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Introduction

Petri nets are a fundamental model of concurrent processes and have a wide range
of applications (see [Br], [Pe]). 1In this paper we address the problem of how to
structure nets, define constructions on them and understand the behaviour of a
compound process, represented as a net, from the behaviour of its components. The
constructions follow from a new definition of morphism on Petri nets--it is not the
same as Petri's original. The morphisms respect the "token game"--the dynamic
behaviour of nets--unlike Petri's. The category of nets with the new morphisms has
a product which is closely related to various parallel compositions which have been
defined on labelled Petri nets for synchronising processes (see e.g. the
compositions on nets defined in [LSC} and section 3). It has a coproduct which is a
generalised form of the "sum" operation as used for example in [M}. There are
pleasing relations with other categories too.

One can use Petri nets to give semantics to programming languages. But, what
is the semantics of nets? In themselves nets are complicated objects whose behaviour
is rather intricate. When, for instance, do Petri nets have the same behaviour?
Attempting to answer these questions leads naturally to occurrence nets first
introduced in [NWP1l,2]. Occurrence nets form a subcategory which bears a pleasant
relation to the larger category of nets; the inclusion functor has a right adjoint
which is an operation taking a net to its unfolding to a net of condition and event
occurrences. (This construction was introduced in [NWP1,2, W] but without this
abstract characterisation.) It is argued that the meaning, or semantics, of a net
is its occurrence net unfolding so that two nets are regarded as having essentially
the same behaviour if they have isomorphic unfoldings. 1In a similar way there is an
- adjunction between the category of occurrence nets and the category of (prime) event
structures. Thus allied with the work of [Wl,2]} there are functors which serve as a
bridge between Petri net models and the interleaving models used in e.g. [M] and
[(HBR].

These successes give force to the new definition of morphism on nets. They
counter a criticism frequently levelled at Petri nets, that their mathematics is
unwieldv.

Unfortunately for lack of space all proofs have been omitted. They will be
included in a report of the Computer Laboratory, University of Cambridge.

1. Petri nets

Petri nets model processes in terms of how the occurrences of events incur

" changes in local states, called conditions. This is expressed by a causal dependency
(or flow) relation between sets of events and conditions, and it is this structure.
which determines the dynamic behaviour of nets once the causal dependency relation

is given a natural interpretation.

1.1 Definition, A Petri net is a 3-tuple (B,E,F) where

B is a non-null set of conditions

E is a set of events, and

F& (BXE) v (EX B) is the causal dependency relation which satisfies the
restrictions ?LgﬂBlez} dm@non-null for all events e € E.

€

Nets are ofte’n fc;r!':wn as graphs in which events are represented as boxes and
conditions as circles with directed arcs between them to represent the flow relation.
Here is an example.
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1.3 Notation. Let N = (B,E,F)} be a net. Let ASBWVE,
Define °*A = {y&BuE | JaeA. yFa} and
A* = {yeBuE | FaéA. aFy}.
When A is a singleton {a} we abbreviate {a}® to a® and *{a} to ®a. When e is an
event we call ®e its set of preconditions and e® its postconditions.

The dynamic behaviour of nets is based on these principles which specify how
the occurrence of events affect the holding of conditions--a condition is said to
hold when it is true. They express the intended meaning of the causal dependency
relation.

(1) An occurrence of an event e ends the holding of its preconditions ®e

and begins the holding of its postconditions e®.

(ii) (a) The holding of a condition b, when it ends, ends because of the

occurrence of a unigue event in b*®.
(b) The holding of a condition b, when it begins, begins because of the
occurrence of a unique event in *b.

Of course we need a way to specify what conditions hold. We introduce an idea

of global state which just specifies what subset of conditions hold.

1.4 Definition. A marxking of a net is a non-null subset of conditions.

The marking of a net changes over time according to rules, commonly called "the token
game" because a marking is often specified by laying tokens on those conditions in
the marking; as events occur tokens are picked-up and put-down in accord with the
principles above. From the principles it follows, only informally, of course, that
an event can occur only once all its preconditions hold and none of its postconditions
which are not preconditions hold. Then the event is said to have concession,
Nets allow more than one event to occur together but there are situations where the
occurrence of one event excludes the occurrence of another and vice versa - a
phenomenon called conflict. Consider two events which both have concession but
which have a precondition in common. From the principle (ii)(a) it follows that
only one of them can occur; otherwise they would both end the holding of the
condition b. They are in forwards conflict. Now consider two events which both
have concession but which have a postcondition in common. By (ii) (b) only one of
them can occur. They are in backwards conflict. We formally define the token game
which specifies how the marking changes as events occur.

1.5 Definition. (The token game) Let N = (B,E,F) be a Petri net. Let M be a
marking. Say an event e € E has goncession at M iff e @M & (e*\’e) A M = J.
Let e,e' be events with concession at M. Say e and e' are in forwards conflict at
Miff e #e' & e N*e' # J.
Sav thev are in backwards conflict at M iff e #' e' & e*n e'® # . N
Let M and M' be markings. Let A be a finite subset of E. Define M—»M' iff

(i) Ve € A.e has concession at M and .

(ii) Ve,e' € A.e,e' are not in conflict, and

(iii) M' = (M\'A)U A°*.
In this situation the events A are said to occur goncurrently. a A

A marking M' is said to be reachable from a marking M iff M = M5§$Mi-§...£§un=M'
for subsets of events Ao'Al""'An—l and markings Mo'Mr'"Mn'

Remark. There are other versions of the token game in which more than one token is
allowed on a condition; conditions are allowed a certain multiplicity so that they
can model, for example, the availabillity of a number of resources. We shall not

allow more than one token on a condition, partly for simplicity and partly because
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it is intended that more complicated nets should ultimately be abbreviations for the
simpler nets we consider (see e.g. [GR]). The nets we consider are almost, but not
quite, those nets called condition-event systems in [Br].

1.6 Example. <Consider the net of example 1.2. Initially the net is marked {a,b}.
The events (, 1 are in both forwards and backwards conflict so either 0 or 1, but not
both can occur. Certainly the event 2 can occur. It is not in conflict with either
0 or 1 so 2 can occur concurrently with O or 1, but not both. For example, taking
M' = {c,d} and A = {0,2} we have M*N'. Of course from the marking M' the event 3 can
occur giving rise to the marking M again, and we can start all over again, perhaps
letting event 1 occur this time. '

Generally a process is modelled by a Petri net with an initial marking from which
it reaches other markings as events occur.

1.7 Definition. A Petri net with initial marking is a structure (B,E,F,M) where

(B,E,F}) 1is a Petri net and M is a marking called the initial marking. Markings
reachable from the initial markings are called reachable markings. An event e is said
to be in contact at a marking M if ‘e c Ms(e’\'e) n M # 7.

A net with initial marking is contact-free iff there is not contact at any
reachable marking.

e

The event e in the net @—’D‘—>® is in contact and the net @-{3>0-{h@is not
contact-free. The net of example 1.2 with inibral marking {a,b} is contact-free
however. '

Contact~free nets have the pleasant property that an event can occur at a
reachable marking iff its preconditions are included in the marking. If one accepts
the earlier principles, the behaviour of nets with contact is weird; it seems an
event is prevented from occurring by the knowledge of what would happen in the future
if it did--see the above examples. For this reason it is difficult to understand
their behaviour. Later when we come to associate an occurrence net unfolding with
the behaviour of a net--thus giving nets a formal semantics in terms of more basic
nets--we shall be able to do this only for nets which are contact-free. One view of
nets with contact is that they are improper descriptions. As has been remarked,
there are other token games in which conditions can have multiple holdings. For such
nets the above principles are invalid. The understanding of such nets is less
settled; for example the question of how to unfold such a net to an occurrence net
(as in §5) is unsettled, though a start has been made in [GR].

2. The new definition of morphism on nets

Our definition of morphism on nets involves binary relations, sometimes

specialised to being partial or total functions. Here. are the. elementary notations,
properties and operations on relations we shall use:

2.1 Notation. A relation from a set X to a set Y is a subset R € X x Y. When
(x,y¥) € R we write xRy. A relation R has an opposite or (converse) relatian, rR°P
given by R°P = {(y,x)| xRy}. Clearly xRy<> yRP x.

When the relation R satisfies the property Vy.vteY Vx € X.XRy & XRy'=» y = y!
the relation R is said to be a partial function. A partial function R is said to be
total when it satisfies the additional property Vx € XJy € Y.xRy.

The composition of relations is defined as follows: Let R be a relation from a-
set X to a set Y and S a relation from the set Y to a set Z. The composition of R .
with S is the relation S o R from X to 2 given by SoR = {(x,2) € X X 2 By G'Y.ny &
ySzi. Note the order of the composition which follows that generally used far
functions. We shall frequently miss-out the composition symbol o and write S o R as
just SR.

When a relation R is a partial function, and we are thinking of it as taking an
argument x and giving a value R(x), it is useful to have a symbol to invoke when the
value R(x) does not exist. We use * to represent undefined and so write
R(x) = *é#;ﬁuny when R is a partial function from X to Y.

If R is a relation from X to Y and A € X we define the image of A under R to be
the set RA given by RA = {y € Y|3x ¢ A.xRy}. Note the clash with. abbreviated relation
composition; any ambiguities can be resolved from the context.

3
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A morphism from a net N, = (By, E,, F,, M) to a net N, = (B, E,, F, M)
specifies how the dynamic behaviour of N induces the dynamic behaviour ot N.. It
consists of two parts. ° 1

One is a partial function 7} € E XE, on events where €y 3 ey means the occurrence
of e, implies the simultaneous occurénce of e4 . Think of the event ¢ as being a
component of the event e,. We assume an event e only occurs in N, if some e, occurs
in N, with €1Ney -

The other part of the morphism is a relation B & B x B, between conditions. A
relation by 8 b, means the holding of b, implies the cogncident holding of by i.e.
when b, begins or ends holding thenso does by --they have the same extent. Wé assume
a condition by holds in Ny ,(if there is a unique condition b, which holds in N, with
bo; B by Only
- Ttis understanding implies several properties of a morphism (%,8): Ny—> N, which
we take as our formal definition below. Firstly every condition which holds initially
in N_ should be the image under B of a unique condition which holds initially in
N, property (i). Secondly if b, B by the occurrence of an event beginning the
holding of b, should imply the simultaneous occurrence of an event beginning the
holding of by, and similarly the occurrence of an event ending b, should imply the
simultaneous occurrence of an event ending b,, property (ii). Thirdly if € N e
the occurrence of e, should imply the conditions’ 'e1‘ end holding and the conditions
ei" ‘begin holding which gives property (iii).

2.2 Definition. Let N, = (B., Ei, Fi, Mi) be nets for i=0,1. Define a morphism
of nets from Ny to N; to be a pair of relations “l'B) with 25}30 X El' a partial
function, and B € Bo X Bl such that:

(1) m =g, and Voem, Il em. p pn,

(ii) If bypb, then 5 A (b, x ‘by) is a total function "by —> by
and 'rln(b; x b;) is .a total function b’o-—ab; .

(iii) If th op (° . . . R .
iii eney en g n(’e x ‘e,) is a total function ‘e;-—3%,

and /e"fn(e;_ x g) is a total function ey —> e -

If further 7 is total we say the morphism (’Z,-,B) is synchronous. When nand B are

total functions we say the morphism {q,ﬁ) is a folding. When 7 and B are the
inclusion relations 7:E, € E, and ﬁ:Boe B, we say N, 1is a subnet of N,.

Subnets provide the simplest example of morphisms on nets. They have a
simple characterisation and arise naturally by restrictihg a net to a subset of
events.

oy

2.3 Proposition. Let N, = (B,,E,,F, ,M,) and N, = (B, ,E,,F ,M;) be nets. Then N
is a subnet of N, iff B, € By ,E € E, M, = M, and Ve, & E\Vb € B, .e,F b&>e F, b,

& Ve, € E)Vb € By bE e, LF e, .

2.4 Proposition. Let N = (B,E,F,M) be a net., Let E'€ E. Define the restriction
of N to E', written NfE', to be (B,E',F' M) where F' = F A ((BxE'Yy (E' xB)).
The restriction N[‘E' is a subnet of N.

Of course morphisms can be more complicated as the following examples show.

2.5 Examples of morphisms:

— B
i T T ~aA N -
—.__._.’..e_ I __-'7’ @/,f’-’z-—’-ﬁ’
Folding Projection (3.3) =" Injection (3.9)

When (%,8):N »N_. is a morphism B preserves the pre and postconditions of a set of
events. Far more, when N. is contact-free the morphism respects the dynamic
behaviour of nets; a play of the token game in N_ induces a play of the token game
in N_. This further justifies our definition ofomorphism.
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2.6 Lemma. Let (7 B): N0+N1 be a morphlsm between nets No and Ny. Let A be a
subset of the events N, Then B8(°A) = (’ZA) and R(A®) (2A)

2.7 Theorem. Let N = (Bi,Ei,Fi,Mi) be nets for i = 0,1. Let be contact-free.
Let (12,8) : Ny»N, be a morphism of fiets. Let C be a reachable marklnq of N, and
suppose C_ﬂ.-,C' in N,. Then BC is a reachable marking of N and BC BC’ :m N, .

Further, for all reachable markings C of Na,Vb, BCH!LO € C.h Bb1 .

From now on we shall insist all nets are contact-free. Contact-free nets with
morphisms of nets form a category.

2.8 pDefinition. Define Net to be the category of contact-free nets with morphisms
. . Arg— b .
as above and composition given by (7 ,B ) o (& &B (2071 ,8 oB ). Define Net yn to

be the subcategory with synchronous morphlsms on nets.

3. Categorical constructions

The categorical constructions in Net and Net which we introduce will depend
on the properties of two more basic categor1es=8Xe is well-known; it is the
category of sets with partial functions. It corresponds to that part of morphisms
on nets which act between sets of events. The other is the category of marked sets
and corresponds to that part of morphisms on nets which act between sets of
conditions while respecting the initial marking.

3.1 Lemma. Let Se_t* be the category of sets and partial functions given in
definition 2.1. Set has products and coproducts of the following form where
Eo and E_ are sets
Thelr product, to within isomorphism, is Eo X *El with projections 110, rrl where
E, %,E, = {(eo,*)leo € E}u ((*e) [el € B} o lle o) |e°e Ese, € E ,
and Ty (x,y) = Xy Ty (x,y) = vy.
Their coproduct, to within isomorphism, is E, + E, =iy {0} x Ey U {1} x E,
with injections in (e ) = (O, e ) and 1n (e ), for e, € E and e € E
o o /(1‘&) o 1
3.2 Llemma, Define a marked set to be a pair of sets (B,M) where M € B. Define a
morphism of marked sets from (B ,M } to (B ,M ) to be a relation R € B x B1 such

that RM =M 1 and

Vb S 3 eMVb € M .b Ro &b’ Rb Db =b' .

Define compos:.t:.on to be the usual composition of relations given in 2.1. Then
marked sets with the morphisms above form a category with identity morphisms the
identity relations. It has products and coproducts of the following form,where
(B rMp) and (B ,My) are marked sets:

Their product, to within isomorphism, is (B, + By, Mg + M;) with projections
the relations and ﬁ given by (b, 0)‘0b for b € B, and (b, l)ﬂb for b€ g .

f
Their coproduct, to within isomorphism, is (B, H) with injections 20 and y
where

B

* *
(b ,*) b e BX\M} v ((*b)|b & B\ } v {(b ,b)|b &B_ & b € B},
M=M xM,
o 1
bot,b I eBuf#. b = (b;, by),
byb &IbeBupl , b = (b, b,).

We shall use the above facts and notation in defining the constructions as nets.

]

3.3 Definition. (The products of nets) Let No = (Bo 1By 'Fo M,) and N, = (B1 /By :FML)
be contact free nets. Let m, : E, x E>E; and m : E, x, E, - E, be the
projections from the product of sets in Set given in 3.1. Let f%: (Bg + By M, + M)

- (B, ,M,) and 33 (B + B, My + M)~ (B y My ) be the projections from the nroduct

of marked sets given in 3,
Define thegproduct of "the nets, N x N_, to be the net (B,E,F,M) where

o 1
B=B°+Bl,M_M°+M1,E E‘.ox*Eland
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eFb & (Je,¢E, byeBy. emye, & bpyb, & egFyby)
or{(3e,eE, beB,. emye, & bpaby & eFb),

bFe % (3&0613 ? boeBo - e“oeo & bpo bo & bo Fo eo )
or(JescE, beB,. eme; & by b & byFreq).

Define projection morphisms of nets: I = (n ,/o) : N x N_ -+ N
o (o] Q o ()

1
Hl = (“1';”1) : No X Nl -+ Nl.
The product construction can be summarised in a simple picture. Disjoint copies
of the two nets N, and N, are juxtaposed and extra events of synchronisation of the
form (e, ,ei) are adjoined, for e, an event of N, and ¢, an event of N:l; an. extra

event (e"° €4) has as preconditions those of its components ’eo Y ’el and similarly

postconditions e * y el'.
€

o

The product on nets is closely related to various forms of parallel composition
which have been defined on nets to model synchronised communication--see [LSC],
Imagine that the events of nets are labelled in order to specify how they can or
cannot synchronise with events in the environment--the synchronisation algebras of
[Wy,W2) are a way of formalising this idea. Then the parallel composition of two
labelled nets will be modelled as a restriction of the product of those synchronised
events--of the from (e ,e_)--and those unsynchronised events--of the form (e ,*) and
(*,el)~~alloWed by theodiscipline of synchronisation. ©

© :ey

P

3.4 Theorem. The above construction No X N

I ,1. is a product in Net, the
o 1 —_—
category of nets.

lf

Of course the token game tells us how we can view a net as giving rise to a
transition system in which the arrows between states are associated with sets of

events imagined to occur concurrently. Let us see how the product construction looks
from this point of view. y

3.5 Theorem. Let Ny x Ny, Mly = (m,0,) and I, = (m .0 ) be a product of nets.
Then M is a reachablé marking of N 'x Nl and MALM' 1ff"
poM is a reachable marking of Npand poM_r..‘;ﬁ,po M’ and
Ve, e’éAVeero . enye, & e"rroeo >e = e’ and

ps M is a reachable marking of Njand p,_M"'LA,p1 M’ and

Ye, €’ea VeieEi. ey, e, & e e de =e .

A similar story can be told for Net .
===syn

3.6 Definition. (Synchronous product) Let Ny = (B, ,E,,Fy,My) and N; = (B‘ B L F M)
be contact-free nets. Define their synchronous product N, @ N, to be the
restriction Ny x N, r(Eo X E,) with synchronous projections II‘; = (ﬂ;,/oo) and

= = ' =
Hi' = (1r1' ,',01) where 11<'J (eo,e,') = e, and TrI_ (eo,el) el.

3.7 Theorem. The above construction No® N_, H& ' I[i is a product of Net yn’ the
category of nets with synchronous morphisms. :

3.8 Example. One can repeat a ticking clock as the simple net_o.= D:f@'
Given an arbitrary contact-free net N it is a simple matter to serialise, or
interleave, its event occurrences; just synchronise them one at a time with the
ticks of the clock. This amounts to forming the synchronous product N@Sl of N
with {2.

Now we give the form of coproducts in Net and Net .
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3.9 Definition. (The coproduct of nets)

Let N, = (By,Ey,Fy,Mp) and Ny = (By ,E;,F; ,M;) be contact-free nets.

Let in, : E; > E, + E; and in; : E, ~ E; + E; be the injections into the
coproduct of sets in Set, given in 3.2. Let 1,: (B,,M,) > (B,M) and 7,: (By, MI)
+ (B,M) be the injections into the coproduct of marked sets given in 3.3.

Define the coproduct of the nets, No + Nl' to be the net (B,E,F,M) where

(B,M) is the coproduct of marked sets
E = Eq + Eg ,
eFb & (Je, € Eo, by € By.gpinse & by1,b & e, Fyb))
or (Jey € By, by € By.eyinje & by 1,b & e fyby),
bFe &> (Jey € E,, by € By.epinge & by i,b & byF,yep)
OrG%éEybjeﬁﬁﬂqe&%hb&%&%L
Define injection morphisms of nets:

Ip, = (ing, 1)

. No * Ng + Ny
I, (ing, 1)
17

Na —) Nol + Ni‘.

]
L1 L1

The coproduct construction can be summarised in a simple picture. The two nets
§b and N, are laid side by side and then a little surgery is performed on their
initial markings. For each pair of conditions by in the initial marking of Ny and
b, in the initial marking of N. a new condition (bb'bi) is created and made to have
the same pre and post events a§ b, and by together--think of it as exclusive or of
by and by. The conditions in the original initial markings are removed and replaced
by a new initial marking consisting of these newly created conditions. Here is the

picture:
N, I;]\-

4
]

/ /:
S, A
X

L}
\

[g--

3.10 Theorem. The above construction N0 + N&, IO, Il is a coproduct in the

categories Net and Net 0"
Again the construction translates over to a natural construction on transition
systems.

3.11 Theorem. Let Ny + Ny ,Ig = (ing, 1) and I, = (ing, 73) be the coproduct of nets.
Then M is a reachable marking of N+ N and M > M' iff

1
A
' 0 / = ] = Vo= '
3M°,A°,Mo - Mo_>Mo& A =inA_ &M 1,°Mo & M Mg or
Aj ol . : )
', = A& M= 1M &M = 4M .
ERN M—SME A = injAy LA Yy

4. The semantics of Petri nets

Here we show how an occuxrence net, in which conditions and events stand for
occurrences, can be associated with a contact-free net. The occurrence net we
associate with a contact-free net will be built up essentially by unfolding the net
to its occurrences. This unfolding is a canonical representative of the behaviour
of the original net. Occurrence nets and the operation of unfolding a net to an
occurrence net were first introduced in [NPW1l,2 and W] and the reader should look
there for more motivation. (Note causal nets were rechristened "occurrence nets"
in [Br]--such nets are not as general as the ones here.)

In general because of the presence of backwards conflict that part of a net
causing an event or condition need not be unique. We wish events and conditions of
an occurrence net to correspond to occurrences (as in the case for Petri's causal
nets). From this point of view backwards conflict is undesirable as it allows a
holding of a condition to occur in more than one way, so we impose (i). Following
this view we ban loops in the F* relation and ensure any occurrence depends on only
a finite number of event occurrences —axiom (iii) - and insist no event is in
conflict with itself —axiom (iv). For occurrence nets there is an especially
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simple definition of a concurrency relation and conflict relation which was previously only
defined with respect to a marking. We take the initial marking to consist of those conditions
b such that ‘b = ¢.

4.1 pefinition. An occurrence net is a net (B,E,F,M) for which the following restrictions
are satisfied:

(1) YveéB.|'b|g L,

(ii) beM &b =4,

(iii) F* is irreflexive and e € E. {e'¢E|e'F*e} is finite.

(iv) # is irreflexive where e#ie‘ é%ef eeE&e'€E & ‘en-e'#dand

X#x' (?efge,e'e E.e#yje' & eF* x & e'F* x'.

Suppose N = (B,E,F,M) is an occurrence net. We call the relation #; defined above the

immediate conflict relation and # the conflict relation. We define the concurrency relation,
co, between pairs x, y ¢ BUE by: x co y &Xjef 7 (xFty or yFtx or x#y).

4.2 Proposition. Let N = (B,E,F,M) be an occurrence net. Then N is contact-free and every
event has concession at some reachable marking and every condition holds at some reachable
marking.

Let e,e' be two events of N. Let b,b' be two conditions of N.

The relations # < E2 and # € (B UE)? are binary, symmetric, irreflexive
relations. The relation of immediate conflict e#) e' holds iff there is a reachable marking
of N at which the events e and e' are in conflict.

The relation co is a binary, symmetric, reflexive relation between conditions
and events of N. We have b co b' iff there is a reachable marking of N at which b and b'
both hold. We have e co e' iff there is a reachable marking at which e and e' can occur
concurrently.

4.3 Definition. Write Occ for the category of occurrence nets with net morphisms.
We can define the unfolding a contact-free net inductively to obtain an
occurrence net satisfying the following theorem.

4.4 Theorem. Let N = (B,E,F,M) be a contact-free net. There is a unique occurrence net
N= (B8, &,¥%M) and folding = (M, B) which satisfy:

B = {(0,b) |beM} U {({e},b)|e'cB & beB & 7 (e')F b },
E=1{(s,e)|SES B &ecE & BS = ‘e & ¥b',}"S. b' co b"},
¥y &Jw,z. v = (w,2) & xe W,
M= {(@b)}be M}
and e'ne &35<P. e' = (s,e).

$'8b € (beM & b' = (@,b)) or Je'¢f. b' = ({e'},b).

4.5 Definition. Write YN for the occurrence net defined above. Call it the unfolding of
N.

4.6 Example. The unfolding of the next ofoexample 1.2 with initial marking {a,b} looks
like this: 3

d . (

Although the unfolding construction is quite natural it is, by itself, quite
unwieldy. Imagine proving for example that unfolding preserves products. Fortunately
the unfolding construction has an abstract characterisation which implies such facts
immediately. Unfolding is cofree. It is a right adjoint to the inclusion functor
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Occ > Net, and right adjoints preserve limits and in particular products (see (Mac]).
The unfoldlng of an occurrence net is naturally isomorphic to the original net which
makes this adjunction a coreflection.

4.7 Theoxem, Let N be a contact-free Petri net. Then the occurrence net unfolding
UN and folding f are cofree over N i.e. for any morphism g : Ny + N with Ny an
occurrence net there is a unique morphism h : N, - YN such that foh = g. In fact

1
Occ is a coreflective subcategory of Net.

Thus, from the coreflection we know the product of two occurrence nets NO,N1 in
Occ is N, x4, Ny ¥ UN Xgee UN 2 U(Ng x Nek Ni)' the unfolding of their product in
Net. Although we cannot make the full case here, the coreflection relates parallel
comPOSLtlons using contact-free nets to parallel compositions using occurrence nets
and vice versa. The idea is to label events by elements of a synchronisation
algebra, specifying how events synchronise, and to obtain parallel compositions by
restricting events of the product in accord with the algebra--see [W1,2]. The
coproduct of occurrence nets in Occ is their coproduct in Net--this follows from the
coreflection. Coproducts are not always preserved by U however (right adjoints only
preserve limits not necessarily colimits). Still they are preserved on a full
subcategory of Net with objects those nets whose initial markings consist solely of
conditions with no pre-events.

5. A coreflection between nets and event structures

We show there is a coreflection between the category of occurrence nets and a
category of event structures. The functors provide a translation between the Petri
net model of computation and that based on event structures. The work [W1,2]
provides another coreflection which bridges the gap between event structures and
synchronisation trees, at the basis of the interleaving models of CCS and CSP
(see e.g. [M] and [HBR]). Coreflections compose so relating Petri nets to other
established work in concurrency.

The event structures are of the simple form introduced in [NPW12]. They are
essentially occurrence nets with the conditions stripped away to leave the causal
dependency and conflict relations. (They are called prime event structures in [Wl].)

5.1 Definition, A(brime!event structure is a triple (E, £,#) consisting of
(i) E a set of events,

(ii) &£ the causal dependency relation, a partial order on E and
(iii) # the conflict relation a binary s etric relation on E
which satisfy e # e' £ e" 2 e # e" and {e' € E|e'€e} is finite.

Event structures carry a natural idea of configuration (or state), the left-
closed, conflict-free subsets of events. 1Intuitively a configuration is a set of
events that occur in some history of a process; it should only be possible for an
event to occur once the events on which it causally depends have occurred and it
should be impossible for two events in conflict to occur in the same history.

5.2 Definition, Let (E,£, #) be an event structure. Let x € E. Say xis left-closed
iffVe,e' € E.eSe'e x =>e € x. Say x is conflict-free iff Ve,e € x. 1{e # e').
Write §(E,<, #) for the set of left-closed conflict-free subsets.

Clearly an occurrence net determines an event structure.

*
5.3 Definition. Le N = (B,E,F,M) be an occurrence net. Define éﬂN) = (E, F rE,#H%Q
where # is defined in 4.1.

Event structures possess a definition of morphism which is respected by £§
making E into a functor.

5.4 Definition. Define P the category of event structures, to have prime event
structures as objects and morphisms @ : (E S, #o) (El,si #1) those partial

functions © : E o El which satisfy



Vee {2 ). (ox € fie) & (Ve,e'ex. ole) = 6(e) #4e = o)

The identity morphisms are the identity functions and composition is the usual
composition of partial functions.

5.5 Theorem. Let N; = (Bj,E;,F; ,M{) be occurrence nets for i = 0,1. Let f = (%.8)
: Ny > N, be a morphism of nets. Then Ef = 9: 5N° ﬂ-ENl is a morphism of event
structur@s, making E a functor QOcc + P.

Conversely an event structure can be identified with a canonical occurrence
net. The basic idea is to produce an occurrence net with as many conditions as are
consistent with the causal dependency and conflict relations of the event structure.
But we do not want more than one condition with the same beginning and ending events
--we want an occurrence net which is "condition-extensional" in the terms of (Br].
Thus we can identify the conditions with pairs of the form (e,A) where e is an
event and A is a subset of events causally dependant on e and with every distinct
pair of events in A in conflict. But not quite, we also want initial conditions
(4,A) with no beginning events (see [NPW], though note a small but important change;
we introduce the isolated condition (@,d).)

5.6 Definition. Let (E,&,#) be an event structure. Define WQE,S.#) to be (B,E,F,M)
where

M={(g,n)] AcE & Va,a'er. a(fvl)a'l,
B=Mvu{(eA)leeE & A € E &(VaeA. e<a)&\ﬂydeA. a(#vl)at,
F = {((c,A),e) |(c,A)eB & e€r} v {(e,(e,A))]|(e,n) e B}.

As promised there is a coreflection between event structures and occurrence nets;
the construction M provides the free occurrence net over an event structure.

5.7 _Theorem. Let E be an event structure. Then ﬂb is an occurrence net. Moreover,
ENE=E. 1In fact JE, 1l : E +ZJ|'E is free over E with respect to fi.e. for any
morphism g : E +£N in P with N an occurrence net there is a unique morphism h':ﬂfE

=

=+ N in Occ such thatfﬁ=ﬁhols = g.

5.8 Example. Left adjoints preserve colimits, and so coproducts. Thus by 5.7 we
can deduce JV(EO + Ei) ngEo + jfEL so Eo + E, =E,A/'(Eo.+ E‘l) e'f(,,{fEa +JV'E1)‘, which
expresses the coproduct of event strucrures in terms' of the coproduct of nets.
Right adjoints preserve limits, and so products. By 5.7 and 4.7 we deduce :

E_ xp E =gNE x EJ/E ¢ Ble Xq JE geuWE Xyt NE.) which expresses the
o 1 o P % . o Oc 1 o 1

product of event structures in terms of the product of nets.

In fact whole denotational semantics for a wide range of languages (ProcL of
(W1,2]) can be translated back and forth between different models using these )
techniques. The demonstration of this and the use of "net-embeddings" to define nets
recursively must await the complete version of this paper.

Acknowledgements Thanks to Mogens Nielsen and Gordon Plotkin for helpful
discussions. Thanks to Alison Emery for the typing which had to be carried out in a
hurry. This work was partially supported by the Computer Science Department,
Carnegie-Mellon University.




References

[Br] Brauer, W. (editor), Net theory and its applications, Lecture notes in
Comp. Sc. No. 84, Springer-Verlag (1979).

{GR] Goltz, U. and Reisig, W., Processes of Place/Transition Nets. Icalp 83.

(HBR] Hoare, C.A.R., Brookes, S.D., and Roscoe, A.W., A Theory of Communicating
Processes. Technical Report PRG-16, Programming Research Group, Oxford University
(1981) .

[LSsC] Lauer, P.E., Shields, M.W. and Cotronis, J.Y., Formal behaviour
specification of concurrent systems without globality assumptions. Springer-Verlag
Lecture notes in Comp. Sc. vol. 107 (1981).

[Mac] Maclane, S., Categories for the Working Mathematician. Graduate Texts
in Mathematics, Springer-Verlag (1972).

[M] Milner, R., A Calculus of Communicating Systems. Springer-Verlag Lecture
Notes in Comp. Sc. vol. 92 (1980).

[NPW1l] Nielsen, M., Plotkin, G., Winskel, G., Petri nets, Event structures and
Domains. Proc. Conf. on Semantics of Concurrent Computation, Evian, Springer-Verlag
Lecture Notes in Comp. Sc. 70 (1979).

[NPW2] Nielsen, M., Plotkin, G., Winskel, G., Petri nets, Event structures and
Domains, part 1. Theoretical Computer Science, vol. 13 (198l) pp. 85-108.

[Pe] Peterson, J.L., Petri Net Theory and the Modelling of Systems. Prentice-
Hall (1981).

(W] Winskel, G., Events in Computation. Ph.D. thesis, University of
Edinburgh (1980).

[W1] Winskel, G., Event structure semantics of CCS and related languages,
Springer-Verlag Lecture Notes in Comp. Sc. 140 (1982). Also as a full version in
Report of the Computer Sc. Dept., University of Aarhus, Denmark (1982).

[W2]) wWinskel, G., Synchronisation trees. ICALP '83, Springer-Verlag Lecture

Notes in Comp. Sc. and fully in Technical Report, Comp. Sc. Dept., Carnegie-Mellon
University (1983).

14



