can be used by both

H.323 and SIP. CCCS’ s internal management feature GS, will be enhanced from this

service.

• Authentication (AUTC)

This allows verification that a user is allowed to access certain option in the telephone

network. For the Internet, and for conferencing this is essential and both H.323 and SIP

provide this feature. This service will need to be integrated in MCS.

• Automatic call back (ACB)

75

This feature allows the called party to automatically call back the calling party. At the

moment neither SIP or H.323 provides this. However, an email can be sent to the called

party if they are not logged on and it is up to called party to call back.

• Call distribution (CD)

This service feature allows the served user to specify the percentage of calls to be

distributed among two or more destinations. The proxy server of SIP or gatekeeper for

H.323 can make this decision. However, none of these two protocols currently provide

this functionality.

• Call forwarding (CF)

This service feature allows the user to have his incoming calls addressed to another

number, no matter what the called party status may be.

This is very easily provided in SIP using proxy server, in H.323 this also can be provided

using H.450(3). At the moment, CCCS does not provide this facility, instead if the callee

is not logged on to the system, CCCS returns a message notifying the caller. Therefore,

this requires to be implemented.

• Call forwarding on busy/don’t answer (CFC)

This service feature allows the called user to forward particular calls if the called user is

busy or does not answer within a specified number of rings. This is not provided in

H.323 or SIP at the moment.

• Call gapping (GAP)

This feature allows the service provider to restrict the number of calls to a served user to

prevent congestion of the network. This feature is not provided in H.323. SIP with a

76

policy server may handle this scenario. However, because of the nature of the Internet, it

is not very clear how SIP will be discarding calls like SS7 does on the telephone network.

It also shows that SIP policy server requires advanced security features to stop users

bypassing the server.

• Call hold with announcement (CHA)

The call hold with announcement service feature allows a subscriber to place a call on

hold with options to play music or customized announcements to the held party. H.323 is

in the process of standardizing H.450 (4) this feature. This standard is contributed from

ITU sg-16. SIP does not provide this feature, however RTSP is capable of providing this

feature.

• Call logging (LOG)

This service feature allows for a record to be prepared each time that a call is received to

a specified telephone number. H.323 or SIP does not provides this feature, but the IP

addresses of the source can be monitored which may not be completely reliable.

• Call queuing (QUE)

This service feature allows calls which would otherwise be declared busy to be placed in

a queue and connected as soon as the free condition is detected. Neither H.323 or SIP

provides this feature at the moment.

• Call transfer (TRA)

The call transfer service allows a subscriber to place a call on hold and transfer the call

to another location. ITU sg16 has standardised the call transfer supplementary services

for H.323 H.450(2). The SIP call control draft is also considering these decentralized call

transfer services.

77

• Call waiting (CW)

This service feature allows a subscriber to receive a notification that another party is

trying to reach his number while he is busy speaking to another person. H.323 has

standard H.450(6) to handle this feature while SIP does not provide this feature yet.

• Consultation calling (COC)

The consultation calling service feature allows a subscriber to place a call on hold, in

order to initiate a new call for consultation. H.323 has H.450(8) for this feature, while

SIP does not provide this feature.

• Customer profile management (CPM)

This service feature allows the subscriber to real-time manage his service profile, i.e.

terminating destinations, announcement to be played etc. This feature can be

implemented in any end system, and it is also known as call management which can be

provided in SIP and H.323v2.

• Customer recorded announcement (CRA)

This service allows a call to be completed to a (customized) terminating announcement

instead of a subscriber line. The served user may define different announcements for

unsuccessful call completions due to different reasons. Although RTSP provides this

feature, neither SIP or H.323 provides CRA facilities.

• Customized ringing (CRG)

This feature allows the subscriber to allocate a distinctive ringing to a list of calling

parties. ITU is in the process of standardising this feature while SIP draft claims that this

feature can be provided in end-system without giving further details on it.

78

• Follow-me diversion (FMD)

With this service feature, a user may register for incoming calls to any terminal access.

H.323 Gatekeeper and SIP REGISTER message provide this feature very easily.

• Meet-me conference (MMC)

This service feature allows the user to reserve a conference resource for making a multi-

party call. The nature of H.323 calls allows this feature to be easily implemented by a

gatekeeper, while in SIP this requires further investigation.

• Multi-way calling (MWC)

This feature allows the user to establish multiple, simultaneous telephone calls with other

parties. With SIP this has been the building block from the beginning, therefore with the

use of multicast this is easily scalable. Whereas, H.323 uses MCU to provide multi-way

calls .

• One number (ONE)

This allows for example, businesses to advertise just one telephone number throughput

their market area. SDR provides this feature easily and H.323 v3 can provide this feature

using LDAP.

• Originating call screening (OCS)

This service feature allows the caller to bar calls from certain areas based on the district

code of the area from which the call is originated. Since the nature of Internet does not

really depend on distance or district code this feature is not really applicable for SIP or

79

H.323. However, similar feature can be implemented in SIP or H.323 using the IP

addresses instead of district codes of the area.

• Premium charging (PRMC)

This service feature allows for the pay back of part of the cost of a call to the called party.

In an Internet environment this service could either be negotiated directly between the

two parties, or some external settlement authority trusted by both parties could be used.

• Private numbering plan (PNP)

This service feature allows the subscriber to maintain a numbering plan within his private

network, which is separate from the public numbering plan. Since in the Internet

environment, addressing is always controlled by independently administered systems,

this largely becomes trivial. If a numbering plan should be hidden or partially hidden

from the public, a proxy can pretend to know nothing about the private addresses when

they come from outside.

• Time dependant routing (TDR)

This service feature allows the served user to apply different call treatments based on the

time of day, day of week, holiday etc. This can be easily provided by SIP and H.323

The services listed in Q.1211 which are not mentioned above include different billing

options like credit card calling (CCC), freephone (FPH), premium rate (PRM) etc.

However, these billing options are not really applicable for conferencing over the

Internet. It is upto the end systems and users to negotiate payment methods and

implement it accordingly.

80

There are some other new services that are introduced to latest draft of Q.1211. call pick-

up and message waiting are among those services that are provided by H.450(5) and

H.450(7) respectively.

• Other services not in IN: SIP supports a number of features not supported in

traditional IN networks. Among those is “ OPTIONS” request that allows one end

system to query another about what format it supports. Thus it provides capability

negotiation. H.323 performs this function which is specified in ITU’ s H.245

recommendations.

SIP invitation requests have a number of optional parameters which traditional

telephone networks lack, generally inspired by email. Addresses can have display

name like From: x@hotmail.com. Messages can have Subject fields specified, giving

a textual intended subject for a call. Users can have Organization fields, similarly

giving the organization to which they belong.

3.9 Conclusion

In this chapter, a framework for communication services in conferencing has been

presented. A major component in this framework is conference control which comprises

of two major types of services: user visible and internal management. In this reference,

an architecture for conference control has been proposed called CCCS (Common

Conference Control Services). It provides a set of user visible services known as MCS

(Main Control Services) and interoperates different types of architectures as a part of

internal management features of a conference control. The latter part is referred as

Gateway Services (GS) of the CCCS. Although significant effort is being put into

defining how the existing telephone network services will interwork with the Internet in

standard bodies, the main objectives of these proposals/projects are to define how voice-

based services will work between these two networks. In this research, the CCCS is

designed to provide a set of facilities that has the capability to provide conference control

functions and the flexibility which is not present in one architecture on its own. Some of

81

the major advantages include: a) H.323 based systems to do group invitations using

Multicast b) users on the Internet to conference with an H.320 system running on the

ISDN, therefore getting the network independence.

The Intelligent Network services like call transfer, call on hold, answering services etc.

are briefly compared and discussed. In future, these services will need to be interworked.

Future work will include experiments on distributing GS server across the Internet and

getting performance measurements on how many conferees can interact with each other

and how they can maintain consistency.

82

Chapter 4

Background to Reliable IP Multicast

In this chapter most of the available reliable IP multicast protocols that can be used to

transport time critical data for conferencing such as conference control messages, audio

and video, are reviewed. The main characteristic of time critical data is that applications

have low delay tolerance for it and in the case of a loss, retransmitted traffic must not

arrive out of order. Although a lot of research has been done to transport real-time traffic

such as audio and video over the Internet, reliable delivery of conference control

messages using IP multicast lacks a solution. One of the objectives of this research was to

identify components that are missing for communication using different conference

control protocols and reliable data delivery for conference control over the Internet is a

suitable topic. In this chapter most available reliable IP multicast protocols for a

framework for multimedia conferencing system are reviewed and in chapter 5 appropriate

features for conference control are identified.

4.1 Background to IP Multicast

As the Internet becomes more and more popular, the number of hosts that are connected

to the Internet using multimedia conferencing increases. Therefore, the requirement to

send data to many hosts simultaneously has been a major issue. In order to resolve the

problem of providing data from many senders to many receivers in an efficient and in an

inexpensive way multicast has been developed, with one of the first design and

implementation put forth by Deering[Deering91]. IP multicast effectively produces

selective broadcast in which anyone can send a packet to a destination group address. The

sending host is not aware of or participate in the complex route calculation; not need it

take part in a complex signalling or call setup protocol. It simply addresses the packet to

the right group, and sends it; certain nodes in the network replicate the data for all

receivers. This is in contrast to Unicast replication (e.g., existing push technologies)

wherein the source application replicates the data for each Unicast destination.

83

Adding multicast to the Internet does not alter the basic model. A sending host can

simply send, but now there is a new form of address, the multicast or host group address.

Unlike Unicast addresses, hosts can dynamically subscribe to multicast addresses and by

doing so cause multicast traffic to be delivered to them [Crowcroft]. Thus the IP

multicast service model can be summarised:

• Senders send to a multicast address

• Receivers express an interest in a multicast address

• Routers conspire to deliver traffic from the senders to receivers

A multimedia application like video conferencing often involves a large number of

participants and are interactive in nature with participants dynamically joining and

leaving the applications. In order to provide many-to-many interaction when the number

of participants is large IP multicast is undoubtedly a very good option for

communication. In order to support a conferencing architecture from the transport or

network layer one or more of these reliable IP multicast transport protocol may be

required. Therefore in this chapter different approaches for reliable multicast and

different protocol implementations are analysed.

4.2 Approaches for reliable data delivery

When data has to reach several hosts over the Internet, there are issues concerned with

reliable delivery. The primary goal for a reliable multicast protocol is to provide reliable

delivery of packets to many destinations. Also dissemination on the scale of hundreds of

participants scattered across the Internet requires carefully designed and flow and error

control algorithms that avoid any potential bottlenecks. Generally the techniques for

error recovery in reliable multicast fall in two categories: ACK based and NAK based,

both of which employ a sequential numbering of data messages at the sender as shown in

84

Figure 27. In an ACK based scheme, whenever the sender multicasts a data message, the

receiver acknowledges its receipt by sending an acknowledgement (ACK) to the sender.

The other approach is a negative acknowledgement (NAK) scheme. Whenever receivers

detect gaps in sequence number of message streams, they send repair requests (NAKs).

In general, none of the members keeps the group membership information. Since state

information in this scheme is minimal, it scales well for a large data delivery model.

There are mainly two places where data can be retransmitted from: sender-initiated

approach and receiver initiated approach. There is also a slight variation of receiver

driven approach known as representative based retransmission.

Source ACK Receiver Set Source NAK Receivers

 NACK

Figure 27a: A basic diagram of a sender initiated Figure 27b: Receiver initiated

 Protocol Protocol

Earlier multicast protocols used conventional flow and error control mechanisms based

on a sender-initiated approach in which the sender disseminates packets and uses either a

Go-Back-N or a selective repeat theory mechanism for error recovery. If used for

reliable dissemination of information to large number of receivers, this approach has

several limitations. First, the sender must maintain and process a large amount of state of

information associated with each receiver. Second, the approach can lead to a packet

implosion problem where a large number of ACKs or NACKs are received and are

processed by the sender over a short interval. Overall, this can lead to severe bottlenecks

at a sender resulting in an overall decrease in throughput.

85

An alternate approach based on receiver-initiated methods shifts the burden of reliable

delivery to the receivers. Each receiver maintains state information and explicitly

requests retransmission of lost packets by sending negative acknowledgements (NACKs).

Under this approach , the receiver uses two kinds of timers. The first timer is used to

detect loss packets when no new data is received for a time. The second timer is used to

delay transmission of NACKs in the hope that some other receiver might generate a

NACK.

In representative based approach the receiver does not need to ask the source to resend

the data, the receivers may ask its neighbour receivers or the ultimate parent node for

retransmissions.

It has been shown that the receiver-initiated approach reduces the bottleneck at the sender

and provides substantially better performance [varadhan]. However, the receiver initiated

approach has some major drawbacks. First, the sender does not receive positive

confirmation of reception of data from all the receivers and, therefore, must continue to

buffer data for long periods of time. The second important drawback is that the end-to-

end delay in delivery can be arbitrarily large as error recovery solely depends on the

timeouts at the receiver unless the sender periodically polls the receivers to detect errors.

If the sender sends a train of packets and if the last few packets in the train are lost,

receivers take a long time to recover causing unnecessary increases in end-to-end delay.

Periodic polling of all receivers is not an efficient and practical solution in a wide area

network. Third, the approach requires that a NACK must be multicast to all the receivers

to allow suppression of NACKs at other receivers and, similarly, all the transmissions

must be multicast to all the receivers. However, this can result in unnecessary

propagation of multicast traffic over a large geographic area even if the packet losses and

recovery problems are restricted to a distant but small geographic area5[Yavatkar].

5 Assume that only a distant portion of the Internet is congested resulting in packet loss in the area. One or
more receivers in this region may multicast repeated NACKs that must be processed by all the receivers
and the resulting retransmissions must also be forwarded to and processed by all the receivers

86

4.3 Design issues of reliable multicast

4.3.1 Organisation of nodes in a reliable multicast

The nodes in a reliable multicast are organised mainly in two ways: a) distributed model

b) tree-based model. In a distributed model the nodes are distributed across the wide area

network. When a node requires retransmission of a message, it contacts one of its

neighbours. The nodes keep a state table where it keeps a track of a limited number of

closest neighbours which it can contact for retransmission as shown in Figure 28.

 zone A’ s nearest neighbour

zone A zone B

Figure 28: A distributed model of reliable multicast protocol

In a tree-based model the nodes are connected in a hierarchical structure as shown in

Figure 29. Parent nodes which is referred as a Group Leader in Figure 29, keep track of

its several child nodes. The parent node keeps track of other parent nodes which are

closest to it. When a child node requires retransmission it contacts its local parent node.

If the parent node has the data it retransmits to the node or it can contact other parent

nodes to obtain the required data.

Source

Group Leader

 Local ACK

 Child Nodes

 Figure 29: A basic diagram of a tree based reliable multicast protocol

87

4.3.2 Soft State vs Hard State

Several nodes involved in a reliable multicast transport protocol need to hold consistent

information about their status. If a sender node fails or a network partitioning takes

place, other nodes participating in that session need to be made aware of this. There are

two main approaches to inform multiple nodes about their status: a) soft-state approach

and b) hard-state approach. Soft-state approach is based around announce/listen protocol

where the sender actively announces status updates and one or more receivers passively

monitor and listen to those updates. This design principle works well in practice.

Systems built on soft-state are robust. In [Clark] Clark’ s “ flow state” example, if a router

crashes and the underlying path is recomputed, the flow state is automatically established

along the new network path since periodic refresh messages from the end-system

immediately begin to follow the new route.

In contrast, a hard state approach to flow state establishment would involve a specific

setup and teardown protocol, e.g. Q.931 or ST-II. A benefit to this approach is that the

state is established just once with a reliable delivery protocol like TCP, thereby avoiding

the bandwidth or processing overhead of the soft state refresh messages. However, when

a failure occurs in this environment, all the systems would have to simultaneously detect

the failure and go through a complex procedure to explicitly tear down the old state and

re-establish the new state along the new path. For example, if a router fails and routes are

recomputed, all routers need to close down existing connection and then explicitly re-

establish new paths. This is an exceptional condition that must be explicitly engineered

and leads to complex interactions among many different distributed components[Raman].

In a soft state framework, consistency arises slowly, by virtue of the periodic

announce/listen update process. As a consequence, the resulting design necessarily

accommodates component failure and inconsistency intrinsically and thus can continue to

operate in the face of adversity. For example, a multimedia conferencing system that

88

relies on a centralised controller to track group membership or perform multiplexing

would fail catastrophically if that controller goes down. In contrast, the loosely coupled

conferencing model where distributed group membership is disseminated through

announce/listen, gracefully accommodates end-system failures and network partitions.

When a network partition occurs, for instance, the partitioned sub-sessions continue to

operate and group membership knowledge that had spanned the partition eventually times

out. Once the failure dissipates, the membership announcements resume their reach

across the entire session and group state converges to track the reformed session. In

summary, such designs are vertically robust in that they must accommodate inconsistency

across distributed components throughout their design and as a consequence are robust

against network pathologies so common to the Internet[Paxson].

4.4 Protocols

There have been few reliable multicast protocols that take into account the above design

issues such as distributed vs tree based organisation of nodes, methods of retransmission

and status updates and it can be seen that most of the IP multicast protocols are based on

a soft state based approach. Some of these protocols are described below:

4.4.1 Multicast Transport Protocol [MTP]

MTP [armstrong] provides reliable, globally ordered and sequenced data between one or

more processes. It is based on negative acknowledgements (NAKs). MTP distinguishes

three different roles of members of a web (multicast transport group): master, producer

and consumer. The master provides the message ordering synchronisation for all

members in a web. The first member of a web becomes its master. Producers send data

in messages (each sent as a sequence of data packets) after obtaining a token from the

designated master. Consumers receive these messages and can use negative

acknowledgements to request the retransmission of packets that did not arrive.

89

The data transfer and retransmission is based on dividing time into heartbeat intervals (π).

After the initial transmission of a packet, consumers have a limited time to request

transmission of a data packet; this time is measured in heartbeats and is referred to as the

retention (ρ). After that time, producers are no longer obliged to honour NAKs, allowing

the producer to discard its copies of the data sent.

• Global ordering: The master is responsible for assigning global message sequence

numbers to all messages. A producer that wants to send a message obtains a token by

sending a Unicast packet (token[request]) to the master, which responds with a

Unicast packet carrying a unique sequence number.

Producers mark all packets of the message for which the token was granted with the

message-number; they return the token implicitly with the final packet of the

message (daa[eom]). Consumers are responsible for delivering messages in the

correct order to their applications.

• Atomicity: A message may not reach a consumer correctly for two reasons: either

the producer has failed and the consumer is failing/disconnected. In MTP, it is the

responsibility of the master to provide atomicity. It maintains a message acceptance

record, which assigns a status to the most recent 12 messages. If the master detects

no data from the token holder for a while then it tries to confirm the status of the

member. If the member does not respond, it is marked as reject.

If a producer receives a NAK from a consumer requesting retransmission of 1 or

more packets, these packets will be multicast to the whole group.

Although MTP is a carefully designed reliable multicast transport protocol and it works

for certain applications (such as distant learning type of conference where there is only

one lecturer), it has some drawbacks. The master function causes additional load on the

machine on which it is being executed and its network connection, in particular global

ordering and token processing. Every packet has to be processed by the master to update

90

its view of the state of each producer. More significantly , the master is also a single

point of failure.

4.4.2 Multicast Transport Protocol –2 [MTP-2/ MTP/SO]

MTP-2, later referred as MTP/SO[Ott97], a variant of the original MTP, designed to

avoid some of the original problems encountered and to provide some additional features.

Like MTP, MTP/SO provides global ordering and it has three main groups of members:

co-ordinator, repeaters and normal members. Messages are assigned to different streams.

Therefore the delay caused by global ordering primed by a single master is eliminated.

MTP/SO proposes self-organisation of the members of a group into local regions for

addressing the NACK implosion problem. MTP/SO provides a rate controlled

transmission of user data.

Additional features:

• MasterLoss: In MTP, the master is a single point of failure. Not only can the master

fail, but a network partitioning also renders the partition without the master being

inoperative. In order to achieve higher reliability in MTP/SO all members can detect

the loss of the master when they do not receive any packets or new parameter values

from the master. The recovery procedure starts by ascertaining that the master is

indeed unreachable by sending it multicast master (suspected) packets. If no reply is

received from the master, the members agree on a new master. A new web is formed

using a new web-id, removing any ambiguity as to whether members still believe to

be attached to the failing master. This design philosophy is based on the soft state

based approach.

• Atomicity: MTP-2 handles atomicity in a more efficient way. In MTP, consumers

only deliver a message to the application when they have received acknowledgement

from the master that this message was “ accepted” (this is indicated in the message

acceptance record propagated throughout the web). It causes an increase of the

transmission delay. MTP-2 defines a flag to disable the atomicity on a per message

91

basis. Consumers are then free to hand messages to the application upon arrival of

the complete packet sequence.

4.4.3 Scalable Reliable Multicast [SRM]

Scalable Reliable Multicast (SRM) [Floyd], is a reliable multicast framework for light-

weight sessions and application level framing. The SRM framework has been prototyped

in wb, a distributed whiteboard application, which has been used on a global scale with

sessions ranging from a few to more than 1000 participants. SRM is designed to meet

only the minimal definition of reliable multicast, i.e. eventual delivery of all the data to

all the group members, without enforcing any particular delivery order. The authors

believed that, if the need arises, machinery to enforce a particular delivery order could be

easily added on top of the reliable delivery service.

SRM attempts to follow the core design principles of TCP/IP. First, SRM requires only

the basic IP delivery model – best-effort with possible duplication and reordering of

packets – and builds reliability on an end-to-end basis. No change or special support is

required from the underlying IP network. Second, in a fashion similar to TCP adaptively

setting timers or congestion control windows, the algorithms in SRM dynamically adjust

their control parameters based on the observed performance within a session. This allows

applications using the SRM framework to adapt to a wide range of group size, topologies

and link bandwidths while maintaining a robust performance.

• Framework: The framework is based on a distributed model where anyone can

retransmit a lost packet. When receiver(s) detect missing data, they wait for a random

time determined by their distance from the original source of data, then send a repair

request. As with the original data, repair requests and retransmissions are always

multicast to the whole group. Thus, although a number of hosts may all miss the

same packet, a host close to the point of failure is likely to timeout first and multicast

the request. Other hosts that are also missing the data hear that request and suppress

their own request (this prevents a request implosion). Any host that has a copy the

92

requested data can answer a request. It will set a repair timer to a random value that

depends on its distance from the sender of the request message, and multicast the

repair when the repair goes off. Other hosts that had the data and scheduled repairs

will cancel their repair timers when they hear the multicast from the first host. (this

prevents a response implosion). A lost packet ideally triggers only a single request

from a host just downstream of the point of failure and a single repair from a host just

upstream of the point of failure.

For a chain topology the essential feature of a loss recovery algorithm is that the timer

value is a function of distance. For a star topology the essential feature of the loss

recovery algorithm is the randomisation used to reduce implosion. Request/repair

algorithms in a tree combine both the randomisation and the setting of timer as a function

of distance.

With SRM’ s global loss recovery algorithm, even if a packet is dropped on a link to a

single member, both the request and the repair are multicast to the entire group. In cases

where the neighbourhood affected by the loss is small, the bandwidth costs of the loss

recovery algorithm can be reduced if requests and repairs are multicast to limited area.

One simple and now widely available mechanism for local recovery is the use of

administrative scope in IP multicast. If a member believes that the loss neighbourhood

and a potential source of repairs are contained in the local administrative neighbourhood,

then both the request and the repair can be sent with administrative scoping. Also time-

to-live (ttl) based scoping can be used to limit the reach of repair and request messages.

4.4.4 Reliable Multicast Transport Protocol [RMTP]

Reliable multicast transport protocol (RMTP) is [Sanjay96] designed to send data reliably

and effectively to large groups of simultaneous recipients. RMTP organises all the nodes

into a tree structure. The receiving nodes are always at the bottom of the tree. Ideally,

the sender is at the top, but this is not a requirement. The sender transmits messages

using IP multicast. After a packet is transmitted, the sender will not release memory until

93

it receives a positive acknowledgement from the group. The receivers do not send

acknowledgements directly to the sender, but send hierarchical acknowledgements

(HACKs). A receiver transmits a HACK to the their parent in the tree structure.

There are two different types of channels associated in RMTP’ s tree structure to avoid

implosions and to send HACKs effectively. These channels are Data channel and

Control channel. The data channel entities are divided into four classes:

• Sender (S) – Sender just sends data to the group.

• Receiver (R) – Receiver receives data and deliver data to applications.

• Designated receiver (DR) – A DR is a receiver that receives data, delivers data to

applications, and buffers data for potential retransmission to its child nodes.

• Top node (TN) – A TN optionally receives unicast data and relays to the rest of the

group. This option is designed for senders who do not support IP multicast.

Control channel entities are divided into five classes:

• Sender (S) – Sender just sends data to the group.

• Receiver (R) – It receives data and deliver data to applications.

• Aggregator (AG) – An AG accumulates ACKs and sends them to its parent node.

• Designated receiver (DR) – A DR is always an AG. A DR may handle local

retransmission to its child nodes.

• Top Node (TN) – The TN is responsible for notifying senders of the global

retransmission.

94

Finally, there are three types of retransmissions:

Global retransmission – Performed by the senders or the TN. The unacknowledged

packets are multicast to all the receivers in the tree.

Sub-tree retransmission – Performed by the DRs. Usually the scope of the sub tree

retransmission is defined by the TTL field in the IP header or is assisted by intelligent

filtering in the multicast routers.

Local retransmission – Performed by DRs if the number of children missing the packets

is less than a specific number (Lthresh). Local recovery is always sent through the

control channel and is always unicast.

• HACK windows: RMTP solves the “ ACK implosion” problem with a set of

algorithms which strive to keep the control traffic received by any node in the tree,

over any periods of time, in proportion with the data sent; by using HACK windows.

A HACK window refers to a window of packets which a receiver or aggregator will

respond to with a single HACK packet. The HACK window size Wsize changes

dynamically, and is never larger than Hwin. Within a window, each receiver, DR, or

AG is expected to send a HACK to its parent. To keep the load to the parent

constant, RMTP uniformly distributes the time within a window at which each node

sends its HACK.

4.4.5 Reliable Multicast data Distribution Protocol [RMDP] and Reliable Layered

Congestion control [RLC]

In pursuit of the design of a one-to-many reliable bulk-data transfer protocol that runs on

top of the Internet multicast service, there are two main issues have to be faced: reliability

and congestion control. Vicisano et al [Vicisano97] handle reliability using Forward

95

Error Correction (FEC) techniques known as RMDP (Reliable Multicast data Distribution

Protocol), and congestion control by means of a receiver driven scheme known as RLC.

• FEC and RMDP: RMDP is based around FEC, which operates on a principle where it

anticipates some amount of losses, and resolves the loss by sending redundant data

which allow the receiver to reconstruct up to a certain number of missing packets.

The communication process thus includes an encoding phase at the sender, where

redundant packets are constructed from the source data, and a decoding phase at the

receiver, where source data are extracted, if possible, from the available packets.

 RMDP provides reliable delivery of data by Forward Error Correction (FEC)

technique based on erasure codes[Rizzo97]. The basic principle behind the use of

erasure codes is that the original source data, in the form of a sequence of k packets,

along with additional n redundant packets, are transmitted by the sender, and the

redundant data can be used to recover lost source data at the receivers. A receiver can

reconstruct the original source data once it receives a sufficient number of (k out of

n) packets. The main benefit of this approach is that different receivers can recover

from different lost packets using the same redundant data. In principle, this idea can

greatly reduce the number of retransmissions, as a single retransmission of redundant

data can potentially benefit many receivers simultaneously.

FEC can be computationally expensive, since the entire data stream must be

processed by the encoder, so that each transmitted packet carries information on a

(possible large) number of source data packets. Decoding can be expensive as well,

depending on the encoding techniques being used and the actual of losses

experienced. This renders the technique unattractive for unicast protocols. In reliable

multicast protocols, though the advantages of FEC may overcome the

encoding/decoding overheads[Rizzo97].

• RLC: Reliable Layered Congestion control (RLC) is the implementation of the

receiver-driven congestion control. It is based on a redundant layered organisation of

96

the data being transmitted. In this case redundancy is used not to provide robustness

with the respect to transmission error, but flexibility with the respect of usefulness in

receiving a given packet. For example, a receiver can obtain n data packets from k

original source packets – so that what counts is the data received, not the actual

information – i.e., dealing with packets, one can rebuild all the original k source

packets once k packets are received out of the n sent, no matter which they are.

Given the redundant layered organisation of data, receivers are allowed to choose

their receiving rate by means of joining the appropriate layers, this way the

congestion control is performed independently from each other – although some co-

ordination of nearby receivers might be needed to have more effective action on

shared network bottlenecks.

The data and the redundancy packets are transmitted over nc layers, using a different

multicast address for each layer. Receivers are allowed to choose their subscription

level by joining/leaving multicast sessions. Receivers can control their receiving rate

by choosing their subscription level. This way they establish a trade-off between

bandwidth usage and receiving time. Here quality can be traded to save bandwidth.

In order to allow receivers to fully exploit the bandwidth they use, the authors encode

data using RMDP and organise it across layers.

On the sender side, packets of size b bytes are transmitted in all the layers. The

receiver behaves as follows:

• If it is receiving a normal flow (non-burst) and sees a loss, drop a layer and setup

a timer to prevent further losses, possibly due to the same congestion, causing

another layer to be dropped before the timer is expired.

• If it has received the last packets of burst, and there have been no losses in this

burst since it last joined the current layer (i), add a layer.

4.4.6 Pragmatic General Multicast [PGM]

97

Pragmatic General Multicast (PGM) is a reliable transport protocol for applications that

require ordered, duplicate-free, multicast data delivery from multiple sources to multiple

receivers [speakman98]. PGM is specifically intended as a workable solution for

multicast applications with basic reliability requirements. Its central design goal is

simplicity and partial reliability for scalability reasons.

In the normal course of data transfer, a source multicasts sequenced data packets

(ODATA), and receivers unicast selective NAKs for data packets detected to be missing

from the expected sequence. Network elements forward NAKs PGM-hop-by-PGM-hop

to the source, and confirm each hop by multicasting a NAK confirmation (NCF) in

response on the interface on which the NAK was received. Retransmissions (RDATA)

may be provided either by the source itself or by a Designated Local Retransmitter (DLR)

in response to a NAK, or by another receiver in response to an NCF.

Since NAKs provide the sole mechanism for reliability, PGM is particularly sensitive to

their loss. To minimise NAK loss, PGM defines a network-layer hop-by-hop procedure

for reliable NAK forwarding.

Upon detection of a missing data packet, a receiver repeatedly unicasts a NAK to the last-

hop PGM network element on the distribution tree from the source as shown in Figure

30. A receiver repeats this NAK until it receives a NAK confirmation (NCF) multicast to

the group from that PGM network element. Finally when the source itself receives the

NAK, it confirms by multicasting an NCF to the group.

 source

 NAK Group A

 NAK NCF

 Node missing data

Figure 30: A basic diagram for PGM

98

Besides procedures for other receivers to provide retransmissions, PGM also specifies

options and procedures that permit designated local retransmitters (DLRs) to announce

their availability and to redirect retransmission requests (NAKs) to themselves rather than

to the original source. In addition to these conventional procedures for loss recovery

through selective ARQ, Forward Error Correction (FEC) can be used for sources to

provide and receivers to request general error correcting parity packets rather than

selective retransmissions.

As a further efficiency, PGM specifies procedures for the constraint of retransmissions by

network elements so that they reach only those group members that missed the original

transmission. As NAKs traverse the reverse of the ODATA path (upward), they establish

retransmit state in the network element which is used in turn to constrain the (downward)

forwarding of the corresponding RDATA.

4.4.7 Example of reliable multicast embedded application: Network Text Editor

[NTE]

Network Text Editor (NTE) [Handley 97] is a shared text editor which runs on top of IP

multicast. While this is an application like wb, it has a reliable multicast embedded in it.

The data distribution model uses the redundancy achieved through treating a line as an

ADU (Application Data Unit) combined with the fact that most successive modifications

are to the same line to avoid the need for most retransmissions.

The reliability of the underlying IP multicast transport protocol is based on a distributed,

replicated data model, where every participant holds a copy of the entire document being

shared. End-systems or links can fail, but the remaining sites still have enough data to

continue if desired. Because of the nature of the application, it is important that all the

recipients have consistent data on their screen, however inconsistencies can result from

packet losses, effectively simultaneous changes to the same object. However, the authors

99

proposed a mechanism that ensures inconsistencies are resolved, irrespective of the

number of packets lost.

There are three parts to the inconsistency discovery scheme. Two mechanisms are based

on session messages being sent out periodically by each site6. To detect inconsistencies,

each session message carries a timestamp and a checksum of all the data. If the

timestamp given by another site is later than the latest change a receiver has seen, the

receiver can request all changes from the missing interval without knowing what the data

actually was. This may not fill in sufficient information to ensure consistency, so

checksum is used to discover that a problem has occurred. This is followed by an

exchange of checksums to discover which blocks the differences are in.

The third mechanism is designed to prevent the above mechanisms from needing to be

used where possible. There is a concept of current site (this is the site which has most

recently been active) which multicasts out a summary packet giving the timestamps and

IDs of all the most recently changed objects. If a receiver has a different version of one

of these objects then it is entitled to either request the newer version from the current site,

or to send its newer version.

• Scalable retransmissions: When a receiver discovers there is an inconsistency

between its data and that of another site, it cannot just send a message to resolve the

inconsistency immediately because it may cause NACK implosion. SRM uses the

mechanism of retransmitting requests that are delayed by a random period of time

partially dependant on the round-trip time between the receiver and the original

source. Requests are then multicast and serve to suppress further duplicate requests

from other receivers. As it has no redundancy mechanism, wb’ s SRM

implementation is more dependant on its retransmission mechanism than NTE is, and

thus it requires its retransmission scheme to be extremely timely. NTE does not wish

its retransmission scheme to be so timely, as it expects most of its loss to be repaired

6 these messages are sent out at a rate that is dependant on the total number of sites in a conference to keep
the message rate low.

100

by the next few characters typed. This results in very significantly fewer packet

exchanges because in a large conference on the current Mbone, the probability of at

least one receiver losing particular packet can be very high. Thus what is required is

a retransmission scheme that ensures that genuine inconsistencies are resolved in a

bounded length of time, but that temporary inconsistencies due to loss which will be

repaired anyway do not often trigger the retransmission scheme.

4.5 Conclusion

In this chapter, IP multicast and different approaches for reliable data delivery have been

presented. There are mainly three structures of reliable data delivery in IP multicast:

centralised, distributed and hierarchical. Reliable IP multicast protocols like MTP

follows a centralised delivery system, SRM, NTE fall in the second category and RMTP

and PGM fall in the hierarchical category. SRM, RMTP and FEC provide most of the

important features that are required for reliable IP multicast. The reason for overviewing

these reliable IP multicast transport protocols is to identify which of these features are

required to support conference control services like CCCS and data that is associated

with it. The main features of these transport protocols for transporting conference control

will be identified in chapter 5.

101

Chapter 5

Reliable IP Multicast Transport Protocol Requirements for Conference

Control

A multimedia application like video conferencing often involves a large number of

participants and is interactive in nature with participants dynamically joining and leaving

the application. In order to provide many-to-many interaction when the number of

participants is large IP multicast is a very good option for communication of control and

data. IP multicast provides scalability and efficient routing but does not provide the

reliability these multimedia applications may require. Though a lot of research has been

done on reliable multicast transport protocols, it really seems that the best way of doing a

reliable multicast is to build it for a given purpose like conference control in multimedia

conferencing.

This chapter compares some of the reliable multicast transport protocols described in

Chapter 4 and analyses the most suitable features and functionality provided by these

protocols for a facet of conference control, floor control. The goal is to find or design a

reliable multicast transport protocol which would scale to tens or hundreds of participants

scattered across the Internet and deliver the control messages reliably.

5.1 Problem scenario

The Mbone based conferencing protocols and applications have always been designed to

work over IP multicast, whereas some features such as the call control functions of

tightly coupled conferences like ITU’ s H.xx series of recommendations have only

recently been designed to work with TCP and use UDP for data and audio. Applications

that run over Mbone are designed to cope with the unreliability of the underlying network

and normally work in a distributed manner over basic IP multicast. In contrast, H.xx

series based applications deploy a centralised model which normally run over reliable

102

unicast links. A generic model for transport protocol which would cater for both these

models of conferencing needs to provide one of the following:

a) a function that can connect a centre to a decentralised system

b) a function that adds state to the connectionless system such as the Mbone based

protocols

c) a function that can provide reliable multicast and connect it to reliable unicast

This chapter mainly concentrates on option c) where existing conference control

protocols based on different architectures can be supported by the network.

As discussed in Chapter 4, IP Multicast provides a service model by which a group of

senders and receivers can exchange data without the senders needing to know who the

receivers are*, or the receivers needing to know in advance who the senders are. Hosts

that have joined a multicast group will receive packets sent to that group. Therefore, this

service model can lead to applications which will scale to hundreds/thousands or more

receivers. However, because of the limited bandwidth most applications like

videoconferencing will often deploy floor control to limit traffic from the group to a

small number of concurrent sources.

In order to support floor control either for a tightly coupled session (where reliability and

ordering of the messages may get the highest priorities) or a loosely coupled session

(where congestion control or retransmission strategy may be more complex and more

critical than strict ordering), certain characteristics from a multicast protocol are required.

The requirements for conference control from a transport protocol are:

Loss detection and successful reliable delivery

Retransmission strategy, queue management

Scalability - source to many receivers, many sources to many receivers etc

Ordering

Scope of membership

* Unless a higher level agreement has been done.

103

Congestion control

Integrated security

A lot of research is being done on reliable multicast transport protocols. This chapter

highlights some features of most popular and standardised multicast transport protocols

around at the moment and compares them against the requirements of single facet of

conference control, Floor Control. Most of the reliable multicast transport protocols are

discussed in details in chapter 4.

5.2 Key Design Issues in IP multicast Transport Protocols

Loss detection and retransmission strategy are two important aspects in the design of any

reliable protocol. In a reliable transport protocol a recipient can (within bounded time)

find out when it is failing or being partitioned from active senders. A sender is assured

(with sufficient probability) that all its messages reach within bounded time.

In a traditional point-to-point reliable protocol such as TCP, positive acknowledgements

are used to detect loss and the sender is responsible for retransmission of the packet.

Using TCP one can provide HTTP Web traffic, FTP file transfers, and e-mail. All TCP

traffic is unicast, that is it has one source and one destination. The nature of data can be

either bulk data transfer where all data is sent one way and then the sender waits for a

response or interactive where as soon as each data unit is sent acknowledgement has to be

returned. The transmitter sends out a window’ s worth of data before requiring an

acknowledgement.

It is harder to transfer data "reliably" from source(s) to R receivers (where R can be 10's

to 100,000 or more), because multicast protocols interact with multiple parties

simultaneously and so involve a higher number of links. Therefore, the likelihood is

greater that some of the paths in the source's multicast tree are unstable at any time. In

addition, the instability in any portion of the multicast tree may affect many members of

the group because of the collaborative adaptive algorithms used[Floyd98]. In particular,

it is difficult to build a generic reliable transport protocol for multicast, much as TCP is a

104

generic transport protocol for unicast. Reliable multicast is a case where "one size fits all"

does not work at all. Applications often have very different reliability and latency

requirements, state management styles, error recovery and group management

mechanisms. A reliable multicast transport protocol that meets the worst-case

requirements is unlikely to be efficient and scalable for many application

requirements[Zhang97].

In a teleconferencing environment, a desirable robustness property is the ability to

continue operating within partitions should the group become fragmented. Ultimately,

the applications that use the multicast transport platform should be the ones to decide

when the situation has deteriorated to a point where continuation is meaningless.

5.3 Floor control and its requirements

Floor control in CSCW is a metaphor for "assigning the floor to a speaker", which is

applicable to any kind of sharable resource within conferencing and collaboration

environments[Dommel95]. A floor is an individual temporary access or manipulation

permission for a specific shared resource, e.g., a telepointer or voice-channel, allowing

for concurrent and conflict-free resource access by several conferees. For example, a

floor requester in a meeting room would be a person who raises his/her hand up to ask a

question. In this situation, it is up to the chair to grant the floor to the requester, although

other mechanisms for assigning the floor exist. The session parameter includes the

number of collaborators, and their role (chair, listener, a floor holder), determining their

capabilities.

There are several types of floor control policy available for use by collaborative

environments[Greenburg 91]:

• Free floor – concurrency control is mediated through user (social) protocols.

• The pre-emptive scheme – allows any recent requestor to take floor.

• Explicit release – the floor holder must relinquish control before anyone else can

claim access.

105

• Round-robin scheme – this gives each participant a quantum of time during which

they have full access rights.

• The central moderator – the chair has the right to assign floor control to others.

• The pause detection – during a specific time period if one user does not use the access

rights, then control is removed.

 Whatever the scheme is, for applications to scale beyond a few participants, all

communication must be multicast. Some research has been carried out to support

Interactive collaboration application like TMTP[Sudan95] for data , STORM[Xu97] for

audio and video and SRM[Floyd95] for wb. However, the nature of floor control is

different to these interactive applications. For example, the volume of data i.e. floor

control messages are lot less than audio or video or whiteboard associated data, the

timing of requesting/granting floor control can be very specific (for example, when the

chair/speaker addresses the audience and asks for questions, a lot of listeners are going to

request the floor but before that traffic may be lot less), ordering of data is more crucial

factor than audio/video(for fairness, or applications like when customers are bidding for

share) etc.

Typically traffic control for floor requests would be done in low level per source. An

example of sudden flood of traffic would be "Flash Call" problem in POTS. Flash call

would occur when a televoting system is taking place, where the viewers call a telephone

number provided by a particular program, to give their opinion. The first method to

avoid this sort of problem is the nondeterministic approach, where after certain calls

being taken by the network, users would hear an equipment engaged tone. This would

stop the network being flooded by too many calls. Other approach is the deterministic

approach, where the telephone company would be warned in a day advance, by the

programme organisers. So the telephone company can provide enough resources for that

sort of service, and the cost would be higher.

106

On a data network, a similar situation can also occur. There are certain traffic problems

which only apply to floor control and conference control type of applications. A reliable

multicast protocol has to include certain features which would account for:

• Congestion control - The volume of traffic will increase at certain times. The reliable

multicast has to cope with sudden burst of traffic. Many sessions have precise

starting times, causing a lot of message generation when most of the members of a

conference join the session.

• Ordering - To be fair to all the floor requesters the protocol has to have a mechanism

for strict ordering. It has to be consistent and fair so on average everyone is treated

fairly.

• Reliability - To provide good services, reliability and the retransmission strategy is

very important. Assume the scenario, where a floor request is multicast by A, B

didn’ t receive the message after time t. B now bids for the floor, without knowing the

floor requester is A. Imagine there is a policy in this conference that if someone has

requested a floor, the next person is not allowed to bid for the floor within next t'

seconds. Now somehow in this scenario, someone has to inform B that A has asked

for the floor, and he may not request/being granted the floor. There are several ways

to resolve retransmission which depends on protocols design, for example, in TMTP

the domain manager retransmit the data, whereas in SRM the nearest receiver to B

will transmit the data.

• Member Classes - There can be different types of members in a conference. The rate

controlled transmission of user data is very useful for floor control. For limited

bandwidth, this is a way to limit number of concurrent users on the network. For

example, one type of member will be not just a member but also a potential co-

ordinator and repeater. Another type of members will be just normal members, the

last type of member will unreliable receiver who will not ask for retransmission. If

the members are categorised like that then the job of the application programmer is

made a lot easier. A model like MTP/SO proposes to meet this requirement.

107

5.3.1 Functional Criteria

The table below is a comparison of several multicast transport protocols based on

functions that are relevant for floor control. It is a summary of the protocols’

retransmission scheme, floor control requirements, delivery unit which highlights the cost

of deploying these protocols on the network:

Table 7: Comparison of multicast transport protocols for floor control

Protocol Reliability
Semantics

Congestion
Control

Participant
structure

Knowledge
of
participant

ACK /
NACKs/
Retrans
Mission

Unit of
delivery

SRM Reliable No Distributed Via

session

messages

NAK,

receiver

reliable

1 ADU =

app. Data

unit

RMTP

(BELL

Labs)

Reliable Yes Hierarchy of

regions,

Domain

regions

Optional,

May be

known

Window of

packets ACK/

HACK

N =

window

size

RLC +

RMDP

Reliable Yes No No No ACK/

NAKs FEC

for error

recovery

K/N =

depend

on file

size

PGM Reliable No Local retrans-

mitters

No Bread crumb 1 packet

MTP/SO Reliable,

totally

ordered,

atomic

delivery

Through

different

streams

Master

Repeater

Consumer

Known NAK (?) ?

NTE Reliable No Distributed Via Session

packets

Triggered

NAKs with

randomi-

sation + FEC

1 ADU =

1 packet

108

5.4 Analysis of available reliable IP multicast – limitations, advantages and
disadvantages

SRM: One of the problems with SRM is that this algorithm will end up consuming a lot

of bandwidth when there is little correlation of losses among receivers. For example, in a

group of 1000 receivers, when only one receiver loses a packet, all 1000 receivers need to

process the multicast NACK and repair packets. This causes significant overhead for the

hosts. Also if one set of hosts in particular requires a packet, it is not desirable to

multicast the packet to all the possible groups. One possible method of improving SRM’s

efficiency is to use localised recovery. The idea is to multicast NACKs and repairs

locally to a limited area instead of to the whole group. Using the TTL (Time to Live)

field in the IP packet header is one possible way to implement scope control. However,

SRM does not deal with congestion control that may be caused by flood of packets when

a session starts or question time for a conference for example.

MTP/SO or MTP-2: MTP-2 has been designed to work as a multicast extension for

tightly coupled conferences like T.120 standards. The specification of T.120 standard

emphasises that all T.120 nodes need to be backward compatible, i.e. if a node is not

capable of running over IP multicast then there must be a way to build a connection

between a multicast capable and non-multicast capable T.120 node. Therefore, another

protocol has to accompany MTP-2, known as MMAP (Multicast Adaptation Protocol).

When a connection is built between two T.120 MCS provider, MMAP is firstly used to

setup the connection and then determine if these nodes are capable of running MTP-2 as

a reliable multicast. This causes a lot of information and data exchanges before the nodes

can be joined together. Also, it is built around the master that performs the required co-

ordination functions: rate control, global ordering, handling join and leave requests. This

has the drawback of Single Point of Failure. However, The rate controlled transmission

of user data in MTP-2 is very useful for floor control. If only few users are capable of

holding the floor then there is only little point of giving all the other 10,000 receivers the

capability of asking for retransmission of floor request.

109

RLC/RMDP: RLC/RMDP are very good mechanisms for bulk data transfer such as ftp.

They do not really satisfy the needs for floor control. For example, in floor control

mechanism the identity of the participants are quite crucial. Combination of RLC and

RMDP is not really appropriate for floor control purposes due to lack of timely delivery

to a single source.

PGM: PGM, only a semi-reliable protocol, is not intended for use with applications that

depend either upon acknowledged delivery to a known group of recipients, or upon total

ordering amongst multiple sources. For floor control, these two functionality are quite

crucial, therefore PGM is not the best suited protocol for floor control. PGM is better

suited for applications in which members may join and leave at any time, and that are

either insensitive to unrecoverable data packet loss or are prepared to resort to application

recovery in the event.

RMTP: RMTP seems to be the best protocol suited for conference control. MTP’ s

control channel and data channel assures different level of group membership and

reliability accordingly. Also different members like Designated receiver (DR) and Top

Node (TN) can assure retransmission while reducing the risk of congested links. The

HACK window also is a good mechanism for buffer management. In section 5.6,

Gossip-style Garbage collection method is discussed which could be used in RMTP for

managing retransmission buffers.

Summary: Many protocols are proposed and implemented:

 - Protocols differ widely in design

 - Logical structure of communication pathways (ring versus tree versus none)

 - Group membership mechanisms and assumptions

 - Receiver-reliable versus sender reliable

 - ACK/NAK and FEC

Based on floor control requirements from a reliable IP multicast (as discussed in section

5.3) RMTP will be one of the most suitable transport protocols because of the reasons

110

stated above. Also SRM will be a suitable protocol for this purpose because it represents

a simple and robust approach for large-scale recovery based on persistent state,

suppression of duplicate NACKs and repairs, and global retransmissions. The messages

specify a time-stamp used by the receivers to estimate the delay from the source, which

causes global ordering. However, if the number of participants is very large, the

convergence time will grow exponentially and SRM will not be the best suited algorithm.

 If some of the participants in a video conference is unicast only a tree based structure for

IP multicast like RMTP or MTP/SO will be quite suitable. In the hierarchical system, one

parent node can have several unicast only child nodes underneath it and it can unicast the

data to these child nodes. In this model the participants list can be viewed by the parent

node as shown in Figure 6.

5.5 limitations of floor control

A lot of the multicast transport protocols like SRM, RMTP, MTP/SO will meet some of

the requirements for floor control. Certain protocols can be customised or adopted to

meet some of the requirements. However, there are some limitations of a floor control

mechanism itself because of the nature of its behaviour. The principal difficulty is in

achieving scalability to large group sizes. In a conference, where all members have

access to the ability to request (and grant) the floor, it is necessary for all participants to

know who the other participants are. Otherwise, none can see a global reason for giving

someone the floor.

If the access bandwidth is small compared to network backbone bandwidth, at time t,

there may be 1000 receivers in the system, however using RTCP the report of the

participants may show only first 20 participants*. To account for congestion control a

solution has been suggested in timer reconsideration for enhanced RTP scalability

[Rosenberg98]. In a multimedia session which is using RTP/RTCP for transporting

* If the reliable protocol is distributed (e.g. in SRM/NTE)i.e. the participants can only see the local
information straight away and overall statistics is an option, then this problem can be eliminated to an
extent.

111

audio and video where RTCP rate is 1 kb/s. If all RTCP packets are 1 kb, packets

should be sent at a total rate of one per second. Under steady state conditions, if there are

100 group members, each member will send a packet once every 100 seconds. However,

if 100 group members all join the session at about the same time, each thinks they are

initially the only group member and sends a packet at a rate of 1 per second, causing a

flood of 100 packets per second or 100 kb/s, into the group.

So the effect of timer reconsideration algorithm is to reduce the initial flood of packets,

which occur when a number of users simultaneously join the group. A participant P who

wants to join at time t will determine the group size and it will transmit at time t’, where

t’> t. So if a session has to start at 10:00 am, packets will be sent at 10:01 am, 10:02 am

and so on. Therefore, at time t, the report showing the number of participants at 10:00 am

will not be correct.

So the underlying technology has to support users to join a session at t’’ where t’’ < t. In

other words, if the session is programmed to be broadcast at 10:00 am, users have to join

the session from 9:55 am. That requires modification of connection charges to include

the traffic flow pre session.

If each participant sends messages at the rate of K/N per second, where K is the fraction

of total capacity allowed for the RTCP messages, the following can be derived:

For audio, we might choose to have 1 speaker and therefore K is the capacity of that 1

flow. Typically RTCP messages might be limited to 5% of the flow, so for 20 packets

per second, we would be allowed 1 message per second. Over 5 minutes, this would

allow N to reach 300.

For video, we may choose to allow either one video to flow to several participants. To

save bandwidth, we probably choose the current speaker’s video channel, which might be

sending 100 packets per second from each and every source, which allows for K=5, or N

to reach 1500 participants after 5 minutes.

112

5.6 Proposed solution

The goal of this reliable IP multicast is to maximise the performance of the resident

applications like multimedia conferencing. After discussing the advantages and

disadvantages of the different protocols it seems that a reliable multicast protocol has to

be able to provide:

Congestion control: The protocol has to cope with sudden burst of traffic. A mechanism

has to be provided where pre session traffic flow is allowed. RTP timer reconsideration

[Rosenberg] is an example to deal with congestion control. Also if a user who just got

the floor waits a certain amount of time before asking for the floor again will help the

implosion as well.

Ordering: The point about floor control is that requestors should get a fair chance at

getting the floor. The problem with the reliable multicast transport protocols is that to

scale, they use techniques like SRM (random timer). What is required is a deterministic

(round robin) timers for people requesting the floor at the same time. So if a participant

asked for the floor or got the floor last time, then they have to go after everyone else - i.e.

that user/participant has to wait before asking for the floor again.

Reliability : The protocol has to retransmit lost/damaged packets reliably. Not just the

source, any one holding the packet will transmit the packet to the receiver require that

damaged packet. SRM’s retransmission strategy provides that.

Distributed control: There is a limit on the size of conference of known participants

because convergence time increases as the number of users increase. A hierarchical

system with just the knowledge of certain group or certain local users will be a possible

solution. RMTP or STORM can provide that sort of architecture.

Simple: A protocol should be easy to implement and enhance.

Other: Able to cope with unicast only receivers. A security mechanism will be added

advantage.

113

Proposed solution 1:

A proposed solution for distributing conference control over reliable transport protocol

consists the above features, where the group members/nodes are formed into a hierarchy.

The child nodes are assigned tags as shown in Figure 31. In order to reduce the effect of

a sudden burst of traffic, nodes no 111 and 110 for example, will not send their requests

directly to node no. 1 but will request for the floor to their local parent node (in this case

11). Please note that, the following does not give a detailed specification for a reliable

multicast protocol. It only highlights how a protocol can be designed to cope with

congestion control, reliability and ordering and yet simple to implement.

A hierarchical protocol has been deployed in HGCP [Dommel98] on application layer,

where the source station is the current floor holder and transmits information to the

receiver set; hop nodes are positioned on the path from the source to receivers. The

propagation tree of HGCP organises group participants into a hierarchy of subgroups or

coteries. Each such coterie has a group manager, which acts as a representative for all

other members in a group. The group manager is responsible for querying control states

for its group members. This group manager can also be responsible for RTP

reconsideration to control sudden burst of traffic.

The HGCP protocol consists of two stages: 1) Propagation tree construction 2) Control

message dissemination.

Figure 31 shows a sample HGCP scenario. In order to implement a protocol like HGCP

in the transport layer the nodes will be labelled in transport layer instead of in application

layer where the parent nodes like 11 or 10 can deploy RTP timer reconsideration to

control the sudden burst of traffic.

 1

 10 11

 100 101 110 111

 1001 FH Figure 31: Tree structure for hierarchical transport protocol

114

Proposed solution 2:

Apart from the method described above which meets conference control requirements,

some of the existing protocols can be adapted further. For example, hierarchical ACK

based protocols like RMTP and NAK based protocols like SRM can combine a method

as described below:

Gossip style – Gossip Style Garbage Collection (GSGC) [Guo] is a stability detection

framework intended for reliable multicast at the transport level using session messages.

At minimum cost, the GSGC service offers failure detection, stability detection and

buffer management to existing large scale reliable multicast protocols such as RMTP and

SRM. It is mainly useful for keeping group membership information stable and detect

failures, but does not deal with congestion control or atomicity.

The stability detection algorithm works as follows: there are m senders in a group of size

n and each sender uses an independent sequence space. Each member maintains an array

R with m number of slots in it. The j-th element of this array R is the maximum

sequence number such that all messages with less sequence number from sender j have

arrived at this member. Each member also maintains another n-element “ Live” array L

reflecting current group membership.

The most intuitive way to detect stability is for each member to send its sequence number

array R to one designated member, the co-ordinator. After receiving the sequence

number arrays from all the members, the co-ordinator generates a stability array S where

S[j] is the minimum of the j-th element of every member’ s sequence number array. The

co-ordinator then multicasts the stability array S in the group.

When the group size is large, an implosion problem will occur at the co-ordinator, which

makes the naive method not scalable. Adding a multi-level hierarchy will reduce the

implosion problem but introduces new problems. One such problem appears when some

115

interior node in the hierarchy crash. Also in a large multicast group, membership change

is frequent , requiring the hierarchy to be rebuilt frequently. This makes the pure

hierarchy not so scalable. Therefore three design features need to be taken into

consideration for GSGC to be scalable:

• the implosion problem needs to be eliminated

• traffic load generated by the protocol needs to be minimised

• the state information passed around cannot grow proportionally with the group size

The above can be achieved by using a gossip technique. The protocol is divided into

equally timed steps. During each step, every member constructs a gossip sub-group

based on their location on the network. Each local group has a stability controllers (SCs).

The protocol proceeds in two phases. In the first phase, each member gossips to other

members in its local group trying to obtain stability information within the local group.

After the local stability arrays are constructed, the SCs start the second phase by

gossiping among all the SCs. After one SC receives the stability information from SCs

representing the other local groups, the global stability array is constructed and multicast

to the entire group.

5.7 Conclusion

There are protocols like RMTP/STORM, NTE and SRM which are designed for specific

applications. SRM is a robust protocol which meets a lot of the requirements for

conference control. MTP and RMTP meet certain criterias too. However, these protocols

need a level of customisation or a level of adaptation to be ideal protocol for conference

control. This chapter also looks at the limitation of these protocols and the limitation of

floor control to achieve scalability. Therefore, if a reliable multicast has to be designed

to meet the requirements of floor control it can be quite complicated to cater for

ordering, congestion control, pre traffic flow etc. In order to keep it simple, we need a

mechanism where the status of the floor holders is multicast in every few seconds to the

group. If a user wish to bid for the floor, the request is multicast too. The stabilising

116

time/converging time grows as the number of participants grow normally, so a

hierarchical system will be a better solution. It is also required to provide a distributed

model for retransmission and keep the status of receivers upto date.

117

Chapter 6

A charging model for Sessions on the Internet

This chapter describes a charging and billing technique that can be used as a part of

conference control. The idea behind Common Conference Control Services is to

identify missing components of different conferencing architectures and to find

common grounds that can unify them. The conferencing architectures that are

analysed in this thesis are all missing a charging mechanism. Charging users for

services provided by any video conferencing protocol may be a common policy.

Therefore, in this chapter, a new charging model is proposed and analysed that can

be common for any conferencing architecture. This charging technique can be

integrated in any conference control protocol where users joining a conference over

the Internet can be billed for their usage of the facility.

A chargeable session, which could range from high-speed web browsing to real-

time conferencing on the Internet, may consist of more than one underlying

chargeable service. Typically there will be two views, one at the network layer and

one at the session layer. Since different applications can have different demands

from the network, a generic charging scheme has to separate the service provided

by the network from the service provided by an application/service provider. In this

chapter, a session based charging is proposed: we use the term “session” to define

the lifetime of activities of a single/group of users. The aim is to provide protocol

independence, in the sense that different sessions (e.g. multimedia conferencing,

multiplayer games or e-commerce activities) from the application layer can be

charged independently from any different basis for charging for network resources.

In this model, we are trying to allow for the optional integration of charging at the

network layer with charging at the session layer, while keeping the underlying

technologies still cleanly separated.

118

This chapter also highlights the fact that pricing applications on the Internet is not just a

simple case of analyzing the most technically feasible pricing mechanism but also of

making the solution acceptable to users. We take the position that session based charging

is easier for end users to accept and understand and argue why this is the case in this

chapter.

6.1 Problem Scenario

As the popularity of the Internet grows, the number of services offered over the Internet

grows with it. Users normally pay a flat fee to obtain Internet access, and are forced to

get used to a service which is not guaranteed and which is prone to variable delays.

However, different applications have very different service requirements. For instance,

some applications like email, can tolerate significant delay without users experiencing

discernible performance degradation, while other applications, such as audio and

packetised video degrade perceptibly even with extremely small delays[Cocchi93]. With

rapidly diverging types of tasks, the need for traffic characterization on the Internet is

becoming very obvious. Cocchi et al[Cocchi93] have argued that, in order to produce

performance incentives, it is necessary to support service-class sensitive pricing for any

multi-class service discipline. Using this paradigm it is possible for users to prioritise

their applications to conform to what they perceive to be acceptable QoS values. In this

situation the user has an option to pay a higher price for higher quality.

Services on the Internet have a two level matrix for charging. One is from the application

perspective, and the other is from the network perspective. Research has been done to

provide better than best-effort QoS in the network and to provide a corresponding

charging model for the added QoS (e.g., charge for throughput, bandwidth, delay etc.).

Whereas, application related pricing, i.e., charging a certain fee for an application has

been left to different application/service providers. These applications can have either a

fixed fee or can be usage based (i.e. charge the users if they have used the application

over a certain time period). In this thesis, the term “pricing” is used to refer to the

process of setting a price on a service, a product, or on content. Whereas, “ charging”

determines the process of calculating the cost of a resource by using the price for a given

119

record, i.e. it defines a function which translates technical values into monetary

units[Stiller98].

As previously mentioned, different applications can have very different demands from

the network. Therefore, in order to provide a comprehensive service for an application, a

user must be able to deal with separate charges for both the network and the application

QoS. For example, in a video conference, participants may just want to listen to a

conference and may not require a guaranteed bandwidth. In this case, these users can be

charged to join the conference (e.g. to obtain the password to join the conference) but pay

nothing for reserving network resources. However, if the network resource is scarce then

a price will combine both the (minimum amount of) network resource required to

transmit the conference and the facility to join the conference(obtaining password – an

access key).

Therefore, it is best to provide a charging scheme that is not directly integrated with

network QoS and specific applications.

A number of approaches have been proposed for control of usage and explicit allocation

of resources among users in time of overload, both in the Internet and in other packet

networks[Clark95](a). RSVP [RSVP2], in combination with the Integrated Service

model, can be used to explicitly reserve a path or flow between end points in a network

Recent research has focused on a more generalized means of providing network QoS

based on tagging packets, where ‘out’ tagged packets receive congestion indication first,

and will be dropped when congestion occurs(diff-serv)[Clark95](b). The goal of session

based charging is to allow an Internet service provider (ISP) to charge for applications

that can use a variety of network reservation mechanism; such as RSVP, diff-serv, or

DRP[White98].

Note that a session can use multicast to achieve N-to-N communications at the network

layer, or it can use an IP telephony gateways to interwork PSTN phone sets with an IP

based conference. Therefore, this chapter looks at the issues concerned with a

commercial model for multicast, different service aggregation model, and a session based

charging model is proposed to charge for conferencing. The sections in this chapter are

120

organised as follows: section 6.2 reviews different basis for charging in the network

layer, section 6.3 looks at various ways services can be aggregated(bundling) for session

based pricing, section 6.4 looks at the design approach and possible user interfaces for

session based pricing, section 6.5 looks at the ISP’ s perspective on pricing, section 6.6

highlights the commercial model for multicast, section 6.7 looks at the IP telephony

charging model and the section 6.8 concludes the chapter.

6.2 Review of basis for charging in the network

The main reasons for charging on the Internet are:

• to cover the cost for providing the service by service providers

• to make a profit (providers)

• to control the behaviour of users or limit the usage to benefit higher paid traffic.

Different mechanisms have different types of technical and economical advantages and

disadvantages. In [Cos79], it was shown that users reduced their usage of the network

when faced with usage-based charging. The complexities of understanding the criteria

the users are paying for have an affect on payment as well. That is to say, if a user is

presented with a complex bill that shows different criteria, and how different schemes

they have subscribed to have different prices, there is a likelihood the user will prefer the

flat -rate option.

The charging policy in telephone networks has existed for a long time and works very

well. Telephone companies offer a menu of local calling plans, some usage-based (e.g.,

metered service), some capacity based (e.g. unlimited service), and some a combination

of both (e.g. a certain number of free minutes per month, plus a metered rate for calls in

excess of this number). It is likely that the same will happen in computer networks, with

some users choosing usage based and others choosing capacity based charges, and many

being somewhere in- between[Shenker96].

The two most discussed pricing schemes which can be implemented and vary easily for

the Internet traffic are:

• Capacity pricing

121

• Usage based pricing.

In capacity based pricing, a user would purchase a profile, called an expected capacity

profile, based on the general nature of his/her usage. For example, a user exploring the

web would need a very different profile from a scientist transferring a sequence of large

data sets[Clark95](a).

Expected capacity pricing has the advantage of stable budgeting for network use. Also,

expected capacity gives providers a more stable model of capacity planning. If users are

permitted to install and use different profiles on demand, the provider must provision

somewhat more conservatively, to deal with peaks in demand. However, the biggest

drawback of this scheme is that to this point the description of bandwidth allocation has

been in terms of the sender of the data, when the sender may be generating data because

the receiver initiated it (e.g. in ftp case, where the server may be sending data when the

user has requested the file).

In usage based pricing, [Clark (c)] the users pay for the volume of traffic (as well as

length of time) they are interested in. The argument could be that if the resource is

limited and the existing resources are used in different ways, service classes could be

applied to differentiate its use appropriately. The biggest argument against this scheme is

that usage based charges change the user perception and may decrease user’ s usage.

TCP Based pricing Edell et al[Edell97] have demonstrated a charging system based

around TCP. This system charges for bandwidth but triggers who to charge per TCP

connection. It does not reflect congestion costs as the pricing information is based on

time of day rather than actual network loading. The authors claim it should work for

UDP. UDP and TCP impose different traffic flows on the network and it is not clear how

this will be reflected in the pricing structure. Oeschlin et al[Oesc98] in MulTCP

modified the behaviour of TCP which reflects congestion based billing which does not

work for constant rate traffic (users or software developers can emulate MulTCP

charging by opening multiple TCP connections to achieve the same end).

122

Edge Pricing Shenker et al [Shenker96]have suggested a method to price the traffic

where congestion costs are estimated using the expected congestion (e.g. time of day)

along the expected path. Therefore, the resulting prices can be determined and charges

are assessed locally at the access point (i.e. the edge of the provider’ s network where the

user’ s packet enters), rather than computed in a distributed fashion along the entire path.

Edge pricing has the attractive property that all pricing is done locally. Interconnection

here involves the network providers purchasing services from each other in the same

manner that regular users purchase service.

Paris Metro Pricing (PMP) Another way to deal with congestion in packet networks is

provided by the PMP model[Odl97]. Odlyzko suggests that an end-user should be

required to pay more to use a particular queue, although its architecture would be

identical to a cheaper queue. The idea is that the queue that is more highly priced would

attract less traffic and therefore suffer from less congestion than the queue with the lower

price. PMP does not deal with more than one dimension of QoS. There would need to be

a number of bands for each combination of bandwidth differentiation, latency

differentiation and reliability differentiation. It is not true that all high bandwidth

applications also need high reliability and low latency.

Smart Market proposal : One of the most ambitious pricing proposals for best effort

traffic is the “ smart-market” proposal for Mackie-Jason and Varian described in

[Mackie95]. In this scheme, each packet carries a “ bid” in the packet header; packets are

given service at each router if their bids exceed some threshold, and each served packet is

charged this threshold price regardless of the packet’ s bid. This threshold price can be

thought of as the highest rejected bid; having the packet pay this price is akin to having it

pay the congestion cost of denying service to a rejected packet. This proposal has

stimulated much discussion and has significantly increased the Internet community’ s

understanding of economic mechanisms in network. However, there are several

problems with this proposal[Shenker96]. The biggest problem associated with this

scheme is that submitting a losing bid will typically lead to some unknown amount of

delay (since the packet will be retransmitted at a later time), so the bid must reflect how

much utility loss this delay would produce rather than the valuation of service itself. The

123

other problem is the bid is on a per-packet basis, yet many applications involve a

sequence of packets. It is impossible to independently set the valuation of a single packet

in a file transfer, when the true valuation is for the set of packets.

Table 8. Summary of advantages and disadvantages of some basis of charging

Name of pricing
scheme

Payment for Pros* Cons Technical aspect

Smart Market Pay for speed Provide user with
the highest price

Would be worth
only when the
network is
congested

Difficult to
implement

PMP Different queue
priority

Simple model,
traffic will get
through

Multiple profiles
have to be defined
at each differently
congested
bottleneck, doesnt
provide different
dimensions of
QoS

Simple to
implement if
traffic is not
traversing too
many congested
bottlenecks

Quota Quota of usage Easy to establish
long term contract

Sender based/
need a priori
knowledge of
how busy the
network is

Relatively easy to
implement

Usage Time of
connection

Better than flat-fee,
incentive not to use
the network for too
long

The basis of the
bill can be very
variant (e.g.
duration, amount
of resources, no.
of cells, priority
etc.), disincentive
to use the network
at all

Depending on
what is being
charged for
implementation
can be very
difficult.
Multicast traffic
billing can be
very difficult.

Session based Session (e.g.
application)

Simple and
effective,easier
itemised bill for
users.

A lot of market
research is
required to set a
suitable,
profitable session
price

Simple from
session layer but
network
necessarily has no
handle on
sessions. So in
the context of
networking,
session charging
introduces huge
complexity

TCP Bandwidth Most traffic on the
Internet uses TCP,
so it has a huge
customer base

Cannot use for
other traffic

Technically very
easy to
implement.

* pros – mainly economical advantages, not technical

124

 6.3 Entities that bundle services

When a user chooses a session based charging model, they can be offered different

services with different ways to pay for them. Bundling is the service aggregation

between different entities. It is a business choice made by the service (provider), made for

commercial reasons (e.g. profit opportunity or simply wanting to offer a more useful

service). As shown in Figure 32, the transmission service and information service are

bundled together (marked as Host Bundle) where the user pays a certain fee to the

information service provider (for example, for downloading a video), who in turn pays

the network provider for providing the transmission facility. The user is not aware that

the information provider is paying a fee for the transmission service.

From a research perspective, there are mainly two types of users: advanced users and

novice users[Bouch98]. In the former case, users tend to have theoretical knowledge of

networking environments, and are familiar with syntactic aspects applicable to real-time

and data- driven tasks. In the latter case, novice users are mainly the type who have little

or no theoretical knowledge of networking environments, and are unable to directly map

technical syntax onto underlying conceptual consideration.

Figure 32: bundling services

In t usereg ra tio n and sep ara tio n

or or

X m iss io n
serv ice

$ /u n it

In fo
service

$ /u n it

In fo
serv ice

X m iss io n
serv ice

$ /u n it

$/u
nit

X m iss io n
service

$ /u n it

X m iss io n
serv ice

$ /u n it

In fo
serv ice

$/u
nit

or

H o st
b u n d le

125

These types of users in the target market make a difference as to how services are

bundled.

The framework for charging for usage of different services with different quality on the

Internet is quite complex. The parameters charged for can be very dynamic and variable.

For example, in the telephone system, all calls require the same network capacity and the

same quality of service, whereas flows in the Internet can differ widely in their need for

capacity, latency control, or other features. Especially in the context of associating value

with enhanced services, it must be possible for the users to describe the service they

require. The features that can be charged for are: throughput, speed, accuracy(assertions

connecting QoS to the ability of the search engine for example to deliver the requested

information), accessibility and reliability. Therefore, for the novice type of users, there

may be a requirement to set the session price for them, otherwise they have to be

educated through the process of quality of service aspects of the Internet.

In this section we look at different service aggregation methods, i.e. various ways a user

can be billed for a particular service he/she used over the Internet. These mechanisms

have to be easily understood by the people so that they will be interested in using them.

We would like to propose that there will be mainly two ways to bundle.

There are:

1. ISP bundling

2. Session owner bundling

And there is always another approach which is based on

3. User’ s choice

1. ISP bundling – In this scenario, the ISPs will set a price for a given session and the

hosts and the participants will directly pay their ISP for that session. This is

probably not a very attractive option for the ISPs because they have to work out

separate prices for interconnecting with different providers for each session, how

many people possibly want that service and work out a set price for every session

they are providing. ISPs providing Internet telephony services should pay access

charges to the local telephone companies as do other long-distance service providers.

126

However, the ISPs can actually make a sufficient amount of profit by providing a

price on a session basis, because a lot of users/hosts do not actually want to go

through the trouble of working out a price for a session. In order to bill the users for

that session, the ISP has to take into consideration that users may pay into their

account (which may/may not exist , so for every session they have to create a separate

billing account) or by credit card or by e-cash. As mentioned that it may not be the

most attractive option for the ISPs.

ISPs will have policies which can be exchanged among policy-enabled entities.

DIAMETER[Rubens98] is currently a proposal which for example, can be used for

ISP bundling. It is designed as a common platform for several Internet services, such

as AAA(authentication, authorization and accounting), network-edge resource

management and VPN (virtual private network). So for example, when a caller (e.g.

a SIP proxy server) is being notified to set up a call for a user, it first initiates a

DIAMETER request command to its policy server with all the information about the

user. The server, in turn, checks the request against an admission control policy

database, and returns the findings in a DIAMETER response message[Pan98].

[Pan98] attempts to cater only for ISP bundling, but it is unlikely DIAMETER would

be the preferred solution for non-ISP bundling. Therefore a more general solution

would be beneficial.

2. Session owner bundling – In this scenario, the master of ceremonies (e.g. an organiser

of a conference) sets the price for individual user or mainly an organization, where

the novice users do not have to know the implications. For example, user A decides to

host a conference in UCL, 1999 for 2 days. This conference requires access to the

Mbone[Mbone] in order to multicast the session. So the host has to work out what is

the minimum bandwidth required to transmit video and the minimum bandwidth

required to transmit audio are. After that the session owner sets a common price that

absorbs and hides peaks and throughs in costs for each participant. A slight premium

allowance above the expected average cost involved underwrites the host’ s risk. This

might either turn a profit for the host or be returned to all participants in equal shares

(co-op dividend). Each participant’ s cost to the host will depend on their ISP’ s price,

but the host is wholesaling (hiding) this to participants. This may be a lot of work for

127

the host to work out a suitable price. This scheme will be attractive for a type of host

who holds a lot of sessions like that a year and the host is likely to be a big

organization. As for the user is concerned, they do not have to worry about the

technical aspects of the conference and it makes it definitely simple for them to just

pay the host and participate in the conference. The question remains, will a user be

interested in paying a fixed amount for which they are confined to the policy the

host/session owner has set?

3. User - In this scenario, the user has the choice to go either with the “ best-effort

service” for a session or can pay their ISP directly for guaranteed service. Normally

for all of the above option as well, the frame rate for video and for audio the required

bandwidth will be advertised on SDR(see section 6.4 for further discussion).

Therefore, it is up to the user to pay a certain fee for a certain amount of guaranteed

service. For novice users, they do not necessarily need to know the technical details.

There will be the option in the form of a sliding bar marked with values (either

monetary values or other forms of prices), and increasing the value of the sliding bar

will increase the quality.

With this option, the host or the ISP do not have to set certain prices for everyone for

different sessions. Also, it gives the user the flexibility to go with their own policy,

i.e. they are not confined to ISP’ s or the host’ s policies.

For all of the models of payments above strong security is necessary both between routers

and policy servers and between policy servers and the billing system that connects

policies to economics because their interaction implies financial transactions. Whatever

the bundling scenario is and whether an ISP or a user is setting the price, they can use a

session based pricing interface (as discussed in the section below) to serve their purpose.

128

6.3.1 Matrix for charging sessions on the Internet

Here are some matrices for charging services. Let us imagine S1 and S2 are two arbitrary

(chargeable) services. In this case one will be for the network and the other one for the

session hosting. U is the user and A is an agency. The matrix to define and combine the

two services have some issues like:

a) What is being paid for

b) By what you are paying for (the basis)

c) By whom each service is paid

A) Pay for what (X= yes or no)

Functional non-functional (e.g. QoS)

S1 X X

S2 X X

B) Pay by what

per session (fixed) per time per volume

S1 fee rate fee rate fee

S2 fee rate fee rate fee

C) Paid by

Shorthand free S1 free S2 free U S1 S2 A
Name B bundled bundled bundled

S1 - - U U U S2 A
S2 - U - U S1 U A
User - - - - - - -
B = bundled

129

The terms in the table above are described as follows:

The shorthand names on the left are the entities that are being paid for. When S1 is free,

none has to pay S1, but when it is being charged for User has to pay S1 directly. In user

bundling system user is paying S1 or S2 directly. When S1 is bundled, i.e. it includes

facilities to use S2 for example, users pay S1 and some of that payment goes to pay S2.

If it is an agency bundled system then agency pays the S1 and S2 for the services.

6.4 Model for application driven session pricing

This section proposes a possible example of a user interface and a model for session

based charging where RSVP is used to reserve the underlying resources (in section 6.4.2)

that could be used for any of the bundling scenarios discussed in section 6.3. An

important aspect of the problem of designing a model to charge for real-time applications

on the Internet is that the Internet architecture is based on the network layer not knowing

the properties of the applications implemented above it. Therefore, in this model

knowledge of the underlying resource management and of the network implications of

providing a guaranteed service is not necessary and has been separated from the

applications. ISPs or the bandwidth broker set a certain price for each session that can be

accessed from the session layer. While in this chapter and in this model we have focused

on monetary values to participate in a session, the underlying accounting structure and

pricing architecture should allow the use of other incentive forms if they are locally

applicable.

 host
 service
 participants Agency
 Payment
 listeners
 Liability

NP network provider
 NP
 Figure 33 Model of interaction between participants and agency

130

The design philosophy of this model is quite simple. Let us take a multimedia conference

for example, there will be few participants among which some are just listeners. This

session is advertised by some arbitrary means (e.g. SDR [Kirst97] or a web page), with

the session’ s price being fixed a priori. As discussed in section 6.3, this follows a user

driven system where the user has the choice of either paying a certain fee for guaranteed

QoS or not paying. So there will be an “ agent” who will be responsible for collecting the

payment. The session based pricing comprises a “ back-end” , whose job is to inform the

service provider or the initiator (depending on who is charging and what the policy is)

that the specific session is being paid for and a guarantee for that service for that price is

required. Each router, on receiving a packet, must be able to determine whether the

router is within the paid region. There are only two ways that a router can have access to

information about a flow. Either it is stored in the router (this is not the preferred option),

or in the packets of the flow.

The second part is a “ front-end” which allows a client to provide inputs in the selection

process. In this scenario we have used multimedia conferencing as an example where

there are different classes of participants. So the participants who are just listeners can

choose to pay a flat fee whereas a speaker will pay an additional amount for that session.

However, for example, if the speaker is an invited speaker then he/she may pay nothing.

Floor control [Kausar98] for the session plays a very useful part for this pricing scheme.

If a user initially chose the option not to speak then the floor control option is not

enabled. However, we realized that a listener may have a question at the end of a session,

but that the amount of traffic that will be generated by this question may have an impact

on the network if the resource available is scarce. For most of the existing conference

tools there is a facility to use a chat option where the users can type in their question. A

possible example of front end could look as shown in Figure 34:

131

Figure 34: An example of front end of payment service

An Mbone session directory SDR[Kirst97] is used to advertise multimedia conferences,

and to communicate the session addresses (whether multicast or unicast)and conference-

tool- specific information necessary for participation. This would be an ideal tool to

advertise the prices associated with the sessions. Currently the user interface appears as

shown in Figure 35. An extra option with QoS details which include a sliding bar for

payment can be added to enhance the features of SDR.

Figure 35 Session directory would need an option for payment

6.4.1 Support from Network layer

The Internet today offers a single class of service, where all packets are serviced on a best

effort, First-in–First-Out (FIFO) basis. Disrupted audio and video due to packet losses

make multimedia conferencing less efficient and less effective. The applications that

generate traffic can be located on a continuum (see Figure 36) which also represents the

delay tolerance. As the amount of real-time traffic increases there may be a

132

corresponding need to define a richer set of QoS parameters for these traffic

types[Bouch98].

Elastic Inelastic

 Email File transfer WWW Streamed Interactive Apps
 Application (e.g conferencing)

Figure 36 Relative traffic elasticity

Although users are normally prepared to put up with delay with email because it is

expected to be delivered later in the day and picked up some other time, one may send an

urgent email which can be treated as a real-time or inelastic application (for example, an

email informing someone to join a conference immediately).

In order to guarantee the service that is chosen from the session based application pricing

interface, the network has to provide enough resources. Since an RSVP API[Stevens] is

currently available, we suggest integrating RSVP with the different models of session

based pricing. However, as discussed in section 6.2 there are other ways to reserve the

resources or characterise the packets that are being paid for in network layer. In this

thesis, we are not focussing on any particular charging scheme for network or service,

any number of combinations can be used. We are assuming the commercial application

will be paid for and the underlying resources will be reserved or characterized in a way

that will support the application.

To ensure voice and data are being delivered properly, users can make the use of end-to-

end resource reservation protocols to set up reserved “ flows” . Another alternative is to

mark the packet header as “ premium service” so that they can be delivered with low

delay and rate guarantees inside the network. Both approaches imply that the network-

edge routers may need to interface with policy servers to manage link resources.

Although as shown in Table 8, session based charging proposed here, has the advantage

133

of hiding all the underlying details from the user and has a better chance of being

accepted by them; it is necessary to look at a model which would reserve resources at the

lower layer to filter upto the session layer pricing. In the next section RSVP in

conjunction with session based charging model is discussed.

6.4.2 Applying session based charging model

The session based charging model is conceptually compatible with the layered network

model. The separation between sessions and network layer pricing is a new architectural

consideration. This section briefly describes how sessions and network would interact.

Fankhauser et al [Fankhauser98] described a reservation based charging which in

conjunction with session based charging will show how the consumption of resources at

the lower layer would filter upto the session layer pricing. This will highlight the main

issue in trying to apply such a model.

It is strongly proposed here that, ISPs or the bandwidth broker sets a certain price for

users for each session which will provide a type of service class (it could range from

minimum delay to highest throughput) for that price. In order to guarantee the

underlying resources that could provide that sort of service, it is necessary to reserve

those resources. In Fankhauser’ s implementation a simplified version of RSVP has been

used for resource reservation and it uses flows as basic units of charging and accounting.

In this model, the price is calculated dynamically according to the load on the network,

although the base prices are set by the operator at each node. The basic unit sold via a

session based charging interface to the user is a bandwidth reservation over a fixed

period of time. Besides the base-pricing, which has to be determined on grounds of

business and strategic market decisions, the model provides two options which control

the price when congestion is about to occur. One is a function that describes the increase

in price when demand exceeds supply provided by the link bandwidth. The other option

is a parameter which specifies at what load the afore mentioned function is applied to

increase the price. This parameter is expressed as link-load factor and can be used

adaptively to maximise utilization of the resource and to minimise the number of rejected

reservations without charging the base price.

134

In Fankhauser’ s implementation RSVP messages used for reservation setup, such as

PATH and RESV messages, are enhanced by adding payment information and price

queries. Each network node along a transmission path features the basic functionality

of an Integrated Service Router (ISR) which is also the case for sending and receiving

hosts with applications that use the extended RSVP API (application programming

Interface) to communicate pricing information. RSVP messages are forwarded through a

socket connection to the RSVP daemon running in user space. The enhanced admission

control checks pricing information when reservations are made. The integration of

reservation and charging protocols fit very well and have several interesting and

attractive properties:

• Periods of reserved bandwidth can be accounted and charged at the current market

price at each router by using the flow specification (flowspec). Once a flow has been

accepted and the resource allocated, traffic control mechanisms (classification and

scheduling) ensure that the requested bandwidth is allocated to the flow.

• RSVP messages are processed and forwarded hop-by-hop. This method enables

every provider to collect money for its own resources. No inter-provider agreements

are needed.

Charging messages: for Frankhauser’ s simplified version of RSVP the following

messages are used and modified with payments and other charging relevant information:

• PATH messages are used to pin a path and setup a state to make sure that RESV

messages follow the same route back to the sender. PATH messages may contain a

request quote (QRQ) market prices or a sender provided payment (S_PAY).

• RESV messages are used to request a reservation (receiver initiated). They may

carry quote (QTE) messages or receiver payment (R_PAY).

135

In figure 37, the modified packet format for RSVP is shown. The “ msg type” field could

be any of PATH, RESV, RESVCONF, PATHTEAR and RESVTEAR. C&A flag stands

for charging and accounting flags which could be QRQ/QTE, S_PAY and R_PAY.

 32 bit

Figure 37: PDU for resource reservations enhanced by charging and accounting data

Figure 38 shows a conference control protocol that can be associated with charging. The

nodes marked as C are clients. When they register themselves with the CCCS (or any

other conference control entity), their ID(for example the port number, IP address) is

logged. The logging service associates with an admission control policy where

something like Fankhauser’ s implementation discussed above, is activated. Therefore,

the resources required for this session can be reserved.

Figure 38: Conference control and session based charging with RSVP

Once the session is finished the charging Daemon produces a bill which could be

distributed to the clients from the conference control server.

Length
msg type
label
dst addr C & A
prototype
src port dst port
priority

Part of msg needed for charging and accounting

C

C

CCCS

1 Register

1 Register
Log Info
 RSVP Daemon
Admission control2 Log

RSVP flows/resource reservation

3

3

Charging and accounting information

4

5 Bill info for clients

6 confirmation

136

6.5 ISP’s perspective

One of the attractive schemes which perhaps allows a great encapsulation and therefore

compact characterization of application specific QoS parameters is known as ‘User share

Differentiation’ (USD) [Wang97]. USD involves, not the separate reservation of

bandwidth for each flow per session but the sharing of a pool of bandwidth among

multiple users. The user is given a minimum amount of individual bandwidth, according

to the user-ISP contract, and a minimum share of bandwidth over this bandwidth. It is

argued that this scheme strikes the correct balance between aggregation and isolation of

sources. Its additional benefits may be:

• The definition of ‘user’ is flexible: this implies that the level of aggregation of traffic

is flexible. For example, the ISP is free to implement multiple classes of traffic to

reflect the needs of different users; some users may only require a best-effort service.

• A hierarchical management structure is provided: The ISP allocates bandwidth to the

user, the user then allocates among its applications. The user can choose to mark it s

applications to reflect loss or delay priorities. This has important implications for

traffic classifications at different levels of the market structure[Bouch98].

• Incentives are provided for users to control their traffic sending rates. This fits

perfectly well with “ user bundling” system described in section 6.3.

6.6 Multicast Model

It is held that multicast offers significant advantages to the Internet community.

Multimedia real-time applications which are being multicast pose more of a challenge to

be priced and different access rates need to be considered carefully when pricing the

senders/receivers. A multicast address is merely a logical name, and by itself conveys no

geographic or provider information. Multicast routing identifies the next hop along the

path for packets arriving at an interface, multicast routing does not identify the rest of the

tree. Thus, estimating costs in the multicast case requires an additional piece of

accounting infrastructure. One approach for charging the receivers is to introduce a new

form of control message – an accounting message – that would be initiated when the

137

receiver sends its multicast join message[Shenker96]. These accounting messages would

be forwarded along the reverse trees towards each source, recording the “ cost” of each

link it traversed and summing costs when branches merged.

With the User bundling scenario, the session based pricing solves the problem of

charging receiver/sender in a multicast session. As discussed previously, the user can

pay a set price regardless their position in a multicast tree. If the receiver wishes to

receive a session with a certain guarantee, they just have to pay. In the user bundling

system, the price to be paid for a session’ s quality is upto the user, so whether the user is

a multicast receiver or not, does not really affect the charging scheme. If the multicast

tree is organised in a hierarchical structure, then the host or the ISP (if it is a host or ISP

bundling system being used to pay for services) can negotiate or set a price for a

particular branch of the tree. Then, if one of the child nodes joins a session which needs

to be paid for, the node can obtain the price from the nearest parent node.

Another issue to be addressed is: to which party (content provider, ISP or receiver) does

multicast transport offer the most intrinsic value compared with unicast transport? In

overall, one can say that multicast access and peering agreements are likely to be placed

on a very different financial basis from the existing unicast agreements. The figures

below compare multicast and unicast data delivery, for a simple case in which both the

content provider and subscribers buy access from the same ISP.

As seen in Figure 39, the multicast sender (e.g. content provider) benefits greatly from

multicast, since access costs are drastically reduced. There is little multicast benefit to

the receiver. To the receiver it makes little difference whether multicast or unicast is

used (assuming, that received bandwidth is charged at the same rate whether unicast or

multicast). By default, the ISP should charge multicast senders (e.g. content providers)

more for multicast access bandwidth (sent into the network) than for unicast access

bandwidth.

138

 Internet service Provider ISP R’

 CP CP
 R

 Subscribers Subscribers

 CP: Content provider

Figure 39 Comparison of (a) multicast and (b) unicast delivery

If the multicast sender is charged more, the increase in access bandwidth tariff should be

in some way be related to the degree of replication (actual, average etc.) performed by the

network, but should be less than would have been charged for unicast access to N clients.

One of the main difficulties with charging multicast senders according to the degree of

replication is that it is likely to be a considerable overhead for the ISP to measure the

actual degree of replication on a per-session basis. If the multicast access tariff for

senders is based on an average degree of replication (averaged across sessions), then this

will not cater for different ranges (tens to thousands of participants).

6.7 IP Telephony issues

Most charging for transportation systems in our day-to-day life (e.g. train fare, plane fair

etc.) is based around geographic distances. On the Internet, distance related charging does

not apply because the sender may not necessarily know where the receivers are,

especially in the multicast scenario (even in the unicast case, IP addresses of hosts do not

represent the “ geographic distances” between them). Therefore, video conferencing that

is taking place between a host on the Internet and a PSTN phoneset or another host on the

Internet becomes tricky to charge.

There are three main types of billings that can take place for a conference:

1. PC to PC billing

2. PC to phone billing

3. Phone to PC billing

139

The physical location of a PC on the Internet cannot be used to price the connection that

takes place in either of the above cases. If it is a PSTN to IP pricing (case c) scenario,

then the user will pay the local phone company for using the service and it is upto the

phone company to locate the IP telephony gateway and complete the call. Currently

different standard committees (e.g. IETF E.164 BOF and DTS TIPHON) are going

through the process of assigning E.164 numbers to machines on the Internet. The

gateways can then use the “ dial plan” to price the call that takes place from the gateway

(PSTN interface) to the PC (over IP). So for example, if user A wants to video

conference to a machine named B, it will be assigned an E.164 number, which may start

with 00 44 171, which represents a UK number. Therefore the caller will be charged

accordingly.

The other alternative to the model above, is to use session based pricing. The users will

be divided into different regions which are serviced by different ISPs. The local region

marked as R in Figure 8 will have a set session price to the one which is marked as R’ .

Although, in the Figure they are both clients of the same ISP, in reality they may have

used different ISPs with different subscription to different telephone companies. It is up

to the service provider to set a price to interconnect PSTN to IP.

 6.8 Conclusion

Different types of traffic sent into the network may have different QoS requirement

associated with them. The satisfaction a network user derives from their network access

depends on the nature of the application being used and the quality of service received

from the network. Since the nature of the Internet architecture is based on the network

layer not knowing the properties of the applications implemented above it, we have

proposed a session based charging model that operates over existing network

reservation/pricing schemas and augments them to take into consideration additional

needs of applications.

Thus, we view existing network reservation/charging schemas as providing a baseline set

of services to a user. Subsequent or value-added services and refinements of the network

140

- services are accomplished with a session-based pricing schema. One example of its

realization could be in SDR, which is aimed at users and thus can provide a simple and

straightforward way of conveying price-to-function relationship.

Setting a session price that will profit the ISP or the content provider, and yet still be

price-competitive with their competition, can be difficult to predict. The complexity of

predicting and implementing a profitable price for session based pricing is still an open

issue and a subject for further research. However, session based pricing has the attractive

features of providing a more direct way of communicating costs to the user and of having

the flexibility to implement it with any different basis for charging network resources.

The proposed work is currently under implementation.

141

Chapter 7

Conclusion

This research is about how communication using different conference control

mechanisms can be seamlessly integrated into a single mechanism. We provided a

complete framework for conference control and implemented some features over the

Internet to prove the concept. We analysed the requirements of this architecture from the

network perspective. In the process we also highlighted the interesting research problem

of charging few services that are offered by different facets of conference control and

conferencing in general.

The Common Conference Control Services (CCCS) has been proposed which showed

that it is possible to provide a practical system that can exist between a full co-operative

and full autonomy extremes for computer based multimedia conferencing. The CCCS

framework allows more flexibility than the standard bodies to date have allowed. As

mentioned from the beginning, CCCS is not a specific groupware: it is a communication

framework for conference control services which deals with user visible functions and

internal management functions of a conference. By using state transition diagrams and

formal description language it has been shown that the Main Control Services part of the

CCCS provides all the mandatory functions required to participate in a conference. If a

user of one protocol wants to join a session from another, the translations and mappings

of various messages done by the Gateway Services of CCCS and the location of the GS

servers are not visible to the user. Therefore, it can be concluded that, the main

contribution from this research has been to derive a set of common conference control

functions that are independent of specific application or specific network architecture.

In Chapter 4 and 5, conferencing and some conference control features have been

analysed from the network-layer perspective and reliable IP multicast has been chosen to

provide the facilities. It has been shown that a hierarchical protocol like RMTP or HGCP

with just a few adaptations can meet most requirements for conference control. Most

142

other IP multicast protocols deal with reliable delivery of data and provide some other

essential characteristics like congestion control or ordering but not all of them are present

in one protocol. It has been shown that a network layer protocol needs to provide

congestion control, ordering, reliability, scalability and yet simple to implement to

support conference control features effectively.

In chapter 6, a session based charging mechanism has been proposed that can be a value

added feature for conference control which can be embedded in a conference’ s policy.

This charging scheme is positioned “ on top of” other charging schemes at the network

layer. After giving an overview of past work in network pricing, it is argued that

charging per session can be more appealing to end users than charging per consumption

of network resources. The other advantage is that the separation between session and

lower layer pricing provides a useful decoupling which could make pricing more flexible.

It is also highlighted that session based charging model can relate to different service

bundling models, multicast as well as IP telephony scenario. Also this charging model

can be applied to any other distributed interactive applications, not just conferencing.

• Limitations

The implementation of the CCCS has taken only one step in the direction of providing a

generic distributed architecture for conference control. It has only demonstrated very few

common functions like join, leave, invite and floor control when different conferencing

architectures correlate. It has not shown negotiation of capabilities, security features and

interaction of different media tools that are provided in different architectures. In

addition, session based charging has not been implemented as a part of the CCCS’ s

policy yet. (Also refer to Appendix A for a critical review of the CCCS as a service

protocol.)

• Future Work

 There are several ways that future work could lead to:

143

1) Security: Need to provide different levels of security in conference control. In this

thesis it has been assumed that all different architectures like Mbone based

conferencing and H.323 family of conferencing have some minimum security

features built into it. For example, a security feature will be to provide users with a

password and then allow them to join a conference if they have provided the

password. However, the CCCS itself does not have a security feature. So if a user

from IP network is interoperating with another user on the Telephone network using

the CCCS and this service is to be billed for, then the users need to provide some

form of authentication to CCCS. Currently there is no mechanism to cater for that.

2) Distributed control: In Chapter 3, in order to prove the concept of CCCS as a

conference controller that provides interoperability, one Gateway Services (GS)

server has been used to interconnect several different types of client. The

measurements taken for speed and the number of messages were also based around

that model. In future, it is required to distribute the GS servers across a wider area

network. A particular server in one particular area needs to be in charge of only a

limited number of users. These servers can be based around the geographic locations

of the clients. So for example, if five H.323 client in New York need to co-ordinate

and participate in a conference with seven other Mbone based clients in UK, then it is

feasible to locate one GS server in New York and one in the UK.

 These two servers need to keep local registry and co-ordinate with each other. If one

of the servers crash, the other server should be able to detect that and take appropriate

actions. The performance measurements taken from this type of scenario will present

a more practical session where a conferencing architecture like the CCCS can be

better justified.

3) Large scale thin control: This thesis has not focused on a very large system which

may need an Agent based system to cope with a very large number of participants in a

conference. Although the number of participants that can join a conference can be

144

limited (shown in Appendix A), the framework for conference control presented in

this thesis will not deal efficiently with a number that can be in the range of millions

of participants. For an interactive conference with that sort of number of participants

a very thin layer of conference control will be required.

4) IN services: At the end of Chapter 3, a list of IN service features have been discussed.

In future, the CCCS should be able to cope with some of these IN features like call

queuing, originating Call screening (OCS) and One number advertising.

Asynchronous events like email or voicemail etc. should be able to be forwarded

when different conferencing architectures correlate. So if a participant wants to invite

another, and there is no response, the CCCS currently only informs the caller that the

callee is not present. It has been advised that if the caller leaves a text based message

for example, the CCCS should forward that message to the callee.

5) GS Location service: Currently the IPTEL working group in the IETF is looking into

gateway location service which investigates a protocol for maintaining gateways

and distributed call routing databases across multiple administrative domains for

voice over IP services. A similar type of protocol or application needs to be designed

which will find the nearest CCCS entities that will carry out both aspects of

conference control functions between two or more clients. As discussed in 2),in

future, it is required to distribute the CCCS server across a wider area network. A

particular server in one particular area needs to be in charge of only a limited number

of users. Therefore the users/applications need a “ location mechanism” to find the

nearest CCCS server. The selection process which may reside on distributed clients or

databases will choose the CCCS entity nearest to the maximum number of clients and

the databases need to updated frequently to keep a register of all possible servers

around.

PUBLICATIONS:

There are several papers that have been generated from this piece of research, the main

papers are:

145

1. [Kausar] N., Crowcroft J. “ An architecture for conference control functions” , Data
communication and voice networks Conference, SPIE Symposium ,19-22nd September
1999, Boston MA

2. [Kausar] N., Crowcroft J. “ General Conference Control Protocol” , 6th IEE conference
on telecommunication, 29th march – 1st april, Edinburgh, UK, 1998, pp 143-152

3. [Kausar] N., Crowcroft J. Briscoe B., “ A charging model for sessions on the
Internet” , 4th IEEE symposium on ISCC , July 6-8th, Read Sea, Egypt, pp 32 -38

4. [Kausar] Kausar N., Crowcroft J. – “ Floor control requirements from reliable IP
multicast” 8th IFIP Conference on High Performance Networking (HPN'98) The
Millennium Push of Internet, Vienna September 21-25, 1998

Other publications include the following:

5. Nadia Kausar, Jon Crowcroft "Reliable Transport Protocol Requirements for
Collaborative Multimedia Systems" 17th IEEE Symposium on Reliable Distributed
System 1998, multimedia workshop, Indiana, Purdue University

6. Nadia Kausar, Jon crowcroft "Reliable Multicast Requirements for Multimedia
Conference Control", International Workshop on High Performance Protocol
Architectures, UCL, London, HIPPRACH 1998

146

Reference:

[Armstrong], freser RFC1301, “ Multicast Transport Protocol” February 1992 http://www.ietf.org/rfc/rfc1301.txt,
[Bagnall]P., Poppit A. “ Taxonomy of Communication Requirements for Large-scale Multicast
Applications” , Internet Draft , draft-ietf-lsma-requirements-01.txt, May 1998
[Boyd] j, “ Floor control Policies in multiuser Application” , INTERCHI ’ 93 adjunct proceedings, 1993,pp.
107-108
[Bormann] c., Ott J., “ Simple Conference Control Protocol” , Internet draft draft-ietf-mmusic-sccp-00.txt” , Universitat

Breman, Germany, Dec 1996
[Bouch98] Bouch A., “ A user cnetered approach to the design and implementation of Quality of service and charging

mechanisms in Wide-area Networks” – 1st year report, http://www.cs.ucl.ac.uk/staff/A.Bouch
[Buschman] F., Rohnert H., Sommerland P “ Pattern oriented software architecture: A system of patterns” John Wiley

& sons
[Clark D.] “ The Design philosophy of the DARPA Internet protocols” , SIGCOMM 1988 (Stanford, CA, Aug 1988),

ACM
[Clark95](a) Clark D. “ Adding service discrimination to the Internet “ September 1995, presented at MIT workshop on

Internet Economics
[Clark95](b)Clark D.(MIT), A model for cost allocation and pricing in the Internet, presented at MIT workshop on

Internet Economics, Mar 1995 “ http://www.press.umich.edu/jep/works/ClarkModel.html”
[Cocchi93] Cocchi R., Shenker S., Estrin D., Zhang L. “ Pricing in computer Networks” – Motivation, formulation and

Example , IEEE/ACM Transactions on Networking, vol. 1, Dec. 1993.
[Cos79] Cosgove J., Linhart P. “ customer choices under local measured telephone service” Public utilities fortnightly,

30, pp 27-31, 1979
[Crowcroft] J., Handley M., Wakeman I.“ Internetworking Multimedia” , UCL press, http:// www.cs.ucl.ac.uk/staff/jon
[Dommel] P., Aceves JJ (1995) Floor Control for Activity coordination in Networked Multimedia Application - Proc.

2nd Asian-Pacific Conference on Communications (APCC)'95, Osaka, Japan, June 12-16, 1995.
[Edell95] Edell R J, McKeowen N and Varaiya PP “ Billing users and pricing for TCP” IEEE Journal on selected areas

of Communication 1995 pp 105-115
[Fankhauser98] B. Stiller, G. Fankhauser, B. Plattner, N. Weiler, “ Charging and Accounting for Integrated Internet

Services - State of the Art, Problems, and Trends” , In proceedings of INET '98, Geneva, Switzerland, July 1998
[Floyd S.], V. Jacobson, S. McCanne, C. G. Liu, and L. Zhang (1995) A Reliable Framework for Light-Weight

Sessions and Application Level Framing - ACM SIGCOMM '95. Boston. August 30-September 1, 1995.
[Floyd] S., V. Jacobson, S. McCanne, C. G. Liu, and L. Zhang (1995) A Reliable Framework for Light-Weight

Sessions and Application Level Framing - ACM SIGCOMM '95. Boston. August 30-September 1, 1995.
[Floyd] S., Varadhan K., Estrin D (998) Impact of Network dynamics on End-to-End protocols: Case studies in TCP

and Reliable Multicast.- research draft "http://www.isi.edu/~kawnan/VINT/ic98.ps"
[Fromme]m., Pralle H. “ An Address Resolution and Key Exchange Protocol for Conferencing Applications on the

Internet, Confman 2.0” , Interactive Distributed Multimedia Systems and Telecommunication Services, 5th
International Workshop, IDMS'98, Oslo, Norway, September 1998. Proceedings

[Gary] A. Thom, H.323: The Multimedia Communication Standard for Local Area Networks for charging, work in
progress, Delta Information systems, Inc., Nashville 1998

[Guo] K., Hayden M, Robbert van Renesse, Werner Vogels and Kenneth P. Birman , Cornell University,
An Efficient Gossip-Style Garbage Collection Scheme for Scalable Reliable Multicast, work in progress
December 3, 1997
 [H.225], Call signaling protocols and media stream packetisation for packet based multimedia
communication systems, ITU recommendation 1998
[H.245] ITU Recommendation “ Control Protocol for Multimedia Communication”
[H.245], Control protocol for multimedia communication, 1998
[H.323] ITU Recommendation, “ Packet based multimedia communication systems” , 1998
[H.450] ITU Recommendation “ Intelleigent Networks: Supplementary services”
[Handley 97] Network Text Editor (NTE): A scalable shared text editor for the MBone , Proceedings of ACM

Sigcomm 97, Canne, France, 1997
[Handley M], Thesis for PhD, “ On Scalable Internet Multimedia Conferencing Systems” , University College London,

UK, November 1997
[Handley] M, Wakeman I., and J. Crowcroft, "CCCP: confrerence control channel protocol-a scalable base for building

conference control applications," ACM Computer Communication Review, vol. 25, pp. 275-287, Oct. 1995.
[Handley99] M., Whelan M., Perkins C. “ Session announcement Protocol” , Internet draft

http://search.ietf.org/internet-drafts/draft-ietf-mmusic-sap-v2-01.txt, October 1999
[Kausar (c)] N., Crowcroft J. “ An architecture for conference control functions” , Data communication and voice

networks Conference, SPIE Symposium ,19-22nd September 1999, Boston MA

147

[Kausar (a)] N., Crowcroft J. “ General Conference Control Protocol” , 6th IEE conference on telecommunication, 29th

march – 1st april, Edinburgh, UK, 1998, pp 143-152
[Kausar (b)] N., Crowcroft J. Briscoe B., “ A charging model for sessions on the Internet” , 4th IEEE symposium on

ISCC , July 6-8th, Read Sea, Egypt, pp 32 -38
[Kausar98] Kausar N., Crowcroft J. – “ Floor control requirements from reliable IP multicast” 8th IFIP Conference on

High Performance Networking (HPN'98) The Millennium Push of Internet, Vienna September 21-25, 1998
[Kirst97] Kirstein P., Whelan E. “ SAP - Security using public key algorithms” Internet draft

http://www.ietf.org/internet-drafts/draft-ietf-mmusic-sap-sec-04.txt, October 1997
[Kouvelas] I, O. Hodson, V. Hardman “ Redundancy Control in Real-Time Internet Audio Conferencing, Proceedings

of the 1997 International Workshop on Audio-Visual Services Over Packet Networks 15-16 September 1997
[Levine] B., Aceves-JJ (1998) A comparison of Reliable Multicast Protocols ,

"http://www.ucsc.edu/b.levine", Multimedia Systems (ACM/Springer), Vol. 6, No.5, August 1998.
[Lin], John C. and Paul, Sanjoy (1996) RMTP: A Reliable Multicast Transport Protocol, IEEE INFOCOM '96, March

1996, pp. 1414-1424.
[Ma] G., “ H.323 signaling and SS7 ISUP gatewaying procedure interworking” , Work in Progress, expired internet

draft , october 1998, draft-ma-h323-isup-gateway-00.txt
[Mackie95] Mackie-Mason J., Varian H. “ pricing the Internet” – In brian kahin and James Keller, editors, Public access

to the Internet. Prentic –Hall, New Jersey 1995, URL:
ftp://gopher.econ.lsa.umich.edu/pub/papers/Pricing_the_Internet.ps.Z

[Mbone] Mbone information site, http://www.mbone.com/techinfo/
[Mbone]: Host Extension for IP multicasting, Deering S., Stanford University, RFC 1112, IETF, August 1989
[McCanne], S., and Jacobson, V., vic :A Flexible Framework for Packet Video. ACM Multimedia, November 1995,

San Francisco, CA, pp. 511-522.
[Odl97] Odlyzko A. “ A modest proposdal for preventing Internet congestion” 1997,

http://www.research.att.com/~amo/doc/recent.html
[Oec98] Oechslin P., Crowcroft J. "Weighted Proportionally Fair Differentaited Service TCP", accepted for ACM

CCR, 1998
[Ott] J, A Multipoint data communication infrastructure for standard-based teleconferencing systems, PhD thesis,

Technical University Berlin, 1997
[Ott/Perkins] J, Perkins C. june 1999 Internet draft: “ Requirements for Local Conference Control “ ,

http://search.ietf.org/internet-drafts/draft-ott-mmusic-mbus-req-00.txt
[Ott96] J. Bormann C., Reichert C., “ Simple conference control Protocol (SCCP)” , Internet draft , draft-ietf-mmusic-

sccp-00.txt, June 1996
[Ott97] J., Bormann C MTP/SO – “ Service description for the MTP/SO reliable multicast transport protocol” , T120C-

116 contribution to ITU’ s study group 8, question 10, January 1997
[Pan98]Pan P., Schulzrinne H. “ DIAMETER: policy and Accounting Extension for SIP” Internet draft, Internet

Engineering task Force, July 1998
[Paxson] V., “ End-to-end routing behaviour in the Internet” , IEEE/ACM Transactions on Networking, Vol.5,
No.5, pp. 601-615, October 1997
[Perlman]R. “ Folklore of Protocol Design” , draft-iab-perlman-folklore-00.txt, Jan 1998,
http://sunsite.ics.forth.gr/sunsite/pub/internet-drafts/draft-iab-perlman-folklore-01.txt
[Perry] M., “ CONFCNTLR: A video conference controller” , masters thesis in San Francisco State University,

December 1997
[Raman S.], McCanne s. “ A model, analysis, and protocol framework for Soft State-based Communication” , ACM

SIGCOMM technical conference 31 Aug – 2nd Sept, 1999, Cambridge MA
[Rizzo L., Vicisano L.] “ A Reliable multicast data distribution protocol based on software FEC techniques” , 4th IEEE

workshop on the arhitecture and implementation of high performance communication systems (HPCS’ 97)
[Rodden] T., Blair G., CSCW and distributed systems: the problem of control, in ECSCW91: The 2nd European

conference on CSCW, pp 49-61, Amsterdam, Sept 1991
[Rosenberg] J., Schulzrinne H.(1998)Timer Reconsideration for Enhanced RTP scalability - Internet draft -draft-ietf-

avt-reconsider-00.ps
[RSVP] RFC 2205, Resource Reservation Protocol, Bradan, Zhang, Berson ftp://ftp.isi.edu/in-notes/rfc2205.txt
[RSVP2] Internet draft –A Framework for Use of RSVP with Diff-serv Networks http://search.ietf.org/internet-

drafts/draft-ietf-diffserv-rsvp-01.txt
[RTP] Schulzrinne H., Casner S., Jacobson V. RTP: A transport protocol for real time applications, RFC 1889, Internet

Engineering Task Force, 1996
[Rubens98] Rubens A., Calhoun P “ DIAMETER base protocol” Internet draft, Internet Engineering task Force July

1998
[Sanjoy] Lin, John C. RMTP: A Reliable Multicast Transport Protocol, IEEE INFOCOM '96, March 1996, pp. 1414-

1424. 1996

148

[Sasse] A., Handley M., Ismail I “ Coping with complexity and interference: design issues in multimedia conferencing
systems” , chapter 9 Design issues in CSCW, Duska Rosenberg and Chris Hutchinson, Springer-verlag

[Schooler] E.M "Case Study: Multimedia Conference Control in a Packet-switched Teleconferencing System",Journal
of Internetworking: Research and Experience, Vol.4, No.2, pp.99-120 (June 1993)

[Schooler] E.,Stephen L. Casner, "An architecture for multimedia connection management," in Proc. of 4th IEEE
ComSoc International Workshop on Multimedia Communications, (Monterey, California), p. 5, Apr. 1992. also as
ISI reprint ISI/RS-92-294.

[Schooler93], “ multiparty multimedia session control (MMUSIC) working group meeting report” , in proceedings of the
27th Internet Engineering task force, pp 419-430, 27th IETF meeting in Amsterdam, Amsterdam 1993

[Schulzrinne / Rosenberg NOSSDAV], "A Comparison of SIP and H.323 for Internet Telephony", proceedings of the
1998 Network operating System Support for Digital Audio and Video (NOSSDAV '98), July 1998, Cambridge,
England.

[Schulzrinne/ Rosenberg INFOCOM] "Timer Reconsideration for Enhanced RTP Scalability", Proceedings of IEEE
Infocom 1998, 27th March – 2nd april, 1998 San Francisco, USA

[SDP]: Session Description Protocol, Handley M., Jacobson v., ISI/LBNL , RFC 2327, IETF , April 1998
[SGCP]: Simple Gateway Control Protocol,Huitema C., Arango M., Bellocore, Internet draft, draft-
huitema-sgcp-v1-02.txt, July 1998, IETF
[Shenker96] Shenker., Clark d., Estrin D., Herzog S. “ Pricing in computer networks” ,ACM Computer
Communication Review, vol. 26, pp. 19-43, Apr. 1996.
[SIP]: Session Initiation Protocol, Handley M., Schulzrinne H., Rosenberg J., RFC 2543, IETF, March 1999
 [Speakman] T., Farincci D., Lin S.(1998) PGM specification - Internet draft draft-speakman-pgm-spec-00.txt, July

1998
[Stevens] R.,“ Unix network Programming” , Prentice Hall, Vol 1 ISBN 0-13-949876-1, 1990
[Stevens] R. “ Advanced Programming in the Unix environment” , Prentice Hall, Volume 2, 1992
[Stiller98] Stiller B., Fankhauser G. “ Charging and Accounting for Integrated Internet Services – state of the art,

problems and trends” , INET 1998, Switzerland, July 21 – 24, 1998
[Sudan] M., R. Yavatkar, J. Griffeon (1993) A reliable Dissemination Protocol for Interactive Collaborative

Applications, ACM multimedia Nov 5 - Nov 9 1995, pp 333 – 344, San Francisco, CA
[T.120] ITU draft recommendation T.120 (1997) - Data protocols for multimedia conferencing
[Varadhan] K., Estrin, D., and Floyd, S Impact of Network Dynamics on End-to-End Protocols: Case Studies

in TCP and Reliable Multicast, IEEE INFOCOM, 29march – 2nd april 1998, San Francisco, CA.
[Vicisano] L., Crowcroft J., Rizzo L.(1998) TCP Like congestion control for layered multicast data transfer -

Proceeding of INFOCOM, 29th March – 2nd april, 1998, San francisco, USA
[Vicisano] L., Rizzo L(1997) A Reliable Multicast Data distribution Protocol based on Software FEC techniques -

Proceedings of the 4th IEEE workshop on the architecture and Implementation of High Performance Communication
systems (HPCS 97)

[Wang97] Wang Z., Internet draft User-Share Differentiation (USD) Scalable bandwidth allocation for differentiated
services, 1997

[White98] White P. and Crowcroft J.. A Dynamic Sender-Initiated Reservation Protocol for the Internet. 8th IFIP
Conference on High Performance Networking (HPN'98) The Millennium Push of Internet, Vienna September 21-
25, 1998

[X.Rex] Xu, Zhang H, Yavatkar R (1997)Resilient Multicast Support for Continuous media applications
"http://research.ivv.nasa.gov/RMP/links.html", in Proc. International Workshop on Network and Operating System
Support for Digital Audio and Video(NOSSDAV), St. Louis, May 1997

[Zheng]. W, Crowcroft J, Diot C. and Ghosh A (1997) Framework For Reliable Multicast Application
Design, HIPPARCH 1997 workshop, Uppsala, Sweden, June 12-13, 1997.

149

150

LIST OF FIGURES

FIGURE 1: THE FOUR PHASES OF GROUP COLLABORATION ... 5

FIGURE 2 MEETING TYPES[SOURCE: SCHOOLER [SCHOOLER91]]................................... 7

FIGURE 3: ACTIVITIES IN A CANONICAL CONFERENCE ...13

FIGURE 4: T.120 RECOMMENDATION INFRASTRUCTURE [T.12] ..18

FIGURE 5: HIERARCHY STRUCTURE OF T.120 NODES CONNECTING UP TO A SINGLE
MCU [T.120] ...19

FIGURE 6: JOINING AN EXISTING CONFERENCE WHEN DIRECTLY CONNECTED TO TOP
GCC PROVIDER [T.120]...22

FIGURE 7: ENVIRONMENT OF H.323 AND SAMPLE NETWORK TOPOLOGY24

FIGURE 8: CONFERENCE STACK FOR H.323..25

FIGURE 9: MESSAGE SEQUENCE IN A H.323 BASED CONFERENCING26

FIGURE 10: A LARGE CONFERENCE CONSISTING OF AN H.323 PANEL AND RTP/RTCP
BASED RECEIVERS ..28

FIGURE 11: ANNOTATED SDP SESSION DESCRIPTION ..31

FIGURE 12: SIP REQUEST BEING RELAYED...33

FIGURE 13: INTERNET CONFERENCING PROTOCOL STACK ...35

FIGURE 14: COORDINATED MANAGEMENT OF SEPARATE SERVICES39

FIGURE 15: CONFMAN RUNNING IN A WWW SERVER..44

FIGURE 16 CONFERENCE PROTOCOL STACK..50

FIGURE 17: COMPONENTS FOR CONFERENCE MANAGEMENT SERVICES52

FIGURE 18: RESPONSIBILITY AND COLLABORATORS OF A BROKER.............................58

FIGURE 19: OBJECTS INVOLVED IN A BROKER SYSTEM ..59

151

FIGURE 20: STATE TRANSITION DIAGRAM OF CCCS...60

FIGURE 21: TOPOLOGY OF THREE DIFFERENT TYPES ARCHITECTURES
INTEROPERATING USING CCCS...62

FIGURE 23: MESSAGES EXCHANGED BETWEEN SIP AND H.32366

FIGURE 25: AVERAGE MESSAGES PASSED BETWEEN H.323 AND SIP TERMINALS.......70

FIGURE 26: METHODS OF FORWARDING AND RECEIVING PACKETS IN CCCS...............73

FIGURE 27A: A BASIC DIAGRAM OF A SENDER INITIATEDFIGURE 27B: RECEIVER
INITIATED PROTOCOL 84

FIGURE 28: A DISTRIBUTED MODEL OF RELIABLE MULTICAST PROTOCOL86

FIGURE 29: A BASIC DIAGRAM OF A TREE BASED RELIABLE MULTICAST PROTOCOL
..86

FIGURE 32: BUNDLING SERVICES..124

FIGURE 34: AN EXAMPLE OF FRONT END OF PAYMENT SERVICE.................................131

FIGURE 35 SESSION DIRECTORY WOULD NEED AN OPTION FOR PAYMENT131

FIGURE 36 RELATIVE TRAFFIC ELASTICITY ..132

FIGURE 37: PDU FOR RESOURCE RESERVATIONS ENHANCED BY CHARGING AND
ACCOUNTING DATA ...135

FIGURE 38: CONFERENCE CONTROL AND SESSION BASED CHARGING WITH RSVP..135

FIGURE 39 COMPARISON OF (A) MULTICAST AND (B) UNICAST DELIVERY138

152

LIST OF TABLES

TABLE 1: HUMAN LEVEL OF CONFERENCE CONTROL.. 10

TABLE 2: APPLICATION LEVEL OF CONFERENCE CONTROL.. 11

TABLE 3: NETWORK LEVEL OF CONFERENCE CONTROL ... 12

TABLE 4: SUMMARY OF USER-VISIBLE SERVICES OF A CONFERENCE CONTROL[OTT] 54

TABLE 5: NUMBER OF MESSAGES TRANSFERRED INTERCONNECTING SIP AND H.323 USING
CCCS... 69

TABLE 6: NUMBER OF MESSAGES TRANSFERRED AND TIME TAKEN BETWEEN TWO H.323
TERMINAL AND TWO SIP TERMINALS WITHOUT A GATEWAY ... 70

TABLE 7: COMPARISON OF MULTICAST TRANSPORT PROTOCOLS FOR FLOOR CONTROL.......107

TABLE 8. SUMMARY OF ADVANTAGES AND DISADVANTAGES OF SOME BASIS OF CHARGING.123

