
Nominal Domain Theory for Concurrency

David Turner
Computer Laboratory, University of Cambridge

Glynn Winskel
Computer Laboratory, University of Cambridge

Abstract

This paper investigates a methodology of using FM
(Fraenkel-Mostowski) sets, and the ideas of nominal set the-
ory, to adjoin name generation to a semantic theory. By
developing a domain theory for concurrency within FM
sets the domain theory inherits types and operations for
name generation, essentially without disturbing its original
higher-order features. The original domain theory had a
metalanguage HOPLA (Higher Order Process LAnguage)
and this expands to Nominal HOPLA, with name genera-
tion (closely related to an earlier language new-HOPLA,
whose denotational semantics has been problematic). Nom-
inal HOPLA possesses an operational and denotational se-
mantics which are related via soundness and adequacy re-
sults, again carried out within FM sets.

1 Introduction

Fraenkel-Mostowski (FM) set theory provided an early
example of a set theory violating the Axiom of Choice (AC).
It did this by building a set theory around around a basic set
of finitely permutable atoms A. Functions had to respect
the permutability of atoms, which was sufficient to disal-
low functions required to fulfill AC. Atoms can be used to
model names in computer science, because commonly the
precise nature of a name is unimportant; what matters is its
ability to identify and its distinctness from other names. For
this reason FM set theory has begun to play a foundational
role in computer science, especially in syntax, making for-
mal previously informal and often inaccurate assumptions
about, for example, the freshness of variables in substitu-
tion [2, 3]. This paper turns FM set theory to the problem
of adjoining names and name generation to a semantic the-
ory — specifically a domain theory for concurrency.
At heart what makes FM set theory important for treat-

ing names are adjunctions associated with new-name ab-
straction. These are defined fully in appendix A. The sim-
plest and best-known adjunction is for the category of nom-
inal sets (those FM sets which remain invariant under all
finite permutations of names). Its right adjoint δ constructs

a form of function space consisting of ‘new-name abstrac-
tions’. Closely related though less well-known are the ad-
junctions in FM sets. Here the associated functors can only
be defined locally w.r.t. the sets of names involved.
Importantly, aside from these name features, FM set the-

ory behaves much like more familiar set theories such as
ZF, which is invaluable in transferring developments in a
name-free setting into FM sets. Often the only change to the
theory is to insist that all constructions, particularly those
derived from powersets and function spaces, consist only of
finitely-supported elements. For us it will mean that a path-
based domain theory for concurrency can be systematically
extended with name generation by working within FM sets.
The idea behind this semantic model is that a process

denotes a set of paths in a path order giving the type of
computations it can do. Paths sets provide a fully-abstract
denotational semantics for the higher order process lan-
guage HOPLA[4]. HOPLA was extended with name gener-
ation to a language new-HOPLA, able to express for ex-
ample the π-Calculus, Higher-Order π-Calculus and mo-
bile ambients[7], but giving it a denotational semantics was
problematic. With the then-standard way to adjoin name
generation to a category of domains (by moving to a func-
tor category, indexing both processes and their types by the
current set of names) it became far from clear that enough
function spaces existed. These problems are obviated by
working within FM set theory. The way is open to devel-
oping more complicated semantics, such as that based on
presheaves over path categories, within FM sets.
We assume some familiarity with nominal set theory and

the broader universe of FM sets. See appendix A for a
brief introduction. This paper is an abbreviated version of
Turner’s PhD thesis[5].
Domain theory from path sets To set the scene we give
a quick review of the domain theory for processes based
on path sets[4]. The objects of the category Lin are pre-
orders P consisting of computation paths with the preorder
p ≤ p′ expressing how a path p extends to a path p′. A
path order P determines a domain P̂, that of its path sets,
lower (i.e. down-closed) sets w.r.t. ≤P, ordered by inclu-
sion. The arrows of Lin, linear maps, from P to Q are
join-preserving functions from P̂ to Q̂. The category Lin is



monoidal-closed with a tensor given the product P × Q of
path orders and a corresponding function space by Pop×Q.
Lin has enough structure to form a model of Girard’s clas-
sical linear logic [1]. The exponential !P consists of finite
elements of P̂ under inclusion—!P can be thought of as con-
sisting of compound paths associated with several runs. Its
coKleisli category consists of path orders with continuous
functions between the domains of path sets.

2 FM Domain Theory

A similar story unfolds within FM set theory, but it is
complicated by a number of factors. Firstly, everything in
sight must be finitely-supported: linear maps need only pre-
serve finitely-supported joins, for example. Secondly, if the
domain theory is to make use of the new name abstraction of
FM sets then the key adjunctions (−)#a $ δa must be wo-
ven into the tale. In particular these adjunctions must mesh
properly with the central constructions of the domain the-
ory, such as that of taking lower sets of a preorder. Thirdly,
and perhaps most surprisingly, the appropriate notion of
‘continuous’ will turn out to not be simply the preservation
of directed joins — even finitely-supported directed joins
— but of directed joins with more stringent constraints on
supports.

2.1 FM Preorders

Definition 1. The FM analogue of the concept of a preorder
is a FM-preorder, which is a pair 〈P,≤P〉 where P and ≤P
are both FM sets such that ≤P is a reflexive and transitive
binary relation on P.

The ∈-recursive nature of the permutation action on FM
sets gives rise to a permutation action on FM-preorders,
where σ · P = {σ · p | p ∈ P} and p ≤P p′ if and only
if σ · p ≤σ·P σ · p′.

Definition 2. The finitely-supported function f : P → Q
between FM-preorders is monotone if for all p′ ≤P p ∈ P
it is the case that fp′ ≤P fp.

Definition 3. The collection of FM-preorders and finitely-
supported monotone functions forms a category FMPre.
For any finite set of names s let FMPres be the subcate-
gory ofFMPre consisting of only those objects and arrows
which are supported by s.

FM-preorders inherit mechanisms for name generation
directly from those in FM sets.

Definition 4. Let a /∈ s. If P is an object of FMPres then
define

P#a =def {p ∈ P | a # p}

ordered by the restriction of ≤P, and if f : P → Q is an
arrow of FMPres then for all p ∈ P#a define

f#a(p) =def f(p).

This is a functor (−)#a : FMPres → FMPres∪̇{a}
which has a right adjoint δa as follows.

Definition 5. Let a /∈ s. If P is an object of FMPres∪̇{a}
then define the α-equivalence relation∼α on P×A by hav-
ing 〈p1, a1〉 ∼α 〈p2, a2〉 iff Nb. (a1b) · p1 = (a2b) · p2 and
define the FM-preorder

δaP =def {p′ ∈ (P × A)/∼α | Nb. p′@b ∈ (ab) · P},

where if p′1 and p′2 are elements of δaP then

p′1 ≤δaP p′2 ⇔def Nb. p′1@b ≤(ab)·P p′2@b.

If f : P → Q is a finitely-supported monotone function then
for all p′ ∈ δaP define

δaf(p′) =def fresh b in [b].
(
(ab) · f)(p′@b).

The unit ξ and counit ζ of the adjunction (−)#a $ δa are

ξP(p) =def fresh b in [b].p and ζP(p′) =def p′@a.

3 Nondeterministic Domains in FM

A process is to denote the collection of computation
paths that it may perform, with the added constraint that
each process can only access finitely many names — the
denotations of processes must be finitely supported. Apart
from this additional constraint the development of cate-
gories of FM-linear maps follows closely that of the cate-
gory Lin of path orders and linear maps.
If P is any FM-preorder define

P̂ =def {x↓ | x ⊆fs P},

ordered by inclusion, where x↓ is the lower set generated
by x. Such a poset is an FM-complete join-semilattice in
the sense that every finitely-supported subset of P̂ has a join
in P̂ given by its union. The order P̂ contains elements of
the form {p}↓ for each p ∈ P which comprise its (com-
pletely) prime elements. (The order P̂ is prime algebraic in
FM set theory.) Finally, P̂, with {·}↓ : P → P̂, can be char-
acterised abstractly as the free finitely-supported join com-
pletion of P. It follows that finitely-supported monotone
maps P → Q̂ are in bijective correspondence with finitely-
supported finitely-supported-join-preserving maps P̂ → Q̂.
Such maps are ‘FM-linear’ or simply ‘linear’. In fact, this
bijective correspondence is natural in P andQ and therefore
an adjunction

FMPre(P, Q̂) ∼= FMLin(P, Q)

where FMLin is the category with the same objects as
FMPre and whose arrows are FM-linear maps.

2



3.1 The Structure of FMLin

Like Lin the category FMLin has enough structure to
form a model of classical linear logic[1].
Under the correspondence

FMLin(P, Q) ∼= P̂op × Q

the ordering on P̂op × Q gives rise to an ordering (by point-
wise inclusion) on FMLin(P, Q), and joins in P̂op × Q
give rise to joins (by pointwise union) in FMLin(P, Q).
Since left adjoints preserve coproducts, the disjoint

union of the orders P1 and P2 forms the binary coproduct
P1 + P2 in FMLin. Furthermore this coproduct is also
a binary product P1 & P2: the projections are defined by
out1 =def [1P1 , ∅] and out2 =def [∅,1P2 ]. The object
P1 +P2 is a binary biproduct. More generally, if (P$)$∈L is
any collection of FM-preorders where the mapping ' ,→ P$

is supported by s then the object
⊕

$∈LP$, defined as the
disjoint union of the P$, is a biproduct, supported by s.
A tensor product on FMLin can be defined as the prod-

uct P1 × P2 of the underlying preorders. As FMLin(P ×
Q, R) ∼= FMLin(P, Qop × R), naturally in P and R, we
have that FMLin is closed with respect to the × tensor.

3.2 Name Generation in FMLin

FMLin inherits name generation from FMPre. Let
s ⊆fin A and a ∈ A\s. There is a name-generation adjunc-
tion

(−)#a+ $ δ+
a : FMLins ! FMLins∪̇{a}.

Here FMLins is the subcategory of FMLin whose ob-
jects and arrows are all supported by s. The key laws are
isomorphisms

φP : P̂#a ∼= P̂#a and θQ : δaQ̂ ∼= δ̂aQ

natural in P in FMPres and Q in FMPres∪̇{a}. The iso-
morphisms and inverses are given concretely as follows:

φP(x) =def {p ∈ x | a # p}
and φ−1

P (x) =def x ∪
⋃

b#x,P(ab) · x

θQ(y′) =def {q′ | Nb. q′@b ∈ y′@b}
and θ−1

Q (y) =def fresh b in [b].{q | [b].q ∈ y}.

Define the functor (−)#a+ : FMLins → FMLins∪̇{a} to
act as (−)#a on objects and take f : P →

L
Q to

P̂#a
φ−1

P !! P̂#a
f#a

!! Q̂#a
φQ !! Q̂#a .

Using θ define δ+
a : FMLins∪̇{a} → FMLins similarly.

In [5] it is shown that these functors are well-defined,
and that the composite bijection

FMLins∪̇{a}(P#a, Q) ∼= FMPres∪̇{a}(P#a, Q̂)
∼= FMPres(P, δaQ̂) ∼= FMPres(P, δ̂aQ)

∼= FMLins(P, δaQ),

established via the isomorphism θQ, yields an adjunction
with unit ξ̂ and counit ζ̂.

4 Continuity in FM Domains

Linear maps are too restrictive to give a semantics for
concurrent processes. With HOPLA[4] the solution was to
turn from linear to continuous maps, which preserve only
directed joins. But this is not appropriate in the nominal
setting: the desired semantics for name generation is not
directed-join continuous.

4.1 Continuity and name generation

To see this, we consider a term construction new a.t in-
spired by new-HOPLA[7]. Imagine that t denotes a process
whose actions lie within the set of names A; so its denota-
tion [[t]] is an element of Â. By definition the term new a.t

denotes an element of δ̂A; its denotation [[new a.t]] is given
as θA([a].[[t]]), where θA : δa(Â) ∼= δ̂aA is the isomorphism
described in the previous section. The term new a.t de-
notes a process with actions of the form [b].c and [c].c from
δaA.
Consider now an open term new a.(−). Substitution

into new a.(−) replaces a with a name a′ fresh w.r.t. the
argument being substituted, if necessary. Consequently, the
substitution of A, with empty support, results in denotation
θA([a].A) which can be shown to contain [a].a. However,
the substitution of s ⊆fin A results in denotation θA([a′].s),
with a′ /∈ s, a denotation which cannot contain [a].a. As
A =

⋃
s⊆finA s is a directed join, this shows that new a.(−)

does not yield a directed-join continuous function.

4.2 FM-Continuity

It makes little difference to classical domain theory
whether one uses increasing (ordinal-indexed) sequences or
directed sets, because the Axiom of Choice (AC) can be
used to move between the two. However, AC does not hold
in the theory of FM sets, and this equivalence breaks down.
A particular difference is that in any sequence in FM set the-
ory with support s each element of the sequence must also
have support s; this ‘uniformity’ of support does not hold
for directed sets in general.

3



Definition 6. An FM set X has uniform support s if every
element x ∈ X is supported by s. An FM-directed set is a
directed set with uniform support.
If P, Q are FM-preorders, say that a function f : P̂ → Q̂

is FM-continuous if it preserve joins of FM-directed sets.

If X has uniform support then it can be wellordered
within FM set theory: AC gives an (external) wellordering
and the uniformity ensures that this wellordering is itself
finitely-supported. Approximation by FM-directed sets and
approximation by (ordinal-indexed) sequences are equiva-
lent in FM set theory.
Returning to the example of new a.(−), first notice that

the directed set {s | s ⊆fin A} does not have a uniform sup-
port. Let X ⊆ Â be directed with uniform support s. Then
every x ∈ X is either a subset of s or a superset of A \ s, so
X is finite. Since X is also directed it contains a maximal
element x. So new a.(−) is FM-continuous.

4.3 FM-Isolated elements

We investigate the structure of isolated elements of do-
mains P̂, for P an FM-preorder, with respect to FM-directed
sets.

Definition 7. An element P ∈ P̂ is FM-isolated (or simply
isolated) iff for all FM-directed sets X ⊆ P̂, if P ⊆

⋃
X

then there exists x ∈ X such that P ⊆ x.

For example, every element of Â is isolated. To see this,
let x ∈ Â be such that x ⊆

⋃
X where X ⊆ Â is directed

and uniformly supported by s, then every element of X is
either a subset of s or a superset of A \ s. Therefore X
is finite, and since it is also directed it contains a maximal
element x′ and hence x ⊆ x′. More generally,

Definition 8. If P is a FM-preorder, F a finite subset of P
and s a finite set of names that contains supp(P) then define

〈F 〉s =def

⋃

σ#s

σ · F.

Every x ∈ Â is of this form: either x is finite and
hence x = 〈x〉supp(x) or else x is cofinite and hence
x = 〈{a}〉supp(x) for any a ∈ x. In fact, the elements
of the form 〈F 〉s are precisely the isolated elements of P̂:
Lemma 1. If F ⊆fin P and s is a finite set of names that
supports P then 〈F 〉s↓ is isolated in P̂. Conversely, if P ∈ P̂
is isolated and supp(P, P) ⊆ s then there exists F ⊆fin P
such that P = 〈F 〉s↓.

4.4 The Category FMCts

Let FMCts be the category with objects FM-preorders
and arrows from P to Q are FM-continuous functions from
P̂ to Q̂. Note FMLin is a subcategory of FMCts.

We can characterise FM-continuous maps in terms of
FM-linear maps whose source is under an exponential !. It
is sensible to define !P as comprising the FM-isolated ele-
ments of P̂ ordered by inclusion. With an eye to defining
recursive types, we instead define !P to be the equivalent
FM-preorder with elements 〈F 〉s where F ⊆fin P and s
supports P; its order is given by taking P ≤!P P ′ whenever
∀p ∈ P∃p′ ∈ P ′. p ≤P p′. Write iP for the map iP : !P → P̂
given by iPP =def P↓.
Each P̂, with iP, is the free FM-directed-join completion

of !P. (The order P̂ is algebraic with respect to approxima-
tion by FM-directed sets.) It follows that ! extends to functor
making an adjunction FMLin(!P, Q) ∼= FMCts(P, Q),
where the inclusion is right adjoint to the !. Its unit ηP :
P →

C
!P is given concretely by ηPX = {P ∈ !P | P ⊆ X}.

The correspondence

FMCts(P, Q) ∼= !̂Pop × Q

enriches hom-sets in FMCts with a partial order structure
given by pointwise inclusion, and joins given by pointwise
union. Generally, if (fi)i∈I is a collection of continuous
maps P →

C
Q where the mapping i ,→ fi is supported by

s then their pointwise union
∑

i∈I fi is an FM-continuous
map supported by s.
Since right adjoints preserve products, FMCts has fi-

nite products given by the disjoint union of the underly-
ing preorders as in FMLin. The product of the objects
P1 and P2 is written as P1 & P2. If P1 and P2 are ob-
jects of FMPre then there exists an isomorphismmP1,P2 :
P̂1 × P̂2

∼= P̂1 & P2 where if xi ∈ P̂i for i ∈ {1, 2} then

mP1,P2〈x1, x2〉 =def x1 0 x2.

The general biproduct
⊕

$∈LP$ of FMLin becomes just a
product in FMCts.
If P and Q are objects of FMCts then there is an

isomorphism m!
P,Q : !P × !Q ∼= !(P & Q) which maps

a pair 〈P,Q〉 to the union P 0 Q. Because FMLin is
monoidal closed, so that each (−) × Q has a right adjoint
Q " (−), with the natural isomorphism m! we derive that
Q → (−) =def !Q " (−) is right adjoint to (−) & Q, so
that FMCts is cartesian closed.
There is a map nP,Q : P̂ × Q̂ → P̂ × Q defined by

nP,Q〈x, y〉 =def {〈p, q〉 ∈ P × Q | p ∈ x and q ∈ y}.

The composition m̂!
P,Q ◦ n!P,!Q ◦ m−1

!P,!Q ◦ (ηP &1!Q) de-
fines a natural strength map SP,Q for the monad (!, η, ε!) on
FMCts. Concretely, if x ∈ P̂ and Y ∈ !̂Q then

SP,Q(x 0 Y ) = {P 0 Q | P ⊆ x, P ∈ !P and Q ∈ Y }.

4



4.5 Name Generation in FMCts

We inherit adjunctions

(−)#a++ $ δ++
a : FMCtss ! FMCtss∪̇{a}

supporting name generation in FMCts from the adjunc-
tions (−)#a+ $ δ+

a on the linear categories. Here s ⊆fin A
and a ∈ A \ s and FMLins is the subcategory of FMLin
whose objects and arrows are all supported by s. In de-
tail, (−)#a++ and δ++

a act respectively as (−)#a and δa

on objects. The arrow f : P →
C

Q of FMCtss is taken

to the composite f#a++ =def φQ ◦ f#a ◦ φ−1
P and the ar-

row g : P →
C

Q of FMCtss∪̇{a} is taken to δ++
a g =def

θQ ◦ δag ◦ θ−1
P . These definitions coincide with those of

(−)#a+ and δ+
a on linear arrows.

Via an isomorphism !((−)#a) ∼= (!(−))#a, analogous to
φ−1 of section 3.2, we obtain as a composite the bijection

FMCtss∪̇{a}(P#a, Q) ∼= FMLins∪̇{a}(!(P#a), Q)
∼= FMLins∪̇{a}((!P)#a, Q) ∼= FMLins(!P, δaQ)
∼= FMCtss(P, δaQ),

of the adjunction (−)#a++ $ δ++
a , with unit ξ̂ and counit

ζ̂ — see [5].
The machinery of freshness, the functors (−)#a and the

isomorphisms φP : P̂#a → P̂#a, can be extended to model
freshness with respect to a finite set of names s. This is
used to capture ‘freshness assumptions’ in the type system:
a variable of type P#s insists that it receives input that is
fresh for s, and a term of type P#s avoids the names in s
in its evaluation. Concretely, P#s = {p ∈ P | p # s}
with order given by the restriction of the order on P, while
φ(s)

P x = {p ∈ x | p # s}, for x ∈ P̂#s.

5 Nominal HOPLA

Nominal HOPLA is an expressive calculus for higher-
order processes with nondeterminism and name-binding.
Its development follows closely that of HOPLA (a Higher-
Order Process LAnguage)[4] and is inspired by the lan-
guage new-HOPLA[7].
In order to present Nominal HOPLA it is necessary to

give the language an abstract syntax, and this syntax in-
cludes some binding operators such as the usual function
abstraction λx.t which binds free occurrences of the vari-
able x in the term t. However, the structure of interest
here is not the syntax of Nominal HOPLA but its seman-
tics, and the binding of variables in its syntax is a distrac-
tion. To avoid confusion the binding of variables is treated
in the usual informal fashion: bound variables are always
distinct from the other variables in scope, and substitution

silently avoids capturing free variables. In particular, if x is
a variable and σ is a permutation of the set of atoms then
σ · x = x.

5.1 Syntax

Fix a set of term variables x,y, . . . and a set of type vari-
ables P, . . ., each with a discrete permutation action. Also
fix a set L of nominal label-sets, also with the discrete per-
mutation action. Labels are written ', '0, . . . ∈ L ∈ L.

5.1.1 Syntax of Types

Types are given by the grammar

P, Q ::= P | !P | Q→P | δP |
⊕

$∈LP$ | µj
-P . -P,

where P is a type variable, -P is a list of type variables,
and µj

-P . -P binds -P . A closed type is a type with no free
variables, and in the following, closed types are normally
simply called ‘types’. The permutation action on types is
the discrete action.

5.1.2 Syntax of Environments

Environments are given by the grammar

Γ ::= () | Γ,x : P#s

where x ranges over variables, P ranges over types and s
ranges over finite sets of names, and the variables in Γ are
distinct from x. The intended meaning of x : P#s is that
the variable x takes values of type P that are assumed to be
fresh for s. The set of environments may be equipped with
a permutation action which simply permutes the freshness
assumptions.

5.1.3 Syntax of Terms

Terms are given by the following grammar, where x ranges
over variables, a ranges over names, s over finite sets of
names, p over actions (see 5.1.4), ' over labels and P over
types.

t, u ::= x | recx.t
| !t | [u > p(x:P # s) => t]
| λx.t | t(u:P)
| new a.t | t[a]
| ':t | π$t |

∑
i∈Iti | abs t | rep t

The forms recx.t, [u > p(x:P # s) => t] and λx.t
all bind x in t, and the set of free variables of t is defined in
the usual way. The form new a.t binds the name a in t.
The nondeterministic sum may be over an infinite set I ,

but there are constraints to ensure that it behaves properly:

5



the mapping i ,→ ti is a finitely supported function from a
nominal set I to the set of terms, and is such that there exists
a finite setX of variables such that for all i the free variables
of ti are contained in X . Write nil for the inactive term∑

i∈∅ti.

5.1.4 Syntax of Actions

The operational semantics of Nominal HOPLA, as defined
in section 5.4, is given in the style of a labelled transition
system. The grammar of actions, labelling the transitions
in the operational semantics, is given as follows where t
ranges over closed terms, a ranges over names and ' over
labels.

p ::= ! | ':p | t ,→ p | abs p | new a. p

The form new a. p binds the name a in the same way that a
is bound in the term new a.t.
Actions and terms form nominal sets where the permu-

tation action is given by the obvious structural recursion.

5.1.5 Substitution

The substitution t[v/y] of a term v for the variable y in a
term t is defined by recursion on t in the usual fashion. Sub-
stitution is capture-avoiding in both names and variables, in
the sense that for substitution into a term of the forms

recx.t [u > p(x:P # s) => t] λx.t

the variable x is assumed not to be free in v, and for substi-
tution into a term of the form new a.t the name a is chosen
to be fresh for v.

5.2 Typing Rules

5.2.1 Typing Rules for Terms

Terms of Nominal HOPLA are typed with judgements of
the form Γ 2s t : P, where Γ is an environment, s is a fi-
nite set of names, t is a term and P is a type. The type P
describes the actions that the term may perform. The en-
vironment Γ records types and freshness assumptions for
the variables of t. The set s represents the ‘current’ set of
names.

Variable. A bare variable is typed by the environment in
the obvious fashion.

−
x : P#∅ 2∅ x : P

Weakening. The environment may be extended with ex-
tra variables.

Γ 2s t : P
Γ,x : Q#∅ 2s t : P

Exchange. Two variables in the environment may be ex-
changed.

Γ,x2 : Q2
#s2 ,x1 : Q1

#s1 ,Λ 2s t : P
Γ,x1 : Q1

#s1 ,x2 : Q2
#s2 ,Λ 2s t : P

Contraction. It is possible to replace a pair of variables
(with equal types) with a single variable.

Γ,x1 : Q#s′
,x2 : Q#s′

2s t : P
Γ,x1 : Q#s′

2s t[x1/x2] : P

Fresh-Weakening. It is possible to impose extra fresh-
ness assumptions on a variable.

Γ,x : Q#s′′
2s t : P

Γ,x : Q#s′
2s t : P

(s′′ ⊆ s′ ⊆ s)

Support-Weakening (Terms). It is possible to extend the
‘current’ set s of names.

Γ 2s′ t : P
Γ 2s t : P (s′ ⊆ s)

Prefix. The term constructor ! takes a term t to a term
!t that intuitively may perform an anonymous action ! and
resume as t. The possible action ! is recorded in the type.

Γ 2s t : P
Γ 2s !t : !P

Match. A term of the form [u > q(x:Q′ # s′) => t]
intuitively matches the output of u against the action q and
feeds the resumption of u into the variable x in t. If x
has some freshness assumptions imposed on it then u and
q must satisfy those assumptions. The side condition that
s′′ ⊆ s \ s′ is assumed.

Γ,x : Q′#s′
2s t : P Λ 2s′′ u : Q 2s′′ Q : q : Q′

Γ,Λ#s′ 2s [u > q(x:Q′ # s′) => t] : P

Recursion. A term of the form recx.t intuitively acts as
its unfolding t[recx.t/x], so that x must be of the same
type as t.

Γ,x : P#∅ 2s t : P
Γ 2s recx.t : P

Function Abstraction and Application. A term t of type
P may be abstracted with respect to the free variable x of
type Q to leave a term λx.t of type Q→P that can in turn
be applied to a term of type Q in the usual fashion.

Γ,x : Q#∅ 2s t : P
Γ 2s λx.t : Q→P

Γ 2s t : Q→P Λ 2s u : Q
Γ,Λ 2s t(u:Q) : P

6



Labelling and Label Projection. The actions of a term t
may be ‘tagged’ with a label '0 by forming the term '0:t.
The effect of the term former π$0 is that terms of the form
π$0t can perform only the actions of t that are tagged by the
label '0. In both of these rules the support of '0 must be
contained in s.

Γ 2s t : P$0

Γ 2s '0:t :
⊕

$∈LP$

Γ 2s t :
⊕

$∈LP$

Γ 2s π$0t : P$0

Nondeterministic Sum. A term
∑

i∈Iti makes a nonde-
terministic choice amongst its components and behaves as
the chosen component. The mapping i ,→ Γ 2si ti : Pmust
be supported by s.

Γ 2si ti : P each i ∈ I

Γ 2s
∑

i∈Iti : P

Recursive Type Folding and Unfolding. As the
recursively-defined type µj

-P . -P is isomorphic (and not
equal) to its unfolding Pj [µ -P . -P/-P ] it is necessary to
record any uses of the isomorphism abs = rep−1 in the
syntax of the term.

Γ 2s t : Pj [µ -P . -P/-P ]

Γ 2s abs t : µj
-P . -P

Γ 2s t : µj
-P . -P

Γ 2s rep t : Pj [µ -P . -P/-P ]

Name Abstraction and Application. The only alteration
to the syntax of terms over that of conventional HOPLA
is the following pair of term formers. Intuitively the term
new a.t can perform the same actions as t with the name a
bound, whereas the term t[a] takes the outputs of t, which
contain a bound name since t is of type δP, and instantiates
that name as a. In both cases the side-condition a /∈ s is
assumed.

Γ#a 2s∪̇{a} t : P
Γ 2s new a.t : δP

Γ 2s t : δP
Γ#a 2s∪̇{a} t[a] : P

5.2.2 Typing Rules for Actions

Actions are typed by judgements of the form 2s P : p : P′

where s is a finite set of names and P and P′ are types.
Intuitively this means that p is an action that terms of type
P may perform and the resumption is of type P′.

2s′ P : p : P′

2s P : p : P′ (s′ ⊆ s) −
2∅ !P : ! : P

2s P : p : P′ 2s u : Q
2s Q→P : u ,→ p : P′

2s P$0 : p : P′

2s
⊕

$∈LP$ : '0:p : P′

2s Pj [µ -P . -P/-P ] : p : P′

2s µj
-P . -P : abs p : P′

2s∪̇{a} P : p : P′

2s δP : new a. p : δP′

5.3 The Substitution Lemma

Substitution respects the type system of Nominal HO-
PLA, as long as freshness assumptions are themselves re-
spected.

Lemma 2 (Syntactic Substitution Lemma). Suppose that
t and v satisfy Γ,y : R#r 2s t : P and ∆ 2s1 v : P where
s1 ∩ r = ∅ and the variables in Γ are distinct from those in
∆. Then

Γ,∆#r 2s∪s1 t[v/y] : P

5.4 Operational Semantics

Nominal HOPLA is given an operational semantics in
the style of a labelled transition system. That a term t such
that 2 t : P may perform an action p such that 2 P : p : P′

and resume as the term t′ is written

P : t
p−→ t′.

The operational semantics of closed, well-typed terms are
defined below.

P : t[recx.t/x] p−→ t′

P : recx.t
p−→ t′

−
!P : !t

!−→ t

P : t[u′/x] p−→ t′ Q : u
q−→ u′ 2 Q : q : Q′

P : [u > q(x:Q′ # s′) => t]
p−→ t′

P : t
p−→ t′

δP : new a.t
new a. p−→ new a.t′

δP : t
new a. p−→ new a.t′

P : t[a]
p−→ t′

P : t[u/x] p−→ t′

Q→P : λx.t
u'→p−→ t′

Q→P : t
u'→p−→ t′

P : t(u:Q) p−→ t′

P$0 : t
p−→ t′

⊕
$∈LP$ : '0:t

$0:p−→ t′

⊕
$∈LP$ : t

$0:p−→ t′

P$0 : π$0t
p−→ t′

Pj [µ -P . -P/-P ] : t
p−→ t′

µj
-P . -P : abs t

abs p−→ t′

µj
-P . -P : t

abs p−→ t′

Pj [µ -P . -P/-P ] : rep t
p−→ t′

P : ti0
p−→ t′

P :
∑

i∈Iti
p−→ t′

The following lemma demonstrates that the operational
semantics given above interacts well with the type system
described above.

Lemma 3. If P : t
p−→ t′ then 2 t : P and there exists

a unique P′ such that the judgement 2 P : p : P′ holds;
furthermore 2 t′ : P′.

7



5.5 Denotational Semantics

The denotational semantics of Nominal HOPLA arises
directly from various universal constructions in FMCts
discussed above. The design of the name-free process cal-
culus HOPLA[4] was also guided by the principle of uni-
versal constructions, and Nominal HOPLA can be seen as a
straightforward extension of HOPLAwith terms of the form
new a.t and t[a] which arise directly from the adjunction
(−)#a++ $ δ++

a .

5.5.1 Types and Environments

A closed type denotes the collection of paths of the appro-
priate type, ordered by extension. Such path orders, even
recursively-defined ones, can be constructed inductively out
of syntactic tokens by a method inspired by the use of in-
formation systems to solve recursive domain equations[6]
as demonstrated here.
The denotation of the type P is given in terms of a lan-

guage of paths, given by the grammar

p ::= Q | Q ,→ p | ':p | abs p | new a. p,

where Q is a set of paths of the form 〈{p1, . . . , pn}〉s, ' is a
label and a is a name. Paths are typed by judgements of the
form p : P according to the following rules.

p1 : P . . . pn : P
〈{p1, . . . , pn}〉s : !P

Q : !Q p : P
Q ,→ p : Q→P

p : P$0

'0:p :
⊕

$∈LP$
('0 ∈ L)

p : Pj [µ -P . -P/-P ]

abs p : µj
-P . -P

p : P
new a. p : δP

where the ordering ≤P of paths of type P is given recur-
sively as follows.

P 4P P ′

P ≤!P P ′
Q′ ≤!Q Q p ≤P p′

Q ,→ p ≤Q→ P Q′ ,→ p′

p ≤P!0
p′

'0:p ≤⊕
$∈LP!

'0:p′

p ≤Pj [µ &P. &P/&P ] p′

abs p ≤µj
&P. &P abs p′

p ≤P p′

new a. p ≤δP new a. p′

Here, P 4P P ′ means that for all p ∈ P there exists
p′ ∈ P ′ such that p ≤P p′. It is straightforward to show
that these definitions construct path orders that are nominal
preorders and hence objects of FMPre∅. As in HOPLA,
in a recursively-defined type µj

-P . -P each path is of the form
abs p which means there is an isomorphism

rep : µj
-P . -P ∼= Pj [µ -P . -P/-P ] : abs,

where abs(p) =def abs p and rep(abs p) =def p.
Environments Γ (with freshness constraints contained in

s0) denote objects of FMCtss0 by setting [[()]] =def O, the
empty preorder, and [[Γ,x : P#s]] =def [[Γ]] & P#s. Notice
that [̂[Γ,x : P#s]] ∼= [̂[Γ]] × P̂#s via the isomorphisms φ(s)

andm, so it is convenient to use a ‘tuple’ notation 〈γ, p〉 for
elements of [̂[Γ,x : P#s]] in the following.

5.5.2 Terms and Actions

Typing judgements Γ 2s t : P denote arrows

[[Γ 2s t : P]] : [[Γ]] →
C

P

in FMCtss. The denotation of a typing judgement is built
by recursion on the derivation of the typing judgement,
making use of the various universal constructions available
in FMCts. Intuitively, the arrow [[Γ 2s t : P]] receives
some input in its free variables, as typed by Γ, and returns
the set of paths that the term t can perform with the given
input.
Typing judgements 2s P : p : P′ denote arrows

[[ 2s P : p : P′]] : P →
C

!P′

in FMCtss by recursion on the structure of p as shown
below. Intuitively the arrow [[ 2s P : p : P′]] matches its
input against the action p and returns a collection of possible
resumptions after performing p.
If the type information is clear then [[Γ 2s t : P]] and

[[ 2s P : p : P′]] are abbreviated to [[t]] and [[p]] respectively.

Higher-Order Processes The cartesian-closed structure
of FMPres gives rise to a semantics for higher-order pro-
cesses as for the simply-typed λ-calculus. In slightly greater
detail, abstraction of a variable of type P is simply given by
transposition in the exponential adjunction (−)& P $ P →
(−), and function application is given by the counit of this
adjunction.

Prefixing and Matching The adjunction
FMLin(!P, Q) ∼= FMCts(P, Q) gives rise to a semantics
for an anonymous prefix action, written !. The unit η acts as
a constructor for this action, taking a term t to the prefixed
term !t as follows.

Definition 9. Suppose that Γ 2s !t : !P is derived from
Γ 2s t : P. Let γ ∈ [̂[Γ]] and P ∈ !P. Then

P ∈ [[Γ 2s !t : !P]]〈γ〉 iff P ⊆ [[Γ 2s t : P]]〈γ〉.

The denotation of the judgement 2∅ !P : ! : P is simply
the identity map. The counit ε acts as a destructor for the
! action, intuitively ‘matching’ a ! action in the output of
a term u and passing the resumption after performing the !
to a term t.

8



Definition 10. Suppose that γ ∈ [̂[Γ]] and λ ∈ [̂[Λ#s′
]] and

p ∈ P. Then p ∈ [[Γ,Λ#s′ 2s [u > q(x:Q′ # s′) => t] :
P]]〈γ,λ〉 iff there exists Q ∈ !Q′ such that p ∈ [[t]]〈γ, Q〉,
Q ∈

(
[[q]] ◦ [[u]]

)
〈λ〉 and Q # s′.

Labelled Processes Biproducts
⊕

$∈LP$ give rise to a de-
notational semantics for labelling in exactly the same way
as it did for HOPLA. Injection into the biproduct corre-
sponds to tagging the outputs of a process with a particu-
lar label, and projection corresponds to matching against a
particular label.

Recursion The hom-sets of FMCtss are posets which
have all joins of ω-chains. Let f : Q & P →

C
P be an ar-

row of FMCtss and consider the continuous operation on
hom-sets f∗ : FMCtss(Q, P) → FMCtss(Q, P) given
by f∗(g) = f ◦ (1Q & g) ◦ ∆Q. By Kleene’s fixpoint the-
orem it has a least fixed point fix(f∗) defined as follows.
Let g0 = ∅ ∈ FMCtss([[Γ]], P) and for each n ∈ ω
define gn+1 = f ◦ (1Γ & gn) ◦ ∆[[Γ]], then fix(f∗)〈γ〉 =⋃

n∈ω gn〈γ〉. This fixed point gives a semantics for terms
of the form recx.t as follows.

Definition 11. If the judgement Γ 2s recx.t : P is de-
rived from Γ,x : P#∅ 2s t : P then define

[[Γ 2s recx.t : P]] =def fix([[Γ,x : P#∅ 2s t : P]]∗).

Recursively-defined processes need recursively-defined
types. The isomorphism rep : µj

-P . -P ∼= Pj [µ -P . -P/-P ] :
abs, relating a recursive type to its unfolding, gives rise to
the denotational semantics for terms of recursive types just
as it does for HOPLA.

Nondeterminism Each hom-setFMCtss([[Γ]], P) can be
seen as a subset of the complete FM-preorder !̂[[Γ]]op × P.
Therefore, given a collection of arrows fi : [[Γ]] →

C
P where

the mapping i ,→ fi is supported by s, the join
∑

i∈I fi

of the fi (in !̂[[Γ]]op × P) is an arrow of FMCtss. This
join is given by pointwise union and can be used to give a
denotational semantics to nondeterministic sums as follows.

Definition 12. Suppose that Γ 2s
∑

i∈Iti : P is derived
from the collection of judgements Γ 2si ti : P for each
i ∈ I . Let γ ∈ [̂[Γ]]. Then

[[Γ 2s
∑

i∈Iti : P]]〈γ〉 =
⋃

i∈I

(
[[Γ 2si ti : P]]〈γ〉

)
.

Names and Binding The adjunction (−)#a++ $ δ++
a

gives rise to the denotational semantics for terms of the form
new a.t and t[a]: [[new a.t]] is given by one transposi-
tion of [[t]] in the adjunction, whereas [[t[a]]] arises from

the other transposition. Concrete descriptions of these op-
erations are given here.

Definition 13. Suppose Γ 2s new a.t : δP is derived from
Γ#a 2s∪̇{a} t : P where a /∈ s. Let γ ∈ [̂[Γ]], let b be a
fresh name and let p ∈ P. Then new b. p ∈ [[Γ 2s new a.t :
δP]]〈γ〉 iff (ab) · p ∈ [[Γ#a 2s∪̇{a} t : P]]〈γ〉.

Definition 14. Suppose Γ#a 2s∪̇{a} t[a] : P derives from
Γ 2s t : δP where a /∈ s. Let γ ∈ [̂[Γ#a]] and let p ∈ P.
Then new a. p ∈ [[Γ 2s t : δP]]〈γ〉 iff p ∈ [[Γ#a 2s∪̇{a}
t[a] : P]]〈γ〉.

Structural Rules The denotational semantics associated
with the usual structural rules make use of the cartesian
structure of each FMCtss: weakening corresponds to pro-
jection for example. The semantics of the first new struc-
tural rule (fresh-weakening) comes from the obvious in-
clusion (−)#a ⇒ (−) combined with the isomorphism φ,
and the second new structural rule (support-weakening) gets
its semantics from the inclusion FMCtss′ ↪→ FMCtss.
These rules simply adjust the types of the denotations with-
out substantially altering their semantics.

5.5.3 Substitution as Composition

Substitution effectively amounts to composition of denota-
tions, as the following lemma shows. However, care must
be taken to ensure that all the relevant freshness assump-
tions are satisfied.

Lemma 4 (Semantic Substitution Lemma). Suppose that
Γ,y : R#r 2s t : P and ∆ 2s1 v : R where s1 ∩ r = ∅ and
the variables in Γ are distinct from those in ∆. Then

[[Γ,∆#r 2s∪s1 t[v/y] : P]]
= [[Γ,y : R#r 2s t : P]] ◦

(
1Γ &[[∆ 2s1 v : R]]#r++

)

6 Soundness and Adequacy

The operational semantics gives rise to a notion of ob-
servation that can be made about a process: it is possible
to observe an action 2 P : p : P′ by deriving a judge-
ment of the form P : t

p−→ t′. In fact the match op-
erator reduces these general observations to observations
of just ! actions, because to observe the action p in the
term t is the same as to observe a ! action in the term
[t > p(x:P # s) => !nil].

Lemma 5 (Soundness). If !P : t
!−→ t′ and s is a finite set

of names such that supp(t, t′) ⊆ s then

[[ 2s !t′ : !P]] ⊆ [[ 2s t : !P]].

9



Define a logical relationX #P t between subsetsX ⊆ P
and terms such that 2 t : P by way of an auxiliary relation
p ∈P t between paths p ∈ P and terms such that 2 t : P as
shown in 6. The intuition behind the statement that p ∈P t
is that p is a computation path of type P that the process t
may perform.

X #P t ⇐⇒ ∀p ∈ X. p ∈P t

P ∈!P t ⇐⇒ ∃t′. !P : t
!−→ t′ and P #P t′

Q ,→ p ∈Q→ P t ⇐⇒ ∀u. (Q #Q u ⇒ p ∈P t(u:Q))
new a. p ∈δP t ⇐⇒ Na. p ∈P t[a]

'0 : p ∈⊕
$∈LP!

t ⇐⇒ p ∈P!0
π$0t

abs p ∈µj
&P. &P t ⇐⇒ p ∈Pj [µ &P. &P/&P ] rep t

This relation can be used to demonstrate that if a path
p appears — semantically — in the denotation [[t]] then the
term t can — operationally — perform the path p.

Lemma 6. Suppose Γ 2s t : P where Γ =
x1 : P1

#s1 , . . .,xn : Pn
#sn . For each i ∈ {1, . . . , n} let

γi ∈ P̂i
#si and let vi be a closed term such that 2s\si

vi :
Pi and γi #Pi

vi. Then

[[Γ 2s t : P]]〈γ1, . . . , γn〉Γ #P t[v]

where t[v] is the term obtained by simultaneously substitut-
ing each xi with vi.

Lemma 7. If 2s P : p : P′ and X #P t and P ∈ [[p]]X
then there exists t′ such that P : t

p−→ t′ and P #P′ t′.

It is now possible to show the main theorem of this pa-
per, namely the adequacy of the given semantics of Nominal
HOPLA with respect to observations of ! actions.

Theorem 1 (Adequacy). [[ 2 t : !P]] 7= ∅ if and only if
there exists t′ such that !P : t

!−→ t′.

Obstacles to full abstraction and a tentative proposal to
achieve it are described in [5].

References

[1] N. Benton, G. Bierman, V. de Paiva, and M. Hyland. Lin-
ear lambda-calculus and categorical models revisited. In
E. Borgër, G. Jagër, K. H. Bunı̈ng, S. Martini, and M. Richter,
editors, Proceedings of the Sixth Workshop on Computer Sci-
ence Logic, pages 61–84. Springer Verlag, 1993.

[2] M. J. Gabbay. A Theory of Inductive Definitions with Alpha-
Equivalence. PhD thesis, Cambridge University, 2001. Su-
pervised by Andrew Pitts.

[3] M. J. Gabbay and A. M. Pitts. A new approach to abstract
syntax with variable binding. Formal Aspects of Computing,
13:341–363, 2001.

[4] M. Nygaard and G. Winskel. Domain theory for concurrency.
Theor. Comput. Sci., 316(1-3):153–190, 2004.

[5] D. C. Turner. Nominal Domain Theory for Concurrency. PhD
thesis, Cambridge University, 2008. Supervised by Glynn
Winskel.

[6] G. Winskel and K. G. Larsen. Using information systems to
solve recursive domain equations effectively. Technical Re-
port UCAM-CL-TR-51, University of Cambridge, Computer
Laboratory, 1984.

[7] G. Winskel and F. Zappa Nardelli. new-HOPLA: a higher-
order process language with name generation. In Proc. of 3rd
IFIP TCS, pages 521–534, 2004.

10



A Nominal and FM Set Theory

This appendix comprises a brief introduction to the the-
ories of nominal and Fraenkel-Mostowski (FM) sets. More
comprehensive expositions are available elsewhere[2, 3].

A.1 Nominal Set Theory

Fix an infinite set of names (or ‘atoms’) written A. A
finite permutation of A is a permutation σ of A such that
σa 7= a for only finitely many a ∈ A. The collection of all
finite permutations of A forms a group, written G.
A G-set is a set X together with a G action, written as

an infix ·X or simply ·, on X . A set s ⊆ A supports the
element x of the G-setX if for any σ ∈ G such that σa = a
for all a ∈ s it is also the case that σ · x = x. If x ∈ X
has a finite support then it has a unique smallest finite sup-
port, written supp(x) and referred to as the support of x.
A nominal set is a G-set all of whose elements have finite
support. For example, A is a nominal set with the permu-
tation action σ · a =def σa for each a ∈ A, which means
that supp(a) = {a}. The collection of all finitely-supported
subsets of a nominal set X is a natural notion of the nomi-
nal powerset PfsX of X , where the permutation action on
PfsX is given by σ · A =def {σ · x | x ∈ A}. Similarly the
natural permutation action on functionsX → Y is given by
σ · f =def λx.σ · (f(σ−1 · x)), and the finitely-supported
functions X →fs Y form a nominal function space. Func-
tions with empty support are called equivariant and the col-
lection of nominal sets and equivarant functions forms a cat-
egoryNSet which is a boolean topos.

A.2 FM Set Theory

FM sets are built in a hierarchy VFM rather like that of
ZF sets, with the following differences. Firstly, the starting
point includes the contents of A as well as the empty set.
The permutation action on this collection of atoms gives
rise to a permutation action on all of VFM by ∈-recursion,
which gives rise to a notion of support for arbitrary elements
of VFM. The iterative process of the construction of VFM

then continues in such a way as to only include elements
that have hereditarily finite supports. Thus the collection of
all FM sets behaves as a ‘large’ nominal set, and any FM
set with empty support is a nominal set. The collection of
all FM sets and finitely-supported functions forms a cate-
gory FMSet which has subcategories FMSets compris-
ing sets and functions all of whose supports are contained
in the finite set of names s.

A.3 Name Generation in Nominal Sets

The binary predicate # is used to state that two FM sets
(or two elements of a nominal set) have disjoint supports.

DefiningX ⊗ Y =def {〈x, y〉 | x # y} gives a tensor ⊗ on
NSet. Also, if f : A → X is a finitely-supported function
and X is a FM set then fresh a in fa denotes the unique
x ∈ X such that fa = x for any a ∈ A such that a #
〈f, fa〉 as long as such an a ∈ A exists. If X = {9,⊥}
then f : A → X is a predicate on A and fresh a in fa
coincides with Na. fa where Nis the ‘new’ quantifier of
Pitts and Gabbay.
This permits the definition of the α-equivalence relation

∼α onX ×A by setting 〈x1, a1〉 ∼α 〈x2, a2〉 if and only if
Nb. (a1b) · x1 = (a2b) · x2. The quotient by α-equivalence

(X × A)/∼α may be written δX , and the α-equivalence
class containing the pair 〈a, x〉 is written [a].x. Notice
that supp([a].x) = supp(x) \ {a} so that a is bound in
[a].x. For example, δA = {fresh b in [b].a | a ∈ A} ∪̇
{fresh a in [a].a} ∼= A ∪̇ {∗} where in effect ∗ is a newly
generated name. Thus δ captures the idea of name genera-
tion. The operation δ is the object part of a right adjoint to
(−) ⊗ A; the unit is x ,→ fresh a in [a].x and the counit
is given by concretion: ([a].x)@b =def (ab) · x for freshly
chosen b.

A.4 Name Generation in FM Sets

Turner[5] demonstrates that there is an analogous ad-
junction to (−) ⊗ A $ δ in FM sets given by the situation

(−)#a : FMSets ! FMSets∪̇{a} : δa

where s ⊆fin A and a ∈ A \ s. The left adjoint (−)#a is
defined on objects by X#a =def {x ∈ X | a # x} and
on arrows by restriction. The right adjoint δa can be given
in terms of α-equivalence classes [a].x which are defined in
the universe of FM sets just as in small nominal sets above:
on objects δaX =def {x′ | Nb. x′@b ∈ (ab) · X}, and if
f : X → Y is an arrow of FMSets∪̇{a} and x′ ∈ δaX

then δaf(x′) =def fresh b in [b].
(
((ab) · f)(x′@b)

)
. The

unit is x ,→ fresh b in [b].x as above and the counit is
x′ ,→ x′@a. Notice that if X has empty support then X is
a nominal set and δaX = δX; similarly if f is an equiv-
ariant function. In particular δaA = δA ∼= A ∪̇ {∗}.
Also if s′ ⊆ s it follows that s′, s′ ∪̇ {a}, A \ s′ and
A \ s′ \ {a} are all objects of FMSets∪̇{a}. In this case
δas′ = {fresh b in [b].c | c ∈ s′} ∼= s′ via the isomorphism
above, and δa(s′ ∪̇ {a}) = {fresh b in [b].c | c ∈ s′} ∪̇
{[a].a} ∼= s′ ∪̇ {∗}. Also δa(A \ s′) = {fresh b in [b].c |
c ∈ A\s′} ∪̇ {[a].a} ∼= (A\s′) ∪̇ {∗} and δa(A\s′\{a}) =
{fresh b in [b].c | c ∈ A \ s′} ∼= A \ s′. Summarising, if
a ∈ X then there is a new name ∗ ∈ δaX . This indicates
that δa captures the FM-analogue of the idea of name gen-
eration.

11


