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Abstract. The paper considers an extension of concurrent games with
a payoff, i.e. a numerical value resulting from the interaction of two
players. We extend a recent determinacy result on concurrent games [5]
to a value theorem, i.e. a value that both players can get arbitrarily
close to, whatever the behaviour of their opponent. This value is not
reached in general, i.e. there is not always an optimal strategy for one
of the players (there is for finite games). However when they exist, we
show that optimal strategies are closed under composition, which opens
up the possibility of computing optimal strategies for complex games
compositionally from optimal strategies for their component games.

1 Introduction

Games are a well-established tool in mathematics, economics, logic, and of course
computer science: in the latter, two-player games in particular are very widely
used to model situations where an agent (e.g. a program) interacts with its envi-
ronment (e.g. the user, the operating system). For instance, researchers in game
semantics [9] have managed to build very precise (fully abstract [1, 8]) models
of higher-order programming languages with various computational effects. An-
other particularly rich line of work has been the application of game-theoretic
tools for algorithmic and verification purposes: one expresses a desirable prop-
erty of a system as a game, and reduces the satisfaction of this property to the
existence of a “good” strategy for this game. Here, the meaning of “good” can
be either qualitative (positions are winning or losing, with each player wanting
to reach a winning position) or quantitative (positions have a given payoff, with
both players trying to maximize their payoff). For these purposes, one gener-
ally wants the games considered to be determined : qualitatively, this means that
one of the players necessarily has a winning strategy, and quantitatively that
the game has a well-defined value that well-chosen strategies can reach or get
arbitrarily close to. For this reason, the classes of games considered for these pur-
poses generally enjoy a determinacy : the most well-known such result is Martin’s
famous theorem [12] stating that for sequential, tree-like games whose winning
positions form a Borel set, one of the players must have a winning strategy. It
is well-known that Martin’s theorem generalizes to the quantitative setting if
the game is zero-sum, i.e. in each position the payoffs of the two players sum



to zero. In the last decade, there has been a growing interest in extensions of
these games with concurrency. One very successful definition of (turn-based)
concurrent games has been proposed by Henzinger, de Alfaro et. al. [3, 4]: their
games are based on Blackwell games [13], where at any point, the next state
is decided by a function of parallel choices of both players. In these games, the
pure strategy determinacy result of sequential games is weakened into a mixed
strategy determinacy, where strategies are allowed to make probabilistic choices.

However in semantics, models of concurrent processes generally allow a more
liberal, non turn-based form of concurrency. Starting with the work of Petri,
many have come to advocate a view of concurrency based on partial orders, spec-
ifying the causal dependency between events – see [16] for an early summary of
Petri’s work and its relation with domain theory. Following this approach, sev-
eral notions of concurrent games have been proposed as a basis for denotational
semantics: in terms of closure operators [2] or asynchronous transition systems
[15]. Recently, Winskel and Rideau introduced a more general setting for con-
current games [17]. It is based on the notion of event structure [18], a partial
order of causal dependency on events with a consistency relation expressing non-
deterministic choice. In the present paper, it is this framework that we will refer
to by concurrent games. We showed in [5] that in this setting qualitative deter-
minacy is satisfied for well-founded games meeting a structural condition called
race-freedom expressing that moves of one player do not directly interfere with
moves of the other. Here, we consider an extension of concurrent games with
zero-sum payoff, and show a generalization of the qualitative determinacy result
of [5] to a quantitative one. As the reader will see this is not a trivial exercise
and requires a much finer analysis than for the qualitative case.

Note that we obtain pure strategy determinacy – our strategies do not make
probabilistic choices, although they can act non-deterministically. There is an
apparent contradiction with the line of work based on Blackwell games mentioned
above, since they only have mixed strategy determinacy. This is due to a crucial
difference between the two settings: in our games, no fairness assumption is
made and strategies can legitimately choose not to play, possibly resulting in a
deadlock if both strategies choose to do so. We argue that this is a desirable
property, since very often in computer science we have to deal with systems that
might not terminate. However from the game theory perspective, this implies
that Blackwell games are not instances of our zero-sum concurrent games. (They
do fit into our general framework, since fairness can be expressed by non zero-
sum payoff by setting both players to be losing at incomplete positions.)

We also investigate quantitative features with respect to the compositional
structure of concurrent games. In sequential games, strategies can be composed
using a form of parallel composition and a hiding operation to make internal
play invisible. This fact (first remarked on by Conway and emphasised by Joyal
[10] in his analysis of Conway’s work [6]) is seldom used in economics and algo-
rithmics. However, it is at the very heart of game semantics, the compositional
analysis of programs and programming languages in terms of games and strate-
gies. Our concurrent games are compositional; in fact, the main result of [17] was



to define and characterise strategies for which composition behaves well (i.e. is
associative, and has identities). Not only is compositionality a prerequisite for
building denotational models of programming languages (as they organize natu-
rally as categories, see e.g. [11]), but it is also a very successful general approach
for proving properties of complex programs. Adapting the earlier work on con-
current strategies, we show here that optimal strategies are stable under com-
position, thus building a bicategory of optimal strategies. This is a significant
step towards a compositional analysis of optimal strategies: instead of modeling
complex behaviours as payoff functions and then computing values and optimal
strategies, construct complex optimal strategies by composition from elemen-
tary ones. Extensions with payoff should also prove useful for purely semantic
purposes: pay-off is a powerful notion that allows us to express familiar winning
strategies – as strategies of positive value – as well as more arcane game-theoretic
notions, such as well-bracketing [14].

Outline. In Section 2, we recall the framework of concurrent games originally
presented in [17]. In Section 3, we show how to enrich these concurrent games
with payoff and introduce the notion of value of games and strategies. In Section
4, we prove the main result of our paper, the value theorem. Finally in Section 5,
we investigate the compositional aspects of payoff games; in particular we show
that optimal strategies are stable under composition and form a bicategory.

2 Preliminaries

2.1 Event structures

An event structure comprises (E,≤,Con), consisting of a set E, of events which
are partially ordered by ≤, the causal dependency relation, and a nonempty
consistency relation Con consisting of finite subsets of E, which satisfy

{e′ | e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆ X ∈ Con⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈ X ⇒ X ∪ {e} ∈ Con

The configurations, C∞(E), of an event structure E consist of those subsets
x ⊆ E which are

Consistent: ∀X ⊆ x. X is finite⇒ X ∈ Con , and
Down-closed: ∀e, e′. e′ ≤ e ∈ x⇒ e′ ∈ x.

Often we shall be concerned with just the finite configurations of an event struc-
ture. We write C(E) for the finite configurations of an event structure E.

Two events which are both consistent and incomparable w.r.t. causal depen-
dency in an event structure are regarded as concurrent. In games the relation
of immediate dependency e _ e′, meaning e and e′ are distinct with e ≤ e′



and no event in between, will play an important role. For X ⊆ E we write
[X] for {e ∈ E | ∃e′ ∈ X. e ≤ e′}, the down-closure of X; note if X ∈ Con, then
[X] ∈ Con is a configuration and in particular each event e is associated with a
prime configuration [e].

Notation 1 Let E be an event structure. We use x−⊂y to mean y covers x in

C∞(E), i.e. x ⊂ y in C∞(E) with nothing in between, and x
e
−−⊂ y to mean

x ∪ {e} = y for x, y ∈ C∞(E) and event e /∈ x. We use x
e
−−⊂ , expressing that

event e is enabled at configuration x, when x
e
−−⊂ y for some y.

Definition 1. Let E and E′ be event structures. A (partial) map of event
structures f : E → E′ is a partial function on events f : E ⇀ E′ such
that for all x ∈ C(E) its direct image fx ∈ C(E′) and ∀e1, e2 ∈ x, f(e1) =
f(e2) (with both defined)⇒ e1 = e2 .

Maps of event structures compose as partial functions, with identity maps
given by identity functions. We will say the map is total if the function f is total.

Definition 2 (Process operations).

– Products. The category of event structures with partial maps has products
A×B with projections Π1 to A and Π2 to B. The effect is to introduce ar-
bitrary synchronisations between events of A and events of B in the manner
of process algebra.

– Restriction. The restriction of an event structure E to a subset of events
R, written E � R, is the event structure with events E′ = {e ∈ E | [e] ⊆ R}
and causal dependency and consistency induced by E.

Using these two operations, we can obtain a notion of synchronized com-
position. Synchronized compositions play a central role in process algebra, in
such seminal work as Milner’s CCS and Hoare’s CSP. Synchronized compositions
of event structures A and B are obtained as restrictions A×B�R. We obtain pull-
backs as a special case. Let f : A→ C and g : B → C be maps of event structures.
Defining P to be A×B � {p ∈ A×B | fΠ1(p) = gΠ2(p) with both defined}, we
obtain a pullback square P

Π1

{{
Π2

##
A

f ##

B

g{{
C

in the category of event structures. When f and g are total the same construction
gives the pullback in the category of event structures with total maps.

Definition 3 (Projection). Let (E,≤,Con) be an event structure. Let V ⊆ E
be a subset of ‘visible’ events. Define the projection of E on V , to be E↓V =def

(V,≤V ,ConV ), where v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and X ∈ ConV iff X ∈
Con & X ⊆ V .



2.2 Concurrent strategies

Event structures with polarity Both a game and a strategy in a game are
to be represented using event structures with polarity, which comprise (E, pol)
where E is an event structure with a polarity function pol : E → {+,−} ascribing
a polarity + (Player) or − (Opponent) to its events. The events correspond to
(occurrences of) moves. Maps of event structures with polarity are maps of event
structures which preserve polarities.

Definition 4 (Basic operations).

– Dual. The dual, E⊥, of an event structure with polarity E comprises the
same underlying event structure E but with a reversal of polarities.

– Simple parallel composition. Let A and B be event structures with po-
larity. The operation A‖B simply juxtaposes disjoint copies of A and B,
maintaining their causal dependency and specifying a finite subset of events
as consistent if it restricts to consistent subsets of A and B. Polarities are
unchanged.

All the constructions previously introduced for event structures generalize
directly in the presence of polarities.

Pre-strategies Let A be an event structure with polarity, thought of as a game;
its events stand for the possible occurrences of moves of Player and Opponent
and its causal dependency and consistency relations the constraints imposed by
the game. A pre-strategy represents a nondeterministic play of the game—all its
moves are moves allowed by the game and obey the constraints of the game; the
concept will later be refined to that of strategy. A pre-strategy in A is defined
to be a total map σ : S → A from an event structure with polarity S. Two
pre-strategies σ : S → A and τ : T → A in A will be essentially the same when
they are isomorphic, i.e. there is an isomorphism θ : S ∼= T such that σ = τθ;
then we write σ ∼= τ .

Let A and B be event structures with polarity. Following Joyal [10], a pre-
strategy from A to B is a pre-strategy in A⊥‖B, so a total map σ : S → A⊥‖B.
We write σ : A + //B to express that σ is a pre-strategy from A to B. Note that
a pre-strategy σ in a game A, e.g. σ : S → A, coincides with a pre-strategy from
the empty game ∅ to the game A, i.e. σ : ∅ + //A.

Composing pre-strategies We present the composition of pre-strategies via
pullbacks. Given two pre-strategies σ : S → A⊥‖B and τ : T → B⊥‖C, ignoring
polarities we can consider the maps on the underlying event structures, viz.
σ : S → A‖B and τ : T → B‖C. Viewed this way we can form the pullback in
the category of event structures as shown below

A ‖ T idA‖τ
**

P

Π2 66

Π1
((

A ‖ B ‖ C // A ‖ C

S ‖ C σ‖idC

44



where the map A‖B‖C → A‖C is undefined on B and acts as identity on A
and C. The partial map from P to A‖C given by the diagram above (either
way round the pullback square) factors as the composition of the partial map
P → P ↓ V , where V is the set of events of P at which the map P → A‖C is
defined, and a total map P ↓ V → A‖C. The resulting total map gives us the
composition τ�σ : P ↓ V → A⊥‖C once we reinstate polarities.

Identities w.r.t. composition are given by copy-cat strategies. Let A be an
event structure with polarity. The copy-cat strategy from A to A is an instance
of a pre-strategy, so a total map γA : CCA → A⊥‖A. It describes a concurrent
strategy based on the idea that Player moves, of positive polarity, always copy
previous corresponding moves of Opponent, of negative polarity. For c ∈ A⊥‖A
we use c to mean the corresponding copy of c, of opposite polarity, in the al-
ternative component. Define CCA to comprise the event structure with polarity
A⊥‖A together with the extra causal dependencies generated by c ≤CCA

c for all
events c with polA⊥‖A(c) = +. The copy-cat pre-strategy γA : A + //A is defined

to be the map γA : CCA → A⊥‖A where γA acts as the identity function on the
common set of events.

Interaction In this paper, we will be particularly interested in the results of the
interaction between a strategy σ : S → B and a counter-strategy τ : T → B⊥

in order to determine the resulting payoff. Unlike the composition τ�σ where
the interaction of σ and τ are hidden, it is the status of the configurations in
C∞(B) their full interaction induces which decides the resulting payoff. Ignoring
polarities, we have total maps of event structures σ : S → B and τ : T → B.
Form their pullback,

P
Π1

zz
Π2

$$
S

σ ##

T

τ{{
B ,

to obtain the event structure P resulting from the interaction of σ and τ . Be-
cause σ or τ may be nondeterministic there can be more than one maximal
configuration z in C∞(P ). Define the set of results of the interaction of σ and τ
to be

〈σ, τ〉 =def {σΠ1z | z is maximal in C∞(P )} .

Strategies The main result of [17] is that two conditions on pre-strategies,
receptivity and innocence, are necessary and sufficient for copy-cat to behave as
identity w.r.t. the composition of pre-strategies. Receptivity ensures an openness
to all possible moves of Opponent. innocence restricts the behaviour of Player;
Player may only introduce new relations of immediate causality of the form
	_ ⊕ beyond those imposed by the game.

Definition 5. – Receptivity. A pre-strategy σ is receptive iff σx
a
−−⊂ & polA(a) =

− ⇒ ∃!s ∈ S. x
s
−−⊂ & σ(s) = a .



– innocence. A pre-strategy σ is innocent when it is both
+-innocent: if s _ s′ & pol(s) = + then σ(s) _ σ(s′), and
−-innocent: if s _ s′ & pol(s′) = − then σ(s) _ σ(s′).
A strategy is a receptive and innocent pre-strategy.

Theorem 1 (from [17]). Let σ : A + //B be pre-strategy. Copy-cat behaves as
identity w.r.t. composition, i.e. σ ◦γA ∼= σ and γB ◦σ ∼= σ, iff σ is receptive and
innocent. Copy-cat pre-strategies γA : A + //A are receptive and innocent.

Theorem 1 motivated the definition of a strategy as a pre-strategy which is
receptive and innocent. In fact, we obtain a bicategory, Games, in which the
objects are event structures with polarity—the games, the arrows from A to
B are strategies σ : A + //B and the 2-cells are maps of spans. The vertical
composition of 2-cells is the usual composition of maps of spans. Horizontal
composition is given by the composition of strategies � (which extends to a
functor on 2-cells via the universality of pullback).

3 Concurrent games with payoff

We begin the core of the paper, the treatment of payoff in concurrent games. R
denotes R ∪ {−∞,+∞}, the reals extended with a minimum and maximum.

Definition 6. A concurrent game with payoff is a triple (A, κ+A, κ
−
A), where

A is a concurrent game and κ+A, κ
−
A : C∞(A)→ R are payoff functions.

In all of this paper, we will only consider zero-sum concurrent games, i.e.
for all z ∈ C∞(A), κ−A(z) = −κ+A(z). It follows that our games with payoff will be
described by a concurrent game and its payoff function κA = κ+A : C∞(A)→ R.
We extend the usual constructions on concurrent games to games with payoff.

Definition 7 (Constructions).

– Dual. If A is a concurrent game with payoff, then the payoff function on
A⊥ is defined by κA⊥(x) = −κA(x), for x ∈ C∞(A⊥).

– Parallel composition. If A,B are concurrent games with payoff, then the
payoff function on A ‖ B is defined by κA‖B(x) = κA(x1) + κA(x2), where
x1 ∈ C∞(A) is the projection of x on A and x2 ∈ C∞(B) is the projection of
x on B.

We now turn to the definitions leading to the value of a game. Since games
and strategies are nondeterministic, these definitions come in two variants: the
optimistic describing the outcome of a game if all the nondeterministic choices
are in favour of Player, and the pessimistic describing the dual case, when all
of those choices are in favour of Opponent. One of the main result of the paper
will be that for race-free well-founded games (to be defined below), the two
corresponding notions of value coincide.



Definition 8. We define the optimistic (↑) and pessimistic (↓) results of
an interaction, and values of a strategy and of a game, as follows. Here, σ is a
strategy on A and τ is a counter-strategy (a strategy on A⊥), and the notation
σ : A signifies a strategy σ : S → A.

r↑(σ, τ) = supx∈〈σ,τ〉 κA(x) r↓(σ, τ) = infx∈〈σ,τ〉 κA(x)

v↑(σ) = infτ :A⊥ r↑(σ, τ) v↓(σ) = infτ :A⊥ r↓(σ, τ)
v↑(A) = supσ:A v

↑(σ) v↓(A) = supσ:A v
↓(σ)

We say that a game A has a value if v↑(A) = v↓(A) = −v↓(A⊥) = −v↑(A⊥):
the optimistic and pessimistic values coincide, and commute with (−)⊥. The
commutation with (−)⊥ is a form of minimax property, since the order of quan-
tification on strategies is reversed in v(A) and −v(A⊥), whereas the coincidence
of the optimistic and pessimistic value deals with nondeterminism. Note that
not all games have a value:

Example 1. Take the game A = 	 ⊕ with two events of opposite po-
larities conflicting with each other, along with κ(∅) = 0, κ({⊕}) = 1 and
κ({	}) = −2. Then it is easy to prove that v↑(A) = 1, v↓(A) = −2, v↑(A⊥) = 2
and v↓(A⊥) = −1.

The example above suggests a simple relationship between v↓(A) and v↑(A⊥)
but this is not always the case. For example, consider the infinite game A com-
prising the event structure with polarity

	 ⊕1
� ,,2⊕2

� ,,2⊕3
� ,,2· · · � ,,2⊕n � ,,2· · ·

where κ(∅) = 0, κ({⊕1, . . . ,⊕n}) = n, κ({⊕1, . . . ,⊕n}∪{	}) = −n, κ({⊕1, . . .}) =
−∞ and κ({⊕1, . . .} ∪ {	}) = +∞. Then one can check that the optimistic and
pessimistic values coincide, in fact this is always the case when games do not have
conflict. A direct analysis of the available strategies for Player and Opponent
shows that v(A) = 0, whereas v(A⊥) = +∞.

The first example features a race, where both players compete for the same
resource, whereas the second example is not well-founded : the game allows
infinite configurations. These brings us to the two following notions, that will be
crucial to get the value theorem.

Definition 9. A game A is race-free if for all x ∈ C(A) such that x
a
−−⊂ and

x
a′

−−⊂ with pol(a) = − and pol(a′) = +, we have x ∪ {a, a′} ∈ C(A).
A game A is well-founded if every configuration in C∞(A) is finite.

Definition 10. Let A be a concurrent game with payoff, and x ∈ C∞(A). Let
A/x be the residual of A after x, comprising

– events, {a ∈ A \ x | x ∪ [a]A ∈ C∞(A)},
– consistency relation, X ∈ ConA/x ⇔ X ⊆f A/x & x ∪ [X]A ∈ C∞(A),
– causal dependency, the restriction of that on A.

Define κA/x : C∞(A/x) → R by taking κA/x(y) = κA(x ∪ y). Finally, define
(A, κA)/x = (A/x, κA/x). When x is a singleton {a}, we shall generally write
A/a instead of A/{a}.



4 The value theorem

In this section, we prove the value theorem on concurrent games. The proof
proceeds in two steps. First, we exhibit key constructions on strategies and the
study the results of their interactions. This analysis will allow us to characterize
the values of all positions of the game. Exploiting well-foundedness of the game,
we will deduce the sought-for value theorem.

4.1 Constructions on strategies

In “glueing” strategies together it is helpful to assume that all the initial negative
moves of the strategies are exactly the same, and indeed coincide with the initial
negative moves of the game:

Lemma 1. Let σ : S → A be a strategy, then there exists a strategy σ′ : S′ → A
with σ′ ∼= σ, for which

∀s′ ∈ S′. polS′ [s′]S′ = {−} ⇒ σ′(s′) = s′ . (†)

Henceforth we will assume all strategies satisfy the property (†). In particular,
its adoption facilitates the definition of a ‘sum’ of strategies in a game.

Proposition 1. Let σi : Si → A, for i ∈ I, be strategies (assumed to satisfy (†)).
W.l.og. we may assume that whenever indices i, j ∈ I are distinct then so are
those events of Si and Sj which causally depend on a positive event (otherwise
we could tag such events by their respective indices). Define S to be the event
structure with events

⋃
i∈I Si, causal dependency s ≤S e′ iff s ≤Si

e′, for some
i ∈ I, and consistency X ∈ ConS iff X ∈ ConSi

, for some i ∈ I. Defining
[]i∈I σi(s) = σi(s) if s ∈ Si yields a strategy []i∈I σi : S → A.

The next construction takes a strategy σ on a game A/a, where a is an initial
positive event of game A, and creates a strategy on A that starts by playing a,
then resumes as σ.

Proposition 2. Suppose A is a race-free game such that ∅
a
−−⊂ with pol(a) = +.

Then for any strategy σ : S → A/a, where w.l.o.g. a /∈ S, there is a strategy
playa(σ) : S′ → A: the event structure S′ comprises

– events, S ∪ {a},
– causal dependency, that on S extended by a ≤S′ s, for s ∈ S, whenever
a ≤A σ(s),

– with consistency, X ∈ ConS′ iff X ∩ S ∈ ConS,

and playa(σ)(s) = σ(s), for s ∈ S, with playa(σ)(a) = a.

Given a strategy on σ on a residual game A/a, where a is an initial negative
event of A, we can create a strategy on A that awaits a, then resumes as σ.



Proposition 3. Suppose A is a game such that ∅
a
−−⊂ with pol(a) = −. Then

for any strategy σ : S → A/a, where w.l.o.g. a /∈ S, there is a strategy waita(σ) :
S′ → A: the event structure S′ comprises

– events, S ∪A−, where A− =def {a′ ∈ A | polA[a′]A ⊆ {−}},
– causal dependency, that on S and A− extended by a ≤S′ s, for s ∈ S,

whenever a ≤A σ(s) or pol(s) = +,
– with consistency, X ∈ ConS′ iff X ∩ S ∈ ConS & waita(σ)X ∈ ConA,

where waita(σ)(s′) is defined to be σ(s′) if s′ ∈ S, otherwise s′.

It is useful to extend the notion of residual from games to strategies:

Definition 11. Let σ : S → A be a strategy and x ∈ C∞(S). Define the function
σ/x : S/x→ A/σx to be the restriction of σ. In the case where x is a singleton
{s}, we shall generally write σ/s instead of σ/{s}.

Proposition 4. For σ : S → A a strategy and x ∈ C∞(S), the function σ/s :
S/s→ A/σ(s) is a strategy.

Let A be a game with payoff κA and σ : S → A and τ : T → A⊥ be strategies.
The set of values resulting from their interaction is given by {κAx | x ∈ 〈σ, τ〉},
which we generally write as κ〈σ, τ〉 when the game is clear from the context.
We use 〈σ, τ〉+ =def {x ∈ 〈σ, τ〉 | + ∈ pol x} for the configurations in 〈σ, τ〉
containing events of positive polarity. We will make crucial use of the following
analysis of the interactions between strategies.

Lemma 2. Let A be a well-founded race-free game with payoff. Let σ and σi,
for i ∈ I, be strategies in A, and τ a strategy in A⊥. Then,

κ〈σ, τ〉 = {−v | v ∈ κ〈τ, σ〉} κ〈playa(σ), τ〉 = κ〈σ, τ/a〉
κ〈[]i∈I σi, τ〉 ⊆

⋃
i∈I κ〈σi, τ〉 κ〈[]i∈I σi, τ〉+ =

⋃
i∈I κ〈σi, τ〉+

κ〈waita(σ), τ〉 ⊇
⋃
t:τ(t)=a κ〈σ, τ/t〉 κ〈waita(σ), τ〉+ =

⋃
t:τ(t)=a κ〈σ, τ/t〉+

From this follow two important corollaries. Firstly, if a is an initial pos-
itive event of A we have κ〈playa(σ),waita(τ)〉 = κ〈σ, τ〉; two strategies, one
playing a move and the other waiting for the move, synchronise. This immedi-
ately follows from the lemma above and the observation that waita(σ)/a = σ.
Secondly, the following additional construction will be crucial. For (ei)i∈I the
family of negative minimal events of A and strategies σi : Si → A/ei, we define
casei∈Iσi =def []i∈I waiteiσi. Roughly, this strategy waits for an input ei and
then proceeds as σi; though the full story is subtle as two distinct events ei and
ej may be consistent with each other and the strategies σi and σj overlap. From
the lemma we can prove that for all τ : T → A⊥ such that T has a minimal
+-event, then

κ〈casei∈Iσi, τ〉 ⊆
⋃

i∈I,t:τ(t)=ai

κ〈σi, τ/t〉 κ〈casei∈Iσi, τ〉+ =
⋃

i∈I,t:τ(t)=ai

κ〈σi, τ/t〉+



In Lemma 2 and the observation above, in all the cases where we have inclusions
instead of equalities this is by necessity. For instance with the case construc-
tion above, a configuration in 〈σi, τ〉, by definition a maximal configuration of
the pullback of σi and τ , although it reappears as a configuration of the pull-
back of casei∈Iσi and τ , it may no longer be maximal so fail to contribute to
〈casei∈Iσi, τ〉.

4.2 Values of these constructions

Lemma 3. For any race-free well-founded game A, we have:

v↑(playa(σ)) ≤ v↑(σ) v↓(playa(σ)) ≤ v↓(σ)
v↑(σ) ≤ v↑(σ/a) v↓(σ) ≤ v↓(σ/a)

Proof. Direct consequence of Lemma 2.

Lemma 4. Suppose A is race-free and well-founded and σ : S → A is a strategy
with a minimal +-event. Let (fj)j∈J be the family of minimal +-events of A.
Let σ : S → A be a strategy such that there is a minimal +-event s ∈ S. Then,
v↓(σ) ≤ supj∈J v

↓({fj}) and v↑(σ) ≤ supj∈J v
↑({fj}).

Proof. The pessimistic case follows from Lemma 2. Optimistic case. Suppose
that the inequality is false, i.e. supj∈J v

↑({fj}) < v↑(σ). This implies that there

is α ∈ R such that supj∈J v
↑({fj}) < α and v↑(σ) > α. The first inequality

implies ∀j ∈ J, ∀σ : A′/fj , ∃τ ′ : A⊥/fj , ∀z′ ∈ 〈σ′, τ ′〉, κ(z′) < α, which is
easily shown to imply

∀(σk)k∈K , ∃(τj)j∈σK , ∀k ∈ K, ∀z′ ∈ 〈σk, τσk〉, κ(z′) < α (1)

where K is the set of positive minimal events in S. Applying this property to the
family of strategies obtained by σk = σ/k, we get a family of counter-strategies
(τj)j∈σK . We extend this family to J by setting τj to be the empty strategy
(closed under receptivity) whenever ej 6∈ σK. Thus, we get a family (τj)j∈J .
Similarly, the second inequality implies that

∀τ : A⊥, ∃z ∈ 〈σ, τ〉, κ(z) > α .

Applied to τ = casej∈Jτj , we get z ∈ 〈σ, casej∈Jτj〉 such that κ(z) > α. By our
observation on the interaction with case, there is k0 ∈ K, and z′ ∈ 〈σ/k0, τσk0〉
such that κ(z′) = κ(z) > α. However, applying (1) to k0 also shows that κ(z′) <
α, contradiction. Hence, the required inequality is true.

Lemma 5. Let A be a race-free well-founded game and (ei)i∈I the family of its
negative minimal events. Then,

min(κ(∅), infi∈I supσ:A/ei v
↓(σ)) ≤ v↓(A)

min(κ(∅), infi∈I supσ:A/ei v
↑(σ)) ≤ v↑(A)



Proof. For as long as possible, we do not distinguish the optimistic and pes-
simistic cases. If the inequality is false, there is α ∈ R such that min(κ(∅), infi∈I supσ:A/ei v(σ)) >
α > v(A), which in turn implies the following three propositions:

κ(∅) > α (2)

∀i ∈ I, ∃σi : A/ei, ∀τ : A⊥/ei, r(σi, τ) > α (3)

∀σ : A, ∃τ : A⊥, r(σ, τ) < α (4)

In particular, (3) gives a family (σi)i∈I . Instantiating (4) to casei∈Iσi, we get
τ : T → A⊥ such that r(casei∈Iσi, τ) < α.

κ(∅) > α (5)

∀i ∈ I, ∀t, τ(t) = ei ⇒ r(σi, τ/t) > α (6)

r(casei∈I , τ) < α (7)

Pessimistic case. Since r(casei∈Iσi, τ) < α, there must be y ∈ 〈casei∈Iσi, τ〉 such
that κ(y) < α. If T has no minimal +-event, then necessarily we have y = ∅,
therefore κA(y) = κA(∅) > α, contradiction. Therefore, T has a minimal +-
event. Then by our analysis of interactions for case, there is a minimal +-event
t ∈ T and τ(t) = ei0 and y′ ∈ 〈σi0 , τ/t〉 such that κ(y′) = κ(y) < α. But this is
absurd by (6), so we have found a contradiction.
Optimistic case. By (7) instantiated to the pessimistic case we have that for all
y ∈ 〈casei∈I , τ〉, κ(y) < α. Take one such y ∈ 〈casei∈I , τ〉 (〈casei∈I , τ〉 is non-
empty by Zorn’s lemma). As above, y cannot be empty as that would cause a
contradiction, and T must have a minimal +-event. Therefore, there is a minimal
+-event t ∈ T and τ(t) = ei0 and y′ ∈ 〈σi0 , τ/t〉 such that κ(y′) = κ(y) < α,
contradicting (6).

4.3 Value theorem

Let A be a fixed well-founded and race-free game.

Lemma 6. Let x ∈ C(A). Let (ei)i∈I be the family of extensions of x of negative
polarity, and (fj)j∈J be the family of extensions of x of positive polarity. Then,

v↑(x) = max(min(κ(x), inf
i∈I

v↑(x ∪ {ei})), sup
j∈J

v↑(x ∪ {fj}))

v↓(x) = max(min(κ(x), inf
i∈I

v↓(x ∪ {ei})), sup
j∈J

v↓(x ∪ {fj}))

Where the value v(x) of a configuration x ∈ C(A) is defined as v(A/x).

Proof. The reasoning is the same in the optimistic and pessimistic cases, so we
do not distinguish them.
≤. Let σ : S → A/x be a strategy. If there is a minimal event s ∈ S with

pol(s) = +, then v(x) ≤ v(σ) ≤ supj∈J v(x∪{fj}) by Lemma 4. Otherwise, there
is no such minimal s ∈ S. Then v(σ) ≤ κ(x). Indeed, letting τ : T → A/x be the



empty strategy closed by receptivity, we have 〈σ, τ〉 = {∅} and r(σ, τ) = κ(x).
Similarly taking i0 ∈ I, by Lemma 3 we have v(σ) ≤ v(σ/ei0), and therefore
v(σ) ≤ infi∈I v(x ∪ {ei}).
≥. Let us prove that supj∈J v(x ∪ {fj}) ≤ v(x), taking j0 ∈ J and σ :

A/(x ∪ {fj0}). Then by Lemma 3 we have v(playfj0σ) ≤ v(σ) and v(σ) ≤ v(x).

Finally, we need to prove that min(κ(x), infi∈I v(x ∪ {ei})) ≤ v(x), but this is
Lemma 5.

Theorem 2. If A is well-founded and race-free then A has a value, i.e. we have:

v↑(A) = v↓(A) v(A) = −v(A⊥)

(Note that the second equality only makes sense because by the first, we can talk
in a non-ambiguous way of the value v(A) of a game A.)

Proof. Relatively direct consequence of Lemma 6.

We say that a strategy σ : S → A is optimal when its pessimistic value
is equal to the value of the game. Note that it also implies that the optimistic
value is equal to the value of the game, since for all σ : S → A we must have
v↓(σ) ≤ v↑(σ) ≤ v(A). It also follows that for optimal strategies, the pessimistic
and optimistic values coincide. When σ is optimal, we will therefore sometimes
just write v(σ) for its value.

Example 2. Any well-founded race-free game has a value. However this value is
not necessarily reached: there are games without optimal strategies. Consider
the game A with events {⊕i | i ∈ N}, pairwise inconsistent, with κ(∅) = 0
and κ({⊕i}) = i. Its value is +∞ since each positive natural number can be
reached, but no strategy σ satisfies v↓(σ) = +∞ (though the strategy that plays
a nondeterministic choice of natural number satisfies v↑(σ) = +∞).

5 Compositionality of optimal strategies

Finally we study how payoff relates to the composition of strategies. We hope
that thinking compositionally about values and optimal strategies can be helpful
in computing values and optimal strategies for complex games from smaller ones.
There are two main kinds of composition of strategies. The first is the categorical
composition τ�σ of σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C. The second is parallel
composition σ ‖ τ : S ‖ T → A ‖ B.

We start this section with the observation that for any strategy σ : S → A
we have that v↓(σ) = inf{κ(σx) | x ∈ C(S) +-maximal}, since the definition
of pessimistic value quantifies at the same time over Opponent strategies and
resulting interactions. From this, we get:

Proposition 5. For strategies σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C, we have
v↓(τ � σ) ≥ v↓(τ) + v↓(σ). Likewise for σ : S → A and τ : T → B, we have
v(σ ‖ τ) = v(σ) + v(τ).



For categorical composition, v↓(τ � σ) ≤ v↓(τ) + v↓(σ) does not hold in
general, and neither do the two inequalities in the optimistic case. However, the
situation is different for optimal strategies. To establish this, we first note the
following:

Proposition 6. For any race-free, well-founded games A and B, v(A ‖ B) =
v(A) + v(B).

Proof. By the value theorem, it does not matter whether we work on the opti-
mistic or pessimistic cases. By simplicity, let us pick the pessimistic one. Firstly,
we prove that v(A ‖ B) ≥ v(A) + v(B). Indeed, let σ : S → A and τ : T → B be
strategies. Then, as needed we have v↓(σ ‖ τ) ≥ v↓(σ) + v↓(τ) by Proposition 5.

Moreover, this inequality also holds for A⊥ and B⊥, therefore v(A⊥ ‖ B⊥) ≥
v(A⊥) + v(B⊥), from which it follows that v(A ‖ B) ≤ v(A) + v(B) by the value
theorem and the definition of the dual of games with payoff.

Theorem 3. If σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C are optimal strategies, so
is τ�σ. Moreover copycat is optimal, therefore there is a bicategory of concurrent
games with payoff and optimal strategies.

Proof. Suppose σ and τ optimal. We reason as follows:

v↓(τ � σ) ≥ v↓(σ) + v↓(τ)

= v(A⊥ ‖ B) + v(B⊥ ‖ C)

= v(A⊥ ‖ C)

This implies that v↓(τ � σ) = v(A⊥ ‖ C), since a strict inequality would contra-
dict the definition of v(A⊥ ‖ C).

Copycat is optimal: take a +-maximal x ∈ C(A⊥ ‖ A). Necessarily, x has the
form y∪y, where y ∈ C(A). Moreover, κA⊥‖A(x) = κA(y)−κA(y) = 0, therefore

we have v↓(γA) = 0. However we also have v(A⊥ ‖ A) = v(A) − v(A) = 0,
therefore copycat is optimal.

We finish this section by remarking that from the theorem above it follows
that when σ and τ are optimal, we have v(τ �σ) = v(σ) + v(τ), since both sides
are forced by optimality to coincide with the value of the game.

6 Conclusion

We have proved a value theorem for race-free well-founded concurrent games.
Note that this theorem is not an equilibrium theorem since the value is not always
reached. However it is always reached in finite games. In fact our constructions
on strategies give an algorithm to compute the value and optimal strategies for
finite games. In future we plan to investigate the existence and computation
of equilibria in the non-zero-sum case. This will require the extension of our
framework to deal with probabilistic strategies, and should allow to formulate a
better connection with the concurrent games of [3, 7].



We proved that optimal strategies are stable under composition, forming
a bicategory. This compositional structure is worth investigating further. We
hope that it can be extended to a cartesian-closed category of payoff games
and optimal strategies, thus providing the basis for a concurrent programming
language based on the simply-typed λ-calculus and concurrent operations on
strategies, for which typable terms always describe optimal strategies.
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A Preliminaries : stable families and composition

The detailed proofs often rely on stable families. Constructions such as product
and pullback are often done most conveniently in the category of stable families.
There is a full and faithful embedding of the category of event structures into
the category of stable families. It has a right adjoint which translates limits
such as pullback and product of stable families to the corresponding universal
constructions in the category of event structures.3

Definition 12. For σ : S → A and τ : T → A⊥ we will write [σ, τ ] for the set of
interactions between σ and τ , i.e. maximal configurations of the stable family
C(T )� C(S). (It is the pullback of σ and τ in the category of stable families.)

B Constructions on strategies

Lemma 7. Let σ : S → A be a strategy. Then σ ∼= σ′, a strategy σ′ : S′ → A
for which

∀s′ ∈ S′. polS′ [s′]S′ = {−} ⇒ σ′(s′) = s′ . (†)

Moreover,

S′− = A−

where for an event structure with polarity E we write E− =def {e ∈ E | pol [e] ⊆
{−}}.

Proof. As a consequence of receptivity and negative innocence [LICS11], when-
ever ∅ ⊆− y in C(A) there is a unique x ∈ C(S) so that ∅ ⊆− x & σx = y .
Consequently, the map σ induces an order isomorphism w.r.t. inclusion between
configurations x ∈ C(S) where ∅ ⊆− x and y ∈ C(A) where ∅ ⊆− y. The order
isomorphism restricts to an order isomorphism between prime configurations.
It follows that σ is bijective between events s ∈ S− and events a ∈ A−. This
bijection extends to a bijective renaming of events of S to those of S′.

The lemma permits us to assume strategies satisfy (†) in the following results.

Proposition 7. Let σi : Si → A, for i ∈ I, be strategies (assumed to satisfy (†)).
W.l.og. we may assume that whenever indices i, j ∈ I are distinct then so are
those events of Si and Sj which causally depend on a positive event (otherwise
we could tag such events by their respective indices). Define S to be the event
structure with events

⋃
i∈I Si, causal dependency s ≤S e′ iff s ≤Si e

′, for some
i ∈ I, and consistency X ∈ ConS iff X ∈ ConSi

, for some i ∈ I. Defining
[]i∈I σi(s) = σi(s) if s ∈ Si yields a strategy []i∈I σi : S → A.

3 A recent reference: Glynn Winskel. Event structures, stable families and games. Lec-
ture notes, Comp Science Dept, Aarhus University, Available from http://daimi.

au.dk/~gwinskel, 2011.



Proof. Pre-strategy. Follows from the observation that for any x ∈ C(
⋃
i∈I Si)

there is i ∈ I such that x ∈ C(Si). Therefore preservation of configuration and
local injectivity directly follow from those properties for the σis.

Receptivity. Trivial, since (†) is preserved by union and implies receptivity.
Innocence. For any s1, s2 ∈

⋃
i∈I Si, if s1 _ s2 then there is i ∈ I such that

s1, s2 ∈ Si and s1 _ s2 in Si as well. Therefore if pol(s1) 6= − or pol(s2) 6= +
then by innocence of σi we have σi(s1) _ σi(s2) as well, therefore ([]i∈I σi)(s1) _
([]i∈I σi)(s2) and []i∈I σi is innocent.

Proposition 8. Suppose A is a race-free game such that ∅
a
−−⊂ with pol(a) = +.

Then for any strategy σ : S → A/a, where w.l.o.g. a /∈ S, there is a strategy
playa(σ) : S′ → A: the event structure S′ comprises

– events, S ∪ {a},
– causal dependency, that on S extended by a ≤S′ s, for s ∈ S, whenever
a ≤A σ(s),

– with consistency, X ∈ ConS′ iff X ∩ S ∈ ConS,

and playa(σ)(s) = σ(s), for s ∈ S, with playa(σ)(a) = a.

Proof. It is easy to check that S′ is an event structure and that playa(σ) is a
total map of event structures which preserves polarity. Innocence is inherited
from σ. That it is receptive follows from the race-freedom of A: Let x ∈ C(S′)

and playa(σ)x
a′

−−⊂ where a′ ∈ A and pol(a′) = −. If a ∈ x then receptivity
condition for playa(σ) follows directly from that of σ. If a /∈ x then x ∈ C(S)

and playa(σ)x = σx. From the race-fredom of A we deduce that σx
a′

−−⊂ in A/a.
Again the receptivity condition for playa(σ) follows from that of σ.

Proposition 9. Suppose A is a game such that ∅
a
−−⊂ with pol(a) = −. Then

for any strategy σ : S → A/a, where w.l.o.g. a /∈ S, there is a strategy waita(σ) :
S′ → A: the event structure S′ comprises

– events, S ∪A−, where A− =def {a′ ∈ A | polA[a′]A ⊆ {−}},
– causal dependency, that on S and A− extended by a ≤S′ s, for s ∈ S,

whenever a ≤A σ(s) or pol(s) = +,
– with consistency, X ∈ ConS′ iff X ∩ S ∈ ConS & waita(σ)X ∈ ConA,

where waita(σ)(s′) is defined to be σ(s′) if s′ ∈ S, otherwise s′.

Proof. By innocence, the causal dependencies on S and A− agree where they
overlap. As a /∈ S, by assumption, we obtain a partial order ≤S′ from the
definition above. It is routine to check that S′ is an event structure.

Observe that if σ(s) ∈ A− then s ∈ S−, for all s ∈ S: otherwise there
would be a maximal positive event on which s causally depended, contradicting
−-innocence of σ.

In checking that waita(σ), clearly a total function, is a map of event structures
it is straightforward to show that the image of a configuration x ∈ C(S′) is down-
closed in A. By definition waita(σ) preserves consistency, so waita(σ)x is also



consistent and inC(A). Suppose now s1, s2 ∈ x with waita(σ)(s1) = waita(σ)(s2).
If both s1, s2 ∈ S then σ(s1) = σ(s2) so s1 = s2 as σ is map of event structures.
Otherwise, either s1 /∈ S or s2 /∈ S. If both s1 /∈ S and s2 /∈ S, then s1 = s2,
directly from the definition of waita(σ). Otherwise, w.lo.g. suppose s1 ∈ S and
s2 /∈ S. Then σ(s1) = s2 and s2 ∈ A−. By the observation above, s1 ∈ S−. But
σ is assumed to satisfy (†), so σ(s1) = s1 = s2. The function waita(σ) is indeed
a map of event structures.

The map waita(σ) clearly preserves polarity. The construction preserves the

innocence inherited from σ. We show receptivity. Suppose x ∈C(S) and waita(σ)x
a′

−−⊂
in A where a′ has negative polarity. Consider first the case when a′ ∈ A−. Then it

can be checked that x∪{a′} ∈C(S′). This yields x
a′

−−⊂ with waita(σ)(a′) = a′. To
show uniquesness, assume waita(σ)(s′) = a′. If s′ /∈ S we obtain waita(σ)(s′) =
s′ = a′. If on the other hand, s′ ∈ S we obtain waita(σ)(s′) = σ(s′) = a′ ∈ A−.
By the observation, s′ ∈ S− and σ(s′) = s′ as σ satisfies (†), and again s′ = a′.

In the case where a′ /∈ A− there must be a1 ≤A a′ with pol(a1) = +.
Hence there is s1 ∈ x, with pol(s1) = +, such that σ(s1) = a1. From the
causal dependency of S′ we must have a ∈ x. It follows that x \ {a} ∈ C(S)

and σ(x \ {a})
a′

−−⊂ in A/a, whereupon receptivity of σ ensures the required
receptivity condition for waita(σ).

Proposition 10. For σ : S → A a strategy and x ∈ C∞(S), the function
σ/s : S/s→ A/σ(s) is a strategy.

Proof. A straightforward check.

Lemma 8. For all σ : S → A and τ : T → A⊥, then

κ〈σ, τ〉 = {−v | v ∈ κ〈τ, σ〉}

Proof. Straightforward.

For all the forthcoming lemmas, the well-founded hypothesis is not strictly
necessary. However we keep it as it simplifies the proofs, and these lemmas will
only be applied on well-founded games in order to get the theorem.

Lemma 9. If the game A is well-founded and race-free,

κ〈 []
i∈I

σi, τ〉 ⊆
⋃
i∈I

κ〈σi, τ〉

κ〈 []
i∈I

σi, τ〉+ =
⋃
i∈I

κ〈σi, τ〉+

Proof. First, we prove that κ〈[]i∈I σi, τ〉 ⊆
⋃
i∈I κ〈σi, τ〉. Take y ∈ 〈[]i∈I σi, τ〉.

Necessarily, there is z ∈ [[]i∈I σi, τ ] such that σΠ1z = y. By definition of []i∈I σi,
there is i ∈ I such that Π1z ∈ Si. It follows that z ∈ [σi, τ ], therefore y ∈ 〈σi, τ〉
as well.



Likewise if y ∈ 〈σi, τ〉 with a positive event, take its witness z ∈ [σi, τ ].
Obviously z ∈ C(T ) � C(S′) (where []i∈I σi : S′ → A). Maximality follows from
that of z inC(T )�C(Si): indeed since y has a +-event this event is only consistent
with events in Si, hence any extension of z must be compatible with Si.

Lemma 10. If A is race-free and well-founded, then,

κ〈playa(σ), τ〉 = κ〈σ, τ/a〉

Proof. First we prove that κ〈playa(σ), τ〉 ⊆ κ〈σ, τ/a〉. Take y ∈ 〈playa(σ), τ〉
and its witness z ∈ [playa(σ), τ ] such that y = playa(σ)z. The difficult part
of the proof consist in proving that a ∈ y, let us start with that. Suppose
that a 6∈ y. Obviously if y ∪ {a} ∈ ConA, we have a contradiction with the
maximality of z. Otherwise if a 6∈ y but y ∪ {a} 6∈ ConA, then consider a
subconfiguration y′ ⊆ y that is minimal such that y′ ∪ {a} 6∈ ConA, that is,
all the subconfigurations of y′ are compatible with a. Necessarily y′ is non-
empty, otherwise it would be compatible with a, take y′′−⊂y′, write e the event
such that y′′ ∪ {e} = y′. If pol(e) = − then by race-freedom of A we have
y′ ∪ {a} ∈ ConA as well, contradiction, therefore pol(e) = +. Consider the
witnesses z′, z′′ ∈ [playa(σ), τ ] corresponding to y′, y′′, and u′ = Π1z

′, u′′ =
Π1z

′′, with u′−⊂u′′ and u′ ∪ {s} = u′′, with playa(σ)(s) = e. Then take u′′ ∩ S,
it is still a configuration of S′ (with playa(σ) : S′ → A). Necessarily we have
(playa(σ)(u′′ ∩ S)) ∪ {a} ∈ C(A) since σ is a strategy on A/a, and we also
have u′′ ∩ S ⊆− u′′ where (playa(σ)u′′) ∪ {a} 6∈ C(A), but this is forbidden by
race-freedom of A, contradiction.

Therefore, a ∈ y. Then we have (a, a) ∈ z. Set z′ = z \ {(a, a)}, it is
straightforward to check that z′ ∈ [σ, τ/a] and σΠ1z

′ = y \ {a}, therefore
κ(σΠ1z

′) = κ(y) by definition of κ on A/a.
We now turn to the other inequality. Take y ∈ κ〈σ, τ/a〉 along with its

witness z ∈ [σ, τ/a]. Then it is straightforward to check that z′ = z ∪ {(a, a)} ∈
[playa(σ), τ ] and κ(playa(σ)z′) = κ(y) by definition of κ on A/a.

Lemma 11. We have the following equalities between strategies:

playa(σ)/a = σ

waita(σ)/a = σ

Proof. Trivial.

Lemma 12. If A is well-founded and race-free, then,

κ〈playa(σ),waita(τ)〉 = κ〈σ, τ〉



Proof. Trivial using Lemmas 10 and 11.

Lemma 13. If A is well-founded and race-free, then,

κ〈waita(σ), τ〉 ⊇
⋃

t:τ(t)=a

κ〈σ, τ/t〉

κ〈waita(σ), τ〉+ =
⋃

t:τ(t)=a

κ〈σ, τ/t〉+

Proof. We start with the left-to-right inclusion, take y ∈ 〈waita(σ), τ〉 (supposed
to have positive events) along with its witness z ∈ [waita(σ), τ ]. Since y has
positive events it must contain a, as positive events in waita(σ) : S′ → A are set
to depend on a. Therefore there is some t ∈ T such that τ(t) = a and (a, t) ∈ z.
Defining z′ = z \ (a, t), it is straightforward to prove that z′ ∈ [σ, τ/t], and
κ(σπ1z) = κ(y) by definition of κ on A/a.

Reciprocally take t ∈ T such that τ(t) = a, and y ∈ 〈σ, τ/t〉 with its witness
z ∈ [σ, τ/t]. Then it is straightforward to prove that z′ = z∪(a, t) ∈ [waita(σ), τ ],
and κ((waita(σ))π1z

′) = κ(y) by definition of κ on A/a. Take x ∈ C(T ) +-
maximal and such that pol x ⊆ {+} with a 6∈ x, then define z = {(e, e) | e ∈ x}.
Then it is straightforward to check that z ∈C(T )�C(S′), and z is maximal: indeed
π2z = y is +-maximal, and π1z is +-maximal as well by definition of waita(σ)
since a 6∈ x. It follows that z ∈ [waita(σ), τ ] with as required κ(waita(σ))π1z =
κτx.

Corollary 1. Setting casei∈Iσi = []i∈I waitai(σi), and if τ : T → A⊥ is such
that T has a minimal +-event, then.

κ〈casei∈Iσi, τ〉 ⊆
⋃
i∈I

⋃
t:τ(t)=ai

κ〈σi, τ/t〉

κ〈casei∈Iσi, τ〉+ =
⋃
i∈I

⋃
t:τ(t)=ai

κ〈σi, τ/t〉+

If T has no +-minimal event, then κ〈casei∈Iσi, τ〉 = {κ(∅)}.

Proof. We apply the following reasoning, putting all the previous lemmas to-
gether:

κ〈casei∈Iσi, τ〉 = κ〈 []
i∈I

waitai(σi), τ〉

⊆
⋃
i∈I

κ〈waitai(σi), τ〉

⊆
⋃
i∈I

(
⋃

t:τ(t)=ai

κ〈σi, τ/t〉

All these inclusions become equalities when restricted to configurations with a
positive event.



C Results of these constructions

Lemma 14. For any well-founded race-free game A and a ∈ A with pol(a) = +

such that ∅
a
−−⊂ , for any strategy σ : S → A/a, we have:

v↑(playa(σ)) ≤ v↑(σ)

v↓(playa(σ)) ≤ v↓(σ)

Proof. First inequality:
v↑(playa(σ) ≤ v↑(σ)

Let τ : T → A⊥/a, and z ∈ 〈playaσ,waitaτ〉. By Lemma 12, there is z′ ∈ 〈σ, τ〉
such that κ(z) = κ(z′).

Second inequality:
v↓(playaσ) ≤ v↓(σ)

Let τ : T → A⊥/a and z ∈ 〈σ, τ〉. Then by Lemma 12 there is z′ ∈ 〈playaσ,waitaτ〉
such that κ(z) = κ(z′).

Lemma 15. For any well-founded race-free game A, a ∈ A with pol(a) = −
such that x

a
−−⊂ , for all strategy σ : S → A/x, we have:

v↑(σ) ≤ v↑(σ/a)

v↓(σ) ≤ v↓(σ/a)

Proof. First inequality:
v↑(σ) ≤ v↑(σ/a)

Let τ : T → A⊥/(x ∪ {a}), and z ∈ 〈σ, playaτ〉. By Lemma 10 there is z′ ∈
〈σ/a, τ〉 such that κ(z) = κ(z′).

Second inequality:
v↓(σ) ≤ v↓(σ/a)

Let τ : T → A⊥/(x ∪ {a}), and z ∈ 〈σ/a, τ〉. Then by Lemma 10 there is
z′ ∈ 〈σ, playaτ〉 such that κ(z) = κ(z′).

Lemma 16. Suppose A is race-free, x ∈ C∞(A). Let (fj)j∈J be the family of
minimal +-events of A. Let σ : S → A be a strategy such that there is a minimal
+-event s ∈ S. Then,

v↓(σ) ≤ sup
j∈J

v↓({fj})

v↑(σ) ≤ sup
j∈J

v↑({fj})



Proof. Pessimistic case. Necessarily there must be j0 ∈ J such that σ(s) = fj0 .
Then, we are going to prove that

v↓(σ) ≤ v↓(σ/s)

Indeed, take τ : A⊥/fj0 , and z ∈ 〈σ/s, τ〉. By Lemma 13, there is z′ ∈ 〈σ,waitfj0 (τ)〉
such that κ(z) = κ(z′).

Optimistic case. Suppose that the inequality is false, i.e.

sup
j∈J

v↑({fj}) < v↑(σ)

This implies that there is α ∈ R such that supj∈J v
↑({fj}) < α and v↑(σ) > α.

The first inequality implies:

∀j ∈ J, ∀σ : A′/fj , ∃τ ′ : A⊥/fj , ∀z′ ∈ 〈σ′, τ ′〉, κ(z′) < α

which is easily shown to imply:

∀(σk)k∈K , ∃(τj)j∈σK , ∀k ∈ K, ∀z′ ∈ 〈σk, τσk〉, κ(z′) < α (8)

where K is the set of positive minimal events in S. Applying this property to the
family of strategies obtained by σk = σ/k, we get a family of counter-strategies
(τj)j∈σK . We extend this family to J by setting τj as the empty strategy (closed
under receptivity) whenever ej 6∈ σK. Thus, we get a family (τj)j∈J .

Likewise, the second inequality implies that:

∀τ : A⊥, ∃z ∈ 〈σ, τ〉, κ(z) > α

Let us apply it to τ = casej∈Jτj , we get z ∈ 〈σ, casej∈Jτj〉 such that κ(z) > α. By
Corollary 1, there is k0 ∈ K, and z′ ∈ 〈σ/k0, τσk0〉 such that κ(z′) = κ(z) > α.
However, applying (1) to k0 also shows that κ(z′) < α, contradiction. Hence, the
required inequality is true.

Lemma 17. Let A be a game, (ei)i∈I the family of its negative minimal events.
Then,

min(κ(∅), inf
i∈I

sup
σ:A/ei

v↓(σ)) ≤ v↓(A)

min(κ(∅), inf
i∈I

sup
σ:A/ei

v↑(σ)) ≤ v↑(A)

Proof. For as long as possible, we do not distinguish the optimistic and pes-
simistic cases. Suppose that the inequality is false. It implies that there is α ∈ R
such that

min(κ(∅), inf
i∈I

sup
σ:A/ei

v(σ)) > α

v(A) < α



which imply the following three propositions:

κ(∅) > α (9)

∀i ∈ I, ∃σi : A/ei, ∀τ : A⊥/ei, r(σi, τ) > α (10)

∀σ : A, ∃τ : A⊥, r(σ, τ) < α (11)

In particular, (10) gives a family (σi)i∈I . Instanciating (11) with casei∈Iσi, we
get τ : T → A⊥ such that r(casei∈Iσi, τ) < α.

κ(∅) > α (12)

∀i ∈ I, ∀t, τ(t) = ei ⇒ r(σi, τ/t) > α (13)

r(casei∈I , τ) < α (14)

Let us now distinguish the optimistic and pessimistic cases.
Pessimistic case. Since r(casei∈Iσi, τ) < α, there must be y ∈ 〈casei∈Iσi, τ〉

such that κ(y) < α. If T has no minimal +-event, then necessarily we have
y = ∅, therefore κA(y) = κA(∅) > α, contradiction. Therefore, T has a minimal
+-event. Then by Corollary 1 there is a minimal +-event t ∈ T and τ(t) = ei0
and y′ ∈ 〈σi0 , τ/t〉 such that κ(y′) = κ(y) < α. But this is absurd by (13), so we
have found a contradiction.

Optimistic case. By (14) instanciated in the pessimistic case we have that
for all y ∈ 〈casei∈I , τ〉, κ(y) < α. Take one such y ∈ 〈casei∈I , τ〉 (〈casei∈I , τ〉 is
non-empty by Zorn’s lemma). As above, y cannot be empty as that would cause
a contradiction, and T must have a minimal +-event. Therefore by Corollary 1
there is a minimal +-event t ∈ T and τ(t) = ei0 and y′ ∈ 〈σi0 , τ/t〉 such that
κ(y′) = κ(y) < α, contradicting (13).

D Proof of the value theorem

Let A be a fixed well-founded and race-free game.

Lemma 18. Let x ∈C(A). Let (ei)i∈I be the family of extensions of x of negative
polarity, and (fj)j∈J be the family of extensions of x of positive polarity. Then,

v↑(x) = max(min(κ(x), inf
i∈I

v↑(x ∪ {ei})), sup
j∈J

v↑(x ∪ {fj}))

v↓(x) = max(min(κ(x), inf
i∈I

v↓(x ∪ {ei})), sup
j∈J

v↓(x ∪ {fj}))

Proof. The reasoning is the same in the optimistic and pessimistic cases, hence
we do not distinguish them. We prove the first unequality:

v(x) ≤ max(min(κ(x), inf
i∈I

v(x ∪ {ei})), sup
j∈J

v(x ∪ {fj}))

Let σ : S → A/x be a strategy. If there is a minimal event s ∈ S with pol(s) = +,
then v(x) ≤ v(σ) ≤ supj∈J v(x∪{fj}) by Lemma 16. Otherwise, there is no such



minimal s ∈ S. Then v(σ) ≤ κ(x). Indeed, let τ : T → A/x be the empty strategy
closed by receptivity, we have 〈σ, τ〉 = {∅} and r(σ, τ) = κ(x). Likewise take
i0 ∈ I, by Lemma 15 we have v(σ) ≤ v(σ/ei0), therefore v(σ) ≤ infi∈I v(x∪{ei}).

We now prove the other inequality:

max(min(κ(x), inf
i∈I

v(x ∪ {ei})), sup
j∈J

v(x ∪ {fj})) ≤ v(x)

Let us prove that supj∈J v(x∪{fj}) ≤ v(x), taking j0 ∈ J and σ : A/(x∪{fj0}).
Then by Lemma 14 we have v(playfj0σ) ≤ v(σ) and v(σ) ≤ v(x). Finally, we

need to prove that min(κ(x), infi∈I v(x ∪ {ei})) ≤ v(x), but this is Lemma 17.

Theorem 4. If A is well-founded and race-free, then the optimistic and pes-
simistic values coincide:

v↑(A) = v↓(A)

This justifies writing v(A) for the value of a game.

Proof. It is obvious from the lemma above that there cannot be a maximal
x ∈ C(A) maximal such that v↑(A/x) 6= v↓(A/x). Since A is well-founded, that
must be true for the empty configuration.

Theorem 5. If A is well-founded and race-free, then we have:

v(A) = −v(A⊥)

Proof. Let x ∈ C(A) be maximal such that v(A/x) = −v(A⊥/x). Let (ei)i∈I be
the family of negative extensions of x and (fj)j∈J its family of positive exten-
sions. Then,

v(A/x) = max(min(κA(x), inf
i∈I

v(A/(x ∪ {ei}))), sup
j∈J

v(A/(x ∪ {fj})))

= max(min(−κA⊥(x), inf
i∈I
−v(A⊥/(x ∪ {ei}))), sup

j∈J
−v(A⊥/(x ∪ {fj})))

= −min(max(κA⊥(x), sup
i∈I

v(A⊥/(x ∪ {ei}))), inf
j∈J

v(A⊥/(x ∪ {fj})))

= −max(min(κA⊥(x), inf
j∈J

v(A⊥/(x ∪ {fj}))),

min(sup
i∈I

v(A⊥/(x ∪ {ei})), inf
j∈J

v(A⊥/(x ∪ {fj}))))

But for all i0 ∈ I, v(A⊥/(x ∪ {ei0})) ≤ v(A⊥) by Lemma 14 and for all j0 ∈ J ,
we have v(A⊥) ≤ v(A⊥/(x ∪ {fj0})) by Lemma 15, therefore supi∈I v(A⊥/(x ∪
{ei})) ≤ infj∈J v(A⊥/(x ∪ {fj})), and:

v(A/x) = −max(min(κA⊥(x), inf
j∈J

v(A⊥/(x ∪ {fj}))), inf
j∈J

v(A⊥/(x ∪ {fj})))

= −v(A⊥/x)

Contradiction. Therefore there is no such maximal x and the property is true
for the empty configuration, thus v(A) = −v(A⊥) since A is well-founded.



E Proofs on compositionality of optimal strategies

Proposition 11. Let A be a game and σ : S → A a strategy. Then,

v↓(σ) = inf{κ(σx) | x ∈ C(S) +-maximal}

Proof. ≤. It suffices to show:

∀x ∈ C(S) +-maximal, ∃τ : T → A⊥, ∃y ∈ 〈σ, τ〉, κ(y) ≤ κ(σx)

Thus, let x ∈ C(S) be +-maximal. Set T = (σx)⊥ with τ : T → A⊥ acting
as the identity on events. τ is obviously innocent but not necessarily receptive,
consider its closure τ ′ : T ′ → A⊥ by receptivity. Then, define:

z = {(e, σe) | e ∈ x}

It is straightforward to check that z ∈ C(S) � C(T ′), and it is maximal since x
is +-maximal and by construction of τ ′. It follows that σΠ1z = σx ∈ 〈σ, τ ′〉.
≥. It suffices to show that for all τ : T → A⊥/x and y ∈ 〈σ, τ〉 there exists

a +-maximal x ∈ C(S) such that κ(σx) ≤ κ(y). But for all such y there is
z ∈ C(S)� C(T ) maximal such that y = σΠ1z. Set x = Π1z, since z is maximal
x must be +-maximal, and κ(σx) = κ(y).

Proposition 12. For strategies σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C, we have
v↓(τ � σ) ≥ v↓(τ) + v↓(σ). Likewise for σ : S → A and τ : T → B, we have
v(σ ‖ τ) = v(σ) + v(τ).

Proof. Straightforward using Proposition 11. TODO: Add the proof of the op-
timistic parallel composition.

Proposition 13. For any race-free, well-founded games A and B, we have
v(A ‖ B) = v(A) + v(B).

Proof. By the value theorem, it does not matter whether we work on the opti-
mistic or pessimistic cases. By simplicity, let us pick the pessimistic one. Firstly,
we prove that v(A ‖ B) ≥ v(A) + v(B). Indeed, let σ : S → A and τ : T → B be
strategies. Then, as needed we have v↓(σ ‖ τ) ≥ v↓(σ) + v↓(τ) by Proposition
12.

Moreover, this inequality also holds for A⊥ and B⊥, therefore v(A⊥ ‖ B⊥) ≥
v(A⊥) + v(B⊥), from which it follows that v(A ‖ B) ≤ v(A) + v(B) by the value
theorem and the definition of the dual of games with payoff.

Theorem 6. If σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C are optimal strategies, so
is τ�σ. Moreover copycat is optimal, therefore there is a bicategory of concurrent
games with payoff and optimal strategies.



Proof. Suppose σ and τ optimal. We reason as follows:

v↓(τ � σ) ≥ v↓(σ) + v↓(τ)

= v(A⊥ ‖ B) + v(B⊥ ‖ C)

= v(A⊥ ‖ C)

This implies that v↓(τ � σ) = v(A⊥ ‖ C), since a strict inequality would contra-
dict the definition of v(A⊥ ‖ C).

Copycat is optimal: take a +-maximal x ∈ C(A⊥ ‖ A). Necessarily, x has the
form y∪y, where y ∈ C(A). Moreover, κA⊥‖A(x) = κA(y)−κA(y) = 0, therefore

by Proposition 11, we have v↓(γA) = 0. However we also have v(A⊥ ‖ A) =
v(A)− v(A) = 0, therefore copycat is optimal.


