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Abstract
Event structures are a way to represent processes in which histories take the form of

patterns of event occurrences. Often they can be seen as unfolded Petri Nets. 1 They are
useful to model distributed games and strategies. One of the main restrictions of event
structures is that the common way of representing disjunctive causes is not compatible with
hiding, essential in the composition of strategies. 2 The main goal of my internship was to
find a way to represent disjunctive causes while supporting both hiding and pull-backs, and
to understand the relationship with the traditional approach. We express the relationship
through an adjunction. 3 In fact the adjunction is one of a family of adjunctions. The new
structures can be used to model strategies without the previous limitations.

Silvain Rideau and Glynn Winskel introduced in [RW11] a very general definition of games
and strategies based on event structures, in which histories are partial orders of causal depen-
dency between events. Their definition of strategy did not however accommodate disjunctive
causes adequately. A way to overcome this limitation is described in this report. This invol-
ved the discovery of new structures as existing structures such as general event structures,
while supporting disjunctive causes, failed to support an operation of hiding essential to the
definition of composition of strategies.

In this version of the report, almost no proof will be given, and a lot of properties found
during the internship will not be presented. A complete version of the report (with more
than fifty pages) can be found here : http ://www.cl.cam.ac.uk/ gw104/. The numeration of
properties and definitions has been preserved between the two versions.

The first section will define event structures, beginning with the simpler category : Prime
Event Structures. Then, we will define General Event Structures with an equivalence re-
lation. They give us to a global category which includes all the other categories presented
in this report. After, we will talk about different useful subcategories, finishing with rea-
lisations. Realisations will be the tools for building the most important adjunction of this
report (the adjunction between prime event structures with equivalence and general event

1. See [NPW81] for more informations at this subject.
2. In games semantics, pullbacks and hiding are used to define composition of strategies, and to give an abstract

definition of strategies. Pullbacks correspond to a synchronisation of two objects (relatively to a third one).
3. This adjunction is a reflection, so no informations are lost from old representations to the new ones.
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structure with equivalence). The second section will link all the categories we have introdu-
ced using adjunctions. The Figure 23 sum-up all the different adjunctions. The third section
will describe some useful properties of our categories, such as the existence of pullbacks.
The fourth section will present the basics of games semantics, and apply event structures
to provide a general definition of strategy. In the complete version of the report, the last
section is a compilation of examples and counterexamples discovered during this work and
which have guided the choice of definitions which are needed to make all of this work.

1 Event Structures

1.1 Prime Event Structures
A prime event structure 4 is a way to represent a process, a game, a distributive algorithm,

by a sets of events with causal dependencies and incompatibilities. Prime event structure are
somewhat limited because they only support conjunctive dependencies, and non disjunctive
ones. That is why we will introduce the notion of general event structure, and the notion of
event structure with disjunctive causes.
Definition 1.1 (Prime Event Structure). A PES (E,≤E , ConE) is a set of events E with
a partial order ≤E ⊆ E × E, and a consistency relation ConE ⊆ P(E), such that :
• (No inconsistent singleton) ∀e ∈ E, {e} ∈ ConE
• (Independence) ∀X ∈ ConE , ∀Y ⊆ X, Y ∈ ConE
• (Continuous) ∀X ⊆ E, X ∈ ConE ⇐⇒ ∀Y ⊆finite X, Y ∈ ConE
• (Down closed) ∀X ∈ ConE , ∀e ∈ X, ∀ẽ ≤E e, X ∪ {ẽ} ∈ ConE
• (Finite down-closure) ∀e ∈ E, {e′ | e′ ≤E e} is finite.

For e ∈ E, we define
• (Down-closure) [e] = {e′ | e′ ≤E e}
• (Strict Down-closure) [e) = {e′ | e′ ≤E e & e′ 6= e}
We represent event structures as oriented graphs (with extra information 5). For example,

the prime event structure ({A,B,C,D,E},≤, Con) where A,B ≤ C ≤ E and Con =
{ X ∈ P({A,B,C,D,E}) | D ∈ X =⇒ C /∈ X & E /∈ X } is represented as below :

E

C

OO

D

A

OO

>>

B

``

WW

Figure 1 – Example of a Prime Event Structure.

In order to have shorter representations, some causal links and some inconsistency can
be made implicit :

4. Generally named "event structure".
5. When the consistency exactly correspond to a binary inconsistency, we use a squiggly line to represent it.
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E

C

OO

D

A

OO

B

``

Figure 2 – Simplification of the Figure 1.

We now define configurations, they correspond to all possible states of the system.
Definition 1.2 (Configurations). For a prime event structure (E,≤E , ConE), we define
C(E) ⊆ P(E) by X ∈ C(E) if :
• (Consistent) X ∈ ConE
• (Down closed) ∀e ∈ X, [e] ⊆ X

E

C

OO

D

A

OO

B

``

Figure 3 – Example of a configuration.

We have some immediate properties.
Property 1.3. For a prime event structure (E,≤E , ConE), we have :
• ∀X ∈ ConE , ∃Y ⊇ X, Y ∈ C(E)
• ∀e ∈ E, [e] ∈ C(E) & [e) ∈ C(E)
• A prime event structure is characterised by its configurations.
We will now define maps of prime event structures, to have a category. The following

definition say that it exists a total map from E to E′ if you can go from E to E′ by weakening
causalities, strengthening consistency, merge inconsistent events, and introducing new events
(such that previous events never depends of new events).
Definition 1.4 (Map on prime event structures). A map between the prime event struc-
ture (E,≤E , ConE) and the prime event structure (E′,≤E′ , ConE′ ) is a partial function
f : D(f) ⊆ E → E′ such that :
• (Locally Injective) ∀X ∈ ConE , ∀a, b ∈ X ∩ D(f), a 6= b =⇒ f(a) 6= f(b)
• (Preserve Configurations) ∀X ∈ C(G), f(X) ∈ C(G′)

It is equivalent to :
• (Locally Injective) ∀X ∈ ConE , ∀a, b ∈ X ∩ D(f), a 6= b =⇒ f(a) 6= f(b)
• (Preserve Consistency) ∀X ∈ ConE , f(X) ∈ ConE′

• (Down closed Image) ∀e′ ∈ f(D(f)), ∀ẽ′ ≤E′ e′, ẽ′ ∈ f(D(f))
• (Reflects Order) ∀e, ẽ ∈ D(f), f(ẽ) ≤E′ f(e) =⇒ ẽ ≤E e

In the Figure 4, the two events labelled C are merged in one event (allowed because they
are inconsistent), and the event A is deleted, and a new event F is created (allowed because
the image is down-closed).
Property 1.5 (Category of prime event structures). Prime event structures with their maps
define a category.
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E E F

C C

OO

D

``

f // C

OO

D

OO

A

OO

B B

Figure 4 – Example of a map of PES.

A major restriction of prime event structures is that an event can only be enable in one
way, but prime event structures have a lot of good properties, for example hiding of events
does not lose informations, it mean :
Definition 1.6 (Hiding of events). Let (E,≤E , ConE) be a prime event structure, and
E′ ⊆ E. The restriction of (E,≤E , ConE) to E′ is (E′,≤E′ , ConE′ ) with :
• ≤E′ =≤E restricted to E′
• ConE′ = ConE ∩ P(E′)

It implies :
C(E′) = {X ∩ E′ | X ∈ C(E)}

In other words, if we have a property on configurations of E that use only events of E′ to
be written (See Figure 5), this property is also true on configurations of E′.

A

OO

D A D
OO ==

� hiding //

B

OO

C B

OO FF

C
OO OO

Figure 5 – The property "All configurations that contain the event A contain also the event B"
is preserved by hiding.

1.2 General Event Structures with an equivalence relation
In a prime event structure, only conjunctive enabling are allowed. We would want to have

event structures where an event can be enable in different ways (General Event Structures,
see Definition 1.17), or event structures where different events correspond to the same thing
(Prime Event Structure with an equivalence relation, see Definition 1.19). These two methods
allow us to have disjunctive enabling.
We will now consider a category which includes all the event structures that we will need, so
allow both having equivalent events, and having multiple way of enabling an event. General
Event Structures with an equivalence relation (GES≡) are quite complicated, but having a
global category into which we can embed all our models will be useful.
Definition 1.7 (General Event Structure with an equivalence relation).
A GES≡ (G,`G, ConG,≡G) is a set of events G, with a relation `G ⊆ P(G) × G, an
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equivalence relation 6 (transitive, reflexive and symmetric) ≡G, and a consistency relation
ConG ⊆ P(G) such that :
• (No inconsistent singleton) ∀e ∈ G, {e} ∈ ConG
• (Independence of consistency) ∀X ∈ ConG, ∀Y ⊆ X, Y ∈ ConG
• (Continuous consistency) ∀X ⊆ G, X ∈ ConG ⇐⇒ ∀Y ⊆finite X, Y ∈ ConG
• (Down closed consistency) ∀X ∈ ConG, ∀e ∈ X, ∃Y `G e, X ∪ Y ∈ ConG
• (Generalisation of enabling) ∀e ∈ G, ∀X `G e, ∀Y ⊇ X, Y `G e
• (Finite enabling) ∀e ∈ G, ∀X ` e, ∃Y ⊆ X, Y ` e & Y is finite.

We allow to have strange ways to enable events such as loops or not transitive (i.e down
closed) enabling.
• For e ∈ G, we define {e}≡G = {e′ | e′ ≡G e}
• For X ⊆ G, we define X≡G = {{e}≡G | e ∈ X}

We say that two GES≡ are isomorph if there exists a bijection between the two which pre-
serves and reflects the enabling, the equivalence relation and the consistency.

A1 A2

B

CC
AND

C

[[ CC
OR

D

[[

Figure 6 – Example of a simple GES≡.

GES≡ are a little too general, because we would prefer not having strange enabling.
That why we will define replete GES≡.

A

%%
B

ee

Figure 7 – Example of a non replete GES≡.

Definition 1.8 (Minimal enabling). Let E be a set of events, and `E ⊆ P(E) × E. We
define `µE ⊆ P(E)× E as below :

X `µE e ⇐⇒
{
X `E e

∀X ⊆ Y, Y `E =⇒ Y = X

Definition 1.9 (Replete GES≡). We say that a GES≡ (G,`G, ConG,≡G) is replete if :
• (Minimal enabling without loops) ∀e ∈ G, ∀X `µG e, e /∈ X
• (Transitive Minimal Enabling) ∀e ∈ G, ∀X `µ e, ∀x ∈ X, X ` x
• (Consistent minimal enabling) ∀e ∈ G, ∀X `µG e, X ∈ ConG

The definition of a GES≡ implies the property :
• (Finite minimal enabling) ∀e ∈ G, ∀X `µG e, X is finite

The notion of replete GES≡ correspond to the notion of Families with an equivalence relation
in the complete report.
Definition 1.10 (Configurations).
For an GES≡ (G,`G, ConG,≡G), we define C(G) ⊆ P(G) by X ∈ C(G) if :
• (Consistent) X ∈ ConG
• (Secure chain)
∀e ∈ X, ∃n ∈ N, ∃{ei}1≤i≤n, en = e & ∀1 ≤ i ≤ n, {e1, e1, ...ei−1} `G ei

6. The ≡ symbol of the notation GES≡ correspond to the equivalence relation between maps of GES≡, and
not between events of an object of GES≡.
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If (G,`G, ConG,≡G) is a replete GES≡, it is equivalent to :
• (Consistent) X ∈ ConG
• (Down closed) ∀e ∈ X, X `G e

If (G,`G, ConG,≡G) is a replete GES≡, we have the immediate property :

∀X ∈ ConG, ∃Y ⊇ X, Y ∈ C(G)

A1 A2

B

CC
AND

C

[[ CC
OR

D

[[

Figure 8 – Example of a configuration GES≡.

To define a category, we also need maps.
Definition 1.11 (Map on GES≡). A map between the GES≡ (G,`G, ConG,≡G) and the
GES≡ (G′,`G′ , ConG′ ,≡G′ ) is a partial function f : D(f) ⊆ G→ G′ such that :
• (All or Nothing) ∀a ≡G b ∈ G, [ a ∈ D(f) ⇐⇒ b ∈ D(f) ]
• (Preserve Equivalence) ∀a ≡G b ∈ D(f), f(a) ≡G′ f(b)
• (Locally equiv-Injective) ∀X ∈ ConG, ∀a, b ∈ X ∩ D(f), a 6≡G b =⇒ f(a) 6≡G′ f(b)
• (Preserve Configurations) ∀X ∈ C(G), f(X) ∈ C(G′)

Between replete GES≡, the last property is equivalent to :
• (Preserve Consistency) ∀X ∈ ConG, f(X) ∈ ConG′

• (Preserve Enabling) ∀a ∈ D(f), ∀X `G a, f(X) `G′ f(a)
In all cases, [Preserve Consistency] and [Preserve Enabling] implies [Preserve Configura-
tions], but they are not required for being a map.
We say that the function f is a quasi-map of GES≡ if it respect all property of a map,
except the [All or Nothing] property.

As on prime event structures, this definition means that a total map of GES≡ allows
to weaken causality, strengthen consistency, merge inconsistent equivalence classes, and in-
troducing new events (such that previous events never depends of new events). Moreover,
partial maps have to respect the equivalence relation ([All or Nothing] property).
Definition 1.13 (Equivalence on map).
We will say that two maps of GES≡ f and g are equivalent if they do the same thing up to
equivalence. That means, if f, g : (G,`G, ConG,≡G) → (H,`H , ConH ,≡H), then f ≡ g if
and only if :
• D(f) = D(g)
• ∀a ∈ D(f), f(a) ≡H g(a)

A D E D E F
f //

A A

DD

AND

B

ZZ

C

ZZ

A

DD

OR

B

ZZ DD

OR

C

ZZ

Figure 9 – Example of a map of GES≡.

This equivalence relation says that only equivalence classes of events are really important,
and that events are just different parts of the same "disjunctive event".
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C C
f //

A

DD

AND

B

ZZ

A

OO

B

OO

C C
g //

A

DD

AND

B

ZZ

A

OO

B

OO

Figure 10 – Two equivalent maps.

Property 1.14 (GES≡ enriched category). GES≡ with maps of GES≡ is a category, and
enriched category for the equivalence between maps. That means that the composition respect
the equivalence relation.
In other words, GES≡ with for maps equivalence classes of maps of GES≡ is a category.
We wrote rGES≡ the enriched category corresponding to replete GES≡.

1.4 General Event Structures
As said before, the main restriction of prime event structures is that we cannot enable

an event by different ways. A general event structure simply allow multiple enable.
Definition 1.17 (General Event Structure).
A GES (E,`E , ConE) is a GES≡ (E,`E , ConE ,≡E) with ≡E being the equality. It implies
that the equivalence between maps is also the equality. We define rGES as replete GES.

A major problem of GES is that it does not work well with hiding of events. Some
properties are lost under hiding :

E

A B

??

AND

C

OO
OR

D

``

({B,C}`µE and {D}`µE)

_
hiding of B

��

E

A C

OO
OR

D

``

Figure 11 – The property "All configurations that contain A and E contain D" is lost under
hiding.

1.5 Prime Event Structures with an equivalence relation, and
Event structures with Disjunctive Causes

An other way of allowing having multiple way of enabling an event is by allowing us to
duplicate an event into many equivalent events. Each of them corresponding to a way of
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enabling the initial event.
Definition 1.19 (Prime Event Structure with an equivalence relation).
A PES≡ (P,≤P , ConP ,≡P ) is a rGES≡ (P,`P , ConP ,≡P ) where :
• (Partial order) ≤P ⊆ P × P is a partial order 7

• (Unique minimal enabling) X `P e ⇐⇒ [e) ⊆ X
If ≡P is the equality, this definition exactly correspond to PES (for objects and maps).

As for prime event structures, PES≡ work correctly with hiding. But some categorical
constructions, such as pull-back, are not defined. 8 That is why we will add a property.
Definition 1.20 (Event structure with Disjunctive Causes).
An EDC (P,≤P , ConP ,≡P ) is a PES≡ such that :
• (EDC property) ∀p, p′, q ∈ P, p ≡ p′ & p ≤P q & p′ ≤P q =⇒ p = p′

EDC support hiding, and the Proposition 3.2 shows that it support pull-back, so it will be
the category used for games and strategies (see Definition 4.3).
We can define some variants 9 of EDC :
• (EDCweak) PES≡ with the property ∀p, p′ ∈ P, p ≡ p′ & p ≤P p′ =⇒ p = p′

• (EDCnot) PES≡ with the property ∀p, p′ ∈ P, p ≡ p′ & {p, p′} ∈ ConP =⇒ p = p′

1.6 Extremal realisation
GES and EDC are two different way of representing events that can be enable in different

ways, we would want to pass from one way to the other. That is why we will build an
adjunction. 10 To do this, we need to define what a realisation of a GES≡ is.

1.6.1 Partially Ordered Multisets
First, we need to talk about partially ordered multisets. Realisation will be partially

ordered multisets linked in a good way to a GES≡.
Definition 1.21 (Partially Ordered Multisets). A POM (R,≤R, nR) on a set G, is a
PES≡ (R,≤R, ConR) where 11

• (Trivial Consistency) ConR = P(R)
• (Name function) The name function nR : R→ G is a total function
• (Same-name equivalence) ∀a, b ∈ R, a ≡R b ⇐⇒ nR(a) = nR(b)

We say that two POM are isomorph if there exists a bijection between the two which pre-
serves and reflects both the order 12 and the equivalence relation, and which respect the name
function. 13

Definition 1.22. For (R,≤R, nR) a POM , we define :
• (Down-closure) [p] = {q | q ≤R p}
• (Strict Down-closure) [p) = {q | q ≤R p & q 6= p}
• (Top) Top(Y ) = p such that [p] = Y (not always defined)
• (Top POM) When Top(R) is defined, we say that (R,≤R, nR) is a top POM
To be able to talk later about extremal realisations, we need to put an order between

POM . In fact, we will have a pre-order and a partial order, the first affect mainly the internal
partial order, and the second preserves the internal partial order but change the elements.

7. So transitive, reflexive, and anti-symmetric. We recall that [e] = {e′ | e′ ≤P e} and [e) = [e]\{e}.
8. But, because we have pull-back on GES≡, the ≡-adjunction given by the Theorem 2.13 say that we have

by-pull-back (so pull-back up to equivalence).
9. We will not talk a lot about them.
10. In fact, we will not be able to build an adjunction, it will only be an ≡-adjunction.
11. An important point is that realisation does not necessarily have the EDC property.
12. We will frequently say "order" instead of "partial order".
13. It mean that the image of an element by the bijection has the same name as the element.
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A

B

>>

C

OO

C

__

A

??``

CC

Figure 12 – Example of a POM on {A,B,C} (The dash arrow is an implicit arrow).

Definition 1.24 (A pre-order on POM). For two POM (R,≤R, nR) and (R′,≤R′ , nR′ ) on
the same set G, we write (R,≤R, nR) �fun (R′,≤R′ , nR′ ), if there exists a total, surjective
map of PES≡ between the PES≡ associated to (R,≤R, nR) and the PES≡ associated to
(R′,≤R′ , nR′ ) which respect the name function. More precisely, it mean there exists f :
R′ → R such that :
• (Total) ∀p′ ∈ R′, f(p′) is defined
• (Surjective) ∀p ∈ R, ∃p′ ∈ R′, p = f(p′)
• (Respect the same function) ∀p′ ∈ R′, nR′ (p′) = nR(f(p′))
• (Reflects order) ∀q′ ∈ R, ∀p′ ≤R′ q′, f(p′) ≤R f(q′)

It define a pre-order 14 on POM . We remark that two isomorphic POM are on the same
cycle 15 for �fun.

A A A

B C

OO

�fun B C

OO

C

__

�fun B

>>

C

OO

C

__

A A

??``

C

OO

C

OO

Figure 13 – Example of a sequel of �fun

Definition 1.25 (Sub-structure).
For two POM (R,≤R, nR) and (R′,≤R′ , nR′ ) on the same set G, we say that (R,≤R, nR)
is a sub-structure of (R′,≤R′ , nR′ ), and we write (R,≤R, nR) �sub (R′,≤R′ , nR′ ), if there
exists a partial and surjective function 16 m : D(m) ⊆ R′ → R which is a mono-morphism,
which mean that :
• (Injective) m is injective.
• (Respect the same function) ∀p′ ∈ D(m), nR′ (p′) = nR(m(p′))
• (Down-closed partiality) ∀q′ ∈ D(m), ∀p′ ≤R′ q′, p′ ∈ D(m)
• (Preserve and reflect order)
∀p′, q′ ∈ D(m), p′ ≤R′ q′ ⇐⇒ p′ ∈ D(m) & m(p′) ≤R m(q′)

This definition means that, up to isomorphism, R is include in R′, is down-closed by ≤R′ ,
and has the same pre-order and the same equivalence relation.

14. We recall that a pre-order is a transitive and reflexive binary relation.
15. Cycles of a pre-order are usually called "equivalence classes", but we will not use this term to avoid confusion

with equivalence classes of GES≡.
16. m does not define a map of P ES≡ because it has not the [All or Nothing] property. However, m−1 is a map

of P ES≡, and a total mono-morphism.
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�sub define a partial order up isomorphism. 17

A

�sub B C �sub B

>>

C

OO

C

__

A A

``

A

??``

C

OO

C

OO

C

OO

Figure 15 – Example of a sequel of �sub

The order �sub allow to define restrict a POM to one element and its down closure.
We will now merge these two pre-orders.

Definition 1.27 (The pre-order �). We define � as the transitive (and reflexive) closure
of the union of �fun and �sub.
Proposition 1.28 (Decomposition of �).

(R,≤R, nR) � (T,≤T , nT )

⇐⇒ ∃(S,≤S , nS), (R,≤R, nR) �sub (S,≤S , nS) �fun (T,≤T , nT )
⇐⇒ ∃(S̃,≤S̃ , nS̃), (R,≤R, nR) �fun (S̃,≤S̃ , nS̃) �sub (T,≤T , nT )

So it give the diagram :
R �sub S

�fun �fun

S̃ �sub T

We define also perfect POM . They are just POM with no useless duplication of elements.
Definition 1.29 (Perfect POM). We say that a POM (R,≤R, nR) is perfect if :

• (No redundancy) ∀p, q ∈ R,
[ {

nR(p) = nR(q)
[p) ⊆ [q)

=⇒ p = q

]
We can deduce from the [No redundancy] property :

• (No need itself) ∀p, q ∈ R,
[ {

nR(q) = nR(p)
p ≤ q

=⇒ p = q

]
The main good property of prefect POM is that there is only a finite number of prefect

POM (on a finite set)
Property 1.30 (Bounded number of perfect POM). For all E a finite set, exits a finite
number of perfect POM on E, up to isomorphism.

1.6.2 Realisation
Now that we have define POM , we can link them to a GES≡.

17. A order up to isomorphism is an order between the isomorphism classes. Equivalently, it is a pre-order ≤
which is antisymmetric up to isomorphism : x ≤ y & y ≤ x =⇒ x is isomorphic to y.
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Definition 1.31 (Realisation). Let (G,`G, ConG,≡G) be a GES≡. We say that a POM
(R,≤R, nR) on G is a realisation of (G,`G, ConG,≡G) if the name function nR define a
total map of GES≡ between the GES≡ associated to (R,≤R, nR) and (G,`G, ConG,=) ,
which mean 18 that :
• (Realisation) ∀p ∈ R, n([p]) ∈ C(G)
nR is the name function of the realisation (R,≤R, nR).

D E Foo D E F

C

OO

B

OO

n // C

OO

B

`` OO

A

>>
OR

B

``

Figure 16 – Example of a realisation

This definition works correctly with the pre-order and the partial order defined on POM ,
but not in the same direction. Realisations are preserved by increasing along �fun and
decreasing along �sub, so we have no properties for �.

Because GES≡ is a category, a natural things to do is defining the image of a realisation
by a map of GES≡. This image has good properties for the sub-structure order.
Definition 1.34 (Image of realisations).
For f : (G,`G, ConG,≡G) → (H,`H , ConH ,≡H) a map of GES≡, and for (R,≤R, nR) a
realisation of (G,`G, ConG,≡G), we define f@(R,≤R, nR) = (S,≤S , nS) a realisation of
(H,`H , ConH ,≡H) as :
• S = R
• ∀r, r′ ∈ S, [ r ≤S r′ ⇐⇒ r ≤R r′ ]
• ∀r ∈ S, nS(r) = f(nR(r))

So only the name function change.

Proof. (S,≤S , nS) is a realisation because f preserves configurations.
The notion of perfect POM correspond to a notion of POM which have no strange

things. We would want to only manipulate only perfect POM , that why we would want to
always be able to extract a perfect realisation from a realisation.
Proposition 1.36 (Perfect Realisations). If (R,≤R, nR) is a realisation of the GES≡
(G,`G, ConG,≡G), then there exists (R′,≤R′ , nR′ ) �fun (R,≤R, nR) which is a perfect
realisation of (G,`G, ConG,≡G).

Proof. We will first create ≤′′ such that (R,≤′′, nR) respects the [Weak No Redundancy]
property :

∀p, q ∈ R,
[ {

nR(p) = nR(q)
[p) ⊆ [q)

=⇒ [p) = [q)
]

Then, we will merge elements with the same down-closure to have (R′,≤R′ , nR′ ) �fun
(R,≤′′, nR) a perfect realisation.
We can simply define ≤′′ :

18. An important point is that we forget the equivalence relation ≡G.

11



• ∀p ∈ R, ∃p̃ ∈ R,


nR(p̃) = nR(p)
[p̃) ⊆ [p){
nR(q) = nR(p̃)
[q) ⊆ [p̃)

=⇒ [q) = [p̃)

• e ≤′′ p ⇐⇒ e ≤R p̃
p̃ is well defined because R has finite down-closure (so [p] is finite). We trivially preserves
the realisation property. The merge cause no problems too.

Now, we will define the notion of extremal 19 realisation. They are minimal realisations
for the order �fun. The minimum for the partial order �sub and for the pre-order � are the
void realisation, so it is not interesting.
Definition 1.37 (Extremal Realisations). We sat that (R,≤R, nR) is an extremal realisa-
tion of the GES≡ (G,`G, ConG,≡G) if for all other realisations (R′,≤R′ , nR′ ) �fun (R,≤R
, nR), we have (R′,≤R′ , nR′ ) �fun (R,≤R, nR).
We sat that (R,≤R, nR) is an unambiguous extremal realisation of the GES ≡ (G,`G
, ConG,≡G) if for all other realisation (R′,≤R′ , nR′ ) �fun (R,≤R, nR), we have (R′,≤R′

, nR′ ) is isomorphic to (R,≤R, nR).
Equivalently, unambiguous extremal realisation are extremal realisation such that all reali-
sation of its cycle (for �fun) are isomorph.
Extremal realisation can be infinite.
The Proposition 1.38 shows that all extremal realisations are unambiguous.
The Proposition 1.36 shows that extremal realisations are perfects.

D

C

OO

A

DD

OR

B

ZZ

Figure 17 – A GES≡.

Proposition 1.38 (Extremal realisations are unambiguous).
An extremal realisation (R,≤R, nR) of a GES≡ (G,`G, ConG,≡G) is an unambiguous ex-
tremal pre-realisations.

We want to be able to extract top extremal realisations from any realisations, the follo-
wing property says that it is always possible.
Proposition 1.39 (Existence of top extremal realisation). For all realisations (R,≤R, nR),
for all event e ∈ nR(R) of this realisation, there exists an extremal realisation (T,≤T , nT ) �
(R,≤R, nR) which has a top t with nT (t) = e.

Proof. We first deduce a top realisation with top p ∈ n−1
R (e) by taking the top sub-structure

(R̃,≤R̃, nR̃) defined by :
• R̃ = [p]
• ≤R̃ = ≤R restricted to R̃
• nR̃ = nR restricted to R̃

Then, by the Proposition 1.36, we can take (S,≤S , nS) �fun (R̃,≤R̃, nR̃) a perfect realisa-
tion.
We are now in finite cases (see below), so we can do the following algorithm :

19. We use the term extremal and no minimal because the pre-order �fun correspond to the existence of a
function from the greater element to the lesser, which is the contrary of what is usually done.
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D

C C

OO

A A

>>

A

>>

D

C C

OO

B B

``

B

``

Figure 18 – All top extremal realisations of the GES≡ of the Figure 17

• Either (S,≤S , nS) is extremal.
=⇒ End of the algorithm.
• Either exists a realisation (P,≤P , nP ) �fun (S,≤S , nS) which is not in the same cycle

(of the pre-order �fun), and with p ∈ n(P ).
=⇒ By the Proposition 1.36, we can take (P,≤P , nP ) perfect.
=⇒ Go to the beginning with (P,≤P , nP ) instead of (S,≤S , nS).
We know that there is a finite number of perfect realisation on nR(R) (Property 1.30), so
the algorithm will end. So we produce a top extremal realisation (T,≤T , nT ) � (R,≤R, nR)
with nT (Top(T )) = e.
Proposition 1.43 (Characterisation of extremal realisations). A POM (R,≤R, nR) on G
is an extremal realisation of the GES≡ (G,`G, ConG,≡G) if and only if :
• (Realisation) ∀r ∈ R, nR([r)) `G nR(r)

• (Minimal) ∀r ∈ R, ∀X ⊆ [r),
{
X down closed for ≤R
nR(X) `G nR(r)

=⇒ X = [r)

• (No multiplicity) ∀p, q ∈ R,
{
nR(p) = nR(q)
[p) = [q)

=⇒ p = q

13



2 The ≡-adjunction between GES and EDC

GES correspond to the common way of adding disjunctive enabling to event structures,
it support pull-backs, but does not support hiding, whereas EDC support both pull-backs
and hiding. That is why we would want a way to pass from one to the other.
In this section, we will build an ≡-adjunction (see Definition 2.9) between these two cate-
gories by composing multiple little ≡-adjunctions.

2.1 The adjunction between GES and rGES

Definition 2.1 (Adjunction). For A and B two categories, L : A → B and R : B → A
two functors, we said that L and R define an adjunction between A and B, and we wrote
L a R, if for all A ∈ A, and for all B ∈ B, there is a one-to-one correspondence between
maps L(A)→ B and maps A→ R(B).
If A and B are two categories enriched by an equivalence relation, then we say that there is
an enriched adjunction if L and R preserve the equivalence relation.

An enriched adjunction correspond to an adjunction which is also a ≡-adjunction (see
Definition 2.9). An adjunction is always a enriched adjunction with the equality as the
equivalence relation.
Proposition 2.2 (Adjunction between GES and rGES). There is an adjunction between
GES and rGES. The right adjoint is the inclusion functor, and the left adjoint correspond to
"completing by transitivity the enabling relation and deleting meaningless way of enabling".

2.2 The enriched adjunction between rGES and rGES≡

What we want is a functor which collapse equivalence classes by adding disjunctive
enabling. We will here describe the abstract way of defining col, but there is an inductive
way of defining it, see the complete report for more details.

OO OO

� col //

FFYY

OO OO FF
OR

YY

Figure 19 – Simple example of the effect of the col functor on a replete GES≡

Definition 2.5 (The col functor).

(G,`G, ConG,≡G) col7−−→ (E,`E , ConE)

where
• E = G≡G
• ∀x ∈ E, ∀X ⊆ E, [ X `E x ⇐⇒ ∃y ∈ G, ∃Y ⊆ G, Y `G y & {y}≡G = x & Y≡G = X ]
• X ∈ ConE ⇐⇒ ∃Y ∈ ConG, Y≡G = X

and
(f : G→ G′) col7−−→ (g : E → E′)

where
• (1) g(e) = e′ ⇐⇒ ∃p ∈ G such that {p}≡G = e, {f(p)}≡G = e′

• (2) g(e) = e′ ⇐⇒ ∀p ∈ G such that {p}≡G = e, {f(p)}≡G = e′

14



This functor respect naturality conditions, and is an enriched functor (for the equivalence
relation).
Theorem 2.8 (The adjunction between rGES and rGES≡). The inclusion functor I 20

and col define an enriched adjunction between rGES and rGES≡, more precisely col a I.
It mean that for (E,`E , ConE) a rGES, and (G,`G, ConG,≡G) a rGES≡, we have 21 :

∀f : col(G)→ E, ∃!h : G→ I(E), f = col(h)

(More rigorously f = rE ◦ col(h), where rE : col ◦ I(E)→ E is the isomorphism)

2.3 The ≡-adjunction between rGES≡ and PES≡

What we want is a functor which replace events that can be enable in different way by
equivalent events that can be enable in a unique way. We will here describe the abstract
way of defining ter, but there is (under some restrictions) an inductive way of defining it,
see the complete report for more details.

OO

� ter //

OO OO

FF
OR

YY OO OO

AND

OO

� ter //

AND

OO OO

FF
OR

YY

``

OO OO

ZZ

Figure 20 – Simple examples of the effect of the ter functor on a replete GES≡

Definition 2.9 (Pseudo-functor and ≡-adjunction). We take A and B two categories enri-
ched by an equivalence relation on maps. We define A/≡ the category which have the objects
of A, and for maps the equivalence classes of maps of A. We define B/≡ in a same way.
A pseudo-functor f : A→ B is a functor from A/≡ to B/≡.
An ≡-adjunction is an adjunction between A/≡ and B/≡.

We will frequently assimilate a function and its equivalence classes, or implicitly take an
arbitrary element of an equivalence classes of functions.
Definition 2.10 (The ter 22 pseudo-functor). The pseudo-functor ter : rGES≡ → PES≡
is defined as below :

(G,`G, ConG,≡G) ter7−−→ (P,≤P , ConP ,≡P )

20. We use the same name I for all inclusions functor. Because they have no effects on objects or maps, it is
not a problem.
21. We recall that the equivalence on maps of rGES is the equality. Moreover, equivalence classes on maps

from a rGES≡ to a rGES≡ which come from a rGES, have cardinality one. So this property is also true up to
equivalence.
22. ter means "top extremal realisations".
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• P = {(R,≤R, nR) top extremal realisation of G } 23

• (R,≤R, nR) ≤P (S,≤S , nS) ⇐⇒ (R,≤R, nR) � (S,≤S , nS)
• (R,≤R, nR) ≡P (S,≤S , nS) ⇐⇒ nR(Top(R)) = nS(Top(S))
• X ∈ ConP ⇐⇒ ∃Y ∈ C(G),

⋃
(R,≤R,nR)∈X

nR(R) ⊆ Y

and
{f : D(f) ⊆ G→ G′}≡

ter7−−→ {g : D(g) ⊆ P → P ′}≡
where
• (Same partiality) (R,≤R, nR) ∈ D(g) ⇐⇒ nR(Top(R)) ∈ D(f)
• (Image) g((R,≤R, nR)) = (R′,≤R′ , nR′ ) � f@(R,≤R, nR)
• (Respect the name function) nR′ (Top(R′)) = f(nR(Top(R)))
• (Coherent choices) g is a map of PES≡

This pseudo-functor respect naturality conditions.
Theorem 2.13 (The ≡-adjunction between rGES≡ and PES≡). I and ter define an ≡-
adjunction between rGES≡ and PES≡, more precisely I a ter up to equivalence.
It mean that for (P,≤P , ConP ,≡P ) a PES≡, and (G,`G, ConG,≡G) a rGES≡, and up to
equivalence, we have :

∀f : P → ter(G), ∃!h : I(P )→ G, f ≡ ter(h)

(More rigorously f ≡ h̃ ◦ rP , where rP : P → ter ◦ I(P ) is an isomorphism, and h̃ and
element of ter({h}≡))
Proposition 2.15 (Extremal Realisations are Configurations). Extremal realisations of a
rGES≡ (G,`G, ConG,≡G), exactly correspond to configurations of ter(G).
That implies that if we define : TopG : ter(G)→ G : (R,≤R, nR) 7→ nR(Top(R)) , then :

X ∈ F ⇐⇒ ∃Y ∈ C(ter(G)), T opG(Y ) = X

2.4 The enriched adjunction between PES≡ and EDC

Proposition 2.17 (The enriched adjunction between PES≡ and EDC). The inclusion
functor I : EDC → PES≡ and the restriction functor restr : PES≡ → EDC define an
enriched adjunction between PES≡ and EDC, more precisely I a restr.

restr : (P,≤P , ConP ,≡P ) 7→ (P ′,≤P ′ , ConP ′ ,≡P ′ )

Where P ′ = {p ∈ P | ∀q ≤P p, ∀q′ ≤P p, q ≡P q′ ⇐⇒ q = q′}, and ≤P ′ , ConP ′ , and ≡P ′

are the restriction of ≤P , ConP and ≡P to P ′.

restr : (f : P → Q) 7→ (g : P ′ → Q′)

Where g is the restriction of f to P ′

In a similar way, there is a sequence of enriched adjunction between PES≡, EDCweak,
EDC, EDCnot, and an adjunction 24 (not enriched) between EDCnot and PES.

2.5 The composite adjunction
The Figure 23 25 sum-up all the precedent adjunctions. Some of them still work if we

take relations 26 instead of functions.
Because the adjunction between EDC (or EDCnot) and PES is not enriched, and the

23. Quotiented by the being-isomorphic equivalence relation.
24. The right adjoint is "forgetting the equivalence relation", and the left adjoint is the inclusion functor.
25. This figure use colors in order to be more readable.
26. See the complete report for more details.
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≡-adjunction between rGES≡ and PES≡ is not an adjunction, we cannot deduce an ≡-
adjunction (nor an adjunction) between PES and GES.

Most of the immediate adjunctions (or ≡-adjunction) are trivially reflection 27 or co-
reflection 28, but the fact that the adjunction between rGES and EDC (or PES≡) is a
reflection is more complicated.
Proposition 2.18 (The ≡-adjunction between rGES and EDC is a reflection). The co-unit
of the ≡-adjunction between rGES and EDC is an isomorphism : εE : col◦ι◦ter◦I(E)→ E
(where ι correspond to the composition of different inclusion functor and restriction func-
tors)
It mean that if we take a replete GES, then we take the EDC corresponding to all top
extremal realisations that respect the EDC property, and then collapse equivalent events, we
obtain a GES isomorphic to the initial GES.
Similarly, the the co-unit of the ≡-adjunction between rGES and PES≡ is also an isomor-
phism.

The precedent property say, approximatively, that anything that can be expressed with
a replete GES can be expressed with a PES≡ (and also with an EDC). We can find a cha-
racterisation of PES≡ coming from rGES. See the complete report for the characterisation.

AND

OO

� //

AND

OO OO

� //

AND

OO

FF

OR

XX

\\

OO OO

ZZ

FF

OR

XX

\\

Figure 21 – Example of the co-unit being an isomorphism

27. If you take an object, apply the right adjoint, then apply the left adjoint, and obtain something isomorphic
to the initial object, then the adjunction is a reflection.
28. If you take an object, apply the left adjoint, then apply the right adjoint, and obtain something isomorphic

to the initial object, then the adjunction is a co-reflection.

GESrGES

≡rGES ≡≡PES ≡EDC ≡
weakEDC ≡EDC ≡

not

PES
≡rGES≡PESEDCweakEDCEDC not

≡GES

≡GES ≡

pullback

hiding

Inclusion functor

Figure 23 – The composite adjunction.
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3 More properties on Event Structures

3.1 Pull-back
A pull-back is a categorical construction used to synchronise two objects (relatively to a

third one). In the case of event structures, a pull-back of two event structures 29 correspond
to a superposition of the constrains (causal dependencies, inconsistency, ...).
We will see in the Definition 4.1 how to use event structures in order to represent games
and strategies. Pull-backs and hiding are needed in order to define the notion of composition
of strategies.
Definition 3.1 (Pull-back). Let A, B, C, and P be four objects of a same category C. Let
fA : A → C, fB : B → C, gA : P → A and gB : P → B be four morphisms. 30 We say that
(P, gA, gB) is the pull-back of (A, fA) and (B, fB) relatively to C if :
• fA ◦ gA = fb ◦ gB

• ∀(P ′, g′A, g′B) such that fA ◦ g′A = fb ◦ g′B , ∃!ϕ : P ′ → P,

{
gA ◦ ϕ = g′A

gB ◦ ϕ = g′B

∀P ′

g′
A

��

g′
B

��

∃! ϕ

��
P

gA !!gB}}
A

fA !!

B

fB}}
C

When the pull-back (P, gA, gB) exists, it is unique (up to isomorphism).
If C is an enriched category for ≡, we define bi-pull-packs as pull-backs in C/≡. Bi-pull-backs
are unique up to equivalence 31

Property 3.2 (Existence of pull-backs). We consider a category C ∈ {GES, rGES, GES≡,
rGES≡, PES≡, EDC

weak, EDC, EDCnot, PES}.
C has bi-pull-backs.
If C 6= PES≡ and C 6= EDCweak, then C has pull-backs.
We recall that pull-backs (and bi-pull-backs) are preserved by right adjoint.

3.2 Relations instead of functions
A lot of things also work with relations instead of functions. See the complete report for

more informations.

29. The third event structure correspond to the part that is common between the two others.
30. When the category has a notion of total morphism and partial morphism, only total morphisms are taken.
31. An equivalence relation between morphisms induce an equivalence relation between objects : A ≡ B ⇐⇒
∃f : A→ B, ∃g : B → A, g ◦ f ≡ idA.
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C // D

B
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// A

OO

zz $$

E E

C // D C // D

B A B

OO

// A

OO

$$ zz

E

C // D

B A

Figure 24 – Example of a pull-back on prime event structures.
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4 Games and Strategies
We will use PES in order to models games, and EDC to models strategies 32. It is an

extension of [RW11], which was using only PES. We will define strategies as pre-strategies
which are stable by composition by the copy-cat strategy, and deduce from this abstract
definition all intuitive properties of a strategy. 33

4.1 Games and pre-strategies
We use PES to models games. Events correspond to player (polarity ⊕) or opponent

(polarity 	) moves. The partial order and the consistency correspond to rules of the game.
Definition 4.1 (Game).
A game is PES (A,≤A, ConA) with a polarity function p : A→ {⊕,	}.
Definition 4.2.
For a game A, the dual game A⊥ corresponds to the game with reversed polarities.
For two games A and B, the parallel game A || B corresponds to the disjoint union of the
two games.

A strategy corresponds to a set of restriction that the player put on his own moves.
He can, for example, choose to never do a particular move. Intuitively, we know that the
player is not allowed to restrict opponent moves 34, but determining what is exactly allowed
is not simple. Pre-strategy allow any kind of restrictions, and we will define strategies as
pre-strategies that have good properties.
Definition 4.3 (Pre-strategy).
We say that (S, σ) is a pre-strategy on the game A if S is an EDC and σ : S → A is a
map 35 of EDC which respect polarities.

+ + +
σ //

−

OO

−

OO

− −

Figure 28 – Example of a pre-strategy σ : S → A

4.2 Composition of pre-strategies
We will define the notion of "pre-strategy from one game to another". They can be seen

as compiler which translate any pre-strategy of the first game in a pre-strategy of the second
game.
Definition 4.4 (Pre-strategy from one game to another). We say that (S, σ) is a pre-strategy
from the game A to the game B if (S, σ) is a pre-strategy on the game A⊥ || B.

In order to use those pre-strategies as compiler, we need to be able to "apply" them to
pre-strategy of the first game. More generally, we will define composition of pre-strategies. 36

We will do the composition by synchronising (with a pullback and with hiding) the two pre-
strategies.

32. We should be able to use EDC for both games and strategies, but some details seems more complicated.
33. For example, the player cannot forbid opponent moves, but can choose to restrict his own moves.
34. If an opponent move is allowed by the rules, nothing can prevent the opponent to do it.
35. The P ES A is view as an EDC with the equality for ≡A.
36. An application of a function can be seen as a particular case of a composition.
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Definition 4.5 (Composition of pre-strategies).
We take σ : S → A⊥ || B and τ : T → B⊥ || C.
• We extend σ with the identity to σ′ : S || C → A⊥ || B || C.
• We extend τ with the identity to τ ′ : A⊥ || T → A⊥ || B⊥ || C.
• If we forget polarities of the events of B, both σ′ and τ ′ are pre-strategies on A⊥ || B0 || C.
• We define (P, pS , pT ) as the pullback of (S || C, σ′) and (A⊥ || T, τ ′) relative to A⊥ || B0 || C.
• We define τ ? σ : P → A⊥ || B0 || C as τ ? σ = σ′ ◦ pS = τ ′ ◦ pT .
• We define (H, τ ◦σ) as the pre-strategy on the game A⊥ || C corresponding to (P, τ ? σ)

after hiding the events of B.
H

τ◦σ

ss

P

ww ''

_
hiding

OO

τ?σ

��

S || C
σ′

&&

A⊥ || T
τ ′

ww
A⊥ || B0 || C

Proposition 4.6 (The composition is well defined). The composition of pre-strategies,
defined as a pullback followed by a hiding, is always defined and is associative.

Proof. See [WV15] for more precisions. (Paper in progress)

4.3 Copy-cat and strategies
We defined composition of pre-strategies, but we did not talk about the existence of a

pre-strategy corresponding to the identity. The nearest thing to the identity is the copy-
cat pre-strategy. Copy-cat on A is defined on A⊥ || A and corresponds to the idea "If my
opponent do a move, then I do the symmetric move". Graphically, it correspond to adding
arrow from 	 moves to the corresponding ⊕ moves.
Definition 4.7 (Copy-cat). For a game A, the copy-cat pre-strategy (CCA, γA) from A to
A is defined as below :
• (Moves) CCA = A× {0, 1}

• (Polarities) pCCA :
{

(e, 1) 7→ pA(e)
(e, 0) 7→ −1× pA(e)

• (Partial order)

(e, s) ≤CCA (e′, s′) ⇐⇒



s = s′ & e ≤A e′

OR

s 6= s′ & e = e′ & pCCA(e) = 	
OR

∃a, b ∈ CCA, (e, s) <CCA a ≤CCA b <CCA (e′, s′)
• (Consistency) (X × {0}) ∪ (Y × {1}) ∈ ConCCA ⇐⇒ X ∈ ConA & Y ∈ ConA
In most cases where a pre-strategy corresponds to what we would want intuitively to be

a strategy, copy behave as the identity on it.
Definition 4.8 (Strategy). We say that (S, σ) is a strategy from the game A to the game
B if (S, σ) is a pre-strategy from A to B and if σ ◦ γA = σ = γB ◦ σ (up to isomorphism).
We say that (S, σ) is a strategy on A if (S, σ) is a strategy from ∅ to A.

Proposition 4.9 (Characterization of a strategy). A pre-strategy (S, σ) on A is a strategy
if and only if :
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+ −oo

−

OO

// +

OO

−

CC

// +

[[

+ −oo

A⊥ A

Figure 29 – Example of a copy-cat on a game A.

+ + +

−

OO

−

OO

σ:S→A // −

+

OO

+

OO

+

OO

−

OO

−

OO

− −

Figure 30 – Example of a strategy σ : S → A

• (≡-injectivity 37) σ(s1) = σ(s2) =⇒ s1 ≡S s2
• (	-receptivity 38)

X ∈ C(S)
σ(X) ∪ {a} ∈ C(A)
pA(a) = 	

=⇒ ∃s ∈ S ≡S ,
{
X ∪ {s} ∈ C(S)
σ(s) = a

• (No 	-redundancy)
s1 ≡S s2

pS(s1) = 	(= pS(s2))
[s1) ⊆ [s2)

=⇒ s1 = s2

• (⊕-consistency)
X ∈ ConS ⇐⇒ [X⊕] = {s ∈ S | ∃x ∈ X, s ≤S x & pS(x) = ⊕} ∈ ConS

• (Innocence)

s1 ≤S s2 =⇒ ∃t1, t2 ∈ S, s1 ≤S t1 ≤S t2 ≤S s2,


σ(t1) ≤A σ(t2)
OR

pS(t1) = 	 & pS(t2) = ⊕

Proof. See [WV15] for more precisions. (Paper in progress)
This characterisation means that :
• (≡-injectivity) Even if maps of EDC allow us to merge inconsistent (and non-equivalent)

events, we cannot do it in a strategy.
• (	-receptivity) We cannot restrict the set of possible moves for the opponents.

37. We recall that the equivalence relation on A is the equality.
38. Using the ≡-injectivity, we have the fact that all the possible s are equivalents.
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• (No 	-redundancy) We cannot duplicate opponent moves without any reason.
• (⊕-consistency) Inconsistency comes from players moves, it means that we cannot put

consistency restriction on opponent moves.
• (Innocence) We can only add dependencies from opponent moves to players moves, it

means that we cannot put causal restrictions on opponents moves, nor between players
moves.

Those conditions correspond to the intuitive definition of a strategy, except for the restric-
tion "we cannon put causal restrictions between players moves".

This restriction comes from the fact that the copy-cat strategy does not exactly corres-
pond to want we would want. The intuitive copy-cat is "if the opponent do a move, we do
immediately after the symmetric move", whereas our copy-cat is "if the opponent do a move,
we are allowed to do the symmetric move". There is two main difference : the symmetric
move is allowed but not forced, and there is no "reaction window" for the player so the
opponent can chain multiple moves without allowing the player to react 39.
If we extend event structures with the notion of "forced moves" and "immediate reaction",
the extra restriction would probably disappear.

If we consider a team of player instead of a unique player, this impossibility of putting
causal dependencies between players corresponds to a restriction of communications between
players (which have a meaning in the case of distributives games).
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39. We can without problems imagine a opponent who plays one move and then plays another move which
make impossible to play symmetrically.
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