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ABSTRACT

New technologies have led to the design of exciting inter-
faces for collaborative music making. However we still have
very little understanding of the underlying affective and
communicative processes that occur during such interac-
tions. We carried out a study where we collected both
self-report and continuous behavioural, and physiological
measures from pairs of improvising drummers. Correlations
were found between self-report scores and continuous mea-
sures. Absence of visual contact between participants was
also shown to affect some of these measures. We discuss how
our findings could influence the design of enhanced, collab-
orative interfaces for musical creativity and expression.
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1. INTRODUCTION
Advances in wireless communication, touch screen sensing,
and motion recognition have greatly facilitated the design
and development of exciting new interfaces for collaborative
music making. Researchers readily utilise such interfaces as
a means evaluating designs and investigating the nature of
joint music composition. This is a valuable approach, how-
ever it is inherently centred around the affordances and re-
strictions of the technology, as opposed to the sensitivities
and needs of the users. We still lack a good understanding
of the basic communicative and affective processes which
accompany collaborative music making. To investigate this
we carried out a study in which we asked pairs of experi-
enced drummers to perform improvised drum beats, with
and without visual contact. During the performances we
collected physiological, behavioural, and MIDI data, as well
as post-performance subjective reports.

2. RELATED WORK
Our work is influenced by theories, models and tools that
are drawn from research in musical interactions, group cre-
ativity, affect recognition, and psychophysiology. For clar-
ity we separate our review of existing research according to
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these four distinct fields, however it is common to find some
overlap between research in these areas.

Musical Interactions: Mutual engagement is an impor-
tant feature of multi-user musical interactions. Bryan-Kinns
identifies five important design features for supporting mu-
tual engagement: i) mutual awareness of action; ii) anno-
tation, iii) shared and consistent representations, iv) mu-
tual modifiability, and v) spatial organisation [2]. Motion
tracking studies involving groups of string musicians have
shown that head movement features can indicate levels of
engagement [12] as well as complex interaction patterns and
rhythmic synchronisation [15].
Rhythmic interaction has also been studied in relation to

audio and visual coupling. Konvalinka et al. [22] looked at
mutual prediction and adaptation during joint tapping ex-
periments. They found that when both participants could
hear each other they continuously adapted to each other’s
millisecond beat timings, such that no leader-follower re-
lationship emerged. Vera et al. [33] studied the effect of
line-of-sight on the precise note timings of a string duet.
They found that even partial line of sight was sufficient to
improve synchrony.

Group Creativity: Examples of group creativity are com-
monly found in everyday conversation. Conversation ana-
lysts have described how interlocutors use turn taking [27],
eye gaze [17], and body position [18] to maintain successful
conversations. It seems reasonable to infer that similar phe-
nomena may exist in creative musical interactions. Healey
et al. [16] examined the spatial behaviour of a group of seven
improvising musicians. They observed how the use of space
played a complex role in maintaining the coherence of the
performance, and drew a number of parallels with conver-
sational interactions.
An important idea that spans all forms of group creativity

is that of emergence [29] - “the arising of novel and coher-
ent structures, patterns, and properties during the process
of self-organization in complex systems” [13]. Sawyer [28]
adopts the term collaborative emergence to refer specifically
to emergence in small groups. He points out that group
members are often constrained as to what they can con-
tribute to the emergent creative act. For example, impro-
vising musicians might be constrained to play within the
confines of a specific key and tempo. In the context of live,
co-present group creativity group members need to work
within these constraints, whilst also continuously monitor-
ing and providing novel contributions to the interaction.
Evidently this involves a combination of conscious and sub-
conscious processing. However, Sawyer’s interviews with
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musicians suggest a preference for the dominance of non-
conscious mental states during improvised performance [29].
As an extension of Csikszentmihalyi’s theory of flow [5],

Sawyer conceives the idea of group flow [29], referring to a
state of peak performance at the level of the group, rather
than the individual. He points to the importance of factors
such as parallel processing (simultaneous awareness of self
and collaborator(s)) and visual attention in establishing a
state of group flow.

Affect Recognition: Human emotion is commonly sepa-
rated into three components; behavioural (expressions and
actions), cognitive (thoughts and feelings), and physiologi-
cal (biochemical and electrical changes in the body). In the
field of Affective Computing researchers utilise these com-
ponents with the goal of developing technologies that are
able to recognise, react to, and/or express emotions. For
example, functional MRI and EEG are able to identify felt
emotions by analysing the brain’s response to affective stim-
uli such as music [30] and images [31]. The analysis of facial
expressions and posture can successfully discriminate emo-
tional states [35], and in the study of anxiety, physiological
parameters such as heart rate [1], galvanic skin response
(GSR) [34], and salivary cortisol [32], have been shown to
vary with levels of stress.
In recent years affective computing research has matured

from controlled laboratory-based investigations to more true-
to-life, spontaneous settings. Software developed by re-
searchers at MIT Media Lab has collected global data us-
ing webcam images to continuously monitor the facially-
expressed emotion of people viewing online videos [24]. In
another application, the musical score and sequence of scenes
in a film were guided by the emotional responses of the au-
dience, as inferred from physiological measurements [25].
Such measures have also been used to detect musicians’
emotions during musical performance [21].

Psychophysiology: Psychophysiology involves the study
of how psychological experiences (thoughts, feelings, emo-
tions) relate to the physiological activity of the body. Equip-
ment for physiological measurement has become increas-
ingly non-invasive, miniaturised and affordable, making it
easier to conduct studies outside the laboratory. These de-
velopments are also leading towards the integration of physi-
ological sensors in everyday technologies such as phones and
computer games consoles.
In a study of flow during piano playing, Manzano et al. [7]

measured heart rate, respiration and facial muscle move-
ments while professional pianists gave five performances of
a pre-prepared piece. They found a significant relationship
between self-reported flow and heart rate variability, res-
piratory depth, and facial muscle movements. The same
measures were employed, along with skin conductance, in a
study of audience reactions to a live music performance [11].
The study used a computational model to determine high
information content (IC) segments of the performed piece,
whilst participants provided continuous subjective ratings
of expectedness. Unexpected and high-IC events were gen-
erally associated with a rise in skin conductance, and de-
creased heart rate. Respiration rate increased only after the
onset of unexpected events, and facial muscle movements
showed no event-related responses.
Regarding human interactions, research into user expe-

rience with game technologies found differing physiological
responses when participants were playing against a com-
puter compared with playing against another human [23]. A
study of partner influence during conversation found ‘phys-
iological linkage’ between the blood pressure (BP) measure-

ments of romantic couples [26]. High partner influence re-
sulted in an in-phase relationship between the partners’ BP
measurements, and low influence resulted in an anti-phase
relationship.
Numerous studies have sought to uncover links between

brain activity and creativity. A comprehensive review of
neuroimaging studies of creativity can be found in [9], where
the authors highlight that the literature is, on the whole,
fragmented and inconclusive.

3. THE STUDY
Incorporating methods and techniques from the research
discussed above, we designed a study to gather both sub-
jective, and continuous quantitative measures from pairs
of co-present, improvising drummers. In each session the
drummers performed two 5-10 minute improvisations, once
where they were not visible to each other, then again where
they were fully visible. The main aims of the study were to:

• Assess the practicalities of using various types of phys-
iological and behavioural monitoring devices in a live
performance setting.

• Identify which measurements and features are most
informative/useful for our future work on the design
of a collaborative interface for musical expression.

• Report some findings linking creativity, engagement,
and emotion to quantitative features and measures
such as motion and physiology.

We chose to use drumming in our study because it presents
some noteworthy advantages over other forms of musical
expression. In particular, beat timing and velocity can be
accurately recorded using electronic pads. Large amounts of
motion are involved, which increases the information con-
veyed through movement. There is also far less melodic
content, which might otherwise influence participant emo-
tion and constrain improvisational freedom. We simplified
the experiment further by requiring that each participant
only used one hand to drum on a single drum pad.

3.1 Method
3.1.1 Participants

Participants were recruited via email lists and word of mouth.
We required that all participants had prior drumming expe-
rience and were confident enough to improvise rhythms ‘on-
the-fly’. Five pairs of participants took part in the study (2
mixed-sex pairs, 3 male pairs). Participants in each pair
knew each other, and three of the pairs had previously
played music together. The participants were aged 26 to
34 (M=29.1, SD=3.1), their drumming experience ranged
from 1 to 17 years (M=7.4, SD=5.0), and their level of
expertise ranged from 2 to 4 (M=2.7, SD=0.7) on a five
point scale representing novice (1) to expert (5).

3.1.2 Measures

Given the exploratory nature of our study, we chose to col-
lect a wide range of measurements so that we would have
the flexibility to test various hypotheses in our post-study
analysis. To measure heart rate and perspiration we used
small, wireless ECG and GSR sensors provided by Shimmer
Research. We used the Emotiv EEG headset to wirelessly
record 14 channel EEG measurements from each partici-
pant. All of the physiological sensors contained accelerome-
ters for recording motion. To provide more accurate motion
measurements, we also used a Vicon marker-based motion
tracking system to record continuous head, torso, arm, and
feet position.
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Figure 1: Image taken from the overhead camera illustrating the setup and the equipment used in the study

For the drums we used two identical Roland V-Drum elec-
tronic drum pads. By recording MIDI data from the pads
we were able to log the exact timing and velocity (strength)
of each drum beat. Three video cameras were set up - one
facing each participant, and one overhead camera to cap-
ture the entire interaction. Figure 1 illustrates an image
taken from the overhead camera. The annotations indicate
the positioning of the measurement apparatus.
A post-performance questionnaire (PPQ) was designed

to collect subjective report data from each participant while
they reviewed video footage of their improvised performances.
The PPQ asked participants to rate their individual levels
of creativity, engagement, energy, positivity and boredom
on a 9-point scale; as well as who they thought was lead-
ing the performance (1 = ‘All me’, 9 = ‘All them’). The
first two items assess subjective interpretations of the drum-
ming task, while the latter four items were chosen to gauge
emotional state, relating closely to the dimensions of va-
lence, arousal, and dominance, commonly used in affect re-
search [14].

3.1.3 Data Synchronisation

We used two computers and four separate applications to
record the continuous measurements. Consequently we were
faced with the problem of how best to synchronise all of
the data. Our solution was to place the physiological and
EEG sensors on top of one of the drum pads and use a
beater (with a motion capture marker on it) to tap the drum
10 times. This meant that we had 10 clearly identifiable,
short-duration peak events in the EEG and physiological
accelerometer data, accompanied by 10 MIDI note events
and 10 visible motion capture/video events. When process-
ing the data, we were able to use these events as reference
points, enabling us to align all of the data sources to a high
(millisecond) precision.

3.1.4 Setup

The study was held in a performance lab with stage lighting
set up to make it feel more like a live music venue. The drum
pads were positioned in the centre of the room, with speak-
ers either side (see Fig. 1). The two computers were placed
out of sight behind blank screens at one end of the room;
this is also where the experimenter sat during the drum
performances. ECG modules were strapped around each
participant’s waist, with the electrodes attached to their
chest. GSR modules were placed around the wrist of their
non-drumming hand, and the electrodes were strapped to

their index and middle finger. The EEG headsets were posi-
tioned and fitted with motion capture markers, which were
also placed around the participants’ wrists, and on their
shoulders and toes.

3.1.5 Tasks

The experiment consisted of three drumming tasks. The
first task (tM , duration ∼ 1 min) required the participants
to play along to a metronome click track at a tempo of 110
bpm. The second (tS, duration ∼ 1 min) required them
to repeat a set rhythmic phrase, which they listened to
and learnt prior to the task. These initial two tasks were
designed to provide baseline measurements of the partic-
ipants’ rhythmic timing and physiological measures. For
the third and final task (tI , duration ∼ 6-10 min) the par-
ticipants were asked to improvise with one another, where
the only condition was that they did not use verbal commu-
nication. All three tasks were performed twice, once under
a non-visual (NV ) condition, then again under a visual (V )
condition. In the NV condition participants were either
facing away from each other (sessions 1-3), or blocked by a
screen (sessions 4 and 5). In the V condition they faced to-
wards each other with no obstruction, other than the drum
pad. The participants performed all the tasks as a pair, ex-
cept for in the V condition, where they performed the tM

task individually. Following completion of the drum tasks,
the participants sat individually and watched the overhead
videos of their two improvised performances. After each
minute1 of video they were asked to complete all the items
on the PPQ, in relation to that particular minute of their
performance.

3.2 Data Processing
3.2.1 Preparation

The EEG, ECG, GSR, and MIDI data was imported into
MATLAB2. For each session the accelerometer synchroni-
sation peaks and MIDI note events were used to align the
data to a common start point (t0). Using the video footage
we found the start and end times of each experimental task,
relative to t0. For each data source these time points were
used to extract and label blocks of data corresponding to
measurements for each participant and each task.

1For session 5, two minute segments were used because the
improvisation tasks were longer in duration.
2Due to software issues, we have not yet been able to process
the Vicon motion capture data.
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3.2.2 Feature Extraction

Features were extracted from individual data blocks accord-
ing to the type of data they contained. We manually la-
belled anomalous physiological data so that it could be ex-
cluded from further analysis.

ECG: We used ECGtools3 to filter the raw ECG data
and extract the R-peaks, which correspond to individual
heart beats. The distance between consecutive peaks was
then used to find the instantaneous heart rate (HR) val-
ues. These values were interpolated to give an evenly spaced
time series from which we extracted the mean, variance, SD,
maximum, minimum, the positions of maxima and minima,
and the number of extrema divided by the task duration.

GSR: Skin conductance response (SCR) has been shown
to be a useful metric in analysis of GSR data [19, 20]. We
used Ledalab4 to extract the timing and amplitude of SCR
events using Continuous Decomposition Analysis (CDA).
Again, interpolation was performed and the mean, vari-
ance, SD, positions of maxima and minima, and number
of extrema divided by task duration, were calculated from
the SCR amplitude series.

EEG: Frequency band power values are often computed in
EEG studies, as they provide information on cognitive ac-
tivity. Using EEGlab [8] we initially bandpass filtered the
signal between 3 and 30 Hz. We then performed manual
artefact rejection to remove noisy segments of data caused
by head and facial muscle movements. Artefactual chan-
nels were removed entirely and the average power over all
remaining channels was computed within the following stan-
dard frequency bands: Theta (4-7 Hz), Alpha (7.5-12.5 Hz),
L-Beta (12.5-25 Hz), and H-Beta (25-30 Hz).

MIDI: The number of beats per second (BPS), SD in time
between consecutive beats, and mean velocity were com-
puted as basic MIDI features. To measure the timing syn-
chrony between one participant (Px) and the other (Py) we
compared their individual beat onsets (tPx and tPy) and
considered any beats which occurred within 70ms of each
other to be single rhythmic events [10]. For these beats we
calculated the time difference (tPx - tPy). We then found
the mean, and absolute mean over all the difference values.
For tM data the same procedure was used to measure the
synchrony between individual participants and the MIDI
encoded metronome events.

Motion: We took the accelerometer readings from the
ECG, GSR and EEG sensors and summed the absolute val-
ues of the axial components across the entire measurement
block for each sensor. This gave us approximate quantity
of motion (QoM) values for the head (EEG), torso (ECG),
and non-drumming hand (GSR).

4. ANALYSIS & RESULTS
4.1 Subjective Reports Versus Continuous In-

teraction Features
The first part of our feature analysis aims to test whether
participants’ post-performance subjective reports were cor-
related with their within-performance continuous measures
for the improvisation task. To do this we segmented the
continuous tI data into 1 or 2 minute windows (tIw), iden-
tical to those used for the PPQs. This was done for each

3http://www.ecgtools.org/
4http://www.ledalab.de/

participant within each condition (NV or V ). Features were
then extracted from each tIw. We performed baseline scal-
ing on the features using two separate procedures. The
first method (bAdjI) divided each tIw feature by the equiv-
alent feature extracted over the entire tI task. The second
method (bAdjS) scaled relative to the tS values. For the SR
scores we used both adjusted and non-adjusted values. In
this case adjustment was performed using the bAdjI method
only, as we did not have SR scores for any of the other tasks.
Treating every window as an independent row of samples,
we ran pairwise Pearson correlation analysis between each
column of SR scores and each column of features. Signifi-
cant correlations are shown in Table 1.
We can see that all of the physiological data sources have

at least one feature which correlates with at least one SR
item. For ECG and GSR, the mean HR/SCR and num-
ber of HR/SCR extrema are the most informative features.
For EEG, MIDI, and motion data, the informative features
are the four spectral band powers, number of beats, and
mean body QoM respectively. Strong (r > 0.4) correlations
are highlighted in bold, with the majority of these falling
under energy, positivity, and boredom SR items. Of partic-
ular note are the correlations with no. of SCR extrema, and
with mean H-Beta power. The correlations with mean body
QoM are to be expected, given that high amounts of move-
ment are generally linked to high arousal and valence [4].
Self reported creativity is most significantly correlated with
BPS, followed by average heart rate and mean body QoM.
Engagement is correlated negatively with heart rate and
positively with BPS and QoM. Leadership is positively cor-
related with Beta activity and BPS.

4.2 Effect of Visibility
To test for effects of participant visibility we performed
paired-sample t-tests comparing both SR and continuous
features in NV and V conditions. In this case we used
features averaged over the entire improvisation session for
each participant, under each condition. The continuous fea-
ture values were all baseline adjusted using bAdjS , meaning
that we compared tI features relative to tS features within
each visual condition. The results are shown in Table 2.
We see that engagement is the only SR measure which
shows significant differences, whilst the p-values for cre-
ativity and boredom suggest potential significance if more
trials were performed. The sign of the t-values indicates
that Creativity and Engagement were given lower ratings
in the NV sessions than the V sessions, and Boredom was
given higher ratings. Regarding continuous features, the
mean heart rate appears to be significantly higher in the
NV condition, whereas the SD in SCR amplitude is lower.
Again, the effects of visibility on SD in heart rate and mean
SCR amplitude show potential significance given more tri-
als. The same can be said for MIDI and motion features,
where we see that the mean velocity and mean bodily QoM
were higher in the NV condition.

5. DISCUSSION
Some of the most significant correlations in our analyses
in 4.1 came from EEG measurements. This is somewhat
surprising, as we had expected that the susceptibility to
movement artefacts might have distorted any trends in the
data. In comparison with SR measures of energy and posi-
tivity, Beta activity was positively correlated, whilst Theta
and Alpha activity were negatively correlated. These results
concur with previous studies which associate Beta activity
with engagement and cognitive challenge; and Theta and
Alpha activity with drowsy states, and reflective states of
relaxation, respectively [3].
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Table 1: Pearson correlation coefficient (r) values for significant correlations between extracted features and
self report ratings (using windowed epochs of tI data from both V and NV conditions)

Data Feature
Self report items

Creativity Engagement Energy Positivity Boredom Leadership

ECG Mean HR .32∗•† −.39∗∗◦ .39∗•† .34∗•† .32∗∗◦

- No. of HR extrema .27∗◦ −.26∗◦

GSR Mean SCR amp. .42∗∗∗◦

- No. of SCR extrema .42∗∗∗◦
.48∗∗∗◦

- - .34∗•† .35∗•†

EEG Mean Theta power −.31∗◦ −.35∗◦

- Mean Alpha power −.30∗◦ −.39∗∗◦

- Mean L-Beta power .34∗• .48∗∗∗•
−.32∗• .31∗◦

- Mean H-Beta power .57∗∗∗•
.78∗∗∗•

−.40∗∗• .38∗∗◦

- - .38∗∗◦

MIDI No. of beats per sec. .29∗∗• .30∗† .33∗† .38∗∗† .30∗†

- - .41∗∗†

Motion Mean body QoM .27∗• .22∗• .22∗• .52∗∗∗•†
−.44∗∗•†

- - .31∗∗◦ .38∗∗•† .57∗∗∗•†

Note: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001, features adjusted using ◦bAdjS or •bAdjI ,
†SR scores adjusted using bAdjI ,

r > 0.4 highlighted in bold.

Table 2: Paired-sample t-test results for effect of vi-
sual condition on SR items and continuous features

Data t p df

SR Creativity −1.80 .146 4
- Engagement −2.85∗ .047 4
- Boredom 1.98 .120 4

ECG Mean HR 4.17∗∗ .009 5
- SD HR 1.97 .106 5
GSR Mean SCR amp. −2.24 .075 5
- SD SCR amp. −3.95∗ .011 5
MIDI Mean velocity 1.96 .091 7
Motion Mean body QoM 1.76 .122 7

Note: t = t-score, p = p-value, df = degrees of free-
dom, ∗p < .05, ∗∗p < .01.

Extracting the number of extrema as a feature of contin-
uous HR and SCR data is not a method commonly used
in other studies. However, we found this to be one of the
features which showed the strongest correlations to our SR
data. In particular, the number of SCR extrema showed
strong correlations with reported energy and positivity. Cor-
relations were weaker for the number of heart rate extrema.
Creativity appears to share correlation features with self

reported energy and positivity. This lends support to previ-
ous research which highlights the importance of arousal and
positive valence in the generation of creative ideas [6]. The
lack of relations between creativity and EEG features is in-
teresting, because it may be indicative of the contrasting use
of both non-conscious and conscious thought during creative
action. This holds true with previous EEG research, which
has struggled to show conclusive links between creativity
and localised brain activity [9]. The correlations between
leadership and Beta activity make sense, since we would
expect leadership to induce higher cognitive engagement.
Our results in 4.2 suggest that participant visibility has

effects, not just upon self reported aspects of interaction,
but also on physiology and performance features. Further
trials need to be performed in order to verify the statistical
significance of these effects. Our experimental design also
means that these results may be subject to an ordering bias,

due to the NV tasks always being held prior to the V ones.
However, if validated by further experiments, these findings
could have a large impact upon the design of collaborative
musical interfaces.
Throughout our analysis we found that the choice of base-

line adjustment method had a large effect on the results.
Understanding the nature of these effects will be impor-
tant, especially if such sensors are to be incorporated into
interfaces for public use, where baseline data collection is
challenging.
In summary, our findings indicate that continuous physi-

ological, motion and performance measures can be used to
infer subjective aspects of participant engagement, creativ-
ity and affect during live collaborative music making. Such
measures could be adopted as a means of gathering continu-
ous evaluation metrics during the testing of new interfaces.
This would allow designers to manipulate the layout of their
interface on-the-fly, whilst obtaining quantitative indicators
of how each layout influenced the user experience. Regard-
ing the design of interfaces, we envisage that such measures
could be used in a similar way, enabling the interface to
adapt to the participant in real-time. For example, an inter-
face might detect boredom and respond by providing new
options, whilst also conveying this emotional state to the
other participants, so that they may choose to adjust their
contributions. It is foreseeable that as physiological mea-
surement and motion capture technology becomes increas-
ingly non-invasive and user friendly, such devices could be
readily incorporated into interface designs.

6. CONCLUSIONS
The scale of this study means that our experimental results
are more suggestive than conclusive. However, our findings
support the hypothesis that continuous measures of affect,
psychophysiology, and performance are potentially valuable
in the evaluation and design of interfaces for collaborative
music making. Our future work will explore how these mea-
sures can be used to provide live emotional and behavioural
feedback to interacting musicians. Further experiments will
then allow us to evaluate how such interventions influence
the participant experience, and the outcomes of the inter-
action.
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