
Strategies with Parallel Causes

Marc de Visme
Ecole Normale Supérieure de Paris, France

Glynn Winskel
Computer Laboratory, University of Cambridge, UK

Abstract
In a distributed game we imagine a team Player engaging a team
Opponent in a distributed fashion. Such games and their strategies
have been formalised in concurrent games based on event struc-
tures. However there are limitations in founding strategies on tradi-
tional event structures. Sometimes a probabilistic distributed strat-
egy relies on certain benign races where, intuitively, several mem-
bers of team Player may race each other to make a common move.
Although there are event structures which support such parallel
causes, in which an event is enabled in several compatible ways,
they do not support an operation of hiding central to the com-
position of strategies; nor do they support probability adequately.
An extension of traditional event structures is devised which sup-
ports parallel causes and hiding, as well as the mix of probability
and nondeterminism needed to account for probabilistic distributed
strategies. The extension is tested in the construction of a bicate-
gory of probabilistic distributed strategies with parallel causes. The
bicategory is rich in operations relevant to probabilistic as well as
deterministic parallel programming.

1. Introduction
This article considers probabilistic distributed games between two
teams, Player and Opponent. To set the scene, imagine a simple
distributed game in which team Opponent can perform two moves,
called 1 and 2, far apart from each other, and that team Player can
just make one move, 3. Suppose that for Player to win they must
make their move iff Opponent makes one or more of their moves.
Informally Player can win by assigning two members of their team,
one to watch out for the Opponent move 1 and the other Opponent
move 2. When either watcher sees their respective Opponent move
they run back and make the Player move 3. Opponent could possi-
bly play both 1 and 2 in which case both watchers would run back
and could make their move together. Provided the watchers are per-
fectly reliable this provides a winning strategy for Player. No matter
how Opponent chooses to play or not play their moves, Player will
win; if Opponent is completely inactive the watchers wait forever
but then Player does win, eventually.

We can imagine variations in which the watchers are only reli-
able with certain probabilities with a consequent reduction in the
probability of Player winning against Opponent strategies. In such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Logic in Computer Science 2016, New York, USA.
Copyright © 2016 ACM . . . $15.00.
http://dx.doi.org/10.1145/

a probabilistic strategy Player can only determine probabilities of
their moves conditionally on those of Opponent. Because Player
has no say in the probabilities of Opponent moves beyond those
determined by causal dependencies of the strategy we are led to a
Limited Markov Condition, of the kind discussed in [8]:

(LMC) In a situation x in which both a Player move ⊕ and
an Opponent move ⊖ could occur individually, if the Player
move and the Opponent move are causally independent,
then they are probabilistically independent; in a strategy for
Player, Prob(⊕ ∣ x,⊖) = Prob(⊕ ∣ x).

The LMC is borne out in the game of “matching pennies” where
Player and Opponent in isolation, so independent from each other,
each make their choice of head or tails. Note we do not expect
that in all strategies for Player that two causally independent Player
moves are necessarily probabilistically independent; in fact, look-
ing ahead, because composition of strategies involves hiding inter-
nal moves such a property would not generally be preserved by
composition.

Let us try to describe the informal strategy above in terms of
event structures. In ‘prime’ event structures in which causally de-
pendency is expressed a partial order, an event is causally depen-
dent on a unique set of events, viz. those events below it in the
partial order. For this reason within prime event structures we are
forced to split the Player move into two events one for each watcher
making the move, one w1 dependent on Opponent move 1 and the
other w2 on Opponent move 2. The two moves of the two watchers
stand for the same move in the game. Because of this they are in
conflict (or inconsistent) with each other.We end up with the event
structure drawn below:

w1 ⊕ ⊕

⊖

_LLR

⊖

_LLR
w2

The polarities + and − signify moves of Player and Opponent, re-
spectively. The arrows represent the (immediate) causal dependen-
cies and the wiggly line conflict. As far as purely nondeterministic
behaviour goes, we have expressed the informal strategy reason-
ably well: no matter how Opponent makes or doesn’t make their
moves any maximal play of Player is assured to win. However con-
sider assigning conditional probabilities to the watcher moves. Sup-
pose the probability of w1 conditional on 1 is p1, i.e. Prob(w1 ∣
1) = Prob(w1,1 ∣ 1) = p1 and that similarly for w1 its conditional
probability Prob(w2 ∣ 2) = p2. Given that move w1 of Player and
move 2 of Opponent are causally independent, from (LMC) we ex-
pect that w1 is probabilistically independent of move 2, i.e.

Prob(w1 ∣ 1,2) = Prob(w1 ∣ 1) = p1 ;

whether Opponent chooses to make move 2 or not should have no
influence on the watcher of move 1. Similarly,

Prob(w2 ∣ 1,2) = Prob(w2 ∣ 2) = p2 .



But w1 and w2 are in conflict, so mutually exclusive, and can each
occur individually when 1 and 2 have occurred ensuring that

p1 + p2 ≤ 1

—we haven’t insisted on one or the other occurring, the reason
why we have not written equality. The best Player can do is assign
p1 = p2 = 1/2. Against a counter-strategy with Opponent playing
one of their two moves with probability 1/2 this strategy only
wins half the time. We have clearly failed to express the informal
winning strategy accurately!

Present notions of “concurrent strategies,” the most general of
which are presented in [14], are or can be expressed using prime
event structures. If we are to be able to express the intuitive strategy
which wins with certainty we need to develop distributed proba-
bilistic strategies which allow parallel causes in which an event can
be enabled in distinct but compatible ways. ‘General’ event struc-
tures are one such model [13]. In the informal strategy described
in the previous section both Opponent moves would individually
enable the Player move, with all events being consistent, illustrated
below:

⊕
OR

⊖

. 33;

⊖

�cck

But as we shall see general event structures do not support an ap-
propriate operation of hiding central to the composition of strate-
gies. Nor is it clear how within general event structures one could
express the variant of the strategy above in which the two watchers
succeed in reporting with different probabilities.

It has been necessary to develop a new model—event structures
with disjunctive causes (edc’s)—which support hiding and prob-
ability adequately, and into which both prime and general event
structures embed. The new model provides a foundation on which
to build a theory and rich language of probabilistic distributed
strategies with parallel causes. Without probability, it provides a
new bicategory of deterministic parallel strategies which includes,
for example, a deterministic strategy for computing “parallel or”—
Section 7.3.

Full proofs can be found in [16]. Appendix A summarises
the simple instances of concepts we borrow from enriched cate-
gories [5] and 2-categories [9].

2. Event structures
Event structures describe a process, or system, in terms of its pos-
sible event occurrences, their causal dependencies and consistency.
The simplest form, ‘prime’ event structures, are a concurrent, or
distributed, analogue of trees; though in such an event structure the
individual ‘branches’ are no longer necessarily sequences but have
the shape of a partial order of events.

2.1 Prime event structures
A (prime) event structure comprises (E,≤,Con), consisting of
a set E of events (really event occurrences) which are partially
ordered by ≤, the causal dependency relation, and a nonempty
consistency relation Con consisting of finite subsets of E. The
relation e′ ≤ e expresses that event e causally depends on the
previous occurrence of event e′. That a finite subset of events is
consistent conveys that its events can occur together by some stage
in the evolution of the process. Together the relations satisfy several
axioms:

[e] =def {e′ ∣ e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆X ∈ Con implies Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈X implies X ∪ {e} ∈ Con.

Given this understanding of an event structure, there is an accom-
panying notion of state, or history, those events that may occur up
to some stage in the behaviour of the process described. A configu-
ration is a, possibly infinite, set of events x ⊆ E which is

consistent: X ⊆ x and X is finite implies X ∈ Con , and

down-closed: e′ ≤ e ∈ x implies e′ ∈ x.

A configuration inherits a partial order from the ambient event
structure, and represents a possible partial-order history.

Two events e, e′ are considered to be causally independent,
and called concurrent if the set {e, e′} is in Con and neither
event is causally dependent on the other. The relation of immediate
dependency e _ e′ means e and e′ are distinct with e ≤ e′ and no
event in between. Write C∞(E) for the configurations of E and
C(E) for its finite configurations. For configurations x, y, we use
x−⊂y to mean y covers x, i.e. x ⊂ y with nothing in between, and
x

e−Ð⊂ y to mean x ∪ {e} = y for an event e ∉ x. We sometimes use
x

e−Ð⊂ , expressing that event e is enabled at configuration x, when
x

e−Ð⊂ y for some y.
It will be very useful to relate event structures by maps. A map

of event structures f ∶ E → E′ is a partial function f from E to E′

such that the image of a configuration x is a configuration fx and
any event of fx arises as the image of a unique event of x. Maps
compose as partial functions. Write E for the ensuing category.

A map f ∶ E → E′ reflects causal dependency locally, in the
sense that if e, e′ are events in a configuration x of E for which
f(e′) ≤ f(e) in E′, then e′ ≤ e also in E; the event structure E
inherits causal dependencies from the event structure E′ via the
map f . Consequently, a map preserves concurrency: if two events
are concurrent, then their images if defined are also concurrent.
In general a map of event structures need not preserve causal
dependency; when it does and is total we say it is rigid.

2.2 General event structures
A general event structure [11, 13] is a structure (E,Con,⊢) where
E is a set of event occurrences, the consistency relation Con is a
non-empty collection of finite subsets of E satisfying

X ⊆ Y ∈ Con Ô⇒ X ∈ Con

and the enabling relation ⊢⊆ Con ×E satisfies

Y ∈ Con & Y ⊇X & X ⊢ e Ô⇒ Y ⊢ e .
A configuration is a subset of E which is

consistent: X ⊆fin x Ô⇒ X ∈ Con and

secured:∀e ∈ x∃e1,⋯, en ∈ x. en = e&∀i ≤ n.{e1,⋯, ei−1} ⊢ ei.

Again we write C∞(E) for the configurations of E and C(E) for
its finite configurations.

The notion of secured has been expressed through the existence
of a securing chain to express an enabling of an event within a set
which is a complete enabling in the sense that everything in the
securing chain is itself enabled by earlier members of the chain.
One can imagine more refined ways in which to express complete
enablings which are rather like proofs. Later the idea that complete
enablings are consistent partial orders of events in which all events
are enabled by earlier events in the order—“causal realisations”—
will play an important role in generalising general event structures
to structures supporting hiding and parallel causes.

A map f ∶ (E,Con,⊢) → (E′,Con′,⊢′) of general event
structures is a partial function f ∶ E ⇀ E′ such that

X ∈ Con Ô⇒ fX ∈ Con′ &
∀e1, e2 ∈X. f(e1) = f(e2) Ô⇒ e1 = e2 and

X ⊢ e & f(e) is defined Ô⇒ fX ⊢′ f(e) .



Maps compose as partial functions with identity maps being iden-
tity functions. Write G for the category of general event structures.

We can characterise those families of configurations arising
from a general event structure. A family of configurations which
comprises a family F of sets such that

if X ⊆ F is finitely compatible in F then ⋃X ∈ F ; and

if e ∈ x ∈ F then there exists a securing chain e1,⋯, en = e in
x such that {e1,⋯, ei} ∈ F for all i ≤ n.

The latter condition is equivalent to saying (i) that whenever e ∈
x ∈ F there is a finite x0 ∈ F such that e ∈ x0 ∈ F and (ii)
that if e, e′ ∈ x and e ≠ e′ then there is y ∈ F with y ⊆ x
s.t. e ∈ y ⇐⇒ e′ ≠ y. The elements of the underlying set ⋃F
are its events. Such a family is stable when for any compatible non-
empty subset X of F its intersection ⋂X is a member of F .

A configuration x ∈ F is irreducible iff there is a necessarily
unique e ∈ x such that ∀y ∈ F . e ∈ y ⊆ x implies y = x. Irre-
ducibles coincide with complete join irreducibles w.r.t. the order
of inclusion. It is tempting to think of irreducibles as represent-
ing minimal complete enablings. But, as sets, irreducibles both (1)
lack sufficient structure: in the formulation we are led to of mini-
mal complete enabling as prime causal realisations, several prime
realisations can have the same irreducible as their underlying set;
and (2) are not general enough: there are prime realisations whose
underlying set is not an irreducible.

A map between families of configurations from F to G is a
partial function f ∶ ⋃F ⇀ ⋃G between their events such that
for any x ∈ F its image fx ∈ G and

∀e1, e2 ∈ x. f(e1) = f(e2) Ô⇒ e1 = e2 .

Maps between general event structures satisfy this property. Maps
of families compose as partial functions.

The forgetful functor taking a general event structure to its fam-
ily of configurations has a left adjoint, which constructs a canon-
ical general event structure from a family: given A, a family of
configurations with underlying events A, construct a general event
structure (A,Con,⊢) with

X ∈ Con iff X ⊆fin y, for some y ∈ A, and

X ⊢ a iff a ∈ A, X ∈ Con & e ∈ y ⊆X ∪ {a}, for some y ∈ A.

The above yields a coreflection of families of configurations in
general event structures. It cuts down to an equivalence between
families of configurations and replete general event structures. A
general event structure (E,Con,⊢) is replete iff

∀e ∈ E∃X ∈ Con. X ⊢ e ,
∀X ∈ Con∃x ∈ C(E). X ⊆ x and
X ⊢ e Ô⇒ ∃x ∈ C(E). e ∈ x & x ⊆X ∪ {e} .

The last condition is equivalent to stipulating that each minimal
enabling X ⊢ e, where X is a minimal consistent set enabling e,
corresponds to an irreducible configuration X ∪ {e}.

2.3 On relating prime and general event structures
Clearly a prime event structure (P,≤,Con) can be identified with
a (replete) general event structure (P,⊢,Con) by taking

X ⊢ p iff X ∈ Con & [p] ⊆X ∪ {p} .
Indeed under this identification there is a full and faithful embed-
ding of E in G. However (contrary to the claim in [13]) there is
no adjoint to this embedding. This leaves open the issue of pro-
viding a canonical way to describe a general event structure as a
prime event structure. This issue has arisen as a central problem
in reversible computation [3] and now more recently in the present
limitation of concurrent strategies described in the introduction. A

corollary of our work will be that the embedding of prime into gen-
eral event structures does have a pseudo right adjoint, at the slight
cost of enriching prime event structures with equivalence relations.

3. Problems with general event structures
Why not settle for general event structures as a foundation for dis-
tributed strategies? Because they don’t support hiding so composi-
tion of strategies; nor do they support probability generally enough.

3.1 Probability and parallel causes
We return to the general-event-structure description of the strat-
egy in the Introduction. To turn this into a probabilistic strategy for
Player we should assign probabilities to configurations conditional
on Opponent moves.The watcher of 1 is causally independent of
Opponent move 2. Given this we might expect that the probability
of the watcher of 1 making the Player move 3 should be probabilis-
tically independent of move 2; after all, both moves 3 and 2 can
occur concurrently from configuration {1}. Applying LMC naively
would yield

Prob(1,3 ∣ 1) = Prob(1,2,3 ∣ 1,2) .
But similarly, Prob(2,3 ∣ 2) = Prob(1,2,3 ∣ 1,2), which forces
Prob(1,3 ∣ 1) = Prob(2,3 ∣ 2), i.e. that the conditional proba-
bilities of the two watchers succeeding are the same! In blurring
the distinct ways in which move 3 can be caused we have obscured
causal independence which has led us to identify possibly distinct
probabilities.

3.2 Hiding
With one exception, all the operations used in building strategies
and, in particular, the bicategory of concurrent strategies [10] ex-
tend to general event structures. The one exception, that of hiding,
is crucial in ensuring composition of strategies yields a bicategory.

Consider a general event structure with events a, b, c, d and e;
enabling (1) b, c ⊢ e and (2) d ⊢ e, with all events other than e being
enabled by the empty set; and consistency in which all subsets are
consistent unless they contain the events a and b—the events a and
b are in conflict.

Any configuration will satisfy the assertion

(a ∧ e) Ô⇒ d

because if e has occurred it has to have been enabled by (1) or (2)
and if a has occurred its conflict with b has prevented the enabling
(1), so e can only have occurred via enabling (2).

Now imagine the event b is hidden, so allowed to occur invisi-
bly in the background. The configurations after hiding are those ob-
tained by hiding (i.e. removing) the invisible event b from the con-
figurations of the original event structure. The assertion above will
still hold of the configurations after hiding. There isn’t a general
event structure with events a, c, d and e, and configurations those
which result when we hide (remove) b from the configurations of
the original event structure. One way to see this is to observe that
amongst the configurations after hiding we have

{c}−⊂{c, e} and {c}−⊂{a, c}
where both {c, e} and {a, c} have upper bound {a, c, d, e}, and yet
{a, c, e} is not a configuration after hiding as it fails to satisfy the
assertion. (In configurations of a general event structure if x−⊂y and
x−⊂z and y and z are bounded above, then y∪z is a configuration.)
Precisely the same problem can arise in the composition (with
hiding) of strategies based on general event structures.

To obtain a bicategory of strategies with disjunctive causes we
need to support hiding. We need to look for structures more general
than general event structures. The example above gives a clue: the



inconsistency should be one of inconsistency between (minimal
complete) enablings rather than events.

4. Adding disjunctive causes
To cope with disjunctive causes and hiding we must go beyond gen-
eral event structures. We introduce structures in which we objectify
cause; a minimal complete enabling is no longer an instance of a
relation but a structure that realises that instance (cf. a judgement
of theorem-hood in contrast to a proof). This is in order to express
inconsistency between minimal complete enablings, inexpressible
as inconsistencies on events, that can arise when hiding.

Fortunately we can do this while staying close to prime event
structures. The twist is to regard “disjunctive events” as comprising
subsets of events of a prime event structure, the events of which are
now to be thought of as representing “prime causes” standing for
minimal complete enablings. Technically, we do this by extending
prime event structures with an equivalence relation on its events.

In detail, an event structure with equivalence (an ese) is a struc-
ture

(P,≤,Con,≡)
where (P,≤,Con) satisfies the axioms of a (prime) event structure
and ≡ is an equivalence relation on P .

An ese dissociates the two roles of enabling and atomic action
conflated in the events of a prime event structures. The intention is
that the events p of P , or really their corresponding down-closures
[p], describe minimal complete enablings, prime causes, while the
≡-equivalence classes ofP represent disjunctive events: p is a prime
cause of the disjunctive event {p}

≡
. Notice there may be several

prime causes of the same event and that these may be parallel
causes in the sense that they are consistent with each other and
not related in the order ≤.

A configuration of the ese is a configuration of (P,≤,Con) and
we shall use the notation of earlier on event structures C∞(P )
and C(P ) for its configurations, respectively finite configurations.
However, we modify the relation of concurrency a little and say
p1, p2 ∈ P are concurrent and write p1co p2 iff p1 /≡ p2 and
{p1, p2} ∈ Con and neither p1 ≤ p2 nor p2 ≤ p1.

When the equivalence relation ≡ of an ese is the identity it is
essentially a prime event structure. This view is reinforced in our
choice of maps. A map from ese (P,≡P ) to (Q,≡Q) is a partial
function f ∶ P ⇀ Q which preserves ≡, i.e. if p1 ≡P p2 then
either both f(p1) and f(p2) are undefined or both defined with
f(p1) ≡Q f(p2)), such that for all x ∈ C(P )
(i) the direct image fx ∈ C(Q), and

(ii) ∀p1, p2 ∈ x. f(p1) ≡Q f(p2) Ô⇒ p1 ≡P p2 .

Maps compose as partial functions with the usual identities.
It is not true that such maps preserve concurrency in general;

they only do so locally w.r.t. unambiguous configurations in which
no two distinct elements are ≡-equivalent.

We regard two maps f1, f2 ∶ P → Q as equivalent, and write
f1 ≡ f2, iff they are equi-defined and yield equivalent results, i.e.

if f1(p) is defined then so is f2(p) and f1(p) ≡Q f2(p), and
if f2(p) is defined then so is f1(p) and f1(p) ≡Q f2(p).
Composition respects ≡: if f1, f2 ∶ P → Q with f1 ≡ f2 and

g1, g2 ∶ Q → R with g1 ≡ g2, then g1f1 ≡ g2f2. Write E≡ for
the category of ese’s; it is enriched in the category of sets with
equivalence relations—see Appendix A.

Ese’s support a hiding operation. Let (P,≤,ConP ,≡) be an ese.
Let V ⊆ P be a ≡-closed subset of ‘visible’ events. Define the
projection of P on V , to be P ↓V =def (V,≤V ,ConV ,≡V ), where
v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ Con & X ⊆
V and v ≡V v′ iff v ≡ v′ & v, v′ ∈ V .

Hiding is associated with a factorisation of partial maps. Let

f ∶ (P,≤P ,ConP ,≡P )→ (Q,≤Q,ConQ,≡Q)
be a partial map between two ese’s. Let

V =def {e ∈ E ∣ f(e) is defined} .
Then f factors into the composition

P
f0 // P ↓V f1 // Q

of f0, a partial map of ese’s taking p ∈ P to itself if p ∈ V and
undefined otherwise, and f1, a total map of ese’s acting like f on
V . We call f1 the defined part of the partial map f . Because ≡-
equivalent maps share the same domain of definition, ≡-equivalent
maps will determine the same projection and ≡-equivalent defined
parts. The factorisation is characterised to within isomorphism
by the following universal characterisation: for any factorisation

P
g0 // P1

g1 // Q where g0 is partial and g1 is total there is
a (necessarily total) unique map h ∶ P ↓V → P1 such that

P
f0 //

g0 %%

P ↓V
h��

f1 // Q

P1

g1

99

commutes.
The category E≡ of ese’s supports hiding in the sense above. We

next show how replete general event structures embed in ese’s.

5. A pseudo adjunction
The (pseudo) functor from G to E≡ is quite subtle but arises as a
right adjoint to a more obvious functor from E≡ to G.

Given an ese (P,≤,Con,≡) we can construct a (replete) general
event structure ges(P ) =def (E,ConE ,⊢) by taking
E = P≡, the equivalence classes under ≡;
X ∈ ConE iff ∃Y ∈ Con. X = Y≡; and
X ⊢ e iff X ∈ Con & e ∈ E &

∃p ∈ P. e = {p}
≡

& [p]≡ ⊆X ∪ {e}.
The construction extends to a functor ges ∶ E≡ → G as maps
between ese’s preserve ≡; the functor takes a map f ∶ P → Q of
ese’s to the map ges(f) ∶ ges(P )→ ges(Q) obtained as the partial
function induced on equivalence classes. Less obvious is that there
is a (pseudo) right adjoint to ges . Its construction relies on extremal
causal realisations which provide us with an appropriate notion of
minimal complete enabling of events in a general event structure.

5.1 Causal realisations
Let A be a family of configurations with underlying set A.

A (causal) realisation of A comprises a partial order

(E,≤) ,
its carrier, such that the set {e′ ∈ E ∣ e′ ≤ e} is finite for all events
e ∈ E, together with a function ρ ∶ E → A for which the image
ρx ∈ A when x is a down-closed subset of E.

A map between realisations (E,≤), ρ and (E′,≤′), ρ′ is a par-
tial surjective function f ∶ E ⇀ E′ which preserves down-closed
subsets and satisfies ρ(e) = ρ′(f(e)) when f(e) is defined. It is
convenient to write such a map as ρ ⪰f ρ′. Occasionally we shall
write ρ ⪰ ρ′, or the converse ρ′ ⪯ ρ, to mean there is a map of
realisations from ρ to ρ′.

Such a map factors into a “projection” followed by a total map

ρ ⪰f11 ρ0 ⪰f22 ρ′

where ρ0 stands for the realisation (E0,≤0), ρ0 where

E0 = {r ∈ R ∣ f(r) is defined} ,



the domain of definition of f , with ≤0 the restriction of ≤, and f1

is the inverse relation to the inclusion E0 ⊆ E, and f2 is the total
function f2 ∶ E0 → E′. We are using ⪰1 and ⪰2 to signify the two
kinds of maps. Notice that ⪰1-maps are reverse inclusions. Notice
too that ⪰2-maps are exactly the total maps of realisations. Total
maps ρ ⪰f2 ρ′ are precisely those functions f from the carrier of ρ
to the carrier of ρ′ which preserve down-closed subsets and satisfy
ρ = ρ′f .

We shall say a realisation ρ is extremal when ρ ⪰f2 ρ′ implies f
is an isomorphism, for any realisation ρ′.

In the special case where A is the family of configurations of a
prime event structure, it is easy to show that an extremal realisation
ρ forms a bijection with a configuration of the event structure and
that the order on the carrier coincides with causal dependency there.

The construction is more interesting when A is the family of
configurations of a general event structure. In general, there is at
most one map between extremal realisations. Hence extremal re-
alisations of A under ⪯ form a preorder. The order of extremal
realisations has as elements isomorphism classes of extremal re-
alisations ordered according to the existence of a map between rep-
resentatives of isomorphism classes. As we shall see, the order of
extremal realisations forms a prime-algebraic domain [7] with com-
plete primes represented by those extremal realisations which have
a top element—a direct corollary of Proposition 5.4 in the next sec-
tion. (We say a realisation has a top element when its carrier con-
tains an element which dominates all other elements in the carrier.)

We provide examples illustrating the nature of extremal real-
isations. In the examples it is convenient to describe families of
configurations by general event structures, taking advantage of the
economic representation they provide.

Example 5.1. This and the following example shows that extremal
realisations with a top do not correspond to irreducible configura-
tions. Below, on the right we show a general event structure with
irreducible configuration {a, b, c, d}. On the left we show two ex-
tremals with tops d1 and d2 which both have the same irreducible
configuration {a, b, c, d} as their image. The lettering indicates the
functions associated with the realisations, e.g. events d1 and d2 in
the partial orders map to d in the general event structure.

d1 d2 d

c1

_LLR

c2

_LLR

c

AND
_LLR

OR

a

_LLR

b

oSS[

a

OCCK

b

_LLR

a

J??I

5 66?

b

tUU_

	__h

Example 5.2. On the other hand there are extremal realisations
with top of which the image is not an irreducible configuration.
Below the extremal with top on the left describes a situation where
d is enabled by b and c being enabled by a. It has image the
configuration {a, b, c, d} which is not irreducible, being the union
of the two configurations {a} and {b, c, d}.

d d

c1

_LLR

c

AND
_LLR

a

_LLR

b

zXXb

a

K@@I
OR

b

rUU]


__i

Example 5.3. It is also possible to have extremal realisations in
which an event depends on an event of the family having been en-
abled in two distinct ways, as in the following extremal realisation

with top on the left.

f f

AND

d1

LAAI

e1

rUU]

d

E<<G

e

xWWa

c1

_LLR

c2

_LLR

c

> 99D�ZZe

OR

a

_LLR

b

_LLR

a

C;;F

b

zXXb

The extremal describes the event f being enabled by d and e where
they are in turn enabled by different ways of enabling c. (Such
phenomena will be disallowed in edc’s.)

5.2 A right adjoint to ges

The right adjoint er ∶ G → E≡ is defined on objects as follows. Let
A be a general event structure. Define er(A) = (P ,ConP ,≤P ,≡P)
where

• P consists of a choice from within each isomorphism class of
those extremals p of C∞(A) with a top element—we write
topA(p) for the image of the top element in A;

• Causal dependency ≤P is ⪯ on P ;
• X ∈ ConP iff X ⊆fin P and topA[X ] ∈ C∞(A) —the set [X]

is the ≤P -downwards closure of X;
• p1 ≡P p2 iff p1, p2 ∈ P and topA(p1 ) = topA(p2 ).

Proposition 5.4. The configurations of P , ordered by inclusion,
are order-isomorphic to the order of extremal realisations of
C∞(A): an extremal realisation ρ corresponds, up to isomorphism,
to the configuration {p ∈ P ∣ p ⪯ ρ} of P ; conversely, a configura-
tion x of P corresponds to an extremal realisation topA ∶ x → A
with carrier (x,⪯), the restriction of the order of P to x.

From the above proposition we see that the events of er(A)
correspond to completely-prime extremal realisations [7]. Hence-
forth we shall use the term ‘prime extremal’ instead of the clumsier
‘extremal with top element.’

The component of the counit of the adjunction at A is given by
the function topA which determines a map topA ∶ ges(er(A)) →
A of general event structures.

Theorem 5.5. Let A ∈ G. For all f ∶ ges(Q) → A in G, there is a
map h ∶ Q → er(A) in E≡ such that f = topA ○ ges(h) i.e. so the
diagram

A ges(er(A))
topAoo

ges(Q)
f

dd

ges(h)

OO

commutes. Moreover, if h′ ∶ Q → er(A) is a map in E≡ such that
f = topA ○ ges(h ′), then h′ ≡ h.

The theorem does not quite exhibit a standard adjunction, be-
cause the usual cofreeness condition specifying an adjunction is
weakened to only having uniqueness up to ≡. However the condi-
tion it describes does specify an exceedingly simple case of pseudo
adjunction between 2-categories—a set together with an equiva-
lence relation is a very simple example of a category (see Ap-
pendix A). As a consequence, whereas with the usual cofreeness
condition allows us to extend the right adjoint to arrows, so obtain-
ing a functor, in this case following that same line will only yield
a pseudo functor er as right adjoint: thus extended, er will only
necessarily preserve composition and identities up to ≡.



The pseudo adjunction from E≡ to G cuts down to a reflection
(i.e. the counit is a natural isomorphism) when we restrict to the
subcategory of G where all general event structures are replete. Its
right adjoint provides a pseudo functor embedding replete general
event structures (and so families of configurations) in ese’s.

Example 5.6. On the right we show a general event structure and
on its left the ese which it gives rise to under er :

d1 d2 d

c1

_LLR

c2

_LLR

c

AND
_LLR

OR

a

_LLR

OCCK

b

_LLR

oSS[

a

K@@I

8 77A

b

rUU]

�]]g

6. EDC’S
Our major motivation in developing and exploring ese’s was in
order to extend strategies with parallel causes while maintaining
the central operation of hiding. What about the other operation key
to the composition of strategies, viz. pullback?

It is well-known to be hard to construct limits such as pullback
within prime event structures, so that we often rely on first carrying
out the constructions in stable families. It is sensible to seek an
analogous way to construct pullbacks or pseudo pullbacks in E≡.

6.1 Equivalence families
In fact, the pseudo adjunction from E≡ to G factors through a
more basic pseudo adjunction to families of configurations which
also bear an equivalence relation on their underlying sets. An
equivalence-family (ef) is a family of configurations A with an
equivalence relation ≡A on its underlying set ⋃A. We can iden-
tify a family of configurations A with the ef (A,=), taking
the equivalence to be simply equality on the underlying set. A
map f ∶ (A,≡A) → (B,≡B) between ef’s is a partial function
f ∶ A⇀ B between their underlying sets which preserves ≡ so that

x ∈ A ⇒ fx ∈ B & ∀a1, a2 ∈ x. f(a1) ≡B f(a2)⇒ a1 ≡A a2 .

Composition is composition of partial functions. We regard two
maps

f1, f2 ∶ (A,≡A)→ (B,≡B)
as equivalent, and write f1 ≡ f2, iff they are equidefined and yield
equivalent results. Composition respects ≡. This yields a category
of equivalence families Fam≡ enriched in the category of sets with
equivalence relations.

Clearly we can regard an ese (P,≡P ) as an ef (C∞(P ),≡P )
and a function which is a map of ese’s as a map between the
associated ef’s, and this operation forms a functor. The functor has
a pseudo right adjoint built from causal realisations in a very similar
manner to er . The configurations of a general event structure form
an ef with the identity relation as its equivalence. This operation is
functorial and has a left adjoint which collapses an ef to a general
event structure in a similar way to ges; the adjunction is enriched
in equivalence relations. In summary, the pseudo adjunction

E≡
ges

⊺ 44 G
er

ss

factors into a pseudo adjunction followed by an adjunction

E≡ ⊺ 22 Fam≡
ss

⊺ 33 G .rr

Fam≡ has pullbacks and pseudo pullbacks which are easy to
construct. For example, let f ∶ A → C and g ∶ B → C be total
maps of ef’s. Assume A and B have underlying sets A and B.

Define D =def {(a, b) ∈ A ×B ∣ f(a) ≡C g(b)} with projections
π1 and π2 to the left and right components. On D, take d ≡D d′

iff π1(d) ≡A π1(d′) and π2(d) ≡B π2(d′). Define a family of
configurations of the pseudo pullback to consist of x ∈ D iff x ⊆D
such that π1x ∈ A & π2x ∈ B , and

∀d ∈ x∃d1,⋯, dn ∈ x. dn = d &

∀i ≤ n. π1{d1,⋯, di} ∈ A & π2{d1,⋯, di} ∈ B .
The ef D with maps π1 and π2 is the pseudo pullback of f and g.
It would coincide with pullback if ≡C were the identity.

But unfortunately (pseudo) pullbacks in Fam≡ don’t provide
us with (pseudo) pullbacks in E≡ because the right adjoint is only
a pseudo functor; in general it will only carry pseudo pullbacks
to bipullbacks. While E≡ does have bipullbacks (in which com-
mutations and uniqueness are only up to the equivalence ≡ on
maps) it doesn’t always have pseudo pullbacks or pullbacks—
Appendix B. Whereas pseudo pullbacks and pullbacks are char-
acterised up to isomorphism, bipullbacks are only characterised up
to a weaker equivalence, that induced on objects by the equivalence
on maps.While we could develop strategies with parallel causes in
the broad context of ese’s in general, doing so would mean that
the composition of strategies that ensued was not defined up to iso-
morphism. This in turn would weaken our intended definition and
characterisation of such strategies as those maps into games which
are stable under composition with copycat.

6.2 Edc’s defined
Fortunately there is a subcategory of E≡ which supports hiding,
pullbacks and pseudo pullbacks. Define EDC to be the subcategory
of E≡ with objects ese’s satisfying

p1, p2 ≤ p & p1 ≡ p2 Ô⇒ p1 = p2 .

We call such objects event structures with disjunctive causes
(edc’s). In an edc an event can’t causally depend on two distinct
prime causes of a common disjunctive event, and so rules out reali-
sations such as that illustrated in Example 5.3. In general, within E≡
we lose the local injectivity property that we’re used to seeing for
maps of event structures; the maps of event structures are injective
from configurations, when defined. However for EDC we recover
local injectivity w.r.t. prime configurations: if f ∶ P → Q is a map
in EDC, then

p1, p2 ≤P p & f(p1) = f(p2) Ô⇒ p1 = p2 .

The factorisation property associated with hiding in E≡ is inherited
by EDC.

As regards (pseudo) pullbacks, we are fortunate in that the
complicated pseudo adjunction between ese’s and ef’s restricts
down to a much simpler adjunction, in fact a coreflection, between
edc’s and stable ef’s. In an equivalence family (A,≡A) say a
configuration x ∈ A is unambiguous iff

∀a1, a2 ∈ x. a1 ≡A a2 Ô⇒ a1 = a2 .

An equivalence family (A,≡A), with underlying set of events A,
is stable iff it satisfies

∀x, y, z ∈ A. x, y ⊆ z & z is unambiguous ⇒ x ∩ y ∈ A and
∀a ∈ A,x ∈ A. a ∈ x ⇒ ∃z ∈ A. z is unambiguous & a ∈ z ⊆ x .
In effect a stable equivalence family contains a stable subfamily of
unambiguous configurations out of which all other configurations
are obtainable as unions. Local to any unambiguous configuration
x there is a partial order on its events ≤x: each a ∈ x determines a
prime configuration

[a]x =def ⋂{y ∈ A ∣ a ∈ y ⊆ x} ,



the minimum set of events on which a depends within x; taking
a ≤x b iff [a]x ⊆ [b]x defines causal dependency between a, b ∈ x.
Write SFam≡ for the subcategory of stable ef’s.

(Pseudo) pullbacks in stable ef’s are obtained from those in ef’s
simply by restricting to those configurations which are unions of
unambiguous configurations.

The configurations of an edc with its equivalence are easily
seen to form a stable ef providing a full and faithful embedding
of EDC in SFam≡. The embedding has a right adjoint Pr. It is
built out of prime extremals but we can take advantage of the fact
that in a stable ef unambiguous prime extremals have the simple
form of prime configurations. From a stable ef(A,≡A) we produce
an edc Pr(A,≡A) =def (P,Con,≤,≡) in which P comprises the
prime configurations with

[a]x ≡ [a′]x′ iff a ≡A a′ ,
Z ∈ Con iff Z ⊆ P & ⋃Z ∈ F and,

p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .
The adjunction is enriched in the sense that its natural bijection
preserves and reflects the equivalence on maps:

EDC ⊺ 22 SFam≡

Pr
rr

We can now obtain a (pseudo) pullback in edc’s by first forming
the (pseudo) pullback of the stable ef’s obtained as their configura-
tions and then taking its image under the right adjoint Pr. We now
have the constructions we need to support strategies based on edc’s.

6.3 Coreflective subcategories of edc’s
EDC is a coreflective subcategory of E≡; the right adjoint simply
cuts down to those events satisfying the edc property. In turn EDC
has a coreflective subcategory E0

≡ comprising those edc’s which
satisfy

{p1, p2} ∈ Con & p1 ≡ p2 Ô⇒ p1 = p2 .

Consequently its maps are traditional maps of event structures
which preserve the equivalence. We derive adjunctions

E0
≡ ⊺ 33 EDC ⊺ 33ss E≡

ges

⊺ 33
ss G .

er
ss

Note the last is only a pseudo adjunction. Consequently we obtain
a pseudo adjunction from E0

≡ , the a category of prime event struc-
tures with equivalence relations and general event structures—this
makes good the promise of Section 2.3. Inspecting the composite of
the last two adjunctions, we also obtain the sense in which replete
general event structures embed via a reflection in edc’s.

There is an obvious ‘inclusion’ functor from the category of
prime event structures E to the category EDC; it extends an event
structure with the identity equivalence. Regarding EDC as a plain
category, so dropping the enrichment by equivalence relations, the
‘inclusion’ functor

E ↪ EDC
has a right adjoint, viz. the forgetful functor which given an edc P =
(P,≤,Con,≡) produces an event structure P0 = (P,≤,Con′) by
dropping the equivalence ≡ and modifying the consistency relation
to

X ∈ Con′ iff X ⊆ P & X ∈ Con & p1 /≡ p2, for all p1, p2 ∈X .

The configurations of P0 are the unambiguous configurations of
P . The adjunction is a coreflection because the inclusion functor is
full. Of course it is not the case that the adjunction is enriched: the
natural bijection of the adjunction cannot respect the equivalence
on maps; it cannot compose with the pseudo adjunction from EDC
to G to yield a pseudo adjunction from E to G.

Despite this the adjunction from E to EDC has many useful prop-
erties. Of importance for us is that the functor forgetting equiva-
lence will preserve all limits and especially pullbacks. It is help-
ful in relating composition of edc-strategies to the composition of
strategies based on prime event structures in [10]. In composing
strategies in edc’s we shall only be involved with pseudo pullbacks
of maps f ∶ A → C and g ∶ B → C in which C is essentially an
event structure, i.e. an edc in which the equivalence is the identity
relation. The construction of such pseudo pullbacks coincides with
that of pullbacks. While this does not entail that composition of
strategies is preserved by the forgetful functor—because the forget-
ful functor does not commute with hiding—it will give us a strong
relationship, expressed as a map, between composition of the two
kinds of strategies (based on edc’s and based on prime event struc-
tures) after and before applying the forgetful functor. This has been
extremely useful in some proofs, in importing results from [10].

7. Strategies based on edc’s
We develop strategies in edc’s in a similar way to that of strategies
in [10], viz. as certain maps stable under composition with copycat.
But what is copycat on an edc? If games are edc’s, shouldn’t com-
position be based on pseudo pullback rather than pullback? To sep-
arate concerns and, at least initially, avoid such issues we assume
that games are (the edc’s of) prime event structures, ensuring that
in our uses of pullbacks they will coincide with pseudo pullbacks.

An edc with polarity comprises (P,≡,pol), an edc (P,≡) in
which each element p ∈ P carries a polarity pol(p) which is + or
−, according as it represents a move of Player or Opponent, and
where the equivalence relation ≡ respects polarity.

A map of edc’s with polarity is a map of the underlying edc’s
which preserves polarity when defined. The adjunctions of the
previous chapter are undisturbed by the addition of polarity.

There are two fundamentally important operations on two-party
games. One is that of forming the dual game in which the moves of
Player and Opponent are reversed. On an edc with polarity A this
amounts to reversing the polarities of events to produce the dual
A⊥. The other operation is a simple parallel composition of games,
achieved on edc’s with polarity A and B by simply juxtaposing
them, ensuring a finite subset of events is consistent if its overlaps
with the two games are individually consistent, to form A∥B.

A game is represented by an edc with polarity in which the edc
is that of a prime event structure. A pre-strategy in edc’s, or an edc
pre-strategy, in a game A is a total map σ ∶ S → A of edc’s. A
pre-strategy from a game A to a game B is a pre-strategy in the
game A⊥∥B. We shall shortly refine the notion of pre-strategy to
strategy. By a strategy in a game we will mean a strategy for Player.
A strategy for Opponent, or a counter-strategy, in a game A will be
identified with a strategy in A⊥. A map f ∶ σ ⇒ σ′ of edc pre-
strategies σ ∶ S → A and σ′ ∶ S′ → A is a map f ∶ S → S′ of edc’s
with polarity such that σ = σ′f ; in the standard way this determines
isomorphisms of edc pre-strategies, important for us in a moment.

7.1 Copycat
An important example of a strategy is the copycat strategy for a
game A. This is a strategy in the game A⊥∥A which, following
the spirit of a copycat, has Player moves copy the corresponding
Opponent moves in the other component. In more detail, the copy-
cat strategy comprises γA ∶ CCA → A⊥∥A where CCA is obtained
by adding extra causal dependencies to A⊥∥A so that any Player
move in either component causally depends on its copy, an Oppo-
nent move, in the other [10]. This generates a partial order of causal
dependency. A finite set is taken to be consistent if its down-closure
w.r.t. the order generated is consistent in A⊥∥A; the map γA is the
identity function on events. We illustrate the construction on the
simple game comprising a Player move causally dependent on a



single Opponent move:

⊖ � ,,2⊕
A⊥ CCA A

⊕

_LLR

⊖

_LLR

�llr

In characterising the configurations of the copycat strategy an
important partial order on configurations is revealed. Clearly con-
figurations of a game A are ordered by inclusion ⊆. For configu-
rations x and y, write x ⊆− y and x ⊆+ y when all the additional
events of the inclusion are purely Opponent, respectively, Player
moves. A configuration x of CCA is also a configuration of A⊥∥A
and as such splits into two configurations x1 on the left and x2 on
the right. The extra causal constraints of copycat ensure that the
configurations of CCA are precisely those configurations of A⊥∥A
for which it holds that

x2 ⊑A x1 , defined as x2 ⊇− x1 ∩ x2 ⊆+ x1 .

Because it generalises the pointwise order of domain theory, initi-
ated by Dana Scott, we have called ⊑A the Scott order.

7.2 Composing edc pre-strategies
In composing two edc pre-strategies one σ in A⊥∥B and another τ
inB⊥∥C one firstly instantiates the Opponent moves in component
B by Player moves in B⊥ and vice versa, and then secondly hides
the resulting internal moves over B. The first step is achieved effi-
ciently via pullback. Temporarily ignoring polarities, the pullback
in edc’s

A ∥ T
A∥τ

''
T ⊛ S

π2 99

π1 %%

A ∥ B ∥ C

S ∥ C
σ∥C

77

“synchronises” matching moves of S and T over the game B.
But we require a strategy over the game A⊥∥C and the pullback
T ⊛S has internal moves over the game B. We achieve this via the
projection of T ⊛ S to its moves over A and C. We make use of
the partial map from A∥B∥C to A∥C which acts as the identity
function on A and C and is undefined on B. The composite partial
map

A ∥ T
A∥τ

''
T ⊛ S

π2 99

π1 %%

A ∥ B ∥ C // A ∥ C

S ∥ C
σ∥C

77

has defined part, yielding the composition

τ⊙σ ∶ T⊙S → A⊥∥C
once we reinstate polarities. The composition of edc strategies τ⊙σ
is a form of synchronised composition of processes followed by the
hiding of internal moves, a view promulgated by Abramsky within
traditional game semantics of programs.

7.3 Edc strategies
The article [10] characterises through the properties of “innocence”
and “receptivity” those pre-strategies based on event structures
which are stable under composition with the copycat strategy; the
characterisation becomes the definition of concurrent strategy. We
imitate [10] and provide necessary and sufficient conditions for a
pre-strategy in edc’s to be stable up to isomorphism under compo-
sition with copycat. Fortunately we can inherit a great deal from

the proof of [10] via the coreflection of event structures in edc’s of
Section 6.3.

An edc pre-strategy σ ∶ S → A is an edc strategy if it satisfies
the following axioms:
innocence: σ(s) _ σ(s′) if s _ s′ & pol(s) = + or pol(s′) = − .
∃-receptivity: if σx

a−Ð⊂ in C(A) with polA(a) = − then x
s−Ð⊂ &

σ(s) = a, for some s ∈ S . (Unlike “receptivity” of [10] we do not
have uniqueness.)
+-consistency: X ∈ ConS if σX ∈ ConA and [X]+ ∈ ConS ,
where X ⊆fin S. (The set [X]+ comprises the +ve elements in the
downwards closure of X .)
non-redundancy: s1 = s2 if [s1) = [s2) & s1 ≡S s2 & polS(s1) =
polS(s2) = − .
≡-saturation: s1 ≡S s2 if σ(s1) = σ(s2) .

Theorem 7.1. Let σ ∶ S → A be an edc pre-strategy. Then,
σ ≅ γA⊙σ iff σ satisfies the axioms above.

Corollary 7.2. Let σ ∶ S → B⊥∥C be an edc pre-strategy. Then,
σ ≅ γC⊙σ⊙γB iff σ satisfies the axioms above.

We obtain a bicategory in which the objects are games, the
arrows σ ∶ A + //B are edc strategies σ from A to B and 2-
cells are total maps of pre-strategies with vertical composition their
usual composition. Horizontal composition is given by composition
⊙, which extends to a functor on 2-cells via the universality of
pullback and the factorisation property of hiding. An edc strategy
σ ∶ A + //B corresponds to its dual σ⊥ ∶ B⊥ + //A⊥, yielding (a
bicategorical variant of) compact-closure though this can weaken
to ∗-autonomy with the addition of extra structure such as winning
conditions or pay-off.

An edc strategy σ ∶ S → A is deterministic if S is deterministic
as an edc with polarity:

∀X ⊆fin S. [X]− ∈ ConS Ô⇒ X ∈ ConS ,

where [X]− is all the Opponent moves in the down-closure [X]; in
other words, consistent behaviour of Opponent implies consistent
behaviour. S being deterministic is equivalent to

x
s1−Ð⊂ & x

s2−Ð⊂ & pol(s1) = + ⇒ x ∪ {s1, s2} ∈ C(S) .
for all x ∈ C(S), s1, s2 ∈ S. Copycat strategies γA are deterministic

iff the game A is race-free: if x
a−Ð⊂ and x

a′−Ð⊂ in C(A) with a
and a′ of opposing polarities, then x ∪ {a, a′} ∈ C(A). We obtain
a sub-bicategory of deterministic edc strategies between race-free
games [10].

Such parallel deterministic strategies include the strategy sketched
informally in the Introduction in which Player makes a move iff
Opponent makes one or more of their moves:

⊕ ≡ ⊕

⊖

_LLR

⊖

_LLR
σÐ→ ⊕

⊖ ⊖
Along the same lines there is a parallel deterministic strategy for
computing “parallel or.”

8. Probabilistic edc strategies
8.1 Probabilistic event structures
A probabilistic event structure essentially comprises an event struc-
ture together with a continuous valuation on the Scott-open sets of
its domain of configurations.1 The continuous valuation assigns a

1 A Scott-open subset of configurations is upwards-closed w.r.t. inclusion
and such that if it contains the union of a directed subset S of configurations
then it contains an element of S. A continuous valuation is a function w



probability to each open set and can then be extended to a proba-
bility measure on the Borel sets [4]. However open sets are several
levels removed from the events of an event structure, and an equiv-
alent but more workable definition is obtained by considering the
probabilities of sub-basic open sets, generated by single finite con-
figurations; for each finite configuration x this specifies Prob(x)
the probability of obtaining events x, so as result a configuration
which extends the finite configuration x. Such valuations on config-
uration determine the continuous valuations from which they arise,
and can be characterised through the device of “drop functions”
which measure the drop in probability across certain generalised in-
tervals. The characterisation yields a workable general definition of
probabilistic event structure as event structures with configuration-
valuations, viz. functions from finite configurations to the unit in-
terval for which the drop functions are always nonnegative [14].

In detail, a probabilistic event structure comprises an event
structure E with a configuration-valuation, a function v from the
finite configurations of E to the unit interval which is

(normalized) v(∅) = 1 and has

(non−ve drop) dv[y;x1,⋯, xn] ≥ 0 when y ⊆ x1,⋯, xn for
finite configurations y, x1,⋯, xn of E,

where the “drop” across the generalized interval starting at y and
ending at one of the x1,⋯, xn is given by

dv[y;x1,⋯, xn] =def v(y) −∑
I

(−1)∣I∣+1v(⋃
i∈I

xi)

—the index I ranges over nonempty I ⊆ {1,⋯, n} such that the
union⋃i∈I xi is a configuration. The “drop” dv[y;x1,⋯, xn] gives
the probability of the result being a configuration which includes
the configuration y and does not include any of the configurations
x1,⋯, xn.

If x ⊆ y in C(E), then Prob(y ∣ x) = v(y)/v(x); this is the
probability that the resulting configuration includes the events y
conditional on it including the events x.

8.2 Probability with an Opponent
This prepares the ground for a general definition of distributed
probabilistic strategies, based on edc’s. Firstly though, we should
restrict to race-free games, in particular because without copycat
being deterministic there would be no probabilistic identity strate-
gies. A probabilistic edc strategy in a game A, is an edc strategy
σ ∶ S → A in which we endow S with probability, while taking
account of the fact that in the strategy Player can’t be aware of the
probabilities assigned by Opponent. We do this through extending
the definition of configuration-valuation via an axiom (lmc) which
implies the Limited Markov Condition, LMC, of the Introduction.

Precisely, a configuration-valuation is now a function v, from
finite configurations of S to the unit interval, which is

(normalized) v(∅) = 1, satisfies

(lmc) v(x) = v(y) when x ⊆− y for finite configurations x, y
of S, and the

(+ve drop condition) dv[y;x1,⋯, xn] ≥ 0 when y ⊆+ x1,⋯, xn
for finite configurations of S.

When x ⊆+ y in C(S), we can still express Prob(y ∣ x), the
conditional probability of Player making the moves y ∖ x given x,
as v(y)/v(x). In fact all such conditional probabilities determine
v via normalisation and lmc. As A is race-free it follows S is also

from the Scott-open subsets of C∞(E) to [0,1] which is (normalized)
w( C∞(E)) = 1; (strict) w(∅) = 0; (monotone) U ⊆ V Ô⇒
w(U) ≤ w(V ); (modular) w(U ∪V )+w(U ∩V ) = w(U)+w(V ); and
(continuous) w(⋃i∈I Ui) = supi∈Iw(Ui), for directed unions. The idea:
w(U) is the probability of a result in open set U .

race-free. Hence if x is a finite configuration at which x
⊕−Ð⊂ and

x
⊖−Ð⊂ then x ∪ {⊕,⊖} is also a configuration, and both moves are

⊕,⊖ are causally independent (or concurrent). From lmc we obtain
LMC directly: Prob(⊕ ∣ x) = Prob(x,⊕ ∣ x) =

v(x ∪ {⊕})/v(x) = v(x ∪ {⊕,⊖})/v(x ∪ {⊖}) =
Prob(x,⊕,⊖ ∣ x,⊖) = Prob(⊕ ∣ x,⊖) .

A dual form of LMC will hold of a counterstrategy, a strategy for
Opponent; the LMCs for Player and Opponent will together ensure
the probabilistic independence of Player and Opponent moves from
a common configuration.

A probabilistic edc strategy in race-free game A comprises an
edc strategy σ ∶ S → A with a configuration-valuation v for S.
A probabilistic edc strategy between race-free games A to B is
a probabilistic edc strategy in A⊥∥B. Note that the configuration-
valuation of an edc doesn’t necessarily respect the equivalence of
the edc; different prime causes of a common disjunctive event may
well be associated with different probabilities.

Example 8.1. Recall the game of the Introduction. In the edc
strategy w1 ⊕ ≡ ⊕

⊖

_LLR

⊖

_LLR
w2 of Section 7.3 individual success of

the two watchers may be associated with probabilities p1 ∈ [0,1]
and p2 ∈ [0,1], respectively, and their joint success with q ∈ [0,1]
provided they form a configuration valuation v. In other words,
v(x) = p1 if x contains w1 and not w2; v(x) = p2 if x contains
w2 and not w1; and v(x) = q if x contains both w1 and w2;
v(x) = 1 otherwise; and p1 + p2 − q ≤ 1, in order to satisfy the
+-drop condition. ◻

We extend the usual composition of edc strategies to proba-
bilistic edc strategies. Assume probabilistic edc strategies σ ∶ S →
A⊥∥B, with configuration-valuation vS , and τ ∶ T → B⊥∥C with
vT . Their composition is defined to be τ⊙σ ∶ T⊙S → A⊥∥C with
a configuration-valuation v given by

v(x) = vS(πS1 x).vT (πT2 x)

for x a finite configuration of T⊙S. The configuration πS1 x is the
component in C(S) of the projection π1x ∈ C(S∥C) from the
pullback defined in Section 7.2; similarly πT2 x is the T -component
of π2x. The proof that v is indeed a configuration-valuation is quite
subtle and relies heavily on properties of “drop” functions.

8.3 A bicategory of probabilistic edc strategies
We obtain a bicategory of probabilistic edc strategies in which
objects are race-free games. Maps are probabilistic edc strategies.
Identities are given by copycat strategies, which for race-free games
are deterministic, so permit configuration-valuations which are
constantly 1. Generally, a probabilistic edc strategy is deterministic
if its configuration-valuation assigns 1 to all finite configurations;
its underlying edc strategy is then necessarily deterministic too.

The 2-cells of the bicategory require consideration. Whereas we
can always “push forward” a probability measure from the domain
to the codomain of a measurable function this is not true generally
for configuration-valuations involving Opponent moves. However:

Theorem 8.2. Let f ∶ σ ⇒ σ′ be a 2-cell between edc strate-
gies σ ∶ S → A and σ′ ∶ S′ → A which is a rigid map of
event structures. Let v be a configuration-valuation on S. Taking
v′(y) =def ∑x∶fx=y v(x) for y ∈ C(S′), defines a configuration-
valuation, written fv, on S′.

A 2-cell from σ, v to σ′, v′ is a 2-cell f ∶ σ ⇒ σ′ of edc strate-
gies in which f ∶ S → S′ is a rigid map of event structures and for
which the “push-forward” fv satisfies (fv)(x′) ≤ v′(x′) , for all



configurations x′ ∈ C(S′). Rigid 2-cells include rigid embeddings
giving the machinery to define probabilistic strategies recursively.

9. Constructions on probabilistic edc strategies
Following [2, 15], race-free games play the role of types and sup-
port operations of forming the dualA⊥, simple parallel composition
A∥B, sum Σi∈IAi and recursively-defined games. Terms have typ-
ings

x1 ∶ A1,⋯, xm ∶ Am ⊢ t ⊣ y1 ∶ B1,⋯, yn ∶ Bn ,

where all the variables are distinct, and denote probabilistic edc strate-
gies from the game A⃗ = A1∥⋯∥Am to the game B⃗ = B1∥⋯∥Bn.
We can think of the term t as a box with input wires x1,⋯, xm
and output wires y1,⋯, yn. The term t denotes a probabilistic edc
strategy S → A⃗⊥∥B⃗ with configuration valuation v and describes
witnesses, finite configurations of S, to a relation between finite
configurations x⃗ of A⃗ and y⃗ of B⃗, together with their conditional
probabilities. The following constructions, first described for (prob-
abilistic) concurrent strategies in [2, 15], extend to (probabilistic)
edc strategies, though note that duplication now becomes determin-
istic as an edc strategy for a broader class of games.
Composition Γ ⊢ ∃∆. [ t ∥ u ] ⊣ H if Γ ⊢ t ⊣∆ and ∆ ⊢ u ⊣ H.
Probabilistic sum Γ ⊢ Σi∈Ipiti ⊣ ∆ if Γ ⊢ ti ⊣ ∆ for i ∈ I ,
assumed countable, and a sub-probability distribution pi, i ∈ I . The
empty sum denotes �, the minimum strategy in the game Γ⊥∥∆.
Conjunction Γ ⊢ t1 ∧ t2 ⊣ ∆ is given by pullback of Γ ⊢ t1 ⊣ ∆
and Γ ⊢ t2 ⊣∆ from the game Γ⊥∥∆.
Copycat terms of the form x⃗ ∶ A⃗ ⊢ gy⃗ ⊑C fx⃗ ⊣ y⃗ ∶ B⃗ , where
f ∶ A⃗ → C and g ∶ B⃗ → C are (affine) maps of event structures
preserving polarity. Such terms introduce new “causal wiring” and
subsume copycat, injections and projections associated with sums,
and prefix operations and can achieve the effect of λ-abstraction on
strategies [2]. With composition they allow us to express a trace
operation.They denote deterministic edc strategies—so a proba-
bilistic edc strategy with configuration-valuation constantly one—
provided f reflects −-compatibility and g reflects +-compatibility.
The map g reflects +-compatibility if whenever x ⊆+ x1 and
x ⊆+ x2 in the configurations of B⃗ and fx1 ∪ fx2 is a configu-
ration, then so is x1 ∪ x2. Reflecting −-compatibility is analogous.
Duplication Duplications of arguments is essential if we are to sup-
port the recursive definition of strategies. We duplicate arguments
through an edc strategy δA ∶ A + //A∥A. Intuitively it behaves like
the copycat strategy but where a Player move in the left component
may be caused in parallel by either of its corresponding Opponent
moves from the two components on the right. We show δA when
A consists of a single Player move ⊕ and, respectively, a single
Opponent move ⊖:

A = ⊕, ⊕
⊖

. 33;

� ##+⊕

A = ⊖, ⊕

≡

⊖�llr

⊕ ⊖�llr

The general definition is in Appendix C. In general, duplication
δA is deterministic iff A is deterministic for Opponent, i.e. A⊥ is
deterministic as an edc with polarity. Then δA extends directly to a
probabilistic edc strategy and is a comonoid. (When the duplication
strategy is based on prime event structures, the duplication strat-
egy is not deterministic unless the game consists purely of Player
moves, making associativity fail with the introduction of probabil-
ity [15].)
Recursion Once we have duplication strategies we can treat recur-
sion using standard machinery [12]; recall that 2-cells, the maps
between probabilistic strategies, include rigid embeddings, so an
approximation order ⊴ of rigid inclusions. The order forms a ‘large
complete partial order’ with a bottom element the minimum strat-
egy �. Given x ∶ A,Γ ⊢ t ⊣ y ∶ A, the term Γ ⊢ µx ∶A. t ⊣ y ∶ A

denotes the ⊴-least fixed point amongst probabilistic strategies X
in Γ⊥∥A of the ⊴- continuous operation F (X) = t⊙(idΓ∥X)⊙δΓ.
This requires the games Γ are deterministic for Opponent.

9.1 Special cases and extensions
The constructions yield deterministic edc strategies if we avoid
probabilistic sums.

If we drop probability, we can drop race-freeness on games,
the determinacy conditions on copycat terms and parameters of
recursions, and replace probabilistic by nondeterministic sum, to
obtain constructions for nondeterministic edc strategies.

Even without probability, we obtain an interesting bicategory
if we restrict to games in which all moves are those of Player.
Duplication is now expressible in event structures. If we further
restrict to strategies described with event structures (so the concur-
rent strategies of [10]) we obtain a monoidal-closed bicategory with
simple parallel composition as tensor. With the addition of proba-
bility we obtain a framework for probabilistic dataflow. Note that
probability distributions on e.g. domains of infinite streams induced
by configuration-valuations can well be continuous on their maxi-
mal elements. Given all this the much richer types and language of
the previous section should support a useful style of probabilistic
programming based on probabilistic strategies.

In general, games can be extended to games with imperfect
information and pay-off as in [14]; then they, and the probabilistic
concurrent games of [14], include Blackwell games [6].

There is an alternative method for introducing parallel causes
via symmetry, through a pseudo monad ? on games; an edc strategy
in a game A corresponds to a strategy in ?A; the monad ? intro-
duces multiple symmetric parallel causes to Player moves [1, 16].

Acknowledgments
Thanks to Simon Castellan, Pierre Clairambault, Mai Gehrke,
Jonathan Hayman and Martin Hyland for advice and encourage-
ment, to ENS Paris for supporting Marc de Visme’s internship and
to the ERC for Advanced Grant ECSYM.

References
[1] S. Castellan, P. Clairambault, and G. Winskel. Symmetry in concurrent

games. In LICS’14. ACM, 2014.

[2] S. Castellan, J. Hayman, M. Lasson, and G. Winskel. Strategies as
concurrent processes. Electr. Notes Theor. Comput. Sci., 308, 2014.

[3] I. Cristescu. Operational and denotational semantics for the reversible
pi-calculus. PhD thesis, PPS, Université Paris Diderot, 2015.

[4] C. Jones and G. Plotkin. A probabilistic powerdomain of valuations.
In LICS ’89. IEEE Computer Society, 1989.

[5] G. M. Kelly. Basic concepts of enriched category theory. Lecture
Notes in Mathematics 64. CUP, 1982.

[6] D. Martin. The determinacy of Blackwell games. Journal of Symbolic
Logic, 63(4):1565–1581, 1998.

[7] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures
and domains. Theoretical Computer Science, 13:85–108, 1981.

[8] J. Pearl. Causality. CUP, 2013.

[9] J. Power. 2-categories. BRICS Notes Series NS-98-7, 1998.

[10] S. Rideau and G. Winskel. Concurrent strategies. In LICS 2011. IEEE.

[11] G. Winskel. Events in computation. 1980. PhD thesis, Edinburgh.

[12] G. Winskel. Event structure semantics for CCS and related languages.
In ICALP’82, volume 140 of LNCS. Springer, 1982.

[13] G. Winskel. Event structures. In Advances in Petri Nets, volume 255
of Lecture Notes in Computer Science, pages 325–392. Springer, 1986.

[14] G. Winskel. Distributed probabilistic and quantum strategies. Electr.
Notes Theor. Comput. Sci. 298: 403-425, 2013.



[15] G. Winskel. On probabilistic distributed strategies. In ICTAC 2015,
volume 9399 of Lecture Notes in Computer Science. Springer, 2015.

[16] G. Winskel. Event Structures, Stable Families and Concurrent Games.
http://www.cl.cam.ac.uk/∼gw104/ecsym-notes.pdf, 2016.

A. Equiv-enriched categories
Here we explain in more detail what we mean when we say
“enriched in the category of of sets with equivalence relations” and
employ terms such as “enriched adjunction,” “pseudo adjunction”
and “pseudo pullback.”

Equiv is the category of equivalence relations. Its objects are
(A,≡A) comprising a set A on which there is an equivalence
relation ≡A. Its maps f ∶ (A,≡A) → (B,≡B) are total functions
f ∶ A→ B which preserve equivalence.

We shall use some basic notions from enriched category
theory [5]. We shall be concerned with categories enriched in
Equiv, called Equiv-enriched categories, in which the homsets
possess the structure of equivalence relations, respected by
composition. This is the sense in which we say categories are
enriched in (the category of) equivalence relations. We similarly
borrow the concept of an Equiv-enriched functor between Equiv-
enriched categories which preserve equivalence in acting on
homsets. An Equiv-enriched adjunction is a usual adjunction
in which the natural bijection preserves and reflects equivalence.

Because an object in Equiv can be regarded as a (very simple)
category, we can regard Equiv-enriched categories as a (very
simple) 2-categories to which notions from 2-categories apply [9].

A pseudo functor between Equiv-enriched categories is like
a functor but the usual laws only need hold up to equivalence. A
pseudo adjunction (or biadjunction) between 2-categories permits
a weakening of the usual natural isomorphism between homsets,
now also categories, to a natural equivalence of categories. In
the special case of a pseudo adjunction between Equiv-enriched
categories the equivalence of homset categories amounts to a pair
of ≡-preserving functions whose compositions are ≡-equivalent to
the identity function. With traditional adjunctions by specifying
the action of one adjoint solely on objects we determine it as a
functor; with pseudo adjunctions we can only determine it as a
pseudo functor—in general a pseudo adjunction relates two pseudo
functors. Pseudo adjunctions compose in the expected way. An
Equiv-enriched adjunction is a special case of a 2-adjunction
between 2-categories and a very special case of pseudo adjunction.
In this article there are many cases in which we compose an
Equiv-enriched adjunction with a pseudo adjunction to obtain a
new pseudo adjunction.

Similarly we can specialise the notions pseudo pullbacks and
bipullbacks from 2-categories to Equiv-enriched categories. Let
f ∶ A → C and g ∶ B → C be two maps in an Equiv-enriched
category. A pseudo pullback of f and g is an object D and maps
p ∶ D → A and q ∶ D → B such that f ○ p ≡ g ○ q which satisfy
the further property that for any D′ and maps p′ ∶ D′ → A and
q′ ∶ D′ → B such that f ○ p′ ≡ g ○ q′, there is a unique map
h ∶ D′ → D such that p′ = p ○ h and q′ = q ○ h. There is an
obvious weakening of pseudo pullbacks to the situation in which
the uniqueness is replaced by uniqueness up to ≡ and the equalities
by ≡—these are simple special cases of bilimits called bipullbacks.

Right adjoints in a 2-adjunction preserve pseudo pullbacks
whereas right adjoints in a pseudo adjunction are only assured to
preserve bipullbacks.

B. On (pseudo) pullbacks of ese’s
We show that the enriched category of ese’s E≡ does not always
have pullbacks and pseudo pullbacks of maps f ∶ A → C and

g ∶ B → C, the reason why we use the subcategory EDC, which
does, as a foundation on which to develop strategies with parallel
causes. It suffices to exhibit the lack of pullbacks when C is an
(ese of an) event structure as then pullbacks and pseudo pullbacks
coincide. Take C to be

C a

b

c

d e

with A and B being respectively

A a1 a2

b1 b2

c1

_LLR

8 77A

c2

_LLR

�]]g

d

_LLR

e

_LLR

a

b

_LLR

c

d e

B

with the obvious maps f ∶ A → C and g ∶ B → C (given by the
lettering). In fact, A and B are edc’s.

The pullback in edc’s EDC does exist and is given by

P a1 a2

b1

_LLR

b2

_LLR

c1

_LLR

c2

_LLR

d

_LLR

e

_LLR

with the obvious projection maps. However this is not a pullback
in E≡. Consider the ese

D a1

b1 b2

�[[e

c1

8 77A

_LLR

c2

_LLR

d

_LLR

e

_LLR

with the obvious total maps to A and B; they form a commuting
square with f and g. This cannot factor through P : event b2 has
to be mapped to b2 in P , but then a1 cannot be mapped to a1 (it
wouldn’t yield a map) nor to a2 (it would violate commutation
required of a pullback).



There is a bipullback got by applying the pseudo functor er to
the pullback in ef’s:

a1 a2′ a1′ a2

b1

�[[f _LLR

b2

_LLR ; 88C

c1

_LLR

LAAI

c2

_LLR

rUU]

d

_LLR

e

_LLR

But this is not a pullback because in the ese E below the required
mediating map is not unique in that a1 can go to either a1 or a1′:

E a1

b1

_LLR

b2

�[[e

c1

_LLR

c2

_LLR

d

_LLR

e

_LLR

In fact, there is no pullback of f and g. To show this we use an
additional ese:

F a1

b1

_LLR

b2

c1

_LLR

c2

_LLR

d

_LLR

e

_LLR

Suppose Q with projection maps to A and B were a pullback
of f and g in E≡. Consider the three ese’s D, E and F with their
obvious maps to A and B; in each case they form a commuting
square with f and g. There are three unique maps hD ∶ D → Q,
hE ∶ E → Q, and hF ∶ F → Q such that the corresponding
pullback diagrams commute. We remark that there are also obvious
maps kD ∶ E → D and kF ∶ E → F (given by the lettering)
which commute with the maps to the components A and B. By
uniqueness, we have hD ○ kD = hE = hF ○ kF , so we have
hD(a1) = hF (a1). From the definition of the maps, the event
hD(a1) = hF (a1) has at most one ≤-predecessor in Q which is
sent to b in C (as D only has one). Because of the projection to B,
it has at least one (as B has one). So the event hD(a1) = hF (a1)
has exactly one predecessor which is sent to b. From the definition
of maps, this event is hD(b2) which equals hF (b1). But hD(b2)
cannot equal hF (b1) as they go to two different events of A —a
contradiction. Hence there can be no pullback of f and g in E≡.
(By adding intermediary events, we would encounter essentially
the same example in the composition, before hiding, of strategies
if they were to be developed within the broader category of ese’s.)

C. The edc duplication strategy
We present the general definition of the edc duplication strategy
δA ∶ A + //A∥A for a race-free game A.

For each triple (x, y1, y2), where x ∈ C(A⊥) and y1, y2 ∈ C(A),
which is balanced, i.e.

∀a ∈ y1 ∪ y2. polA(a) = + Ô⇒ a ∈ x and
∀a ∈ x. polA⊥(a) = + Ô⇒ a ∈ y1 or a ∈ y2 ,

and choice function χ ∶ x+ → {1,2} , from the positive events
of x denoted by x+, such that χ(a) = 1 Ô⇒ a ∈ y1 and
χ(a) = 2 Ô⇒ a ∈ y2, the order q(x, y1, y2;χ) is defined to have
underlying set {0}×x ∪ {1}×y1 ∪ {2}×y2 with order generated
by that inherited from A⊥∥A∥A together with

{((0, a), (1, a)) ∣ a ∈ y1 & polA(a) = +} ∪
{((0, a), (2, a)) ∣ a ∈ y2 & polA(a) = +} ∪
{((χ(a), a), (0, a)) ∣ a ∈ x & polA⊥(a) = +} .

Now we can define δA ∶ DA → A⊥∥A∥A. The edc DA
comprises (DA,≤,Con,≡,pol) with

events DA consisting of all d = q(x, y1, y2;χ), for balanced
(x, y1, y2) and choice function χ, which have a top element
δA(d);

causal dependency d ≤ d′ iff there is a rigid inclusion map from
d into d′ (regarded as event structures);

consistency X ∈ Con iff X ⊆fin DA and the image of its ≤-
down-closure, δA[X], is consistent in A⊥∥A∥A;

equivalence d ≡ d′ iff δA(d) = δA(d′), i.e. they have the same
top element in A⊥∥A∥A; and

with the polarity of events DA inherited from the polarity of
their top elements, i.e. pol(d) = polA(δA(d)) for d ∈DA.

We obtain an edc strategy δA ∶ A + //A∥A in which δA ∶
DA → A⊥∥A∥A sends a prime to its top element. The edc strategy
δA forms a comonoid with counit � ∶ A + //∅.

The duplication strategy δA is deterministic iff no Opponent
moves in A are in immediate conflict, i.e. if x

a1−Ð⊂ and x
a2−Ð⊂ in

C(A) and polA(a1) = polA(a2) = − then x ∪ {a1, a2} ∈ C(A).
Given thatA is race-free, δA is deterministic iffA⊥ is deterministic
as an edc with polarity—a condition we call deterministic for
Opponent. Under the condition that A⊥ is deterministic, as δA is
a deterministic edc strategy it extends directly to a probabilistic
edc strategy with configuration-valuation having constant value
1. Then the probabilstic edc strategy δA forms a comonoid with
counit � ∶ A + //∅.


