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Abstract. Face images in a video sequence should be registered accu-
rately before any analysis, otherwise registration errors may be inter-
preted as facial activity. Subpixel accuracy is crucial for the analysis of
subtle actions. In this paper we present PSTR (Probabilistic Subpixel
Temporal Registration), a framework that achieves high registration ac-
curacy. Inspired by the human vision system, we develop a motion rep-
resentation that measures registration errors among subsequent frames,
a probabilistic model that learns the registration errors from the pro-
posed motion representation, and an iterative registration scheme that
identifies registration failures thus making PSTR aware of its errors. We
evaluate PSTR’s temporal registration accuracy on facial action and ex-
pression datasets, and demonstrate its ability to generalise to naturalistic
data even when trained with controlled data.

1 Introduction

The automatic recognition of facial actions, activity and expressions is a fun-
damental building block for intelligent and assistive technologies for various do-
mains including healthcare (e.g. pain analysis), driving (e.g. drowsiness detec-
tion), lip reading, animation (e.g. facial action synthesis) and social robotics [1,
2]. Inaccurate temporal registration of face images is detrimental to facial action
and expression analysis as local intensity and texture variations introduced by
registration errors can be interpreted as facial activity [3]. Even small errors of
0.5 pixels can cause a larger variation than the one caused by facial actions (see
Fig.1a,b). Registration errors have an adverse effect on other components of the
systems that analyse facial activity in various contexts such as AU detection [4]
and basic emotion recognition ([5] vs. [6]).

Facial expression recognisers [7, 8, 5, 9, 3, 10, 11] rely on spatial registration
techniques, which ignore the consistency among subsequent video frames as they
register each frame independently. The common approach is to register faces
based on a set of facial landmarks. However, state-of-the-art landmark detectors
cannot achieve subpixel accuracy [12, 13] and therefore subsequent frames can-
not be registered with respect to each other. One deviation from the literature
is the work of Jiang et al. [14], which crops the first frame based on landmarks
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(a) (b) (c)

Fig. 1. (a) Two consecutive unregistered images (Ît, It�1) with registration error
tx � ty � 0.5 pixels. (b) Difference between the images of the pair in (a) before
(|Ît, It�1|) and after (|Ît, Ît�1|) registration. (c) Illustration of how the proposed frame-
work registers two consecutive frames.

and registers subsequent frames to the first frame using Robust FFT [15]. Al-
though Robust FFT can maintain high registration accuracy, particularly for
large registration errors, it does not achieve the desired subpixel accuracy.

We aim at providing accurate registration for spatio-temporal facial expres-
sion analysis. In particular, we consider registration via homographic transforma-
tion for suppressing the registration errors that occur due to rigid head or body
movements, or the errors induced when cropping a face after face detection. We
attribute local non-rigid registration errors to facial actions, and therefore leave
these errors intact in order to enable their analysis in subsequent system lay-
ers (e.g. facial representation and classification). Specifically, we are interested
in Euclidean registration as more general homographic transformations such as
projective or affine transformation, do not necessarily preserve the shape of the
face and can introduce distortions that alter the facial display.

In this paper we propose a Probabilistic Subpixel Temporal Registration
(PSTR) framework that achieves high registration accuracy for Euclidean face
registration. Influenced by the studies on motion perception [16], we propose a
motion representation to implicitly encode the registration errors in a sequence.
We then develop a supervised probabilistic model that takes the motion represen-
tation and estimates the registration errors in a sequence using the information
encoded in the representation. We finally develop an iterative registration frame-
work that has the supervised probabilistic model in its core. This framework
formulates registration as an optimisation problem, and relies on the probabilis-
tic nature of the supervised model to achieve convergence and terminate the
optimisation. The framework benefits further from the probabilistic nature of
the model and identifies its own errors.

The contribution of this work is three-fold: the development of (i) a mo-
tion representation that is robust to illumination variations (Section 3), (ii) a
probabilistic model that learns the relationships between the features of motion
representation and the corresponding registration errors (Section 4), and (iii) a
registration error estimator which enables PSTR to detect its own errors (Section
5).
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2 Formulation

Let S � pI1, I2, . . . , IT q be a video sequence where T P N� and I1, I2, . . . , IT
are the consecutive frames. Our goal is to obtain a registered sequence Ŝ �
pÎ1, Î2, . . . , ÎT q, i.e. a sequence where any two images Îi, Îj are registered with
respect to each other. To achieve this, we aim to perform pairwise registration
among all consecutive image pairs in S starting from the first pair. We consider
the first image I1 as the reference image, denote it with Î1 and register I2 to
Î1. In general, It denotes a pair of images consisting of a reference (registered)
image and an unregistered image as It � pÎt, It�1q. The registration is performed
for all pairs It for t � 1, . . . , T � 1.

The registration of a pair It is illustrated in Fig. 1c. Firstly, the motion repre-
sentation Φp�q is extracted from the images in It. Then, the features ΦpItq are fed
into the registration error estimator ỹp�q. Finally, the estimated errors ỹpItq and
the unregistered image It�1 are passed to a homographic back-transformation
H�1p�q, which outputs the registered image Ît�1.

3 Motion Representation

Our work is influenced by the biology literature that studies motion perception
[17, 16], that is, the ability of inferring the speed and direction of objects in
a dynamic scene. The main idea is to consider the registration errors among
subsequent frames as a source of motion, and to discover this motion using
motion perception models. Many motion perception models are developed by
analysing the motion of a moving line [16, 17]. Adelson and Bergen [16] showed
that convolution with an appropriately designed spatio-temporal Gabor filter
pair can be used to discover the speed and orientation of a moving line.

We first discuss how a Gabor filter pair can be used to identify the speed
and orientation of a moving pattern. We then describe how to extract Gabor
features that are robust to illumination variations. We finally develop a motion
representation that extracts features using multiple Gabor filter pairs.

3.1 Gabor Motion Energy

Let us denote a 2D moving line with flpx, y, tq:

flpx, y, tq � cδ px cos θl � y sin θl � tυlq , (1)

where θl defines the spatial orientation of fl as well as the direction of motion;
υl defines the speed and c controls the luminance value of the line.

A 3D Gabor filter can be represented as in [18] (see the reference for a detailed
discussion on parameters):

gφpx, y, tq � γ
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where x̄ � x cospθgq � y sinpθgq and ȳ � �x sinpθgq � y cospθgq. The parameters
θg and υg define the orientation and speed of motion that the filter is tuned for.
The parameter φ is the phase offset of the filter. It can be set to φ � 0 to obtain
an even-phased (cosine) filter ge and φ � π

2 to obtain an odd-phased (sine) filter
go — the two filters together form a quadrature pair pge, goq.

The convolution fl � gφ provides useful information towards understanding
the motion of the line [16]. This can be illustrated for the 2D line fl as follows.
When a vertical bar (θl � π{2) moves with a speed υl � υg ¡ 0, the convolution
response gets maximal for θg � θl and strictly smaller as θg Ñ �π{2. The
response is almost flat when θg � �θl. This behaviour is useful as it provides
information about the speed and orientation of the motion, and can discriminate
between forward and backward motion, i.e. it is selective in terms of direction
as it yields no output for motion in opposite direction.

Although the convolution fl � gφ helps identifying the speed and orientation
of the line, it also poses some difficulties [16]. Firstly, the convolution fl � gφ
yields an oscillating output due to the trigonometric cosp�q function, therefore it
is hard to derive a meaningful conclusion by looking at a particular part of the
response. Secondly, the convolution output is sensitive to luminance polarity, i.e.
the response would change if we would invert the luminance of the bar [16]. To
deal with these shortcomings, Adelson and Bergen [16] suggested to use motion
energy, which is defined as:

Ef,υg,θg px, y, tq � pf � geq2 � pf � goq2. (3)

Instead of oscillating, the energy Ef � Ef,υg,θg generates a uniform peak at the
points where the line sits at any given time t. Furthermore, Ef is insensitive
to luminance polarity, i.e. the response is not affected if we were to invert the
luminance of the line with the background [16].

3.2 Pooling

The 3D convolution involved in the computation of Ef can yield a high dimen-
sional output. This dimensionality must be reduced to improve computational
performance and avoid the curse of dimensionality [19]. To this end, we perform
pooling, which proved to be a biologically plausible [20–22] and computationally
efficient [23] approach. We use two types of pooling, namely mean and maxi-
mum (max) pooling, denoted respectively with φµf � φµpEf q and φXf � φXpEf q,
where Ef is the volume of energy obtained by computing Ef for all px, y, tq P Ω
where Ω � X � Y � T is the domain of the sequence f . We add another statis-
tical descriptor, the standard deviation φσf � φσpEf q. The three features can be
computed as follows:

φµf �
1

|Ω|
»
Ω

Ef pxqdx, φXf � max
xPΩ

Ef pxq, φσf �
b
varpEf q (4)

where |Ω| denotes the volume of Ω and x � px, y, tq is a point in space-time.
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3.3 Contrast Normalisation

The energy Ef is sensitive to the average intensity value of f as Gabor filters are
not zero mean [24]. Therefore, a contrast normalisation is essential for increasing
the generalisation ability of the Gabor features.

Let I � Ipxq � Ipx, y, tq be a sequence of a moving pattern. Consider two
sequences Iipxq, Ijpxq which contain the same moving pattern as in Ipxq but differ
from Ipxq with a linear illumination variation such as Iipxq � pαit � βiqIpxq,
and Ijpxq � pαjt � βjqIpxq. Ideally, we would desire the features extracted
for both patterns to be identical, i.e. φpIiq � φpIjq. To map the features of
φpIiq and φpIjq close together, we perform normalisation. On the one hand, if
normalisation is performed on individual images (e.g. z-normalisation, contrast-
stretching, histogram equalisation) apparent motion along the sequence can be
generated. On the other hand, a normalisation performed on the entire sequence
may not necessarily map the features φpIiq and φpIjq close to one another. To
overcome such problems, we define a new energy function, the normalised energy
Ẽ. Normalisation is achieved by dividing each frame in an input sequence with
a coefficient that is proportional to the illumination coefficient in the frame.

Let Itki be an image from the sequence Ii at any fixed time tk. We use the
image Itki to synthesise a static sequence Itki of length ptf � t0q by repeating
the same image throughout the time interval, i.e. Itki pxq � Iipx, y, tkq � pαitk �
βiqIpx, y, tkq � pαitk � βiqItkpxq. We can compute the energy of Itki as follows:

E
I
tk
i
pxq �

�»
pαitk � βiqItkpx� uqgepuqdu

�2
�
�»

pαitk � βiqItkpx� uqgopuqdu

�2

� pαitk � βiq2
#�»

Itkpx� uqgepuqdu

�2
�
�»

Itkpx� uqgopuqdu

�2+

�pαitk � βiq2EItk pxq (5)

where u � �
u v w

�
is the convolution variable. Since for fixed tk the term αitk�βi

is constant, a feature φ
I
tk
i

for φ P tφX, φµ, φσu can be computed through (4) as:

φ
I
tk
i
� φpE

I
tk
i
q � pαitk � βiq2φpEItk q � pαitk � βiq2φItk . (6)

Note that (6) includes pαitk � βiq, which will cancel out the illumination term
in the input sequence. Let us define the normalised energy Ẽ for Ii as:

ẼIipxq �
�

Ii

pφIti
q 1

2

� ge
�2

�
�

Ii

pφIti
q 1

2

� go
�2

�
� » pαiw � βiqIpuq

pαiw � βiqpφIwq 1
2

gepx� uqdu
�2
�
� » pαiw � βiqIpuq

pαiw � βiqpφIwq 1
2

gopx� uqdu
�2

�
� » Ipuq

pφIwq 1
2

gepx� uqdu
�2
�
� » Ipuq

pφIwq 1
2

gopx� uqdu
�2
. (7)
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(a) S1, un-normal.
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Fig. 2. The un-normalised (φµ) and normalised (φµ) mean features extracted from
moving face sequences of two subjects (S1, S2) for varying speeds.

The illumination coefficients are cancelled out by dividing each frame Iti in Ii
with the feature of the synthesised sequence Iti, i.e. φIti

. Based on the normalised

energy, we define the normalised features φ̃µ, φ̃X, φ̃σ as:

φ̃µf � φµpẼf q, φ̃Xf � φXpẼf q, φ̃σf � φσpẼf q (8)

where Ẽf is the normalised energy volume Ẽ computed for a Ω � X � Y � T .

A prominent illumination issue is gray-scale shift (e.g. due to imaging con-
ditions or skin color differences), i.e. αi � 0, βi � 0. The effect of normalisation
against gray-scale shift is shown in Fig. 2. Moving sequences of various speeds
are synthesised from the faces of two subjects (S1, S2). Each plot displays the
variation of features with respect to the motion speed. The features of each
sequence are computed for two cases: (1) original intensities (orig.) and (2) in-
tensities multiplied with 0.5 (half). The un-normalised features φp�q are affected
by both gray-scale variation (Fig. 2a and 2b) and inter-personal variation (Fig.
2a vs. 2b), whereas normalised features φ̃p�q not only suppress gray scale shift
completely (Fig. 2a and 2b), but also map the features of different subjects closer
(Fig. 2c vs. 2d).

3.4 Motion in Various Speeds and Orientations

Although Eυ,θ (or Ẽυ,θ) identifies the motion that it is tuned for, it cannot
directly identify various speeds and orientations. For this reason, we construct
a Gabor filter bank with filter pairs tuned to various speeds and orientations:
G � tpgeυi,θj , goυi,θj q : υi P tυ1, . . . , υKυu, θj P tθ1, . . . , θKθuu.

The feature vector for a pair of consecutive images I is computed as follows.
Firstly, Ẽυi,θj is computed for each pair gυi,θj in G. Secondly, each Ẽυi,θj is

partitioned into spatio-temporal slices Ẽm,n
υi,θj

. Next, the normalised feature of

each slice φ̃ � φpẼm,n
υi,θj

q is computed for a single φ P tφµ, φX, φσu (i.e. a motion

representations consists of only one feature type). Finally, the feature vector is
obtained by concatenating all features φ̃ computed for positive integers i, j,m, n
such that i ¤ Kv, j ¤ Kθ,m ¤M,n ¤ N .



Probabilistic Subpixel Temporal Registration for Facial Expression Analysis 7

In the following sections, we will denote each feature with φk � φpẼm,n
υi,θj

q
and the final feature vector with ΦpIq � �

φ1 . . . φk . . . φK
�

where K is the
size of the feature vector and k the feature index that can be computed as
k � pm� 1qM � pn� 1qN � pi� 1qKυ � pj � 1qKθ � 1.

4 Estimating Registration Errors

To model the relations between the features Φp�q and corresponding registration
errors, we use a discrete probabilistic model. A continuous model would require
an assumption over the distribution of the features (e.g. Poisson, Gaussian),
whereas the discrete model is trained straight from data without any assumption.
Also, the proposed model can be trained in a single iteration and does not require
the optimisation of parameters that would risk overfitting to a dataset.

4.1 Labeling

Since the probabilistic model we use is discrete, we define our labels to be also
discrete. The misalignment between the images of a pair ypIq is defined as
ypIq � pδtx, δty, δs, δθq where δtx, δty, δs and δθ are respectively the horizon-
tal translation, vertical translation, scaling and rotation difference between the
images of I. We define ∆tx, ∆ty, ∆s and ∆θ, the sets that represent the range of
each variation as∆tx � tδt�x , δt�x�dtx, . . . , δt�x u,∆ty � tδt�y , δt�y �dty, . . . , δt�y u,
∆s � tδs�, δs��ds, . . . , δs�u and ∆θ � tδθ�, δθ��dθ, . . . , δθ�u. The first (e.g.
δt�x ) and last elements (e.g. δt�x ) in each set represent the minimum and maxi-
mum value for each variation, and the increment values dtx, dty, ds and dθ the
difference between successive labels (i.e. the resolution of our labels). The set
of all registration errors that our framework will deal with is referred to as the
label space L and is defined as L � ∆tx �∆ty �∆s�∆θ.

Since we use a supervised model, we need training samples (pairs Ij) and
labels (registration errors yj � ypIjq). Let X be a set containing N samples

X � tI1, . . . , INu, Φ be the set of features Φ � tΦ1, . . . ,ΦNu where Φj � ΦpIjq
and Y the set that contains the labels Y � ty1, . . . ,yNu where yj P L. A
practical issue that needs to be addressed is how the samples Ij and their labels
yj will be obtained. Suppose that we have face sequences where we know that
the subject does not display any head or body motion. Then, if we define a fixed
face rectangle and crop the entire sequence based on this rectangle, the cropped
sequence will contain only facial activity and no registration errors. To obtain
one training sample Ij , we firstly pick any two consecutive frames from the
cropped sequence. Next, we apply a random Euclidean transformation to both
frames. The label yj can be easily computed from the random transformation.
By picking frames that are temporally farther (rather than consecutive pairs),
we can obtain pairs that involve larger facial activity and train a system that is
more robust to large facial activity. Thus, using a number of face sequences, we
can automatically synthesize as many training samples as we need.
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4.2 Modeling

To model the relationships between the features extracted from the pairs Φj and
the corresponding registration errors yj , we define two discrete random variables
X (for Φj) and Y (for yj).

Since X is discrete, we need to discretise the continuous feature vectors Φj .
To this end we perform uniform quantisation over all features φjk P Φj . We

divide the space r0, 1s into k bins and map each φjk to an integer q such as

q � 1, 2, . . . , Q. Before this mapping, we normalise φjk to map onto r0, 1s. The
normalisation is based on the training dataset, specifically to the maximum
and minimum values of each feature k. Let minpφkq and maxpφkq be defined as
minpφkq � mintφpk P Φp : Φp P Φu and maxpφkq � maxtφpk P Φp : Φp P Φu. We

denote the bin index of each feature φjk with qjk and compute it as follows:

qjk � argq min
!��� φjk �minpφkq

maxpφkq �minpφkq �
�3q

2
� 1

	��� : q � 1, . . . , Q
)
, (9)

where 3q
2 � 1 is the center of the bin with index q and | � | is the L1 metric. We

shall denote the quantised vector of all the features in Φj with qj � qpIjq �
pqj1, qj2, . . . , qjKq, and the set that contains the quantised vectors extracted from
all of the training samples in X with Q � tq1, . . . ,qNu.

The random variable X � pX1, . . . , XKq takes on values q � pq1, . . . , qKq and
Y takes on values y P L. The registration errors and the Gabor features of image
pairs are modelled jointly by computing the joint distribution PpX � q,Y � yq.
For computational simplicity, we rely on the naive Bayes assumption and com-
pute the joint distribution as follows:

PpX � q,Y � yq � PpX1 � q1, . . . , XK � qK | Y � yqPpY � yq
� PpY � yq

K±
i�1

PpXk � qk | Y � yq. (10)

To compute this distribution, we must compute the individual likelihood func-
tions PpY � y | Xk � qkq for each y P L. To this end, we adopt the frequency
interpretation of probability and learn each likelihood function from the train-
ing samples. Let U and V be two sets defined respectively as U � tqjk,yj : y �
yj ^ qk � qjk,y

j P Y, qjk P qj P Qu and V � tyj : y � yj ,yj P Yu. The likelihood
can be computed as :

PpXk � qk | Y � yq � |U |
|V| , (11)

where | � | is the cardinality of the set. We assume the priors to be uniform
PpY � yq � 1{|tLu| for each y P L.

4.3 Estimation

Once we learn the model PpX,Yq, the task of estimating the misalignment in a
given image pair I is fairly straightforward. We rely on Bayesian inference and
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Algorithm 1 Estimating registration errors between two images

Input Unregistered pair I � pÎ , I 1q
Output Registration error estimation ỹ�

1: ỹ1 Ð ỹpIq; ỹ� Ð ỹ1; Ĩ1 Ð H�1pỹ�qI 1 � Estimate, Update
2: for iÐ 1, T do
3: if ỹi � 0 then
4: return ỹ� � Converged
5: end if
6: ỹi�1 Ð ỹppÎ , Ĩiqq ` ỹ�; ỹ� Ð ỹi�1; Ĩi�1 Ð H�1pỹi�1qI

1 � Estimate, Update
7: end for
8: i� Ð argiPt1,...,Tu maxP0ppI, Ĩiqq
9: return ỹi� � Best iteration

find the label y P L that maximises the posterior probability:

PpY � y | X � qq � PpY � yqPpX � q | Y � yq°
ylPL

PpY � ylqPpX � q | Y � ylq
. (12)

The posterior probability is computed for all y P L, and the registration error
between the images of a pair I is finally estimated by selecting the label y P L
that maximises the above posterior probability as follows:

ỹpIq � argyPL max PpY � y | X � qpIqq. (13)

5 Registration

Ideally, a single estimation ỹp�q of the model Pp�q would be sufficient for register-
ing two images. However, in practice ỹp�q may not approximate the actual errors
yp�q with high accuracy in a single estimation, especially for large registration
errors. Therefore, we deal with this as an optimisation problem where the out-
put is estimation of the registration error denoted with ỹ�. Once we compute
ỹ�, we obtain the registered image Î 1 through Î 1 � H�1pỹ�qI 1 where H�1 is
a Euclidean back-transformation. To compute ỹ�, we perform estimation and
back-transformation iteratively.

The overall procedure for registering a pair of images is summarised in Al-
gorithm 1 — the ` operator is defined for y1,y2 as y1 ` y2 � pδx1 � δx2, δy1 �
δy2, δs1δs2, δθ1 � δθ2q. The optimisation terminates either by converging within
the allowed number of iterations, or by reaching the maximum number of iter-
ations and returning the error that is the ‘closest’ to convergence according to
the convergence probability P0pIq � PpY �0 | X � qpIqq. As was illustrated in
Fig. 1c, the registration of the entire sequence is performed by registering the
pairs It consecutively for all t � 1, . . . , T � 1.
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5.1 Coarse-to-fine Estimation

To achieve high accuracy, we keep the resolution of our label space L high by
selecting small dtx, dty, ds, dθ values. However, this increases the size of the space
|L|. Therefore, we adopt a coarse-to-fine approach that allows us to simultane-
ously achieve high registration accuracy and keep the label space dimensionality
low. We train multiple models Pip�q with label spaces Li, i.e. i � 1, . . . ,KL. The
spaces are defined from coarse to fine — L1 is the coarsest and L2,L3, . . . are
increasingly finer spaces. We cascade the models Pp�qi and apply Algorithm 1 to
each model Pp�qi sequentially. We obtain the final estimation by accumulating
the error estimations of all models Pp�qi.

5.2 Identifying Failure

The convergence probability P0pIq provides the confidence needed to verify
whether the two images in I are registered correctly. To complete the verifi-
cation, we compare P0pIq with a threshold probability Pθ.

Consider that we have positive and negative sample pairs — a positive sample
is a pair of two correctly registered images and a negative sample is a pair of
two unregistered images. The task is to find a threshold probability Pθ that will
enable separation with a high true positive rate and a low false positive rate.
To this end, we compute the convergence probability P0p�q for all positive and
negative samples.

We then compute a ROC curve by setting the threshold Pθ to various values
by incrementing it with a small step size. We set the final threshold Pθ to a value
that yields a false positive rate as low as 0.5%. Then the registration of an image
pair is verified if P0pIq ¡ Pθ or otherwise it is assumed that the images of I are
not registered correctly.

6 Experiments

6.1 Setup and Evaluation Measures

We evaluate PSTR for pair and sequence registration. We test the performance of
each feature type in tφ̃µ, φ̃X, φ̃σu for parameters N,M � 2, 3 (Section 3.4). The
Gabor filter bank G is obtained with filters of 8 orientations and 5 speeds such
that υi P t1, 2, . . . , 5u, θj P t0�, 45�, . . . , 360�u. All images are resized to 200�200.
The bin number for quantisation Q (Section 4.2) is set to 8 after experimenting
with the values 4, 6, 8, . . . , 20 and not observing performance gain for more than
8 bins. As shown in Table 1, we train four probabilistic models for different label
spaces Li (see Section 5). To show that we can increase accuracy through finer
labels, we report two results: one obtained by excluding L4 (i.e. selecting L3 as
the finest label space) and one by including L4.

For pair registration, we measure performance using the mean absolute error
(MAE) εp computed separately for translation (εptx , εpty in pixels), scaling (εps
as a percentage %) and rotation (εpθ in degrees) as follows. Let Ii be one of the
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δt�x
: δt�x

: δt�y
: δt�y

: δs�� δs�� δθ�; δθ�; dtx
: dty

: ds� dθ;

L1 -12 12 -12 12 0.85 1.15 -15 15 3 3 0.03 3

L2 -4 4 -4 4 0.94 1.06 -3 3 1 1 0.01 1

L3 -1.5 1.5 -1.5 1.5 0.99 1.01 -1 1 0.5 0.5 0.002 0.2

L4 -0.5 0.5 -0.5 0.5 0.998 1.002 -0.2 0.2 0.125 0.125 0.001 0.1

Table 1. Parameters that describe the label spaces L1,L2,L3 and L4. :Pixels,
�percentage ratio, ;degrees.

pairs, i.e. i � 1, . . . , Np, and δ̄itx be the horizontal translation error for ith pair.

The MAE εptx is computed as εptx �
°Np
i δ̄itx{Np. The MAEs εpty , ε

p
s and εpθ are

computed similarly. We additionally compare PSTR with (Robust) FFT [15] as
it is a state-of-the-art registration technique already used for facial expression
recognition [14]. PSTR cannot be compared with the registration methods of
most facial action analysis systems as they crop faces across an ad-hoc rectangle
defined through a number of fiducial points [7]. Similarly to Robust FFT [15],
we compare PSTR with RANSAC registration using SURF [25] and MSER [26].

For sequence registration, we measure the average MAE over sequences (εs)
separately for translation (εstx , εsty ) scaling (εss) and rotation (εsθ) computed as
follows. Let Si denote one of the Ns sequences where the length of each sequence
is equivalently T . Let δ̄i,jtx denote the horizontal translation error of jth pair
in ith sequence. The average MAE for horizontal translation εstx is computed

as εstx � °Ns
i p°T�1

j δ̄itx{pT � 1qq{Ns. The MAEs εsty , ε
s
s and εsθ are computed

similarly.

We use standard datasets for evaluation, namely the CK+, PIE [27] and
SEMAINE [28] datasets. The training for all the experiments is performed on
CK+ dataset. In the CK+ and PIE datasets there exist sequences with almost
no head pose variation and body movement. We select 129 such sequences from
CK+ dataset, and we use 112 of them for training and the remaining 17 for
testing. The 112 training sequences include 1814 consecutive pairs, which are
randomly transformed to synthesise as many pairs as needed (as described in
Section 4.1). The 17 testing sequences include 244 consecutive pairs of images
— random homographic transformations are applied to them to obtain the un-
registered pairs and sequences.

To evaluate both the robustness against illumination variation and the use-
fulness of the failure identification ability of PSTR, we perform experiments on
the PIE dataset, which contains rapid illumination variations. We demonstrate
performance on 200 pairs obtained from 10 sequences of 10 subjects.

We also test PSTR for naturalistic expressions on the SEMAINE dataset.
However, since naturalistic expressions include head/body motion, we are not
able to obtain a ground truth for this dataset and therefore provide only quali-
tative results through a video (Section 6.4).
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φ N εptx
: εpty

: εps
� εpθ

; εstx
: εsty

: εss
� εsθ

;

φ N L1-3 L1-4 L1-3 L1-4 L1-3 L1-4 L1-3 L1-4 L1-3 L1-4 L1-3 L1-4 L1-3 L1-4 L1-3 L1-4

φµ 2 .07 .08 .07 .08 .08 .05 .07 .03 .31 .23 .38 .26 .28 .19 .18 .06
φX 2 .11 .08 .15 .09 .11 .06 .16 .03 .34 .23 .46 .26 .31 .18 .24 .08
φσ 2 .05 .08 .06 .07 .08 .05 .06 .02 .34 .23 .43 .24 .23 .18 .18 .06

φµ 3 .07 .06 .08 .07 .07 .04 .06 .02 .50 .60 .56 .79 .28 .78 .24 .25
φX 3 .07 .06 .06 .07 .07 .04 .05 .02 .65 .53 .81 .60 .64 .40 .34 .27
φσ 3 .05 .06 .06 .07 .06 .04 .06 .02 .55 .54 .59 .56 .36 .41 .22 .28

FFT � .18 .26 .57 .17 � � � � � � � �

SURF � .24 .29 .10 .05 � � � � � � � �

MSER � .38 .37 .17 .09 � � � � � � � �

Table 2. Pair (left of double lines) and sequence (right of double lines) registration
performance on CK+ dataset.

Method εptx
: εpty

: εps
� εpθ

; # Eliminated Pairs

PSTR 0.13 0.11 0.07 0.05 11 (automatically)

FFT 0.29 0.25 0.55 0.16 10 (manually)

SURF 0.75 0.80 0.52 0.29 44 (manually)

MSER 1.78 2.55 1.43 0.95 73 (manually)

Table 3. Pair registration performance with illumination variation (PIE dataset).

6.2 Pair Registration

The translation output of FFT is an integer with 1 pixel resolution. To eval-
uate subpixel registration performance, we perform registration with FFT at
double the image size (400 � 400) and reduce the estimated translation to half,
i.e. increase the translation resolution of the FFT method to 0.5 pixels. The
translation resolution of PSTR is also limited at 0.5 pixels for L3 (Table 1).

Table 2 shows the pair registration errors of PSTR and the FFT method.
PSTR outperforms FFT as well as RANSAC-based registration with SURF or
MSER features. The mean (φµ) and standard deviation features (φσ) perform
slightly better than max (φX). Increasing the number of pooling regions N does
not provide a major performance improvement for φµ and φX, and therefore N
can be set to 2 to keep the dimensionality low. Note that we are able to reduce
errors, particularly for scaling and rotation, by including the model trained with
the finest label space L4. The average computation time for PSTR is approxi-
mately 5 seconds (on a conventional desktop computer with IntelTMi5 processor),
which is larger compared to Robust FFT, RANSAC-SURF and RANSAC-MSER
methods whose average computation time is respectively 0.25, 0.33 and 0.46 sec-
onds. The bottleneck for PSTR is convolution with 3D Gabor filters. The speed
of PSTR can be increased if the Gabor representation can be replaced with a
motion representation that is computationally more efficient.

In Fig. 3a,b we show examples from the SEMAINE dataset. Fig. 3a shows
the difference between the images of a pair with mouth expression obtained
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(a) (b) (c)

- - ---- --FFT FFTOurOur

Fig. 3. (a) Difference between pair of images with a subtle mouth expression, after
registering the images with PSTR and FFT; (b) Difference between images without
expression; (c) Difference of each pair in a sequence after registration.

after applying the mean errors of PSTR (for φ � φσ and N � 3) and FFT to
the second image in each pair (Fig. 3a). While the differences provided by FFT
hardly help identifying the location of the expression, PSTR clearly shows where
the expression occurs. Identifying the absence of facial activity is as important
as detecting facial activity. We applied a similar test but for a pair with no facial
activity (Fig. 3b). The differences provided by FFT generate spurious activity.
Instead, the difference image of PSTR shows no signs of facial activity except
from minor artifacts introduced by interpolation.

6.3 Identifying Failure

In the PIE dataset, the transition from 16th to 17th frame in all sequences in-
volves a very sudden illumination variation, and causes PSTR, FFT and RANSAC-
based methods to fail. PSTR identifies failures automatically.

Table 3 provides the MAE performance on the PIE dataset — the PSTR
results are obtained with the parameters φ � φσ, N � 2 and label spaces L1�4.
The typical symptom of failure in PIE experiments is large estimation error, in
which case the mean error MAE gets very high even when only a single failure
occurs. We therefore compute the MAE only over the pairs where registration
did not fail. For our method, failure is identified using the threshold probability
Pθ as described in Section 5.2 — the threshold is computed as Pθ � e�34 using
samples synthesised from the CK+ dataset. For FFT and RANSAC, we manually
eliminated the pairs with a translation error larger than 5 pixels. The rightmost
column in Table 3 lists the number of pairs eliminated when computing the
results.

Table 3 suggests that PSTR and FFT are robust against illumination varia-
tions as the performance of both methods on the PIE dataset is similar to their
performance on CK+ dataset. The number of pairs where failure is expected
(pairs obtained from the 16th and 17th frame) is 10. RANSAC-based methods
failed in more than 10 pairs, whereas FFT failed only on the 10 pairs. PSTR also
failed on these 10 pairs and identified these failures successfully. PSTR produced
only 1 false negative by eliminating a correctly registered pair.



14 E. Sariyanidi, H. Gunes and A. Cavallaro

6.4 Sequence Registration

Sequence registration performance on CK+ dataset is given in Table 2 (right).
Similarly to pair registration, we give two values at each cell — one obtained by
including L4 and one by excluding L4. Expectedly, errors are slightly higher than
in pair registration. The ground truth is common for all images in a sequence Si
(essentially all frames are mapped to the first frame), and since facial expressions
display larger variation in a sequence than in a pair, errors are more likely
to occur. Also, the exactness of ground truth cannot be guaranteed. Although
we selected sequences with almost no head/body motion and limited sequence
length to T � 7, minor motions might have been displayed by the subjects.

In Fig. 3c we show an example of a registered sequence from the CK+ dataset.
The images on top are obtained after registration, and the ones on bottom are
obtained by taking the difference between consecutive image pairs. The sequence
contained a slowly evolving mouth expression and (right) eyebrow movement.
The resulting difference images clearly illustrate the usefulness of PSTR — no
matter how slowly the expression evolves, the difference images capture face
actions and only face actions.

We provide a demo video that depicts the sequences after registration —
the video is available as supplementary material and also on an online channel1.
Although we perform training only with the controlled CK+ dataset, PSTR is
able to perform accurate registration for naturalistic expressions with head/body
and background motion (SEMAINE dataset) as well as sequences with rapid
illumination variations (PIE dataset).

7 Conclusions

We presented a probabilistic framework for temporal face registration (PSTR)
that achieves subpixel registration accuracy. The framework is based on a motion
representation that measures registration errors between subsequent frames, a
supervised probabilistic model that learns the registration errors from the pro-
posed representation, and an iterative registration error estimator. We demon-
strated on three publicly available datasets that the proposed framework not
only achieves high registration accuracy but can also generalise to naturalistic
data even when trained only with controlled data. Although as a proof of concept
we evaluated the framework on facial action and expression data, the proposed
method can be used for multiple application domains which require facial activ-
ity analysis. The source code of PSTR is available to the research community
via http://cis.eecs.qmul.ac.uk/software.html.

Acknowledgement. The work of E. Sariyanidi and H. Gunes is partially sup-
ported by the EPSRC MAPTRAITS Project (Grant Ref: EP/K017500/1).

1 The demo video is available on http://www.youtube.com/user/AffectQMUL
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12. Çeliktutan, O., Ulukaya, S., Sankur, B.: A comparative study of face landmarking
techniques. EURASIP J. Image and Video Processing 2013 (2013) 13

13. Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization
in the wild. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition.
(2012) 2879–2886

14. Jiang, B., Valstar, M., Pantic, M.: Action unit detection using sparse appearance
descriptors in space-time video volumes. In: Proc. IEEE Int’l Conf. Automatic
Face and Gesture Recognition. (2011) 314–321

15. Tzimiropoulos, G., Argyriou, V., Zafeiriou, S., Stathaki, T.: Robust FFT-based
scale-invariant image registration with image gradients. IEEE Trans. Pattern Anal-
ysis and Machine Intelligence 32 (2010) 1899–1906

16. Adelson, E.H., Bergen, J.R.: Spatio-temporal energy models for the perception of
motion. J. of the Optical Society of America 2 (1985) 284–299

17. Kolers, P.A.: Aspects of motion perception. Pergamon Press Oxford (1972)
18. Petkov, N., Subramanian, E.: Motion detection, noise reduction, texture suppres-

sion, and contour enhancement by spatiotemporal Gabor filters with surround
inhibition. Biological Cybernetics 97 (2007) 423–439



16 E. Sariyanidi, H. Gunes and A. Cavallaro

19. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton, NJ,
USA (1957)

20. Amano, K., Edwards, M., Badcock, D.R., Nishida, S.: Adaptive pooling of visual
motion signals by the human visual system revealed with a novel multi-element
stimulus. Journal of Vision 9 (2009)

21. Pinto, N., Cox, D.D., DiCarlo, J.J.: Why is real-world visual object recognition
hard? PLoS computational biology 4 (2008) e27

22. Webb, B.S., Ledgeway, T., Rocchi, F.: Neural computations governing spatiotem-
poral pooling of visual motion signals in humans. The Journal of Neuroscience 31
(2011) 4917–4925

23. Boureau, Y.L., Ponce, J., LeCun, Y.: A theoretical analysis of feature pooling in
visual recognition. In: Int’l Conf. Machine Learning. (2010) 111–118
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