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Abstract

We define a new games model of Probabilistic PCF (PPCF) by enrich-
ing thin concurrent games with symmetry, recently introduced by
Castellan et al, with probability. This model supports two interpre-
tations of PPCF, one sequential and one parallel. We make the case
for this model by exploiting the causal structure of probabilistic
concurrent strategies. First, we show that the strategies obtained
from PPCF programs have a deadlock-free interaction, and there-
fore deduce that there is an interpretation-preserving functor from
our games to the probabilistic relational model recently proved fully
abstract by Ehrhard et al. It follows that our model is intensionally
fully abstract. Finally, we propose a definition of probabilistic in-
nocence and prove a finite definability result, leading to a second
(independent) proof of full abstraction.

1 Introduction

What is the right setting for the denotational semantics of proba-
bilistic programs? Numerous proposals exist. Early attemps [27, 18],
in the setting of domain theory, involved the probabilistic powerdo-
main, with which it is notoriously difficult to obtain a satisfying
cartesian closed category [19]. In 2002, Danos and Harmer [12]
showed that making the model more intensional offers a much more
mathematically tractable development: they construct a fully ab-
stract games model for Probabilistic Algol, an extension of Plotkin’s
PCF [25] with ground mutable state and probabilistic choice. Later
on, Danos and Ehrhard gave a model of Probabilistic PCF (PPCF) in
probabilistic coherence spaces [11], stemming from work on Linear
Logic and quantitative semantics [15], and later proved to be fully
abstract [14]. In a different direction, recently Staton et al [28, 16]
(followed even more recently by Ehrhard et al [13]) introduced
denotational models for probabilistic programming, with a focus
on continuous distributions, not previously supported.

This variety of models for a large part extends existing semantics
for deterministic programs. However, without probability, game
semantics [17, 3] has offered a more modular picture, accommodat-
ing in a single framework pure fonctional computation along with
computational effects such as state [4, 2], control [20], and many
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others?, following the well-known research programme pushed by
Abramsky [1] under the name of semantic cube. Besides this mod-
ularity w.r.t. the available computational effects in the language,
game semantics also offers tools to relate models. For instance,
the standard cartesian closed category of Hyland-Ong games and
innocent strategies embeds functorially in the relational model [6].
Under this time-forgetting operation, points of the relational model
are understood as certain states reached by strategies, without any
temporal information.

Of this nice picture however, little remains outside of the de-
terministic case. It is unclear how to equip Danos and Harmer’s
model [12] with a notion of probabilistic innocence extending the
deterministic one, and how this model relates with alternative, less
intensional semantics for probabilistic programs. In fact, even the
preliminary question of non-deterministic innocence was unsolved
until a few years ago [8, 30], when the important conceptual step
was made to switch to a framework expressing explicit branch-
ing in strategies, representing more intensional behaviour. Adding
quantitative information, this suggests the possibility of pushing
the semantic cube towards probabilistic computation, yielding a
valuable tool in our understanding of probabilistic programs.

In this paper, we make an important step in this direction. We
draw on recent developments in so-called concurrent game seman-
tics [7], a framework for game semantics built around the idea that
the causality of computation (rather than plain temporal informa-
tion) is primitive. In particular, we combine the thin concurrent
games with symmetry [9, 10] of Castellan et al, used to build a par-
allel model of PCF [9], and the probabilistic concurrent strategies of
[33]. We use this to build a games model of PPCF refining [12].

To support this model, we propose two further contributions.
First, we give a quantitative extension of Boudes’ theorem [6] and
show that our model has a functorial collapse to the R" -weighted
relational model [21]. This builds on a key lemma independent
of probabilities: that the condition of visibility from [9] ensures
that composition of strategies is deadlock-free, and so inherently
relational-like (an important precursor for that is Mellies’ games
model of Linear Logic [23]). As probabilistic coherence spaces em-
bed faithfully in the weighted relational model, it follows by [14]
that our model is intensionally fully abstract in the sense of Abram-
sky et al [3]. As a bonus we show that this holds both for a se-
quential interpretation of PPCF and for a parallel one, representing
independence of sub-computations. However, definability fails.

Secondly, to get back definability we introduce a notion of sequen-
tial probabilistic innocent strategy, equivalent to standard innocent

! This significant achievement led the authors of the seminal papers on game semantics

to receive last year’s Alonzo Church Award for Outstanding Contributions to Logic and
Computation, awarded by SIGLOG, EACSL and the Kurt Godel Society.



LICS’18, 9-12 July, Oxford, UK

strategies in the deterministic case. Sequential probabilistic inno-
cent strategies form a refined model of PPCF for which we prove
finite definability (though only w.r.t. the sequential interpretation),
yielding an independent proof of intensional full abstraction (in
fact, unlike previously, inequational full abstraction holds).

Related work. Our probabilistic games are related to Tsukada and
Ong’s sheaf-based notion of innocence [29], though precise connec-
tions have not been investigated. That innocent strategies compose
relationally is used in Melliés’ work on game semantics for linear
logic [5, 23], and exploited in Boudes’ work on relating games with
the relational model — our deadlock-free property generalises it to
a non-sequential and non-innocent setting.

Outline. In Section 2 we introduce the semantics of probabilistic
programs: we describe PPCF, its relational semantics, and the prob-
abilistic event structures used to represent it in concurrent games.
In Section 3 we develop the compositional aspects of the model,
and prove the collapse to weighted relations. Finally in Section 4,
we prove full abstraction: first as a consequence of the collapse,
then (after adding innocence) via definability.

2 Semantics for Probabilistic Programs

2.1 Probabilistic PCF

We present the language PPCF, the extension of Plotkin’s PCF
[25] with a probabilistic primitive coin : Bool. Its types are those

obtained from the basic types Bool and Nat, and the arrow =. Its
terms are the following:

M,N == Ax.M|MN |x|t|ff|ifMN{ Ny |Y
n | pred M | succ M | iszero M | coin

The typing rules are standard and omitted — we assume that in
if M N1 Ny, N7 and Nj have ground type (Bool or Nat), a general
if can be defined as syntactic sugar.

The usual call-by-name operational semantics for PCF gener-

alises to a probabilistic reduction relation ﬂ), for p € [0,1]. All
rules are straightforward, with the primitive coin representing a
fair coin: coin —% b for all b € {t, ff}. Because reduction is non-
deterministic, there can be countably many reduction paths from
M to N, i.e. sequences of the form M = M p—1> ... P—") M, = N.
Given such a path 7, its weight w(r) is [];<; <, pi, and we define
the coefficient Pr(M — N) as ' {w(r) | 7 is a path from M to N}.

Definition 2.1. Let M and N be PPCF terms such that T+ M : A
and T + N : A. We write M Scix N if for every context C[-] such
that + C[P] : Bool for every T' - P : A,

Pr(C[M] — b) < Pr(C[N] — b)

for b € {it, ff}. The equivalence induced by this preorder, contex-
tual equivalence, is denoted ~ix.

2.2 The weighted relational model

In [14], Ehrhard et al proved that probabilistic coherence spaces
(PCoh) are fully abstract for PPCF: two PPCF terms are contextu-
ally equivalent iff they have the same denotation in PCoh. In fact,
PCoh is cut down (via biorthogonality) from a more liberal model
PRel, the R -weighted relational model [21], which we also refer to
as the probabilistic relational model.
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The relational model of PCF. Ignoring probability for now, the
relational model of PCF records the input-output behaviour of a
term, along with the multiplicity of resources.

Write B = {t, ff} and M¢(X) for the set of finite multisets of
elements of a set X. Objects of M¢(X) are written with square brack-
ets with elements annotated with their multiplicity; e.g. we have
(2, ff] € Mg(B), where t has multiplicity 2 and ff has multiplicity 1.
Using this notation, the term b1 : Bool, by : Bool + if by by by : Bool
will be represented as the subset of Mg(B) X M¢(B) X B containing:

Mng) x  MB) x B
([t=], [, t)
([t, 1], (], ff)
([f£], [t], tt)
([ff], [f], ff)

The model is non-uniform: it shows how the term behaves if its
argument ever changes its mind.

The interpretation of PCF in the relational model follows the
usual methodology of denotational semantics, and in particular the
interpretation of the simply-typed A-calculus in a cartesian closed
category, see e.g. [22] for an introduction. To construct the target
cartesian closed category, we start with one of the simplest models
of linear logic: the category Rel of sets and relations. In Rel the
linear logic connectives are interpreted as follows: given X and Y,
X®Y =X oY =XXY,X&Y = X +7Y (the tagged disjoint
union) and !X = M¢(X). The cartesian closed category Rel, is then
the Kleisli category for the comonad !, see e.g. [24]. We omit the
details of the interpretation of PCF in Rel;, which we will cover in
the presence of probabilities.

The weighted relational model. Since the model is non-uniform,
it supports non-deterministic primitives. Enriching this non-uniform
model with quantitative information gives the probabilistic rela-
tional model: each element comes with a weight, as shown for
instance in the interpretation of My = b : Bool + if b (if coin b 1)
(if b ff t) : Bool, where L is a diverging term, e.g. Y (Ax. x):

Me(B) x B1
([#°], )z
([, ff], ff)2
(], t)!

The weights can be greater than 1, because a multiset may cor-
respond to several execution traces. In the example above the pair
([t, fF], ff) has weight % = % + 1, summing over the different orders
in which b can take its values from [t ff].

The pure relational interpretation from before was based on
the category Rel with objects sets and morphisms from X to Y
relations ¢ C X X Y, i.e. “matrices” (¢x,y)x,yexxy € {0, 1}XXY
Accordingly, the composition of relations can be regarded as matrix
multiplication: (¥ © @)x,z = Vyey(@x,y A Yy, 2)-

So one may construct a probabilistic variant of Rel by simply
replacing the boolean semiring ({0, 1}, v, A) above by the semiring
(R4, +,X) where Ry = Ry @ {oo} denotes the non-negative real
numbers, with the infinity added to ensure convergence of the
(potentially) infinite sum in the composition formula:

o @)x,z = Z ((Px,y X ‘//y,z)a

yeYy

for p € RXXY, ¢ e RYXZ,
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There is a category PRel with sets as objects, and as morphisms

from X to Y the matrices ¢ € ﬁfxy, composed as above. The
identity on X is the diagonal matrix (8x;, x,)x,, x,ex Where Oy, x, is
1 whenever x| = x2, and 0 otherwise.

Now, just like Rel, PRel supports the structure of a model of
linear logic with the constructions on objects the same as in Rel and
analogous constructions on morphisms. We proceed to define the
interpretation of PPCF in PRel;. As for Rel the interpretation of the
A-calculus combinators follows from the cartesian closed structure
of the Kleisli category PRel;, which we do not detail further [22].
The interpretation of Y is also obtained in a standard way as a least
upper bound of finite approximations, using that homsets of PRel
are dcpos when ordered componentwise. We now focus on the
interpretation of ground types and associated combinators.

The types Bool and Nat are interpreted by the sets [Bool] =
B and [Nat] = N, respectively. For n € N, the constant n has
semantics given by ([n])x = dk, , for k € N. The boolean constants
t and ff are interpreted in the same way. The semantics of succ
and pred are defined by

[succ] Me(N) % N - Ry
([n] , n+l) > 1

s _ — 0
[pred] M(N) % N - Ry
([n+1] , n) -1

([o] , 0) -1

C N N L

The morphism [iszero] € PRelj(N, B) is defined similarly. Given
terms M : Bool, N : X, P : X (where X denotes any ground type, ie.
Bool or Nat), the term if M N P has semantics ([M], ([N], [P])) o
if, where if € PRely(B & ([X] & [X]), [X]) = PRel('B ® ![X] ®
[X], [X]) is defined by

if + Mg(B) x M[X]) x M([X]) x [X] — Ry
(e] . xI, [l ., x) B 1
(f1 [l N E x; - (1)

Finally, the probabilistic primitive coin is interpreted as expected
as having [coin]¢ = } and [coin]g = , completing the interpre-
tation of PPCF.

In order to avoid infinite weights, the authors of [14] do not
stop with PRel: they cut down the category using a biorthogonality
construction and obtain another weighted model of linear logic,
PCoh. In PCoh weights remain finite, and the interpretation of a
term of ground type M : X yields a sub-probability distribution on
[X]. In fact, the main result of [14] is that PCoh is fully abstract,
i.e. for any M, N we have that M ~cx N iff [M]pcon = [N]pcoh-

Interestingly this entails that, despite its drawbacks, PRel is itself
already fully abstract! Indeed there is an obvious faithful forgetful
functor PCoh < PRel preserving all the structure on the nose -
in fact a term M has exactly the same interpretation in PRel and
PCoh, the only difference being that the latter is more informative
as it carries correctness information w.r.t. biorthogonality.

Although its proof is not reproduceable in PRel, the main theo-
rem of [14] can be stated as:

Theorem 2.2. For any termsT' + M : AandT + N : A of PPCF,
M =ctx N iff [M]prel = [N]pRel-

Accordingly, in the rest of this paper, we will work only in PRel
and ignore biorthogonality.
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Figure 1. Two strategies for b : Bool; - M = if b b ff : Bool,.

2.3 Game semantics and event structures

The interpretation of a term in PRel “flattens out” its behaviour: it
only displays the multiplicity of its use of resources, but forgets in
what order these resources are evaluated. This is as opposed to game
semantics, which also records the order in which computational
events are performed, or at least the causal dependencies between
them. In the concurrent game semantics presented here (very close
to [9]), the term b : Bool - M = if b b ff : Bool can be represented
by either of the two diagrams in Figure 1 (i.e. there will be two
interpretation functions, sending M to one or the other).

These diagrams, read from top to bottom, represent dialogues (or
collections of dialogues) between two players Player and Oppo-
nent, respectively playing for a program and its execution environ-
ment. Nodes, called moves, are computational events. Moves are
due to either Player (+) or Opponent (—), as indicated by their po-
larity, and are annotated by a Question/Answer labelling (Q/A):
questions correspond to variable calls, whereas answers corre-
spond to calls returning. Wiggly lines denote incompatible branch-
ings: moves related by them cannot occur together in an execution.

The diagram on the left is a tree, and each of its branches denotes
a dialogue between Player (playing for M) and Opponent (playing
for the environment) tracing one possible execution path of M. For
instance, the leftmost path reads:

= Opponent: “What is the output of M (on Booly)?”

q
q?’m Player: ~ “What is the value of b (on Bool;)?”

= Opponent: “The value of b is tt

(
q(11+’ @ Player:

ML Opponent: “The value of b is
tt;’ﬂ) Player: ~ “Then, the output of M is ¢

“Then, what is, again, the value of b?”

In particular, this dialogue explicitly displays the several consec-
utive calls to b, leaving Opponent the opportunity to change his
mind. The full diagram on the left-hand side of Figure 1 appends
all such dialogues together in a single picture, the wiggly lines
separating incompatible branches.

But beyond simple sequential execution, our framework for game
semantics, as it is based on an independence model of concurrency,
also supports a partial order-based representation of parallel exe-
cutions. The diagram on the right-hand side of Figure 1 represents
another implementation strategy for M. Taking advantage that the
order of evaluation is irrelevant in PPCF, the diagram expresses
that one can evaluate the two occurrences of b in parallel. For each
pair of results for the two independent calls to b, there is a Player

answer to the original Opponent question q(z_’ @ Rather than just
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chronological contiguity, the arrows there describe the causal de-
pendency of a move, i.e. the events that must have occurred before.
We will see later that both diagrams denote (up to minor details,
explained later) objects called strategies, representing terms. We
will describe later two interpretations of PPCF as strategies: one
sequential, one parallel, respectively computing the two strategies
of Figure 1 from M.

Diagrams such as in Figure 1, that convey information about both
causal dependency and incompatibility, are naturally formalised as
event structures, a concurrent analogue of trees.

Definition 2.3. An event structure is (E, <g, Cong) with a set E
of events, <p a partial order stipulating causal dependency, and
Cong a non-empty set of consistent subsets of E, such that

[e] = {e’ | ¢’ < e} isfinite foralle € E

{e} € Cong foralle € E

YC X eCong = Y € Cong

X eCongande <e’ € X = XU {e} € Cong.

With an eye to game semantics, an event structure with polar-
ity (esp) is an event structure E with a function pol : E — {—, +}.

Notations. Write e — ¢’ for immediate causality, ie. e < e’
with no events in between. Write C(E) for the set of finite config-
urations of E, i.e. those finite x C E such that x € Con and x is
down-closed, ie. if e < e’ € x then e € x. Configurations of the
form [e], i.e. with a top element, are called prime configurations.
If E has polarity, we might give information about the polarity of
events by simply annotating them as in e*, e™. If x, y € C(E), write
x C* y (resp. x €~ y) if x C y and every event in y \ x has positive
(resp. negative) polarity.

If for an event structure E there is a binary relation #g such that
for all X C E finite, X € Con iff Ve # ¢’ € X, =(e#ge’), we say that
E has binary conflict. In that case we automatically have that if
e#e’ and ¢’ < e’/ then e#e’’ as well (the conflict is inherited). If
e#e’ and the conflict is not inherited (meaning that for all ey < e
and e; < ¢’ we have —(eg#e;)), we say that e#te’ is a minimal
conflict, written e ~~ e¢’. With all that in place, it should now be
clear how the diagrams of Figure 1 denote event structures (with
binary conflict) where rather than <p and #g, we draw immediate
causality — and minimal conflict ~~.

As strategies, we will see later that the esps of Figure 1 also
come with a labelling function to a game representing the typ-
ing judgment Bool  Bool, labelling from which the annotations
q(z_’a), lt(l_"ﬂ), ... follow. But let us first discuss how probability is
adjoined to event structures.

2.4 Event structures with probability

Sequential probabilistic esps. Sequential esps (such as that on
the left of Figure 1) are those for which the causal dependency is
forest-shaped, and for every configuration x € C(E), if x has several
distinct extensions x U {ef}, xU {e;r } € C(E) with positive events,
then x U {e1, e2} ¢ C(E). This means that for every x € C(E), there
is a set of positive extensions extE (x), all pairwise incompatible.
Sequential esps are easily enriched with probabilities, following
the game semantics of Probabilistic Idealized Algol of Danos and
Harmer [12]. The basic idea is that for each x € C(E), Player equips
the set of extensions extE(x) with a sub-probability distribution. But
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Figure 2. A probabilistic strategy for b : Bool; + M, =
if b (if coin b L) (if b ff tt) : Bool,

rather than having a sub-distribution for each probabilistic branch-
ing in an esp, it is more convenient to carry a single valuation

v:C(E) - [0,1]

putting together all the local probabilistic choices: the valuation
assigned to x records all the Player probabilistic choices performed
in order to reach x. Because v only records Player’s probabilistic
choices, it is then natural to require that (1) v(0) = 1 and (2) v(x U
{e7}) = v(x) for any negative extension e~ of x. So as to enforce
that local choices give sub-probability distributions, we also have
(3) for all x € C(E),

u(x) — Z v(xU{e}) >0

eecextt(x)

Furthermore, v is then entirely determined by the data of v([e*])
for all positive e € E, hence a probabilistic sequential esp can be
represented by annotating positive events with the valuation of
their prime configuration. Figure 2 displays the esp to be later
obtained as the interpretation of the term M, (given in 2.2), with
the probabilistic valuation written on the left of events.

General probabilistic esps. For non-sequential esps the axioms
(1) and (2) still make sense, but finding the analogue of (3) is trickier,
as there may be overlap between all positive extensions. This over-
lap leads to a redundancy in the valuation, that has to be corrected
following the inclusion-exclusion principle, as in [33]:

Definition 2.4. A probabilistic esp consists in an esp (E, <g,
Cong,polg) and a valuation v : C(E) — [0, 1] satisfying (1), (2)
above, plus (3) if y C* x1,...,xp, then

vy - ) Do (Uxi) >0
1

iel
where the sum ranges over 0 # I C {1,...,n} s.t. U;er xi € C(E).

We pointed out in the beginning of Section 2.3 that the determin-
istic term M can be interpreted by either esp in Figure 1 - likewise,
the probabilistic term M. can be interpreted by the probabilistic esp
of Figure 2, or by some probabilistic version of an event structure
much like the right hand side diagram of Figure 1. However, unlike
for sequential probabilistic esps, for general ones the valuation can-
not always be pushed to events and has to remain on configurations.
Consider for instance how one may assign a valuation v to the esp

0

(+,A) (+,A)
11:1 tZ
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The configurations 0, {q1}, {q2} and {qi, q2} necessarily have co-
efficient 1. Consider then letting v({q1,t1}) = v({q1,q2, tt2}) =
% and v({q, tt2}) = v({q1,qqz, tt2}) = %: nothing forces tt; and
ity to be probabilistically independent events, i.e. we may have
v({q1, q2, tt1, 2 }) # %. In fact the axioms would allow any value
0<p< % The assignment v({q1, g2, tt1, t2}) = % for example,
would indicate a probabilistic dependence between tt; and tt,.

2.5 Games and strategies as esps

So far, we have explained the formal nature of the strategies in-
terpreting terms as (probabilistic) esps, but we have not said what
games they play on.

Arenas. The games (arenas) will themselves be certain esps — a
type A will be interpreted by a arena [A], listing all the compu-
tational events existing in a call-by-name execution on this type
and specifying the causality and compatibility constraints on these
events. The arena will also remember the polarity of each event,
and whether it is a question or an answer.

Consider the ground types Bool and Nat. There are only two
events available between an execution environment and a term of
ground type: the environment starting the evaluation of the term
(Opponent question) and the evaluation finishing (Player answer).
Accordingly, the corresponding arenas are:

(-Q) -9

[Nat] = -

q

RS
VRN
oA _ (R A) (A

~~D

[Booll = . &  “ia

Again, the diagrams are read from top to bottom — immediate
causality in arenas is represented by dashed lines rather than ar-
rows, to keep it easily distinguishable from causality in strategies.
Although the two notions have the same formal nature, they play
a different role in the development.

In a typing judgment such as Bool; + Bool there are more com-
putational events available: upon receiving the initial question on
Booly, Player might interrogate Bool;, where polarity is reversed.
In fact, in our running examples M and M, (from Figures 1 and
2), Player interrogates Bool; twice, showing the need to create
copies of Bool;. Accordingly, the sequent Bool; + Bool, will be
interpreted by the arena:

L(+,Q L (+,Q -Q
q‘;“ ) " +Q q(z )
/ N / N / \
Bool; + Boolz] = 4 S A a5 3 B s
[[ 1 ZH lt(1 'i")""‘”ﬂg L A) lt(1 ~~Z‘,)\,Wﬁ‘(l L A) n(;,z{/)\[\ﬁ@«ﬂ)

Note the new annotations q”(**@) in copies of the initial question
of the argument. This copy index i is implicit in the moves q§+’ Din
Figures 1 and 2. They will be introduced formally via an exponential

modality. We now give the general definition of arenas.

Definition 2.5. An arena consists of a esp A, and a labelling
function 14 : A — {@Q, A} such that:

Ais a forest:if a; < az and ay < a3, a1 < ay or az < aj.

A is alternating: if a; — ay then pol(a;) # pol(az).

A is race-free: if a; ~~ ay then pol(a;) = pol(az).
Questions: if a; is minimal or if a; — ap then A4(a1) = Q.
Answering is affine: for every a1 € x € C(A) with 14(a1) =
Q, there is at most one az € x s.t. a; — az and A4(az) = A.

An arena (or esp) A is negative if every minimal event is negative.
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Strategies. Now that we have our notion of games, we can finish
making formal the strategies displayed in Figures 1 and 2.

As pointed out earlier, the diagrams of Figure 1 have to be un-
derstood as representing esps labelled by the arena, here [Bool; F
Boolz]. Modulo the (arbitrary) choice of copy indices for occur-
rences of q(1+’a), this labelling function is implicit in the name of
nodes of the diagram. However, not all such labelled esps make
sense as strategies. In order to have a well-behaved notion of strat-
egy, we will now give a number of further constraints, best intro-
duced in multiple stages. First, we introduce pre-strategies.

Definition 2.6. A (probabilistic) pre-strategy on arena A is a
(probabilistic) esp S along with a labelling functiono : S — A
such that (1) for all x € C(S), the direct image cx € C(A) is
a configuration of the game, and (2) o is locally injective: for all
51,82 € x € C(S), if 051 = 0 59 then s1 = s5.

Conditions (1) and (2) amount to the fact that the function on
events 0 : S — Ais also a map of event structures [31] from S
to A (ignoring here the further structure on S and A).

Although pre-strategies give a reasonable mathematical descrip-
tion of concurrent processes performed under the rules of a game
(or protocol) A, it is too general: in particular, the current definition
ignores polarity. Even in a sequential world, we expect of a defini-
tion of strategy that e.g. Player cannot constrain the behaviour of
Opponent further than what is specified by the rules of the game.
For our strategies on event structures, Rideau and Winskel [26]
proved that we need more in order to get a category. They define:

Definition 2.7. A pre-strategy o : S — A is a strategy iff it is
e receptive: for x € C(S), if ox €~ y € C(A), there is a
unique x € x” € C(S) such that ox’ = y; and
e courteous: for s,s’ € S, if s —g s” and if pol(s) = + or
pol(s’) = —, then os — 4 os’.

Thus a strategy can only pick the positive events it wants to
play, and for each of those, which Opponent moves need to occur
before. It was proved in [26] and further detailed in [7] that strate-
gies can be composed, and form a category (up to isomorphism)
whose structure we will revisit in the next section, aiming for an
interpretation of PPCF.

But for now we still have some definitions to give on strategies.
Indeed although at this point the causal structure of strategies is
sufficiently well-behaved to fit in a compositional setting, as per
usual in game semantics strategies have to be restricted further
to ensure that they “behave like terms of PPCF”. Typically, a set
of further conditions on strategies is deemed adequate when it
induces a definability result, leading to full abstraction. Here instead,
our conditions will first ensure that there is a functorial collapse
operation to the already fully abstract probabilistic relational model.
We will add further conditions in Section 4 to prove definability.

Our conditions are a subset of those of [9]. They crucially rely
on the following definition.

Definition 2.8. A grounded causal chain (gcc) in an esp S is
aset p = {p1,...,pn} € S such that p; is minimal in S and
p1 —s p2 —s p3 —>s ... —s pn. Note that some p; may have
dependencies not met in p. We write gce(S) for the set of gees in S.

Grounded causal chains give a notion of thread in this concurrent
setting. The following definition ensures that each thread can be
regarded as a standalone sequential program:
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Bool; | Booly
-Q) -Q)
q qy
'y Ty
g

1 1

Figure 3. A non-visible strategy on Bool; || Bool;/.

Definition 2.9. A strategy ¢ : S — A is visible iff for all p €
gee(S), we have o p € C(A).

As arenas are forest-shaped, any non-minimal a € A has a unique
predecessor just(a) — 4 a. Likewise, by local injectivity of o, for
any s € S whose image is non-minimal there is a unique s’ € S, its
justifier, such that 0 s” — 4 o s, which we also write to as just(s).

With that in mind, the visibility of o : S — A can be equivalently
stated by asking that for all p € gee(S), for each p; € p, we have
just(p;) € p as well. This is reminiscent of the visibility condition in
HO games, which states that the justifier of a Player move always
happens within the P-view [17]. In our setting however, visibility
says that a strategy can be regarded as a bag of sequential threads,
sometimes forking with each other, sometimes merging, and some-
times conflicting. The strategy pictured in Figure 3 is non-visible,
since the justifier of tt; is absent from the gec qp7 — tty.

Each of these sequential threads needs to respect the call-return
discipline, in order to forbid strategies behaving like e.g. call/cc [20].

In a set X C S, we say that an answer szjl € X (which is shortcut

for A4(os2) = A) answers a question le € Xiffos; —4 os2

(i.e., just(sz) = s1). If a gce p € gee(S) has some unanswered ques-
tions, we say that its pending question is the latest unanswered
question, i.e. the maximal unanswered question for <g.

We import from HO games [17]:

Definition 2.10. A visible strategy o : S — A is well-bracketed
iffforall p = {p; =5 ... =5 pr‘(ﬁ_l} € gee(S), pn+1 answers the
pending question of {p1 —s ... —5 pn}.

3 Compositional Structure and Collapse
3.1 A category of games and probabilistic strategies

We start by recalling some basic constructions on esps. Given an esp
A, its dual is the esp A+ whose events, causality and consistency are
exactly those of A, but polarity is reversed: pol 41 (a) = —pol4(a).

Given a family (A;);eg of esps, we define their simple parallel
composition to have events

lier A = (_J{i} x A;
iel

with componentwise causal ordering and polarity. The consistent
sets are the finite [|;ef, X; for Iy C I and X; € Cony, for alli € Io.

These constructions extend to arenas with A4+ = 14 and 4, 4,
defined componentwise. A (probabilistic) strategy from A to B is
a (probabilistic) strategy on A+ || B. Sometimes we write ¢ : A+ B
for a strategy o : S — A' || B, keeping the S anonymous.

We now show how to compose strategies. As usual in game
semantics composition involves two steps: interaction and hiding.
We will first show them without probabilities, and then add it back.

Interaction of strategies. Let A, B and C be arenas,and o : S —
Al ||Band 7 : T — B! || C be strategies. Intuitively, states of the
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interaction 7 ® o should correspond to so-called synchronised pairs:
{(xs,xr) [ oxs =xa |l xp & Tx1 = xB || xC}

According to this, the interaction of ¢ of Figure 3 with either 7;
or 7, from Figure 1 (regarded as strategies on (Bool; || Booly )" ||
Booly) would have the same maximal state

({q1, qu, tt1, 17}, {q2, q1, quv, thy, thyr, th2 })

However this seems inaccurate, because while ¢ wants to play tt;
after qv/, r; will only ask qy- after o plays tt1: there is a causal loop.
To get an ess whose configurations correspond to causally reachable
pairs of synchronised configurations, we use the following pullback
in the category of esps, which we know exists from [26, 7]:

I T®S I,

slic e AlT
\ /
allC 4 IB|C Allr

Either path around yields the interaction t ® 6 : T® S — A ||
B || C, a labelled event structure, charaterised in e.g. [7]:

Lemma 3.1. Configurations of T ® S are in one-to-one correspon-
dence with the synchronised pairs

{(xs,x1) | 0 x5 = x4 || xp & TxT = xB || XC}

that are causally reachable. Formally, the induced bijection ¢ : xs ||
Xc = x4 || xT is secured, i.e. the relation on the graph of ¢ generated
by (s,t) 1y (s',t") if s < s" ort < t’ is a partial order.

In the interaction of ¢ and 7; above, the state ({q1},{q2.q1})
is maximal. It cannot be extended further, as we have a deadlock:
strategies are waiting on each other. This process of eliminating
causal loops is the main difference between game semantics and
relational semantics; and the reason why typically mapping game
semantics to relational-like models is not functorial, as in e.g. [34].
Accordingly our main result will rely on Lemma 3.7, which states
that the composition of visible strategies is always deadlock-free.

Composition of strategies. Following [26, 7], from t®0 : T®S —
A|l B C,wesetT ®S to comprise the events of T ® S mapped to
either A or C, with the data of an event structure inherited. Thus,
each x € C(T © S) has a unique witness [x]Tgs € C(T ® S).
Polaritiesin T ® S are set so that the restriction7 © o : TO S —
AL || C preserves them. From this we get the composition of ¢
and r,a strategy r 0o : TOS — AL || C[7].

Composition of probabilistic strategies. We turn to the proba-
bilistic case. For the interaction T ® S, for x € C(T ® S) we set:

vres(x) = vs(xs) X vr(xT)

where Il; x = x5 || xc and Il x = x4 || x7. Forx € C(T © S), we
set vTos(x) = vr@s([x]r@s). From [33], we know that this makes
7 O o a probabilistic strategy. We have defined

T0c:TOS— At | C,

a probabilistic strategy from A to C.
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The probabilistic copycat strategy. The identity strategy on an
arena A is the copycat strategy, c4 : @4 — AL || A. The events,
consistent subsets and polarity of (C 4 are those of At || A, with
causality relation <, defined as the transitive closure of

<ata Y {((1,a), (2,a)) | polyu(1,0) = —}
U{((2,a),(1,a)) | pols(2,a) = -} .
Configurations of C 4 are certain configurations x1 || xz € C(A
A). Being deterministic, copycat is easily made probabilistic by

assigning probability 1 to every configuration [33]. Under these
definitions the map a4 : @4 — A || Ais a probabilistic strategy.

S

Equivalences of strategies. 1t is often not sensible to compare
strategies up to strict equality; for instance the associativity and
identity laws for composition only hold up to isomorphism of strate-
gies.Let 0 : S — Aand 7 : T — A be probabilistic strategies on an
arena A. A morphism from o to 7 isamap of essp f : S — T such
that 7 o f = o, and for all x € C(S), vs(x) < v7(fx). Then o and ¢
are isomorphic if there are morphisms f : S —» Tandg:T — S of
probabilistic strategies which are inverses as maps of essp.
Arenas, probabilistic strategies, and morphisms between them
form a bicategory [26]. We will not use the 2-cells, so in what fol-
lows we work in the induced category (obtained by quotienting
homsets). We are interested in a subcategory whose morphisms are
the visible, well-bracketed strategies of Section 2.5, which are more-
over negative (i.e. S is negative) and well-threaded (for all s € S,
[s] has exactly one initial move). These additional conditions are
needed for the categorical structure presented in the next section.

Definition 3.2. The category PG has

e objects: negative arenas;
e morphisms from A to B: negative, well-threaded, visible and
well-bracketed probabilistic strategies, up to isomorphism.

3.2 A symmetric monoidal closed category

Monoidal structure. The tensor A® B is simply defined as A || B,
with unit 1 the empty arena. From o7 : $1 — Ali || By and o3 :
Sz = Ay || Bz, form o1 ® 02 : Sy || S2 = (A1 ® A2)* || (B1 ® By),
as obvious from o1 || o2; with vg, g5, (x1 || x2) = vs, (1) X vs, (x2).
Without probabilities, this yields a symmetric monoidal structure
[7]; the extension with probabilities offers no difficulty.

Cartesian structure. The empty arena 1 is a terminal object. The
cartesian product of arenas A and B, written A & B, has events,
causality, and polarity those of A || B, and consistent subsets those
finite X = X4 || 0 with X4 € Cong or X = 0 || Xg with Xg €
Conp. We have two projections:

@4:C4y—> (A&B)* | A op:Cp — (A& B)* || B

where one component of the & is not reached — this is compatible
with receptivity since A and B are negative. From o : S — At || B
and 7 : T — At || C, their pairing

(0,7):S&T — AL | (B&C)

is obtained from ¢ and 7 in the obvious way. The valuation is
vsgT(xs || 0) = vs(xs) and vsgr(@ || xr) = vr(xr). The in-
compatibility between B and C is key in ensuring local injectivity.
Compeatibility of pairing and projections, along with surjective
pairing, are easy verifications.
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Closed structure. Because our objects are negative arenas, A* || B
usually lies outside PG. So, inspired by the arrow construction in
HO game semantics, we deviate from A+ || B by having A depend
on min(B) the minimal events of B. If there are several of them, we
copy A accordingly. As our setting is sensitive to linearity, we use
consistency to ensure that this copying remains linear.

Definition 3.3. Consider A, B two negative arenas. The arena
A —o Bhas as events (||p emin(B) A1) || B and polarity induced. The
causal order is that above, enriched with pairs ((2, b), (1, (b, a))) for
each b € min(B) and a € A. Notice that there is a function

XA,B H A-—oB g AJ‘ || B
(1,(b,a)) +— (L9
(2,b) > (2,b)

collapsing all copies. We set Cong_,p so as to make y4 g a map
of esps, i.e. (|lpemin(xyz) Xp) | Xp € Congp iff Xg € Cong,
Ubemin(xz) X» € Cony, and this union is disjoint.

One may then check that there is a natural bijection PG(A ®
B,C) = PG(A, B — (), i.e. PG is symetric monoidal closed.

Dcpo-enrichment. To interpret PPCF it will be necessary for PG
to be dcpo-enriched. We equip the set of probabilistic strategies
on a game A with a relation C, as follows. For ¢ : S — A and
7 : T — A probabilistic strategies, set ¢ C 7if S E T, (i.e.
S C T and the structure of S is the restriction of that of T), and
if moreover vg(x) < vr(x) for any x € C(S). It is clear that C
is a partial order. The least upper bound (lub) of a directed set
of probabilistic strategies is their union, with valuation given as
v(x) = sup{vs(x) | (6 : S — A) € D and x € C(S)}. The least ele-
ment (up to isomorphism) is given by L 4 : min(A) — A (note that
the map 0 — A is not receptive in general and so not a strategy).

3.3 Collapsing games and strategies

Though we have yet to introduce a linear exponential comonad on
PG to break linearity, we find it better to delay its introduction, and
give now the collapse of arenas and strategies to sets and relations.
Its functoriality will be addressed in the next subsection.

Mapping arenas to sets. Unlike games, PRel only records the
trace of the data returned by functions for successful executions.
In games, the relevant information is captured by the complete
configurations, i.e. those x where every question is answered in x.

Definition 3.4. Let A be an arena. Define | A to be the set of
nonempty, complete configurations of A.

Consider for instance the arena [Bool]pg for booleans. It has two
nonempty and complete configurations, {g~, t*} and {q~, ff*}, so
1[Bool]pg is isomorphic to the two-element set {tt, ff} = [Bool]prel-

Mapping strategies to matrices. Let 0 : S — A be a (negative,
well-threaded, visible, well-bracketed) probabilistic strategy. Our

goal is to define a “vector” | o € RiA indexed by the nonempty
and complete configurations of A.

Given x € | A, the coefficient (| 0)x intuitively sums the prob-
ability coefficients of all the ways one can play x in S. This is
formalised using the notion of witness:

Definition 3.5. Let 0 : S — A be a strategy and x € C(A). A
witness for x in o is z € C(S) such that 6z = x, and such that all
maximal moves of z have positive polarity (we say z is +-covered).
Write witg(x) for the set of all witnesses of x in S.
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The requirement that witnesses should not have negative max-
imal moves is illustrated by the following strategy on the game
B —o B, where Player calls its argument and returns independently:

q(ﬂ Q)
¥
¢+ #H )
O]

When flattening out this strategy, we must not include (i, t) as a
possible execution, as this would cause functoriality to fail.
We can finally define the action of |(—) on strategies.

Definition 3.6. Let 0 : S — A be a (negative, well-threaded,
visible, well-bracketed) probabilistic strategy. For x € | A, we let:

Uo= D, wvsa.

zewitg(x)

3.4 Functoriality of the collapse

Following the above a morphism ¢ : S — A' || B in PG collapses
to a vector | o indexed by elements of [(A || B). This is not quite
in PRel(| A, | B), which would instead be indexed by elements of
L Ax | B, i.e. pairs of nonempty configurations. For x || y € C(A* ||
B) to be nonempty it is enough for only one of x, y to be nonempty.
And indeed o might output a value without inspecting its argument:
there may be witnesses to @ || y in 0, so (| o))y may be non-zero.
However because A, B and o are negative, there can be no witnesses
for x || @ in o, and the coefficient (] o), ¢ is always zero.

These observations follow from PG being affine, whereas PRel is
linear: a strategy can ignore its argument — and so can a morphism
in the Kleisli category PRel;, but not in PRel. Thus the target of
our collapse functor will not be PRel but an affine version of it
introduced below. Later, moving on to the cartesian closed category
PG, we will recover the usual relational model PRel, of PPCF.

We first describe the affine version of PRel and its relationship
with PRel,. After that, we prove functoriality of the collapse.

The affine relational model. Following [24, §8.10] and decom-
pose the ! of PRel into a weakening modality !, and a duplication
modality |, each a comonad on PRel. For any set X, ! X contains its
nonempty finite multisets: | X = M?E(X), while !X has the set X
along with the empty multiset: ,.X = X + {[ ]}. We omit details of
their structure, induced from those of ! (found e.g. in [14]).
The Kleisli category PRel, is now a model of affine logic, with

structure defined in terms of the structure of PRel:

e Products: the same asin PRel, X &Y =X +Y.

o Monoidal structure: X ®,y Y = X ® Y + X + Y, with unit 0.

o Closed structure: X —o,, Y =X —o Y.

e Exponential modality: the comonad lifted to PRel, .

Lifting the comonad ! to PRel, exploits a distributive law ! —

1), and the Kleisli category (PRel, ), is isomorphic to PRel;. With
this in place, the collapse will be a functor:

| : PG — PRel,

preserving the structure required for the interpretation.

We can now define the action of | on a strategy o : S — At || B:
for x € [ (LA),y € | B, we set ({ o)),y as (L 0)g)y and ({ 0)x,y
as (] 0)x|y- We will now check that it is a functor, leaving the
preservation of further structure for later.
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A functor. Consider 7 : T — B! || C. To show the functoriality of
| we must relate |(r © o) to the Kleisli composition | 7 o | 0. For
x €l lAand z € | C, the latter is given as:

(rolo)xz=06xlD))2 + Z (L 0)x,y( D)y, 2,
yelB
To show [(r © 0)x,z = (| 7 © | 0)x,z, We use a bijection between:
(1) witnesses wforx || zin7 ©® 0, and
(2) pairs (ws, wr), where wg is a witness for x || y in o, and
wr fory || zin 7, for some y €, | B,
which satisfies vTgs(w) = vs(wg) X vr(wr). There are subtleties
in both directions, which we proceed to define.

From (2) to (1). This direction is the most subtle, as it bumps against
the reason why traditionally operations from dynamic to static
semantics are only lax functorial. Indeed, recall from Lemma 3.1 that
configurations of the interaction T ® S correspond to synchronised
pairs (ws, wr) for which the induced bijection is secured. This is
in contrast with (2), where witnesses are synchronised with no
securedness condition. The following crucial lemma states that,
when composing visible strategies, securedness is redundant.

Lemma 3.7 (Deadlock-free lemma). Let xs € C(S) and xt € C(T)
such that 0 xs = x4 || xg and T x7 = xg || xc. Then the induced
bijection ¢ : xs || xc = x4 || xT is secured.

So, composing visible strategies is inherently relational, from
which the direction from (2) to (1) is direct.

From (1) to (2). This direction is easier: given a witness w for x || z
in 7 ® o, its down-closure [w] € C(T ® S) satisfies (r ® o)[w] =
x || y || z for some y € C(B). It may look like we are done: writing
ITI;[w] = ws || z and ITz[w] = x || wr we obtain a pair (ws, wr) of
witnesses for x || y and y || z. But it remains to check thaty € |, | B,
i.e. that it is complete. Well-bracketing ensures this.

Lemma 3.8. Ifw € witrgs(x || z), for well-bracketed visible strate-
gies o and t, where x and z are complete, then the uniquey € C(B)
such that (r ® o)[w] = x || y || z is also complete.

Summing up. That this is bijective follows from +-coveredness of
the witnesses; and the required equality is obtained by summing
up on both sides following this bijection. The collapse preserves
identities: for any arena A, | a4 is the Kleisli identity (| A) — (| A)
(i.e. the counit for ). Therefore,

Theorem 3.9. | : PG — PRel, is a functor.

Preservation of structure. This functor is well-behaved. One can
easily check that it preserves the order structure on morphisms: if
o E rthen | 0 < |7, and furthermore [(V y5ep 0) = Voep(l o)
for any directed set D — so in fact |(_) is itself dcpo-enriched. It
behaves well also with respect to the categorical structure:

Lemma 3.10. We have the natural isomorphisms in PRel, :
A&B)=|A&|B  [(A|lB)=]A®w B

Moreover, when B has a unique initial move, we have |[(A — B) =
LA —o,, | B. All associated structural morphisms are preserved.

3.5 Games and strategies with symmetry

In Section 2.5 we hinted at the need for moves to be duplicated,
and adjoined copy indices. The necessity of expressing uniformity
w.r.t. copy indices (see [10]) requires us to enrich our probabilistic
games with a notion of symmetry.
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Probabilistic thin concurrent games. Event structures with sym-
metry, introduced in [32], were applied to games in [8] and refined
in [9]. For lack of space we only give an informal description.

Our category is a probabilistic enrichment of the thin concur-
rent games of [9]. The objects are ~-arenas, consisting of an arena
A and (among others) a set A of bijections 0 : x = y between
configurations x, y € C(A), expressing that x and y are interchange-
able, i.e. the same up to copy indices. This is subject to further
axioms [10], and informs an equivalence relation on C(A). Like-
wise, probabilistic ~-strategies are o : S — A where S also has
an isomorphism family preserved by o, with the requirement that
symmetric configurations should be assigned the same probability.

Unlike PG, this category now supports a linear exponential
comonad !, whose Kleisli category is, as usual, a ccc:

Lemma 3.11. There is a cartesian closed category PG, having

o objects: negative ~-arenas;

o morphisms A to B: (negative, well-threaded, visible, well-
bracketed) probabilistic ~-strategies o : S — AL || B, up
to isomorphism and symmetry.

Interpretation of PPCF. The interpretation of ground types as
~-arenas was given in Section 2.5. It is extended to all types by
setting [A = B]] = ![A] — [B]. As a cartesian closed category,
P G\ supports the interpretation of the simply-typed A-calculus [22]:
asusual, atypedterm I' + M : B,with T = x7 : Ay,..., x5 : Ap, is
interpreted as a morphism:

M] 1 & [AD)~ [B]
1<i<n

It remains to interpret the primitives of PPCF. FromT + M : Bool,
I'+ Np : Bool, T + N3 : Bool, we define [if M Ny Ny] via composi-
tion with a deterministic ~-strategy if: [Bool] & [Bool] & [Bool] -
[Bool]. There are in fact two possibilities for if. As in Figure 1, one
is sequential and compatible with the usual interpretation of if in
game semantics, while the other is the parallel strategy from [9].
We omit the specific diagrams, hoping that they are easy to gener-
alise from those of Figure 1. We denote the sequential and parallel
interpretation by [_]|* and [_]?, respectively, and simply use []
when the choice does not matter: in particular, both ~-strategies
will collapse to the same weighted relation.

Finally constants are interpreted as in the following examples:

Bool Bool
[t] = =9 [coin] = -9
Y 2N

&+ A) A A

where configurations have probability 1 unless specified otherwise.
For each ~-arena A, there is a (deterministic) fixpoint combinator
Yz on ((IA — A))* || A allowing us to interpret Y as the lub of
a set of approximants, see [9] for details.

Relational collapse. The new subtlety in extending our functor | :
PG — PRel, from Section 3.4 is that moves in | A mention specific

copy indice;: while finite multisets Mg (A) only count multiplicity.
To address that, we refine | A as the set of =-equivalence classes
of non-empty and complete configurations of A (and similarly for
| o). The developments of Sections 3.3 and 3.4 adapt smoothly to
the new framework, and we now have | (IA) = M?e(l A).
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Thus, | takes o : A+ Bto |oin PRel‘L(l A, | B), which is
iso to PRel(!,! | A, | B) = PRel(! | A, | B). Hence we can lift it:

Lemma 3.12. There is a functor | : PG, — PRel,.

It is a straightforward verification that there is an isomorphism
04 : l[Alpc = [A]prel for any type A of PPCF. Moreover the
functor preserves the interpretation of all PPCF primitives, so that:

Theorem 3.13. ForanyPPCFtermI' + M : A, up to the isomorphism
Ori-a, we have that [[T + M]];,g =T+ M]]’;,g = [T + M]pRel-

For instance, the probabilistic strategy for M, from Figure 2
collapses to its relational interpretation, given in Section 2.2.

Interestingly, the equational theory on PPCF induced by the
parallel interpretation is strictly finer than that induced by PRel,.

4 Full Abstraction for PPCF
4.1 Full abstraction in PG, by relational collapse

We import adequacy and intensional full abstraction from PRel,
to PG, using the functor |. Let 0 : S — B be a probabilistic ~-
strategy. Its probability of convergence to b € {t, ff}, written
Pr(oc — b),is 3 xec(s) vs(x). Applying Theorem 3.13 we get:

st.beox

Theorem 4.1 (Adequacy). Let+ M : Bool. Then, forb € B,
Pr(M — b) = Pr([M]pg, — b)

In fact, PG, is intensionally fully abstract, that is, contextual
equivalence in the language coincides with contextual equivalence
in the model. Let us now formally define the latter, by means of a
contextual preorder. Note the similarity with Definition 2.1.

We start by defining a preorder < on ground type strategies:
giveno : S —» Bandr : T — B, write 0 £ r whenever Pr(c —
b) < Pr(r — b) for any b € {tt, ff'}. Observe that, writing = for the
equivalence induced by <, we have ¢ = 7 justin case |0 = | 7.

Definition 4.2. If ¢ and 7 are probabilistic ~-strategies on an
arbitrary ~-arena A, write 0 Scix 7, if a © A(o) £ a © A(r)

for every ‘test’ morphism a : A —» B. The induced contextual
equivalence is denoted =~iy.

Theorems 3.13 and 4.1 imply full abstraction:

Theorem 4.3 (Intensional full abstraction). Let M and N be PPCF
terms such thatT' + M : AandT + N : A. Then M = N if and only
if [T+ Mlpg =cx [T + N]pg (where [] is either [_]* or [_]P).

Visible and well-bracketed probabilistic ~-strategies have thus
precisely the same distinguishing power as PPCF contexts. But the
model still contains “junk”, i.e. ~-strategies which do not behave
like PPCF terms. In this section we impose a further condition on
~-strategies (sequential innocence, defined in Section 4.2) in order
to prove a finite definability result (Theorem 4.7). From there, a
fully abstract model for PPCF follows using standard reasoning.

In what follows we simply use strategies to refer to the mor-
phisms of PG, i.e. the negative, well-threaded, visible, and well-
bracketed probabilistic ~-strategies, considered up to isomorphism.

4.2 Full abstraction by definability

In this paper we are only concerned with definability with respect
to the sequential interpretation [_]]* of PPCF.

Definition 4.4. A strategy 0 : S — A is sequential innocent if
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e for every x € C(S), v(x) # 0;

e asubset X C S is a configuration if and only if it is an
O-branching tree (that is, causality is tree-shaped and if
a — b and a — c in X then pol(a) = +) and 0 X € C(A);

e forall x,y,z € C(S) suchthatx =yNzandy Uz € C(S),

v(yVz) _ o(y) v(z)
o(x)  o(x) v(x)’

The first condition is necessary for definability as configurations
with probability zero are not definable in PPCF.

Sequential strategies form a well-behaved class: they are stable
under composition, and copycat is sequential innocent. Call PG5
the subcategory of PG whose morphisms are (isomorphism classes
of) sequential innocent strategies. We can use it to interpret PPCF:

Lemma 4.5. For any PPCFterm T + M : A, [T + M]3, is a sequen-
tial innocent strategy.

So just like PG, the category PG provides an adequate model
of PPCF. But it is a much smaller category, allowing us to prove
intensional full abstraction via definability. Fix a ~-arena A = [A],
for A some arbitrary PPCF type. As usual, finite definability will be
sufficient for full abstraction:

Definition 4.6. A sequential innocent strategy ¢ : S — A is
finite when:

o There is a bound to the length of gccs,

e Foreverys™ €S, the set {t* € S |s —»g t} is finite;

e u(x) € QN[0,1] for every x € C(S).

It is necessary for definability that configuration-valuations of fi-
nite strategies have rational coefficients (because of non-computable
elements in [0, 1]), but Q being dense in R, any configuration-
valuation can be approximated by ones with rational values, and
indeed finite strategies form a basis for the dcpo of innocent se-
quential strategies on A. Finite innocent sequential strategies have
an inductive tree structure, that we exploit for PPCF definability.

Theorem 4.7 (Finite definability). For any finiteo : S — A in
PG)', there is a PPCF term + M : A such that [[M]];Dg =o0.

From here, deriving a fully abstract model is standard. We write
Siix to denote the contextual preorder in PG defined by requiring
the o of Definition 4.2 to be sequential innocent. We show:

Theorem 4.8. Let M, N be PPCF terms such thatT + M : A and

T+ N:A Then, M Sere N iff [T+ M]3, <sIre Nlpg-

Note that full abstraction holds in its stronger inequational form.
Definability permits this while the relational collapse did not: in-
equational full abstraction does not hold in PRel; [14].

5 Conclusion

In future work, we aim to rely on this to push further the quantita-
tive semantic cube, studying interactions of probabilities with state
and concurrency. The challenge, there, is to understand how proba-
bilistic choice interacts with the nondeterminism of scheduling.
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