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ABSTRACT

Developing automatic personality predictors requires gen-
erating reliable annotations, i.e., ground truth. To date, re-
searchers have relied on the overall ratings provided for a
whole video sequence, either obtained by self-assessment or
provided by external observers. In this paper, we propose a
novel personality assessment approach, where we ask exter-
nal observers to continuously provide ratings along multiple
dimensions ranging from 0 to 100 along time, and we gener-
ate continuous annotations in space and time. In addition to
the widely used Big Five personality dimensions, we intro-
duce three more dimensions that have the potential to gauge
the reliability of the perceived social and trait judgements in
the context of varying situational interactions between a hu-
man subject and virtual characters. Our results demonstrate
the viability of the proposed approach and the plausible re-
lationship between the extracted features and perceived trait
and social dimensions. Annotations obtained continuously in
time and in trait-social dimensional space showed that a num-
ber of dimensions appear to be more static and stable over
time while other dimensions appear to be more dynamic.

Index Terms— Personality, Big Five model, data annota-
tion, continuous prediction.

1. INTRODUCTION
Personality traits are essential cues to predict human be-
haviours, abilities and preferences in daily life such as suc-
cess in academic career, personal life and relationships. In
the context of human-computer interaction, personality pre-
diction is crucial to enhance intelligent user interfaces that
adapt and better respond to users’ need with applications in
ambient intelligence, virtual reality systems, entertainment
and game technology.

The commonly used Big Five model of personality sug-
gests that personality traits manifest themselves along five
major dimensions, namely, agreeableness, conscientiousness,
extroversion, neuroticism and openness to experience. Al-
though most of the existing literature focused on a subset of
personality of the Big Five model [1, 2, 3, 4], few studies also
took into account other social dimensions such as likeability

[5], group involvement and individual engagement [6], per-
suasiveness as well as its potential correlation with the five
main dimensions [7].

To predict five major personality dimensions, Batrinca et
al. [1] used short self-presentations where the subjects were
asked to introduce themselves in front of a camera. Each
subject, at the same time, completed a questionnaire for self-
personality assessment. They extracted both vocal features
(pitch, acoustic intensity, etc.) and visual features (motion
vector magnitude, eye-gaze, head-face gestures, hand use and
posture etc.). In another work [2], they used the same scheme
for personality prediction in a context where each subject in-
structed by an agent had to perform a task on the computer
screen and the agent could display different levels of collabo-
ration, from agreeable and stable to less likely to compromise
and neurotic.

A number of works [8, 3] focused on “video blogs” and
generated annotations through the crowdsourcing scheme.
Biel et al. [8] detected facial expressions of emotions (anger,
happiness, sadness, etc.) on a frame-by-frame basis and fed
emotion activity cues extracted from these sequences to Sup-
port Vector Regression (SVR) for predicting five dimensions.
Their latter study [3] exploited verbal content together with
the features extracted from facial expressions [8], Motion En-
ergy Images [4] and other nonverbal cues based on speaking
activity, distance to camera, and looking at the camera while
speaking. The work in [9] used similar features as well as
head and body activity, and social attention features (attention
given by the target subject to the others, attention received
from the others) in a small group meeting scenario. Although
they obtained the annotations only for one minute segments,
namely for thin slices, they also considered possible gener-
alization both of regression and classification problems from
slices to whole video. Following this, they proposed a cross-
domain approach in [4] where Motion Energy Images were
employed to train Rigde Regression and SVR classifiers from
Youtube video blogs, and then the trained classifiers were
tested on small group meeting data for recognizing extrover-
sion. In the same vein, Subramanian et al. [10] also explored
features extracted from thin slices, in particular, proximity
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features such as distance between the target subject and the
others, the velocity of the target subject in a given time win-
dow and social attention features based on head pose in a
cocktail party scenario.

In this paper, we propose a novel personality assessment
approach based on continuous prediction of perceived trait
and social dimensions in space and time. Although continu-
ous prediction of affect has been well studied in the literature
[11, 12], to the best of our knowledge, such changes in the
personality impressions have not been explored yet. Anno-
tations obtained continuously in time and in trait-social di-
mension have the potential to provide insight into which trait-
social dimensions appear more dynamic, and which ones ap-
pear more static and stable over time. To test this hypothesis,
we first conduct a study by asking a number of external ob-
servers to rate clips of subjects interacting with virtual agents,
continuously in time and in space (i.e, ranging from 0 to 100).
In addition to the Big Five model, in this study we consider
three other social dimensions, namely, engagement (how en-
gaged the person appears in the interaction), facial attractive-
ness (how attractive the person appears based on the face),
and likeability (how one likes the person in the given con-
text). While the engagement dimension is for evaluating the
interaction between a human subject and virtual characters,
other social dimensions are related to the “Halo Effect” [13]
which states that observers tend to assign good attributes to
the person that they find attractive or they like. Measuring the
correlation between these dimensions and the Big Five model
can offer insight into obtaining better interpretations of the
individual judgements.

We address the prediction problem of perceived trait-
social dimensions by employing histogram of gradient and
histogram of optical flow [14] in conjunction with a lin-
ear regression method. Continuous annotations are used in
two separate frameworks: (i) continuous prediction in space
(CPS) and (ii) continuous prediction in space and in time
(CPST). Our results demonstrate the viability of the proposed
approach in the context of human-virtual agent interaction.
Annotations obtained continuously in time and in trait-social
dimensional space show that a number of traits appear to
be more static and stable over time while other dimensions
appear to be more dynamic.

2. DATA AND ANNOTATION

Data. In this work, we used the audio-visual recordings from
the SEMAINE database [15]. This database contains record-
ings of human subjects interacting with virtual agents in a
naturalistic scenario. We took into account 10 different sub-
jects, each communicating with 3 semi-automatic Sensitive
Artificial Listener (SAL) agents, namely, Poppy, Obadiah and
Spike. In total, this resulted in 30 video recordings. To reduce
the burden on the annotators, we shortened and segmented
each video into a 60-sec clip containing several instances of
turn taking. Each clip starts with the human subject engaged

Table 1. The annotated trait-social dimensions.
Acronym Trait/Dimension Acronym Trait/Dimension

AG Agreeableness FA Facial Attractive.
CO Conscientious. LI Likeability
EN Engagement NE Neuroticism
EX Extroversion OP Openness

in the interaction as a listener, and as time progresses, the
interaction becomes more established, and the subject is per-
ceived to be more engaged with the virtual character. The
60-sec length was appeared to be sufficiently long to capture
these behavioural changes and was reasonable for obtaining
effective annotations.

Annotation. For the annotation task, we used an in-house
tool [16] that requires the annotator to scroll a bar between a
range of values (1 and 100) along time. The clips were an-
notated by 21 paid participants aged between 23 and 53 years
(mean = 29). Each participant rated the clips without hearing
any audio and only the human subject was visible to them.
Since rating along one dimension (30 videos at once) lasts
approximately 45 min per participant, we divided the partici-
pants into two separate groups, each one rating the clips along
a set of 5 dimensions. In total, 16 annotators (female/male:
9/7) rated all clips along the five major dimensions as well
as engagement, likeability and facial attractiveness, which re-
sulted in 8-10 annotations per clip and per dimension. The
annotated trait-social dimensions are summarized in Table 1.

Analysis of Annotations. A key challenge in designing
socially and emotionally intelligent user interfaces is estab-
lishing a reliable ground truth from multiple annotators. Es-
pecially, in the continuous case, solution to this problem has
proven to be extremely difficult due to missing data, and vari-
ations in the speed and the style of the annotators. More
specifically, time lags are likely to occur when responding
to the conveyed cues or the perception and usage of rating
scales may drastically differ among the annotators. Figure
1 illustrates representative annotations for one clip along en-
gagement and agreement dimensions. One can observe that
annotators hardly agree, however their judgements show sim-
ilar trends. Therefore, a widely adopted approach in the liter-
ature is to compare two ratings in relative terms rather than in
absolute terms, e.g., whether there has been a rise, fall or level
stretch [12]. We follow this approach by applying z-score nor-
malization and mitigate for the effects of rating scales.

For consensus analysis, correlation-based approaches,
e.g., Cronbach’s α coefficient, have been widely used in the
literature. However, in the case of time-varying data, it is
not straightforward to use these approaches. Although cor-
relation permits comparison by shifting operations, its main
limitation is not being able to incorporate warping operations
such as insertion and deletion. On the other hand, Dynamic
Time Warping (DTW) is an effective technique for dealing
with such temporal operations. DTW algorithm searches for
the optimal alignment between two sequences that minimizes
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Fig. 1. Continuous annotations in time provided for two clips
and two different dimensions: engagement dimension (left)
and agreement dimension (right). Red dashed line illustrates
the mean trajectory of the continuous annotations (best seen
in colour).

Table 2. Measure of agreement among all and selected anno-
tators in terms of mean Pearson’s correlation and mean Cron-
bach’s α in both settings.

All Annotators Selected Annotators
Pearson Cronbach Pearson Cronbach

AG 0.40 0.81 0.48 0.85
CO 0.17 0.63 0.40 0.80
EN 0.41 0.82 0.51 0.87
EX 0.39 0.81 0.48 0.86
FA 0.28 0.71 0.44 0.80
LI 0.36 0.78 0.47 0.84
NE 0.35 0.82 0.45 0.88
OP 0.28 0.70 0.44 0.82

the sum of cumulative distances with respect to a locality
constraint. In our experiments, we set the locality constraint
to 2 sec.

After all pairs of annotations were aligned by using DTW,
we measured the agreement between the annotators in terms
of Pearson’s correlation and Cronbach’s α coefficient. We
also eliminated the outliers based on the correlation val-
ues. Let N be the number of annotations for a clip, i.e,
{x1, .., xN}. We first computed the pairwise correlations
between each annotation xi and the remaining N − 1 anno-
tations, {xj}j 6=i. If only the mean of its pairwise correlations
was greater than a threshold, we took into account xi to com-
pute the ground-truth for the corresponding clip. As shown
in Table 2, this approach resulted in high level of consensus
among the selected annotators.

3. AUTOMATIC PREDICTION
In this section, we address the prediction problem using
two separate frameworks: (i) continuous prediction in space
(CPS) and (ii) continuous prediction in space and time
(CPST). We only consider visual cues that are represented
by low-level features derived from shape and motion. While,
in CPS, our goal is to produce an overall score for the whole
clip, CPST predicts a score at each time instant.

3.1. Continuous Prediction in Space (CPS)
In this case, we calculated an overall score per annotator by
averaging continuous annotations over 60 sec. The ground

truth was set as the mean of the aggregated scores of the an-
notators selected by the approach described in Section 2. This
procedure resulted in an overall score in the range of 0 and
100 per clip.

As features, we used Histogram of Gradient (HoG) and
Histogram of Optical Flow (HoF) extracted from the local
neighbourhoods in the spatio-temporal domain. We first de-
tected spatio-temporal interest points (STIPs) by using 3D
Harris detector [14]. The local neighbourhood of a STIP was
then described by concatenation of HoG and HoF values as
follows. The volume was divided into a grid withM×M×N
(i.e., 3 × 3 × 2) spatio-temporal blocks. For each block, 4-
bin gradient and 5-bin optical flow histograms were computed
and concatenated into a 162-length feature vector. Each clip
was then represented by using Bag-of-Words (BoW) formal-
ism [17]. BoW formalism provides a compact and rich de-
scription in terms of the number of local feature occurrences.
It performs K-means clustering to find the representative clus-
ter centers, and then converts the congregated local features
around these centers into a histogram. In our experiments, we
divided the video volume into 4 sec-long slices along the time
dimension and, for each slice, we constructed histograms sep-
arately where the number of clusters was set to K = 32. The
final representation was obtained by calculating the average
of time-interval-dependent histograms.

Finally, we modelled the relationship between the BoW
histograms and the aggregated scores by using Lasso and
Ridge Regression [18]. A separate regression model per trait-
social dimension was trained by applying leave-one-subject-
out cross-validation strategy. Each time the parameters of the
regression model were optimized over the training-validation
samples with respect to the subjects. In each fold, we used 9
subjects (27 clips) for training-validation and the remaining
one subject (3 clips) for testing.

3.2. Continuous Prediction in Space and Time (CPST)
For CPST, we generate the ground truth using two different
strategies. The first strategy is based on taking the mean of
the selected annotation trajectories per clip. Instead of creat-
ing a non-existing annotation, the second strategy selects the
annotation trajectory that has the maximum correlation with
the remaining annotations per clip.

CPST can be interpreted as a frame-based regressor where
we treated each frame independently during prediction. In
other words, we first extracted separate features per frame
and then mapped these features onto the rating values at their
corresponding time instant. We used the facial landmark
point detector of [19] which results in 49 landmark points
per frame. From each landmark, we calculated HoG+HoF
values and obtained 49× 162 = 7938 length feature vectors.
Prior to the regression analysis, we reduced the dimension of
each feature vector to 100 by applying Principal Component
Analysis (PCA). We learned the relationship between the
features and instantaneous rating values by using Lasso and
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Table 3. Prediction results in terms of MSE and COR. The
best result (high COR and low MSE) is highlighted in bold
per row (social dimension) for both frameworks. MSE values
are provided in the parentheses. Note that the maximum MSE
value can be 4 and * indicates negligible values, i.e., p >
0.05.

(a) CPS (b) CPST
Lasso Ridge Lasso Ridge

AG * 0.56 (0.03) 0.16 (0.55) 0.24 (0.44)
CO * * 0.11 (0.42) 0.10 (0.37)
EN * 0.42 (0.04) 0.15 (0.47) 0.19 (0.41)
EX * 0.56 (0.04) 0.17 (0.47) 0.19 (0.39)
FA 0.77 (0.07) 0.85 (0.04) 0.11 (0.55) 0.13 (0.40)
LI 0.53 (0.18) 0.75 (0.03) 0.17 (0.54) 0.21 (0.41)
NE 0.66 (0.07) 0.52 (0.05) 0.13 (0.49) 0.18 (0.38)
OP * 0.51 (0.03) 0.10 (0.56) 0.14 (0.41)

Ridge Regression as in Section 3.1.

4. RESULTS AND DISCUSSION

We demonstrate the utility of the two proposed frameworks
for automatically predicting eight social dimensions using
visual-only annotations. Table 3 summarizes the regression
results for CPS and CPST. Performance is evaluated in terms
of Mean Square Error (MSE) and Pearson’s correlation co-
efficient (COR) between the predicted values and the ground
truth. As we apply z-score normalization to the annotation
values for CPST, for a fair comparison, all MSE measures are
normalized such that the maximum value is 4.

Table 3-a shows that the best results for CPS are obtained
for facial attractiveness and likeability dimensions (COR>
0.7). This result is in accordance with our expectations as
annotators felt more confident when rating the dimensions of
facial attractiveness and likeability. The proposed scheme is
also successful (COR> 0.55) in predicting agreeableness, ex-
troversion and neuroticism, however, COR values for engage-
ment and openness are found to be slightly lower. This might
be due to the fact that these dimensions, especially engage-
ment and extroversion, are perceived more dynamic and de-
ducing an aggregated score from a time-varying annotation
does not result in a representative scale.

Note that most of the results published in the literature
are not directly comparable, as the annotation procedure, the
data and the performance evaluation metrics employed are all
different. Nevertheless, we attempt to compare our results
with the methods having the most similar setup. For exam-
ple, Aran and Gaticia-Perez [9] also used visual-only anno-
tations in a meeting scenario. While they obtained the best
result with weighted Motion Energy Images for extroversion
(R2 = 0.31), R2 measures were found to be less than 0.1
for the other dimensions. Similar phenomenon was also re-
ported with facial cues and audio-visual cues in [3]. Batrinca
et al. [2] handled the problem in a classification framework
and achieved high performance both for extroversion and neu-
roticism using audio-visual cues. We obtained comparative

results with R2 = 0.311 for extroversion and R2 = 0.43 for
neuroticism. We also obtained high values for agreeableness
(R2 = 0.31) and openness (R2 = 0.26).

In Table 3-b, for CPST framework, we only reported the
prediction results with the ground truth that was generated by
averaging the annotation trajectories since this strategy gave
the best results. At first sight it might come as a surprise that
the COR values are too low compared to the results provided
by the CPS framework. However, such values are commonly
found in automatic continuous prediction problems. For ex-
ample, in the context of affect recognition, a similar frame-
work obtained the best correlation value of COR= 0.22 for
predicting the valence dimension [20]. Overall, the proposed
method finds a plausible relationship (COR> 0.1) for all di-
mensions. Table 3 also indicates that Ridge regression pro-
vides better prediction results compared to Lasso regression.
This could be due to the fact that the extracted features were
not sufficiently sparse for Lasso regression.

5. CONCLUSIONS AND FUTURE DIRECTIONS
This paper introduced a novel approach for personality as-
sessment, namely, continuous prediction of perceived trait
and social dimensions in space and in time. On the one hand,
the CPS framework showed competitive performance for pre-
dicting extroversion in comparison with the state-of-the-art
techniques in the literature, and improved prediction results
for neuroticism, agreeableness and openness. On the other
hand, our results demonstrated the viability of the CPST
framework for automatic continuous prediction of trait and
social dimensions from visual cues.

As an extension of the work proposed here, we conducted
another annotation study using audio-visual clips, where the
annotators watched and heard the interaction between the hu-
man subjects and the virtual characters. All clips were rated
by another set of 5 annotators (female/male: 2/3) along 8
trait-social dimensions as well as vocal attractiveness. How-
ever, at this stage we could not find any significant relation-
ship between the visual features and the audio-visual ratings.
We conjecture that audio-visual annotators might have con-
centrated more on the verbal content rather than the visual
cues. This would require extending the work presented here
to combine visual and audio features.

Recent works in psychology [21] introduced the concept
of personality state as a behavioral episode wherein a person
behaves more/less extravertedly depending on the situation.
A recent study on automatic prediction of perceived traits
also showed that interactive context affects the trait percep-
tion of the external observers [22]. Therefore, investigating
the effects of situational context appears to be an interesting
research question to focus on as future work.
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