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InTroduCTIon

Human natural affective behaviour is mul-
timodal, subtle and complex. In day-to-day 
interactions, people naturally communicate 
multimodally by means of language, vocal 
intonation, facial expression, hand gesture, head 
movement, body movement and posture, and 
possess a refined mechanism for understanding 
and interpreting information conveyed by these 
behavioural cues.

Despite the available range of cues and 
modalities in human-human interaction (HHI), 
the mainstream research on human emotion has 
mostly focused on facial and vocal expressions 
and their recognition in terms of seven discrete, 
basic emotion categories (neutral, happiness, 
sadness, surprise, fear, anger and disgust; 
Keltner & Ekman, 2000; Juslin & Scherer, 
2005). In line with the aforementioned, most 
of the past research on automatic affect sensing 
and recognition has focused on recognition of 
facial and vocal expressions in terms of basic 
emotional states, and then based on data that 
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has been posed on demand or acquired in 
laboratory settings (Pantic & Rothkrantz, 2003; 
Gunes, Piccardi, & Pantic, 2008; Zeng, Pantic, 
Roisman, & Huang, 2009). Additionally, each 
modality—visual, auditory, and tactile—has 
been considered in isolation. However, a num-
ber of researchers have shown that in everyday 
interactions people exhibit non-basic, subtle 
and rather complex mental/affective states like 
thinking, embarrassment or depression (Baron-
Cohen & Tead, 2003). Such subtle and complex 
affective states can be expressed via tens (or 
possibly hundreds) of anatomically possible 
facial expressions, bodily gestures or physi-
ological signals. Accordingly, a single label 
(or any small number of discrete classes) may 
not reflect the complexity of the affective state 
conveyed by such rich sources of information 
(Russell, 1980). Hence, a number of researchers 
advocate the use of dimensional description of 
human affect, where an affective state is char-
acterized in terms of a small number of latent 
dimensions (e.g., Russell, 1980; Scherer, 2000; 
Scherer, Schorr, & Johnstone, 2001).

It is not surprising, therefore, that automatic 
affect sensing and recognition researchers have 
recently started exploring how to model, anal-
yse and interpret the subtlety, complexity and 
continuity of affective behaviour in terms of 
latent dimensions, rather than in terms of a small 
number of discrete emotion categories.

A number of recent survey papers exist on 
automatic affect sensing and recognition (e.g., 
Gunes & Piccardi, 2008; Gunes et al., 2008; 
Zeng et al., 2009). However, none of those focus 
on dimensional affect analysis. This article, 
therefore, sets out to explore recent advances in 
human affect modelling, sensing, and automatic 
recognition from visual (i.e., facial and bodily 
expression), audio, tactile (i.e., heart rate, skin 
conductivity, thermal signals etc.) and brain-
wave (i.e., brain and scalp signals) modalities by 
providing an overview of theories of emotion (in 
particular the dimensional theories), expression 
and perception of emotions, data acquisition 
and annotation, and the current state-of-the-
art in automatic sensing and recognition of 

emotional displays using a dimensional (rather 
than categorical) approach.

baCkGround rESEarCh

Emotions are researched in various scientific 
disciplines such as neuroscience, psychology, 
and linguistics. Development of automated 
affective multimodal systems depends signifi-
cantly on the progress in the aforementioned 
sciences. Accordingly, we start our analysis by 
exploring the background in emotion theory, 
and human perception and recognition.

ThEorIES oF EMoTIon

According to the research in psychology, three 
major approaches to emotion modelling can be 
distinguished (Grandjean, Sander, & Scherer, 
2008): (1) categorical approach, (2) dimensional 
approach, and (3) appraisal-based approach.

The categorical approach is based on 
research on basic emotions, pioneered by 
Darwin (1998), interpreted by Tomkins (1962, 
1963) and supported by findings of Ekman & 
his colleagues (1992, 1999). According to this 
approach there exist a small number of emo-
tions that are basic, hard-wired in our brain, and 
recognized universally (e.g., Ekman & Friesen, 
2003). Ekman and his colleagues conducted 
various experiments on human judgment of 
still photographs of deliberately displayed 
facial behaviour and concluded that six basic 
emotions can be recognized universally.These 
emotions are happiness, sadness, surprise, fear, 
anger and disgust (Ekman, 1982). Although 
psychologists have suggested a different number 
of such basic emotions, ranging from 2 to 18 
categories (Ortony & Turner, 1990; Wierzbicka, 
1992), there has been considerable agreement 
on the aforementioned six emotions. To date, 
Ekman’s theory on universality and interpreta-
tion of affective nonverbal expressions in terms 
of basic emotion categories has been the most 
commonly adopted approach in research on 
automatic affect recognition.
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On the other hand, however, a number 
of researchers in psychology argued that it 
is necessary to go beyond discrete emotions. 
Among various classification schemes, Baron-
Cohen and his colleagues, for instance, have 
investigated cognitive mental states (e.g., 
agreement, concentrating, disagreement, think-
ing, reluctance, and interest) and their use in 
daily life. They did so via analysis of multiple 
asynchronous information sources such as facial 
actions, purposeful head gestures, and eye-gaze 
direction. They showed that cognitive mental 
states occur more often in everyday interac-
tions than the basic emotions (Baron-Cohen 
& Tead, 2003). These states were also found 
relevant in representing problem-solving and 
decision-making processes in human-computer 
Interaction (HCI) context and have been used 
by a number of researchers, though based on 
deliberately displayed behaviour rather than 
in natural scenarios (e.g., El Kaliouby & Rob-
inson, 2005).

According to the dimensional approach, 
affective states are not independent from one 
another; rather, they are related to one another 

in a systematic manner. In this approach, ma-
jority of affect variability is covered by three 
dimensions: valence, arousal, and potency 
(dominance) (Davitz, 1964; Mehrabian & Rus-
sell, 1974; Osgood, Suci, & Tannenbaum, 
1957). The valence dimension refers to how 
positive or negative the emotion is, and ranges 
from unpleasant feelings to pleasant feelings 
of happiness. The arousal dimension refers to 
how excited or apathetic the emotion is, and it 
ranges from sleepiness or boredom to frantic 
excitement. The power dimension refers to the 
degree of power or sense of control over the 
emotion. Taking into account the aforemen-
tioned, a reasonable space of emotion can be 
modelled as illustrated in Figure 1a. Russell 
(1980) introduced a circular configuration 
called Circumflex of Affect (see Figure 1b) and 
proposed that each basic emotion represents a 
bipolar entity being a part of the same emotional 
continuum. The proposed polars are arousal 
(relaxed vs. aroused) and valence (pleasant 
vs. unpleasant). As illustrated in Figure 1b, 
the proposed emotional space consists of four 
quadrants: low arousal positive, high arousal 

Figure 1. Illustration of a) three dimensions of emotion space (V-valence, A-arousal, P-power), 
and b) distribution of the seven emotions in arousal-valance (A-V) space. Images adapted from 
(Jin & Wang, 2005) and (Breazeal, 2003), respectively.
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positive, low arousal negative, and high arousal 
negative. In this way, as argued by Russell, it 
is possible to characterize all emotions by their 
valence and arousal, and different emotional 
labels could be plotted at various positions on 
this two-dimensional plane.

However, each approach, categorical or 
dimensional, has its advantages and disad-
vantages. In the categorical approach, where 
each affective display is classified into a single 
category, complex mental/affective state or 
blended emotions may be too difficult to handle 
(Yu, Aoki, & Woodruff, 2004). Instead, in 
dimensional approach, observers can indicate 
their impression of each stimulus on several 
continuous scales. Despite exhibiting such 
advantages, dimensional approach has received 
a number of criticisms. Firstly, the usefulness 
of these approaches has been challenged by 
discrete emotions theorists, such as Silvan 
Tomkins, Paul Ekman, and Carroll Izard, who 
argued that the reduction of emotion space to 
two or three dimensions is extreme and resulting 
in loss of information. Secondly, while some 
basic emotions proposed by Ekman, such as 
happiness or sadness, seem to fit well in the 
dimensional space, some basic emotions be-
come indistinguishable (e.g., fear and anger), 
and some emotions may lie outside the space 
(e.g., surprise). It also remains unclear how to 
determine the position of other affect-related 
states such as confusion. Note, however, that 
arousal and valence are not claimed to be the 
only dimensions or to be sufficient to differenti-
ate equally between all emotions. Nonetheless, 
they have proven to be useful in several domains 
(e.g., affective content analysis as reported by 
Yang, Lin, Su, & Chen, 2007).

Scherer and colleagues introduced another 
set of psychological models, referred to as com-
ponential models of emotion, which are based 
on appraisal theory (Scherer et al., 2001). The 
appraisal-based approach, which can also be 
seen as extension to the dimensional approach, 
claims that emotions are generated through 
continuous, recursive subjective evaluation of 
both our own internal state and the state of the 
outside world. This approach views emotions 

through changes in all relevant components 
including cognition, motivation, physiological 
reactions, motor expressions, and feelings. The 
advantage of componential models is that they 
do not limit emotional states to a fixed number 
of discrete categories or to a few basic dimen-
sions. Instead, they focus on the variability of 
different emotional states, as produced by dif-
ferent types of appraisal patterns. Emotion is 
described through a set of stimulus evaluation 
checks, including the novelty, intrinsic pleasant-
ness, goal-based significance, coping potential, 
and compatibility with standards. Therefore, 
differentiating between various emotions and 
modelling individual differences become pos-
sible. How to use the appraisal-based approach 
for automatic emotion recognition remains an 
open research question due to the fact that this 
approach requires complex, multicomponential 
and sophisticated measurements of change.

Even with over a century of research, all 
of the aforementioned issues, and in particular 
the issue of which psychological model of 
emotion is more appropriate for which con-
text, still remain under discussion. For further 
details on different approaches to modelling 
human emotions and their relative advantages 
and disadvantages, the reader is referred to 
the works by Scherer (2000) and Grandjean 
et al. (2008).

ExPrESSIon and 
PErCEPTIon oF EMoTIonS

Emotional information is conveyed by a broad 
range of multimodal cues, including speech and 
language, gesture and head movement, body 
movement and posture, vocal intonation and 
facial expression, and so forth. Herewith, we 
provide a summary of the findings from research 
on emotion communication by means of facial 
and bodily expression, speech and nonverbal 
vocalizations, bio-potential signals (physiologi-
cal signals, brain waves and thermal signals). 
Figure 2 illustrates examples of sensors used 
for acquiring affective data from these cues 
and modalities.



72   International Journal of Synthetic Emotions, 1(1), 68-99, January-June 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

FaCIal ExPrESSIon

Ekman and his colleagues conducted vari-
ous experiments of human judgment on still 
photographs of deliberately displayed facial 
behaviour and concluded that six basic emotions 
can be recognized universally: happiness, sad-
ness, surprise, fear, anger and disgust. Several 
other emotions and many combinations of emo-
tions have been studied as well but it remains 
unconfirmed whether they are universally 
distinguishable. Although prototypic expres-
sions of basic emotions like happiness, surprise, 
and fear are natural, they occur infrequently in 
daily life and provide an incomplete description 
of facial behaviour. To capture the subtlety of 

human facial behaviour, Ekman and Friesen 
developed the Facial Action Coding System 
(FACS) for coding fine-grained changes in the 
face (Ekman & Friesen, 1978; Ekman, Friesen, 
& Hager, 2002). FACS is based on the enumera-
tion of all facial action units, which are related 
to facial muscle actions, causing changes in the 
facial appearance. In addition to this, Friesen 
and Ekman (1984) developed Emotion FACS 
(EMFACS) as a method for using FACS to score 
only the facial actions that might be relevant to 
detecting emotions.

As proposed by a number of researchers 
(e.g., Plutchik, 1984; Russell, 1997), different 
facial expressions could also be mapped to vari-
ous positions on the two-dimensional plane of 

Figure 2. Examples of sensors used in multimodal affective data acquisition: (a) camera for 
visible imagery, (b) microphone(s) for audio recording, (c) various sensors for bio-potential 
signal recording and (d) infrared camera for thermal imagery
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arousal-valence. This is illustrated in Figure 1b, 
where a series of facial expression photos was 
mapped onto Russell’s (1997) arousal-valence 
dimensions (Breazeal, 2003).

To date, however, Ekman’s theory of basic 
emotions and the FACS are the most com-
monly used schemes in vision-based systems 
attempting to recognize facial expressions and 
analyze human affective behaviour (Pantic & 
Rothkrantz, 2003; Zeng et al., 2009).

bodIly ExPrESSIon

Researchers in social psychology and human 
development have long emphasized the fact 
that emotional states are expressed through 
body movement (Argyle, 1975; Darwin, 1998; 
Hadjikhani & De Gelder, 2003). However, 
compared to research on facial expression, the 
expressive information body gestures carry has 
not been adequately explored yet.

The main focus has been that of map-
ping bodily expression onto discrete emotion 
categories. Darwin (1998) was the first to 
describe in detail the bodily expressions as-
sociated with emotions in animals and humans 
and proposed several principles underlying 
the organization of these expressions. Fol-
lowing Darwin’s early work, there have been 
a number of studies on human body postures 
communicating emotions (e.g., Argyle, 1975). 
Coulson presented experimental results on at-
tribution of six emotions (anger, disgust, fear, 
happiness, sadness and surprise) to static body 
postures by using computer-generated figures 
(Coulson, 2004). He found out that in general, 
human recognition of emotion from posture is 
comparable to recognition from the voice, and 
some postures are recognized as effectively as 
facial expressions.

Van den Stock, Righart, and De Gelder 
(2007) also presented a study investigating 
emotional body postures (happiness, sadness, 
surprise, fear, disgust and anger) and how they 
are perceived. Results indicate good recogni-
tion of all emotions, with angry and fearful 
bodily expressions less accurately recognized 

compared to, for example, bodily expressions 
of sadness.

Behavioural studies have shown that 
posture can communicate affective dimen-
sions as well as discrete emotion categories. 
Kleinsmith, Ravindra De Silva, and Bianchi-
Berthouze (2005) identified that scaling, 
arousal, valence, and action tendency were the 
affective dimensions used by human observers 
when discriminating between postures. They 
reported that low-level posture features such as 
orientation (e.g., orientation of shoulder axis) 
and distance (e.g., distance between left elbow 
and left shoulder) could effectively discriminate 
between the affective dimensions.

In general, dimensional models are con-
sidered important in affect sensing as a single 
label may not reflect the complexity of the 
affective state conveyed by a body posture or 
gesture. It is also worth noting that Ekman and 
Friesen (1967) considered expressing discrete 
emotion categories via face, and communicating 
dimensions of affect via body as more plausible. 
However, communication of emotions by bodily 
movement and expressions is still a relatively 
unexplored and unresolved area in psychol-
ogy, and further research is needed in order to 
obtain a better insight on how they contribute 
to the perception and recognition of various 
affective states both in terms of categories and 
A-V dimensions.

audIo

Speech conveys affective information through 
explicit (linguistic) messages, and implicit 
(paralinguistic) messages that reflect the way the 
words are spoken. If we consider the verbal part 
(linguistic message) only, without regarding the 
manner in which it was spoken (paralinguistic 
message), we might miss important aspects of 
the pertinent utterance and even misunderstand 
the spoken message by not attending to the non-
verbal aspect of the speech. However, findings 
in basic research indicate that spoken messages 
are rather unreliable means to analyze and pre-
dict human (affective) behaviour (Ambady & 
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Rosenthal, 1992). Anticipating a person’s word 
choice and the associated intent is very difficult: 
even in highly constrained situations, different 
people choose different words to express exactly 
the same thing. Yet, some information about the 
speaker’s affective state can be inferred directly 
from the surface features of words, which were 
summarized in some affective word dictionar-
ies and lexical affinity (e.g., Whissell, 1989). 
The rest of affective information lies below the 
text surface and can only be detected when the 
semantic context (e.g., discourse information) 
is taken into account. The association between 
linguistic content and emotion is language-
dependent and generalizing from one language 
to another is very difficult to achieve (Ortony 
& Turner, 1990).

When it comes to implicit, paralinguistic 
messages that convey affective information, the 
research in psychology and psycholinguistics 
provides an immense body of results on acous-
tic and prosodic features which can be used to 
encode affective states of a speaker. For a com-
prehensive overview of the past research in the 
field, readers are referred to Juslin and Scherer 
(2005). The prosodic features which seem to 
be reliable indicators of the basic emotions are 
the continuous acoustic measures, particularly 
pitch-related measures (range, mean, median, 
and variability), intensity and duration. For 
a comprehensive summary of acoustic cues 
related to vocal expressions of basic emotions, 
readers are referred to Cowie et al. (2001). 
However, basic researchers have not identi-
fied an optimal set of voice cues that reliably 
discriminate among emotions. Nonetheless, 
listeners seem to be accurate in decoding some 
basic emotions from prosody (Juslin & Scherer, 
2005) as well as some non-basic affective states 
such as distress, anxiety, boredom, and sexual 
interest from non-linguistic vocalizations like 
laughs, cries, and yawns (Russell & Fernández-
Dols, 1997).

There have also been a number of works 
focusing on how to map audio expression to 
dimensional models. Cowie et al. used valence-
activation space, which is similar to the A-V 
space, to model and assess emotions from 

speech (Cowie, Douglas-Cowie, Savvidou, 
McMahon, Sawey, & Schroder, 2000; Cowie et 
al., 2001). Scherer and his colleagues have also 
proposed how to judge emotion effects on vocal 
expression, using the appraisal-based theory 
(Grandjean et al., 2008; Scherer, 2000).

bIo-PoTEnTIal SIGnalS

Numerous findings in psychophysiology suggest 
that the activation of the autonomic nervous 
system changes when emotions are elicited 
(Levenson, 1988).

While the visual modality including facial 
expressions and body gestures provides a visible 
proof of affective arousal, bio-signals such as 
electroencephalography (EEG) and functional 
near-infrared spectroscopy (fNIRS) provide an 
invisible proof of affective arousal (Savran et 
al., 2006). The signals commonly referred to as 
physiological or bio-signals (Changchun, Rani, 
& Sarkar, 2005; Savran et al., 2006; Takahashi, 
2004) and used in affect sensing research field 
to identify emotions can be listed and described 
as follows.

Galvanic Skin Response (GSR) provides • 
a measurement of the of skin conductance 
(SC). SC increases linearly with a person’s 
level of overall arousal or stress (Chanel, 
Kronegg, Grandjean, & Pun, 2007).
Electromyography (EMG) measures the • 
muscle activity or frequency of muscle 
tension, and has been shown to correlate 
with negatively valenced emotions (Haag, 
Goronzy, Schaich, & Williams, 2004, Na-
kasone, Prendinger, & Ishizuka, 2005).
Blood Volume Pulse (BVP) is an indica-• 
tor of blood flow. Since each heart beat (or 
pulse) presses blood through the vessels, 
BVP can also be used to calculate heart 
rate and inter-beat intervals. Heart rate 
increases with negatively valenced emo-
tions, such as anxiety or fear.
Skin temperature (ST) describes the tem-• 
perature as measured on the surface of the 
skin.
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Electrocardiogram (ECG) signal mea-• 
sures contractile activity of the heart. 
This can be recorded either directly on 
the surface of the chest or alternatively 
on the limbs (more sensitive to artefacts). 
It can be used to measure heart rate and 
inter-beat intervals to determine the heart 
rate variability (HRV). A low HRV can 
indicate a state of relaxation, whereas an 
increased HRV can indicate a potential 
state of mental stress or frustration.
Respiration rate (R) measures how deep • 
and fast a person is breathing. Slow and 
deep breathing indicates a relaxed resting 
state while irregular rhythm, quick varia-
tions, and cessation of respiration cor-
responds to more aroused emotions like 
anger or fear (Chanel et al., 2007; Haag 
et al., 2004).

There is evidence suggesting that measure-
ments recorded over various parts of the brain 
including the amygdala enable observation of 
the emotions felt (Pun et al., 2006). For instance, 
approach or withdrawal response to a stimulus 
is known to be linked to the activation of the 
left or right frontal cortex, respectively.

As stated by Arroyo-Palacios and Romano 
(2008) physiological or bio-signals offer great 
possibilities for automatic affect recognition. 
However, exploiting their full potential has been 
impossible to date due to a lack of consensus 
among psychologists about the nature, theories, 
models, and specificity of physiological patterns 
for each emotion-space dimension. Needless 
to say, establishing standardization on key 
areas such as stimulus for the identification of 
physiological patterns, physiological measures, 
features to analyze, and the emotional model to 
be used will greatly advance the state-of-the-
art in this field (Arroyo-Palacios & Romano, 
2008).

ThErMal SIGnalS

A number of studies in neuropsychology, physi-
ology, and behaviour analysis suggest that there 

exists a correlation between mammals’ core 
body temperature and their affective states. 
Nakayama, Goto, Kuraoka, & Nakamura (2005) 
conducted experiments by monitoring the facial 
temperature change of monkeys under stressful 
and threatening conditions. Their study revealed 
that a decrease in nasal skin temperature is rel-
evant to a change from neutral to negative affec-
tive state. Vianna and Carrive (2005) conducted 
another independent experiment by monitoring 
the temperature changes in rats when they were 
experiencing fearful situations. They observed 
that the temperature increased in certain body 
parts (i.e., eyes, head and back), while in other 
body parts (i.e., tail and paws) the temperature 
dropped simultaneously.

Other studies also exist indicating that 
contraction or expansion of the facial/bodily 
muscles of humans causes fluctuations in the 
blood flow rate (e.g., Khan, Ingleby, & Ward, 
2006, Khan, Ward, & Ingleby, 2006, Khan, 
Ward, & Ingleby, 2009; Tsiamyrtzis, Dowdall, 
Shastri, Pavlidis, Frank, & Ekman, 2007). This 
muscular activity results in a change in the 
volume of blood flow under the surface of the 
human facial and/or bodily skin. Thus, tensed 
or contracted muscles (e.g., in anger or stress) 
result in higher skin temperature.

Unlike other bio-physiological sensing, 
the use of infrared thermal camera does not 
rely on contact with the human body. Thus, 
non-invasive detection of any change in facial 
and/or bodily thermal features relevant to 
detecting, extracting, and interpreting human 
affective states is feasible. For instance, Pavlidis, 
Levine, and Baukol (2001) and Tsiamyrtzis et 
al. (2007) have shown that there is a correla-
tion between increased blood perfusion in the 
orbital muscles and anxiety and stress levels 
of humans. Similarly, Puri, Olson, Pavlidis, 
Levine, and Starren (2005) reported that users’ 
stress level was correlated with increased blood 
flow in the frontal vessels of forehead causing 
dissipation of convective heat.

A generic model for estimating the relation-
ship between fluctuations in blood flow, skin 
temperature, and facial/bodily muscle activity is 
not yet available. Such a model could enhance 
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our understanding of the relationship between 
affective dimensions and the facial/bodily 
thermal and physiological reactions.

PoSEd VS. SPonTanEouS 
ExPrESSIonS

Most of the studies supporting the universality of 
emotional expressions are based on experiments 
related to deliberate/posed expressions. Studies 
reveal that humans recognise both deliberate/
posed and involuntary/spontaneous emotional 
expressions equally accurately. However, delib-
erate expressions are significantly different from 
spontaneous expressions. Deliberate facial be-
haviour is mediated by separate motor pathways 
and differences between natural and deliberate 
facial actions may be significant. Schmidt and 
Cohn (2001) reported that an important visual 
cue signalling a smile as being deliberate or 
spontaneous is the temporal evolvement of 
the smile. Extensive research has been further 
conducted by Cohn and colleagues in order to 
identify temporal and morphological differ-
ences between deliberately and spontaneously 
displayed facial affective behaviour (Ambadar, 
Schooler, & Cohn, 2005).

In daily interactions, a particular bodily 
expression is most likely to be accompanied by 
a congruent facial expression being governed 
by a single emotional state. Darwin argued that 
because our bodily actions are easier to control 
on command than our facial actions, the infor-
mation conveyed by body movements should be 
less significant than that conveyed by the face, 
at least when it comes to discerning spontane-
ous from posed behaviour. Ekman, however, 
argued that people do not bother to censor 
their body movements in daily life; therefore, 
the body would be the more reliable source 
of information (Ekman, 2003). This is also in 
agreement with recent findings in research in 
nonverbal behaviour and communication, which 
state that truthful and deceptive behaviour dif-
fer from each other in lack of head movement 
(Buller, Burgoon, White, & Ebesu, 1994) and 
lack of illustrating gestures which accompany 

speech (DePaulo, 2003) in the case of decep-
tive behaviour.

Compared to visible channels of face and 
body, the advantage of using bio-signals for 
recognizing affective states is the fact that physi-
ological recordings cannot be easily faked or 
suppressed, and can provide direct information 
about the user’s affective state.

However, people express and communicate 
emotions multimodally. Hence, more research 
efforts and studies on posed vs. spontaneous 
expressions in a multicue and multimodal 
context are needed if we are to obtain a better 
understanding of the natural communication of 
emotions in HHI to be later used in HCI.

daTa aCquISITIon

Recordings of affective behaviour may be 
those of posed behaviour (i.e., produced by 
the subject upon request), induced behaviour 
(i.e., occurring in a controlled setting designed 
to elicit an affective reaction such as when 
watching movies), or spontaneous behaviour 
(i.e., occurring in real-life settings such as 
interviews or interactions between humans or 
between humans and machines) (Banziger & 
Scherer, 2007).

The easiest way to create a database of 
acted affective displays is by having an experi-
menter direct and control the recorded displays. 
Depending on which modalities are recorded, a 
number of sensors can be used: cameras for face 
and body expressions, microphones for record-
ing audio signals, a motion capture systems to 
record 3D affective postures/gestures, and so 
forth. (see Figure 2). When acquiring spontane-
ous affective multimodal data, the subjects may 
be recorded without their knowledge while they 
are stimulated with some emotionally-rich stim-
ulus (e.g., Zuckerman, Larrance, Hall, DeFrank, 
& Rosenthal, 1979). Due to the ethical issues, 
making recordings without subjects’ knowledge 
is strongly discouraged and the current trend is 
to record spontaneous data in more constrained 
conditions such as an interview settings, where 
subjects are still aware of placement of cameras 
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and their locations (e.g., Littlewort, Bartlett, & 
Lee, 2007; Pantic & Bartlett, 2007).

3D affective body postures or gestures can 
alternatively be recorded by utilizing motion 
capture systems (e.g., Kleinsmith & Bianchi-
Berthouze, 2007). In such scenarios, the actor 
is dressed in a suit with a number of markers 
on the joints and body segments, while each 
gesture is captured by a number of cameras and 
represented by consecutive frames describing 
the position of the markers in the 3D space.

Recording physiological and bio-potential 
signals is a bit more complicated compared to 
the aforementioned recordings. In the brain-
computer interface (BCI) or bio-potential signal 
research context, the subject being recorded 
usually wears headphones, a headband or a cap 
on which electrodes are mounted, a clip sensor, 
and/or touch type electrodes. The subject is then 

stimulated with emotionally-evocative images/
videos/sounds. The variation of the skin conduc-
tance at the region of interest is then measured 
(Takahashi, 2004). Hence, the bio-potential 
affect data acquisition is induced and, due to 
its invasive nature, the experimental settings 
provided do not encourage spontaneity.

Creation and annotation of affect databases 
from face and body displays has been reviewed 
by Gunes and Piccardi (2006). Various visual, 
audio and audio-visual databases have been 
reviewed by Zeng et al. (2009). The existing 
databases where emotion is labelled continu-
ously and data were made publicly available for 
research purposes are listed in Table 1. Overall, 
very few of the existing multimodal affect 
databases contain spontaneous data. Although 
there is a recent attempt to collect spontaneous 
facial expression data in real-life settings (in 

Table 1. Representative databases created for dimensional affect recognition. 

Database The Montreal Affective 
Voices Database SAL database The Vera am Mittag 

speech database

Reference Belin, Fillion-Bilodeau, and 
Gosselin, 2008

Douglas-Cowie et al., 2007 Grimm, Kroschel,  and 
Narayanan, 2008

Data Type Posed induced spontaneous

Modalities Emotional speech Audiovisual: 
facial expressions, emotional 
speech

Audiovisual: 
facial and bodily expressions, 
emotional speech

Subjects 5 male and 5 female actors 2 male and 2 female subjects 
interacting with an artificial 
listener

various participants in the 
show

Categorical 
Annotation

anger, disgust, sadness, fear, 
pain, happiness, pleasure, sur-
prise, neutral

not applicable not applicable

Dimensional 
Annotation

intensity of valence, intensity 
of arousal, and intensity of each 
discrete emotion category

intensity of arousal, and 
intensity of valence

continuous annotation for 
valence, activation, and 
dominance.

Annotators 30 observers 4 Feeltrace coders 17 observers

Content 90 emotionally-coloured pro-
nunciations of the word ‘ah’

Humans interacting with a 
Sensitive Artificial Listener 
(SAL) in a Wizard-of-Oz 
scenario

12 hours of audio-visual 
recordings of German TV 
talk show “Vera am Mittag”, 
segmented into dialogue acts 
and utterances

Public Availability Yes yes yes

Online Provision No no no
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the context of autism disorder; El Kaliouby 
& Teeters, 2007), such an attempt is lacking 
when it comes to multimodal human-affect 
data. As already mentioned above, acquiring 
data in fully unconstrained environments with 
multiple sensors involves ethical and privacy 
concerns together with numerous technical 
difficulties (placement of sensors, controlling 
the environmental conditions such as noise, 
illumination, occlusions; consistency, repeat-
ability, etc.). This impedes significantly the 
progress in this direction.

daTa annoTaTIon

In general, annotation of the data, both for posed 
and spontaneous data, is usually done separately 
for each channel assuming independency be-
tween the channels.

In general, for databases containing audio 
data, the annotation tool FeelTrace is commonly 
used. Feeltrace allows observers to listen to af-
fective behaviour recordings (and watch them in 
the case of audio-visual recordings) and move 
their cursor within a 2D emotional space to rate 
their impression about the emotional state of the 
subject (Cowie et al., 2000). Emotion classes 
based on Feeltrace can be described as follows: 
positive activation, positive evaluation; positive 
activation, negative evaluation; negative activa-
tion, negative evaluation; negative activation, 
positive evaluation; and neutral (close to the 
centre of the 2D emotional space). For instance, 
for the Sensitive Artificial Listener (SAL) data-
base (see Douglas-Cowie et al., 2007; Table 1), 4 
observers provided continuous annotations with 
respect to valence and activation dimensions, 
using the FeelTrace annotation tool.

In general, when annotating or labelling 
affective behaviour from facial displays, six 
basic emotion categories and the Facial Action 
Coding System (FACS) are used. There exist 
very few studies focusing on labelling facial 
expressions using the dimensional approaches. 
For instance, Breazeal (2003) mapped a series 
of facial expression photos onto Russell’s A-V 
emotion space (see Figure 1b) and used this to 

model a robot’s interpretation of facial expres-
sions. Shin (2007) asked human observers to 
rate static facial expression images in terms 
of A-V dimensions on a nine-point scale. The 
images were labelled with a rating averaged 
over all observers. As described previously, 
the FeelTrace annotation tool is often used to 
annotate audio and audio-visual recordings (e.g., 
in the case of the SAL database).

When it comes to annotating body gestures, 
there is not one common annotation scheme 
that has been adopted by all research groups. 
Kleinsmith and Bianchi-Berthouze (2007) re-
ported results for five observers that were asked 
to rate static body postures on a seven-point 
Likert scale in terms of four affective dimen-
sions: valence (pleasure), arousal (alertness), 
potency (control), and avoidance (avoid/attend 
to). Postures that received an average observer 
rating of < 3.8 were labelled as low intensity 
postures. Postures that received an average 
rating between 3.8 and 4.2 were labelled as 
neutral intensity postures. Finally, postures 
that received an average rating of > 4.2 were 
labelled as high intensity postures.

Using the categorical and dimensional 
models simultaneously enables analysis of 
mapping between categorical and dimensional 
spaces. The Montreal Affective Voices Database 
(Belin et al., 2008), for instance, includes 10 
ratings for each data sample: perceived valence 
(from extremely negative to extremely posi-
tive), perceived arousal (from not aroused to 
extremely aroused), and perceived intensity of 
eight targeted affective states: happiness, sad-
ness, fear, anger, surprise, disgust, pleasure, and 
pain (e.g., from not angry to extremely angry). 
Jin and Wang (2005) analyzed emotions in 
spoken Chinese and reported that joy and anger 
are commonly associated with similar high 
level of arousal while surprise, disgust, fear, 
neutral, and sadness are commonly associated 
with lower levels of arousal. As far as valence 
is concerned, joy was commonly associated 
with high levels of valence. Differences in the 
ratings in terms of the arousal dimension were 
reported to be smaller than those reported for 
the valence dimension.
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Annotating brain-wave, thermal, and 
other signals in terms of affective states is not 
a straightforward process and it is inherently 
different compared to visual or audio record-
ings. For bio-potential signal annotation, the 
level of valence and arousal is usually ex-
tracted from the subjects’ responses (Kulic & 
Croft, 2007; Pun, Alecu, Chanel, Kronegg, & 
Voloshynovskiy, 2006). This is mainly due to 
the fact that feelings induced by an image can 
be very different from subject to subject. Self-
assessment of valence and arousal is therefore 
a preferred way of labelling the data (Chanel 
et al., 2005). The subjects are generally asked 
to rate their response to the stimuli in terms 
of intensity of few affect categories (Kulic & 
Croft, 2007). When a dimensional approach is 
used, intensity scores such as low, medium and 
high are usually scored for arousal and valence 
dimensions (Kulic & Croft, 2007).

Overall, researchers seem to use different 
levels of intensity when adopting a dimensional 
affect approach. Shin (2007) asked the observers 
to rate static facial expression images in terms 
of A-V using a ten-point Likert scale (0-very 
positive, 9-very negative), (0-low arousal, 
9-high arousal). Yang et al. (2007) use a range 
between -1.0 and 1.0, divided into 11 levels, for 
annotation of emotions in the A-V space. The 
final annotation is then calculated as the mean 
of the A-V values of all observers.

Obtaining high inter-observer agreement 
is one of the main challenges in affective data 
annotation, especially when dimensional ap-
proach is adopted. Yang et al. (2007) report that 
mapping emotions onto the A-V space confuses 
the subjects. For instance, the first quadrant 
(high arousal, high valence) contains emotions 
such as excited, happy, and pleased, which are 
different in nature. In addition, the Feeltrace 
representation is criticized for not being intui-
tive, and raters seem to need special training to 
use such a dimensional labelling system (Zeng 
et al., 2009). A hybrid coding scheme combining 
both dimensional and categorical descriptions, 
similar to that of Zhang, Tian, Jiang, Huang, and 

Gao (2008), or a hierarchical scheme where the 
first level focuses on intensity (high, medium, 
low), and the second level focuses on emotions 
with high (happy, fear, anger), medium (happy, 
neutral, sad) and low (sad, neutral) arousal (Xu, 
Jin, Luo, & Duan, 2008) could potentially ease 
naïve observer’s annotation task. Development 
of an easy to use, unambiguous and intuitive 
annotation scheme remains, however, an im-
portant challenge.

Another major challenge in affect data an-
notation is the fact that there is no coding scheme 
that is agreed upon and used by all researchers in 
the field and that can accommodate all possible 
communicative cues and modalities including 
facial and bodily expressions, vocal intonation 
and vocalization (e.g., laughter), bio-potential 
signals, etc. Addressing the aforementioned 
issues is necessary if we are to advance the 
state-of-the-art in dimensional affect sensing 
and recognition by making the research material 
comparable and easy to use.

aFFECT rECoGnITIon

A typical approach to affect recognition is 
to categorize input samples into a number of 
emotion classes and apply standard pattern rec-
ognition procedures to train a classifier (Yang 
et al., 2007). This approach proved reasonably 
successful for categorical emotion recognition 
(Gunes et al., 2008; Pantic & Rothkrantz, 2003; 
Zeng et al., 2009). However, is this approach 
suitable when it comes to dimensional emotion 
recognition? We attempt to find answers to this 
question by examining the problem domain and 
surveying the state of the art in the field.

ProblEM doMaIn

Affect recognition is context dependent (sensi-
tive to who the subject is, where she is, what 
her current task is, and when the observed 
behaviour has been shown; Pantic, Nijholt, & 
Petland, 2008). It must be carried out differently 
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in the case of acted behaviour than in the case 
of spontaneous behaviour (see the previous sec-
tion of this article), and both configuration and 
temporal analysis of the observed behaviour are 
of importance for its interpretation (Ambadar 
et al., 2005). Except of these issues, which are 
typical for any human behaviour interpretation, 
and have been discussed in various papers 
(e.g., Pantic & Bartlett, 2007; Pantic et al., 
2008; Vinciarelli, Pantic, & Bourland, 2009), 
there are a number of additional issues which 
need to be taken into account when applying a 
dimensional approach to emotion recognition. 
These include reliability of the ground-truth, 
determining duration of emotions for automatic 
analysis, determining the baseline, dimensional-
ity reduction, modelling intensity of emotions, 
high inter-subject variation, defining optimal 
fusion of cues/modalities, and identifying ap-
propriate classification methods and evaluation 
measures.

rElIabIlITy oF ThE 
Ground-TruTh

Achieving inter-observer agreement is one of 
the most challenging issues in dimension-based 
affect modelling and analysis. To date, research-
ers have mostly chosen to use self-assessments 
(e.g., Pun et al., 2006) or the mean (within a 
predefined range of values) of the observers’ 
ratings (e.g., Kleinsmith & Bianchi-Berthouze, 
2007). Chanel et al. (2005) report that although 
it is difficult to self-assess arousal, using classes 
generated from self-assessment of emotions 
facilitate greater accuracy in recognition. This 
finding results from a study on automatic analy-
sis of physiological signals in terms of A-V 
emotion space (Chanel et al., 2005). It remains 
unclear whether the same holds independently 
of the utilised modalities and cues. Modelling 
inter-observer agreement levels within auto-
matic affect analyzers and finding which signals 
better correlate with self assessments and which 
ones better correlate with independent observer 
assessments remain unexplored.

duraTIon oF EMoTIonS

Determining the length of the temporal window 
for automatic affect analysis depends in prin-
ciple on the modality and the target emotion. 
Levenson (1988) suggests that overall duration 
of emotions approximately falls between 0.5 
and 4 seconds. He points out that, when mea-
suring at wrong times, the emotion might be 
missed or multiple different emotions might be 
covered when too long periods are measured. 
For instance, when measuring bio-signals, for 
surprise the latency of onset can be very short, 
while for anger it may be rather long. Overall, 
the existing literature does not provide a unique 
answer regarding the window size to be used to 
achieve optimal affect recognition. Also, there is 
no consensus on how the efficiency of a choice 
should be evaluated. Current affect recognizers 
employ various window sizes depending on the 
modality, e.g., 2-6 seconds for speech, 3-15 
seconds for bio-signals (Kim, 2007).

EMoTIon InTEnSITy

In dimensional emotion recognition the inten-
sity of an emotion is encoded in the level of 
arousal (Kulic & Croft, 2007). Different emo-
tions that have a similar level of valence can 
only be discriminated by their level of arousal. 
For instance, at a neutral valence level, low 
arousal represents calmness while high arousal 
represents excitement. Intensity is usually 
measured by modelling it with discrete levels 
such as neutral, low and high (e.g., Kleinsmith 
& Bianchi-Berthouze, 2007; Kulic & Croft, 
2007; Wollmer et al., 2008). Separate models 
are then built to discriminate between pairs 
of affective dimension levels, for instance, 
low vs. high, low vs. neutral, etc. (Kleinsmith 
& Bianchi-Berthouze, 2007). Measuring the 
intensity of shown emotion appears to be mo-
dality dependent. The way the intensity of an 
emotion is apparent from physiological data 
may be different than the way it is apparent 
from visual data. Generalizing intensity analysis 
across different subjects is a challenge yet to 
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be researched, and it is expected to be a cum-
bersome problem as different subjects express 
different levels of emotions in the same situation 
(Levenson, 1988).

ThE baSElInE ProblEM

When targeting spontaneous behaviour analysis 
and moving toward real-world settings, one 
of the basic problems is the Baseline Problem 
(Nakasone et al., 2005). For tactile modality, 
The Baseline Problem refers to the problem 
of finding a condition against which changes 
in measured physiological signals can be 
compared—the baseline. For visual modal-
ity, The Baseline Problem refers to finding a 
frame in which the subject is expressionless 
and against which changes in subject’s motion, 
pose, and appearance can be compared. This is 
usually achieved by manually segmenting the 
recordings, or by constraining the recordings 
to emotional prototypes, or by having the first 
frame containing baseline/neutral expression. 
For the audio modality this is usually achieved 
by segmenting the recordings into turns using 
energy based Voice Activity Detection and 
processing each turn separately (e.g., Wollmer 
et al., 2008). Yet, as pointed out by Levenson 
(1988) emotion “is rarely superimposed upon 
a prior state of “rest”; instead, emotion occurs 
most typically when the organism is in some 
prior activation.” Hence, enforcing existence 
of expressionless state in each recording or 
manually segmenting recordings so that each 
segment contains a baseline expression are 
strong, unrealistic constrains. This remains a 
great challenge in automatic analysis, which 
typically relies on existence of a baseline for 
analysis and processing of affective informa-
tion.

dIMEnSIonalITy

The space based on which emotions are typically 
recognized is usually a feature space with a very 
high dimensionality. For example, Valstar and 
Pantic (2007) extract 2,520 features for each 

frame of the input facial video, Wollmer et al. 
(2008) extract 4,843 features for each utterance, 
Chanel, Ansari, and Pun (2007) use 16,704 EEG 
features, Kim (2007) uses 61 features extracted 
from speech segments and 77 features extracted 
from bio-signals. The problematic issue here 
is having fewer training samples than features 
per sample for learning the target classifica-
tion, which may lead to under sampling or a 
singularity problem. To alleviate this problem, 
dimensionality reduction or feature selection 
techniques are applied. Linear combination 
techniques such as Principal Component Analy-
sis (PCA) and Linear Discriminant Analysis 
(LDA) and non-linear techniques such as kernel 
PCA (KPCA) have been used for that purpose 
(e.g., Chanel et al., 2007; Gunes & Piccardi, 
2009; Khan et al., 2009), and so have been 
feature selection techniques such as Sequential 
Backward Selection (Kim, 2007). However, 
how to optimally reduce the dimensionality of 
continuous multicue and multimodel affect still 
needs to be explored.

GEnEralIzaTIon

Should automatic affect analysers be able to 
generalize across subjects or should the rec-
ognition be personalized? When it comes to 
affect recognition from bio-potential signals, 
the overall amplitudes of the patterns recorded 
are found to be dependent on the user, suggest-
ing that personalization is required to ensure 
consistent recognition of significant patterns 
for these signals (Conati, Chabbal, & Maclaren, 
2003). Kim (2007) also found that at times 
subjects are inconsistent in their emotional 
expression. Kulic and Croft (2007) reported 
on the problem of saliency: subjects seem to 
vary not only in terms of response amplitude 
and duration, but for some modalities, a number 
of subjects show no response at all (e.g., only a 
subset of subjects exhibit heart-rate response). 
This makes generalization over unseen subjects 
a very difficult problem. Chanel et al. (2005) 
emphasize the need of training and evaluating 
classifiers for each participant separately due 
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to the aforementioned inter-subject variation. 
When it comes to other modalities, most of 
the works in the field report only on subject 
dependent dimensional affect recognition due 
to limited number of subjects and data (e.g., 
Wollmer et al., 2008).

FuSIon

For affect sensing and recognition, modality 
fusion refers to combining and integrating 
all incoming monomodal events into a single 
representation of the affect expressed by the 
user. When it comes to integrating the multiple 
modalities the major issues are: (i) when to 
integrate the modalities (i.e., at what abstrac-
tion level to do the fusion), and (ii) how to 
integrate the modalities (i.e., which criteria to 
use). Typically, the multimodal data fusion is 
either done at the feature level in a maximum 
likelihood estimation manner or at the deci-
sion level when most of the joint statistical 
properties (maximum a posteriori) may have 
been lost (Corradini et al., 2003). To make 
the multimodal data fusion problem tractable, 
the individual modalities are usually assumed 
independent of each other. This simplification 
allows employing simple parametric models for 
the joint distributions that cannot capture the 
complex relationships between the modalities. 
More importantly, this does not support mutual 
estimation (e.g., using the audio information to 
inform the visual information processing; Cor-
radini, Mehta, Bernsen, & Martin, 2003).

The assumption of mutual independence of 
different modalities is typical for decision-level 
data fusion. In this approach, a separate classi-
fier processes each modality and the outputs of 
these classifiers are combined at a later stage to 
produce the final hypothesis about the shown 
affective behavior. The decision-level data fu-
sion is the most commonly applied approach 
in the field, especially when modalities differ 
in temporal characteristics (e.g., audio and 
visual modality). Designing optimal strategies 
for decision-level fusion has been of interest 
to researchers in the fields of pattern recogni-

tion and machine learning, and more recently 
to researchers in the fields of data mining and 
knowledge discovery. One approach, which 
has become popular across many disciplines, 
is based upon the combination of multiple 
classifiers, also referred to as an ensemble of 
experts and/or classifier fusion. For an overview 
of work done on combining classifiers and 
for theoretical justification for using simple 
operators such as majority vote, sum, product, 
maximum/minimum/median, and adaptation 
of weights, the readers are referred to the work 
by Kittler, Hatef, Duin, and Matas (1998). 
Decision-level data fusion can be obtained at 
the soft-level (a measure of confidence is as-
sociated with the decision), or at the hard-level 
(the combining mechanism operates on single 
hypothesis decisions).

Feature-level data fusion is assumed to 
be appropriate for closely coupled and syn-
chronized modalities (e.g., speech and lip 
movements). This approach assumes a strict 
time synchrony between the modalities. Hence, 
feature-level data fusion tends not to generalize 
well when the modalities substantially differ 
in temporal characteristics (e.g., speech and 
gestures). Therefore, when input from two 
modalities is fused at the feature level, features 
extracted from the two modalities should be 
made synchronous and compatible. The asyn-
chrony between modalities may be of two kinds: 
(a) asynchrony in subject’s signal production 
(e.g., the facial action might start earlier than 
the vocalization), and (b) asynchrony in the 
recording (e.g., video is recorded at 25 Hz, 
the audio is recorded at 48 kHz, while EEG 
is recorded at 256-512 Hz). Feature-level fu-
sion becomes more challenging as the number 
of features increases and when they are of 
very different natures (e.g., in terms of their 
temporal properties). Synchronization then 
becomes of utmost importance. Recent works 
have attempted synchronization between mul-
tiple multimodal cues to support feature-level 
fusion for the purposes of affect recognition, 
and reported greater overall accuracy when 
compared to decision-level fusion (e.g., Gunes 
& Piccardi, 2009; Shan, Gong, & McOwan, 
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2007). Gunes and Piccardi (2009) identify the 
neutral-onset-apex-offset-neutral phases of 
facial and bodily displays and synchronize the 
input video sequences at the phase level (i.e., 
apex phase). Although this method has been 
used for categorical emotion recognition, if the 
temporal information and duration of emotions 
are explicitly modelled, this method can be eas-
ily extended to dimensional affect recognition. 
Savran et al. (2006) have obtained feature/deci-
sion level fusion of the fNIRS and EEG feature 
vectors on a block-by-block basis. In their 
experiments a block is 12.5 seconds long and 
represents all emotional stimuli occurring within 
that time frame. This method can be easily ap-
plied to facilitate multimodal dimensional affect 
recognition. However, choosing an appropriate 
time-window may pose a challenge.

Outside the affect sensing and recognition 
field, various techniques have been exploited 
for implicit data synchronization purposes. For 
instance, dynamic time warping (DTW) has 
been used to find the optimal alignment between 
two time series. This warping between two time 
series can then be used to find corresponding 
regions between the two time series and to de-
termine the similarity between them. Variations 
of Hidden Markov Models (HMM) have also 
been proposed for this task. Coupled HMM 
and fused HMM have been used for integrating 
tightly coupled time series, such as audio and 
visual features of speech (Pan, Levinson, Huang, 
& Liang, 2004). Bengio (2004) presented the 
Asynchronous HMM that could learn the joint 
probability of pairs of sequences of audiovisual 
speech data representing the same sequence of 
events. There are also a number of efforts within 
the affect sensing and recognition field to exploit 
the correlation between the modalities and relax 
the requirement of synchronization by adopt-
ing the so-called model-based fusion approach 
using Bayesian Networks, Multi-stream Fused 
HMM, tripled HMM, Neural Networks, and so 
forth. (for details, see Zeng et al., 2009).

Overall, typical reasons to use decision-
level fusion (i.e., late integration) instead of 
feature-level fusion (i.e., early integration) 

can be summarised as follows (Wu, Oviatt, & 
Cohen, 1999).

The feature concatenation used in feature-• 
level fusion results in a high dimensional 
data space, resulting in a large multimod-
al dataset.
Decision-level fusion allows asyn-• 
chronous processing of the available 
modalities.
Decision-level fusion provides greater • 
flexibility in modelling, i.e., it is possible 
to train different classifiers on different 
data sources and integrate them without 
retraining.
Using decision-level fusion of-the-shelf • 
recognisers can be utilised for single mo-
dalities (e.g., speech).
Decision-level fusion allows adaptive • 
channel weighting between different mo-
dalities based on environmental condi-
tions, such as the signal-to-noise ratio.

However, one should note that co-occur-
rence information (i.e., which multimodal cues 
co-occur at the same time, which co-occur in 
time with one occurring after the other, how 
often are the co-occurrences, etc.) is lost if 
decision-level fusion is chosen instead of 
feature-level fusion.

As pointed out by Kim (2007), a user 
may consciously or unconsciously conceal his 
or her real emotions as shown by observable 
cues like facial or vocal expressions, but still 
reveal them by invisible cues like bio signals. 
So, how should the fusion proceed when there 
is conflicting information conveyed by the 
modalities? This is still an open question that is 
yet to be investigated. Another issue to consider 
in affective multimodal data fusion is how to 
optimally fuse information with high disparity in 
accuracy (Kim, 2007). In addition, classification 
methods readily available in machine learning 
and pattern recognition may not be suitable 
for emotion-specific problems. The design of 
emotion-specific classification schemes that can 
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handle multimodal and spontaneous data is one 
of the most important issues in the field.

EValuaTIon

The evaluation measures applicable to categori-
cal approaches to emotion recognition are not 
directly applicable to dimensional approaches. 
For example, Wolmer et al. (2008) use the Mean 
Squared Error (MSE) between the predicted and 
the actual value of arousal and valence instead 
of the recognition rate (i.e., percentage of cor-
rectly classified instances). However, whether 
MSE is the best way to evaluate the performance 
of dimensional approaches to automatic affect 
recognition, remains an open issue.

ThE STaTE-oF-ThE-arT

The most commonly employed strategy in 
automatic dimensional affect classification is 
to simplify the problem of classifying the six 
basic emotions to a three-class valence-related 
classification problem: positive, neutral, and 
negative emotion classification (e.g., Yu et al., 
2008). A similar simplification is to reduce the 
dimensional emotion classification problem to 
a two-class problem—positive vs. negative and 
active vs. passive classification problem—or 
a four-class problem—quadrants of 2D A-V 
space classification problem (e.g., Caridakis, 
Malatesta, Kessous, Amir, Paouzaiou, & Kar-
pouzis, 2006; Fragopanagos & Taylor, 2005). 
Glowinski et al. (2008), for instance, analyse 
four emotions, each belonging to one quadrant 
of the A-V emotion space: high arousal positive 
valence (joy), high arousal negative valence 
(anger), low arousal positive valence (relief), 
and low arousal negative valence (sadness).

Automatic dimensional affect recognition 
is still in its pioneering stage. It is worth noting 
that dimensional representation has mostly been 
used for emotion recognition from physiological 
signals. Hereby, in Table 2 and Table 3 we briefly 
summarise automated systems that attempt to 
model and recognize affect in the continuous 
dimensional space. This overview is intended 

to be illustrative rather than exhaustive. Table 2 
summarizes representative systems for dimen-
sional affect recognition from a single modality. 
Table 3 summarizes the utilised classification 
methods and the performance attained by the 
methods listed in Table 2. Table 4 summarizes 
the systems for dimensional affect recognition 
from multiple modalities. Table 5 summarizes 
the utilised classification methods and the 
performance attained by the methods listed 
in Table 4.

According to the dimensional approach, 
emotions are represented along a continuum. 
Therefore, automatic systems adopting this 
approach should produce continuous values 
for the target dimensions. Little attention has 
been paid so far to whether there are definite 
boundaries along the continuum to distinguish 
between various levels or intensities. The 
most common way to explore this issue is to 
quantize the arousal and valence dimensions 
into arbitrary number of levels or intensities. 
Kleinsmith and Bianchi-Berthouze (2007), for 
instance, use a back-propagation algorithm to 
build a separate model for each of the affective 
dimensions for discriminating between levels 
of affective dimensions from posture (high-low, 
high-neutral, and low-neutral). Wollmer et al. 
(2008) use Conditional Random Fields (CRF) 
for discrete emotion recognition by quantising 
the continuous labels for valence and arousal 
to four and/or seven arbitrary levels. Kulic 
and Croft (2007) perform quantization into 3 
categories (low/medium/high), and Chanel et 
al. (2007) consider 3 classes, namely, excited-
negative, excited-positive, and calm-neutral. 
Karpouzis et al. (2007) focus on positive vs. 
negative or active vs. passive classes.

The only approach reported in automatic 
affects sensing field that actually deals with 
continuous emotions is presented by Wollmer 
et al. (2008) for emotion recognition from the 
audio modality. Emotional history is modelled 
using Long Short-Term Memory Recurrent 
Networks (LSTM-RNN) which builds upon 
the principle of recurrent neural networks by 
including memory cells. LSTM-RNN architec-
ture consists of three layers: an input, a hidden, 
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and an output layer, and models long-range 
dependencies between successive observations. 
The Long Short-Term Memory cells ensure that 
events lying back in time are not forgotten. When 
compared to other classification techniques 
like Support-Vector Regression, LSTM-RNN 
achieve a prediction quality which is equal to 

human performance due to its capability of 
modelling long range time dependencies.

However, there is no agreement on how to 
model dimensional emotion space (continuous/
quantized) and which classifier is better suited 
for automatic, multimodal, continuous affect 
analysis using a dimensional representation. 
The surveyed works also report a number of 

Table 2. Overview of the systems for dimensional affect recognition from a single modality 

System Modality/cue Database # of Samples Features Dimensions

Glowinski et 
al., 2008

Visual, movement 
expressivity

Their own 40 portrayals Gesture dynam-
ics

4 emotions: high 
arousal (anger 
and joy) and low 
arousal (relief 
and sadness)

Khan et al., 
2009

Thermal Their own 
(neutral, 
pretended and 
evoked facial 
expressions)

Not reported facial feature 
points from 
images

neutral, positive 
and negative 
emotion catego-
ries

Kleinsmith 
and Bianchi-
Berthouze, 
2007

Visual, static body 
posture

subjects display-
ing various 
body postures 
given a situation 
description

111 images Features from 
the motion cap-
ture system

Valence, 
arousal, potency, 
and avoidance

Lee and 
Narayanan, 
2005

Emotional speech spoken language 
data obtained 
from a call cen-
tre application

1187 calls, 
7200 utter-
ances

a combination of 
acoustic, lexical, 
and discourse 
information

negative and 
non-negative 
emotions

Martin, Carida-
kis, Devillers, 
Karpouzis, and 
Abrilian, 2009

Visual, body 
movement

TV interviews, 
spontaneous

50 video 
samples of 
emotional 
TV interviews

coarse estimate 
of the overall 
movement quan-
tity in a video

emotional 
activation of a 
whole video

Shin, 2007 Visual, 
facial expression 
images

posed static 
Korean facial 
expression data-
base, 6 subjects

287 images Facial features pleasure-
displeasure and 
arousal-sleep 
dimensions

Vogt, André, 
and Bee, 2008

Emotional speech Offline speech 
emotion recogni-
tion framework, 
sentence set 
in German, 29 
students

Not reported variety of acous-
tic features like 
energy, MFCC, 
pitch and voice 
quality

positive-active, 
positive-passive, 
negative-active, 
negative-passive 
mapped on the 
emotions of joy, 
satisfaction, an-
ger, frustration

Wollmer et al., 
2008

Audio SAL, 4 subjects 25 recordings, 
1,692 turns

variety of acous-
tic features

positive-active, 
positive-passive, 
negative-active, 
negative-passive
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additional challenging issues as summarized 
in Table 6.

Overall, automatic human affect recogni-
tion based on a dimensional approach is still in 
its infancy. As can be seen from Tables 2-5, the 
comparison of results attained by different sur-
veyed systems is difficult to conduct as systems 
use different training/testing datasets (which 
differ in the way emotions are elicited and an-
notated), they differ in the underlying model of 
emotions (i.e., target emotional categories) as 
well as in the employed modality or combina-
tion of modalities and the applied evaluation 
method (Arroyo-Palacios & Romano, 2008). 
Wagner et al. (2005) argue that for the current 
multimodal affect recognizers, the achieved 
recognition rates depend on the type of the 
utilized data, and whether the emotions were 

acted or not, rather than on the used algorithms 
and classification methods. All of this makes 
it difficult to quantitatively and comparatively 
evaluate the accuracy of the A-V modelling and 
the effectiveness of the developed systems.

As a consequence, it remains unclear 
which classification method is suitable for 
dimensional affect recognition from which 
modalities and cues. Opportunities for solving 
this problem can be potentially searched in other 
relevant research fields. For example, the A-V 
dimensional approach has been mostly used for 
affective content classification from music or 
videos (e.g., Xu et al., 2008; Zhang et al., 2008). 
Therefore, methodologies in these fields seem 
more mature and advanced compared to those 
in automatic human affect recognition field. 
Zhang et al. (2008), for instance, perform affec-

Table 3. The utilised classification methodology and the performance attained by the methods 
listed in Table 2 

System Classification Results

Glowinski et al., 
2008

Only preliminary analysis no classification 
reported

Only preliminary analysis no clas-
sification reported

Khan et al., 2009 linear discriminants (LDA) 83.3% for posed for 3 classes: neutral, 
happy and sad; 57.1% for 7 classes; 
72% for evoked neutral, happy, sad, 
disgust and angry.

Kleinsmith and 
Bianchi-Berthouze, 
2007

a back-propagation algorithm with a separate 
model for each of the 4 affective dimensions

79% for both the valence and arousal, 
and 81% for both the potency and 
avoidance dimensions

Lee and Narayanan, 
2005

discriminant classifiers (LDC) with Gaussian 
class-conditional probability and k-nearest neigh-
bourhood classifiers (k-NN) to detect negative 
versus non-negative emotions

Improvement of 40.7% for males 
and 36.4% for females via fusion of 
information

Martin et al., 2009 discriminant analysis 67.2% for pretended, and 72% for 
evoked expressions of neutral, happy, 
disgusted, surprised, and angry emo-
tions

Shin, 2007 a 3-layer neural network with 2 output nodes of 
pleasure-displeasure and arousal-sleep

Only coarse comparison btw. NN and 
mean A-V human annotation

Vogt et al., 2008 Naive Bayes and support vector machine classi-
fiers to distinguish between the four quadrants of 
the A-V space

an average of 55% for a 4 class 
problem

Wollmer et al., 2008 Long Short-Term Memory Recurrent Neural Net, 
Support Vector Machines, Conditional Random 
Fields, and Support Vector Regressor

0.18 MSE using speaker dependent 
validation
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tive video content analysis from MTV clips in 
terms of A-V space by employing a clustering 
method called Affinity Propagation (AP). The 

main reason for this choice is the fact that they 
do not have apriori knowledge of how many 
affective categories a classifier should output. 

Table 4. Overview of the systems for dimensional affect recognition from multiple modalities 

System Modality/cue Database # of Samples Features Dimensions

Caridakis, 
Karpouzis, 
and Kollias, 
2008

facial expres-
sion, body ges-
tures and audio

SAL, 4 subjects Not reported Various visual 
and acoustic 
features

neutral and four A-V 
quadrants

Chanel et al., 
2007

Tactile, physi-
ological

Their own, 1 
subject, recall of 
past emotional 
events

Not reported EEG and pe-
ripheral features

arousal and valence

Forbes-Riley 
and Litman, 
2004

audio and text student emo-
tions from 
tutorial spoken 
dialogues

Not reported variety of 
acoustic and 
prosodic, 
text-based, 
and contextual 
features

negative, neutral and 
positive emotions

Haag et al., 
2004

Tactile, physi-
ological

Their own, 
1 subject

1000 samples heart rate, BVP, 
EMG, skin 
conductivity, 
respiration

arousal and valence

Karpouzis et 
al., 2007

facial expres-
sion, body 
gestures and/or 
audio

SAL, 
4 subjects

76 Passages, 
1600 tunes

Various visual 
and acoustic 
features

negative vs. positive, 
active vs. passive

Kim, 2007 speech and 
physiological 
signals

A corpus of 
spontane-
ous vocal and 
physiological 
emotions, using 
a modified 
version of the 
quiz “Who 
wants to be a 
millionaire?”, 3 
subjects

343 samples EMG, SC, 
ECG, BVP, 
Temp, RSP 
and acoustic 
features

either of the four A-V 
quadrants

Kulic and 
Croft, 2007

Tactile, physi-
ological

Their own, 
context of 
human-robot 
interaction, 36 
subjects

2-3 examples 
for each affect 
category

heart rate, 
perspiration 
rate, and facial 
muscle contrac-
tion

6 affect categories 
(low/medium/high-
valence/arousal)

Wagner, 
Kim, and 
Andre, 2005

Tactile, physi-
ological

Their own, 
1 subject listen-
ing to songs

25 recordings 
for each emo-
tion

physiological 
signals

negative (anger/sad-
ness), positive (joy/
pleasure), valence 
and high arousal (joy/
anger), low arousal 
(sadness/pleasure)
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Table 5. The utilised classification methodology and the performance attained by the methods 
listed in Table 4

System Classification Explicit Fusion Results

Caridakis et al., 
2008

a feed-forward back-propagation 
network to map tunes into either of 
the 4 A-V quadrants or the neutral 
state

Not reported reported as reduced MSE 
for every tune

Chanel et al., 2007 linear discriminant analysis (LDA) 
and support vector machine (SVM)

Not reported 67% accuracy for 3 class-
es (negatively excited, 
positively excited, and 
calm-neutral), and 79% 
accuracy for 2 classes 
(negatively vs. positively 
excited) using EEG, 53% 
accuracy for 3 classes 
and 73% accuracy for 2 
classes using peripheral 
signals

Forbes-Riley and 
Litman, 2004

AdaBoost to boost a decision tree 
algorithm for negative, neutral and 
positive emotions

Not reported 84.75% for a 3 class 
problem

Haag et al., 2004 separate network for valence and 
arousal, each with a single output 
node corresponding to the valence 
or arousal value

Not reported 96.6% for arousal, 89.9% 
for valence.

Karpouzis et al., 
2007

a Simple Recurrent Network that 
outputs either of the 4 classes (3 
for the possible emotion quadrants, 
one for neutral affective state)

Not described 67% recognition accuracy 
using the visual modality 
and 73% using prosody, 
82% after fusion (whether 
on unseen subject/data is 
not specified)

Kim, 2007 modality-specific LDA-based clas-
sification; a hybrid fusion scheme 
where the output of feature-level 
fusion is fed as an auxiliary input 
to the decision-level fusion stage

Decision level fusion 
and hybrid fusion by 
integrating results from 
feature and decision 
level fusion

51% for bio-signals, 54% 
for speech, 55% applying 
feature fusion, 52% for 
decision fusion, and 54% 
for hybrid fusion, subject 
independent validation.

Kulic and Croft, 
2007

3 HMMs for valence (low, me-
dium, and high) and 3 HMMs for 
arousal (low, medium, and high)

Not reported an accuracy of 64% for 
novel data

Lee and Narayanan, 
2005

discriminant classifiers (LDC) with 
Gaussian class-conditional prob-
ability and k-nearest neighbour-
hood classifiers (k-NN) to detect 
negative versus non-negative 
emotions

Decision level fusion Improvement of 40.7% 
for males and 36.4% for 
females via fusion of 
information

Wagner et al., 2005 k-nearest neighbour (kNN), linear 
discriminant function (LDF) and 
a multilayer perceptron (MLP) to 
recognize 4 emotion classes

Not reported High vs. low arousal 95%, 
and negative vs. positive 
87%
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Another good example on how to handle data 
comprising continuous values comes again from 
the affective content analysis field. Yang et al. 
(2007) model emotions as continuous variables 
composed of arousal and valence values, and 
formulate music emotion recognition as a re-
gression problem. This choice is based on the 
fact that the regression approach is inherently 
continuous, and exhibits promising prediction 
accuracy; it learns the predicting rules ac-
cording to the ground truth and, if categorical 
description is needed, the regression results 
can be easily converted to binary or quaternary 
results. Various types of regressors can be used 
for this task: the multiple linear regression 
(MLR), support vector regression (SVR), and 
AdaBoost.RT, etc. The ground truth is obtained 
by averaging subjects’ opinions about the A-V 
values for each input sample. The emotion 
plane is viewed as a coordinate space spanned 
by the A-V values (each value confined within 
[-1, 1]). Then Yang et al., train two regressors 
to predict the A-V values. The arousal and 
valence models are weighted combinations of 
some component functions, which are computed 
along the timeline. Yang et al. (2007) train the 
two regressors separately under the assumption 
that the correlation between arousal and valence 
is embedded in the ground truth. Although the 
context is different from that of human affect 
sensing, affect recognition researchers could 

potentially benefit from the aforementioned 
methodologies.

There exist a number of studies that focus 
on dimensional modelling of affect in the context 
of empathic companions (e.g., Nakasone et al., 
2005), educational games (e.g., Conati et al., 
2003), game interfaces (Kim et al., 2004), and 
speech analysis (Jin & Wang, 2005). Although 
interesting as the first attempts toward applica-
tion-oriented systems, these works are usually 
based on manual analysis and do not attempt 
automatic dimensional affect recognition.

In summary, the issues pertinent in dimen-
sional affect recognition include reliability of the 
ground-truth, determining duration of emotions 
for automatic analysis, determining the baseline, 
dimensionality reduction, modelling intensity 
of emotions, high inter-subject variation, de-
fining optimal fusion of cues/modalities, and 
identifying appropriate classification methods 
and evaluation measures.

ConCluSIon and 
dISCuSSIon

This article discussed the problem domain of 
affect sensing using a dimensional approach and 
explored the current state-of-the-art in continu-
ous, dimensional affect recognition.

Table 6. Reported challenges for dimensional affect recognition 

System Challenges Encountered

Chanel et al., 2007 EEG signals are good for valence assessment. Peripheral signals better correlate with arousal 
than with valence. Peripheral signals appear to be appropriate for modelling calm-neutral vs. 
excited dimension, but are problematic for the negative vs. positive dimension.

Haag et al., 2004 Estimation of valence is harder than estimation of arousal.

Karpouzis et al., 
2007

Disagreement (frame-based) between human observers (annotators) affects the performance 
of the automated systems. The system should take into account the inter-observer disagree-
ment, by comparing this to the level of disagreement between the ground truth and the results 
attained by the system.

Kim, 2007 Recognition is subject and modality dependant.

Kulic and Croft, 
2007

There is a considerable inter-subject variability in the signal amplitude and its length. Hence, 
it is hard to develop a system that can perform well for all subjects and generalize well for 
unseen subjects.
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The analysis provided in this article indi-
cates that the automatic affect analysis field has 
slowly started shifting from categorical emotion 
recognition to dimensional emotion recognition. 
Existing dimensional affect analysis systems 
mostly deal with spontaneous data obtained 
in less-controlled environments (i.e., subjects 
are taking part in interactions, subjects are 
not always stationary, etc.), and can handle a 
small number of (quantized) affective dimen-
sion categories. However, note that real-world 
settings pose many challenges to affect sensing 
and recognition (Conati et al., 2003). Firstly, it 
is not easy to obtain a high level of reliability 
among independent observers annotating the 
affect data. In addition, when subjects are not 
restricted in terms of mobility, the level of 
noise in all recorded signals tends to increase. 
This is particularly the case for bio-signals. No 
solution has yet been proposed to solve these 
problems.

In general, modelling emotions continuous-
ly using the dimensions of arousal and valence 
is not a trivial problem as these dimensions are 
not universally perceived and understood by 
human observers. It seems that the perception of 
arousal is more universal than is the perception 
of valence (Zhang et al., 2008). Similar findings 
have been reported by Kleinsmith and Bianchi-
Berthouze (2007), who found that ratings of 
arousal contained very small variability among 
different observers, when body postures were 
mapped onto affective dimensions. Also, for 
audio modality variability of ratings of arousal 
appears to be smaller than that of valence (Jin & 
Wang, 2005). Wolmer et al. (2008) also reported 
that automatic analysis results for activation/
arousal are remarkably better than those for 
valence when using audio information. Yet, 
valence appears to be more stable than arousal 
in dimensional facial expression recognition 
from static images (Shin, 2007). Having said 
the above, it can be concluded that stability of 
inter-observer agreement on valence and arousal 
is highly dependent on the modality employed. 
Hence, this makes the problem of obtaining a 
reliable ground truth for multimodal recordings 
a true challenge.

To address this problem Kim (2007) sug-
gests that emotion recognition problem should 
be decomposed into several processes. One 
stage could be recognizing arousal through 
physiological channels, while recognizing va-
lence via audiovisual channels. The second stage 
can then be resolving uncertainties between 
adjacent emotion classes in the 2D space by 
cumulative analysis of user’s context informa-
tion. A more thorough investigation is needed 
to test this suggestion and propose a similar set 
of processes to be applied when other cues and 
modalities are employed.

One of the main disadvantages of bio-
potential-based affect recognition systems is 
the fact that they are cumbersome and invasive 
and require placing sensors physically on the 
human body (e.g., a sensor clip that is mounted 
on subject’s earlobe, a BCI mounted on the sub-
ject’s head, etc.; Takahashi, 2004). Moreover, 
EEG has been found to be very sensitive to 
electrical signals emanating from facial muscles 
while emotions are being expressed via face. 
Therefore, in a multimodal affect recognition 
system, simultaneous use of these modalities 
needs to be reconsidered. Additionally, dur-
ing recordings, the fNIRS device is known to 
cover the eyebrows. This in turn poses another 
challenge: facial features occlusion. However, 
new forms of non-contact physiological sensing 
might facilitate better utilisation of psycho-
logical signals as input to multimodal affect 
recognition systems.

To the best of our knowledge, to date, only 
a few systems have been reported that actually 
achieved dimensional affect recognition from 
multiple modalities. These are summarised in 
Tables 4 and 5. Further efforts are needed to 
identify the importance and feasibility of the 
following important issues.

Among the available remotely observable • 
and remotely unobservable modalities, 
which ones should be used for automatic 
dimensional affect recognition? Does this 
depend on the context? Will the recogni-
tion accuracy increase as the number of 
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modalities a system can analyse increases?
Kim (2007) found that speech and physi-• 
ological data contain little complementary 
information. Accordingly, should we use 
equal weights for each modality or should 
we investigate the innate priority among 
the modalities to be preferred for each emo-
tional dimension/state?
Chanel et al. (2005) report that although • 
it is difficult to self-assess arousal, using 
classes generated from self-assessment of 
emotions facilitate greater accuracy in rec-
ognition. When labelling emotions, should 
one use self assessment or independent ob-
server’s assessment? Which signals better 
correlate with self assessment and which 
ones correlate with independent observer 
assessment?
How does • the baseline problem affect rec-
ognition? Is an objective basis (e.g., a frame 
containing an expressionless display) strict-
ly needed prior to computing the arousal 
and valence values? If so, how can this be 
obtained in a fully automatic manner from 
spontaneous data?
Considering the fact that different emotions • 
may have similar or identical valence or 
arousal values (Haag et al., 2004), should 
the affect recognizers attempt to recognize 
distinct emotion categories rather than 
A-V intensities? Does this depend on the 
context? How should affective states be 
mapped onto the A-V space? Should we 
follow a hierarchical framework where 
similar affective states are grouped into the 
same category?
How should intensity be modelled for di-• 
mensional and continuous affect recog-
nition? Should the aim be personalizing 
systems for each subject, or creating sys-
tems that are expected to generalize across 
subjects?
In a continuous emotional space, how • 
should duration of emotion be defined? 
How can this be incorporated in automated 

systems? Will focusing on shorter or longer 
observations affect the accuracy of the rec-
ognition process?
In real-world uncontrolled settings it is very • 
difficult to elicit balanced amount of data 
for each emotion dimension to be elicited. 
For instance, a bias toward quadrant 1 (pos-
itive arousal, positive valence) exists in the 
SAL database portion used by (Caridakis et 
al., 2008). So, how should the issue of un-
balanced data/classes inherent to real-world 
settings (Chanel et al., 2005) be handled?

The most notable issue in the field is the ex-
istence of a gap between different communities. 
Machine affect recognition community seems 
to use different databases compared to psychol-
ogy and cognitive sciences communities. Also 
for annotation of the data, a more uniform and 
multi-purpose scheme that can accommodate 
all possible research aims, modalities and cues 
should be explored.

The systems surveyed in this article rep-
resent initial but crucial steps toward finding 
solutions to the aforementioned problems, 
and realization of automatic, multimodal, 
dimensional and continuous recognition of 
human affect.
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