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Abstract

We present a novel smiling face detection framework

called SmileNet for detecting faces and recognising smiles

in the wild. SmileNet uses a Fully Convolutional Neu-

ral Network (FCNN) to detect multiple smiling faces in a

given image of varying resolution. Our contributions are

threefold: 1) SmileNet is the first smiling face detection

network that does not require pre-processing such as face

detection and registration in advance to generate a nor-

malised (cropped and aligned) input image; 2) the pro-

posed SmileNet is a simple and single FCNN architecture

simultaneously performing face detection and smile recog-

nition, which are conventionally treated as separate consec-

utive pipelines; and 3) SmileNet ensures real-time process-

ing speed (21.15 FPS) even when detecting multiple smil-

ing faces in a given image (300× 300). Experimental re-

sults show that SmileNet can deliver state-of-the-art perfor-

mance (95.76%), even under occlusions, and variances of

pose, scale, and illumination.

1. Introduction

Among the basic emotions, happiness is the most uni-

versally recognised emotion that represents a positive state

such as joy or satisfaction [5, 6]. Therefore, an increas-

ing number of studies have focused on smile detection in-

stead of the recognition of the six basic emotions of happi-

ness, sadness, surprise, anger, fear and disgust. Research on

smile detection is mainly divided into two categories, using

learned convolution filters [3, 11, 31] based on deep learn-

ing, or using hand-crafted visual features [10, 13, 14, 21].

In the best performing methods, the extracted features are

combined with deep learning (CNN) classifiers [11, 31] or

other machine learning techniques, such as Support Vector

Machine (SVM) [10, 14], AdaBoost [3, 21], and Extreme

Learning Machine [2].

Although there are many existing works on facial expres-

sion recognition and smile detection, the following chal-

lenges remain unaddressed:

Figure 1. Our system, which we refer to here as SmileNet, de-

tects faces and recognises smiles in the wild. When detected faces

are determined as smiling faces, the black bounding box colour

changes to red. The probability that appears at the top of the box

indicates the face confidence score, and the one appearing in the

middle of the box is about smiles. The intensity of red corresponds

to the level of confidence.

Unconstrained conditions: When analysing human be-

haviour in the wild, computer vision algorithms are chal-

lenged by variances in pose, scale and illumination.

Real-time performance: Existing methods cannot guar-

antee real-time performance because they require time-

consuming preprocessing steps such as face detection and

registration before performing smile recognition.

Addressing the above mentioned challenges, we propose

SmileNet (see Fig. 1), which performs simultaneous face

detection and smile recognition in a single architecture.

SmileNet aims not only to detect faces in a given colour

image, but also to estimate the confidence score of a smil-

ing face associated with a detected face. To achieve this, the
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proposed SmileNet first inherits the feature extraction capa-

bility of the pre-trained VGG16 network [22] by utilising

the parameters of this network. Following this step, we add

multi-scaled convolution layers at the end of the base struc-

ture of the VGG16 network (convolution layers) to perform

both classification (face and smile classification in pixels)

and regression (boundary box localisation) tasks. To the

best of our knowledge, SmileNet is the first smiling face de-

tection network that can process naturally captured images

without a pre-normalisation step which causes processing

time latency.

After building the proposed architecture, we train

SmileNet on well-known datasets for face detection (AFLW

[12]) and smile (CelebA [16]) recognition. Utilising the

properties of the SmileNet design discussed in Sec. 3.1.1,

we obtain a set of matched default boxes as originally pro-

posed by Liu et al. [15]. Then, we train SmileNet by re-

cursively calculating losses (including face classification,

bounding box regression, and smile classification) and up-

dating parameters in the network. During training, we ran-

domly apply one of the data augmentation strategies such as

shrinking, cropping and gamma correction. Finally, we per-

form quantitative evaluation on the CelebA and GENKI-4K

datasets, which contain images captured in the wild.

The main contributions of our work are three-fold:

1) Unconstrained processing: SmileNet takes the orig-

inal image captured in the wild as an input to produce

smiling face detection results. It does not require a pre-

normalisation step including face detection and registration.

2) Simple multi-task learning: SmileNet is able to learn

both face detection (including face classification and bound-

ing box regression) and smile recognition in a single archi-

tecture, while achieving the state-of-the-art results.

3) Real-time processing: SmileNet has the scalability to

process more face-related tasks without requiring additional

processing time.

2. Related Work

General methods on facial affect recognition.

Sariyanidi et al. [20] discusses the-state-of-the-art methods

for face registration, representation, dimensionality reduc-

tion and recognition, which are the common components

of a generic pipeline for performing automatic facial

affect analysis. Depending on the target application, the

generic pipeline might have to be changed to some degree.

Nonetheless, the first two steps of face localisation and 2D

/ 3D registration steps have been necessary for most of the

face analysis tasks such as face and gender recognition, age

prediction, and head pose estimation. See [25, 28, 30] for

details.

Smile detection. Despite significant technological ad-

vances in the field of affective computing, automatic facial

expression recognition still faces major challenges caused

by occlusions and variances of head pose, scale, and illu-

mination. These challenges are the main reason why every

state-of-the-art approach to smile detection (see Table 2) re-

quires a pre-normalisation step involving face detection and

registration (rotation, scaling, and 2D/3D transformation).

Some of the previous methods manually process the input

image to detect the face (when an automatic detector fails)

[13] or register the face based on the eye positions [21].

Prior studies that do not provide the details of the meth-

ods they utilise for face detection [21, 31] and registration

[3, 10, 13] remain questionable in terms of manual interven-

tions to the input image.

Approaches without pre-normalisation. In the field of

affective computing, there exist works that process the orig-

inal input image without pre-normalisation steps. Liu et al.

[16] combines LNet localising a face and ANet to predict

facial attributes including smiles. However, they use Edge-

Box [32] that proposes a number of candidate windows to

determine the final facial region among the multiple pre-

dicted positions scattered by LNet. Before feeding the out-

put of LNet to ANet, this process for narrowing the potential

face region is performed several times through several LNet

stages.

Ranjan et al. [18] proposed a deep neural network con-

sisting of multiple branches to handle various face-related

tasks. The proposed network uses Selective Search [26]

to generate multi-region proposals. Although the proposed

network has both face classification and smile recognition

branching, face classification and smile recognition are per-

formed as separate continuous pipelines. Most of the pre-

vious works that do not require a pre-normalisation step

follow the same mechanism as [16, 18], which require re-

gion proposal steps in the middle of the process. These re-

gion proposal steps typically increase the overall processing

time.

Object (face) detection in the wild. Thinking of a face

as one type of object, there are many hints for designing a

novel smiling face detection network that performs face de-

tection and smile recognition in a single architecture with-

out going through a pre-normalization step. SmileNet in-

herits the structural benefits of the latest methods with the

concept of default box [15] or anchor box [19].

3. The Proposed Framework: SmileNet

The proposed SmileNet framework is shown in Fig. 2.

SmileNet M is a fully convolutional neural network consist-

ing solely of convolution and pool layers. The basic struc-

ture of SmileNet consists of six output layers (total number

of output layers S is 6). Each output layer corresponding to

a scale s provides a set of predicted output pairs that include

the face confidence score, bounding box parameters and the

smile confidence score {c f ,b,ce}s at every pixel location,

as shown in Fig. 2(b). As the input to SmileNet M, a colour
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Figure 2. The architecture of SmileNet. (a) The entire architecture of SmileNet consisting solely of convolution and pool layers. (b)

Example of the concatenated output convolution layer for the second scale (s = 2) that produces a heatmap volume. (c) Legend for layers

and parts of SmieNet.

image I is given.

Our framework simultaneously learns the labels of the

face class α f , the bounding box β , and smile class αe

at each output layer. Based on the face confidence score

{c f } that appears on each pixel in the face heatmap C f ,

SmileNet first filters several candidates of the bounding box

and smile confidence score. Then, SmileNet deduces a

set of representative bounding boxes and the corresponding

smile confidence scores based on Non-Maximum Suppres-

sion (NMS) [17]. The following sections describe how to

configure SmileNet (Sec. 3.1), how to train face detection

and smile recognition in a single architecture (Sec. 3.2), and

how to combine the face detection and smile recognition re-

sults during testing (Sec. 3.3).

3.1. Model Construction

SmileNet M mainly consists of feature extraction

(VGG16 Conv. Layers), face recognition, and smile recog-

nition parts as shown in Fig. 2(a). G[1 : 10] represents con-

volution and pool layer groups with the same input resolu-

tion. For example, G2 consists of two convolution layers

and one pool layer, whereas G6 consists of two convolu-

tion layers. Similar to SSD [15], SmileNet outputs six-scale

(S = 6) heatmap volumes generated by multiple output con-

volution layers [(f1, e1):(f6, e6)]. f[1:6] is produced by the

face detection part, while e[1:6] is produced by the smile

recognition part. The output convolution layers of the two

different parts are eventually aligned and concatenated.

Each concatenated output convolution layer outputs

a pixel-wise heatmap volume consisting of six heatmap

planes. For example, the concatenated output convolu-

tion layer for the second scale (s = 2) outputs a three-

dimensional volume (HM2 × HM2 × 6) consisting of six

heatmap planes having the same resolution (HM2 ×HM2)

of the second scale, as shown in Fig. 2(b). The first plane

indicates the existence of a face. The last one shows con-

fidence of the smile in pixels. The remaining four planes

output the offset position of centre coordinates (cx,cy) rela-

tive to each pixel position, width w, and height h relative to

the current heatmap scale s that make up the bounding box,

respectively.

All of the convolution layers are followed by ReLU acti-

vation function except for the output convolution layer. For

the output convolution layer, the sigmoid function comes

after the layer for face and smile binary classification. The

layers for bounding box regression use linear values like

SSD [15]. The detailed parameters for layers in SmileNet

are summarised in Table 1. The parameters of the con-

volution layer are denoted in the order of number of ker-

nels, kernel size, stride and padding, while the parameters

of the pool layer follow the order of kernel size, stride and

padding.

During training, the output values that appear in

heatmaps responsible for the bounding box and smile are

examined only when the corresponding face label exists in

the pixel (see details in Sec. 3.2.1). During testing, the

values for the bounding box and the smile are examined

only when the corresponding face confidence score exceeds
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Group ID Conv. ID: Parameters Pool

G1 [1:2]: (64, 3, 1, 1) (2, 2, 0)

G2 [1:2]: (128, 3, 1, 1) (2, 2, 0)

G3 [1:3]: (256, 3, 1, 1) (2, 2, 0)

G4 [1:3]: (512, 3, 1, 1) (2, 2, 0)

G5 [1:3]: (512, 3, 1, 1) (3, 1, 1)

G6
1: (1024, 3, 1, 1) ·
2: (1024, 1, 1, 0) ·

G7
1: (256, 1, 1, 0) ·
2: (512, 3, 2, 1) ·

G8
1: (128, 1, 1, 0) ·
2: (256, 3, 2, 1) ·

G9
1: (128, 1, 1, 0) ·
2: (256, 3, 1, 0) ·

G10
1: (128, 1, 1, 0) ·
2: (256, 3, 1, 0) ·

Out. Conv.

C f : (1, 3, 1, 1) ·
B: (4, 3, 1, 1) ·
Ce: (1, 3, 1, 1) ·

Table 1. The detailed parameters of SmileNet layers (see text).

a threshold.

3.1.1 Properties of the SmileNet Design

Handling multi-scale faces: We train SmileNet follow-

ing similar mechanisms, including the loss functions, of

SSD [15]. SSD is a scale-invariant object detector that uses

multi-scale output layers.

Simplified model for the face modality: We utilise only

one aspect ratio configuring a default box to assign a ground

truth (face or smile) label to a pixel position in a heatmap,

as shown in Fig. 3. Face deformations, caused by expres-

sion and pose, do not create many different shapes between

faces. Therefore, a square bounding box fits generally well

into the shape of a face. For the same reason, Hao et al. [8]

uses Single-Scale RPN utilising one anchor box.

Inheriting characteristics of pre-trained models: Liu et

al. [16] confirmed that a model taking the parameters of a

pre-trained model trained on an object dataset (e.g., Ima-

geNet [4]) is suitable for localising faces. In addition, the

model that uses parameters of a pre-trained network based

on a face identity dataset (e.g., CelebFaces [24]) is useful

for capturing more detailed level of face attributes. There-

fore, we copy the pre-trained parameters of the VGG16

network [22] (originally trained for object classification) to

finetune the face detection part of SmileNet by training on

a face dataset (e.g., AFLW). Then, the finetuned param-

eters of the face detection part of SmileNet are inherited

by the smile recognition part (capturing the details of face

attributes) (see details in Sec. 3.2). This selective inheri-

tance of characteristics of the models trained with different

datasets helps to make the best of SmileNet performance.

3.2. Training

Training of SmileNet follows the following four steps:

1) Copying parameters of the VGG16 network [22] (convo-

lution layers) to the VGG16 (feature extraction) part G[1 : 5]
of SmileNet and subsampling the parameters from fully

connected layers ( f c6 and f c7) of VGG16 network to the

G6 layers of SmileNet, as described in SSD [15], 2) freezing

the smile recognition part and finetuning the face detection

part by using the AFLW (face) dataset [12], 3) copying the

parameters of the layers G[4 : 10] constituting the face de-

tection part to the corresponding layers of the smile recogni-

tion part, and 4) freezing the face detection part and finetun-

ing smile recognition part by using CelebA (smile) dataset

[16]. The first and second steps are very similar to the ini-

tialisation and end-to-end learning process of SSD network

[15]. In particular, we use the same cost function of the

SSD to finetune the face detection part of SmileNet. How-

ever, in this paper, only one square aspect ratio (ar ∈ {1}
in [15]) is used to match the default box [15] (see Fig. 3),

which ultimately reduces the kernel size of the output con-

volution layers, as shown in Fig. 2(b). The details of the

initialisation and training procedure are similar to [15].

3.2.1 Face Detection

As described above, finetuning of the face detection part is

based on the use of an objective loss function L f ace (similar

to SSD [15]), which is a weighted sum of the face classi-

fication loss Lcls and the bounding box regression loss Lreg

defined as:

L f ace(x f ,c, l,g) =
1

N
(Lcls(x f ,c)+λx f Lreg(l,g)), (1)

where N is the total number of matched default boxes. For

the regression loss Lreg, Smooth L1 loss [7] is used for cal-

culating the distance between predicted l = {lcx, lcy, lw, lh}
and the ground truth g = {gcx,gcy,gw,gh} bounding boxes

[15], as shown in Eq. 2 and 3. The regression loss is acti-

vated only when the indicator x f ∈ {1,0} for matching the

default box d = {dcx,dcy,dw,dh} to face existence is identi-

fied as True (x f = 1), and is disabled otherwise x f = 0.

Lreg(l,g) = ∑
m∈{cx,cy,w,h}

smoothL1
(lm − ĝm),

ĝcx = (gcx −dcx)/dw, ĝcy = (gcy −dcy)/dh,

ĝw = log(gw/dw), ĝh = log(gh/dh),

(2)

where

smoothL1
(k) =

{

0.5k2, if ‖k‖< 1

‖k‖−0.5, otherwise
(3)
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Figure 3. Example of matched default box for the face confidence heatmaps C f [4:5], produced by f 4 and f 5 output convolution layers (see

Fig. 2). (a) Dotted boxes (grey) represent multiple candidate default boxes with different aspect ratios. In this case, when calculating the

regression loss of the bounding box in the process of SmileNet training, the various shapes of the matched default box (blue) do not help

converge the solution. Thus, (b) SmileNet uses only one aspect ratio in the matching process of the default box d. The example image is

one of the sample images of AFLW dataset [12].

The face classification loss Lcls is based on binary cross

entropy over face confidence scores c, as shown in Eq. 4.

Lcls(x f ,c) =−x f log(c)− (1− x f )log(1− c) (4)

A positive matched box x f = 1 for a face is indicated

based on the ground truth label. However, a negative

matched box x f = 0 that represents the background region

is indicated in the process of Hard Negative Mining (HNM),

as described in [15]. In the process of HNM, we sort the cal-

culated losses only in the background region (¬(x f = 1)) in

descending order. Then, we select and use the highest losses

as the classification result for the negative region. The loss-

balancing weight λ (in Eq. 1) is set to 1 by experiment. If

we want to bias towards better box locations, we can set the

weight to a higher value (e.g., to 2).

3.2.2 Smile Recognition

For calculating the smile classification loss Lsmile, we use

the same binary cross entropy over smile confidence scores

e, as shown in Eq. 5. However, in this case, all positive and

negative matched boxes xe = {1,0} are indicated based on

the ground truth smile label. That means that the process

for finetuning of the smile recognition part does not require

Hard Negative Mining (HNM).

Lsmile(xe,e) =−xelog(e)− (1− xe)log(1− e) (5)

By freezing the face detection part of SmileNet, fine-

tuning the smile recognition part does not impair the face

detection performance. Therefore, if we are able to an-

notate the same location of the face bounding box across

the dataset, it is possible to train the smile recognition task

(or other face-related tasks) without going through a pre-

normalisation step, such as face detection and registration.

Based on this, this section focuses on calculating the mis-

classification losses to finetune the smile recognition part.

However, note that the AFLW (face) dataset [12] and the

CelebA (smile) dataset [16] have different bounding box

positions and shapes. To solve this problem, we empirically

adjusted the bounding box position of the CelebA dataset to

create a square box that surrounds the entire face area cen-

tred on the nose, as shown in Fig. 4. To do this, we used the

five landmark locations provided by CelebA dataset.

3.2.3 Data Augmentation in Training

SmileNet uses a 300×300 resolution and 3 channel colour

input image. Prior to data augmentation, all pixel values

for the R, G, and B channels of a sample image are nor-

malised based on the mean and standard deviation values of

the entire dataset. Each sample image is first flipped in the

horizontal direction with a probability of 0.5. In the train-

ing session, we randomly select one of data augmentation

mechanisms (shrinking, cropping and gamma correction) to

create noise-applied data samples for each epoch. Detailed

description of the augmentation strategy is described as fol-

lows:

Shrinking: We maintain the ratio of the image width and

height, however, we randomly select a real number between

0 and 1 to make the face smaller. The chosen number rep-

resents the percentage of the original size. For example, if

the number is 0.5, the resolution of the augmented image

is half the size of the original image. If the augmented im-

age is smaller than 300× 300, we fill the background with

random colour.

Cropping: To enlarge the face size in the image, we ran-

domly select a partial area of the original image (the se-

lected subregion is a square). After cropping, we rescale the

cropped image to 300×300 pixels. The face of the original

image is then enlarged. If the subregion does not contain

more than half of the original face region, we repeatedly
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Figure 4. Examples of adjusted (red) square bounding boxes of

the original CelebA (blue) rectangle ones.

select random subregions to find an appropriate region.

Gamma correction: We apply gamma correction to each

colour channel to make the SmileNet invariant to illumina-

tion. The input image of SmileNet is a three-colour channel

image. For gamma correction, we randomly select one of R,

G, or B colour channels. Then, we apply a random gamma

correction value to adjust the grayscale in the selected im-

age plane, and we combine the individually corrected image

planes to create a colour image with different lighting.

3.3. Testing

The smiling face detection is based on face and smile

confidence scores. If the face confidence score exceeds the

threshold th f ace (0.5, defined empirically), we classify the

set of face candidate pixel positions as a face. We then make

a set of bounding box candidates based on the pixel posi-

tions. Finally, the representative faces among the candidates

are detected using the Non-Maximum Suppression (NMS)

method (with jaccard overlap value 0.5), as shown in Fig. 5

(black squares). In addition, if the smile confidence score

associated with a representative bounding box exceeds the

smile threshold thsmile (0.5, defined empirically), the bound-

ing box indicates a smiling face (red square).

As mentioned in Sec. 3.1, each output layer of SmileNet

generates three categorical heatmaps that represent the ex-

istence of a face, the face bounding box and smiling face,

as shown in Fig. 2(b). Specifically, Fig. 5 visualises the

heatmap generated by SmileNet’s second-scale output layer

(s = 2), which handles the second smallest size of the face

that appears in the image. Thus, the pixels in the heatmap

are highlighted or activated only when a specific size of a

face is detected. The forefront heatmap highlights two clus-

ters of pixels, indicating that two faces exist. The rearmost

heatmap highlights the corresponding pixel only when the

detected face is smiling.

The reason for the smile heatmap highlighting the back-

ground area rather than the face area (in Fig. 5) is be-

cause we consider only the face region when calculating

the smile recognition loss as mentioned in Sec. 3.2.2. In

this case, although the training samples of the dataset are

used for distinguishing between smile and non-smile, the

background area including non-face texture is not consid-

ered in the training process for smile recognition that ulti-

mately outputs the random prediction value for the non-face

Figure 5. Examples of face detection and smile recognition.

region. The predicted confidence score of the smile appear-

ing in the background area is not considered in the smiling

face detection process.

4. Experiments and Results

SmileNet is inspired by SSD [15], which promises real-

time detection performances. Thus, the parameter values

used in the process of finetuning the face detection and

the smile recognition parts of SmileNet are initialised with

the values used for training the base network of SSD [15].

We used SGD with initial learning rate 10−3, 0.9 momen-

tum, 0.0005 weight decay, and batch size 10. We used the

10−3 learning rate for the first 40K iterations, then contin-

ued training for 40K with 10−2. We continuously reduced

the learning rate every 40K iterations until it reached 10−5.

Increasing the learning rate for the second 40K iterations

speeds up the optimisation. However, we first started train-

ing with the learning rate of 10−3, because the optimisation

process diverged if we used a larger learning rate in the be-

ginning.

In the next sections, we detail the experiments we have

conducted to evaluate two main performance factors of

SmileNet: the smiling face detection accuracy and the pro-

cessing time.

4.1. Smiling Face Detection Performance

For smiling face detection, the accuracy refers to the

smile recognition performance including the face detection

results. If face detection fails, the result of smile recogni-

tion is considered to be a non-smile. Beginning with [29],

which performed the first extensive smile detection study,

most of the subsequent studies used the GENKI-4K dataset

for performance evaluation [1]1. In this paper, the smiling

face detection experiments were performed not only on the

1The GENKI-4K dataset is a subset of the GENKI dataset used in [29].

This dataset consists of 4,000 face images, each labelled with smile and

head pose (yaw, pitch, roll). Only the GENKI-4K dataset is publicly avail-

able.

1586



Method Feature Classifier Detection Registration Input (W ×H ×C) Accuracy (%)

[21] Pixel comparison AdaBoost Y Eyes (manual) 48×48×1 89.70±0.45

[14] HOG SVM [27] Eyes 48×48×1 92.26±0.81

[10] Multi-Gaussian SVM [27] Y 64×64×1 92.97

[11] LBP SVM [27]+[23] / ori. 5+6 Pts 96×96×1 93.20±0.92

[2] HOG ELM [27] Flow-based [2] 100×100×1 88.20

[31] CNN Softmax Y Face Pts 90×90×1 94.60±0.29

[13] Gabor-HOG SVM [27] / manual Y 64×64×1 91.60±0.89

[3]-I CNN SVM [16] Y 64×64×1 92.05±0.74

[3]-II CNN SVM [16] · 64×64×1 90.60±0.75

[3]-III CNN SVM · · 64×64×1 78.10±0.56

SmileNet CNN Sigmoid · · 300×300×3 95.76±0.56

Table 2. A comparison with the state-of-the-art methods on the GENKI-4K dataset [1]. We summarise the features, classifiers, detection

/ registration methods and input image resolution (width, height, and channel) that were used in previous studies in published order. All

previous studies require a normalised (cropped and aligned) input image, which necessarily require face detection and registration steps in

advance (except [3]-II and III). Some works [21, 10, 31, 13, 3] do not specify how to detect and align a face (in this case, ’Y’), while [11]

mentions that the original image is used if the face detection fails.

GENKI-4K dataset but also on the CelebA dataset which

also contains smile labels.

Testing on the GENKI-4K dataset: Experiments that

use this dataset are conventionally based on four-fold vali-

dation procedures. The four-fold validation utilises one of

four combinations of training and testing samples. Each

fold uses 75% of the dataset for training and the remaining

25% for testing.

However, as GENKI-4K dataset contains a relatively

small number of data samples (4,000), we initially utilised

the CelebA dataset that contains a rich set of images for

training. When SmileNet was trained on the CelebA

dataset, we used the entire GENKI-4K dataset for test-

ing. We obtained a smiling face detection accuracy of

95.23%, as shown in Fig. 6. Despite being trained on a

completely different dataset with different characteristics,

SmileNet has already surpassed all the latest methods that

use the GENKI-4K dataset for testing, as shown in Table 2.

Additionally, to provide a fair comparison with other

methods that use the four-fold validation strategy, we used

the GENKI-4K dataset together with the bounding box

annotations obtained with our method (see Sec. 4.3) to

finetune the SmileNet, which was trained on the CelebA

dataset. In this case, the smiling face detection accuracy is

improved further. This is due to the fact that the training

samples in GENKI-4K dataset are relatively similar to the

testing samples as compared to CelebA dataset. Although

the training and testing samples do not overlap, using the

same dataset (GENKI-4K) for training helps SmileNet learn

the test sample characteristics of the same (GENKI-4K)

dataset. Our four-fold validation results were 96.33%,

96.30%, 95.30% and 95.10%, as shown in Fig. 6. We

obtained the best results (mean: 95.76%, standard devia-

tion: 0.56%) compared to the accuracies reported by exist-

Figure 6. Receiver Operating Characteristic (ROC) curve for smil-

ing face detection accuracy using GENKI-4K [1] dataset. Tr and

Te represent training and testing, respectively.

ing works listed in Table 2.

Although SmileNet does not require separate steps for

face detection and registration, SmileNet’s smiling face de-

tection results rely on the face detection performed in par-

allel on the same architecture. Among the existing works

listed in Table 2, Chen’s work ([3]-II) reports testing accu-

racy when the registration process is not used. We therefore

compare SmileNet’s smiling face detection performance

more closely to the method of Chen ([3]-II). Our experi-

mental results show that SmileNet outperforms (95.76%)

the most recently reported smile detection result (90.60%)

based on a deep learning architecture ([3]-II).

Testing on the CelebA dataset: In the second experi-

ment, we used the CelebA dataset to train and test SmileNet.

In this experiment, we randomly selected 75% of the dataset
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Method RP Acc. (%) Time (ms.)

Liu et al. [16] EB [32] 92.00 139.00

Ranjan et al. [18] SS [26] 93.00 3,500.00

SmileNet · 92.81 47.28

Table 3. Comparison to the state-of-the-art methods on the CelebA

dataset. RP, EB and SS represent Region Proposal, EdgeBox [32]

and Selective Search [26], respectively.

for training and used the remaining 25% for the testing.

We performed several experiments using different combi-

nations of randomly selected training and test samples. Our

experimental results show that SmileNet detects smiling

faces accurately (mean: 92.81%), similarly to the state-of-

the-art methods ([16]: 92.00% and [18]: 93.00%), as shown

in Table 3. However, SmileNet is much faster (47.28 ms)

than the other methods ([16]: 139 ms, [18]: 3,500 ms) that

require region proposal methods for smile recognition (see

Table. 3).

4.2. Computational Speed

The average processing time of SmileNet was 47.28 ms

(21.15 FPS) during testing, in our experimental environ-

ment consisting of an Intel Core i7-6700HQ CPU processor

and an NVIDIA GeForce GTX 960M GPU with 23.5GB

of DRAM. The state-of-the-art method [16] requires 35 ms

to generate the face confidence heatmap and 14 ms to clas-

sify the attributes. In addition, this method requires another

90 ms to find the candidate bounding box (EdgeBox [32])

for localising the final bounding box that ends up with a

total processing time of 139 ms (7.19 FPS). Another state-

of-the-art method [18] takes an average of 3,500 ms (0.29

FPS) to process an image. Ranjan et al. [18] explains that

the main bottleneck for speed is the process of proposing

regions (Selective Search [26]) and the repetitive CNN pro-

cess for every individual proposal.

To ensure a fair comparison of the processing times, we

should measure the time in the same experimental environ-

ment. However, Liu et al. [16] does not provide detailed in-

formation about the experimental environment, except that

they use GPUs. Ranjan et al. [18] implemented their all-in-

one network using 8 CPU cores and GTX TITAN-X GPUs.

The processing speed of the all-in-one network is 74 times

slower, even with a more powerful experimental environ-

ment.

4.3. Discussion

Although SmileNet is significantly faster than other

smile detection methods, the processing speed is lower than

the base object detection (SSD) model [15] as the complex-

ity of SmileNet is nearly twice that of SSD. Placing more

layers to perform smile recognition increased the number of

parameters in SmileNet. However, the structure of the all-

in-one network [18] shows that sharing more convolutional

features does not degrade the performance of various tasks.

Capitalising on this idea, we expect to further reduce the

complexity of SmileNet by sharing more layers and assign-

ing a relatively small number of layers to other face-related

tasks (e.g., smile recognition).

SmileNet requires bounding box and smile labels for

training. However, GENKI-4K dataset does not provide

bounding box labels. Therefore, we annotated the face

bounding box of the images by using SmileNet trained on

the CelebA dataset (with bounding box label). When de-

tection failed, we manually annotated the bounding box.

We then used the annotated bounding box label when train-

ing SmileNet with the GENKI-4K dataset. The bounding

box labels for the GENKI-4K dataset will be made publicly

available.2

The face detection performance of SmileNet inherits the

performance of SSD [15], which is typically poor for de-

tecting small faces. However, the GENKI-4K and CelebA

datasets do not contain extremely small faces. To handle ex-

tremely small faces, we can extend the model by applying

the idea that takes advantage of context patterns surround-

ing a face area, as proposed in [9].

5. Conclusions

In this paper, we tackled the problem of smiling face de-

tection in the wild without a pre-normalisation step (face de-

tection and registration). To this end, we proposed SmileNet

which performs face detection and smile recognition si-

multaneously in a single framework. For fast and scale-

invariant detection, SmileNet inherits the benefits of the

state-of-the-art object detection network SSD. In addition,

we used pre-trained parameters of two different networks

(those trained for object classification and trained for face

detection) to learn the face and smile patterns. Conse-

quently, we built a single framework that enables real-time

scale-invariant smiling face detection in the wild. Our ex-

perimental results show that SmileNet (95.76%) outper-

forms the state-of-the-art methods while maintaining real-

time speed (21.15 FPS).
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