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Abstract

This chapter focuses on recent advances in social robots that are capable of sensing

their users, and support their users through social interactions, with the ultimate goal

of fostering their cognitive and socio-emotional wellbeing. Designing social robots

with socio-emotional skills is a challenging research topic still in its infancy. These skills

are important for robots to be able to provide physical and social support to human

users, and to engage in and sustain long-term interactions with them in a variety of

application domains that require human–robot interaction, including healthcare, edu-

cation, entertainment, manufacturing, and many others. The availability of commercial

∗ The research reported in this chapter was completed while O. Celiktutan and E. Sariyanidi

were with the Computer Laboratory, University of Cambridge, United Kingdom.
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robotic platforms and developments in collaborative academic research provide us

with a positive outlook; however, the capabilities of current social robots are quite

limited. The main challenge is understanding the underlying mechanisms of humans

in responding to and interacting with real life situations, and how to model these

mechanisms for the embodiment of naturalistic, human-inspired behavior in robots.

Addressing this challenge successfully requires an understanding of the essential com-

ponents of social interaction, including nonverbal behavioral cues such as interper-

sonal distance, body position, body posture, arm and hand gestures, head and facial

gestures, gaze, silences, vocal outbursts, and their dynamics. To create truly intelligent

social robots, these nonverbal cues need to be interpreted to form an understand-

ing of the higher level phenomena including first-impression formation, social roles,

interpersonal relationships, focus of attention, synchrony, affective states, emotions,

personality, and engagement, and in turn defining optimal protocols and behaviors

to express these phenomena through robotic platforms in an appropriate and timely

manner. This chapter sets out to explore the automatic analysis of social phenomena

that are commonly studied in the fields of affective computing and social signal pro-

cessing, together with an overview of recent vision-based approaches used by social

robots. The chapter then describes two case studies to demonstrate how emotions

and personality, two key phenomena for enabling effective and engaging interactions

with robots, can be automatically predicted from visual cues during human–robot in-

teractions. The chapter concludes by summarizing the open problems in the field and

discussing potential future directions.

Keywords

Social robotics, Human–robot interaction, Affective computing, Social signal process-

ing, Personality computing, Computer vision, Machine learning

10.1 INTRODUCTION

Humanoid robots are being deployed in public spaces including hospi-

tals [1], banks [2], and airports [3]. An increasing number of individuals

needing companionship and psychological support push the need for so-

cially assistive robotics. Socially assistive robotics focuses on building robots

that can facilitate an effective interaction with their human users for the

purpose of assisting them at the social and cognitive level, namely, aiding

them to achieve their goals, manage their medical needs, or enhance their

overall well-being. In the context of heath care and therapy, there is a signif-

icant body of work on how Paro, a robotic seal, improves well-being and

reduces depression and anxiety in elderly people [4]. KASPAR, Kinesics

And Synchronization in Personal Assistant Robotics, is a child-sized hu-

manoid robot designed to develop basic social interaction skills in children

with autism through turn taking and imitation games [5]. SPRITE, Stew-

art Platform Robot for Interactive Tabletop Engagement, helps a group of
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people to complete a task by manipulating turn-taking patterns and the

participants’ attention, with the goal of increasing group cohesion [6].

In education, several studies have already shown the benefits of using

robots in one-to-one tutoring sessions and classroom settings. Students

performed better in mathematics when a robot tutored them [7], and

were more emotionally expressive when engaged in an interactive edu-

cational task with a social robot than when performing the same task with

a tablet [8]. Personalizing a robot’s actions to individual differences has

been shown to be compulsory for achieving good learning outcomes in

several studies. Keepon, a tabletop robot, was made to provide personal-

ized feedback using a skill assessment algorithm in [9]. To accommodate

children’s short attention spans, Nao, a child-sized humanoid robot, was

programmed to offer breaks based on personalized timing strategies [10].

Similarly, in [11], Nao tutored language learning by adapting its feedback

to the children’s skills and observed behaviors.

User modeling, adaptation, and personalization are key to the effec-

tive deployment of social robots in real-world settings. The generic system

of such a robot consists of three modules [12]: (1) the perception mod-

ule; (2) the reasoning (intermediate) module; and (3) the action module.

The perception module acquires information regarding the human user by

capturing (multimodal) data through both the robot’s sensors and the en-

vironmental sensors, and analyzes the human user’s behaviors based on the

information collected during interactions. The action module deals with

the design and generation of behaviors for the robot. The reasoning (in-

termediate) module connects the perception and action modules to deliver

robot behaviors that are shaped by the output of the perception module. In

this chapter, we exclusively focus on the perception module, in particular

from the perspective of affect and social signal analysis from visual cues.

Affective and social signals are integral parts of communication. Hu-

mans exchange information and convey their thoughts and feelings through

gaze, facial expressions, body language, and tone of voice along with spo-

ken words, and infer 60–65% of the meaning of the communicated mes-

sages from these nonverbal behaviors [13]. These nonverbal behaviors carry

significant information regarding higher level social phenomena such as

emotions, personality, and engagement. Recognizing and interpreting these

signals is a natural routine for humans, and automatizing these mechanisms

is necessary for robots to be successful in their interactions with humans.

The objective of this chapter is to present a survey of computational

approaches to the analysis of affective and social signals, together with re-
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cent techniques used by social robots, to categorize the available algorithms

and to highlight the latest trends. The chapter starts with representative

techniques for the analysis of an individual’s emotions, personality, and en-

gagement state, three social phenomena that have been commonly studied

in the area of affective and social signal processing (see Section 10.2). The

chapter then focuses on summarizing the state of the art of robotic plat-

forms endowed with the capability of analyzing these social phenomena.

To provide concrete examples, the chapter presents two case studies to

describe how a computational method can be built for predicting emo-

tions and personality from visual cues during human–robot interactions

(see Section 10.3). The chapter concludes by summarizing the open prob-

lems in the field and discusses potential solutions to these problems (see

Section 10.4).

10.2 AFFECTIVE AND SOCIAL SIGNAL PROCESSING

In this section, we first introduce the state-of-the-art computer vision-

based approaches to affective and social signal processing, and then review

the prominent techniques used by the currently available social robots. We

scope out and explore three social phenomena that are widely studied in

this context: (i) emotion; (ii) personality; and (iii) engagement.

10.2.1 Emotion

Emotion (or affect) recognition has been one of the most active research ar-

eas across multiple disciplines ranging from psychology to computer science

and social robotics. There have already been several extensive surveys on au-

tomatic emotion recognition from facial cues [14,15] and bodily cues [16].

Emotion recognition methods from facial cues aim at recognizing the

appearance of facial actions or the expression of emotions conveyed by these

actions, and usually rely on the Facial Action Coding System (FACS) [17].

FACS consists of facial Action Units (AUs), which are codes that describe

certain facial muscle movements (e.g. AU 12 is lip corner puller). The

temporal evolution of an expression is typically modeled with four temporal

phases [17]: neutral, onset, apex, and offset. Neutral is the expressionless

phase with no signs of muscular activity. Onset denotes the period during

which muscular contraction begins and increases in intensity. Apex is a

plateau where the intensity usually reaches a stable level. Offset is the phase

of muscular action relaxation.
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There have been two lines of approaches proposed in the literature

that are associated with two models of emotions, namely, the categorical

model and the dimensional model. The categorical model refers to the af-

fect model developed by Ekman and his colleagues, who argued that the

production and interpretation of certain expressions are hard-wired in our

brains and are recognized universally (e.g. [18]). The emotions conveyed

by these expressions are grouped into six classes, known as the six basic

emotions: happiness, sadness, surprise, fear, anger, and disgust. AUs can be

mapped to the six basic emotions. For example, using a simple rule-based

method, happiness can be represented as a combination of AU6 (cheek

raiser) and AU12 (lip corner puller) [14]. However, the categorical model is

believed to be limited in its ability to represent the broad range of everyday

emotions [19]. To represent a wider range of emotions, the dimensional

approach is used to continuously model emotions in terms of affect di-

mensions [19]. The most established affect dimensions are arousal, valence,

power, and expectation [19].

The categorical and dimensional models were evaluated in two

prominent affect recognition challenges: Facial Expression Recognition

and Analysis (FERA) [20,21] and Audio/Visual Emotion Challenges

(AVEC) [22]. The FERA challenge evaluates AU detection/AU inten-

sity estimation and discrete emotion classification for four basic emotions

(anger, fear, happiness, sadness) and one nonbasic emotion (relief). The

AVEC challenge evaluates dimensional emotion models along arousal and

valence dimensions.

De la Torre et al. [23] addressed the AU detection problem using a per-

sonalized learning approach based on a Selective Transfer Machine (STM)

that learns a classifier while simultaneously reweighting the training sam-

ples that are most relevant to the test subject. They extracted appearance

features based on Scale-Invariant Feature Transform (SIFT) descriptors,

from patches centered on the automatically detected facial landmarks. The

proposed method achieved superior performance compared to the con-

ventional classification methods such as Support Vector Machines (SVMs)

for classifying five emotions on the FERA 2011 benchmark [20]. The re-

cent trend for AU detection has been deep learning methods. Jaiswal and

Valstar [24] simultaneously learned dynamic appearance and shape features

within a time window using Convolutional Neural Networks (CNNs),

and applied Bidirectional Long Short-Term Memory (BLSTM) networks

on top of the time-windowed CNN features to model temporal relation-
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ships. The proposed method outperformed the previous approaches in the

FERA 2015 challenge datasets [21].

Recent works adopting the dimensional model were characterized by

combining visual data with different modalities, usually audio and physio-

logical data, and employing BLSTM for predicting arousal and valence in

a time-continuous manner [25,26]. For example, the winner of the AVEC

2015 challenge [27] combined two appearance features, namely, Local Ga-

bor Binary Patterns from Three Orthogonal Planes (LGBP-TOP), which

were baseline features provided by the challenge organizers, and Local Phase

Quantization from Three Orthogonal Planes (LPQ-TOP) together with

geometric features computed from facial landmarks. Different feature types

were fused using a model-level fusion strategy, where the outputs of sin-

gle modality models were smoothed and combined using a second layer

of BLSTM. Chen and Jin [26] proposed a multimodal attention fusion

method that automatically assigns weights to different modalities according

the current modality features and history information, which outperformed

the traditional fusion strategies (e.g. early-fusion, model-level fusion, late-

fusion) in the detection of valence in the same database.

Emotion Recognition in HRI. Emotion recognition methods used

by social robots were extensively surveyed by Yan et al. in [12] and Mc-

Coll et al. in [28]. Here, we only considered the prominent works that

performed the recognition task by automatically extracting features from

visual cues, and integrated the developed method on a robotic platform.

The categorical model of emotion has been the most widely adopted

approach in the literature. Cid et al. [29] developed an emotion recognition

system by extracting features based on the Facial Action Coding System

(FACS) [17], and implemented it on a robotic head, Muecas [30], for an

imitation task. For emotion recognition, they first applied a preprocessing

step to the face image taken by Muecas to normalize the illumination and

remove the noise, and a Gabor filter to highlight the facial features. From

the processed face, a set of edge-based features were extracted and mod-

eled using Dynamic Bayesian Networks to detect a total of 11 AUs. The

detected AUs were used to represent four basic emotions including happi-

ness, sadness, fear, and anger according to a rule-based approach, and were

mapped on the Muecas robot to display the inferred emotion in real-time.

In [31], the authors used similar visual features (i.e. Gabor filter responses)

to enable the robot to learn facial expressions of emotion from interac-

tions with humans through an online learning algorithm based on neural

networks. The Muecas robot was able to learn all the emotions success-
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fully, except for sadness. This was due to the large intra-class variability for

sadness, namely, each person expressed sadness in a different manner.

In [32], Leo et al. developed an automatic emotion recognition system

to measure the facial emotion imitation capability of children with Autism

Spectrum Disorders (ASD). The R25 robot from Robokind [33], a small

cartoon character-like robot, was first made to display a facial expression,

and then the child was instructed to imitate the displayed facial expression

while being analyzed through the camera located in R25’s right eye. The

emotion recognition method was based on a generic pipeline that con-

sisted of four components: Viola–Jones face detection, face registration,

Histogram of Gradient (HoG) face representation, and classification with

SVMs. The method was tested via a study involving three children with

ASD, and it achieved good emotion recognition performance, especially

for happiness and sadness.

Among works adopting the dimensional model of emotion, Castel-

lano et al. [34] focused on valence of an affect, representing it with three

discrete states: positive, neutral, and negative. They designed an affect-

sensitive robotic game companion, with the goal of detecting these three

states and selecting an empathic strategy for the robot to display. For this

purpose, they combined visual features including smiling gestures and gaze

patterns with contextual information such as game state and game evo-

lution. For detecting smiles, first an off-the-shelf application was used to

estimate head pose and track facial landmark points, and then a geometry-

based descriptor was defined based on the spatial locations of the facial

landmarks with respect to the head pose. The developed method was inte-

grated onto the iCat platform, a desktop user-interface robot with animated

facial expressions [35] to test with children during the course of a chess

game. Schacter et al. [36] focused on the prediction of both arousal and

valence dimensions. They extracted geometry-based features from facial

landmarks that were detected using Constrained Local Models [37], and

applied Support Vector Regression (SVR) for prediction. The proposed

method was tested using the onboard camera of their in-house robot called

Social Robot Brian.

In this chapter, we exclusively focus on facial cues. However, body pos-

tures and hand gestures are important sources of information, especially in

the context of HRI, when facial cues cannot be observed reliably. Most of

the emotion recognition methods from bodily cues has relied on real-time

skeleton tracking algorithm of Kinect depth sensor [38]. Wang et al. [39]

aimed at modeling arousal and valence dimensions in a time-continuous
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manner. They captured visual recordings using a Kinect depth sensor dur-

ing the course of a game of Snakes and Ladders played by a child against

the Nao robot [40]. Nao’s behaviors were manipulated to display either

competitive or supportive behaviors in order to elicit different emotional

responses from the participated children. From these recordings, they mod-

eled bodily expressions using the 3D skeleton tracking algorithm, and

skeletal representations were used to extract two types of features: (i) a set

of low-level features comprising spatial distances between hands, elbows,

and shoulders, and the angles between the spine and the upper arms, and

the orientation of the shoulders; (ii) a set of high-level features describ-

ing body movement activity and power, body spatial extension, and head

bending. These features were then used to train Online Recursive Gaus-

sian Processes for real-time emotion recognition from bodily expressions,

where they found that the valence dimension was more difficult to model

than the arousal dimension.

10.2.2 Personality

Individuals’ interactions with others are shaped by their personalities and

their impressions regarding others’ behaviors and personalities [41]. This

has also been shown to be the case for interactions with social robots [42].

The traditional approach to describing personality is the trait theory that

focuses on the measurement of general patterns of behaviors, thoughts,

and emotions, which are relatively stable over time and across situational

contexts [43]. The Big Five Model is currently the dominant paradigm in

personality research which defines traits along five broad dimensions: ex-

troversion (assertive, outgoing, energetic, friendly, socially active), neuroti-

cism (a tendency to negative emotions such as anxiety, depression, or

anger), openness (a tendency to changing experience, adventure, new

ideas), agreeableness (cooperative, compliant, trustworthy), and conscientious-

ness (self-disciplined, organized, reliable, consistent).

There are two strategies coupled with two main problems in automatic

personality analysis [44], which are personality recognition (prediction of

actual personality) and personality perception (prediction of personality im-

pressions). In both problems, the commonly used method to measure Big

Five personality traits is the Big Five Inventory (BFI) [45]. In personality

recognition, an individual is asked to fill in the BFI which aims to assess per-

sonal behavioral tendencies, i.e. how an individual sees herself in the way

she approaches problems, likes to work, deals with feelings, and manages

relationships with others. In personality prediction, external observers are
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asked to view a video of the individual and rate the individual along the Big

Five personality dimensions based on thin slices of behavior ranging from

10 seconds to several minutes. However, employing observers to carry out

this tedious task is in itself a problem. A number of researchers [46,47] ob-

tained manual annotations through online crowd-sourcing services such as

the Amazon Mechanical Turk (MTurk) service. Typically, several folds of

independent ratings are run since there is rarely full agreement between the

raters.

Nonverbal behaviors are significant predictors of personality. Gaze and

head movement are strongly correlated with personality. For example, dom-

inance and extroversion are found to be related to holding a direct facial pos-

ture and long durations of eye contact during interaction, whereas shyness

and social anxiety are highly correlated with gaze aversion [48]. Extroverted

people are found to be more energetic, leading to higher head movement

frequency, more hand gestures, and more posture shifts than introverted

people [49,50]. Research has demonstrated that these nonverbal behaviors

can be reliably modeled from visual cues for predicting personality.

Among the works focusing on facial and head cues, Joshi et al. [51]

investigated varied situational contexts using audio-visual recordings of

conversations between a human and four different virtual characters using

the SEMAINE corpus [52]. The SEMAINE corpus comprises audio-visual

recordings of interactions between human participants and four different

virtual characters. Facial cues were extracted using the pyramid of HoG,

which counts the gradient orientations in the whole face and in the lo-

calized portions. The mean and the standard deviation of the histograms

accumulated from all the frames were fed into SVMs for regression. The

visual features used yielded the best prediction accuracy for conscientious-

ness among the Big Five personality traits.

High-level features were taken into account by Teijeiro-Mosquera et al.

[46] using videos from Youtube, so-called “video blogs”, with annotations

generated through the MTurk service. They detected facial expression of

emotions (e.g. anger, happiness, fear, sadness) on a frame-by-frame basis and

extracted emotion activity cues from sequences either by thresholding or by

using an HMM-based method. These features were then fed into SVMs for

predicting the five traits. Their results showed that facial expressions were a

strong predictor of extroversion.

Another line of work has focused on the fusion of facial/head cues and

bodily cues at the feature level. Aran and Gatica-Perez [53] used recordings

from the ELEA corpus [54] involving three or four participants performing
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a Mission Survival task [55]. They represented the visual cues by extract-

ing two types of features, namely, activity features and attention features.

The participants’ heads and bodies were tracked in videos, and optical

flow was computed from tracked head and body parts, yielding the bi-

nary occurrence of head/body activity at a specific time instant and the

amount of activity. Activity features were then computed by aggregating

the occurrences and amount of activity over the whole sequence, which

included head/body activity length, head/body activity turns, standard de-

viations of head/body activity in x and y directions, etc. In addition to

head/body activity features, simple statistics were calculated from weighted

Motion Energy Images (MEI) in order to encapsulate the whole body ac-

tivity over time. Attention features were extracted based on the visual focus

of attention analysis during interactions, which included attention given

while speaking/listening, attention received while speaking/listening, and

visual dominance ratio. Ridge regression was used both for the prediction

of extroversion level and for the binary classification of extroversion, agreeable-

ness, and openness. For both regression and classification, the best results

were achieved by combining all the features. However, the prominent vi-

sual features were attention features and MEI statistics in the classification

of extroversion.

From human–virtual character interactions [52], Celiktutan and Gunes

[56] modeled the face/head and body movements by extracting three sets

of features: (i) spatial and spatio-temporal appearance features (e.g. Zernike

moments, gradient and optical flow); (ii) geometric features (e.g. spatio-

temporal configuration of facial landmark points, horizontal and vertical

trajectories over time); and (iii) hybrid features (e.g. the fusion of local ap-

pearance and motion information around facial landmark points). These

features were then used in conjunction with Long Short-Term Memory

Networks for predicting personality traits continuously in space and time,

which yielded the highest coefficient of determination (R2) for conscientious-

ness using the face appearance features and for neuroticism and openness using

the body appearance features.

Personality Prediction in HRI. Incorporating human personality

analysis to adapt a robot’s behavior for engaging a person in an activity is

a fundamental component of social robots [57,47]. One prominent work

by Rahbar et al. [58] focused on the prediction of the extroversion trait

only, when a participant was interacting with the humanoid iCub [59],

a robot shaped like a four-year-old child. They combined individual fea-

tures and interpersonal features that were extracted from Kinect recordings.
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More explicitly, the individual features included the participant’s quantity

of motion computed from the depth images. The interpersonal features

modeled synchrony and dominance between the movements of iCub and

the participant, and also proxemics (i.e. the distance between iCub and the

participant). They achieved the best F-measure when they fused individ-

ual and interpersonal features at the feature level using Logistic Regres-

sion.

Some works focused on the robot’s personality to improve the qual-

ity of the human experience with the robot: humans tend to be attracted

by characters that have either matching personality traits (similarity rule)

or non-matching personality traits (complementarity rule) [60]. Salam et

al. [47] investigated the impact of the participants’ personalities on their en-

gagement states from the Kinect depth sensor recordings. These recordings

contained interactions between two participants and Nao [40], a small hu-

manoid robot. They extracted two sets of features, namely, individual and

interpersonal features, similarly to [58]. Individual features described the

individual behaviors of each participant, e.g. body activity computed from

articulated pose and motion energy images, body appearance, etc. Interper-

sonal features characterized the interpersonal behaviors of the participants

with respect to each other and the robot. These include the visual focus

of attention (VFOA), the global quantity of movement, the relative ori-

entation of the participants, the relative distance between the participants,

and the relative orientation of the participants with respect to the robot.

They first applied Gaussian process regression for personality prediction.

They then combined the predicted personality labels with the individual

and interpersonal features to classify whether the participants were engaged

or not. The best results were achieved using individual features together

with personality labels.

Despite its importance, automatic personality analysis as a part of a social

robot has been scarce; indeed, to the best of our knowledge, there has been

no system that is integrated onto a robot, and performs real-time analysis

of personality in the course of interaction. In [61], Celiktutan et al. used

a real-time implementation of their method of personality prediction from

nonverbal cues [56], and demonstrated this system, called MAPTRAITS,

together with the Nao robot. Using a Wizard of Oz setup, Nao asked the

participants a predefined set of questions about their jobs, hobbies, and

memories while the MAPTRAITS system (running on a PC) analyzed

the participants’ personalities in real-time using a camera placed on a tri-

pod. The predicted personality scores were displayed to each participant
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instantaneously on a screen; however, no quantitative analysis was con-

ducted.

10.2.3 Engagement

Engagement is the process by which interactors start, maintain, and end

their perceived connection to each other during an interaction [62]. When

individuals interact with each other, they display affective and social signals

that give away information regarding their engagement states (i.e. intention

to engage, engagement, and disengagement).

Most of the methods for predicting engagement have focused on ob-

servable visual cues including social gaze patterns, facial gestures, and body

posture. Although these cues were manually annotated, Kapoor et al. [63]

exploited features based on facial gestures and body posture in order to

predict the level of interest of a child who was solving a puzzle. In par-

ticular, facial gestures were coded in terms of manually annotated facial

action units associated with upper face muscle movements around the eyes,

eyebrows, and upper cheeks, and body posture was determined using a

sensor chair. Their results showed that body posture alone was more in-

formative than facial gestures, yielding a better classification performance

with Hidden Markov Models (HMMs). Oertel and Salvi [64] only re-

lied on features extracted from manually annotated social gaze patterns

to model group involvement and individual engagement in game-based

group interactions. They divided the social gaze patterns into four groups,

namely, looking at another participant, looking away, looking down, and

eyes closed, that were converted into a matrix for each participant. They

then extracted group-level features and individual-level features from these

matrices. While group-level features modeled interpersonal dynamics such

as mutual gaze, individual features intended to capture individual differences

in gaze behaviors. Good classification results were obtained with Gaussian

Mixture Models (GMMs) for detecting the high level of group involvement

and group forming/getting familiar with each other, whereas the low-level

group involvement was classified poorly.

Peters et al. [65] focused on automatic gaze estimation and shared at-

tention detection from a web camera during interactions with a virtual

agent. They first estimated head pose and gaze by automatically detecting

and tracking facial landmark points. The user’s head and gaze directions

were then mapped on the computer screen in order to model the level of

attention and the level of engagement. While the level of attention was

measured in terms of gaze fixations onto the virtual objects on the screen
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(including the virtual agent itself), the scene background, or outside of the

screen, the level of engagement was defined as how much the user looks at

the relevant objects in the scene at the appropriate times.

There is another line of research investigating the impact of personal-

ity on engagement in human–virtual character interactions. Cerekovic et

al. [66] considered two virtual agents from the SEMAINE System [52],

namely, Obadiah and Poppy. While Obadiah was gloomy and neurotic with

low variation in speech and a flat tone, Poppy was cheerful and extroverted

with frequent gestures and head nods. They measured the engagement level

of each participant along three dimensions: quality, rapport, and likeness.

In order to predict the levels of these three dimensions, they took into ac-

count both audio-visual features and manually annotated personality trait

labels collected from external observers. As visual features, they computed

the distribution of body leans and frequency of shifts from one body pos-

ture to another using the 3D skeleton tracking information from the Kinect

depth sensor. Similar features were computed for manually annotated hand

gestures, and facial expressions were modeled using an off-the-shelf facial

expression recognition toolbox. They achieved the best results when they

combined nonverbal features with personality scores. They found that ex-

troverted people tended to like the neurotic agent, whereas people that

score high on neuroticism liked the cheerful agent, supporting the interper-

sonal complementarity rule [60].

Engagement Prediction in HRI. Understanding the user’s engage-

ment is important to ensure that the user maximally benefits from an activ-

ity conducted with the assistance of the robot, particularly in health-related

applications and education settings. In [67], Sanghvi detected engagement

states during a chess game played by a child and iCat [34]. In order to detect

whether the child was engaged or not, the child’s body silhouette was first

extracted, and then a set of features was extracted based on the posture and

body movements. These features included (i) body lean angle, a measure

of the orientation of the child’s upper body when playing the game with

the robot; (ii) slouch factor, a measure of the curvature of the child’s back;

(iii) quantity of motion, a measure of the amount of detected motion from

the extracted silhouette; and (iv) contradiction index, a measure of the de-

gree of contraction and expansion of the upper body. Using the extracted

features in conjunction with ADTree and OneR classifiers yielded a high

accuracy for engagement classification.

In [68], Benkaouar and Vaufreydaz proposed a multimodal approach

for recognizing nonverbal cues and inferring engagement in a home envi-
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ronment where they used a Kinect depth sensor mounted onto a mobile

robot called Kompai from Robosoft [69]. They extracted three sets of vi-

sual features: (i) proxemics features such as distance to the robot, speed from

the recorded depth data; (ii) face location and face size from the recorded

RGB data; and (iii) positions of stance, hips, torso, and shoulders, and

their relative rotations from the tracked skeletons. The most relevant fea-

tures yielding the best engagement detection accuracy were selected using

the Minimum Redundancy Maximum Relevance method. Their results

showed that shoulder rotation, face position and size, relative distance, and

speed played an important role in engagement detection.

Salam and Chetouani [70] conducted a study in a triadic HRI scenario

to investigate to what extent it is possible to infer an interactor’s engagement

state starting from the cues of the others in the interaction. They considered

two set of features from two human participants and a robot. Each partici-

pant’s features were composed of manually annotated social cues including

head nods, visual focus of attention (VFOA), head pose, face location, and

utterances. In addition to these cues, they extracted simple features over

time, e.g. VFOA shifts, sliding windows statistics of head pose and face

location, etc. The robot’s features comprised utterances, addressee (address-

ing the speech to an interactor), and the topic of the speech. These features

were used, both singly and in pairwise combinations (i.e. combining fea-

tures of both participants, or combining a participant’s features with the

robot’s features), in conjunction with SVMs for engagement classification.

Their results showed that in a multiparty interaction, the cues of the other

interactors can be used to infer the engagement state of the individual in

question, which suggests that inter-personal context plays an important role

in engagement classification.

10.3 TWO CASE STUDIES

In this section, we describe two automatic methods for modeling emo-

tion and personality in interactions with a robot. First, we present a novel

AU detection method. AU detection has been a popular research prob-

lem in computer science; however, there are fewer works performing AU

detection in the context of HRI. Differently from [30], for more robust

AU detection, our method combines shape and appearance information,

and exploits differential features with respect to an individual’s neutral

face. Then, we introduce how this method can be implemented on the
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humanoid robot Nao in real-time and can be used in live public demon-

strations.

Second, we describe a pipeline for automatic prediction of an indi-

vidual’s personality in the course of their interactions with Nao, from

experimental study design to data collection and feature extraction. Despite

its importance, there are only a few works performing automatic personality

prediction in the context of HRI. Additionally, most of these works inves-

tigate the relationship between the personality traits and engagement state

based on self reports, which might not be available in real-life applications.

Here, we show that personality can be predicted from a set of low-level

features extracted from videos captured from a first-person perspective.

10.3.1 Automatic Emotion Recognition

In this chapter, we introduce a novel method for detecting Action Units

(AUs) in video sequences, and present comparative figures on a state-of-

the-art database. We also demonstrate how this approach can be used for

public engagement at various events (e.g. science festivals).

10.3.1.1 Action Unit DetectionMethodology

There has been a significant body of work in the area of automatic AU

detection. Recently, Sariyanidi et al. [15] highlighted the importance of

two practices: (i) combining shape and appearance features, which yields

better performance because they carry complementary information, and

(ii) using differential features that describe information with respect to a

reference image (i.e. a neutral face in the case of emotion recognition).

The main advantage of the differential features is to place greater emphasis

on the facial action by reducing person-specific appearance cues.

Feature Extraction. In the light of these insights, we extracted four

types of features, namely, shape, appearance, differential-appearance (here-

after δ-appearance) and differential-shape (hereafter δ-shape) as follows.

Shape features were obtained by concatenating the vertical and horizontal

coordinates of the facial landmarks that were estimated using the Super-

vised Descent Method (SDM) in [71]; δ-shape features were computed by

subtracting the shape representation of a given facial image from the shape

representation that was computed from a facial image, of the same subject,

with a neutral expression.

Appearance features were extracted using the Quantized Local Zernike

Moments (QLZM) method [72]. The use of this method was previously
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demonstrated for affect recognition based on both the categorical and di-

mensional models of emotion [72]. The QLZM method consists of two

steps: (i) computing local Zernike moments to describe image disconti-

nuities at various scales and orientations, and (ii) performing non-linear

encoding and pooling to improve the robustness against image noise and

translation. Here we computed the appearance features in a part-based

manner. Using the estimated facial landmarks, we first cropped three square

patches that contained the left eye, right eye, and mouth, and then com-

puted the QLZM histograms from each part.

We computed δ-appearance features using the Gabor motion energy

filters [73], where we adopted a part-based representation similarly to the

appearance features. We used Gabor motion energy filters to describe the

motion between a given face image of a subject and the subject’s neutral

face image. One advantage of using the Gabor representation over using

simpler representations (e.g. difference between neutral and apex phases)

is its robustness to illumination variations. During the on-the-fly tests, we

ensured that we had the neutral face of human subjects by asking them to

stand still and make a neutral face in front of the camera prior to beginning

a test session.

Note that each AU can occur either in the upper part or in the lower

part of the face. For example, AU1 (inner brow raiser) occurs in the up-

per part and AU25 (lips part) occurs in the lower part. Therefore, when

detecting an AU, we took into account the above-mentioned four fea-

tures extracted either from the upper part or from the lower part of face.

For shape and δ-shape features, this resulted in a 60-length feature vector,

corresponding to the landmarks associated with eyes and eyebrows, and a

38-length feature vector, corresponding to the landmarks associated with

mouth. For the appearance and δ-appearance features, this resulted in a

800-length and a 512-length feature vector, respectively, computed from

the left and right eye patches, and a 400-length and a 256-length feature

vector, respectively, computed from the mouth patch.

Decision Fusion. We trained four binary SVM classifiers, each in con-

junction with one of the above-mentioned feature types, for each AU. The

final AU detection decision was given by fusing the outputs of the four

individual classifiers. Specifically, we adopted the consensus fusion approach,

where an AU was detected based on the condition that all four classifiers

were in full agreement. The advantage of the consensus fusion approach is

that it yields a low False Alarm Rate (FAR). The downside is that it can

also lead to a low True Positive Rate (TPR) because the consensus cannot
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be reached even when one of the classifiers misses an AU. To address this

issue, we decreased the AU detection threshold for each classifier, where

we empirically set the threshold to 0.95 TPR on the training dataset. This

also increased the False Positive Rate (FPR) of the individual classifiers, but

the overall FPR of the consensus fusion approach was low, as shown in the

next section.

10.3.1.2 Experimental Results

In this work, we focused on a total of seven AUs, namely, inner brow raiser

(AU1), outer brow raiser (AU2), brow lowerer (AU4), cheek raiser (AU6),

lip corner puller (AU12), lips parted (AU25), and jaw drop (AU26). For

these AUs, we evaluated the performance of the proposed AU detection

pipeline using the MMI Facial Expression dataset [74], one of the most

widely used benchmark datasets in the field.

Experimental Setup. For each AU, we trained an SVM classifier using

the one-vs-all approach, namely, positive samples were the images where

the AU was displayed, and the negative samples were all the other images

where the AU was not displayed, including neutral samples. We used a

linear c-SVM [75] and fixed the c parameter to c = 10−3.

We used the MMI Facial Expression [74] database, which contains a

total of 329 video sequences with annotations provided for the temporal

segments of onset, apex, and offset. In order to increase the number of

training samples, we selected multiple frames from the apex segment. Sub-

jects often displayed eye movements or small head movements; therefore,

the frames extracted from the apex segment were not identical. Similarly,

in order to create negative samples, for δ-appearance and δ-shape represen-

tations, we randomly picked pairs of frames with neutral expressions. This

resulted in a total of 6349 training samples; however, some AUs (e.g. AU1,

AU12) have a relatively small number of samples. We handled the data im-

balance issue by limiting the number of negative samples. More explicitly,

for each AU, we formed 20% of the training samples from the positive sam-

ples, 40% from the negative samples with neutral faces, and 40% from the

negative samples with nonneutral faces.

Results. We evaluated AU detection performance using five-fold

subject-independent cross validation. Table 10.1 presents AU detection re-

sults with respect to the four individual features, and their combination

via the consensus fusion approach in terms of (a) the alternative forced

choice (2AFC) metric [76], (b) the TPR, and (c) the FPR. The 2AFC

metric can be defined as the area A underneath the receiver-operator char-
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Table 10.1 AU detection performance in terms of (a) the alternative forced choice

(2AFC) score, (b) the false positive rate (FPR), and (c) the true positive rate (TPR). Bold

text indicates the best (i.e. highest) score

AU1 AU2 AU4 AU6 AU12 AU25 AU26

(a) 2AFC

Shape 0.74 0.53 0.67 0.61 0.79 0.73 0.53

Appearance 0.74 0.73 0.65 0.78 0.82 0.78 0.67

δ-shape 0.78 0.67 0.71 0.74 0.78 0.82 0.64

δ-appearance 0.90 0.92 0.87 0.82 0.92 0.89 0.78

Fusion 0.91 0.89 0.78 0.87 0.93 0.86 0.79

(b) FPR

Shape 0.41 0.87 0.49 0.77 0.40 0.44 0.77

Appearance 0.45 0.46 0.50 0.35 0.31 0.32 0.58

δ-shape 0.41 0.62 0.46 0.42 0.45 0.30 0.51

δ-appearance 0.15 0.12 0.21 0.28 0.12 0.17 0.35

Fusion 0.02 0.03 0.04 0.12 0.06 0.02 0.11

(c) TPR

Shape 0.89 0.93 0.82 1.00 0.98 0.90 0.83

Appearance 0.92 0.92 0.80 0.90 0.94 0.88 0.93

δ-shape 0.98 0.96 0.87 0.90 1.00 0.93 0.79

δ-appearance 0.96 0.96 0.95 0.91 0.96 0.95 0.91

Fusion 0.84 0.81 0.61 0.86 0.92 0.73 0.68

acteristic (ROC) curve, and an upper bound for the uncertainty of the A

statistic for np positive and nn negative samples, s =
√

A(1 − A)/min{np,nn}.

Looking at the AFC scores (Table 10.1(a)), the best performing individ-

ual feature is the δ-appearance feature, and the consensus fusion achieves a

higher AFC score than the δ-appearance feature for four AUs (AU1, AU6,

AU12, AU26) out of seven AUs. The main advantage of the consensus fu-

sion is the low FPR, as given in Table 10.1(b) (the corresponding TPRs

are provided in Table 10.1(c)). We also used the best performing trained

models in the real-time demonstration.

Real-Time Demonstration. We performed the real-time implemen-

tation using C++. For the initial face detection in each session, we used

the Viola–Jones face detector [77] and then tracked the face using the SDM

method [71]. We redetected the face when tracking failed. The real-time

implementation was integrated onto the Nao robot as shown in Fig. 10.1.

The computational power of the Nao robot did not allow us to run the

AU detection algorithm in real-time. For this reason, we used a pair of
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Figure 10.1 The robotic platform used during real-time public demonstrations.

external cameras plugged into a laptop (Intel Core i6, 16 GB RAM), and

ran the AU detection algorithm on the laptop. As shown in Fig. 10.1, these

cameras were attached to Nao’s head using custom 3D printed glasses. AU

detection from the robot’s point of view is shown in Fig. 10.2. Vertical and

horizontal bars indicate the head pose, and the color green is associated

with frontal or nearly frontal head poses that yield more reliable AU de-

tection. The detected AUs are highlighted in blue on the left-hand side of

each frame; for example, AU1 and AU2 are detected in Fig. 10.2A.

We demonstrated the real-time AU detection method through face-

to-face interactions with the Nao robot in a series of public engagement

events. For this purpose, we designed an interactive game where Nao asked

participants to help him improve his emotional intelligence by displaying

facial expressions of emotion, such as happiness, sadness, etc. The partici-

pant could choose to display any AU such as pulling lip corners up (smile),

pulling eyebrows up (surprise), dropping the mouth/chin (surprise), low-

ering the eyebrows (frown), etc. To collect the neutral face that was needed

for the δ-appearance and δ-shape representations, we asked the participant

at the beginning of the session to stand still and look at the camera. Since

the neutral face was collected only for the frontal face, we did not take into

account AUs detected in the non-frontal faces.
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Figure 10.2 AU detection results under different illumination conditions, i.e. (A–B) vs

(C–D). Vertical and horizontal bars indicate the head rotation; the color green is asso-

ciated with frontal/nearly frontal head poses. The detected AUs in each face image are

highlighted in blue: (A, C) AU1 and AU2; (B, D) AU4. (For interpretation of the colors in

this figure, the reader is referred to the web version of this chapter.)

As illustrated in Fig. 10.2, Nao attempted to recognize each AU dis-

played by the participant, and inferred the expressed emotion based on the

rule based approach, and then asked the participant for feedback in the

form of whether the recognized emotion was correct or not. However,

an online learning algorithm was not considered, similarly to [31]. Sample

images from the Cambridge Science Festival that took place in Cambridge,

United Kingdom, on March 13, 2017,1 are given in Fig. 10.3. The images

illustrate the moment that one of the participants from the public displayed

different facial expressions of emotions.

Here, we presented a real-life demonstration of the proposed affect anal-

ysis approach in an entertainment scenario. However, this approach can be

1 https://www.sciencefestival.cam.ac.uk/events/teach-me-emotional-intelligence.
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Figure 10.3 Photos from the public demonstration at the Cambridge Science Festival

(Image copyright: University of Cambridge).

utilized in a health scenario, where, similarly to [32], the robot would pro-

vide assistance to children with Autism Spectrum Disorders for improving

their facial emotion expression/recognition capability.

10.3.2 Automatic Personality Prediction

Several studies have shown that the success of social robots highly depends

on assessing and responding to the user’s personality (see Section 10.2.2).

In this section, we describe how to build an automatic predictor of user

personality during human–robot interactions as originally presented in [57].

We also investigate the impact of the participant’s personality and the robot’s

personality on the human–robot interaction.

10.3.2.1 Personality Analysis Methodology

Data Collection and Annotation. To model the user’s personality, we

designed an experimental study involving interactions between two human

participants and a robot, and collected audio-visual data using a set of first-

person vision cameras (also called egocentric cameras) and annotation data

by asking participants to complete BFI personality questionnaires [45].

We recruited participants from graduate students and researchers to take

part in our experiment. The flow of interaction between the two partici-

pants and the robot was structured as follows. The robot was initially seated

and situated on the table. The interaction session was initiated by the robot

standing up on the table and greeting the participants. The robot initiated

the conversation by asking neutrally, “You, on my right, could you please

stand up? Thank you! What is your name?” Then the robot continued by

asking each of the participants about their occupations, feelings, and so on,

by specifying their names at each turn.

We used the Nao robotic platform with the technical details of NaoQi

version 2.1, head version 4.0, and body version 25. The robot was con-
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Figure 10.4 (A) The human–robot interaction setup. (B–D) Simultaneously captured

snapshots from the first-person videos: the robot’s camera (B) and the ego-centric cam-

eras placed on the foreheads of the participants (C–D).

trolled remotely in a Wizard of Oz setup during the interaction. To manage

the turn taking, an experimenter (i.e. operator), who was seated out of sight

behind a sheet of poster board, operated the robot using a computer, the

robot’s camera, and the other cameras placed in the experimental room. To

examine the importance of the robot’s personality in the HRI, the robot

was made to exhibit either extroverted or introverted personality. Follow-

ing the previous literature [49,50], we manipulated the robot’s behaviors to

generate the two types of personality. The extroverted robot displayed hand

gestures and talked faster and louder, the introverted robot was hesitant, less

energetic, and exhibited no hand gestures in the course of the interaction.

A total of 18 participants (9 female and 9 male) took part in our ex-

periment. Each interaction session lasted from 10 to 15 minutes and was

recorded from different camera views. First-person videos were recorded

using two Liquid Image ego-centric cameras2 placed on the forehead of

each participant and the robot’s camera. The whole scene was also captured

2 www.liquidimageco.com/products/model-727-the-ego-1.
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using two static Microsoft Kinect depth sensors (version 1)3 as shown in

Fig. 10.4A, resulting in RGB-D recordings. Sound was recorded via the

microphones built into the ego-centric cameras.

We recorded 12 interaction sessions and collected approximately 6 hours

of multimodal recordings. Each session involved two participants, resulting

in 24 individual recordings (some participants took part more than once

provided that they had a different partner and were exposed to different

robot personalities). The ego-centric recordings and the robot’s camera

were unsynchronized with the Kinect cameras. For this reason, the ex-

perimenter switched the light off and on before each session started. This

co-occurred appearance change in the cameras was used to synchronize

the multiple videos (i.e. from the two ego-centric cameras, the two Kinect

depth sensors, and the robot’s camera) in time. Basically, we calculated the

amount of appearance change between two successive frames based on

gray-level histograms. For further analysis, we segmented each recording

into short clips using one question and answer duration. Each clip com-

prises the robot asking a question to one of the participants and the target

participant responding accordingly. This yielded 456 clips where each clip

has a duration ranging from 20 to 120 seconds.

In this chapter, we only took into account the recordings from the ego-

centric cameras. First-person vision has been shown to be advantageous in

analyzing social interactions [78] as it provides the most relevant part of the

data. For instance, the people who the camera wearer interacts with tend

to be centered in the scene, and are less likely to be occluded when cap-

tured from a co-located, first-person perspective rather than from a static,

third-person perspective. Fig. 10.4 illustrates simultaneous snapshots from

the ego-centric clips.

The participants were asked to complete two different questionnaires,

one before the interaction session (pre-study questionnaire) and the other

after the interaction session (post-study questionnaire). All measures were

on a 10-point Likert scale (from very low to very high). For the pre-study

questionnaire, we used the BFI-10 [79] to measure the Big Five personality

traits, which is the short version of the Big Five Inventory, and has been

used in other studies, e.g. [44]. Each item contributes to the score of a

particular trait. The post-study questionnaire consisted of five items (see

Table 10.2) that evaluate the participants’ engagement with the robot and

measure their impressions about the robot’s behaviors and abilities.

3 en.wikipedia.org/wiki/Kinect.
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Table 10.2 Post-study questionnaire to evaluate the interaction experience with the

robot

Question Interactionmeasure

I enjoyed the interaction with the robot. Engagement

I thought the robot was being supportive. Empathy

I thought the robot was assertive and social. Extroversion

I thought the robot was being positive. Positivity

I found the robot’s behavior realistic. Realism

Feature Extraction. We used simple and computationally efficient

low-level features to describe motion and changes from the first-person

perspective [80]. As mentioned in Section 10.2.2, nonverbal cues conveyed

through gaze direction, attention, and head movement carry important in-

formation regarding the individual’s personality and internal states. These

behaviors might lead to significant motion in the first-person videos, which

can be characterized by optical flow and motion blur. Attention shifts and

rapid scene changes may also cause drastic illumination changes.

Blur values were computed based on the no-reference blur estimation

algorithm of [81]. Given a frame, this algorithm yielded two values, vertical

(BLUR-Ver) and horizontal blur (BLUR-Hor), ranging from 0 to 1 (the

best and worst quality, respectively). We also calculated the maximum blur

(BLUR-Max) over the vertical and the horizontal values. For illumination,

we simply calculated the mean (ILLU-Mean) and the median (ILLU-Med)

of the pixel intensity values per frame.

For optical flow, we used the SIFT flow algorithm proposed in [82].

We computed a dense optical flow estimate for each frame, where we set

the grid size to 4. We converted the x and y flow estimate of a pixel into

magnitude and angle, and then quantized the angles into eight orientation

bins. We calculated the mean (MAG-Mean) and the median (MAG-Med)

of the magnitude values per frame. For the angle values, two types of fea-

tures were computed over a frame: (i) the number of times the angle bin

i contained the most motion energy in a frame (ANG-Nrg-i) and (ii) the

total number of pixels belonging to the angle bin i (ANG-Count-i). These

features were normalized such that the sum over all eight bins was 1.

Since the frame rate of the ego-centric cameras was high (60 frames per

second), all features were extracted from frames sampled every 200 mil-

liseconds instead of at adjacent time instants. A clip was summarized by

computing a total of 40 features over the frames. Each feature was com-

puted by performing a series of operations over the blur, illumination, and
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Table 10.3 Significant correlations between the Big Five personality traits of the par-

ticipants and their interaction experience measures (at a significance level of p < 0.05,
∗p < 0.01). EXT: extroversion, AGR: agreeableness, CON: conscientiousness, NEU: neu-

roticism, OPE: openness

Trait Extroverted robot condition Introverted robot condition

EXT Engagement (0.85∗) –

Empathy (0.58)

AGR Engagement (0.62) –

CON Positivity (0.71∗) Positivity (0.71)

NEU Realism (0.60) –

OPE – Positivity (0.70)

Realism (0.67)

optical flow features. These operations calculated the mean (Mean), median

(Med), and standard deviation (Std) over all frames in a video, calculating

the absolute mean (Abs-Mean) over all frames, applying z-score normal-

ization (z) across all frames and taking the first (d1) and the second (d2)

temporal derivatives.

10.3.2.2 Experimental Results

This section presents the correlation analysis between the Big Five personal-

ity traits and the interaction experience, and also examines how personality

is linked to the automatically extracted first-person vision features. We

tested the statistical significance of the correlations (against the null hy-

pothesis of no correlation) using a t-distribution test.

Relationship Between Personality and Interaction Experience.

We investigated the possible links between the Big Five personality traits of

the participants, the extroversion/introversion trait of the robot, and the partic-

ipants’ interaction experience with the robot. In Table 10.3, the significant

results are given with their respective correlation values in parentheses.

For the extroverted robot condition, the perceived engagement with

the robot is found to be significantly correlated with participants’ extro-

version trait, which validates the similarity rule [60,42]. We observe that

the robot’s perceived empathy positively correlates with the participants’ ex-

troversion trait. This might be due to the fact that extroverted people feel

more control over their interactions and judge them as more intimate and

less incompatible [83,84]. A study of agreeableness reported that more agree-

able people showed strong self-reported rapport when they interacted with

a virtual agent [85]. Cuperman and Ickes [41] also indicated that more
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agreeable people reported having more enjoyable interactions. Similarly, we

observe that perceived engagement with the robot is highly correlated with

the agreeableness trait of the participants. A significant relationship is also

established between the robot’s perceived realism and the neuroticism trait of

the participants. People who score high on neuroticism tend to perceive their

interactions as being forced and strained [41] and therefore the artificial be-

haviors of the robot might appear to them as realistic.

For the introverted robot condition, no significant correlations are

obtained with participants’ extroversion, agreeableness, and neuroticism traits.

People who score high on conscientiousness tend to interact with others by

showing greater attentiveness and responsiveness [41]. This might cause sig-

nificant correlations with the interaction measure of positivity regardless of

the robot’s personality as the robot always provided feedback to the partic-

ipant in the course of interaction.

Relationship Between Personality and First-Person Vision Fea-

tures. The goal of this analysis was to study the one-to-one relationships

between the Big Five personality traits of the participants and the auto-

matically extracted first-person features. Table 10.4 shows the prominent

features and the significant correlations.

In general the introverted robot condition provides a larger number of

significant correlations with the extracted features. This can be due to the

participants’ attention being shifted more when interacting with the intro-

verted robot. For the extroverted robot condition, the neuroticism trait of

the participants shows significant relationships with all three feature types

(blur, illumination, and optical flow), in particular with blur features. No

significant correlations are found between participants’ extroversion trait and

the first-person features. For the introverted robot condition, the personal-

ity traits of conscientiousness, neuroticism, and openness of the participants show

significant relationships with the blur and optical flow features. However,

no correlations are found with the illumination features.

In Table 10.4, one significant relationship is seen between agreeable-

ness and the vertical blur feature, which can be associated with head nod-

ding and being positive and supportive. We observe that extroverted people

tend to enjoy the interaction with the extroverted robot more than the in-

teraction with the introverted robot. Our experimental results further show

that extroversion is negatively correlated with the blur (motion) features for

the introverted robot. This result indicates that less energetic (introverted)

people like the introverted robot more, and it is possible to deduce this

from the first-person vision features extracted.
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Table 10.4 Selected statistically significant correlations between the participants’ per-

sonality traits and first-person vision features (at a significance level of p< 0.01). BLUR:

blur, ILLU: illumination, MAG: optical flow magnitude, ANG: optical flow angle, EXT: ex-

troversion, AGR: agreeableness, CON: conscientiousness, NEU: neuroticism, OPE: open-

ness

Trait Extroverted robot condition Introverted robot condition

EXT – BLUR-Ver-Mean(−0.55);

BLUR-Ratio-Med(−0.49)

AGR BLUR-Ver-Mean(0.36) BLUR-Max-Med(0.35)

CON BLUR-Ver-Mean(0.34); BLUR-Ver-Med(−0.53);

ILLU-Mean-Std(−0.33) BLUR-Ratio-Med(−0.48);

ANG-Nrg-1(0.35)

NEU BLUR-Ver-Mean(−0.40); BLUR-Ver-Mean(0.68);

BLUR-Ratio-Med(−0.36); BLUR-Max-Std(0.40);

ILLU-Med-Std(−0.38); BLUR-Ratio-Med(0.61);

ANG-Nrg-1(0.41); MAG-Mean-Mean(0.35);

ANG-Count-2(−0.42) MAG-Mean-d1-Abs-Mean(0.38)

OPE BLUR-Max-Mean(0.34); BLUR-Hor-Mean(0.47);

ILLU-Med-Std(0.39); BLUR-Ver-Mean(−0.43);

ANG-Count-3(0.33) MAG-Mean-Mean(-0.35);

ANG-Count-1(0.35)

For automatic personality prediction, we employed the linear Sup-

port Vector Regression method with nested leave-one-subject-out cross-

validation. Optical flow-angle features (ANG-Nrg and ANG-Count)

yielded the best prediction results in terms of coefficient of determi-

nation (R2) and root-mean-square error (RMSE), where we obtained

µR2 = 0.19 and µRMSE = 1.63 over all traits. The method successfully

modeled the relationship between the first-person vision features and the

traits of agreeableness (R2 = 0.48, RMSE = 1.37), conscientiousness (R2 = 0.27,

RMSE = 1.55), and extroversion (R2 = 0.20, RMSE = 1.72). Similarly, the

study in [53] applied Ridge regression to predict the extroversion trait.

Although the database, Likert scale, and visual feature set used were com-

pletely different, they also obtained the best results with motion-based

features (R2 = 0.31). Referring to this result as a baseline, our results

for agreeableness, conscientiousness, and extroversion show that prediction of

personality traits from first-person vision in the scope of HRI is a promis-

ing research direction.
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10.4 CONCLUSION ANDDISCUSSION

Robotics as a field is continuously evolving to address the ever-changing

needs of humans in society. Today the potential of affective and social

robotics is enormous, including but not limited to promoting the health

and well-being of the elderly living at home [86], improving the quality

of life of individuals via physical recovery and rehabilitation [87], assisting

the caregivers of children with cognitive and social disabilities [5], assisting

children with special medical needs such as diabetes [88], providing per-

sonalized education for children [89], and facilitating engagement in group

interactions for improving team performance [6]. To deploy social robots

in such naturalistic human–robot interaction settings, user modeling and

personalization through automatic analysis of expressions, emotions, per-

sonality, and engagement is key.

In the light of the survey of the recent research trends and techniques

used by social robots, we would like to conclude this chapter by highlight-

ing three open problems in the field, together with a number of pathways

that can be used to address these problems.

Cross-Fertilization Between Affective Computing and Social

Robotics Fields. In recent years significant progress has been achieved

in automatic analysis of affective and social signals, particularly of emo-

tions and affective states; even so, computational social robotics has not

yet incorporated these latest developments. There is an apparent lack of

cross-fertilization between these fields and the field of social robotics. In

the fields of affective computing and social signal processing, the current

computational techniques integrate multimodal features from visual, au-

dio, and physiological cues over time and utilize models trained with deep

learning. However, to date, there has been virtually no effort to integrate

these latest trends into social robots and test their viability in the context

of human–robot interaction. This is mainly due to the need of real-time

processing and to the lack of computational power available on the current

robotic platforms. One possible solution to this issue is attaching external

cameras onto the robots and performing the real-time processing on an

external computer, as described in Section 10.3.1.2. However, this solu-

tion does not hold for mobile robots. Another promising direction is cloud

robotics, where the captured data is directly streamed to a server via the

network for effective and efficient computing (e.g. [90]). This brings addi-

tional challenges into play, including the analysis of affect and social signals

using live-streamed data that has low spatial and temporal resolution.
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Analysis Under Realistic and Adverse Conditions. For emotion

recognition, most of the successful methods in computer science have fo-

cused on facial cues, and have been characterized by multimodal features,

in particular combining facial cues with audio cues and bio-signals such

as Electrodermal Activity (EDA). Bio-signals are useful when facial cues

cannot be observed reliably. However, in real-life applications, it might not

be always possible to attach sensors onto the participants to measure their

physiological responses. Reducing the cost, the size, and the invasiveness of

the physiological sensors that can work robustly under adverse conditions

is expected to resolve many of these challenges. Body postures and hand

gestures are important sources of information for the analysis of affective

and social signals. Therefore, a promising direction is to use deep learn-

ing approaches that combine multiple visual cues, such as facial and bodily

cues. However, fusing multiple cues in an effective and efficient manner still

remains an open challenge in the field. Learning what to fuse and when as

suggested in [26,91] will also help deal with missing data, i.e. the cases

where one of the cues is not available or is not reliably detected.

Datasets and Ground Truth. Most of the available datasets in social

robotics have relied on self-reported assessments, in particular, for assess-

ing personality. However, in real-life applications, self-reported assessments

might not be available for evaluating the performance of the automatic ana-

lyzers. Online crowd-sourcing platforms (e.g. MTurk) have recently gained

popularity, due to their efficiency and practicality for collecting responses

from crowds for large sets of data within a short period of time. Such ef-

forts have clearly been proven to be efficient at predicting personality [92].

However, exploring novel ways to incorporate annotation disagreements

into the analyzers, similarly to [93], is an avenue that needs to be explored

further.

In summary, the review provided in this chapter illustrates that the ca-

pabilities of current social robots are quite limited. There is a clear need for

incorporating the automatic affect analysis and social processing methods

into real-life human–robot interaction applications and for improving these

techniques to address the challenges of varying environmental lighting,

user distance to camera, camera view, and real-time computational require-

ments. The availability of commercial robotic platforms such as iCat [35],

iCub [59], and Nao [40], and developments in collaborative academic re-

search such as the Frontiers Research Topic on Affective and Social Signals
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for HRI4 provide us with a positive outlook. However, to truly address the

existing challenges, researchers from the relevant fields, including but not

limited to psychology, nonverbal behavior, vision, social signal processing,

affective computing, and HRI, need to constantly interact with one an-

other.
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