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This chapter focuses on the why, what, and how of bodily expression analysis for

automatic affect recognition. It first asks the question of ‘why bodily expression?’

and attempts to find answers by reviewing the latest bodily expression perception

literature. The chapter then turns its attention to the question of ‘what are the bodily

expressions recognized automatically?’ by providing an overview of the automatic

bodily expression recognition literature. The chapter then provides representative

answers to how bodily expression analysis can aid affect recognition by describing

three case studies: (1) data acquisition and annotation of the first publicly available

database of affective face-and-body displays (i.e., the FABO database); (2) a rep-

resentative approach for affective state recognition from face-and-body display by

detecting the space-time interest points in video and using Canonical Correlation

Analysis (CCA) for fusion, and (3) a representative approach for explicit detection

of the temporal phases (segments) of affective states (start/end of the expression

and its subdivision into phases such as neutral, onset, apex, and offset) from bodily

expressions. The chapter concludes by summarizing the main challenges faced and

discussing how we can advance the state of the art in the field.
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14.1 INTRODUCTION

Humans interact with others and their surrounding environment using their visual,

auditory, and tangible sensing. The visual modality is the major input/output channel

utilized for next generation human–computer interaction (HCI). Within the visual

modality, the body has recently started gaining a particular interest due to the fact

that in daily life body movements and gestures are an indispensable means for

interaction. Not many of us realize the myriad ways and the extent to which we

use our hands in everyday life: when we think, talk, and work. The gaming and

entertainment industry is the major driving force behind putting the human body in the

core of technology design by creating controller-free human–technology interaction

experiences. Consequently, technology today has started to rely on the human body

as direct input by reacting to and interacting with its movement [1, 2]. One example

of this is the Kinect project [2] that enables users to control and interact with a video

game console (the Xbox 360 [3]) through a natural user interface using gestures and

spoken commands instead of a game controller.

Bodily cues (postures and gestures) have also started attracting the interest of

researchers as a means to communicate emotions and affective states. Psychologists

have long explored mechanisms with which humans recognize others’ affective states

from various cues and modalities, such as voice, face, and body gestures. This explo-

ration has led to identifying the important role played by the modalities’ dynamics in

the recognition process. Supported by the human physiology, the temporal evolution

of a modality appears to be well approximated by a sequence of temporal segments

called onset, apex, and offset. Stemming from these findings, computer scientists,

over the past 20 years, have proposed various methodologies to automate the affect

recognition process. We note, however, two main limitations to date. The first is

that much of the past research has focused on affect recognition from voice and

face, largely neglecting the affective body display and bodily expressions. Although

a fundamental study by Ambady and Rosenthal suggested that the most significant

channels for judging behavioral cues of humans appear to be the visual channels

of facial expressions and body gestures, affect recognition via body movements and

gestures has only recently started attracting the attention of computer science and

HCI communities. The second limitation is that automatic affect analyzers have not

paid sufficient attention to the dynamics of the (facial and bodily) expressions: the

automatic determination of the temporal segments and their role in affect recognition

are yet to be adequately explored.

To address these issues, this chapter focuses on the why, what, and how of auto-

matic bodily expression analysis. It first asks the question of “why bodily expression?”

and attempts to find answers by reviewing the latest bodily expression perception lit-

erature. The chapter then turns its attention to the question of “what are the bodily

expressions recognized automatically?” by providing an overview of the automatic

bodily expression recognition literature and summarizing the main challenges faced in

the field. The chapter then provides representative answers to how bodily expression

analysis can aid affect recognition by describing three case studies: (1) data acquisi-

tion and annotation of the first publicly available database of affective face-and-body
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displays (i.e., the FABO database); (2) a representative approach for affective state

recognition from face-and-body display by detecting the space-time interest points in

video and using Canonical Correlation Analysis (CCA) for fusion, and (3) a represen-

tative approach for explicit detection of the temporal phases (segments) of affective

states (start/end of the expression and its subdivision into phases such as neutral,

onset, apex, and offset) from bodily expressions.

Due to its popularity and extensive exploration, emotion communication through

facial expressions will not be covered in this chapter. The interested readers are

referred to References 4–11.

14.2 BACKGROUND AND RELATED WORK

Emotion communication through bodily expressions has been a neglected area for

much of the emotion research history [12, 13]. This is illustrated by the fact that

95% of the literature on human emotions has been dedicated to using face stimuli,

majority of the the remaining 5% on audio-based research, and the remaining small

number on whole-body expressions [12]. This is indeed puzzling given the fact that

early research on emotion by Darwin [14] and James [15] has paid a considerable

attention to emotion-specific body movements and postural configurations. De Gelder

argues that the reason why whole-body expressions have been neglected in emotion

research is mainly due to the empirical results dating from the first generation of

investigations of whole-body stimuli [12]. There are potentially other reasons as to

why the body may seem a less reliable source of affective information (i.e., the face

bias), its cultural and ideological reasons and heritage, which have been discussed in

detail in Reference 12.

Overall, the body and hand gestures are much more varied than facial changes.

There is an unlimited vocabulary of body postures and gestures with combinations

of movements of various body parts (with multiple degrees of freedom) [13, 16, 17].

Therefore, using bodily expression for emotion communication and perception has a

number of advantages:

� Bodily expression provides a means for recognition of affect from a distance.

When we are unable to tell the emotional state from the face, we can still clearly

read the action from the sight of the body [12]. This has direct implications for

designing affective interfaces that will work in realistic settings (e.g., affective

tutoring systems, humanoid robotics, affective games).
� Some of the basic mental states are most clearly expressed by the face while

others are least ambiguous when expressed by the whole body (e.g., anger

and fear) [12]. Perception of facial expression is heavily influenced by bodily

expression as in most situations people do not bother to censor their body

movements and therefore, the body is at times referred to as the leaky source

[18]. Consequently, bodily expression, when used as an additional channel for

affect communication, can provide a means to resolve ambiguity for affect

detection and recognition.
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Due to such advantages, automatic recognition of bodily expressions has increas-

ingly started to attract the attention and the interest of the affective computing

researchers. In this section, we will first review existing methods that achieve affect

recognition and/or temporal segmentation from body display. Second, we will sum-

marize existing systems that combine bodily expression with other cues or modalities

in order to achieve multicue and multimodal affect recognition.

14.2.1 Body as an Autonomous Channel for Affect Perception and Analysis

Human recognition of emotions from body movements and postures is still an unre-

solved area of research in psychology and non-verbal communication. There are

numerous works suggesting various opinions in this area. Ekman and Friesen have

touched upon the possibility that some bodily (and facial) cues might be able to com-

municate both the quantity and quality aspects of emotional experience [19]. This

leads to two major perspectives regarding the emotion perception and recognition

from bodily posture and movement. The first perspective claims that there are body

movements and postures that mostly contribute to the understanding of the activ-

ity (and intensity) level of the underlying emotions. For instance, Wallbot provided

associations between body movements and the arousal dimension of emotion. More

specifically, lateralized hand/arm movements, arms stretched out to the front, and

opening and closing of the hands were observed during active emotions, such as

hot anger, cold anger, and interest [20]. This can somewhat be seen as contributing

toward the dimensional approach to emotion perception and recognition from bodily

cues. The second perspective considers bodily cues (movements and postures) to be

an independent channel of expression able to convey discrete emotions. An example

is De Meijer’s work that illustrated that observers are able to recognize emotions

from body movements alone [21].

In general, recognition of affect from bodily expressions is mainly based on

categorical representation of affect. The categories happy, sad, and angry appear

to be more distinctive in motion than categories such as pride and disgust. Darwin

suggested that in anger, for instance, among other behaviors, the whole body trembles,

the head is erect, the chest is well expanded, feet are firmly on the ground, elbows are

squared [14, 20]. Wallbot also analyzed emotional displays by actors and concluded

that discrete emotional states can be recognized from body movements and postures.

For instance, hot anger was encoded by shoulders moving upwards, arms stretched

frontally, or lateralized, the execution of various hand movements, as well as high

movement activity, dynamism, and expansiveness. Analysis of the arm movements

(drinking and knocking) shows that, discrete affective states are aligned with the

arousal–pleasure space [22]; and arousal was found to be highly correlated with

velocity, acceleration, and jerk of the movement.

To date, the bodily cues that have been more extensively considered for affect

recognition are (static) postural configurations of head, arms, and legs [16, 23],

dynamic hand/arm movements [20], head movements (e.g., position and rotation)

[24], and head gestures (e.g., head nods and shakes) [25, 26].
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14.2.1.1 Body Posture Coulson [16] presented experiments on attributing six

universal emotions (anger, disgust, fear, happiness, sadness, and surprise) to static

body postures using computer-generated mannequin figures. His experimental results

suggested that recognition from body posture is comparable to recognition from voice,

and some postures are recognized as well as facial expressions.

When it comes to automatic analysis of affective body postures the main empha-

sis has been on using the tactile modality (for gross bodily expression analysis)

via body-pressure-based affect measurement (e.g., [27]) and on using motion cap-

ture technology (e.g., [23]). Mota and Picard [27] studied affective postures in an

e-learning scenario, where the posture information was collected through a sensor

chair. Kleinsmith et al. [23] focused on the dimensional representation of emotions

and on acquiring and analyzing affective posture data using motion capture tech-

nology [23]. They examined the role of affective dimensions in static postures for

automatic recognition and showed that it is possible to automatically recognize the

affect dimensions of arousal, valence, potency, and avoidance with acceptable recog-

nition rates (i.e., error rates lower than 21%).

14.2.1.2 Body Movement Compared to the facial expression literature, attempts

for recognizing affective body movements are few and efforts are mostly on the

analysis of posed bodily expression data. Burgoon et al. discussed the issue of

emotion recognition from bodily cues and provided useful references in Reference

28. They claimed that affective states are conveyed by a set of cues and focus on

the identification of affective states such as positivity, anger, and tension in videos

from body and kinesics cues. Meservy et al. [29] focused on extracting body cues for

detecting truthful (innocent) and deceptive (guilty) behavior in the context of national

security. They achieved a recognition accuracy of 71% for the two-class problem (i.e.,

guilty/innocent). Bernhardt and Robinson analyzed non-stylized body motions (e.g.,

walking, running) for affect recognition [30] using kinematic features (e.g., velocity,

acceleration, and jerk measured for each joint) and reported that the affective states

angry and sad are more recognizable than neutral or happy.

Castellano et al. [31] presented an approach for the recognition of acted emotional

states based on the analysis of body movement and gesture expressivity. They used

the non-propositional movement qualities (e.g. amplitude, speed, and fluidity of

movement) to infer emotions (anger 90%, joy 44%, pleasure 62%, sadness 48%).

A similar technique was used to extract expressive descriptors of movement (e.g.,

quantity of motion of the body and velocity of the head movements) in a music

performance and to study the dynamic variations of gestures used by a pianist [32].

They found that the timing of expressive motion cues (i.e., the attack and release

of the temporal profile of the velocity of the head and the quantity of motion of the

upper body) is important in explaining emotional expression in piano performances.

Reference 33 presents a framework for analysis of affective behavior starting with

a reduced amount of visual information related to human upper-body movements.

The work uses the EyesWeb Library (and its extensions) for extracting a number of

expressive gesture features (e.g., smoothness of gesture, gesture duration) by tracking
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of trajectories of head and hands (from a frontal and a lateral view), and the GEMEP

corpus (120 posed upper body gestures for 12 emotion classes from 10 subjects)

for validation. The authors conclude that for distinguishing bodily expression of

different emotions dynamic features related to movement quality (e.g., smoothness

of gesture, duration of gesture) are more important than categorical features related

to the specific type of gesture.

A number of researchers have also investigated how to map various visual signals

onto emotion dimensions. Cowie et al. [25] investigated the emotional and com-

municative significance of head nods and shakes in terms of Arousal and Valence

dimensions, together with dimensional representation of solidarity, antagonism, and

agreement. Their findings suggest that both head nods and shakes clearly carry

information about arousal. However, their significance for evaluating the valence

dimensions is less clear (affected by access to words) [25]. In particular, the contri-

bution of the head nods for valence evaluation appears to be more complicated than

head shakes (e.g., “I understand what you say, and I care about it, but I don’t like it”).

14.2.1.3 Gait Gait, in the context of perception and recognition, refers to a per-

son’s individual walking style. Therefore, gait is a source of dynamic information by

definition. Emotion perception and recognition from gait patterns is also a relatively

new area of research [34,35]. Janssen et al. [34] focused on emotion recognition from

human gait by means of kinetic and kinematic data using artificial neural nets. They

conducted two experiments: (1) identifying participants’ emotional states (normal,

happy, sad, angry) from gait patterns and (2) analyzing effects on gait patterns of

listening to different types of music (excitatory, calming, no music) while walking.

Their results showed that subject-independent emotion recognition from gait pat-

terns is indeed possible (up to 100% accuracy). Karg et al. [35] focused on using

both discrete affective states and affective dimensions for emotion modeling from

motion capture data. Person-dependent recognition of motion capture data reached

95% accuracy based on the observation of a single stride. This work showed that gait

is a useful cue for the recognition of arousal and dominance dimensions.

14.2.1.4 Temporal Dynamics An expression is a dynamic event, which evolves

from neutral, onset, apex to offset [36], a structure usually referred to as temporal
dynamics or temporal phases. Evolution of such a temporal event is illustrated, for

a typical facial expression, in Figure 14.1. The neutral phase is a plateau where

there are no signs of muscular activation and the face is relaxed. The onset of the

action/movement is when the muscular contraction begins and increases in intensity

and the appearance of the face changes. The apex is a plateau usually where the

intensity reaches a stable level and there are no more changes in facial appearance. The

offset is the relaxation of the muscular action. A natural facial movement evolves over

time in the following order: neutral(N)⟶ onset(On)⟶ apex(A)⟶ offset(Of)⟶
neutral(N). Other combinations such as multiple-apex facial actions are also possible.

Similarly, the temporal structure of a body gesture consists of (up to) five phases:

preparation ⟶ (pre-stroke) hold ⟶ stroke ⟶ (post-stroke) hold ⟶ retraction.

The preparation moves to the stroke’s starting position and the stroke is the most
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FIGURE 14.1 (a) Sample image of boredom expression to extract body gesture feature (body

camera), (b) sample image of boredom expression to extract facial feature (face camera), and

(c) the corresponding temporal segments from body gesture and facial features respectively.

Taken with permission from the FABO database.

energetic part of the gesture. Holds are optional still phases which can occur before

and/or after the stroke. The retraction returns to a rest pose (e.g., arms hanging down,

resting in lap, or arms folded). Some gestures (e.g., finger tapping) have multiple

strokes that include small beat-like movements that follow the first stroke, but seem

to belong to the same gesture [37].

Studies demonstrate that the temporal dynamics play an important role for inter-

preting emotional displays [38, 39]. It is believed that information about the time

course of a facial action may have psychological meaning relevant to the intensity,

genuineness, and other aspects of the expresser’s state. Among the four temporal

phases of neutral, onset, apex, and offset, features during the apex phase result

in maximum discriminative power for expression recognition. Gunes and Piccardi

showed that, during automatic affect recognition from facial/bodily gestures, decou-

pling temporal dynamics from spatial extent significantly reduces the dimensionality

of the problem compared to dealing with them simultaneously and improves affect

recognition accuracy [40]. Thus, successful temporal segmentation can not only help

to analyze the dynamics of an (facial/bodily) expression, but also improve the perfor-

mance of expression recognition. However, in spite of their usefulness, the complex

spatial properties and dynamics of face and body gestures also pose a great challenge

to affect recognition. Therefore, interest in the temporal dynamics of affective behav-

ior is recent (e.g., [11, 40–42]). The work of Reference 41 temporally segmented

facial action units (AUs) using geometric features of 15 facial key points from profile

face images. In Reference 37, a method for the detection of the temporal phases in

natural gesture was presented. For body movement, a finite-state machine (FSM) was

used to spot multiphase gestures against a rest state. In order to detect the gesture

phases, candidate rest states were obtained and evaluated. Three variables were used

to model the states: distance from rest image, motion magnitude, and duration. Other
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approaches have exploited dynamics of the gestures without attempting to recognize

their temporal phases or segments explicitly (e.g., [31, 43] and [29]).

14.2.2 Body as an Additional Channel for Affect Perception and Analysis

Ambady and Rosenthal reported that human judgment of behaviors based jointly on

face and body proved 35% more accurate than those based on the face alone [44].

The face and the body, as part of an integrated whole, both contribute in conveying

the emotional state of the individual. A single body gesture can be ambiguous. For

instance, the examples shown in the second and fourth rows in Figure 14.2 have

similar bodily gestures, but the affective states they express are quite different, as

shown by the corresponding facial expressions. In light of such findings, instead

of looking at the body as an independent and autonomous channel of emotional

expression, researchers have increasingly focused on the relationship between bodily

postures and movement with other expressive channels such as voice and face (e.g.,

[40, 45, 46]).

FIGURE 14.2 Example images from the FABO database recorded by the face (top) and body

(bottom) cameras separately. Representative images of non-basic facial expressions (a1–h1)

and their corresponding body gestures (a2–h2): (a) neutral, (b) negative surprise, (c) positive

surprise, (d) boredom, (e) uncertainty, (f) anxiety, and (g) puzzlement. Taken with permission

from the FABO database.
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It is important to state that automatic affect recognition does not aim to replace

one expression channel (e.g., the facial expressions) as input by another expression

channel (e.g., bodily expressions). Instead, the aim is to explore various communica-

tive channels more deeply and more fully in order to obtain a thorough understanding

of cross-modal interaction and correlations pertaining to human affective display. An

example is the work of Van den Stock et al. investigating the influence of whole-body

expressions of emotions on the recognition of facial and vocal expressions of emotion

[47]. They found that recognition of facial expression was strongly influenced by the

bodily expression. This effect was a function of the ambiguity of the facial expres-

sion. Overall, during multisensory perception, judgments for one modality seem to

be influenced by a second modality, even when the latter modality can provide no

information about the judged property itself or increase ambiguity (i.e., cross-modal

integration) [48,49]. Meeren et.al. [50] showed that the recognition of facial expres-

sions is strongly influenced by the concurrently presented emotional body language

and that the affective information from the face and the body start to interact rapidly,

and the integration is a mandatory automatic process occurring early in the process-

ing stream. Therefore, fusing facial expression and body gesture in video sequences

provides a potential way to accomplish improved affect analysis.

When it comes to using the body as an additional channel for automatic analysis,

the idea of combining face and body expressions for affect recognition is relatively

new. Balomenos et al. [51] combined facial expressions and hand gestures for the

recognition of six prototypical emotions. They fused the results from the two subsys-

tems at a decision level using pre-defined weights. An 85% accuracy was achieved

for emotion recognition from facial features alone. An overall recognition rate of

94.3% was achieved for emotion recognition from hand gestures. Karpouzis et al.
[52] fused data from facial, bodily, and vocal cues using a recurrent network to detect

emotions. They used data from four subjects and reported the following recognition

accuracies for a 4-class problem: 67% (visual), 73% (prosody), 82% (all modalities

combined). The fusion was performed on a frame basis, meaning that the visual

data values were repeated for every frame of the tune. Neither work has focused

on explicit modeling and detection of the (facial/bodily) expression temporal seg-

ments. Castellano et al. considered the possibility of detecting eight emotions (some

basic emotions plus irritation, despair, etc.) by monitoring facial features, speech

contours, and gestures [45]. Their findings suggest that incorporating multiple cues

and modalities helps with improving the affect recognition accuracy, and the best

channel for affect recognition appears to be the gesture channel followed by the

audio channel.

Hartmann et al. [53] defined a set of expressivity parameters for the generation

of expressive gesturing for virtual agents. The studies conducted on perception of

expressivity showed that only a subset of parameters and a subset of expressions were

recognized well by users. Therefore, further research is needed for the refinement

of the proposed parameters (e.g., the interdependence of the expressivity parame-

ters). Valstar et al. [54] investigated separating posed from genuine smiles in video

sequences using facial, head, and shoulder movement cues, and the temporal corre-

lation between these cues. Their results seem to indicate that using video data from
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face, head, and shoulders increases the accuracy, and the head is the most reliable

source, followed closely by the face. Nicolaou et al. capitalize on the fact that the

arousal and valence dimensions are correlated, and present an approach that fuses

spontaneous facial expression, shoulder gesture, and audio cues for dimensional and

continuous prediction of emotions in valence-arousal space [55]. They propose an

output-associative fusion framework that incorporates correlations between emotion

dimensions. Their findings suggest that incorporating correlations between affect

dimensions provides greater accuracy for continuous affect prediction. Audio cues

appear to be better for predicting arousal, and visual cues (facial expressions and

shoulder movements) appear to perform better for predicting valence.

A number of systems use the tactile modality for gross bodily expression analy-

sis via body-pressure-based affect measurement (measuring participants’ back and

seat pressure) [56, 57]. Kapoor and Picard focused on the problem of detecting the

affective states of high interest, low interest, and refreshing in a child who is solving

a puzzle [57]. They combined sensory information from the face video, the posture

sensor (a chair sensor) and the game being played in a probabilistic framework.

The classification results obtained by Gaussian Processes for individual modalities

showed that affective states are best classified by the posture channel (82%), fol-

lowed by the features from the upper face (67%), the game (57%), and the lower

face (53%). Fusion significantly outperformed classification using the individual

modalities and resulted in 87% accuracy. D’Mello and Graesser [56] considered a

combination of facial features, gross body language, and conversational cues for

detecting some of the learning-centered affective states. Classification results sup-

ported a channel∗judgment-type interaction, where the face was the most diagnostic

channel for spontaneous affect judgments (i.e., at any time in the tutorial session),

while conversational cues were superior for fixed judgments (i.e., every 20 seconds

in the session). The analyzers also indicated that the accuracy of the multichannel

model (face, dialog, and posture) was statistically higher than the best single-channel

model for the fixed but not spontaneous affect expressions. However, multichannel

models reduced the discrepancy (i.e., variance in the precision of the different emo-

tions) of the discriminant models for both judgment types. The results also indicated

that the combination of channels yielded enhanced effects for some states but not

for others.

14.2.3 Bodily Expression Data and Annotation

Communication of emotions by body gestures is still an unresolved area in psychol-

ogy. Therefore, the number of databases and corpus that contain expressive bodily

gestures and are publicly available for research purposes is scarce, and there exists

no annotation scheme commonly used by all researchers in the field.

Data. To the best of our knowledge there exist three publicly available databases

that contain expressive bodily postures or gestures. The UCLIC Database of Affective
Postures and Body Movements [58] contains acted emotion data (angry, fearful, happy,

and sad) collected using a VICON motion capture system, and non-acted affective

states (frustration, concentration, triumphant, and defeated) in a computer game
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setting collected using a Gypsy5 (Animazoo UK Ltd.) motion capture system. The
GEMEP Corpus (The Geneva Multimodal Emotion Portrayals Corpus) [59] contains

120 posed face and upper-body gestures (head and hand gestures), for 12 emotion

classes (pride, joy, amusement, interest, pleasure, relief, hot anger, panic fear, despair,

irritation, anxiety, and sadness) from 10 subjects recorded by multiple cameras (e.g.,

frontal and lateral view). The Bimodal Face and Body Gesture Database (the FABO

database) comprises of face-and-body expressions [60] and will be reviewed in detail

in the next sections.

Annotation. Unlike the facial actions, there is not one common annotation scheme

that can be adopted by all the research groups [13] to describe and annotate the body

AUs that carry expressive information. Therefore, it is even harder to create a common

benchmark database for affective gesture recognition. The most common annotation

has been command-purpose annotation, for instance calling the gesture as rotate or

click gesture. Another type of annotation is based on the gesture phase, for example,

start of gesture stroke-peak of gesture stroke-end of gesture stroke. Rudolf Laban

was a pioneer in attempting to analyze and record body movement by developing a

systematic annotation scheme called Labanotation [61]. Traditionally Labanotation

has been used mostly in dance choreography, physical therapy, and drama for explor-

ing natural and choreographed body movement. Despite the aforementioned effort

of Laban in analyzing and annotating body movement, a more detailed annotation

scheme, similar to that of Facial Action Coding Scheme (FACS) is needed. A gesture

annotation scheme, possibly named as Body Action Unit Coding System (BACS),

should include information and description as follows: body part (e.g., left hand),

direction (e.g., up/down), speed (e.g., fast/slow), shape (clenching fists), space (flexi-

ble/direct), weight (light/strong), time (sustained/quick), and flow (fluent/controlled)

as defined by Laban and Ullman [61]. Additionally, temporal segments (neutral-start

of gesture stroke-peak of gesture stroke-end of gesture stroke-neutral) of the gestures

should be included as part of the annotation scheme. Overall, the most time-costly

aspect of current gesture manual annotation is to obtain the onset-apex-offset time

markers. This information is crucial for coordinating facial/body activity with simul-

taneous changes in physiology or speech [62].

14.3 CREATING A DATABASE OF FACIAL AND BODILY
EXPRESSIONS: THE FABO DATABASE

The Bimodal Face and Body Gesture Database (the FABO database, henceforth) was

created with the aim of using body as an additional channel, together with face, for

affect analysis and recognition. The goal was to study how affect can be expressed,

and consequently analyzed, when using both the facial and the bodily expression

channels simultaneously. Details on the recordings and data annotation are described

in the following sections.

Recordings. We recorded the video sequences simultaneously using two fixed

cameras with a simple setup and uniform background. One camera was placed to

specifically capture the face alone and the second camera was placed in order to
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capture face-and-body movement from the waist above. Prior to recordings subjects

were instructed to take a neutral position, facing the camera and looking straight to

it with hands visible and placed on the table. The subjects were asked to perform

face and body gestures simultaneously by looking at the facial camera constantly. The

recordings were obtained by using a scenario approach that was also used in previous

emotion research [63]. In this approach, subjects are provided with situation vignettes

or short scenarios describing an emotion-eliciting situation. They are instructed to

imagine these situations and act out as if they were in such a situation. In our case

the subjects were asked what they would do when “it was just announced that they

won the biggest prize in lottery” or “the lecture is the most boring one and they

can’t listen to it anymore,” etc. More specifically, although the FABO database was

created in laboratory settings, the subjects were not instructed on emotion/case basis

as to how to move their facial features and how to exactly display the specific facial

expression. In some cases the subjects came up with a variety of combinations of

face and body gestures. As a result of the feedback and suggestions obtained from

the subjects, the number and combination of face and body gestures performed by

each subject varies. A comprehensive list is provided in Table 14.1. The FABO

database contains around 1900 gesture sequences from 23 subjects in age from

18 to 50 years. Figure 14.2 shows example images of non-basic facial expressions

and their corresponding body gestures for neutral, negative surprise, positive surprise,

boredom, uncertainty, anxiety, and puzzlement. Further details on the FABO database

recordings can be found in Reference 60.

Annotation. We obtained the annotations for face and body videos separately, by

asking human observers to view and label the videos. The purpose of this annotation

was to obtain independent interpretations of the displayed face and body expressions

and evaluate the performance (i.e., how well the subjects were displaying the affect

they intended to communicate using their face and bodily gesture) by a number of

human observers from different ethnic and cultural background. To this aim, we

developed a survey for face and body videos separately, using the labeling schemes

for affective content (e.g., happiness) and signs (e.g., how contracted the body is)

by asking six independent human observers. We used two main labeling schemes in

line with the psychological literature on descriptors of emotion: (a) verbal categorical

labeling (perceptually determined, i.e., happiness) in accordance with Ekman’s theory

of emotion universality [64] and (b) broad dimensional labeling: arousal/activation

(arousal–sleep/activated–deactivated) in accordance with Russell’s theory of arousal

and valence [65]. The participants were first shown the whole set of facial videos and

only after finishing with the face they were shown the corresponding body videos.

For each video they were asked to choose one label only, from the list provided:

sadness, puzzlement/thinking, uncertainty/“I don’t know,” boredom, neutral surprise,

positive surprise, negative surprise, anxiety, anger, disgust, fear, and happiness. For

the temporal segment annotation, one human coder repeatedly viewed each face and

body sequence, in slowed and stopped motion, to determine when (in which frame)

the neutral–onset–apex–offset–neutral phases start and end [66]. Further details on

the FABO data annotation can be found in Reference 49.
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TABLE 14.1 List of the affective face and upper-body gestures performed for the
recordings of FABO database

Expression Face gesture Body gesture

Neutral Lips closed, eyes open,

muscles relaxed

Hands on the table, relaxed

Uncertainty

and puz-

zlement

Lip suck, lid droop, eyes

closed, eyes turn

right/left/up/down

Head tilt left/right/up/down, shoulder

shrug, palms up, palms up + shoulder

shrug, right/left hand scratching the

head/hair, right/left hand touching the

right/left ear, right/left hand touching the

nose, right/left hand touching the chin,

right/left hand touching the neck,

right/left hand touching the forehead,

both hands touching the forehead,

right/left hand below the chin, elbow on

the table, two hands behind the head

Anger Brows lowered and drawn

together; lines appear

between brows; lower lid

tense/may be raised; upper

lid tense/may be lowered due

to brows’ action; lips are

pressed together with corners

straight or down or open;

nostrils may be dilated

Open/expanded body; hands on hips/waist;

closed hands/clenched fists; palm-down

gesture; lift the right/left hand up; finger

point with right/left hand; shake the

finger/hand; crossing the arms

Surprise Brows raised; skin below brow

stretched not

wrinkled;horizontal wrinkles

across forehead; eyelids

opened; jaw drops open or

stretching of the mouth

Right/left hand moving toward the head;

both hands moving toward the head;

moving the right/left hand up; two hands

touching the head; two hands touching

the face/mouth; both hands over the

head; right/left hand touching the

face/mouth; self-touch/two hands

covering the cheeks; self-touch/two

hands covering the mouth; head shake;

body shift/backing

Fear Brows raised and drawn

together; forehead wrinkles

drawn to the center; upper

eyelid is raised and lower

eyelid is drawn up; mouth is

open; lips are slightly tense

or stretched and drawn back

Body contracted; closed body/closed

hands/clenched fist; body contracted;

arms around the body; self-touch

(disbelief)/covering the body parts/arms

around the body/shoulders; body shift-

backing; hand covering the head; body

shift-backing; hand covering the neck;

body shift-backing; hands covering the

face; both hands over the head;

self-touch (disbelief) covering the face

with hands

(continued )
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TABLE 14.1 (Continued )

Expression Face gesture Body gesture

Anxiety Lip suck; lip bite; lid droop;

eyes closed; eyes turn

right/left/up/down

Hands pressed together in a moving

sequence; tapping the tips of the fingers

on the table; biting the nails; head tilt

left/right/up/down

Happiness Corners of lips are drawn

back and up; mouth may or

may not be parted with

teeth exposed or not;

cheeks are raised; lower

eyelid shows wrinkles

below it; and may be raised

but not tense; wrinkles

around the outer corners of

the eyes

Body extended; hands clapping; arms

lifted up or away from the body with

hands made into fists

Disgust Upper lip is raised; lower lip

is raised and pushed up to

upper lip or it is lowered;

nose is wrinkled; cheeks

are raised; brows are

lowered

Hands close to the body; body

shift-backing; orientation

changed/moving to the right or left;

backing; hands covering the head;

backing; hands covering the neck;

backing; right/left hand on the mouth;

backing; move right/left hand up

Bored Lid droop, eyes closed, lip

suck, eyes turn

right/left/up/down

Body shift; change orientation; move to

the right/left; hands behind the head;

body shifted; hands below the chin,

elbow on the table

Sadness Inner corners of eyebrows

are drawn up; upper lid

inner corner is raised;

corners of the lips are

drawn downwards

Contracted/closed body; dropped

shoulders; bowed head; body

shift-forward leaning trunk; covering the

face with two hands; self-touch

(disbelief)/covering the body parts/arms

around the body/shoulders; body

extended+hands over the head; hands

kept lower than their normal position,

hands closed, slow motion; two hands

touching the head move slowly; one

hand touching the neck, hands together

closed, head to the right, slow motion.

14.4 AUTOMATIC RECOGNITION OF AFFECT FROM BODILY
EXPRESSIONS

14.4.1 Body as an Autonomous Channel for Affect Analysis

In this section, we first investigate affective body gesture analysis in video sequences

by approaching the body as an autonomous channel. To this aim, we exploit
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spatial–temporal features [67], which makes few assumptions about the observed

data, such as background, occlusion, and appearance.

14.4.1.1 Spatial–Temporal Features In recent years, spatial–temporal features

have been used for event detection and behavior recognition in videos. We extract

spatial–temporal features by detecting space-time interest points [67]. We calculate

the response function by application of separable linear filters. Assuming a stationary

camera or a process that can account for camera motion, the response function has

the form

R = (I ∗ g ∗ hev)2 + (I ∗ g ∗ hod)2 (14.1)

where I(x, y, t) denotes images in the video, g(x, y; 𝜎) is the 2D Gaussian smooth-

ing kernel, applied only along the spatial dimensions (x, y), and hev and hod are

a quadrature pair of 1D Gabor filters applied temporally, which are defined as

hev(t; 𝜏,𝜔) = −cos(2𝜋t𝜔)e−t2∕𝜏2
and hod(t; 𝜏,𝜔) = − sin(2𝜋t𝜔)e−t2∕𝜏2

. In all cases

we use 𝜔 = 4∕𝜏 [67]. The two parameters 𝜎 and 𝜏 correspond roughly to the spa-

tial and temporal scales of the detector. Each interest point is extracted as a local

maxima of the response function. As pointed out in Reference 67, any region with

spatially distinguishing characteristics undergoing a complex motion can induce a

strong response, while region undergoing pure translational motion, or areas without

spatially distinguishing features, will not induce a strong response.

At each detected interest point, a cuboid is extracted which contains the spatio-

temporally windowed pixel values. See Figure 14.3 for examples of cuboids extracted.

The side length of cuboids is set as approximately six times the scales along each

dimension, so containing most of the volume of data that contribute to the response

function at each interest point. After extracting the cuboids, the original video is dis-

carded, which is represented as a collection of the cuboids. To compare two cuboids,

different descriptors for cuboids have been evaluated in Reference 67, including nor-

malized pixel values, brightness gradient and windowed optical flow, followed by a

conversion into a vector by flattening, global histogramming, and local histogram-

ming. As suggested, we adopt the flattened brightness gradient as the cuboid descrip-

tor. To reduce the dimensionality, the descriptor is projected to a lower dimensional

PCA space [67]. By clustering a large number of cuboids extracted from the training

data using the K-Means algorithm, we derive a library of cuboid prototypes. So each

cuboid is assigned a type by mapping it to the closest prototype vector. Following

Reference 67, we use the histogram of the cuboid types to describe the video.

14.4.1.2 Classifier We adopt the support vector machine (SVM) classifier to rec-

ognize affective body gestures. SVM is an optimal discriminant method based on

the Bayesian learning theory. For the cases where it is difficult to estimate the den-

sity model in high-dimensional space, the discriminant approach is preferable to the

generative approach. SVM performs an implicit mapping of data into a higher dimen-

sional feature space and then finds a linear separating hyperplane with the maximal

margin to separate data in this higher dimensional space. SVM allows domain-specific
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FIGURE 14.3 (Best viewed in color) Examples of spatial–temporal features extracted from

videos. The first row is the original input video. Taken with permission from the FABO

database. The second row visualizes the cuboids extracted, where each cuboid is labeled with

a different color; the third row shows some cuboids, which are flattened with respect to time.

Color version of the figure is available in the internet edition.

selection of the kernel function, and the most commonly used kernel functions are

the linear, polynomial, and radial basis function (RBF) kernels.

14.4.2 Body as an Additional Channel for Affect Analysis

In this section, we investigate how body contributes to the affect analysis when used

as an additional channel. For combining the facial and bodily cues, we exploit CCA, a

powerful statistical tool that is well suited for relating two sets of signals, to fuse facial

expression and body gesture at the feature level. CCA derives a semantic “affect”

space, in which the face and body features are compatible and can be effectively fused.

We propose to fuse the cues from the two channels in a joint feature space, rather

than at the decision level. The main difficulties for the feature-level fusion are the

features from different modalities may be incompatible, and the relationship between

different feature spaces is unknown. Here we fuse face and body cues at the feature

level using CCA. Our motivation is that, as face and body cues are two sets of

measurements for affective states, conceptually the two modalities are correlated,

and their relationship can be established using CCA.

14.4.2.1 Canonical Correlation Analysis CCA [68] is a statistical technique

developed for measuring linear relationships between two multidimensional
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variables. It finds pairs of base vectors (i.e., canonical factors) for two variables such

that the correlations between the projections of the variables onto these canonical

factors are mutually maximized.

Given two zero-mean random variables x ∈ Rm and y ∈ Rn, CCA finds pairs of

directions wx and wy that maximize the correlation between the projections x = wT
x x

and y = wT
y y. The projections x and y are called canonical variates. More formally,

CCA maximizes the function

𝜌 =
E[xy]√

E[x2]E[y2]
=

E[wT
x xyTwy]√

E[wT
x xxTwx]E[wT

y yyTwy]
=

wT
x Cxywy√

wT
x CxxwxwT

y Cyywy

(14.2)

where Cxx ∈ Rm×m and Cyy ∈ Rn×n are the within-set covariance matrices of x and

y, respectively, while Cxy ∈ Rm×n denotes their between-sets covariance matrix. A

number of at most k = min(m, n) canonical factor pairs ⟨wi
x, wi

y⟩, i = 1,… , k can be

obtained by successively solving arg maxwi
x,wi

y
{𝜌} subject to 𝜌(wj

x, wi
x) = 𝜌(wj

y, wi
y) =

0 for j = 1,… , i − 1, that is, the next pair of ⟨wx, wy⟩ are orthogonal to the previ-

ous ones.

The maximization problem can be solved by setting the derivatives of Equation.

14.2, with respect to wx and wy, equal to zero, resulting in the eigenvalue equations as{
C−1

xx CxyC−1
yy Cyxwx = 𝜌2wx

C−1
yy CyxC−1

xx Cxywy = 𝜌2wy
(14.3)

Matrix inversions need to be performed in Equation 14.3, leading to numerical

instability if Cxx and Cyy are rank deficient. Alternatively, wx and wy can be obtained

by computing principal angles, as CCA is the statistical interpretation of principal

angles between two linear subspaces.

14.4.2.2 Feature Fusion of Facial and Bodily Expression Cues Given B =
{x|x ∈ Rm} and F = {y|y ∈ Rn}, where x and y are the feature vectors extracted from

bodies and faces, respectively, we apply CCA to establish the relationship between

x and y. Suppose ⟨wi
x, wi

y⟩, i = 1,… , k are the canonical factors pairs obtained, we

can use d (1 ≤ d ≤ k) factor pairs to represent the correlation information. With

Wx = [w1
x ,… , wd

x ] and Wy = [w1
y ,… , wd

y ], we project the original feature vectors

as x′ = WT
x x = [x1,… , xd]T and y′ = WT

y y = [y1,… , yd]T in the lower dimensional

correlation space, where xi and yi are uncorrelated with the previous pairs xj and

yj, j = 1,… , i − 1. We then combine the projected feature vectors x′ and y′ to form

the new feature vector as

z =
(x′

y′

)
=

(WT
x x

WT
y y

)
=

(Wx

0

0

Wy

)T(x
y

)
(14.4)

This fused feature vector effectively represents the multimodal information in a joint

feature space for affect analysis.
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FIGURE 14.4 Confusion matrices for affect recognition from bodily gestures (left) and

facial expressions (left).

14.4.2.3 Experiments and Results In our experiments we used the FABO

database [60]. We selected 262 videos of seven emotions (Anger, Anxiety, Boredom,

Disgust, Joy, Puzzle, and Surprise) from 23 subjects. To evaluate the algorithms’

generalization ability, we adopted a fivefold cross-validation test scheme in all recog-

nition experiments. That is, we divided the data set randomly into five groups with

roughly equal number of videos and then used the data from four groups for training,

and the left group for testing; the process was repeated five times for each group in

turn to be tested. We report the average recognition rates here. In all experiments, we

set the soft margin C value of SVMs to infinity so that no training error was allowed.

Meanwhile, each training and testing vector was scaled to be between –1 and 1. In

our experiments, the RBF kernel always provided the best performance, so we report

the performance of the RBF kernel. With regard to the hyper-parameter selection

of RBF kernels, as suggested in Reference 69, we carried out grid-search on the

kernel parameters in the fivefold cross-validation. The parameter setting producing

the best cross-validation accuracy was picked. We used the SVM implementation in

the publicly available machine learning library SPIDER1 in our experiments. To see

how the body contributes to the affect analysis when used as an additional channel,

we extracted the spatial–temporal features from the face video and the body video

and then fused the cues from the two channels at the feature level using CCA.

We first report the classification performance (the confusion matrix) based on

bodily cues only in Figure 14.4 (left). The average recognition rate of the SVM

classifier using the bodily cues is 72.6%. When we look at the affect recognition

using the facial cues only, the recognition rate obtained is 79.2%. Looking at the

confusion matrix shown in Figure 14.4, we observe that the emotion classification

based on facial expressions is better than that of bodily gesture. This is possibly

because there are much variation in affective body gestures.

We then fused facial expression and body gesture at the feature level using CCA.

Different numbers of CCA factor pairs can be used to project the original face and

1http://kyb.tuebingen.mpg.de/bs/people/spider/index.html
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TABLE 14.2 Experimental results of affect recognition by fusing body and face cues

Feature fusion CCA Direct PCA PCA + LDA

Recognition rate 88.5% 81.9% 82.3% 87.8%

body feature vectors to a lower dimensional CCA feature space, and the recognition

performance varies with the dimensionality of the projected CCA features. We report

the best result obtained here. We compared the CCA feature fusion with another three

feature fusion methods: (1) Direct feature fusion, that is, concatenating the original

body and face features to derive a single feature vector. (2) PCA feature fusion: the

original body and face features are first projected to the PCA space respectively,

and then the PCA features are concatenated to form the single feature vector. In our

experiments, all principle components were kept. (3) PCA+LDA feature fusion: for

each modality, the derived PCA features are further projected to the discriminant

LDA space; the LDA features are then combined to derive the single feature vector.

We report the experimental results of different feature fusion schemes in Table 14.2.

The confusion matrices of the CCA feature fusion and the direct feature fusion are

shown in Figure 14.5. We can see that the presented CCA feature fusion provides best

recognition performance. This is because CCA captures the relationship between the

feature sets in different modalities, and the fused CCA features effectively represent

information from each modality.

14.5 AUTOMATIC RECOGNITION OF BODILY EXPRESSION
TEMPORAL DYNAMICS

Works focusing on the detection of the expression temporal segments modeled tem-

poral dynamics of facial or bodily expressions by extracting and tracking geometric

or appearance features from a set of fixed interest points (e.g., [40, 70]). However,
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FIGURE 14.5 Confusion matrices of affect recognition by fusing facial expression and body

gesture. (Left) Direct feature fusion; (right) CCA feature fusion. Taken with permission from

the FABO database.
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such approaches have two limitations. First, the selection of the fixed interest points

requires human expertise and mostly needs human intervention. Second, tracking is

usually sensitive to occlusions and illumination variations (e.g., the facial point track-

ing will fail when the hands touch the face). Inaccuracy in tracking will significantly

degrade the temporal segmentation performance. To mitigate the aforementioned

issues, we propose two types of novel and efficient features in this section, that is,

motion area and neutral divergence, to simultaneously segment and recognize tem-

poral phases of an (facial/bodily) expression. The motion area feature is calculated

by simple motion history image (MHI) [71, 72], which does not rely on any facial

points tracking or body tracking, and the neutral divergence feature is based on the

differences between the current frame and the neutral frame.

14.5.1 Feature Extraction

The motion area and the neutral divergence features are extracted from both facial

and body gesture information without any motion tracking, so the approach avoids

losing informative apex frames due to the unsynchronized face and body gesture

temporal phases. Furthermore, both features are efficient to compute.

14.5.1.1 Motion Area We extract the motion area based on the MHI, which is

a compact representation of a sequence of motion movement in a video [71, 72].

Pixel intensity of MHI is a function of the motion history at that location, where

brighter values correspond to more recent motions. The intensity at pixel (x, y)

decays gradually until a specified motion history duration t and the MHI image can

be constructed using the equation

MHI𝜏 (x, y, t) = D(x, y, t) ∗ 𝜏 + [1 − D(x, y, t)] ∗ U[MHI𝜏 (x, y, t − 1) − 1]

∗ [MHI𝜏 (x, y, t − 1) − 1]) (14.5)

where U[x] is a unit step function and t represents the current video frame index.

D(x, y, t) is a binary image of pixel intensity difference between the current frame and

the previous frame. D(x, y, t) = 1 if the intensity difference is greater than a threshold,

otherwise, D(x, y, t) = 0. 𝜏 is the maximum motion duration. In our system, we set

threshold = 25 and 𝜏 = 10. Figure 14.6b shows the generated MHI of a surprise
expression. The motion area of each video frame is the total number of the motion

pixels in the corresponding MHI image. The motion pixels are defined as the pixels

with non-zero intensity in the MHI image. The calculation of the motion area MA𝜏 (t)
can be described by the following equation:

MA𝜏 (t) =
W∑

x=1

H∑
y=1

U[MHI𝜏 (x, y, t) − e]) (14.6)

where 0 < e < 1, U[x] is a unit step function, and W and H are the width and the

height of the MHI image.
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FIGURE 14.6 (a) A surprise expression, (b) MHI of the surprise expression shown in (a),

and (c) ground truth temporal segments of the expression. Part (a) is taken with permission

from the FABO database.

Figure 14.7 (left) illustrates how the (normalized) motion area of the surprise
expression (shown in Figure 14.6) is obtained. The expression starts from the neutral

(frames 0 − 10, hands on desk) followed by the onset (frames 11 − 24, hands move

up), the apex, the offset and back to the neutral. As shown in Figure 14.7 (left), the

motion area MA𝜏 (t) is almost 0 at neutral phase and increases and finally reaches

the peak at frame 15. As the expression approaches its apex, the motion begins to

slow down, which causes MA𝜏 (t) to decrease between frame 15 to frame 24. The

apex occurs between frames 25 and 34 in Figure 14.7 (left). During the apex phase,

the expression reaches its maximum spatial extent and lasts for some time. Hence,

there is relatively small (or no motion) during that phase. During the offset phase,
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FIGURE 14.7 The motion area feature representation of the current frame is a vector of

normalized motion area (left), and the neutral divergence feature representation of the current

frame is a vector of normalized neutral divergence (right).
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both the facial expression and the body gesture are moving from the apex phase back

to the neutral phase. This is illustrated in Figure 14.7 (left) between frames 35 and

54. Finally, the expression enters its neutral phase between frames 55 and 70 (with

very small motion area). The motion area is further normalized to the range of [0, 1]

with maximum motion area corresponding to 1. The normalization is done in order

to handle variation due to different expressions or subjects.

14.5.1.2 Neutral Divergence The neutral divergence feature measures the degree

of difference between the current frame and the neutral frame of an expressive display.

Since all videos in the FABO database [60] start from a neutral position, the current

frame’s neutral divergence ND(t) is calculated by summing up the absolute intensity

difference between the current frame image I(x, y, d, t) and the neutral frame image

I(x, y, d, t0) over three color channels, as shown in Equation 14.7:

ND(t) =
3∑

d=1

W∑
x=1

H∑
y=1

abs[I(x, y, d, t) − I(x, y, d, t0)] (14.7)

where d is the number of color channels of the frame.

Figure 14.7 (right) plots the (normalized) neutral divergences of the surprise
expression shown in Figure 14.6. Similar to the motion area normalization, the

neutral divergence is also normalized to the range of [0, 1]. The neutral divergence is

0 at the neutral phase. During the onset phase, the neutral divergence increases (as

can be observed in Figure 14.7 (right)). During the apex phase, the neutral divergence

remains relatively stable (with a large neutral divergence value) as there is little

movement in the facial expression or the body gesture. However, the apex phase is

quite different from the neutral phase. The neutral divergence decreases at the offset
phase. When the expression enters its neutral phase again, between frames 55 and

70, as shown in Figure 14.7 (right), the neutral divergence does not go back to 0 as

would be expected. This indicates that the facial and bodily parts do not return back

to their exact starting position. Nevertheless, the difference between the final neutral
phase and the apex phase using the neutral divergence feature is still recognizable

(see Figure 14.7 (right)).

14.5.2 Feature Representation and Combination

14.5.2.1 Feature Representation The normalized motion area and the neutral

divergence are extracted for every frame in an expression video. To recognize the

expression phases of the current frame, we employ a fixed-size temporal window with

the center located at the current frame as shown in Figure 14.7a (left). The normalized

motion area of every frame within the temporal window is extracted (forming a vector

in chronological order). Similar to the motion area feature, as shown in Figure 14.7b

(right), the normalized neutral divergence of every frame within the temporal window

is also extracted (forming a vector in chronological order). In our experiments, we
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set the temporal window size to 31, for both the motion area features and the neutral

divergence features.

14.5.2.2 Feature Combination The motion area and the neutral divergence fea-

tures provide complementary information regarding temporal dynamics of an expres-

sion. The motion area is able to separate the onset/offset from the apex/neutral phases,

since the onset/offset generates large movements. However, the motion area can nei-

ther distinguish the apex phase from the neutral nor the onset phase from the offset.
Nevertheless, the apex phase has large intensity deviation from the initial neutral

frame. Therefore, the neutral divergence is able to separate the neutral phase from

the apex phase. During the onset phase, the neutral divergence is increasing (the

opposite occurs during the offset phase). Consequently, the neutral divergence is able

to separate the onset phase from the offset phase as well. The combination of both

features is obtained by simply concatenating the motion area feature vector with the

neutral divergence feature vector.

14.5.2.3 Classifier We employ SVM with an RBF kernel as our multiclass clas-

sifier [73]. SVM is used to find a set of hyper-planes which separate each pair of

classes with a maximum margin. The temporal segmentation of an expression phase

can be considered as a multiclass classification problem. In other words each frame

is classified into neutral, onset, apex, and offset temporal phases.

14.5.3 Experiments

14.5.3.1 Experimental Setup We conducted experiments using the FABO

database [60]. We chose 288 videos where the ground truth expressions from both the

face camera and the body camera were identical. We used 10 expression categories,

including both basic expressions (disgust, fear, happiness, surprise, sadness, and

anger) and non-basic expressions (anxiety, boredom, puzzlement, and uncertainty).

For each video, there are two to four complete expression cycles. Videos of each

expression category are randomly separated into three subsets. Then two of these

subsets are chosen for training and the remaining subset is kept for testing. Due to

the random separation process, the subjects may overlap between the training and the

testing sets.

14.5.3.2 Experimental Results We first perform a threefold cross-validation by

combining the motion area and the neutral divergence features. Two subsets are used

for training, and the remaining subset is used for testing. The procedure is repeated

three times, each of the three subsets being used as the testing data exactly once.

The accuracy is calculated by averaging the true positive rate of each class (i.e., the

neutral, the onset, the apex, and the offset). The average accuracy obtained by the

threefold cross validation is 83.1%.

Figure 14.8 shows the temporal segmentation results of the surprise expression

video shown in Figure 14.6. The ground truth temporal phase of each frame in the

expression video is indicated by the solid line, while the corresponding predicted
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FIGURE 14.8 Temporal segmentation results corresponding to the surprise expression video

shown in Figure 14.6.

temporal phase is plotted using the dash line with x. The predicted temporal segmen-

tation of the expression video matches the ground truth temporal phase quite well

(except at the phase transition frames). For example, frames 22 and 23 are predicted

as the apex phase while the ground truth indicates that they are the onset frames right

before the apex.

Table 14.3 shows the confusion matrix resulting from the temporal phase seg-

mentation. Each row is the ground truth temporal segment while the columns are the

classified temporal segments. Based on the confusion matrix, both the onset and the

offset phase appear to be confused mostly with the apex phase. The apex phase is

temporally adjacent to both the onset phase and the offset phase. This is mainly due

to the fact that the temporal boundary between these phases is not straightforward.

However, as shown in the last column of Table 14.3, the overall performance of each

temporal phase is fairly stable.

We also conducted an experiment in order to evaluate the effectiveness of the

combined feature set (combining the motion area and the neutral divergence). This

experiment uses the first subset of expression videos as the testing data and the other

two subsets as the training data. Using the motion area alone, the temporal phase

detection rate is 68.5%. The neutral divergence feature alone achieves 74.1% detection

rate. By combining both the motion area and the neutral divergence, the expression

phase segmentation performance has boosted up to 82%. In order to understand why

the combined feature set significantly improves the performance, we compare the

confusion matrices obtained from the motion area (alone) and the combined feature

set. Table 14.4 (top) reports the confusion matrix using the motion area feature alone.

TABLE 14.3 Summary of the threefold cross validation results

True/model Neutral Onset Apex Offset Accuracy (%)

Neutral 2631 121 208 161 84.3

Onset 113 2253 324 31 82.8

Apex 187 282 4365 251 85.8

Offset 171 70 227 2539 84.4
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TABLE 14.4 Confusion matrices using motion area feature alone (top), and using the
combined feature set (bottom)

True/model Neutral Onset Apex Offset

Neutral 1739 75 757 125

Onset 73 1745 288 429

Apex 691 222 3079 225

Offset 102 472 278 1792

Neutral 2213 107 226 150

Onset 106 2037 246 146

Apex 261 227 3553 176

Offset 150 104 245 2145

Rows indicate the ground truth temporal phases while columns indicate the recognized temporal phases.

From the matrix, we can see that the apex frames are mostly confused with the neutral

frames. As an example, there are 757 neutral frames misclassified as the apex phase,

while there are 691 apex frames misclassified as the neutral phase. Similarly, the

onset phase is mostly confused with the offset phase. Therefore, we conclude that the

motion area can neither distinguish the apex phase from the neutral, nor the onset
phase from the offset.

As can be observed in Table 14.4 (bottom), combining the motion area and the neu-

tral divergence features reduces the confusion between the neutral phase and the apex
phase, significantly. For instance, there are only 226 neutral frames misclassified as

apex, and 261 apex frames misclassified as neutral. Similarly, the confusion between

the onset phase and the offset phase is also reduced. These comparisons confirm the

effectiveness of combining both the motion area and the neutral divergence features

on the temporal segmentation. The neutral divergence and the motion area provide

complementary information for identifying the temporal dynamics of an expression.

14.6 DISCUSSION AND OUTLOOK

Human affect analysis based on bodily expressions is still in its infancy. Therefore,

for the interested reader we would like to provide a number of pointers for future

research as follows.

Representation-related issues. According to research in psychology, three major

approaches to affect modeling can be distinguished [74]: categorical, dimensional,
and appraisal-based approach. The categorical approach claims that there exist a

small number of emotions that are basic, hard wired in our brain and recognized

universally (e.g., [7]). This theory has been the most commonly adopted approach in

research on automatic measurement of human affect from bodily expressions. How-

ever, a number of researchers claim that a small number of discrete classes may not

reflect the complexity of the affective state conveyed [65]. They advocate the use of

dimensional description of human affect, where affective states are not independent

from one another; rather, they are related to one another in a systematic manner (e.g.,
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[65, 74–76]). The most widely used dimensional model is a circular configuration

called Circumplex of Affect introduced by Russell [65]. This model is based on the

hypothesis that each basic emotion represents a bipolar entity being a part of the

same emotional continuum. The proposed polars are arousal (relaxed vs. aroused)

and valence (pleasant vs. unpleasant). Another well-accepted and commonly used

dimensional description is the 3D emotional space of pleasure–displeasure, arousal–

nonarousal and dominance–submissiveness [75], at times referred to as the PAD
emotion space. Scherer and colleagues introduced another set of psychological mod-

els, referred to as componential models of emotion, which are based on the appraisal

theory [74, 76, 77]. In the appraisal-based approach, emotions are generated through

continuous, recursive subjective evaluation of both our own internal state and the

state of the outside world (relevant concerns/needs) [74, 76–78]. Although pioneer-

ing efforts have been introduced by Scherer and colleagues (e.g., [79]), how to use the

appraisal-based approach for automatic measurement of affect is an open research

question as this approach requires complex, multicomponential, and sophisticated

measurements of change. Overall, despite the existence of such diverse affect mod-

els, there is still not an agreement between researchers on which model should be

used for which affect measurement task, and for each modality or cue.

Context. Context usually refers to the knowledge of who the subject is, where

she is, what her current task is, and when the observed behavior has been shown.

Majority of the works on automated affect analysis from bodily expressions focused

on context-free, acted, and emotional expressions (e.g., [40, 45, 80]). More recently,

a number of works started exploring automatic analysis of bodily postures in an

application-dependent and context-specific manner in non-acted scenarios. Examples

include recognizing affect when the user is playing a body-movement-based video

game [81] and detecting the level of engagement when the user is interacting with a

game companion [82]. Defining and setting up a specific context enables designing

automatic systems that are realistic and are sensitive to a specific target user group and

target application. Defining a context potentially simplifies the problem of automatic

analysis and recognition as the setup chosen may encourage the user to be in a

controlled position (e.g., sitting in front of a monitor or standing in a predefined

area), wearing specific clothes (e.g., wearing bright-colored t-shirts [82] or a motion

capture suit [81]), etc. Overall, however, how to best incorporate and model context

for affect recognition from bodily expressions needs to be explored further.

Data acquisition protocol. Defining protocols on how to acquire benchmark

data for affective bodily posture and gesture analysis is an ongoing research topic.

Currently it is difficult to state whether it is sufficient (or better) to have body-

gesture-only databases (e.g., The UCLIC Affective Posture database) or whether it is

better to record multiple cues and modalities simultaneously (e.g., recording face and

upper body as was done for the FABO database and the GEMEP Corpus). Overall,

data acquisition protocols and choices should be contextualized (i.e., by taking into

account the application, the user, the task, etc.).

Modeling expression variation. Emotional interpretation of human body motion

is based on understanding the action performed. This does not cause major issues

when classifying stereotypical bodily expressions (e.g., clenched fists) in terms of
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emotional content (e.g., anger, sadness). However, when it comes to analyzing nat-

ural bodily expressions, the same emotional content (category) may be expressed

with similar bodily movements but with some variations or with very different bod-

ily movements. This presents major challenges to the machine learning techniques

trained to detect and recognize the movement patterns specific to each emotion cate-

gory. This, in turn, will hinder the discovery of underlying patterns due to emotional

changes. To mitigate this problem, recent works have focused on using explicit models

of action patterns to aid emotion classification (e.g., [83]).

Multiple cues/modalities and their dynamics. Although body has been investi-

gated as an additional channel for affect analysis and recognition, it is still not clear

what role it should play when combining multiple cues and modalities: Should it be

given higher or lower weight? Can it be the primary (or only) cue/modality? In which

context? When can gait be used as an additional modality for affect recognition?

How does it relate to, or differ from other bodily expression recognition? These ques-

tions are likely to stir further investigations. Additionally, when dealing with multiple

cues, it is highly likely that the temporal segments of various cues may not be aligned

(synchronized) as illustrated in Figure 14.1c where the apex frames for the bodily

expression constitute the onset segment for the facial expression. One noteworthy

study that investigated fully the automatic coding of human behavior dynamics with

respect to both the temporal segments (onset, apex, offset, and neutral) of various

visual cues and the temporal correlation between different visual cues (facial, head,

and shoulder movements) is that of Valstar et al. [54], who investigated separating

posed from genuine smiles in video sequences. However, in practice, it is difficult

to obtain accurate detection of the facial/bodily key points and track them robustly

for temporal segment detection, due to illumination variations and occlusions (see

examples in Figure 14.2). Overall, integration, temporal structures, and temporal

correlations between different visual cues are virtually unexplored areas of research,

ripe for further investigation.

14.7 CONCLUSIONS

This chapter focused on a relatively understudied problem: bodily expression for

automatic affect recognition. The chapter explored how bodily expression analysis

can aid affect recognition by describing three case studies: (1) data acquisition and

annotation of the first publicly available database of affective face-and-body displays

(i.e., the FABO database); (2) a representative approach for affective state recognition

from face-and-body display by detecting the space-time interest points in video and

using CCA for fusion, and (3) a representative approach for explicit detection of

the temporal phases (segments) of affective states (start/end of the expression and

its subdivision into phases such as neutral, onset, apex, and offset) from bodily

expressions. The chapter concluded by summarizing the main challenges faced and

discussing how we can advance the state of the art in the field.

Overall, human affect analysis based on bodily expressions is still in its infancy.

However, there is a growing research interest driven by various advances and demands
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(e.g., real-time representation and analysis of naturalistic body motion for affect-

sensitive games, interaction with humanoid robots). The current automatic measure-

ment technology has already started moving its focus toward naturalistic settings and

less-controlled environments, using various sensing devices, and exploring bodily

expression either as an autonomous channel or as an additional channel for affect

analysis. The bodily cues (postures and gestures) are much more varied than face

gestures. There is an unlimited vocabulary of bodily postures and gestures with com-

binations of movements of various body parts. Despite the effort of Laban in analyzing

and annotating body movement [61], unlike the facial expressions, communication

of emotions by bodily movement and expressions is still a relatively unexplored and

unresolved area in psychology, and further research is needed in order to obtain a

better insight on how they contribute to the perception and recognition of the various

affective states. This understanding is expected to pave the way for using the bodily

expression to its full potential.
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