
D3N: Programming Distributed Computation
in Pocket Switched Networks

Eiko Yoneki, Ioannis Baltopoulos, and Jon Crowcroft
University of Cambridge, Computer Laboratory

Cambridge CB3 0FD, United Kingdom
{firstname.lastname}@cl.cam.ac.uk

ABSTRACT
We propose a novel approach to Pocket Switched Networks (PSNs)
[8] using a specialised declarative language called ‘D3N’. A PSN is
a recently devised type of communication based on physical prox-
imity, where people encounter each other and their devices directly
communicate within their communication range. D3N allows us to
program distributed applications based on reactive behaviour in a
distributed set of nodes.

We exploit a functional language approach in designing D3N for
the clean abstraction given by pure declarative languages, at the
same time, taking an advantage of well defined semantics. In this
paper, we show a fragment of D3N, describe the node runtime ar-
chitecture, and illustrate its effectiveness through some examples.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer Communi-
cation Networks—Distributed Systems; I.1.3 [Computing Method-
ologies]: Symbolic and Algebraic ManipulationLanguages and
Systems

General Terms
Design, Languages, Algorithms

Keywords
Declarative Networking, Functional Programming, Distributed
Computation, F], Delay Tolerant Networks

1. INTRODUCTION
The goal of this paper is to promote declarative networking as a

simple programming paradigm for writing distributed applications
over Pocket Switched Networks (PSN) [8]. In prior work we intro-
duced the Haggle project [2], which explored a new communication
paradigm: PSNs, a type of Delay Tolerant Networks (DTNs) [14].
DTNs provide communications in highly stressed environments
with intermittent connectivity, variable delays and high error rates
in decentralised and distributed environments over a multitude of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiHeld’09,August 17, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-444-7/09/08 ...$10.00.

devices that are dynamically networked. An important characteris-
tic of DTNs is that they provide content storage as a core network
service across applications. A partitioned network can deal with
disconnected operations using store-and-forward type of operation.
In PSNs people carry devices in their pockets, which communicate
directly with other devices within their range or with infrastruc-
ture. As people move around, they carry messages with them and
exchange them with nearby devices, resulting in an infrastructure-
free, global, mesh network of devices. We present the design of a
programming language that simplifies writing distributed applica-
tions over PSNs.

Our motivation looking at new programming environments is
multi-faceted: devices in PSNs are typically mobile phones. Users
need to be assured that new applications do not spend money on
their behalf, on call-time or SMS for example; they need to be
confident that private data is not compromised; and they need to
understand the impact of applications on battery life and other re-
sources. Declarative programming tools for model checking are
reaching a level of maturity, and the community of programmers
familiar with the functional approach is now large. PSNs repre-
sent a clean slate environment, where new approaches for building
systems can be taken more easily. Finally, the software architec-
ture devised in PSNs (and DTNs) is somewhat more complex as
we will see in the rest of the introduction, and therefore it behoves
us to take advantage of those tools that recent Computer Science
provides.

In PSNs the network is the database. Each PSN node maintains
‘data objects’ annotated with ‘metadata’ in its data store persis-
tently. When people seek information on shops, they want the
answer itself, rather than a connection to shop web-sites. Thus,
people directly search the network for content instead of reach-
ing to a search engine looking for managed web content. A node
updates its data store upon encountering other nodes in the net-
work and exchanges data based on metadata matches. The forward-
ing mechanisms are driven by predicates/constraints derived from
the dynamic network state [22], the observed network characteris-
tics [15], or the logical network structure, such as social networks
among device carriers [13], [25].

The current Haggle design is built over a layerless networking
architecture that incorporates event-driven and asynchronous oper-
ations, which reside in the device as a kernel component. Func-
tional components implement the functional logic and interact only
directly with the kernel (see [20] for the further detail of Haggle
implementation).

The reference implementation is developed over various plat-
forms including Windows Mobile, Windows XP/Vista, Linux, Mac
OS X, iPhone OS and Android [1] written in device dependent
C/C++. Thus, when programmers write applications, they need

F#

.NET Framework

Application

Event Handler
Timer

Network

Monitor

DB

D3N Kernel

PSN

Cloud

. . .

Functional Components

E
v
e
n
t Q

u
e
u
e

D
 N

 L
IB

R
A
R
Y

3

D
a
ta

 S
to

re

S
e
c
u
rity

F
o
rw

a
rd

in
g

Figure 1: Overview of D3N architecture

to implement them in C/C++ to interface to Haggle. Each device
needs to have application executables for building distributed com-
putation.

This complexity raises a question; what is a better way to pro-
gram distributed computation in PSNs? We propose the declarative
approach to program distributed computations in PSNs and call this
systemData-Driven Declarative Networking(D3N).

Our aim is to build a declarative network with an expressive lan-
guage specific to PSNs. We exploit functional programming, the
middle ground between pure declarative languages and imperative
languages to define and implement D3N. Declarative languages are
too high level; they abstract too many implementation details like
data flow and performance characteristics. On the other hand im-
perative languages are too low level, it is difficult to reason about
programs and they are device dependent. Our approach simplifies
the operation, robustness of the routing protocol, replication, over-
lay construction, indirection and so forth.

Starting from a standard functional programming language with
concurrency primitives, we add data query and processing capabili-
ties to the language while focusing on the distributed computations
at each node. Algorithms for handling mobility and social connec-
tivity observed at a node can be efficiently described in the declar-
ative language. An important issue is to provide enough primitives
to enable first-class processing of events within the language. The
current reference implementation is written in F] [10] and not built
on top of Haggle.

The rest of this paper is organised as follows: we describe the
background of declarative networking and give a brief descrip-
tion of the node architecture Section2; in Section3, we give an
overview of the language and demonstrate its use through exam-
ples in Section4; we conclude and give directions for future work
in Section5.

2. DECLARATIVE NETWORKING IN D 3N
Declarative networking is a new idea in networking. Declarative
languages make no distinction between code and data; they are
used to define the desired functionality but not how such function-
ality is realised. For example, a search function can be described
as ‘what to look for’ rather than ‘how to look for’ something. Ad-
ditionally, the declarative approach abstracts the complexities that
arise during networking and data processing. Concurrency and
distribution pose algorithmic and implementation challenges; in a

declarative setting, ‘map/reduce’ functions can be used to define
such operations and to help build reliable distributed systems.

The P2 project [17, 21] introduces a revolutionary approach
demonstrating how a declarative logic languages can be used for
an overlay construction. The implementation,Overlog, is a deriva-
tive of DatalogandProlog which can be used to describe an over-
lay network. The fact that 47 lines can describe CHORD [23] is
impressive. TheOverlogspecification, does not include any oper-
ational process but takes a purely data driven approach. One of the
criticisms on P2 is that there is no proof of semantic correctness of
the described process.

In [9], Chuet al. introduce a Declarative Sensor Network (DSN),
where the high-level declarative language is applied to data acqui-
sition, dissemination and resource management, while retaining ar-
chitectural flexibility. They demonstrate that a wide variety of ad-
hoc sensor network protocols can be specified declaratively in a
compact way.

Opis [11] is recent work, which takes a functional-reactive ap-
proach for developing distributed systems in OCaml. Thus, the aim
of Opis is similar to D3N. The LINQ project [16] extends the .NET
Framework with language integrated operations for querying, stor-
ing and transforming data. Dryad [26] extends this to the wide area
in a similar way to Google’s Map-Reduce. However, given its large
footprint and its target for connected operations, we feel a different
approach is called for in PSNs. Our approach is using a functional
style approach, which provides simple and clean semantics.

The D3N system inherits its architecture from the current event-
driven and modular Haggle architecture [20], [24]. Figure1 high-
lights the core components of our system which consists of the D3N
kernel, the D3N libraries and the D3N language for writing appli-
cations. The kernel itself is built around theKernel Event Handler,
which communicates withfunctional componentsandapplications
through anevent queue.

The data object is widely used in D3N, which is the single for-
mat of information with the metadata. Data objects spread among
D3N nodes as they encounter each other in the network. They enter
and leave a node through a single point. D3N implements no layer-
based architecture and communication between the functional com-
ponents hence does not need to go through ordered layers. This
leads to no distinction made between data objects received locally
(from applications) or those received from other D3N nodes in the
network. Whether delivery is local or over the network is transpar-

ent.
The data store provides an interface that implements the primi-

tives operations such assearchdescribed in Section 4.4. Every data
object is timestamped and may age, which can provide efficient
storage management for the devices with limited storage. Current
implementation of Haggle uses SQLite [6] for the data store, which
is sufficiently lightweight to run on resource constrained devices.
It runs in a separate thread to prevent high latency I/O operations
clogging the event queue. D3N provides a subset of SQL for source
level data queries.

Thus, applying a specialised declarative language (i.e. D3N)
over the described data centric plane is natural way to build a pro-
gramming paradigm.

For the current implementation of D3N we used F] [10], a con-
current and distributed functional programming language (variant
of Standard ML [18]) over the .NET framework [19]. This en-
ables application programmers to compile against D3N libraries
and make use of the entire Microsoft tool chain for developing,
building, debugging and deploying their applications.

The D3N language uses a combination of functional and declar-
ative features offering several advantages: side-effects and state
modifications are made explicit enabling easier reasoning about
the code; functions are first class values and can be both the in-
put and the result of computations; queries are first-class citizens in
the language and are also strongly typed providing runtime safety.
Extending this idea even further, queries over data can be expressed
as higher-order functions that are applied in a distributed setting.

The D3N library of primitive functions is built directly over F].
Only a subset of F] is accessible to applications enforcing compo-
nent and application writers to write modular code. We can further
take advantage of recent work on F7 [7] to provide better checking
of programmes before deployment, to assure people of reliability,
security and safety properties of programs they may download to
their smart phone without the exhaustive and expensive testing that
has to be done with today’s inadequate (C/C#) tools.

The Kernel Event Handler processes events from a shared data
structure (event queue), where events are fed by applications and
functional components. Functional components are part of D3N,
and they implement data forwarding, data storing and searching us-
ing primitive functions from the D3N library as well as directly us-
ing F] and the .NET libraries. Communication between functional
components is performed via events and asynchronous operations
through the kernel. Component writers can write specialised com-
ponents depending on the task at hand and register them as part of
D3N.

Example components are monitoring encountering nodes and
various gossip-based data propagation mechanisms. TheTimerand
Network Monitorare special system components that run in an in-
dependent thread. Persistent storage for data objects is supported
through a data store; each data object contains metadata, consist-
ing of name and attribute pairs. Metadata operations like search,
forwarding depend on the size and complexity of the network. Our
design simplifies local data querying and processing mechanisms.

3. THE D3N LANGUAGE
In this section we present the language available to application pro-
grammers, and give its informal semantics.

3.1 Syntax and Semantics
The starting point for the language design is a call-by-value,λ-
calculus with concurrency extensions. We equip this language with
query operations, first-class events and node identifiers. This is

a,b ::= Node identifiers
M,N ::= Value

| x variable
| () unit
| µf.λx̃.T recursive abstraction
| c M̃ constructor application

S,T ::= Expression
| M value
| M Ñ application
| p Ñ primitive application
| let x = S in T let binding
| match M with pattern matching

c x̃ in S elseT
| fork T fork threadT
| senda M send valueM to a
| receivea receive a message
| register M N register event handler
| selectM from . . . query

whereN

Figure 2: A core D3N calculus syntax

similar to the approach followed by the LINQ project [16], where
.NET framework languages are provided with integrated operations
for querying, storing and transforming data. Figure2 contains the
abstract syntax of the core calculus corresponding to D3N, where
bold words are keywords. A semantics for a language requires an
evaluation rule for every language term. To simplify the presen-
tation we syntactically divide the terms in fully evaluated values
and unevaluated expressions. We assume a fixed collection of node
identifiers. The terminals in the language consist of variables, a
unit value (similar to void in object-oriented languages), primitive
recursive functions and a constructor applied to a series of values.

We use the shorthand notationx̃ to meanx1, . . . , xn, in abstrac-
tions and similarly in constructor applications. A program in D3N
is a closed expressionS. To evaluate a program we proceed as
follows:

• A termM is already fully evaluated.

• For a function applicationM Ñ , ensure thatM is an abstrac-
tion of the formµf.λx̃.T ; then substitute the valueNi for the
variablexi in T .

• The evaluation of a primitive function is provided by the ker-
nel implementation;p = {poll, . . . }.

• For a let binding, evaluateS until it yields a valueM and
then substituteM for the variablex in T .

• In a pattern match, unify the valueM with the patternc x̃.
If M is a matching constructor with the same number of ar-
gumentsÑ , then the whole match expression evaluates toS
with theÑ substituting the free variables̃x. If the unification
fails the whole expression evaluates toT .

• To evaluate a fork expression, we evaluateT in a separate
thread and return unit.

• A send expression, asynchronously sends the valueM to the
nodea and returns unit.

• A receive expression expression blocks, listening for an
event from the nodea; once an event arrives, the call returns
the message received.

• The primitive register, defines a functionN to be called upon
receipt of a messageM .

• The select expression filters the elements

Many language features abundant in modern programming lan-
guages can be recovered as derived forms over the syntax of this
calculus, and, hence, do not need to be taken as primitive. For
example, integer numbers can be represented using the construc-
tors Zero and Succ so that2 = Succ(Succ(Zero)). Similarly,
characters can be mapped to integers using their ASCII value, and
strings become lists of characters. Lists can be represented using
the constructorsNil andConsso that the list[4,2,6] is represented
asCons(4, Cons(2, Cons(6,Nil))). The if . . . then . . . else . . .
construct, can be defined usingmatch. Additional necessary func-
tions likemap (both sequential and parallel),iter , filter , foldl and
foldr (similar to the reduce function in map-reduce) can be defined
in the standard way. For the rest of the paper we assume these
definitions exist.

3.2 Runtime System
The language relies on a small runtime system that is installed on all
the devices that form a PSN. Each node is responsible for storing,
indexing, searching, and delivering data. The current core runtime
system (i.e. D3N Kernel) consists of several functional compo-
nents: Kernel event Handler(see Section 3.2.3),Timer, Network
Monitor (see Section 3.2.1),Data Store, basicSecurity, and basic
Forwarding (see Section 3.2.2) depicted in Figure 1. All primitive
functions associated with the core D3N calculus syntax described
in Figure 2 are part of the runtime system. Each device-specific
runtime system can be built with additional D3N library function-
ality over the core D3N runtime system. Among a collection of
devices equipped with D3N runtime systems, D3N offers a pro-
gramming paradigm for distributed computation.

PSN applications keep data and typically have a node-specific
preference for data, described with metadata (i.e. data object). Data
has a Time-To-Live (TTL) and is discarded when it expires. When a
node receives some data, it checks if it matches the node’s metadata
and if so, it stores it and propagates the data to the other nodes. A
search query has a TTL and until it expires it travels within the net-
work. When the node has the matching data, it forwards the data.
Each node gossips its own metadata when it meets other nodes. All
these operations are implemented in the runtime system which is
itself written in F].

3.2.1 Neighbourhood List
Every device maintains a list of dynamically discovered neigh-
bours. The neighbourhood list contains the proximity of the device
list with a timestamp of the last encounter. Periodically, the de-
vice updates the list of devices in its vicinity. When a new device
is encountered, there is an exchange of neighbourhood lists. The
primitive operation that enables the discovery process in the lan-
guage is calledpoll() : () → node list. Thepoll function can be
implemented various device discovery mechanisms (e.g. Bluetooth
or WiFi).

3.2.2 Message Forwarding
Using thepoll() function,sendandreceiveprimitives, we imple-
ment a unicast and multicast forwarding protocol. There are dif-
ferent algorithms for message forwarding with the most crude be-
ing epidemic; below we describe the default algorithm (Figure3),
which can be replaced by a user-defined one.

Each node has a unique node identifier and maintains a neigh-
bourhood list of nodes that are currently in range, along with a rout-
ing table that is calculated from the neighbourhood lists of nearby
nodes. Upon receiving a message with some new data, we check
whether the data is destined to ourselves. If so we simply store the
data locally. The message can contain operational code, which is
run upon receipt, enabling mobile-agent like code migration. If the
current node was not the destination for the data, we simply forward
the data onwards to a selection of nodes (determined by the under-
lying PSN forwarding algorithm). If the current neighbourhood list
is empty, we simply store the data along with a time-to-live (TTL)
value, for future processing once we encounter new nodes.

match receive with
Data(d,n, unicast, TTL) as d→

if n = nid then store d
else ifunicastthen

let nodes= lookup n routetblin
match nodeswith
| [] → store d
| _ → iter (fun nd→ sendnd d) nodes

else iter(fun nd→ sendnd d) poll()

Figure 3: Message forwarding

3.2.3 Kernel Event Handler
Event dispatching in the kernel event handler is implemented using
an event queue where new events are appended. The event handler
also implements TTL and event correlation mechanisms over the
queue. The kernel maintains an association list between the event
types and the functions that need to be called as a result of the event
being dispatched. Figure4 shows the event handling loop. When
the eventHandler is called, it first de-references the event queue and
attempts to pattern match it with the empty list. If the queue is in-
deed empty the function returns unit. In the case where the event
queue was not empty, we split it in a head element (e) and a tail list
(es). The head element is subsequently matched against the pos-
sible event types. Depending on the type of the event, we iterate
over the corresponding function association list (fencor fdep) call-
ing each function in turn. The functions insidefencandfdep, have
been pre-registered using theregister function. The function calls
happen on the same thread.

type event= OnEncounter| OnDeparture| ...
let rec eventHandler() =

match !queuewith
| [] → ()
| e::es→

match ewith
| OnEncounter→ List.iter (fun f → f()) fenc
| OnDeparture→ List.iter (fun f → f()) fdep
| ...

eventHandler()

Figure 4: Kernel Event Handler

4. REALISTIC EXAMPLES USING D 3N
In this section we demonstrate a voting application, where voting
takes a place among members in a social group. The group con-
sists of members A, B, C, D, E, F and G. The group members could

type ballot= { locationA: int; locationB: int }
let emptyBallot= { locationA= 0; locationB= 0 };
let graph= getSocialGraph();
let voteForA():ballot= { locationA= 1; locationB= 0 }
let voteForB():ballot= { locationA= 0; locationB= 1 }

let rec smap f lst= // Sequential map
match lst with
| [] → []
| n::ns→ sendf n;receiven :: smap f ns

let rec pmap f lst= // Parallel map
match lst with
| [] → []
| n :: ns→

fork (fun () →
sendf n;receiven

) :: pmap f ns
let rec reducef se lst= // Reduce with starting element

match lst with
| [] → se
| x::xs→ f x (reducef se xs)

let countVote(b1:ballot) (b2:ballot):ballot=
{ locationA= b1.locationA+ b2.locationA;

locationB= b1.locationB+ b2.locationB}
let voteOfNode(node:string):ballot=

match nodewith
| "A" | "B" | "C" | "D"→ voteForA()
| "E" | "F" | "G"→ voteForB()

reducecountVote emptyBallot(pmap voteOfNode graph)

Figure 5: Vote Application

be physically dispersed (e.g. in a large auditorium or in the cam-
pus) but find themselves in proximity range for PSN communica-
tion from time-to-time; no infrastructure based communication is
available or it is too expensive. Now, they want to vote ‘where to
meet for dinner’. Every member in the group votes exactly once
and the initiator of the program is the node A. All the members
of the group are equipped with D3N Kernel with D3N Library and
others around them have also D3N capable devices forming a dy-
namically changing PSN topology.

4.1 Vote Application
The application functionality is built by mapping a vote function
to the list containing B,C,D,E,F, and G and subsequently reducing
the results to compute the final tally (Figure5). An object contain-
ing the executable application code, initiator node id, and TTL is
passed from A to the target nodes. Two types ofmap functions,
i.e. sequential map (smap) and parallel map (pmap), are supported.
The parallel map is used in the vote application andpmapopera-
tion breaks down 6 different communication tasks at the node A
and processes them in parallel. Each node, upon receiving the ob-
ject, executes the vote operation and sends back the result to the
initiator. The root node A executes thereduce function when it
receives all the results.

In the above example, when the data is sent from the node A to
B, the actual forwarding algorithm depends on the available ones in
D3N. If the forwarding is pure epidemic, the data reaches B using
an epidemic algorithm, where A sends the object to any node that it
encounters. Node A could pass multiple nodes before reaching B.
Alternative forwarding algorithms might require holding on to the
object until the node A encounters the target node.

4.2 Cascaded Map

Knowledge of the logical network topology of members in a so-
cial group can be exploited in different deployments of themap
function to program applications in an efficient way. In our pre-
vious work [13], we show a significant reduction in routing over-
heads by applying the knowledge of social network structure. The
logical network topology could be obtained from various sources
such as online social networks [3], [4], [5]. As an example, we
describe how themap function can operate on the subset tree of
nodes extracted from the social graph (i.e. cascade tree) and name
this acascaded map. The cascade tree is considered as a task graph,
which indicates the order of operation. In the cascaded map oper-
ation, thereduce function is applied at the each node as explained
in Section4.3.

For example, the social graph is used to construct a minimum
spanning tree with node A, the initiator, as the root node of the
tree. At each node, the list of nodes for the map operation is ex-
tracted from the ‘cascade tree’. Alternatively, the cascade tree can
be recomputed from the social graph at each node. Therefore each
node decides the target nodes for the map operation based on its
‘cascade tree’. Using this approach the input to the map operation
may express more advanced queries like: ‘Given a nodex, map on
to connected nodes within two hops distance fromx’. The children
recursively compute a reduction step and continue the computation
by sending themap function to their own children until a leaf node
is reached.

4.3 Reduce for Cascaded Map
The cascaded map used for the voting program requires a more in-
telligent reduce operation at each node. Thus, thereduce function
is sent to each node in the cascade tree prior to the cascaded map
operation. Reduce operates at each node by aggregating the data
that is received from other nodes along with the data that is saved
in the local database. Depending on the position of the node in the
cascade tree, a node behaves accordingly. If the node is a leaf in
the tree, that means that it is the last node in the task graph, so it
sends the aggregated results back to the initiator of the application.
Otherwise, when the node is not a leaf node, it simply propagates
the result towards the initiator node.

Because of the dynamic nature of PSNs, a node might encounter
a node twice, or for that matter receive the data from another node
multiple times. To ensure the correctness of the computation during
a distributed reduction, a copy of each intermediate result is stored
in the node.

Cascaded map is an example to build a D3N library function and
furthermore many other D3N library can be built up. We will report
the evaluation of various applications including the vote application
in our future publication.

4.4 Search/Query
An important feature of the language is source level data queries.
Queries are syntactically a restricted form of SQL queries for dis-
tributed data, stored on mobile devices. The following program
searches the whole network for contact details of people working
in the Computer Laboratory.

We express this query using a familiar notation, but note that
queries are part of the source level syntax; they are not strings.
Therefore they can be type-checked for correctness and are com-
piled to the primitive calculus that the node kernel recognises.

A selection query consists of a filtering functionwhere over the
nodes specified in thefrom part, and a mapping function that se-

lects the relevant fields from the returned records. This is similar to
the general approach introduced by map-reduce [12]. Under this in-
terpretation, select is merely a high-order function taking as inputs
two functions (one for mapping, and one for filtering) and returning
a collection of results.

In the examples the filtering function is compiled tofun r →
if r.company = “ComputerLaboratory′′ thenSome(r) elseNone.
It is a function that receives a record as input and checks if its com-
pany field is equal to the required string. We wrap the result in the
Optiontype, to ensure that both branches of theif expression have
the same type. Similarly, the mapping function in the first two ex-
amples gets compiled tofun r → r.name; it takes a record as input
and returns the name field as a result.

The function in the third example is even simpler, it takes a
record and returns it unmodified. After decomposing the query,
we propagate the map and filter functions to other nodes and have
the nodes evaluate them on their respective data stores and return
the data back. Using the communication primitives that we pre-
sented previously, we send out the two functions along with the
return node identifier for the responses.

selectnamefrom ∗

wherecompany=‘‘ Computer Laboratory’’
selectnamefrom poll ()

wherecompany=‘‘ Computer Laboratory’’
select∗ from ∗

wherecompany=‘‘ Computer Laboratory’’

Figure 6: Source level queries

5. CONCLUSIONS AND FUTURE WORKS
In this paper, we introduce a declarative networking programming
language for PSNs: D3N, where communication resources are
managed together with network connectivity. We provide an ex-
pressive language for building applications operating distributed
computation. For implementing D3N, we propose a functional lan-
guage, instead of a declarative logic language, that provides an in-
termediate abstraction between implementation details and reason-
ing about logic flow. The current reference implementation is in
F] targeting .NET platform taking advantage of a vast collection of
.NET libraries for implementing D3N primitives.

A direction for future research is to validate and verify the cor-
rectness of the design by implementing a compiler targeting various
mobile devices. We aim to develop advanced analyses for programs
written in our language like a type-and-effect system. An example
could use pre-conditions and post-conditions on operations to prove
that operations running on a local node respect the communication
protocol with other distributed nodes.

Security issues are currently out of the scope of this paper. Ex-
ecutable code migrating from node to node, requires attention to
potential security threats. We plan to approach this issue by inte-
grating social network aspects, for example, restricting execution
within a range of social topology.

Finally, we plan to put our code in public domain, so that poten-
tial application programmers can explore applications over D3N.

Acknowledgements
We would like to acknowledge Steve Hand for critical reading
and valuable comments. This research is funded in part by the
EU Haggle project, IST-4-027918, and the SOCIALNETS project,
217141.

6. REFERENCES
[1] Google Android http://code.google.com/intl/fr-fr/android/.
[2] Haggle Project, http://www.haggleproject.org, 2008.
[3] Facebook http://www.facebook.com/, 2009.
[4] MySpace http://www.myspace.com/, 2009.
[5] Orkut http://www.orkut.com/, 2009.
[6] SQLite database engine. http://www.sqlite.org/, 2009.
[7] J. Bengtson, K. Bhargavan, C. Fournet, A. Gordon, and

S. Maffeis. Refinement Types for Secure Implementations. In
Proc. CSF, 2008.

[8] A. Chaintreau, P. Hui, J. Scott, R. Gass, J. Crowcroft, and
C. Diot. Impact of human mobility on the design of
opportunistic forwarding algorithms. InProc. INFOCOM,
2006.

[9] D. Chu, L. Popa, A. Tavakoli, J. Hellerstein, P. Levis,
S. Shenker, and I. Stoica. The design and implementation of
a declarative sensor network system. InProc. SenSys, 2007.

[10] D. Syme and J. Margetson. F]:
http://research.microsoft.com/fsharp. 2006.

[11] P. Dagand, D. Kostic, and V. Kuncak. Opis: Reliable
distributed systems in ocaml. InProc. TLDI, 2009.

[12] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. InProc. OSDI, 2004.

[13] P. Hui, J. Crowcroft, and E. Yoneki. BUBBLE Rap: Social
Based Forwarding in Delay Tolerant Networks. InProc.
MobiHoc, 2008.

[14] S. Jain, K. Fall, and R. Patra. Routing in a delay tolerant
network. InProc. ACM SIGCOMM, 2004.

[15] A. Lindgren, A. Doria, and O. Schelen. Probabilistic routing
in intermittently connected networks. InProc. SAPIR, 2004.

[16] LINQ Project.
http://msdn.microsoft.com/en-gb/library/bb308959.aspx.

[17] B. Loo, P. Maniatis, and Others. Implementing Declarative
Overlays. InProc. SOSP, 2005.

[18] R. Milner, M. Tofte, and R. Harper.The Definition of
Standard ML. MIT Pressl, 1990.

[19] .NET Framework.
http://msdn.microsoft.com/en-us/netframework/default.aspx.

[20] E. Nordström.Challenged Networking: An Experimental
Study of new Protocols and Architectures. PhD thesis,
978-91-554-7239-9, Uppsala University, 2008.

[21] P2. http://p2.berkeley.intel-research.net/.
[22] T. Spyropoulos, K. Psounis, and C. Raghavendra. Spray and

wait: An efficient routing scheme for intermittently
connected mobile n etworks. InProc. WDTN, 2005.

[23] I. Stoica, R. Morris, D. Liben-Nowell, D. Kargerz,
M. Kaashoekz, F. Dabekz, and H. Balakrishnan. Chord: A
peer to peer lookup protocol for internet applications.
IEEE/ACM Trans. on Networking, 11, 2004.

[24] J. Su, J. Scott, P. Hui, J. Crowcroft, E. de Lara, C. Diot,
A. Goel, M. Lim, and E. Upton. Haggle: Seamless
networking for mobile applications. InUbiComp, 2007.

[25] E. Yoneki, P. Hui, S. Chan, and J. Crowcroft. A Socio-Aware
Overlay for Multi-Point Asynchronous Communication in
Delay Tolerant Networks. InProc. MSWiM, 2007.

[26] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K.
Gunda, and J. Currey. DryadLINQ: A System for
General-Purpose Distributed Data-Parallel Computing Using
a High-Level Language. InProc. OSDI, 2008.

