Differentiated End-to-End Internet Services using
a Weighted Proportional Fair Sharing TCP

Jon Crowcroft and Philippe Oechslin
University College of London
{jon,p.oechslin }@cs.ucl.ac.uk

June 30, 1998

Abstract

In this document we study the application of weighted proportional
fairness to data flows in the Internet. We let the users set the weights
of their connections in order to maximise the utility they get from the
network. When combined with a pricing scheme where connections are
billed by weight and time, such a system is known to maximise the total
utility of the network. Our study case is a national Web cache server
connected to long distance links. We propose two ways of weighting TCP
connections by manipulating some parameters of the protocol and present
results from simulations and prototypes. We finally discuss how propor-
tional fairness could be used to implement an Internet with differentiated
services.

1 Introduction

1.1 Fairness

Fairness is among the most important properties of data flows in the Internet.
Fairness implies that whenever there is congestion at a bottleneck, each flow
going through that bottleneck gets a fair share of the available bandwidth.
TCP flows, which make up most of the Internet’s data flows, achieve at least
approximate fairness by using congestion control mechanisms [7] which adapt
each TCP’s throughput as a function of the congestion.

The most common form of fairness is max-min fairness. In a max-min fair
system all connections get the same share of a bottleneck. If a connection can
not use all of its share, e.g. because it has a slower rate in an other bottleneck,
then the excess capacity is shared fairly among the other connections. In other
words, a source that is not able to use more than one Nth of the bottleneck’s
bandwidth will always be able to send at its maximum rate.

Another form of fairness is proportional fairness. A system is proportionally
fair if any change in the distribution of the rates would result in the sum of the



proportional changes being negative. If a source is not able to use one Nth of the
bottleneck it may still be allocated less than its maximum, say 5% less, if this
allows a larger, say more than 5%, increase of the rate of another connection.

For the exact definition of min-max and proportional fairness see Annex A.
For the rest of this paper we will be looking at weighted proportional fairness,
where each connection is associated with a price. In that case it is not the rates
that are proportionally fair but the amount paid per rate. Thus one connection
with the price of two would get the same rate as two connections with a price
of one.

Exciting results concerning weighted proportional fairness have been pub-
lished recently [10]. One of the results is that rate control based on additive
increase and multiplicative decrease, as in TCP, achieves proportional fairness.
The other result is that in a weighted proportionally fair system where the
weights are the prices the users pay per time unit, when each user chooses the
price that maximises the utility he or she gets from the network, the system
evolves to a state where the total utility of the network is maximised. It is
a typical example of local optimisations leading to a global optimum. This
property even holds when the exact function relating utility to the bandwidth
received by a user is unknown and different for each user. The only constraint
on that function is that the utility has to be an increasing, concave and differ-
entiable function of the bandwidth, which happens to be one of the definitions
of elastic traffic [15].

1.2 The differentiated services Internet and weighted pro-
portional fairness

The above is a very interesting result in the context of service differentiation in
the Internet. Indeed it has been recognised that the needs of the users of the
Internet are not all the same and that the current solution which provides the
same service to all users is not optimal. Several solutions have been proposed for
an Internet with differentiated services [3, 12]. Many solutions aim at providing
a small number of service classes (typically two or three) with well defined
quality and prices. This is implemented by using multiple queues (one per
service class) in most gateways of the network. The price being paid for a given
service (e.g. premium service) does not depend on the congestion of the network.
The network provider thus has to over-provision its premium service to make
sure that there is always enough capacity available. This is usually done by
selling only a small fraction of the network capacity for premium service use.
The network provider also has to implement some connection acceptance control
algorithm (CAC) to makes sure that there are never too many users using the
premium service at the same time.

Weighted proportional fairness, where the weight of each flow is given by the
price being paid, would allow Internet Service Providers (ISPs) to implement
an Internet with differentiated services without the limitations of the solutions
cited above. There would be no need for multiple queues in the network or for
CAC schemes at the border of the network. The quality perceived per price



payed would vary in function of the congestion of the network, thus always
allowing a maximised utilisation of the network.

1.3 Related Work

In the section above, we have cited two proposals for the implementation of
differentiated services in the Internet. This is a relatively new field and there
other proposals being discussed in the Int-Serv working group of the Internet
Engineering Task Force. One of the proposals [16] is similar to our’s in the
sense that it also aims at providing a fair share of the network capacity to
the users. Concerning the behaviour of TCP connections, the work in [2] is
somehow related to our work. The authors propose to integrate a group of TCP
connections between two end points for better efficiency of HTTP transfers.
The integrated group then behaves like a single TCP connection with regard to
congestion control. This is orthogonal to our approach of having one connection
behaving like IV connections to achieve a better quality of service, and one could
imagine combining both approaches.

1.4 Goal and Overview

It is the goal of this paper to explore the practical implications of implementing
weighted proportional fairness for our specific study case and for the Internet in
general. The rest of this document is organised as follows. Section 2 describes
the study case. Section 3 describes how proportional fairness can be achieved
by adjusting TCP receive buffers in a WWW cache server.! The next section
presents results for a more general solution consisting in modifying the conges-
tion control algorithm in TCP. Section 5 addresses the problems of billing and
policing and makes a proposition of how to introduce weighted proportional
fairness in todays Internet. Finally, the last section concludes the paper by dis-
cussing the various results in the light of an overall emerging pricing architecture
for differentiated services.

2 The UK WWW cache system

The context in which we want to study proportional fairness is the UK World
Wide Web caching system. Caches are used in the Internet to accelerate the
access to Web pages by storing them in cache servers located close to the end
users. This is particularly efficient for pages which would have to be fetched over
transoceanic links which are congested most of the time. The UK cache system
is made of a few coordinating cache servers scattered throughout the UK. The
root server uses a dedicated transatlantic link to fetch data from the US. That
dedicated link is usually less congested than the link used for general traffic.

ISince this work was done, the authors were made aware of a similar approach, published
in[8].



US Network UK Network

cache server

— 8 Mbis o
web traffic
34 Mbls
L non-web traffic

Figure 1: Study case configuration for the UK WWW cache service

This acts as an incentive for people to use the cache which in turn augments its
efficiency and thus reduces the total amount of data fetched over the ocean.

If end-to-end weighted proportional fairness is to be provided to the users of
the cache service, then obviously the cache server would be an optimal place to
implement it. The bottleneck which has to be shared is the transatlantic link
to the US. On this link data is flowing towards the cache servers which are thus
at the receiving end of the TCP connections.

We do not consider the case where the document is already stored in the
cache server as the national network is considered to be uncongestioned.

In the next two sections we will explore two ways of providing weighted
proportional fairness. One way consists in modifying the receive buffer of the
TCP connections to limit their throughput. The other solution is to modify the
aggressiveness of the connection control algorithm in TCP.

3 Limiting the Receive Buffer

The first method we explore hinges on limiting the size of the receive buffers on
the main cache server for connections from original servers to the cache server.
In Section 4 we will see a second method based on modifications of TCP’s
congestion control.

3.1 Description

The receive buffer of a TCP socket limits the maximum window that can be
advertised by the receiver. As there can never be more than one window worth
of data in flight between the sender and the receiver, the receive buffer size
limits the throughput 7" of a TCP connection to

Bgr

T< —
- R

where Bp is the receive buffer size and R is the round trip time.



throughput [kB/s]
N
5

0 2000 4000 8000 10000 12000

6000
receiver buffer size [bytes]

Figure 2: Throughput as a function of the receive buffer size

Limiting the receive buffers of a set of connections terminating at one host
provides proportional fairness if all connections share a common bottleneck.
Fortunately, in our study case, the bottleneck is the transoceanic link and the
Web cache is sitting at the receiving end. In that particular case the solution
has the advantage that it only requires modifications on the cache servers and
none on the other endpoints of the connections.

The difficulty with limiting the receive buffer is that it sets an absolute
maximum to the throughput of a connection. Proportional fairness, however,
requires that the bandwidth be set in proportion to a fair share of the available
capacity. As the number of connections changes, the fair share changes too.
The consequence is that the receive buffer sizes have to be adjusted every time
a connection starts or stops. The sum of all receive buffers should be equal
to the maximum amount of data that can be in transit. This is equal to the
bandwidth of the bottleneck multiplied by the mean RTT of all connections.
Call this amount B. Call the price that the user of each connection wants to
pay k;. To achieve proportional fairness each connection should be assigned a
buffer of size

ki
2 k;
All buffer sizes have to be adjusted whenever a connection starts, stops or when
a user decides to change the price she is paying. This may incur a lot of overhead
in a busy cache server. We conjecture that on a large server the total number
of connection and the average price being paid will not vary rapidly,thus receive
buffers may not have to be adjusted frequently.

Some negotiation mechanism is necessary for the users to indicate to the
cache system how much they would like to pay. This will not be necessary every
time a document is downloaded. More likely, the price will only be adjusted
when the utility perceived by the user changes, for example when the user stops
using the web for important work and starts surfing random places.

bi=B




3.2 Experimental Results

We have implemented a prototype of a cache server with variable receive buffers.
Users can select the size of the buffer through a fill-out form on the server. Figure
3.1 shows the throughput obtained when transferring the same amount of data
over a long distance link for various buffer sizes. In this experiment we see that
the throughput increases linearly with the receive buffer size up to a size of 6kB.
At that point the throughput starts to be limited by the losses. The variation
of the load in the network explains the evolution of the plot for values above
6kB. It also explains the small non-linearities in the lower part of the plot. The
variation of the load in the network causes variations in queue sizes which in
turn affect the throughput by varying the round trip time. Note also that TCP
receive windows can only be closed at the rate at which packets are received,
which limits the rate of adaption of this approach.

The solution provided in this Section works well when all connections share a
same bottleneck. For a more general case of a network with multiple bottlenecks
we look into a distributed solution to the problem:

4 MulTCP, a schizophrenic TCP

This is our second method for implementing weighted proportional fairness. It
is more general as it is not limited to one specific service, web caching and
requires modifications on the end systems only.

4.1 How does it work?

MulTCP is a TCP that behaves as if it was a collection of multiple virtual
TCPs. To prevent the network from collapsing when congestion occurs, TCP
has been provided with mechanisms that will reduce its throughput when losses
are detected [7]. From [11, 4] we know that the throughput of a single TCP
connection is inversely proportional to both the square root of its loss rate p
and to its round trip time R:

C
T=——
Ryp

where the exact value of C' depends on the approximations made. When
multiple TCP streams go through a congested gateway, they experience ap-
proximately the same loss rate and thus get about the same fair share of the
gateway’s bandwidth. An equal loss rate can be enforced by advanced queue
management techniques like RED. The share of bandwidth given to each con-
nection is then only biased by the round trip times?

Our goal is to design a TCP control algorithm which takes a factor N as
parameter and results in a TCP connection getting the same share of congested
gateways bandwidth as N standard TCPs would get.

?Note that this bias towards connections with small RT'Ts actually encourages the use of
cache servers. Indeed, even if the cache server has to fetch the document this results in two
connections with smaller RTTs than one direct connection with a large RTT.



A TCP goes through different phases when it starts up, experiences loss or
gets into some sort of steady state. In any of these phases, our MulTCP has to
behave like N concurrent TCP connections would:

Slow start: During slow start a TCP opens its congestion window exponen-
tially by sending two packets for every acknowledgement received. Interestingly,
N TCPs doing slow start still send only two packets per acknowledgement re-
ceived. However, N TCPs would start by sending IV single packets, resulting
in N acknowledgements being received and 2NN packets being sent out after one
RTT. The same behaviour could be achieved by MulTCP if it sent out N pack-
ets at startup and then two packets for every acknowledgement received. This,
however, leads to very bursty patterns if IV is large. Burst may result in bursts
of losses which in turn prevent the connection of rapidly reaching steady state.
MulTCP thus uses a smoother option. It starts like a normal TCP by sending
a single packet. After that, it sends three packets for each acknowledgement
received until it has opened its congestion window as far as N TCPs would
have.

After k round trip times N TCPs have a congestion window of N2¥. One
MulTCP sending three packets for each acknowledgement would have a window
of 3%, Thus they have the same window after ky round trip times where

log N

N= log 3 — log 2

which happens when the window has a size of
Wy = 3kN
The resulting pseudo code looks like this?® :

if (cwnd < ssthresh) { /* slow-start */
if (cwnd <= pow(3.0,log(N)/(log(3)-log(2))))
cwnd += 2;
else
cwnd += 1;

Linear increase: When the congestion window reaches ssthresh a TCP in-
creases its window by one packet per RT'T or by —— per packet. N TCPs

cwnd
increase their window by N packets per RTT or - UJJ\; 5 ber packet.

3In an optimised implementation the expression containing a power operation and two
logarithms could be cached or looked up in a table. Also, if we chose a burstier approach
consisting in sending for packets per acknowledgement, the expression would simplify to N2



Multiplicative decrease: When a TCP notices congestion through the loss
of a packet it halves its congestion window, sets ssthresh to the new value of
the congestion window and goes back to linear increase. When N TCPs are
sending data and one packet is lost, only one TCP will halve its window. Thus
MulTCP, when it experiences loss, only halves one Nth of its congestion window
by setting cwnd and ssthresh to % of cwnd This assumes that at the time
of loss all N virtual TCPs had the same values for these variables. This is
macroscopically true since the fairness properties also hold between the virtual
TCPs. Moreover, looking at this in more detail, we can easily see that N TCPs
experiencing a total of k losses randomly distributed amongst them end up with
a sum of congestion windows which has a statistical mean of (%)k. This is
equal to the congestion window of a single TCP which reduces its window by
% for each loss.
if (cwnd < ssthresh)
cwnd = cwnd/2;
else
cwnd = cwnd*(N-0.5)/N;
ssthresh = int(cwnd);

Note that when the connection is in slow start it is probing the network
by doubling the window every RTT. A loss during that phase means that the
window is up to two times too large. Not reducing it by two may result in many
consecutive losses which in turn may result in a timeout.

Timeout: Timeouts occur when there are too many losses within one RTT,
such that not enough acknowledgements are received to keep the sender sending.
The protocol stalls, a timeout occurs and transmission restarts with a slow start
after the last acknowledged packet. NV TCPs are less prone to timeout that one
MulTCP. Since the losses are distributed over N connections the probability
that one TCP experiences enough losses within one RTT to make it stall is
smaller. Moreover, if one TCP should stall, the N — 1 others can still go on
sending. There is not much we can do here to make MulTCP like N TCPs.
The fact that it has only one control loop through one sender and one receiver
makes it more vulnerable to bursts of losses than N TCPs having N control
loops.

The only thing we can do to reflect this is to reduce the slow-start threshold
to % of its value rather than halve it. Thus after the slow-start is over the
MulTCP will have the same window as N TCPs would after one of them has
done a slow-start.

4.2 Hyperinflation and congestion collapse

There is a justified fear that if all users starting paying more for their connections
the throughput obtained for a single fair share will become very small. Since a
fair share corresponds to a normal TCP connection and throughput is inversely



10 Mbps

2
C
00>
Q\\A
A0 . 20 msec
<€
s
flow 0: SO-S6 (test flow)

flow 1..5: S1-S7
flow 6..10: S1-S8
flow 11..15: S2-S7
flow 16..20: S2-S8
flow 21: S3-S9 (reference flow)

Figure 3: The network used for simulations. The routers use RED with thresh
= 5, maxthresh = 15 and limit = 20

proportional to the loss rate this means that the loss rate will be high. If the
value of a single fair share becomes small, users may want to buy many shares
and thus increase loss and drive the network into congestion collapse.

This scenario can only happen if the price for a single fair share is set too
low. Indeed there is a finite amount of money that is spent on the connexions
and the average loss rate can be regulated by setting the appropriate price for
a fair share.

4.3 Simulation Results

For the steady state, the above modifications lead to a theoretical throughput
which is approximatively N times larger than the throughput of one TCP for
the same error rate. The development of this result is given in the Annex B.

_ V2NN -1/49B _+2NB
B R\/p ~ Rp

Although the theoretical result looks good, practical results from simulation
are more interesting. In figure 4 we have plotted the relative throughput of
one MulTCP connection against the throughput of a single connection. Both
connections share a bottleneck with 20 other TCP flows. The exact setup of
the simulation is given in Figure 4.1. We have applied the MulTCP extensions
to four types of TCP, TCP Tahoe, TCP Reno, New Reno and TCP Sack.

For N between one and two, a MulTCP flow gets about N times the through-
put of one TCP flow. Except for TCP Sack, however, the throughput does not
go above 2.5 for any larger N. This is due to the fact that in our simulations all
TCP flows experience timeouts now and then. As we explained above, N TCPs

T (1)




Reno ----
NewReno -----
Sack
4.5

35

Figure 4: Gain in throughput as a function of N

suffer less from timeouts than one MulTCP. Thanks to its selective acknowledge
mechanism, TCP Sack can avoid most of the timeouts due to multiple errors.
This is why TCP Sack can increase its rate proportionally to N up to a factor
of 10. However, there is a limit to this proportional increase of the rate. There
is only a fixed amount of information TCP Sack can send in a selective acknowl-
edgement. When N is too high, MulTCP gets too aggressive and and selective
acknowledgement can not cope with the multiple losses occurring.

In an additional simulation we have investigated the effect of more aggressive
TCPs on fairness. The network we study is the same as for the first simulation.
This time however all the 22 connections have the same parameter N. They
should thus all get the same throughput except for the bias due to different
RTTs. For different values of N we have measured the throughput of each
connection and multiplied each by its RTT to normalise it. We then calculate
the standard deviation of the normalised throughput and express it in proportion
of its mean rate. The result are shown in Figure 5. We see that for N small, the
standard deviation is between 5 and 10 percent of the mean rate. As N increases,
the standard deviation of the throughput increases meaning that network is
getting less and less fair. This is probably due to the fact that more agressive
TCPs are more likely to generate bursts of losses which makes it more difficult
for the congestion window to stay close to its average size. Burst of losses may
also exarcerbate imperfections of the congestion control mechanism.

5 Billing and Policing

Billing is the set of procedures which are necessary for the network provider to
know how much to charge from a user. Policing on the other hand allows the



0.4

0.35 e SACK

0.3

0.25

0.2

standard deviation [mean]

0.15

N

Figure 5: Fairness among MulTCPs as a function of N

service provider to verify that the user really only uses what he is paying for.
The theory in [10] calls for billing of connections by duration and weight (V).
In the case of Web caches with receive buffer limited flows, billing can be done
as a byproduct of the receive buffer allocation, with hierarchical caches allowing
for aggregated billing. Policing is not an issue as the device providing different
quality of service is owned by the service provider.

If proportional fairness is achieved through use of MulTCP, billing and polic-
ing are more difficult. For example, measuring the rates at a bottleneck does
not give enough information to know how aggressive a flow is. Indeed, as we
see in Figure 6, the fact that a flow only uses a small portion of a bottleneck
(1) can be due to the fact that it has to cross a further bottleneck (2). To know
exactly what multiplier is being used on a TCP connection one either needs in-
formation about all bottlenecks in the network or one can analyse a trace of the
flow. This allows to observe the number of packets sent per acknowledgement
during slow start and the variation of the transmit window in presence of loss.
For an example of a tool doing this for standard TCPs we refer to [13]. The
task of analysing all TCP connections is too complex and therefore we have to
use aggregation wherever possible.

We propose the following tentative method for billing and policing:

e Policing: Policing is done at random times on random flows. MulTCP
flows must declare the N they are using by exchanging a TCP options
describing N at connection setup. From a trace of a connection one can
verify that the flow did not behave more agressively than it declared to
be. By monitoring connection setups one can deduct the average N used
by a user during a period of time.



Figure 6: Throughput and bottlenecks in a network.

o ISP-user billing: At regular time interval the user declares the average sum
of N of the connections run during the interval. The price is calculated
by multiplying the average sum of N by the duration of the interval.

o ISP-ISP billing: At an exchange point, one ISP charges another ISP for
the total N used by the traffic being accepted. Indeed, the higher the sum
of N of the incoming connections, the more resources will be tied up by
that traffic. Again this can be aggregated as the duration of a sampling
period times the average of the sum of N of the incoming connections.

Having discussed the details of billing and policing we can now propose an
architecture for differentiated services in the Internet using proportional fairness.

5.1 Weighted Proportional Fairness in the Internet,
a straw-man architecture

This section describes how weighted proportional fairness could be introduced
into the current Internet using MulTCP, taking into acount that it would have
to coexist with standard best-effort service.

We limit the usage of MulTCP to users which generate a relatively high
amount of traffic, for example all users which have an access link to the Internet
with a throughput higher than a given value #. Typical users are commercial
Web servers. The participating users set a bit in the Type Of Service (TOS)
field of the IP packets to indicate that they are part of the proportional fairness
scheme. When TCP connections are established with an N larger than 1, the
value of N is transmitted as a TCP option in the SYN message. The gateways

4Note that HT'TP and FTP make the major part of Internet traffic and that a large part
of that traffic probably comes from large servers



in the network are provided with two queues, one for best effort and one for
Proportional Fair (PF) service. A minimum amount of the network capacity is
reserved for traffic of the standard best effort service. The users are requested
to declare the average sum of all multipliers per destination ISP at periodic
intervals. This information is sufficient for billing. The network provider charges
the network usage as the product of the sampling period and the average sum
of N used in that period. If the user is a Web server it can in turn charge the
clients that downloaded content or charge the advertisers that put advertisement
in the content. For policing purposes the ISP analyses the traces of random TCP
connections. If a connection is more aggressive than is indicated by the N in
the TCP option, the user is penalised for not adhering to the rules. For random
time intervals the ISP calculates the average sum of N from the TCP options
of the connections from one user to one ISP. If this average doesn’t match the
average declared by the user, the user is again penalised. 3

6 Conclusions

Weighted proportional fairness provides selective quality of service without the
need for connection acceptance control, reservations or multiple queues in gate-
ways. Moreover, as the network makes no explicit promises to the user (other
than who pays more gets more® ) there is no need for over provisioning. The
total capacity of the network is always available to its users and the price per
bandwidth depends of the instantaneous demand.

We have seen that the management of the receive buffers is one way to imple-
ment weighted proportional fairness when all the flows share a bottleneck and
are terminated at the same host. This can be the case for example in a system
of Web cache servers. Weighted proportional fairness can also be achieved by
modifying TCP’s congestion control algorithm. In that case the range of the
weight factor seems to be limited when TCPs don’t use advanced techniques like
selective acknowledgement to avoid timeouts due to bursts of errors. The advan-
tage of using the congestion control algorithm as a means to achieve weighted
proportional fairness is that it can be done in a completely distributed manner
and independently of where the bottlenecks are located.

In the absence of a policing and pricing scheme, we may see competition
between different TCP implementations. It is clear from this and other work

5Tn some scenarios, the unfairness users with larger RT'Ts experience may not be the
correct incentive. This is easily factored into pricing directly from equation (1), but would
need authenticated (policed) measurement. It may be possible to estimate the RTT at a
bottleneck but it is not trivial. One can measure the RT'T from the bottleneck to the server,
and to the client separately, by looking at the delay between transmission of packet with a given
sequence number and its acknowledgement; but this would be for separate sequence number
samples in each direction: assuming uncorrelated delay distributions, one could combine these
to form a reasonable estimate for comparison of one flow’s RT'T with another.

6at least in the range where MulTCP really acts like N TCPs



that a ’tweaked’ Sack-TCP can be more aggressive than prior TCPs, and still
be stable. This implies that we need to police SACK users anyway, to be fair
to older TCPs. Of course, there should be some incentive for people to migrate
implementations to more effective protocol mechanisms too, but not so that they
also increase their network share under cover of the move, above that achieved
by efficiency savings natural to the protocol!

Finally, we conjecture that while distributed control scales well, it leads to
non-scalable policing at distributed bottlenecks. However, the converse may
be true for max-min fairness schemes, where policing scales (i.e. aggregates)
but control schemes do not scale so well (i.e. require distributed “n-squared”
agreement during signalling).

6.1 Acknowledgements

The authors would like to thank Frank Kelly for many fruitful discussions and
comments on the draft of this paper. We would also like to thank the anonymous
reviewers for points of clarification.

References

[1] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, 1987.

[2] H. Blakrishnan, V. Padmamabhan, S. Seshan, M. Stemm, and R. Katz.
TCP behavior of a busy internet server: analysis and improvements. Tech-
nical report, Computer Science Division, University of California at Berke-
ley, 1997. http:/ /http.cs.berkeley.edu/ padmanab /papers/csd-97-966.ps.gz.

[3] D. Clark and J. Wroclawski. An approach to service allocation in the
internet. work in progress, Internet Draft draft-clark-diff-svc-alloc-00.txt,
1997.

[4] Sally Floyd. Connections with multiple congested gateways in packet-
switched networks, part 1: One-way traffic. Computer Communications
Review, 21(5), October 1991.

[5] Sally Floyd and Kevin Fall. Router mechanisms to support end-to-end con-
gestion control. Technical report, Laurence Berkley National Laboratory,
Berkley, 1997. ftp://ftp.ee.lbl.gov/papers/collapse.ps.

[6] R. Gardner. Games for Business and Economics. Wiley, New York, 1995.

[7] Van Jacobson. Congestion avoidance and control. In Proceeings of ACM
SIGCOMM, 1988.

[8] Lampros Kalampoukas and Anujan Varma, UCSC, K.K. Ramakrishnan,
AT&T Labs Explicit Window Adaptation: A Method to Enhance TCP
Performance In Proceedings of IEEE INFOCOM, 1998.



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Frank Kelly. Charging and rate control of elastic traffic. Furopean Trans-
actions on Telecommunications, 8, 1997.

Frank Kelly, Aman Maulloo, and David Tan. Rate control for communi-
cation networks: shadow prices, proporional fairness and stability. draft,
1997. http://www.statslab.cam.ac.uk/ frank/rate.html.

Matthew Mathis, Jeffrey Semke, and Jamhid Mahdavi. The macroscopic
behavior of the tcp congestion avoidance algorithm. Computer Communi-
cation Review, 27(3):67-82, July 1997.

K. Nichols, V. Jacobson, and L. Zhang. A two-bit differentiated services ar-
chitecture for the internet. Internet Draft draft-nichols-diff-svc-arch-00.txt.
work in progress, http://diffserv.lcs.mit.edu/Drafts/draft-nichols-diff-sve-
arch-00.pdf.

Vern Paxson. Automated packet trace analsysis of TCP implementations.
In Proceedings of ACM SIGCOMM °97, August 1997.

J. Rawls. A Theory of Justice. Harvard University Press, Cambridge Mass,
1971.

S. Shenker. Fundamental design issues for the future internet. IEEE Jour-
nal on Selected Areas of Communication, 13:1176-1188, 1995.

Zheng Wang. User-share differentiation (USD) scalable bandwidth alloca-
tion for differentiated services. - A Case for Proportional Sharing Inter-
net Draft, draft-wang-diff-serv-usd-00.txt, Nov 1997. and In IEEE/IFIP
IWQoS, 1998.



Annex A: Min-max Fairness, Proportional Fair-
ness and Weighted Proportional Fairness

Alternative notions of fairness arise in several disciplines, from political philos-
ophy [14] to communication engineering [1]. In this Annex we formally define
max-min fairness, proportional fairness, and weighted proportional fairness.

Let S be a set of connections and the vector z = (x4, s € S) the rate of each
connection. Define z to be feasible in a network NV if all rates are non-negative
and if the sum of rates on each link of the network does not exceed the links
capacity.

max-min fairness: a vector of rates x is max-min fair if for any other feasible
vector y, there exists r such that y, > x, implies that there exists s such that
Ys < Tg < Ty

For a discussion of max-min fairness in a variety of contexts the reader is
referred to [14] and [1].

proportional fairness: a vector of rates x is proportionally fair if it is feasible
and if for any other feasible vector y, the aggregate of proportional changes is

Zero or negative:
-z
Z Ys 5 <0
seS Ts

If x is proportionally fair, then it is the Nash bargaining solution, satisfying
certain axioms of fairness [6].

Let w = (ws,s € S) be a vector of weights, or charges.

weighted proportional fairness: a vector of rates z is proportionally fair
per unit charge if it is feasible and if for any other feasible vector y,

Zwsys_ws <0

x
seS 8

For a discussion of weighted proportional fairness and its relation to utility
maximisation, see [9, 10].

Annex B: Steady state throughput of MulTCP

To approximate the steady state throughput of a MulTCP flow we use the same

approach as in [5]. We assume that the congestion window W varies in a saw-

tooth shape. When a loss occurs it is reduced to WN_TI/Z It then grows by N



per round trip time until it reaches its original size and a new loss occurs. The
amount of data transmitted during one cycle is thus:

N -1/2 N-1/2 W2 N—1/4

which is the inverse of the loss rate as one packet is lost per cycle:

2N?2 N

P= N1/ @

The throughput is equal to the average congestion window size times the
size of a packet B and divided by the round trip time R:

WB
T(N) = —
(N) = —
Now W is equal to WN_TM and W can be substituted from Equation 2

yielding:
T— Vv2y/N(N -1/4)B _ V2NB 3)
B R\/p ~ Rp

For N =1 we get the same result as in [5]:

11— R\/I_)

We thus have:

2
T = %\/N(N —1/4 T

~ NT; for 1< N <10



