EVENT STRUCTURES

by
Glynn Winskel
University of Cambridge,
Computer Laboratory,
Corn Exchange Street,
Cambridge CB2 3QG.

Abstract

Event structures are a model of computational processes. They represent a process as a set
of event occurrences with relations to express how events causally depend on others. This paper
introduces event structures, shows their relationship to Scott domains and Petri nets, and surveys
their role in denotational semantics, both for modelling languages like CCS and CSP and languages
with higher types.

Introduction.

Event structures are models of processes as events constrained by relations of consistency and
enabling. Their study in denotational semantics first arose as a biproduct in the pioneering work
of G.Kahn and G.Plotkin on some foundational questions in denotational semantics (See 1.5). The
concrete data structures of Kahn and Plotkin were later realised to be closely related to confusion—
free Petri nets (see part 3 and [NPW]) and this led to the more general definitions discussed here.
Since then they have been developed as a model in their own right and for certain applications (e.g.
see part 4) they are easier and less clumsy to use than Petri nets to which they are closely related
however. These notes are intended to present the mathematical theory of event structures, show how
they are related to Petri nets and Scott domains, and how they can be used to provide semantics to
programming languages for parallel processes as well as languages with higher types.

A goal in working with event structures has been to develop a theory of concurrency which
incorporates both the insights of C.A.Petri and D.S.8cott. To some extent this has been achieved.
On the one hand, event structures consist of relations on events and bear a close relationship to Petri
nets. On the other, the configurations or states of an event structure naturally reflect information
about what events have occurred and determine a Scott domain of information. Because of this dual
nature event structures stand as an intermediary between the theories Petri nets and denotational
semantics, sharing ideas with both. As such they can serve a bridge between the two theories. For
example the insight of Scott that computable functions induce continuous functions on domains
appears as a finiteness axiom on event structures (1.4), which can be readily interpreted for Petri
nets, while the restriction of confusion—{reeness on a Petri net translates to concreteness on a domain
naturally associated with it (1.5, 3.3). There remains the curious mismatch noted in [NPW|: a
computation which is described by an event structure, or Petri net, gives rise to a whole domain
whereas usually in denotational semantics a computation denotes a single element of 2 domain.
This indicates, I believe, that we are still some way from the comprehensive theory of events in
computation envisaged in [W].

The notes are organised in four parts. The first introduces event structures and their relations
to families of configurations and certain kinds of domains which are viewed as different presentations
of essentially the same idea. It develops the framework in which event structures can be defined
recursively. Here the closeness of event structures to domains has another pay-off. It is easy to
adapt ideas from denotational semantics to provide a smooth framework for recursion. In parts
2 and 4 this work is extended to particular applications. In part 2, event structures are used fo

326

provide a non-interleaving model of languages like CCS and CSP. The approach is quite abstract
and mathematical, using some category theory, but has the benefit of establishing once and for
all, in a uniform way, a variety of semantics, interleaving and non—interleaving, and the relations
between them. We can now move on, use the semantics, and try, for example, to advance our
understanding of the relationship of models of “true concurrency” with operational semantics and
the logic of concurrent programs. The guts of the work of this part appeared in [W1]. Part 3 shows
how the same ideas can be carried through for Petri nets, giving rise to a more algebraic treatment
of nets than usual, and gives a formal translation between nets and event structures. (Sections 3.1
to 3.3 can be read without any knowledge of the earlier sections.} In part 4 some work of G.Berry
is presented in a new light. It is shown how event structures can be made into cartesian closed
category and so be used to model programming languages with higher types. This part is meant as
a preparation and indicator to further work, both Berry and Curien’s work (see [C] especially) and
some recent work of Girard on a model for his System F, the polymorphic A-calculus (see [G] and

[CGW]). The work after part 1 will use some basic ideas from category theory. Our main reference
is [Mac].

1. EVENT STRUCTURES, CONFIGURATIONS AND DOMAINS.

This part gives the definition of event structures, focusses on special forms, and shows how
particular kinds of Scott domains of information are formed by their configurations (or states).
Scott’s thesis is related to the axiom of finite causes and the machinery is established for defining
event structures recursively. In addition, the relationship between event structures and concrete
domains is exhibited with a brief indication of the relevance of concrete domains to denotational
semantics.

1.1. Event structures.

Picture a process as performing events as time goes on. What we choose to regard as events of
the process will depend on the level of abstraction at which we view the process. For the moment
let us not worry about what kinds of events they are. Suppose that this is settled on and we
have decided that the events of interest to us come from a set E of events or more strictly event
occurrences. Generally for various reasons some events exclude some others from occurring so not all
subsets of events can occur together in a history of the process. For example one event may exclude
another for physical reasons, you just cannot have two values at the same time at some place or
they may be in conflict because they compete for the same resource. Whatever the reason we can
only expect certain subsets of events to be able to occur in the same history. We can express this
as as a consistency predicate Con C Fin(E) on the finite subsets of E. And of course if a set X of
events can occur together in the same history then so can a subset Y € X so we can put ¥ € Con
too. There is a additional constraint on the occurrence of events. Generally an event can occur only
after certain other events have already occurred, and naturally we can assume they are consistent.
We capture this by use of an enabling relation FC Con x E where intuitively an event ¢ can only
occur after a set X, with X I e, has occurred previously.

1.1.1 Definition. An event structure is a triple (£, Con, I} where
(i) E is a set of events,
(i) Con is nonempty subset of FinFE, the finite subsets of E, called the
consistency predicate which satisfies

XeCon & YC X =Y € Con, and

327

(i) +C Con x E is the enabling relation which satisfies

XFte & XCYeCon=Y Fe.

Our intuitive understanding of the consistency predicate and the enabling relation are expressed
in the notion of configuration (=state) we adopt for event structures. A configuration is a set of
events which have occurred by some stage in a process. According to our understanding of the
consistency predicate a configuration should be consistent in the sense that any finite subset is in
the consistency predicate. And according to our understanding of the enabling relation every event
in a configuration should have been enabled by events which have occurred previously. However the
chain of enablings should not be infinite but eventually end with events which are enabled by the
null set, and so need no events to occur previously.

1.1.2 Definition. Let E = (E,Con,) be an event structure. Define a configuration of E to be a
subset of events £ C F which is

(i) consistent: VX Cyin . X € Con,

(it) secured: Ve € zeq, - ,en ET. €5 =€ & Vi <n.{eo, - €1} I e
The set of all configurations of an event structure is written as 7(E).

It is helpful to unwrap condition (ii) a little. It says an event e is secured in a set x iff there is
a sequence of events eo,- -, €, = € in z such that

0 Feo, {eo} Fer, - {eo,- - eim1} Feiy - {eo, - en 1} - en.

We call such a sequence eg,ey1,...,€, = € a securing for e in z. The following proposition expresses
when an event can be added to a configuration to obtain another configuration. We use X Cysin ¥
to mean X is a finite subset of Y.

1.1.3 Proposition. Let E = (E, Con,) be an event structure. Suppose z € ¥(E) and ¢ € E.
Then z U {e} € 7(E) iff

(i) VX Cginz. X U{e} € Con and

(ii) dX Crinz. X e
Proof. Clearly (i) and (ii) are necessary for z U {e} to be a configuration. Conversely, assume (i)
and (ii) hold. Then by (i), x U {e} is consistent. By {ii) there is some X Cy;, = such that X F e.
Write X as {eo,...,en—1}. Each e; has a securing s; in z. Form the chain sg s+ 572 1€ by

concatenation. Then this chain is a securing for e in zU {e}.

1.1.4 Example. Event structures may be infinite. For example, define {2 to be the event structure
with events the nonnegative integers w, with any finite subset consistent and enabling relation

Xtne{n|n<n}CX

Then 0 represents a process, like a “ticking clock”, which can perform the events 0,1,---,n,--- in
sequence.

1.1.5 Example. Event structures can exhibit nondeterminism, or conflict. Consider the event
structure with two events 0,1 in which § 0 and @ + 1, {0},{1} € Con and yet {0,1} ¢ Con. Its

configurations have the form:
{0} {1}

Nondeterminism appears as “branching” in the partial order of configurations ordered by inclusion.

328

1.1.6 Example. Event structures can exhibit parallelism, or concurrency. The event structure
with two events 0,1 in which @ - 0 and @ + 1 and this time {0,1} € Con, has configurations of the

form:
{0,1}

{0 >{1}
1)

Concurrency of events appears as a “little square” in the partial order of configurations.

1.1.7 Example. A parallel switch:
0
=TT

An event may be enabled in more than one way even in a single configuration. Assume initially both
switches are open. Closing either one enables the event of the bulb lighting up. The configurations

have the form:
{0, l,b}
{0,6} {1,b}
{0,1}
{0} {1}
]

Thus each event structure determines a family of subsets of events, the configurations of the
event structure. Such families have a simple characterisation.

1.1.8 Definition.
Let (P,C) be a partial order.
Say a subset X of P is compatible, and write X T, iff

dpe PVze X. 2z p.

We can use this notion in the particular case where P is a family of sets ordered by inclusion. In
the special case where X is a set of two elements {z,y} we write z T y for X T.

For families of configurations we shall use a more delicate notion of compatibility. Say a subset
X is finitely compatible, and write X 15 iff

VXo Crin X. XoT,
i.e. when every finite subset is compatible.

1.1.9 Theorem. Let E = (E,Con,) be an event structure. Its configurations F = ¥(E) form a
set of subsets of E which satisfy
(i) fnite-completeness:

ACF & Al/i"=> |JA € F,
(ii} finiteness:
V€ FYec z3z€ F. (z is finite & e€ 2z & 2z C z),
(iii) coincidence-freeness:

Ve e, cz. et = (yce F.yCz & {ecywedy))

329

Proof. The proof is a routine exercise using the definition of configuration of an event structure.

1.1.10 Definition. Let F be a set of subsets. Say F is a family of configurations when it satisfies
the axioms of finite-completeness, finiteness and coincidence—freeness above. Say F is a family of
configurations of E when E = [JF.

1.1.11 Lemma. Let F be a family of configurations. For all z,y € F

zCy=>3Jdecy\r.zU{e}F.

Proof.

Suppose z C y for z,y € F. Then there is some event ¢ € y \ z. By finiteness e € z Ty y for
some finite config z. By finite~completeness z1Uz € F. Of course, z C zUz C y. Thus it is sufficient
to prove the lemma in the case where the set y \ z is finite. We do this by induction on the size
ly \ z| of the set difference, taking the statement of the lemma as the induction hypothesis.

If ly\ z| = 1 then obviously y = z U {e} for the unique event ¢ with e € y \ z.

Suppose |y \ z| > 1 and assume the induction hypothesis for strictly smaller sizes. There are
then two distinct events eg,e; € y \ z. By coincidence~freeness there is a configuration z containing
one and not the other. {Without loss of generality assume eg € w and ¢; ¢ w.) Hence z CzUw C y.
Therefore by the induction hypothesis there is some e € (zUw)\ z for which zU {e} € F, and clearly
e € y\ z, as required. 1

1.1.12 Definition. Let F be a family of configurations of a set E. Define a structure &(F) =
{E,Con,) on F by taking

X € Con gy X is finite & Jz€F. X Cu,

XtewgrXeCon & IzcF.ecz & £C XU {e}

1.1.13 Theorem. If F is a family of configurations then £(F) is an event structure such that

FE(F)=F.
Proof. Let F be a family of configurations. It is easy to see that £ (F) is an event structure.
Suppose z € FE(F). Then, by the definition of the enabling relation of £(F), for each e € z
there is a configuration z, € F such that e € £, C f;, . By the definition of the consistency predicate
of £(F), the set {z. | e € z} is a finitely compatible subset of F. Therefore
z=){z. | ecz}€F.
Suppose z € F. We show z € FE(F). Certainly x is consistent. Suppose e € z. By the finiteness

property of F there is a finite configuration y for which e € y Cy;y, %. Repeatedly applying lemma
1.1.11, starting with the interval § C y, we obtain a sequence ey,...,¢€;,...,€, such that

{e1}, -, {e1,...,ei}, -, {er,...,€6,...,en} EF

with {e1,...,€i,...,en} = y. As e occurs in some stage of the sequence this provides us with a
securing for e in z. Hence z is a configuration of £{F). 1

Notice we do not have £ #(E) and E equal in general for event structures E.

330

1.1.14 Corollary. Let Fy and Fy be families of configurations. If £(Fg) = £(F,) then Fy = Fy.
Proof. It £{Fg) = &{F;) then Fo = FE(Fg) = FE(F4) = Fy, by the theorem above. §

Of course the configurations of an event structure form a partial order when ordered by inclusion.
It is sensible to think of the points of this partial order as elements of information expressing how far
the process has progressed; the computation has progressed further when more events have occurred.
The idea of information is familiar from Dana Scott’s work and in fact the configurations of an event
structure do form a domain when ordered by inclusion. Though note it is a rather special kind
of domain. In particular it satisfies the finiteness axiom that an finite element dominates only a
finite number of elements. This is because the concept of more information is tied very closely to
the progress of the process over time. The associated domains are closely related to the concrete
domains of Kahn and Plotkin (see [W, KP] and section 1.5} Recall:

1.1.15 Definition. Let (D,C) be a partial order.

Say D is consistently complete iff all finitely compatible subsets X C D have least upper bounds
LiX.

Note a consistently complete partial order has a least element, viz. L = | |0, though it may not have
a greatest.

Say a subset S of D is directed iff all Sy Cyin S have upper bounds in S. (So § is finitely
compatible and cannot be empty.) An element e of D is said to be finite iff for all directed sets S,
if e C | S then e T s for some s € S.

A consistently complete partial order is algebraic iff for every element d

d=1}{eC d]eis finite}.

We call a consistently complete algebraic partial order a Scott domain (or simply a domain).
A finitary domain is one in which every finite element dominates only a finite number of elements,
i.e. {d | dC e} is finite.

1.1.16 Theorem. Let F be a family of configurations. The partial order (F,C) is a finitary Scott
domain with finite elements the finite configurations.

Proof. As the family F is finitely-complete, the partial order (F, C) is consistently complete. Clearly
every configuration which forms a finite set is a finite element. Let z € F. Each ¢ € z is contained
in some finite configuration z..C z by the finiteness axiom. Obviously z = {J{z. | ¢ € z}. Hence
(F,C) is algebraic and so a Scott domain. §

The thesis [W] contains a characterisation of the domains that result from event structures
in the case when the consistency relation is induced by a binary conflict relation between events
(see later, 2.3). T am not sure of the characterisation of domains associated with the more general
event structures presented here. However such representation results are particularly smooth for the
slightly more restrictive class of stable event structures, introduced in the next section, which are
svitable in most cases.

Thus when we picture a process as an event structure we can choose, if we wish, to regard it
more abstractly as determining a family of configurations—when we abstract from the precise nature
of the consistency and enabling relations—or more abstractly still as a domain of configurations—
when we abstract from the precise nature of the names we use for events. Conversely we can regard
families of configurations and domains of configurations as special kinds of event structures. As we
shall see we can abstract in other ways too, and see these means of abstraction in a categorical light.
(The trees which underly the interleaving models of CCS and CSP are a similar abstraction from
the extra detail present in the non—interleaving model of event structures.)

331

1.2. Stable event structures.

Many people [Pe, He, La, Ma, NPW, W, Sh, MS, F, Pr] represent concurrent processes as
partial orders of events where an event e¢p precedes an event e; if the occurrence of the event ¢ is
necessary in order for €; to occur, in other words if the event e; causally depends on the event ej.
Often in these treatments all possible events of the process are put in the partial order whether or
not they are in can occur in the same history; there is a global partial order of causal dependency.
We shall treat models like these in the next section. It is useful to look at a more general class of
structures for which there need not be one global partial order but where each configuration has its
own local partial order of causal dependency.

We look for a special class of event structures for which there is a partial order of causal
dependency on each configuration. This can not be done so obviously for all event structures.
Consider the event structure of example 1.1.7, representing a parallel switch where the event b
causally depends not on a unique set of events but rather on either the occurrence of 0 or on the
occurrence of 1. It is incorrect to say b causally depends on both 0 and 1 because the occurrence of
only one of them enables the occurrence of 4. The difficulty arises because there is a configuration
{0, 1,5} in which there is an event b which is not enabled by a unique minimal set of event occurrences.
We can rule out such possibilities by insisting event structures satisfy the following stability axiom.

1.2.1 Definition. Let E = (E,Con,) be an event structure. Say E is stable if it satisfies the
following axiom
XFre& YhFe & XuYU{e}eCon=>XnNY e

1.2.2 Example. Let E be the event structure with events {0,1,2} with consistency predicate the
least one such that

{0,1},{0,2},{1,2} € Con,
so {0,1,2} ¢ Con, and enabling relation the least one such that
D0, 0F1, {0} F2, {1} F2.

Then E is a stable event structure and the configurations 7(E) have the form

{0,2} {1,2}
0,1}

{0} {1}

The stability axiom ensures that an event in a configuration is enabled in an essentially unique
way. Assume e belongs to a configuration z of a stable event structure. Suppose X e and X C z.
Then X U {e} € Con—the enabling X | ¢ is consistent. Take

Xo=UY |YCX & Y Fe}.

Because X is finite this is an intersection of a finite number of sets and we see by the stability axiom
that Xp b e. Moreover X; is the unique minimal subset of X which enables e. More formally, for
any event structure, stable or otherwise, we can define the minimal enabling relation ;5 by

XtmineeXte & (WWCX. YFre=>Y =X).

332

Then for any event structure
Yhre=3dXCY. X e

But for stable event structures we have uniqueness too, at least for consistent enablings:
Vie& Yu{e}eCon=>IXCY. X Fpin e
It follows that for stable event structures
Xtbtmine & YV bpme & XuYUecCon= X =Y.

Consequently the families of configurations of stable event structures satisfy the following intersection
property.

1.2.3 Theorem. Let E be a stable event structure. Then its family of configurations ¥ (E) satisfies

VX C F(E). X £0 & X1= X € F(E).

Proof. Suppose X is a nonempty compatible subset of configurations. Then Vz € X. z T 2 for some
configuration z. Clearly [}X is consistent. Suppose ¢ € {]X. Then e € z so there is some securing
€0,€1,...,€n = € for e in z. By stability, for any e € X if Y btpin e and ¥ C 2z then ¥ C ()X,
Therefore the securing for ¢ in z becomes a securing for e in ()X by omitting all members of the
sequence not in (}X. Thus {)X is secured, and so a configuration. #

1.2.4 Definition. Say a family of configurations F is stable when it satisfies the following axiom
(in addition to those in 1.1.9)

(stability) VXCF. X#0 & Xt=>XcF.

Thus the configurations of a stable event structure form a stable family. For a stable family
there is a partial order of causal dependency on each configuration of events.

1.2.5 Definition. Let F be a stable family of configurations. Let z be a configuration. Fore, e’ € z
define

d<;eovycF.dcy & yCrz=ecy.

When e € z define
lele=({yeFlecy & yCz}

We say a set y is < -left closed when it satisfies
e <,e & ecy=écy.
As usual, we write ¢/ <, efore <, ¢’ & e#¢'.
1.2.6 Proposition. Let z be a configuration of a stable family F. Then <, is a partial order and

[el; is a configuration such that
felo={ecz]e <, e}

Moreover the configurations y C © are exactly the left—-closed subsets of <.

Proof. Let z be a configuration of a stable family F.

333

The relation <_ is clearly a preorder. Further it is a partial order by coincidence-freeness.

The fact that the set [e], is a configuration follows directly from its definition as the family
is stable. Suppose ¢/ <, e. Then e € [e], C zso ¢’ € [e],. Thus [e]z is < -left closed. Suppose
¢’ € [e];. Then from the definition of [e], we see directly that ¢/ <, e. Hence

fel, = {e | ¢’ <, e}

Suppose y € F and y € z. Assume ¢’ <, e and ¢ € y. Then by the definition of <, we see
¢! € y. Thus y is left closed. The converse also holds. Suppose y is left closed and y C z. Then

clearly
y=U{lelz [ey},

and {[e], | € € y} 1, each element being a configuration included in z. Therefore by finite-
completeness of the family weseey € F. §

Let = be a configuration of a stable family. Intuitively an event e in z can only oceur once all
its predecessors {¢’ € z | ¢/ < ¢} have occurred.

1.2.7 Example. Refer to example 1.2.2. Let z = {0,2} and y = {1, 2} be particular configurations.
Then 0 <, 2and 1 <, 2but 0 £, 2and 1 £, 2. The orderings <. and <, cannot be the restrictions
of a “global” partial order on events.

1.2.8 Theorem.
Let E be a stable event structure. Then its family of configurations ¥ E is stable.
Let F be a stable family of configurations. Then £ (F) is a stable event structure.

Proof. The first part is simply a restatement of 1.2.3. We show the second part. By 1.1.13 we
already know &(F) is an event structure. Suppose X F e and Y F e with X UY U {e} € Con in
£(F). Then

e€z & zC XU {e} and

ecy & yCYulel
for z,y € F. Thus Uy C X UY U {e}, a consistent set, so £ T y. Therefore zNy € F and clearly

eczny & z0y C(XNYYU{e}. Thus XY + e, as required to show E(F) is a stable event
structure. 1

1.3. Prime algebraic domains and partial orders of events.

We consider the form of domain associated with stable event structures. Firstly we define the
relevant properties.

1.3.1 Definition.
Let D = (D,C) be a consistently complete partial order.
Say D is distributive iff it satisfies
ylez=zN(yuz)=(zNy)U(zNz).

Say D is infinitely distributive iff it satisfies the following two laws:

UX)ny=Hzny|ze X},

334

where X is a compatible subset of D and y € D, and

((IX)uy=1l{zuy| =z € X}

where® # X C Dandye D.
A complete prime of D is an element p € D such that

pCliX=3zeX. pLz

for any compatible set X.
D is a prime algebraic domain iff

z=|{pC z | pis a complete prime},
forall z € D.

Thus a prime algebraic domain is a Scott domain of information which possesses a special kind
of sub-basis.

Prime algebraic domains have a characterisation as familiar structures, a result which follows
directly from [W2].

1.3.2 Theorem. Let D be a consistently complete partial order.
D is a prime algebraic domain iff it is infinitely distributive and algebraic.
If D is finitary then it is prime algebraic iff it is distributive.

Proof. The proofs are quite lengthy and so are omitted. They can be found for lattices in [W2] from
which the results follow for consistently complete orders. #

Families of configurations of stable event structures are prime algebraic. The axiom of stability
on event structures has as its counterpart the axiom of distributivity on domains.

1.3.3 Theorem. Let F be a stable family of configurations. The partial order {F,C) is a finitary
and prime algebraic domain; the complete primes are the set {[e]l, |ec z & z € F(E)}.

Proof.
By 1.1.16 we know {F,C) forms a finitary Scott domain.

Suppose e € z € F. Assume [e], C | [W. Then ¢ € w for some w € W. By stability and the
fact that [e], T w we see [e]; C w. Hence [e], is a complete prime.

Let z € F. Clearly {[e]. | e € £} 1/**. Thus z = J{[e]. | € € z}. Therefore {F,C) is prime
algebraic. B

Thus stability of event structures appears as distributivity of the domains of configurations.
The fact that events must be secured in configurations, expressing the intuition that an event’s
occurrence can only depend on a finite number of previous occurrences, reappears as the fact that
domains of configurations are finitary.

Conversely, given a finitary prime algebraic domain we can easily generate a stable event struc-
ture which has an isomorphic domain of configurations. There is a natural choice of events associated
with a finitary prime algebraic domain, viz. the complete primes. They inherit the ordering from
D and this partial order can be viewed as a causal dependency relation. Unlike the local causal

335

dependency relations of the previous section which were defined with respect to particular config-
urations this is one global relation. There is an obvious consistency relation on complete primes;
take a finite subset of primes to be consistent iff they are compatible. The family of configurations
is easily generated from these relations. Structures (P, Con, <} can be thought of as another kind
of event structure in which the enabling relation can be expressed in an especially simple form, as
a global partial order of causal dependency.

1.3.4 Definition. Define a prime event structure to be a structure E = (E, Con, <) consisting of
a set E, of events which are partially ordered by <, the causal dependency relation, and a predicate
Con C FinE, the consistency relation, which satisfy

{e' | ¢/ < e} is finite,

{e} € Con,

Y C X =Con=Y & Con,

XeCon & J'c X. e< e = Xu{e} e Con

for all e € E, and finite subsets X,Y of E.
Define its consistent left-closed subsets, L{E), to consist of those subsets £ C E which are
consistent: VX C i . X € Con and
left—closed: Ve,e!. ¢! <ecz = ¢ € 1.
In particular, define [e] = {¢' € E | ¢’ < e}.

1.3.5 Theorem.
Let E be a prime event structure. Then L(E) is a stable family of configurations. The domain
{£{E),C) has complete primes those elements of the form [e] fore € E.

Proof. Routine. §

Conversely, as we have indicated, any prime algebraic domain is associated with a prime event
structure in which the events are its complete primes.

1.3.6 Definition. Let D be a finitary prime algebraic domain. Define Pr(D) = (P, Con, <), where
P consists of the complete primes of D,

p<p eplyp,

for p,p’ € P, and
XeCone XT

for a finite subset X of P.

1.3.7 Theorem. Let D be a finitary prime algebraic domain. Then Pr(D) is a prime event
structure, with ¢ : D & (L Pr(D),) giving an isomorphism of partial orders where

6(d) = {pC d | p is a complete prime} with inverse § : LPr(D} — D given by 8(z) = | |=.

Proof.

1t is easy to see that Pr(D) = (P, Con, <) as defined is a prime event structure.

Obviously the maps # and ¢ are monotonic i.e. order preserving. We show they are mutual
inverses and so give the required isomorphism.

It is easy to see that the maps ¢ and 6 are well-defined.

336

Firstly we show 8¢ = 1. Thus we require d = | [{p € P | p T d} for all d € D. But this is just
the condition of prime algebraicity.

Now we show ¢8 = 1. Let z € LPr(D). We require z = ¢b(z) i.e. z = {p € P | p C | Jz}.
Clearly z C {p € P | pC |lz}. Conversely if p C | |z, where p is a complete prime, then certainly
p € ¢ for some ¢ € z. However z is left—closed so p € z, showing the converse inclusion.

Thus we have established the required isomorphism. |

Thus finitary prime algebraic domains and prime event structures are equivalent; one form of
structure can be used to represent the other. Prime event structures are very simple and determine
the same domains of configuration as the stable event structures so why do we not work solely with
them? The reason is that prime event structures do not always combine very easily. Constructions
on stable event structures are generally easy whereas it can often be quite awkward and clumsy to
make the constructions yield prime event structures directly. For example the product (see section
2.3) and function space (see section 4.2) of two prime event structures are complicated when defined
directly. By introducing the more general class of stable event structures we get the best of both
worlds; constructions are easy and we can always obtain prime event structures with isomorphic
domains of configurations by theorems 1.3.5, 1.3.7. We should remark that finitary prime algebraic
domains have appeared in the context of Berry’s work; in [B] he considers dI-domains which are
finitary distributive domains, which by the results above are exactly the finitary prime algebraic
domains.

As example 1.2.7 shows the local partial orders of causal dependency are not necessarily part
of a global partial order on events. The above theorems show that at the cost of renaming events
they can made to be so. Suppose E = (£, Con,) is a stable event structure. Instead of taking the
events as £ we might change our view and regard the events as being P = {[e]|, | e z € F(E}}, so
a new event is a complete prime which includes the information about how it occurs. What causal
dependency relation should be put on the events P?7 An event p can only occur once all events p’
strictly included in p have occurred. The global causal dependency relation < on P given by

PF<percp

And when can a finite set of events X Cf;, E occur together in a configuration? When they are
compatible as configurations of E. This is the consistency predicate on events P:

XecConp & XCrpnP & XT.

In this way, by renaming events, a stable event structure E determines a prime event structure
(P,Conp,<). Of course, the configurations of (P, Conp, <) are not the same as the configurations
of the original event structure—the events are different. Still, the two domains of configurations
are isomorphic as partial orders. This just expresses the fact that the domain of configurations of a
stable event structure is prime algebraic.

In [NPW] and W] it is pointed out that events also manifest themselves in a domain as prime
intervals. We say d is covered by d’ in a domain, written d < d' iff

dCd & d#d & (V2.dC2Cd =>d=2 or z=4d).

The relation < is called the covering relation. A prime interval is a pair [d,d’] such that d < d’. In
a domain of configurations a prime interval is associated with the occurrence of an event at some
configuration; in a domain of configurations {F,C), the relation z < z/ holds iff there is an event ¢
such that e ¢ z and 2’ = z U {e} with z,z’ € F. Define

e, <ld,d] o ec=cd.

337

Form the equivalence relation ~ as the symmetric, transitive closure of <, and write {d, d'].. for the
equivalence class of [d,d’] with respect to ~. In a domain of configurations, [¢,¢'] ~ [d,d'| implies
¢'\¢ = d'\d = {e} for the same event e. So ~—classes are associated with unique events. For domains
represented as families of configurations of complete primes this association is a 1-1 correspondence.

1.3.8 Proposition. Let D be a finitary prime algebraic domain. Let ¢ © D = LPr(D)} be the
isomorphism d ~ {p C d | p is a complete prime}. Define the following map from ~-classes to
complete primes:

[d,d]. = p

where p is the unique member of ¢(d'} \ ¢(d). This map is a 1-1 correspondence with inverse
prld,d]

whered = | [{c| ¢ T p & c¢#p}andd =p.

Proof. Routine—or see [NPW]. Il

Later in some proofs we shall make use of the fact that if d is a finite element of a finitary prime
algebraic domain D then there is a covering chain

L=do<dy < <dp=d

in D up to d. This is obvious because we can represent any such domain as the left closed consistent
subsets of some prime event structure.

We turn now to one special kind of prime algebraic domain. Trees form a basic model of
computation. Often branching represents nondeterminism as for example in Milner’s synchronisation
trees. We show how such trees can be taken to be particular kinds of prime algebraic domains and
hence can be identified with certain kinds of event structure.

1.3.9 Definition. A tree is a prime algebraic domain which satisfies

zly=>(zCy or yCaz.

Thus for our purposes a tree is a special kind of domain whose order structure is that of a tree
in the conventional sense but with limit points at the end of every infinite branch. Of course such
trees are in 1-1 correspondence with certain forms of prime event structures and a tree T', as we
have defined it, can be identified with its image Pr(T) as a prime event structure. Its events are
complete primes which are in 1-1 correspondence with prime intervals which are the arcs of the tree.

A finitary prime algebraic domain determines a tree in a natural way, a construction which will
be important later in part 2.

1.3.10 Definition. Let D = (D,C) be a finitary prime algebraic domain. Define a covering
sequence of D to be a sequence {(dg,d1,...,dn_1,...), which may be empty, finite or infinite, in
which

L=do<dy < <dp_f <.

Define T{D) to consist of all the covering sequences in D ordered by extension.

1.3.11 Proposition. Let D be a finitary prime algebraic domain. Then T (D) is a tree.

338

Proof. Clear. §

The translation from event structures to domains has perhaps seemed rather formal. However
as was argued in [NPW, W] it does provide a bridge between concepts expressed in terms of Scott’s
idea of information and the ideas of Petri and others. And of course as we pointed out domains of
configurations can be associated with certain kinds of event structures in a natural way.

1.4. Scott’s thesis and the axiom of finite causes.

Dana Scott proposed the thesis that computable functions are continuous. Here it is understood
that datatypes are associated with domains of information and that computable functions between
datatypes are associated with functions between their domains of information. Recall a function
f: D — E from one cpo D to another E is continuous iff it preserves least upper bounds of directed
sets 1.e. for all directed sets §

Lifs = 7(US).

Note a continuous function is monotonic, .e.
Vz,y€ D.zCy= f(z) C f(y),

In particular, a continuous function should preserve least upper bounds of w-chains, i.e. for all
chaimnszo Tz E ---C 2z, £ -+ - in D we have

Unewf(zﬂ} = f(Unwaﬂ)'

Intuitively the ultimate output value should be no more than the limit of the values determined at
finite stages in delivering the input, so we can approximate the ultimate output value arbitrarily
closely by the output values at finite stages. Scott’s thesis has an intuitive justification (see e.g. [St]),
and plays a key part in the mathematical basis of denotational semantics. We show how Scott’s
thesis implies the thesis that for a computable process the occurrence of an event depends on the
previous occurrence of a finite number of events.

We need first to motivate some definitions. For simplicity we assume a process is modelled by
a partial order on events, E = (E, <) say, and show how the process will obey Scott’s thesis iff it
satisfies the axiom of finite causes:

Ye€ E. {¢/ € E| ¢ <e}is finite.

Of course we need to make clear what we mean by “obey Scott’s thesis”. This hinges on associating
datatypes and continuous functions with E.

We can choose to imagine some of the events of E as being events of input Eo from some
datatype, some as internal events, and others as events of output) to some datatype. The datatypes
may have their own causal dependencies, which contribute to the dependency of the full process,
so the input datatype can carry an partial order Eq = (Ep, <o) and the output datatype a partial
order By = {E;,<y). The orderings of the datatypes should be sub—partial orders of that of the
process, i.e.

EcCE & E;CE,

meaning <gC< and <;C<. There are natural domains of information associated with the two
datatypes, viz. their domains of left~closed sets of events. The process induces a function between
the domains. Define

f84,8, : L(Eo) = L(E1) to map z — {e € E, | [e] N Ep C z}.

338

The idea is that an event of E occurs once the necessary input events have occurred. It is clear that:
1.4.1 Lemma. The function fg, g, is monotonic.
Proof. Obvious. §

However for partial orders in general the function may not be continuous. Consider, for example,
the partial order
e

e

e; €1 €9 v €p -

with Eg = {e, | n € w} and E| = {e} ordered by the identity relation. Then taking S to be the
directed set consisting of all finite subsets of Ey we see (as in the proof of the theorem below) that
the least upper bound of S is not preserved by fg, g,. If E is to represent a computable process,
according to Scott’s thesis, fg, g, should be continuous. Furthermore it should be for any choice of
n events for the input and output datatypes. We say E obeys Scott’s thesis iff

VEo,Ei. (B0 CE & Ey CE = fg, g is continuous).

Now by an elementary argument we can show those partial orders of causal dependency E which
obey Scott’s thesis are precisely those which satisfy the axiom of finite causes.

1.4.2 Theorem. The partial order E obeys Scott’s thesis iff

Vec E. {e' € E | ¢’ < e} is finite.

Proof.
“z>” Suppose E obeys Scott’s thesis. Suppose for some e in E we had [e] infinite. Take
Es={e € E|e <e}and E, = {e},

with both ordered by the identity relation. Define S to consist of all finite subsets of E5. Then
S is a directed subset of L(Eo). Moreover no element of S is Ey as Eo is infinite. However now
fEo,8, (US) = {e} while Ufg, .5 = 0. Thus fg, g, is not continuous which contradicts the
assumption that E obeys Scott’s thesis. Thus [e] is finite for alle € E.

“&” Suppose [e] is finite for all e in £. Assume Eo C F and E; C E. Let S be a directed
subset of L(Ey). Abbreviate fg, 5, to f. As f is always monotonic we have {JfS C f(UUS).
Suppose e € f(IJS). Then [e]NEg C|JS. As [e] is finite so is [e] M Ey. Thus because S is directed
[e]NEo C s forsome s € S. Then e € f(s). This shows f(IJS) C JfS so f(US) = UFS. Therefore
[is continuous. Hence (B, <) obeys Scott’s thesis, as required. 1§

1.5. Concrete domains.

Event structures first arose in denotational semantics through the work of Kahn and Plotkin
on concrete domains [KP|. They were interested in extending the definitions of sequential functions
used by Milner and Vuillemin. It had become clear that often there was a mismatch between de-
notational semantics and operational semantics because the denotational semantics failed to take

340

account adequately of the sequential nature of the evaluation performed by machines. The problem
was realised in its most acute form in [P], where the failure of full-abstraction for the denotational
semantics of languages with higher type was traced to an inadequate treatment of sequential func-
tions. For much more on these notions of sequentiality and full-abstraction, their importance, and
work which stemmed from them see P.L.Curien’s book [C]. (For a little more see section 4.1.}

Let O be the simple domain consisting of two points L T 7. Then the product O x O, as a
domain, is got by taking all ordered pairs (z,y) € {L,T}? ordered coordinatewise:

(z,y) C ("¢) o zCa & yCy.
This yields a domain which may be pictured thus:

(T.7)

(T, 1) (L,7T)

Consider the least monotonic function giving (T, L) — T and (L,T) = T which can be drawn as

(T.7)
(T,.1) (L,T)

(L, 1)

encircling the minimal points at which T is output. This function cannot be realised according to
the operational semantics of many languages because often they are deterministic and so cannot
express functions like this one which examines its two arguments in parallel. It is not a sequential
function.

We seek a definition of sequential function between domains based solely on the structure of
the domains themselves. Two early definitions of sequential function were proposed independently
by R.Milner and J.Vuillemin. These depend on viewing a function f : [); X -+ x D, — E between
domains as having n arguments z = (z1,...,%;,...,Z,) (viewing the function as having more or
less arguments may change its character according to these definitions!) Assume f is a continuous
function.

Then f is M-sequential (Milner) iff either it is constant or there is an integer 7 (with 1 <7 < n)
such that f is strict in its 1th argument (i.e. z; = | = f(z) = L) and the function obtained by
fixing its ¢th argument is M-sequential.

On the other hand, f is V-sequential (Vuillemin) iff it is a constant or there is an integer 7 (with
1 < ¢ < n) such that
tCy & zi=y = f(z) = fy)

for any z,y € Do X --- x Dy.
Note the definitions depend on the grouping of argument places, and in particular that if

we regard z as occupying a single argument place the function f would then be both M and V
sequential. The two above definitions of sequential do not agree in general. However, importantly,

34

they do coincide and appear correct in the situation where Dg,..., D, and E are flat domains,i.e.
those for which d = | or 1 < d for all elements d.

G.Kahn and G.Plotkin sought a very general definition of sequential function which unlike M
and V sequentiality was independent of the way that the function was viewed as having arguments.
Reasonably, the definition should agree with M and V sequentiality in the case where the domains
Di,...,D, and E are flat. They achieved this by axiomatising a wide class of domains for which
there was a natural definition of places accessible from a point. Places are a generalisation of
argument—places of functions. Unlike argument places, however, places are defined independently of
the way the domain is viewed as a product. Their definition of sequential then agrees locally with M
or V sequentiality. Recognising that the notion of sequential depended on the nature of the program
terms denoted in the domains they chose to axiomatise only the first-order domains consisting of
basic input or output values and so include domains of integers, truth values, tapes and trees.

Kahn and Plotkin first axiomatised the concrete domains and then discovered they could be
represented by a concrete data structure (rather like a Petri net). Our presentation is the other way
round. A concrete data structure consists of places which can be occupied by at most one of a set
of events. In general a place may not be occupied immediately but must wait until this is enabled
by certain events. A place may be thus enabled by several different sets of events. {As an example
the nth place of a list is enabled by the event of making the (n — 1)th entry. We now give the formal
definition of a concrete data structure M and its configurations.

A concrete data structure C is a quadruple (P, E, !, I} where:

P is a set of places,
E is a countable set of events,
l is a function from E onto P locating events at places,

= is a subset of FinE x P called the enabling relation.

Such a concrete data structure determines an event structure and so a family of configurations.
The events are the same. Define the consistency predicate by

XeCone XCpnE & Ve,e' € X lle)=1{e/) > e=¢.

Thus events are not allowed to occur together if they occupy the same place. Define the enabling
on the event structure by

XreedYCXpeP Y =p & lle)y=p,

for X & Con and e € E. The configurations of C, written 7(C), are taken to be the configurations
of the associated event structure. Say C is stable iff the associated event structure is.

Domains which are isomorphic to (F{C),C) for some concrete data structure C are said to be
concrete.

The following definitions are important in defining sequential functions.
Let C be a concrete data structure. Suppose z £ 7(C) and p is a place of C.

Say z fills p iff 3e € z. l(e) = p.

342

Say p is accessible from r if s does not ill pand 3X C 2. X = p.
Write p(z) for the set of places accessible at z.
For z,y in 7(C) and a place p write z - y iff z C y and p is accessible from z and y fills p.

Thus we can tentatively define a function f : 7(Co) — F(C,) to be sequential if it is sequential
at all z in ¥(Co) where this means

vp' € p(f(z)). ((Fz. Lz & flz) £ f(y)] =
Ipeple) Yy 20y & flz) £ fly) >z P y))

This says to fill p’ accessible from f{z) there is some p accessible from = which must be filled; it
generalises V-sequentiality. Of course, it is not immediately clear that this definition gives the same
notion of sequential for different ways of generating isomorphic domains. This is the case however, a
fact which follows from the particular representation provided for concrete domains in [W, BC, CJ.

We shall not give the most general representation theorem here but mention a simpler one in
the case when the concrete data structure is stable. It involves an axiom called @ by Kahn and
Plotkin.

1.5.1 Theorem.

Let C be a stable concrete data structure. The family of configurations ordered by inclusion
forms a finitary prime algebraic domain which satisfies

(@) sy &<z & sfy=>Mly <t &]2

Let D be a finitary prime algebraic domain which satisfies axiom (Q). Then D is a concrete
domain.

Proof. Tt is easy to check stable concrete data structures satisfy (Q) and the other properties have
already been dealt with for event structures. We omit the construction which shows that the domains
mentioned are concrete. Proofs can be found in [KP], [W] or [C|. A key idea is to recover places

from the domain as equivalence classes of prime intervals under the least equivalence relation = such
that

{lc=d & I fd) or [e,¢|~d,d]) =[c,c] =[d,d]

As we have already seen events can be recovered as equivalence classes of prime intervals under ~.

1.6. A complete partial order of event structures.

There is a useful ordering on event structures which is a representation of the notion of rigid
embedding in [KP]. It is useful for giving meaning to recursively defined event structures. The order
is based on an idea of substructure.

1.6.1 Definition. Let Eq = (Eo,Cono, to) and E, = (E), Cony, 1) be event structures. Define

Eo a9 Ey ©Eq C Ey,
VX.XeConge XC Ey & X € Con; and
VX,e. X Fopees X CEy & ec By & X ke

343

In this case say Eq is a substructure of E;.

The notion of substructure is closely tied to that of restriction, an important operation in its
own right.

1.6.2 Definition. Let E = (E,Con,) be an event structure. Let A C E. Define the restriction
of E to A to be
E"A = (A,COIIA, I_A)

where
XeCong & XCA & XeCon,

Xtaee XCA & ecd & Xthe

1.6.3 Proposition. Let E = (E,Con,) be an event structure. Let A C E. Then E[A is an
event structure.
Let Eq = (Eo, Cong, o) and Ey = (E1, Cony, 1) be event structures. Then

Ey<Ey & Eg=E; (Eo.
Ion g E] and Eo = E1 then Eo = E].
Proof. Obvious from the definitions. 1

This definition of substructure almost gives a complete partial order (cpo) of event structures.
There is a least event structure, the unique one with the emptyset of events. Each w-chain of
event structures, increasing with respect to < has a least upper bound, with events, consistency and
enabling relations the union of those in the chain. But of course event structures form a class and
not a set and for this reason alone they do not quite form a cpo. We call structures like cpos but
on a class rather than a set large cpos. This is all we need. (Very similar approaches for solving
domain equations, or equations for structures like domains, occur in [C], [LW], [W1], [A] and [S1].)

1.6.4 Theorem. The relation < is a partial order on event structures. It has a least event structure
0 =ger (0,{0},0). An w—chain of event structures En < E{ -+ < Ey, 4 --- where E,, = (Ej,, Conp, y)
has a least upper bound

UnEwEn = (UnewE"’ UnEwconn’ Unew '_")'

Proof. Routine. B

It is easy to extend the substructure relation to n-tuples of event structures. They form a large
cpo too.

1.6.5 Definition. Write II; for the projection map II;(Eo,...,Ea_1) = E; on n-tuples of event
structures. For n—tuples,

(Eoy.. . En1) < (Eh,...,El_|)ifBoaEL & -+ & Enp_y <Ef_,.

1.6.6 Proposition. For a particular integer n, the relation < is a partial order on n-tuples
of event structures with least element (§,---,0). There are least upper bounds of increasing w-
chains in n—-tuples of event structures; in each coordinate j the least upper bound | J,E; of a chain
Eg < Ey---<E, - E satisfies II; (U, E.) = U,II;(E;).

344

Thus, as an example, the above proposition says the projection maps II, are continuous on
tuples of event structures ordered by <.

Fortunately in reasoning about the monotonicity and continuity of an operation we need only
consider one input coordinate and one output coordinate at a time because of the following facts,
well-known for cpos.

1.6.7 Proposition. Let F be an operation on n—-tuples of event structures.
It is monotonic, respectively continuous, {(with respect to <) iff it is monotonic, respectively

continuous, in each argument separately {i.e. considered as a function in any one of its argument,
holding the others fixed).

Similarly it is monotonic, respectively continuous, (with respect to «) iff it is monotonic, re-
spectively continuous, considered as a function to each output coordinate (i.e. each function I; F
is continuous for § < n}).

Thus in verifying that an operation is monotonic or continuous we ultimately have to show
certain unary operations are continuous with respect to the substructure relation a. The next
lemma will be a great help in proving operations continuous. Generally it is very easy to show that
a unary operation is monotonic with respect to 9 and continuous on the sets of events, a notion we
now make precise.

1.6.8 Definition. Say a unary operation F on event structures is continuous on events iff for any
w-chain, Eg 9 By --- < B, a--- E, each event of F(|J,E;) is a event of | J,F(E;).

1.6.9 Lemma. Let F be a unary operation on event structures. Then F is continucus iff F is
monotonic with respect to < and continuous on events.

Proof.
only if: obvious.

if: Let Eg ¢ B1--- 9 E, g --- E be an w—chain of event structures. Clearly |J,;F(E,) <« F(U,E.)
since F is assumed monotonic. Thus from the assumption the events of | J,F(E;) are the same as
the events of F(|J,E:). Therefore they are the same event structure by proposition 1.6.3. §

Now we relate the substructure relation on event structures to corresponding relations on fam-
ilies of configurations and domains. The substructure relation represents the rigid embeddings of
Kahn and Plotkin [KP].

1.6.10 Definition. Let Do and D; be domains. Let f: Do — Dj be a continuous function. Say
f is an embedding iff there is a continuous function g : D1 — Dy, called a projection, such that

gf{d) =dforall d € Dy and
fgle) Ccforall c € Dy.

Say f is a rigid embedding iff it is an embedding with projection g such that
¢C f(d) = fa(c) = ¢
for all d € Dg,c € Dq.
1.6.11 Proposition. Let E, and E; be event structures such that Eo < E;. The inclusion map

i: F(Eo) — F(E,) is a rigid embedding with projection j : ¥(E) — F(Eo) given by j(y) =U{z €
F(Eo) | z Cy} fory € F(E,).

345

Proof. Straightforward. #§

It is well-known that continuous functions on cpos have least fixed points and the argument is
virtually the same for continuous operations on large cpos.

1.6.12 Definition. Let D be a large cpo ordered by <, with least upper bounds | JX when they
exist. Let F be a continuous operation on D. Define fiz F to be the least upper bound

Unen F"(8).

1.6.18 Proposition. For the situation in the above definition, the element fiz F of D is the least
fixed point of F.

We finish this section with a simple example of a recursively defined event structure. The
operation we consider is that of prefixing (sometimes called lifting, or guarding) whose effect on an
event structure is to adjoin an extra initial event. Then once it has occurred the behaviour resumes
as that of the original event structure.

1.6.14 Definition. Let a be an event. For an event structure E = (E,Con, F) define ¢E to be
the event structure (E’, Con’, ') where

E'={(0,a)} U{(Le) | ec E},
X € Con' & {e]|(1,e) € X} € Con,
Xt+'eoe=(0a) or [¢=(l,e;) & (0,a) € X & {e|{l,e) € X} I e4].

1.6.15 Proposition. For any event a the operation a{) is 4—continuous on event structures. The
least fixed point fiz a() has events in 1-1 correspondence with strings in the regular language 1" 0a;
any finite subset of events is consistent and the enabling relation satisfies

0 F Oa,
X +1"0a & {0q,---,1""'0a} C X,

for n > 1. In fact the map 1™Ga — {n + 1) gives an isomorphism fiz a() T (1—the two event
structures are the same but for renaming of events.

Proof. Exercise. §

One thing may be puzzling the reader; why do we build a large cpo from the relation < rather
than the simpler relation based on coordinatewise inclusion of an event structure in another? This
is a partial order and does indeed give another large cpo and in many cases does suffice. However
it suffers a drawback; the function space construction on event structures—defined in part 4—while
being continuous in its right argument is not even monotonic in its left argument with respect to
this inclusion order.

2. EVENT STRUCTURE SEMANTICS OF COMMUNICATING PROCESSES.

Event structures are applied to give a non-interleaving semantics to parallel programming lan-
guages like CCS and CSP, based on the idea that processes communicate by events of synchronisa-
tion. There are natural morphisms between event structures including for example morphisms which

346

project the events of a parallel composition to events of its components. Useful constructions like
parallel composition and sum of event structures are derived simply from from categorical construc-
tions. These yield abstract characterisations of constructions to within isomorphism. Morphisms on
event structures induce morphisms on other classes of models like trees. The relationship between
models can often be expressed as a coreflection between categories. Because of the way coreflections
preserve limits and colimits, this leads to a smooth translation between semantics in terms of one
model and semantics in terms of another. Then there are adjunctions between with other models
and semantics in terms of them can be expressed as adjunctions

2.1. Morphisms to express synchronisation.

Here, in part 2, we choose a particular interpretation of events. They are to be either internal
actions or actions of synchronisation of the kind that appear in CCS and CSP (see [M1, 2], [H,
HBR]). Henceforth, we shall deal mainly with stable event structures.

2.1.1 Notation. We shall be working with partial functions § on events, We indicate that 8 is
a partial function from E, to E; by writing 8 : Eq —. E;. Then it may not be the case that 0(e)
is defined and sometimes we use * to represent undefined, so #{e} = % means the same as 6(e) is
undefined. It is a nuissance when using predicates like f(¢) € X to always have to say “provided (e}
is defined”. Instead we adopt the convention that the basic predicates of equality and membership
are strict in the sense that if they mention 6(e) this implies 6{e} is defined. Under this convention,
for example, ;

8(e) € X = 0(e) is defined, and

8(e) = 6(e’') = O(e) is defined & 6(e’) is defined.

As usual we represent the image of a set under a partial function by

60X ={8(e) | ec X & 0(e) is defined}.

Here morphisms are introduced which show the way in which the occurrences of events of in
one process imply the synchronised occurrences of events in another process.

2.1.2 Definition. Let Ey = (Ey, Cong, o} and E; = (B, Cony, F1) be stable event structures.
A (partially synchronous) morphism from Eq to E; is a partial function § : E; —. E; on events
which satisfies

(i) Xe Cong = X e Cony,

(ii) {e,e’} € Cong & 6(e) =0(e') => ¢ = ¢’ and

(iif) X Fo e & 6O(e) is defined => X +, 8(e).
Say a morphism is synchronous if it is a total function.
(Note by the convention stated in 2.1.1 the truth of 8(e) = 8(¢’) asserts also that 6(e) and 9(e’) are
defined.)

For a morphism § : Eg — E; on event structures an event e is imagined to synchronise with
the event #{e} whenever it is defined. The partial function & preserves consistency (i) and enabling
(iii} and (ii) expresses that it preserves events in the sense that no two distinct events which are
consistent with eachother can together synchronise with a common event in the image. When 8 is
synchronous every occurrence of an event of Ey is linked to a synchronised occurrence of an event
in El.

347

2.1.3 Proposition.

Stable event structures with morphisms of event structures form a category with composition
the usual composition of partial functions and identity morphisms the identity functions on events.
Stable event structures with synchronous morphisms form a subcategory.

2.1.4 Definition.
Write E for the category of stable event structures with morphisms of event structures.
Write E,y,, for the category of stable event structures with synchronous morphisms.

As one would hope morphisms preserve configurations.
2.1.5 Proposition. Let § : Ey — E; be a morphism of stable event structures. Then
z € F(Eo) = (fz € F{E) & Ve, € 2. 8(e) = G(e/) = e = €').
Proof. Let z € ¥(Eg). Any finite subset of 8z is the image of a finite subset of z which is consistent.
Thus by property (i) in the definition of morphisms we see 8z is consistent. Suppose #(e) € fz.

Then, by (iii), the image of a securing for e in = forms a securing for 6(e) in fz. Hence fz € 7 (E;).
The additional property follows directly from (ii). §

Similarly, morphisms between event structures induce functions on domains.
2.1.6 Definition. Let (Do, Co) and (Dy,C;) be partial orders. Let f be a function f : Do — Dy.
Say f is

(i) additive iff .
VX C Do. X1= f(LUX) = UfX,

(i) stable iff
VX C Do X #0 & X1= f([IX) = [I/X,
(i) <-preserving iff
Vz,z' € Do. z < 2’ = f(z) < f(2),
(iv] <-preserving iff
Vz,z' € Do. z < 2’ = f(z) < f(z').
(We use z < =’ to mean z == 2’ or z < z'.)
2.1.7 Proposition. Let 8 : Eo — E, be a morphism of stable event structures. Then the
function z + 8z from ¥ (Eo) to #(E,) is additive, stable and <-preserving. If 8 is synchronous then,
moreover, it is <-preserving.
Proof. Easy. 1

Note incidentally that the substructure relation is associated with a morphism.

2.1.8 Proposition. Suppose Ey a E,. Then the inclusion map ¢ : Eo < E, is a synchronous
morphism.

Proof. Obvious. |1

348

2.2. Constructions on event structures.

The categories E and E,y, have products and coproducts. Of course like all limits and colimits
they are determined uniquely up to isomorphism. They are intuitively natural constructions and
provide a basis for defining and proving relations between different semantics for languages like

Proc;. They generalise and make more uniform and less ad hoc the kind of constructions used in
[F} and {MS], and elsewhere.

2.2.1 Definition. Let Eg = (Eo, Cong, to) and E{ = (E1,Cony, F1) be stable event structures.
Define their partially synchronous product Eq x E; to be the structure (E, Con, +) consisting of
events E of the form

Eyx. E{= {(60,*) l en € EQ}U {(*,61) \ ey € El}U{(eo,el) } e € Fy & e € El},

the product in sets with partial functions with projections 7, : E —. E;, given by m;(eq,e1) = e,
for 1 = 0,1, consistency predicate Con given by

XeCone(XCpn B & moX € Cong & mX € Cony &
Ve,e' € X.(mo(e) = mo(e') or mie) = mi(e') = e =€),

enabling relation t given by

‘XteoXcCon & ecE &
{mo(e) is defined => 1o X ko mole)) & (wi{e) is defined = m X -y 7y(e)).

2.2.2 Theorem. The partially synchronous product Ey x E of two stable event structures Ep
and E,, with projections ng and 7y, is a product in the category E.
The product is continuous with respect to 4.

Proof. Clearly E¢ x E; is an event structure, which we shall assume is (£, Con,). It is also stable—
the proof uses both parts in the definition of Con. It is easy to see that the projections mo and
are morphisms. Assume g : E' — Eg and 8, : E' — E, are morphisms from a stable event structure
E' = (E’,Con’,). To be a product we require that there is a unique morphism # : E' — Eq x E4
making the following diagram commute:

Eo X E1
Y
Eo 9: E
S~
04

Because the events and projections Eg X . Ey, mp, 7y are a product in the category of sets with partial
functions there is no doubt about the uniqueness of 8; if it exists it is the partial function which acts
on an event e of B’ according to

8(e) = (fale),01(e))

with the understanding that {*,*) is interpreted as undefined. {Recall our use of * for undefined.}
Thus it only remains to show that 8 as defined is a morphism E' — Eg x Ey, i.e. that conditions (i),
(it} and (iii) hold in 2.1.2:

{i) Let X € Con'. We require §X € Con. But certainly 7,6X = #,X < Cong, for k = 0,1, as each
8, is a morphism. Further if e,e’ € X then e, ¢’ have the form e = 6(t),e = 6(t'). If mx(e) = mi(e)).

349
for k = 0,1, then 8(t) = mp8{t) = mc8(t') = 0:(¢’). As both 8y and 8, are morphisms, in either
case, k =0or k=1, weobtaint =t/ soe=¢.
(ii) and (iii) use arguments of a similar style and are left to the reader.
Finally, we see that x is <~continuous by an application of lemma 1.6.9. It is straightforward
to check that it is monotonic and continuous on events for each argument separately, and so is

<—continuous. §

We characterise the configurations of the product of two event structures in terms of their
configurations.

2.2.3 Proposition. Let Eq x Ey be the product of stable event structures with projections my,7y.
Let z C Ey x . E1, the events of the product. Then z € ¥(Eq x E,) iff

{a) oz € F(Eg) & miz € F{E1),

(&) Ye,e' € z. mole) = mole’) or mi{e) = mef) > e=¢,

{d) Veczdy Cx. moy € F(Ey) & my€ F(E) & ecy & |y| < oo and

{¢) Ve, €z.efe = Iy Ca moy€ F(E) & mye€ F(E1) & (ecy e € ¢y).

Proof. Routine. &

Remark. Refer to [W1]{examples 3.11 and 3.12) for examples which show the necessity of properties
{c) and (d) for the “if” direction of the proof.

2.2.4 Example. The configurations of the product of two trees

1

look like:

{1,%) (1,2)

(x2) {1,%)

0,4 (0,2)

] (%,2)

2.2.5 Definition. Let Eg = (E, Cong, o) and E; = (E;,Cony, 1) be stable event structures.
Their synchronous product, Eg ® Ey, is defined to be (Eo x Eq1)[Eo x Ej.

2.2.6 Theorem. The synchronous product Eq x E; of two stable event structures Eo and E,,
with projections the restrictions of my and 7y, is a product in the category of event structures with
synchronous morphisms, Egyn.

350

The operation ® is <—continuous.

Proof. This proof is similar to the proof for the product but this time the underlying category of
events is that of sets with total functions. |}

2.2.7 Example. Let E = (E,Con, I} be a stable event structure. Let (I be the event structure
defined in 1.1.4 {the “ticking clock”). Then EQ(Q has events E Xw, consistent sets those X C i, EXw
such that

X € Con & (Y(e,n),(e',n)eX. e=¢ or n=n'= (en)=(,n),
and enabling
Xtlenen-11CmX & X ke

Thus the configurations are “sequences”

{(60v0)7 (elv 1)7) (en,n), M }
of distinct events from E such that {eo, €1, --,e,} € F(E) for all n.

2.2.8 Definition. Let Eg = (o, Cono, Fo) and E; = (Ey,Cony, 1) be stable event structures.
Their sum, Eg + Ey, is defined to be the structure (E, Con, I} with events E = {{0,¢) | e € Eo}uU
{{0,e) | e € E1}, the disjoint union of sets Ey and Ey, with injections ¢y : Ex — E, given by
tk(e) = (k,e), for k£ = 0,1, consistency predicate

X € Con ¢ (IXo € Cong. X = 1pXp) or (IX; € Cony. X = 11X}),
and enabling relation

XFreeoXcCon & ecE &
[(E!XQ € Cono,eo EE). X=10Xo & e= Lo(eo) & Xo ko eo) or
(E!Xle(lonl,eleEl. X‘—:L1X1 & €:L1(€1) & Xl *’1 61)].

2.2.9 Theorem. The sum Eo + E; of two stable event structures Eo and E;, with injections ¢
and 13, is a coproduct in both the categories E and Eqyy,.
The operation + is <—continuous.

Proof. It is easy to check that the sum is a stable event structure and that the injections are
synchronous morphisms. Assume 6y : Eg — B’ and 8, : E; — E’ are morphisms from a stable event
structure E’. To be a coproduct we require that there is a unique morphism 8 : Eg + E; — E'
making the following diagram commute:

Eo + E;
s N
Eo g El
|
m ~ ﬁ 1
EI
Because the disjoint union of events with injections is a coproduct in the underlying category of sets
with partial functions the uniqueness of # is guaranteed. It is a simple matter to check that this

unique ¢ is a morphism. Moreover if 6, and ¢, are synchronous then so is ¢ ensuring that the sum
is also the coproduct in Egy,.

351

The continuity of + follows directly by lemma 1.6.9. }

It will be useful to consider more general sums as is done for transition systems and trees in
the work on CCS and SCCS (see e.g. [M1,2]); this will help in relating our work to Milner’s.

2.2.10 Definition. Let Ex = (Eg,Cong, Fi), for k € K, be a set of stable event structures
indexed by a set K. Define their indexed sum, ek Eg, to consist of events E = {{k,e} | e € Ep},
the disjoint union of events, with injections ¢z : Ex — E, for £ € K, consistency predicate Con,
where

XeCone ke K. 33X, € Cong. X = 15X

and enabling relation +, where X F ¢ iff
XeCon & ec E & (3/66 K3iXg,ep. X =Xy & e= Lk(ﬁk) & Xy bk ek).
We understand the empty sum to be the null event structure 0.

2.2.11 Proposition. Let Ex = (Ei, Cong, Fi), for k € K, be a set of stable event structures
indexed by a set K with injections v for k € K.
It is a coproduct in E and Eyyp.
It is a continuous K ~ary operation with respect to <.
Also
€ F(EZkekEr) © (3k € K3z € F(Ex). z = LkTk).

Proof. Obvious. §

Sums of event structures induce simple operations on families of configurations; for example
configurations of Eg + E; consist of copies, after renaming events, of the configurations of Eg and
E;. Intuitively a sum has the capabilities of its components.

2.3. Synchronisation.

Individually a process Py is thought of as capable of performing certain events. Some of them
may be communications with the environment and others may be internal events. Set in parallel
with another process P; an event eg of Py might synchronise with an event e; of P;. Whether they
do or not will of course depend on what kinds of events eg and e; are because Py and Py can only
perform certain kinds of synchronisation with their environments. But if they do synchronise we
can think of them as forming a synchronisation event (eo,e;). The synchronisation event (eg,e;)
has the same effect on the process P, as the component event ey and similarly on P; has the same
effect as the event e;.

Of course generally not all events of P, will synchronise with events of P;; there might be an
internal event of Py for example which by its very nature cannot synchronise with any event of P;.
So we cannot expect all events of the parallel composition to have the form (eo, ;). Some will have
no component event from one process or the other. We can represent these events in the form {eg, *}
if the event eg of Py occurs unsynchronised with any event of Py or {*, €,) if the event e; of Py occurs
unsynchronised. The * stands for the absence of an event from the corresponding component.

Thus we can view synchronisation as forming compound events from component events; a
synchronisation event is viewed as a combination of events from the processes set in parallel. Whether
or not synchronisations can occur is determined by the nature of the events. We use the idea of a
synchronisation algebra to specify how events synchronise. We label events of processes to specify

352

how they interact with the environment, so associated with any particular sychronisation algebra
is a particular parallel composition. By specialising to particular synchronisation algebras we can
obtain a wide range of parallel compositions.

A synchronisation algebra, (L, »,*,0}, consists of a binary, commutative, associative operation ¢
on a set of labels which always includes two distinguished elements « and 0. The binary operation »
says how labelled events combine to form synchronisation events and what labels such combinations
carry. No real events are ever labelled by % or 0. However their introduction allows us to specify the
way labelled events synchronise without recourse to partial operations on labels. It is required that

L\ {*,0} #0.

The constant 0 is used to specify when sychronisations are disallowed. If two events labelled A
and A are not supposed to synchronise then their composition A » A’ is 0. For this reason O does
indeed behave like a zero with respect to the “multiplication” e 7.e.

YAe L. Ae0=0.

In a synchronisation algebra, the constant * is used to specify when a labelled event can or
cannot occur asynchronously. An event labelled A can occur asynchronously iff A * is not 0. We
insist that the only divisor of * is * itself, essentially because we do not want a synchronisation event
to disappear. We require

VAN EL Ao XN =+ & A=) =«

We present two synchronisation algebras as examples—more can be found in [W1,2].

2.3.1 Example. The synchronisation algebra for CCS—no value passing: In CCS [M1] events
are labelled by «, 8, - or their complements &, 0,-- - or by the label 7. The idea is that only two
events bearing complementary labels may synchronise to form a synchronisation event labelled by
7. Events labelled by r cannot synchronise further; in this sense they are invisible to processes in
the environment, though their occurrence may lead to internal changes of state. All labelled events
may occur asynchronously. Hence the synchronisation algebra for CCS takes the following form.
The resultant parallel composition, of processes p and ¢ say, is represented as p|g in CCS.

|

™Rl R ox]e
Rl RO*|*
o~ o olp
SO QIR!
oo owx
OO Wiw]
oo oA
oo oo|lo

2.3.2 Example. The synchronisation algebra for || in CSP: In the form of CSP in [H, HBR, Bk|
events are labelled by «a,3,---. There are also silent moves and following the more operational
semantics in [Bk} we label them by r. For its parallel composition || events must “synchronise on”
a,3,---. In other words non-r-labelled events cannot occur asynchronously. Rather, an a—labelled
event in one component of a parallel composition must synchronise with an a-labelled event from the
other component in order to occur; the two events must synchronise to form a synchronisation event
again labelled by o. The synchronisation algebra for this parallel composition takes the following
form.

'I* a f r 0
[+ 0 0 r 0
al0 a O 0 0
10 0 8 00

Using synchronisation algebras one can define a generic programming language, inspired by
CCS, SCCS and CSP but parameterised by the synchronisation algebra. For a synchronisation
algebra L, the language Procis given by the following grammar:

t::zm’llzi)\tlt%—tlt@t{tmit[a}[recx.t

where z is in some set of variables X over processes, A € L\ {¥,0}, AC L\ {*,0},and E:L — L is
a relabelling function preserving * and 0 and such that 5(A) =+ = A=+ and E(A) = 0 => A = 0—
otherwise it would not lead to a sensible labelling of events.

We explain informally the behaviour of the constructs in the language Procy. The behaviour
can be described accurately by the models presented in the next sections. Roughly, a process
of Procydetermines a pattern of event occurrences over time. The nature of the events, how
they interact with the environment, is specified by associating each event with a label from the
synchronisation algebra L. The term nil represents the nil process which has stopped and refuses to
perform any event. A prefixed process At first performs an event of kind A to become the process
t. A sum t + t’' behaves like ¢ or ¢/; which branch of a sum is followed will often be determined by
the context and what kinds of events the process is restricted to. A parallel composition process
t @ t' behaves like ¢ and ¢ set in parallel. Their events of synchronisation are those pairs of events
{ec, €1), one from each process, where ¢ is of kind Ag and e; is of kind A; so that Ao ¢ A; # O; the
synchronisation event is then of kind Ag ¢ Ay. The restriction ¢[A behaves like the process p but with
its events restricted to those with labels which lie in the set A. A relabelled process ¢[Z] behaves like
p but with the events relabelled according to E. A closed term reez.t recursively defines a process z
with body ¢.

2.4. Denotational semantics.

We sketch how to give denotational semantics to a range of simple parallel programming lan-
guages Procywhich despite their simplicity, by varying the synchronisation algebra L, include pure
CCS (just synchronisation, no value-passing [M1]), SCCS (synchronous CCS [M2]) and the better
part of (theoretical) CSP of [HBR] but with just one parallel composition.

To pin down the intuitions given earlier we can take each closed term in Procpas denoting a
labelled event structure. This is simply an event structure E, with events E labelled by elements
of L, and so a structure (E,!) where [: E — L\ {x,0}. Parallel compositions of event structures
are defined with respect to a synchronisation algebra which specifies those pairs of events which can
synchronise, those which cannot and those which may occur asynchronously.

2.4.1 Definition. Let (Eo,/5) and (Ey,!;) be labelled event structures with events £y and E,
respectively. Assume their labels lie in a synchronisation algebra I = (L,e,%,0). Define their
parallel composition

(Eo,lo) @ (E1,11) = ([Eo x Eq][S.{)

354

where
S :{8 € Fox. By * 1071'0(6) Olﬂl’l(e) # 0} and
(e} =lomo(e) ¢ Lym1{e)

the set of allowed eventis in the composition, and for any event e of the composition. The other
operations are simple to define; prefixing, sum and restriction are just as before but taking account
of labels, and the operation of relabelling simply alters the labelling function.

In order to give a meaning to the recursively defined processes of the form recz.t we use the fact
that the operations are continuous with respect to a large c.p.o. of labelled event structures. The
large c.p.o. of event structures ¢ extends naturally to labelled event structures in such a way that
operations like parallel composition are continuous.

Let L be a synchronisation algebra. Define the ordering qa; on labelled event structures by:
(Eo,lo) a9y (Br,l1) @ Eo < Ey & lo =11 Eo,

where Fj is the set of events of Eq. The null labelled event structure (@,) is the least L-labelled
event structure with respect to <. Of course, ¢; has least upper bounds of w—chains; the lub of
a chain (Eg,/0), (E1,01),...,(En,s), ... takes the form (|J,En,{J,!n). All the operations prefixing,
sum, restriction, relabelling and parallel composition are continuous with respect to 4,. Thus we
can give a denotational semantics to Procpby representing recursively defined processes as the least
fixed points of continuous operation.

2.4.2 Definition. Denotational semantics for Procy: Let L be a synchronisation algebra. Define
an environment for process variables to be a function p from process variables X to labelled event
structures. For a term t and an environment p, define the denotation of t with respect to p written

[tlp by the following structural induction. Note syntactic operators appear on the left and their
semantic counterparts on the right.

[mllp =(0,0) [¢[Alp

=[t]p[A
Izlp . =p(z) [tE]e =[tlolE]
[Aelp =A([t]e) [t1 @ t2)o=[t:]p @ [t2]p

[tr +te]p=[tilp + [t2]p [recz.t]o =fizT

where T' is an operation on labelled event structures given by I'(E) = [t[p[E/z] and fiz is the
least—fixed—point operator.

Remark. A straightforward structural induction shows that T above is indeed continuous with
respect to 4; so the denotation of a recursively defined process is really the least fixed point of the
associated functional T'.

Choosing L to be the appropriate synchronisation algebra we immediately obtain denotational
semantics for CC8, SCCS and CSP with one parallel composition. Of course, in the semantics
of CCS, for example, denotations of processes carry far more detail than the semantics generally
given. In particular they include information about the concurrency or causal dependence of events,
information which is missing from the interleaving semantics in [M1, 2|. Results from the next section
show how the semantics relates to Milner’s in [M1]; as you would expect Milner’s synchronisation
tree semantics is obtained by serialising, or interleaving, the denotations of the event structure
semantics.

355

2.5. Other categories.

We have given denotational semantics to Procin ferms of event structures. In a similar way
we might give semantics using families of configurations, domains, prime event structures, or trees.
All such classes of structures form categories too with morphisms induced by those on stable event
structures.

2.5.1 Definition.
A morphism between stable families of configurations Fo, F1, of events Ey, E1 respectively, is a
partial function 4 : Ey —. E; such that

Vi€ Fo. Bz € Fy & (Ve,e € 2. 0(e) = 0(e) = e = €')].

It is synchronous when 8 is total.
A morphism between prime event structures (Eo,Cong, <o) and (E;,Cony, <;) is a partial
function 8 : By —. Ej such that

Ve € Ey. 0(e) is defined = [0(e)] C 6le] &
VX € Cong. [6X € Cony & (Ve,e' € X. 8(e) = b(e) = e = ¢')].

1t is synchronous when 4 is total.

A morphism between finitary prime algebraic domains Dy and D, is a function f : Do — Dy
which is additive, stable and <-preserving. It is synchronous when f is <-preserving.

A morphism between trees Ty and T} is a function f : Tp — Ty which is <-preserving and such
that f{0) = @. It is synchronous when f is <—preserving.

Morphisms on prime event structures can be characterised in a slightly different way which
recalls the simple way in which their configurations are generated.

2.5.2 Proposition. Let Py and P, be prime event structures with events Py and P;. A partial
function 8 : Py —, Py is a morphism 0 : Po — P, of prime event structures iff

Ve e L(Py). (0z € L(P)) & (Ve,e' € z. 0(e) = 0(e’) => e = ¢')).

Proof. Routine. §

The classes of structures with the appropriate morphisms under function composition give rise
to categories.

2.5.3 Definition.

Let F be the category of stable families of configurations with morphisms of families composed as
functions. Let F,y, to be subcategory with synchronous morphisms.

Let P and Py, be corresponding categories of prime event structures.

Let D and Dy, be corresponding categories of finitary prime algebraic domains.

Let T and T,y, be corresponding categories of frees.

We have defined the categories above in such a way that there is a natural chain of functors
EZF-2,.p-T,T.
The functor ¥ acts on an event structure E to give #(E) and on morphisms & : By — E; to give

F(0) : F(Eo) — F(E,) which is the partial function 8 restricted to the events of F(Ey). It is easily
checked that ¥ preserves identity morphisms and composition and so is indeed a functor.

356

The functor D acts on a family F to give the domain (F,C) and on morphisms 8 : Fo — F to give
the function D(8) : D(Fo) — D(F1) which acts (D(8)}(z) = 0= for z € Fo. It is a trivial matter to
verify that D is well-defined and a functor.

Morphisms on trees are clearly the same as morphisms on them when regarded as domains; trees
T form a subcategory of domains ID. Morphisms are also induced by a “sequentialisation” functor
from domains to trees. The functor T acts on a domain D to give the tree T D consisting of all the
covering sequences in D and on morphisms f : Do — Dy to give the function T(f) : T{Do) — T (D1}
which acts

(T(N)do,dr,. . sdn1,-..) = (f(do), f{dr)y..., f(dn-1),---)

on a covering sequence of Dgy. It is easy to see T is a functor.

There are a number of categories now, each could be used to give denotational semantics in a
manner very similar to the last section; again because the behaviour of parallel compositions should
be that allowed when we project into the components we expect to model it as a restriction of a
product. At first sight we face the laborious task of defining parallel compositions and sums in each
category and showing how they relate to eachother. This is needed in order to verify that all the
semantics are compatible. Fortunately however, the categories bear a simple relationship with one
another; there is a coreflection between any two. This fact, established next, gives us, as a corollary,
the form of parallel compositions and sums in the different categories and yields smooth translations
between the various semantics.

A coreflection is a special form of adjunction. An adjunction between two categories A and B
involves a pair of functors

F:A—-B G:B— A

between them. Recall one way of determining an adjunction between two categories (see [Mac] p.81).
Let G : B — A be a functor between categories A and B. Suppose for an object A € A there is an
object F(A) € B and a morphism n4 : A — GF(A) in A which is universal in the following sense:
For any morphism f : A — G(B) in A with B € B there is a unique morphism h : F(4) -~ Bin B
such that (G{h}) n4 = [, i.e. so the diagram below commutes.

A D4, GF(4) F(4)
~f 1G(h) :
> Yp B

In this situation we say F(A), na is free over A, with respect to G. In the case where for each 4, we
have such F(A), na free over A there is an adjunction from A to B. Then F extends to a functor
F : A — B by taking F(f), for f: A — A’ in A, to be the unique morphism F(A) — F(4’) in B
such that GF(f) 74 = nas f. The functor F is called the left adjoint of G, while G is called the
right adjoint of F. If each morphism 54, for 4 € A, is an isomorphism then the adjunction is called
a coreflection.

The role of the following lemma will be to determine morphisms on event structures from
morphisms on domains, where events are exhibited as prime intervals.

2.5.4 Lemma. Let f: Dy — Dy be a morphism in D. Then
([e,e') ~ [, d'] & flc) < f(c")) = (F(d) < f(d) & [f(e), F(c')] ~ [f(d), F(d")])-

Proof. Let ¢ < ¢’ and d < d' in D and suppose [d,d’] < [¢,¢']. Because f is additive and stable we
get

fld) = f(d' e} = f(d) 1 f(e),
fle') = fld" we) = f(d) U f(e).

357

Because f is <-preserving too the above equations make f(d) < f(d') iff f(c) < f(¢’). It follows
that if [d,d'] ~ [c,¢'} and f(d) < f(d') then [f(d}, f(d")] ~ [fe), f(<')]. &

The following theorem establishes the coreflections between the various categories.

2.5.5 Theorem.
The event structure & (F) with morphism 1p : F = F&(F) is free over F with respect to ¥, for each
FcF.
The family LPr(D) with morphism ¢ : D = DLPr(D) is free over D with respect to D, for each
D € D, where

¢(d) = {p C d | p is a complete prime}.

The tree T with morphism ¢t : T = T(T) is free over T with respect to T, for each T € T, where
CT(d) = <do,d1,...,dn,.. >

where L =dy < dy <+ <dn <.+ withd =|],d, (i.e. the sequence is a branch up to d).
The resulting coreflections cut-down to coreflections between the associated categories with syn-
chronous morphisms.

Proof. The first two isomorphisms presented above are known by earlier results (1.1.13 and 1.3.7).
We only present the proof of the coreflection from D to F. The other two coreflections are easier
to show, and left to the reader. The proofs go through virtually unchanged with synchronous
morphisms instead giving the coreflections in the synchronous cases.

Let D € D. Certainly, by previous results, LPr(D) € F and ¢ : D = DLPr(D} when defined as
above. Suppose F € F and f: D — (F,C) is a morphism in D. We require a unique 8 : LPr(D} - F
in F so that D(8) ¢ = f.

Recall the 1-1 correspondence between complete primes and prime intervals of D under the
equivalence relation ~, shown in 1.3.8; an equivalence class [d,d’].. corresponds to the unique prime
pin ¢(d'})\$(d). This makes it easy to define the required partial function ¢ : P —, E from complete
primes P of D to events of F. It is easy to see that if [z,2/] ~ [w,w'] in (F,C) then 2’ \ z =w'\ w,
both containing the same unique event. Thus, by the lemma above, the following definition of 4 is
well-defined:

For p € P, take a prime interval [d, d'| whose equivalence class corresponds to p. If f(d} < f(d")
then take 8(p) to be the unique event in f(d') \ f(d), and otherwise take 8(p) to be undefined.

Let d be a finite element of D. Take a covering chain up to d:
L=dy<dy <---<d, =d.

By induction along the chain we obtain 8¢(d) = f(d). As both functions are additive this implies
8¢(d) = f{d) for all d € D, so the functions are equal. Hence, provided we can show 8 is a morphism
we do have the required commutativity (D8) ¢ = f.

Now we show # is a morphism. Suppose £ € L Pr{D}. Then
6z = f¢~Hz) € F.

Suppose p,p’ € z and 8(p) = #(p') being equal to e say. Assume p # p’, in order to obtain a
contradiction. Take a covering chain up to pU p’ in D. Without loss of generality we may assume
this yields

d<d Ce=<d

358

where the equivalence class of {d, '] corresponds to p and that of [¢,¢'] corresponds to p’. The image
under f yields

fld) C f{d) € f(c) € f(<)
where f{d')\ f(d) = f(¢')\ f{c} = {€}. But this is impossible. Hence p = p’.

Therefore § is a morphism 6 : LPr(D} — F in F so that {D(f)) ¢ = f. Any other morphism #
satisfying (D(¢')) ¢ = f must satisfy (D(¢")) = fé~' = (D(8)) and so equal 4. So 8 is unique too.
1

There is also a triangle of functors:

F2-D
L o|P
NV

Here [takes a prime event structure P to its family £(P) of consistent, left closed subsets, and acts
on a morphism 6 : Py — Py to give £(0) : z +» §z—this is a morphism in F by proposition 2.5.2,
and so well-defined. The functor Pr acts on a domain D to give the prime event structure Pr(D).
Its action on morphisms is more complicated to describe, and is best done using lemma 2.5.4. Let
f : Do — Dy be a morphism in D between domains Do and D; with complete primes P, and Py
respectively. Each complete prime p € P, corresponds to an equivalence class of prime intervals,
as in 1.3.8, and because f respects this equivalence—the content of lemma 2.5.4—f determines a
partial function 8 : Py —. P;. More precisely, let p € P, correspond to the equivalence class [d,d’]...
in Do. Define (Pr(f})(p) = p' if f(d) < f(d’) and p’ corresponds to |f(d)}, f{d’)} in Dy, and undefined
otherwise. By lemma 2.5.4, Pr{f) is a well-defined partial function, and, as in the proof of 2.5.5
above, it can be checked that it is a morphism Pr(Ds) — Pr{D,) of prime event structures {or see
appendix B, lemma B9, of [W1]). Theorems 1.3.5 and 1.3.7 show how for any prime event structure
P there is an isomorphism P = PrD (P} and for any domain D € D there is an isomorphism
D = DLPr{D). Further it is easy to show these are natural isomorphisms in the sense of [Mac],
which is precisely what is required to establish an equivalence of the categories P and D. In this
way we have shown:

2.5.6 Theorem. The functor DL : P — D is an equivalence of categories with adjoint Pr.

We can interpret this theorem as expressing that, while on the surface the categories P and D
look very different, they are essentially the same model of processes.

Thus the various categories are all related by coreflections—recall coreflections compose. Ad-
junctions satisfy a useful property: right adjoints preserve limits like products and left adjoints
preserve colimits like coproducts [Mac p.114]. These facts, with the natural isomorphisms of the
coreflections, enable us to construct products and sums in the various categories, On these can then
be based constructions like parallel composition and sum in the same manner as in the last section.

2.5.7 Theorem.
(t} FoXFFlg?(f(Fo)ng(Fl)) for Fo,F1 € F.
(fi) Doxp Dy = D(EPT(DO) XF ﬁPT(Dl)) for Do, Dy € D.
(111) Toxp T = T(T@ Xp Tl) for Ts, T1 € T.

Proof. (i} For Fo,Fy € F we have £(Fo) xg £(F) is a product in E. It is preserved by the right
adjoint ¥ so

;(g(Fo) XE‘E(FI}) = (?E(FQ)) KF(;g(Fi)) = FyxpFy.

359

The proofs of (ii) and (iii) are similar. &

Because left adjoints preserve coproducts we know how to construct e.g. the coproduct of two
families ¥y, F; provided it exists. If Fo +5 F; exists then by the preservation of colimits,

f(Fo +FF1) = £(Fo) “+ g £(F1)

Hence
Fo+rpF:s 2 FE(Fo +p Fy) = F(E(Fo) +E E(F1)).

But of course it must exist for this argument to apply. The following lemma provides a sufficient
condition for existence.

2.5.8 Lemma. Let F: A — B be a coreflection from A to B with right adjoint G. Suppose B has
coproducts. Let Ao, A1 € A. If FG{F{Ao) +5 F{4:)) = F(Ao) +5 F(A1) then G(F{Ao) +g F(A1))
is a coproduct of Ao, Ay in A.

Proof. Consider the image category ImF. It is a full subcategory of B and F': A — ImF is an
equivalence of categories with adjoint the restriction of G. Let A¢, A1 € A. Then their images
F(Ao), F(A1) have a coproduct F(A¢)+5 F(A1) in B. f FG(F({Ao)+pF(A1)) & F(Ac)+5 F(A1)
then there is an object D in ImF isomorphic to F(Ao) +p F(A1). The object D is a coproduct of
F(Ag), F(Ay) in ImF. Hence G{(F(Ao) +p F{A1)) = GD is a coproduct of GF(Ay), GF(A;), and
thus of Ag, A1,in A. B

2.5.9 Theorem.
(1) F0+FF1§7(£(F0)+E£(F1)) fOI‘Fo,FleF.
(ii) Do +p D1 = D(LPr(Do) +# LPr(D1)) for Do,D; € D.
(iii} To+r T = T(To+p Ty) for Ty, T, € T.
Proof. 1t is easy to see:
(i) EF(E(Fo)+eé(F1)) =E(Fo) +EE(F,) for Fo,Fi €F,
(1) LPrD(LPr(Do} +r LPr(D1)) = LPr(Do) +# LPr{Dy) for Do, D, € D,
(lll) T(To +p Tl) = To+p Ty for To, T, € T,

from which the results follow by the lemma above. i

It is not hard to see that the sum of families has the effect of taking their union, once the events
of the families are made disjoint, and that the sum of domains and trees essentially glues disjoint
copies of them together at their bottom elements. Similarly we can define indexed sums so that they
are coproducts too. For example we can define

ZkekFr = 7 (Zrek € (Fi)),
and we shall encounter a use for indexed sums of trees soon.
Remark. Similar theorems hold in the synchronous case.
The theorems above construct products and sums in the different categories. But of course they
are all based on constructions on event structures. There are generally more direct characterisations

of the constructions in the different categories. By theorem 2.5.7{i) above and 2.3.3 characterising
the configurations of a product we obtain immediately such a result for families.

360

2.5.10 Theorem. Let Fo and F, be stable families with events Eq and Ey. Their product inF is
the family consisting of those subsets £ C Eo x . E1 which satisfy {a), (b}, {¢) and (d} of proposition
2.3.3.

Proof. The product Fo x g Fy in F is isomorphic to F{£{Fo) X g £(F1)}. But 2.3.3 characterises this
family as those subsets of Eo x . Ey which satisfy (i), (ii), (iil) and (iv). &

The characterisations of the product on trees T are simplified through the use of another functor
Tr : F > T behaving like T but acting on families instead of domains. Let F & F be a family
with events E. Define Tp(F) to be the set of finite and infinite sequences s of events E ordered by
extension which have the form

8 =(€1,€2,. . Eny...)

where {e1,ez2,...,¢;} € F for all ¢ at which e; is defined. Let 8 : Fg — F| be a morphism in F. Then
0:Eg —. Ey. Tt can be extended to sequences by insisting

07 (0) = QO

and

0 (es) = 8(e)8*(s) if B{e) is defined,
¢ =16 {s) if 8(e) is undefined.

We use es where ¢ is an element and s is a sequence to denote the result of prefixing e to the
beginning of s.

2.5.11 Lemma. The operation Tp is a functor Tp : F — T. We have
Tr(F) = T D(F)
for F € F. Moreover this isomorphism is natural in F.

Proof. Clearly covering chains
D<zy <Tpg<--+<Tp<--*

in (F,C) are in 1-1 correspondence with sequences
(61,62,... ,en,...>

where z,, = {e},€2,...,¢€,} for each n. This gives an isomorphism Tr(F) = T((F,C)) = TD(F). It
is easily checked to be natural. §

Thus the two functors Tp, TD : ¥ — T are naturally isomorphic, so Ty is a right adjoint too.
As such it preserves products yielding the following characterisation of the product of trees.

2.5.12 Lemma. Let S and T be trees. Then
SxeT= TF(ZZP@'{S) XF ﬁpf(T))
Proof. As a right adjoint T preserves products. Thus Tp{LPr(S) xg LPr(T)) is the product in T
of TrLPr(S) and LPr(T). However
TeLPr(Sy= TDLPr(S)=T(S) =S8,

using the natural isomorphism between Tr and T D, the eqivalence of categories D and P and the
coreflection from T to D. R

361

This explains the product of trees in terms of the image under Tp of the product of families.
Such an image can be understood very simply.

2.5.13 Lemma. Let Fy and Fy be stable families with events Ey and E, respectively. Then
Tr(Fo xF F1)
is the product of trees Tr{Fo), Tr{F1). Moreover, for s a sequence of events in Eo x.. Ey,
s € Tp(Fo xp F1) & 75(s) € Tr(Fo) & n{(s) € Tr(F1),
where 7 are the projections Eq X . Fy —. Eg for k =0,1.

Proof. The tree Tp(Fo X Fy) is the product stated as Ty preserves products. By the definition of
how Tr acts on objects, if s € Tp(Fo x5 Fy) then n5s € Tp(Fo) and n7s € Tw(F1). The converse
follows by 2.3.3 characterising configurations of the product. NI

For a family F, the construction consists of the sequences of events allowed by F. The result
above expresses the intuitive fact that the sequences of events allowed by the product of families are
precisely those sequences whose projections are allowed by the components.

Another characterisation of the product of trees yields Milner’s expansion theorem.

2.5.14 Definition. Define prefixing on domains to be induced by the operation on event structures.
Let D € D and e be any element (not generally in D). Define eD to be the domain D ¥ (e€ L Pr(D)).

2.5.15 Theorem. Let S and T be trees. Then

S":‘Zasa and T= ZbTb

aEA beB

for some sets of events A and B and trees S5, and T}, indexed by a € A and b € B respectively. We
have the following characterisation of the product of S and T in Tr :

SXxT=Y (a, 68 x THr Y. (a,b)Sax Ty+r Y _(+,6)S x Ts.
a&A aEAbBEB e B

Proof. In proving the characterisation it is smoothest to represent trees as sequences of events
allowed by families. We introduce some notation. Let S be a set of sequences and ¢ an element.
Define

a” 8 ={()yu{as|se S}

Let F be a family of configurations with a configuration {a}. Define the family of sets
Fla={z\aelacz & z€F}.
Clearly if F is stable then so is F/a.

Let F be a stable family. Then directly from the definition we obtain this recursive characteri-
sation of Tp

Tr(F) = Uayera™ Tr(F/a).
Let Fo and Fy be stable families. By lemma 2.5.13,

ue TF(FO X g Fo) < 7r6(u) € TF(Fo) & 7rf(u) € Tr(F1),

362

where o, T1 are the projections of the product in F. Write A = {a | {a} € Fo} and B={b| {6} €

F,}. Considering the different forms an initial event of a non-null sequence u can take, we see
u € Tp(Fp xp Fy) iff

{(a,x)u’ fora€ A & mo*(v') € (Fo/a) & m1*(v') € Fyor
u=1 (a,b)u’ fora€c A & be B & mo*(u') € (Fo/a) & m*(u') € (F1/b) or
(x,b)u’ forbe B & mo*(u') € Fo & m*(v') € (F1/b).

Hence Tp(Fo x5 Fi) =

UaeA(aa *)ATF(Fo/a xp FU
Utatyeaxs(@8) ™ Te(Fo/a xr F1/8) UUsep(*,8) ™ Tr(Fo xr Fi/b)

~

EaeA(a,*)ATF(FO/G) X TF(F1)+
Z(Q)b)eAxB(a,b)ﬁTF{Fo/a) X7 TF(Fl/b) + 25@5(*,&)/\‘&7(5‘0) XK TF{Fl/t‘)).

This is the product of Tp(Fo) and Tr(F;) in T.

Assume now that S and T are trees. Take Fg = LPr(S) and Fy = LPr(T). Then S = Tr{Fo)
and T = Tp(Fy). Writing S, = Tr (Fo/a) and T = Tr (F/b) we obtain the result. &

Restricting the events of the product in accord with e.g. the synchronisation algebra for CCS we
obtain the recursive characterisation of the parallel composition of synchronisation trees that Milner
uses in [M1]. In this way we obtain a formal translation between the noninterleaving semantics
using event structures, their families, prime event structures and the equivalent domains and the
interleaving semantics in [M1] all of which factor through a semantics in terms of synchronisation
trees. (See [W3| for more on trees, synchronisation trees and semantics using them.)

3. PETRI NETS AND EVENT STRUCTURES.

It is shown how Petri nets also possess morphisms “extending” those on event structures. The
morphisms preserve net behaviour (unlike those in [Br]) and can be viewed as special kinds of
homomorphisms on nets viewed as algebras. The definition of morphism generalises the process
morphisms in [GR]. Safe Petri nets are related to a full subcategory of prime event structures via
a coreflection, and it is in this sense that their morphisms extend those on event structures. The
coreflection uses the idea of unfolding a net to a net of occurrences. The categorical constructions of
product and coproduct of safe nets are closely related to constructions in common use in net theory
for modelling parallel compositions and nondeterministic sums.

3.1. Morphisms on Petri nets.

In [W5,8] it is proposed that we view Petri nets as kinds of two-sorted algebras over multisets,
and that a useful definition of morphism on nets, appropriate to synchronised communication results
by taking a restricted kind of homomorphism between nets viewed as algebras. This notion of
morphism is markedly different from the standard kind defined in [Br| which do not respect the
behaviour of nets. In this section we give a brief introduction to the new kind of morphisms, and
refer the reader to (W4,5,6] for more details. (I do not hold with all the axioms generally placed
on Petri nets, which I regard as too restrictive, so the reader is warned to expect some differences
in some definitions. For example, I shall allow a Petri net to consist of a single marked condition,
disallowed according to the standard definition.)

363

3.1.1 Definition. A Petri net is a 4-tuple (B, E, F, M) where
B is a non—null set of conditions,
E is a disjoint set of events,
F is a multiset of (B x E) U (E x B), called the causal dependency
relation,
My is a non—null multiset of conditions, called the initial marking,
which satisfies the restrictions:

(i) VYecE3bcB.F.>0 and Ve€c EIbe B. F,p, >0 and
(i) Voe B.[Moy, #0 or (Je€ E. F., #0) or (Jec E. F, . # 0)].

Thus we insist that each event causally depends on at least one condition and has at least one
condition which is causally dependent on it. It is insisted that nets have no isolated conditions (1.e.
that a condition is either marked initially or the pre or post condition of some event) in order to
give a simple treatment of morphisms, in which the multirelations never have infinite multiplicities.
This restriction is no handicap because, according to the dynamic behaviour of nets, an isolated
condition can never hold.

Remark. In more recent work I have found it useful to impose even less restrictions on the definition
of a Petri net so as to allow the emptynet, useful for defining nets recursively, and perhaps even
the net consisting of a single isolated event, for the purpose of labelling events of a net within the
category of nets. In this set-up the only axiom is (ii) above, and initial markings may be empty.
This work is still a little experimental, and so here we shall assume the more restrictive definition
of a Petri net given above.

Now we make precise the sense in which Petri nets can be identified with special algebras.

3.1.2 Proposition. A Petri net (B, E, F, M) determines a 2-sorted algebra over multisets: It
has sorts multisets of conditions pB and multisets of events uE, with operations a constant multiset
M, over B and two unary operations *() a multirelation from E to B with matrix (Fyc)seB ecE,
and ()* a multirelation from E to B, with matrix (F.4)scB,ecE-

We describe the “token game” on Petri nets—it differs from some others in that we do not
play the token game by firing only one event at a time but allow instead transitions in which finite
multisets of events fire.

Let N = (B, E, F,My) be a Petri net.

A marking M is a multiset of conditions, i.e. M € uB.

Let M, M’ be markings. Let A be a finite multiset of events. Define
M-AM &*A<M & M =M-"A+ A"

This gives the transition relation between markings.

(This definition has used multiset sum +, difference —, and multiset subset so X < Y iff each
multiplicity in X is less than the corresponding multiplicity in Y.}

The transition M -4~ M’ means that the finite multiset of events A can occur concurrently from
the marking M to yield the marking M’. When we wish to stress the net N in which the transition
M A M’ occurs we write

N:M A5 M.

364

A reachable marking of N is a marking M for which

My Aoy Ay Ay oo Ar A = M

for some markings and finite multisets of events.

The reason for only allowing finite multisets of events to occur as transitions is in order that
the occurrence of an event only depends on a finite set of event occurrences, and so to tie~in nicely
with the finiteness properties of configurations event structures.

Qur morphisms on Petri nets are a restricted kind of homomorphism between algebras in which
the multirelation between events is assumed to be a partial function.

3.1.3 Definition. Let N = (B,E,F,M) and N’ = (B', E', F', M") be nets. A morphism from N
to N’ is a pair of (n,8) consisting of a partial function 7 from £ to £’ and a multirelation 8 from
B to B’ such that

B-M=M & YACUE. "(n-A)=B-("A) & (n-A)" = B-(4%).
(We use e.g. §-A to stand for the application of the multirelation 8 to the multiset A.)

Morphisms of nets preserve initial markings and the environments of events. As a consequence
they respect the behaviour of nets in the sense of the two following results. The first lemma invokes,
the proviso that a particular application of a multirelation to a multiset should converge. Remember-
multirelations and multisets are not necessarily finite so, in general, such an application can lead to
infinite sums. (A more complete treatment of multisets can be found in {W6].)

3.1.4 Lemma. Let(n,8): N— N bea morphism of Petri nets. Then, provided 3-M is convergent,
N:M A M =>N:g-M 245 5M.
Proof. Directly from the definition we see that 3 preserves the initial marking. The remaining fact
is proved using simple facts about multisets and multirelations. Assume N : M A, M’. Then
*A<M,so*n-A=p-("4) <M, and
M =M-*A+ A"

Now applying 3, assuming the application 3-M converges,

B-M' =B-(M—~*4+A°)
=8-M-3-(*A) + 5-(A") by linearity
=B-M~-"*(n-A)+ (n-4)° by the defn. of morphism.

But these facts express that N': g-M -4 3. M'. &

3.1.5 Theorem.

Let (n,8) : N — N' be a morphism of Petri nets. Then § preserves the initial marking and
preserves reachable markings i.e. if M is a reachable marking of N then 8-M is a reachable marking
of N'. Further, if M ~4— M’ and M is reachable in N then 8-M AL 8 M inN.

Proof. By repeated application of the lemma above. §

365

For safe nets a condition only holds or fails to hold and an event either occurs or does not occur;
they do not happen with multiplicities.

3.1.6 Definition. Say a Petri net N = {B, E, F, M;) is safe iff each multiplicity is at most 1 in F
and M, for any reachable markings M. For safe nets we write zFy instead of F, , = 1.

3.1.7 Proposition. Let N = (B, E,F,My) be a safe net.
Let M be a reachable marking. Let M' be a marking of N and A a finite multiset of its events.
If M A M’ then M, M’ and A,* A, A® are sets. Further, M ~%— M' iff M, A, M’ are sets and

(Vec Ae C M) & (Ve,e’ €A efe = en®e =0) & M = (M\"A)uU A°.

For a safe net N, an event e is said to have concession at a reachable marking M if *e C M. If
two events e and ¢’ have concession at a reachable marking M and share a common precondition,
so *eN ®*e’ # 0, the events e, e’ are said to be in conflict at M because if one occurs at M then the
other does not. On the other hand, if M —2— M’ the events in A are said to occur concurrently.

When nets are safe, just as their behaviour can be described using sets and relations instead of
multisets and multirelations, so can morphisms be characterised in a more elementary, if less brief,
manner in that, for example, in the proposition below 3%¢ is now the image, as a set, of the set *e
under the relation 5. We use 8°F to stand for the opposite relation to 3, i.e. 3%y iff yfz.

3.1.8 Proposition. Let No = (Bo, Eo, Fo,Mo) and Ny = {By, E1, F1, M) be safe nets. A pair
{n,B) is a morphism No — Ny iff is a partial function from Eq to E,, and 8 is a relation between
Bo and By such that:

(i) BMy = M, and 3°? restricts to a total function M, — Mo,

(ii) Ifn(eo) = ey then

B%eo = "e; and B°F restricts to a total function *e; — "eq and

Beo® = e1* and B°P restricts to a total function e, — eo®,
(iif) Ifn(eo) is undefined then 3%¢s = @ and Bes* = 0.

Proof. See [W6] for details. The proposition makes use of the following observation relating set
application to multiset application: If § : X — Y is a relation such that the opposite relation
B°° : Y — X is a partial function then the multirelation application 8(X) of 8, regarded as a
multirelation, to X, regarded as a multiset, is equal to the set image #X. The argument also uses
the fact that we insist there are no isolated conditions; it is only because of this that multirelations
on safe nets can be represented as relations. |

In proofs we sometimes find it easier to reason about morphisms between safe nets using the
following proposition. It characterises such morphisms in terms of how they behave between initial
markings and in the neighbourhood of events and conditions.

3.1.9 Proposition. Let N= (B, Ei, F;, M;) be safe nets for = 0,1. Then (n,8) : No — Ny is a
morphism of nets iff n is a partial function from Ey to E; and 8 is a relation from By to B; which
satisfy

(i) BMy C My and Vby € M3y € My. boBby, and

(i) ifn(eo) = ey then for by € By

by Fieq = Albg. (boF()eo & boﬁbl) and
e Fi1b; = Albo. (eoFob() & boﬂbl), and

366

(111) if bg3by then for eg € Eg

eoFobo = 361. (61F1b1 & T}(eo) = 61} and
boFoEo = Jey. (b]_Flel & 7’](80) = 61).

Proof. We use the characterisation of morphisms between safe nets given in the proposition above.

Suppose (n,8) consists of a partial function % on events and 3 is a relation between conditions
which satisfy (i), (it) and (iii) above. The condition (i) says 8Mo C M, and that 8°P restricts to
a total function My — My. Hence M, = M,. Assume n(eg) = e1. By (iii}, %0 < *e; and
Beo® € e,*. By (ii), B°F restricts to a total function ®e; - ®eg and €;* — eo®. Hence 8%y = ®e)
and Bep® = e;*. By (iii), if n{eq) is undefined then 8%ep = feo® = 8. Thus together conditions (i},
{ii) and (iii) imply that {n,8) : No — N; is a morphism.

Conversely, suppose (n,3) : No — N is a morphism. Then (i) above follows as SMy = M;
as multisets. Condition (ii) expresses the fact that 3°F restricts to total functions ®e; — *eg and
e1° — eo*. Finally, (iii) follows because B(*eo) = *(n(eo)) and B(eo*) = {n(ea))*, and so if boFb;
and eoFobo {or boFoeg) we must have n{eg) is defined with n(ec)Fiby (or by Fin(es)). 1

The main category which will concern us is that of safe nets.

3.1.10 Definition. Define Net to be the category of safe nets with net morphisms composed
coordinatewise as functions and relations.

A remark on notation: sometimes it is easier to write partial functions as relations, writing
eone; for instance instead of n{eg} = ey, and in this section we shall sometimes follow this practice
when working with morphisms.

In future we shall have cause to use some rather special morphisms, subnets and foldings.

3.1.11 Definition. Let {n,8) : No — Ny be a morphism of nets. When (n,3) consists of
relations 7 and § which are the restrictions of the inclusion relations, i.e. egne; & eg = e; and
bofBby & by = b1, we say the net Ny is a subnet of N;. When n and 3 are total functions we say the
morphism (n,8) is a folding.

Notice the subnet relation is a partial order. Our definition of subnet is a little different form
some others because it involves initial markings, while our definition of folding is more restrictive
than that generally proposed.

3.2. Categorical constructions on nets.

Morphisms on nets give rise to intuitive categorical constructions and the story is very similar
in theme to that of event structures. The category of all nets has products but not necessarily
coproducts though the latter exist in the smaller category of safe nets. For simplicity here we only
present the both constructions for safe nets and refer the interested reader to [W6] for more details.

3.2.1 Definition. Let Ng = (Bo, By, Fo, Mo} and Ny = (B, Ey, F1, M,) be safe nets. Define their
product to be the net consisting of events

E:onxEl,

367

associated with projections ng : E —, Fg and m E —, E;, conditions
B ={{0,b) | b€ Bo} U {{(1,b} | b€ By},

a disjoint union associated with relations pg C B x By and p; C B x By given by ¥ pib & ¥ = (k,8),
for k = 0,1, initial marking

M ={(0,b) | be Mo} U{(L,b) | b€ My},
and relation F' given by

eFb & (Jeg € Ep,bo € By. empeo & bpoby & eokpbo)
or (361 € E1,by € By. erer & bpiby & 61F1b1)

bFe & (380 € Eo,bg € Bg. emgeq & bpoby & bQFQeg)
or (Jey € E1,b1 € By. emie1 & bpiby & by Fiey).

Define projection morphisms of nets:

Iy = {70, p0) : No x Ny — Np
m = (771,/)1) : No x Ny — Ny.

The product construction can be summarised in a simple picture. Disjoint copies of the two
nets No and Ny are juxtaposed and extra events of synchronisation of the form (eg, e;) are adjoined,
for eg an event of No and e; an event of N;; an extra event (eg, e;) has as preconditions those of its
components *eo U *e; and similarly postconditions eo® U e ®.

N,] { N, |

{(€om) ‘ (% &)
(e,n8)

] = |

The product on nets is closely related to various forms of parallel composition which have been
defined on nets to model synchronised communication—for an early example see [LC).

3.2.2 Theorem. The above construction Ng x Ny, Ilg, I1; is a product in Net, the category of
nets.

Proof. See (W6]. |

3.2.3 Definition. Let No = (Bq, Eo, Fo, Mo) and N, = {By, E1, F1, M) be safe nets. Their sum is
the net {B, E, F, M) with events £ = {(0,¢) | e € Eo}U{(1,¢€) | e € E1}, a disjoint union associated
with the obvious injections ¢o : Eg — Eg + Ey and ¢; : By — Eo + Ey, conditions

B = {(bo,*) I bo € BO\MO}U{(*,bl) { b € Bl\MI}U{(bO;bI) * boe Mo & b € Ml},

associated with injections
boinpb & db; = By U {*} b= (bo,bl),

biimib & by € Bo U {*} b= (bg,bl},

368

initial marking M = Mg x My, and relation F given by

eFb < (Jeog € Eo, by € Bo. eotoe & boingd & eoFpbg)
or (Je1 € Ey,b1 € By. egrie & byingh & e Fiby)

bFe & (Jeo € Eo,bp € Bo. eotoe & boingh & boFpep)
or (Jey € E1,by € By. egt1e & bringh & biFiey).

Define injection morphisms of nets:

Iy = (Lo,ino) :No — Nog + Ny
I = (L]_,l'nl) Ny — No+N;y.

The coproduct construction can be summarised in a simple picture. The two nets Ny and Ny
are laid side by side and then a little surgery is performed on their initial markings. For each pair of
conditions by in the initial marking of Np and by in the initial marking of N; a new condition {bg, b1)
is created and made to have the same pre and post events as by and b; together. The conditions in
the original initial markings are removed and replaced by a new initial marking consisting of these
newly created conditions. Here is the picture:

N, l | N,

3

3.2.4 Theorem. The above construction No + Ny, Iy, I1 is a coproduct in the category Net.

Proof. See [W6]. 1

3.3. Occurrence nets and unfolding.

Nets are rather complex objects with an intricate behaviour which so far has been expressed
in a dynamic way. We would like to know when two nets have essentially the same behaviour. In
[NPW| and [W] we proposed a more “static” representation of their behaviour as a certain kind of
net, a net of condition and event occurrences. This gave a generalisation of the familiar unfolding
of a state-transition system to a tree [W2]. The nets of occurrences we called occurrence nets—a
name I will stick with here. {Note here occurrence nets may contain forwards conflict.) The ideas
here can be viewed as extending those in [Pe], where Petri proposes that the behaviour of a net be
identified with the those causal nets which represent its “processes”. Instead of a set of causal nets
we represent the behaviour of a safe net by a single net of occurrences.

3.3.1 Definition. An occurrence net is a safe net {B, E, F, M) for which the following restrictions
are satisfied:
(i) b€ M & *b =0, so the initial marking is identified with the set of
conditions which are not preceded by any events in the F-relation,
(i) Vb e B.|*b] <1, so a condition can be caused to hold through the
occurrence of at most one event,
(i) Ft is irreflexive and Ve € E. {¢' | ¢/ F* e} is finite, so we ban repetitions
of the same event and insist the occurrence of an event can only depend
on the occurrence of a finite number of events,

369

(iv) # is irreflexive where

e#me GaseCE & € € E & *en®e #0 and
#z Sgep Je,e' € Eedme’ & eF'z & 'F*z.

In this way we eliminate those events which cannot possibly occur be-

cause they depend on the previous occurrence of conflicting events.
In an occurrence net we call the relation #,, defined above the immediate conflict relation and #
the conflict relation. We define the concurrency relation, co, between pairs z,y € BU E by:

Teoy Saqr (zFTy or yFrz or z#y).

It is useful to generalise the co-relation to subsets, and not just pairs, of conditions. Intuitively
we say a subset S of conditions of an occurrence net is concurrent if it possible for all the conditions
in S to hold at some reachable marking. Similarly we say a finite subset of events is concurrent
if they can occur concurrently from some reachable marking. For an occurrence net (B, E, F, M)
these notions can be expressed simply.

3.3.2 Definition. For § € BU FE define

CoS « (Vs,t €8.scot) & {ec E|ds€ S. eF"s} is finite.

Clearly s co t iff Co{s,t}, for conditions and events s,¢. The extra restriction simply ensures
that together the elements in S only depend on a finite number of event occurrences. Obviously if
T is a subset of events and CoT then T must itself be a finite set.

3.3.3 Proposition. Let N = (B, E, F, M) be an occurrence net.

Every event of N has concession at some reachable marking and every condition of N holds at
some reachable marking.

Let e,¢' be two events of N. Let 6,6’ be two conditions of N.

The relations #,, C E* and # C (B U E)* are binary, symmetric, irreflexive relations. The
relation of conflict # z' holds iff there is a reachable marking M at which events eF*z and ¢' F*z'
have concession and are in immediate conflict e e’.

The relation co is a binary, symmetric, reflexive relation between conditions and events of N.
We have b co & iff there is a reachable marking of N at which b and & both hold. We have e co ¢’
iff there is a reachable marking at which e and ¢/ can occur concurrently.

Let S be a subset of conditions and T a subset of events. We have CoS iff there is some
reachable marking M for which § C M. We have CoT iff there are reachable markings M, M’ for
which M L M'.

3.3.4 Definition. Write Occ for the category of occurrence nets with net morphisms.
We observe two properties of morphisms between occurrence nets which we shall use later.

3.3.5 Lemma. Let Ny = (Bo, Eo, Fo,Mp) and Ny = (By, E;, F1,M;) be occurrence nets. Let
{(n,B) : No — Ny be a morphism. Then

(1) boBby & by € My = by € My and

(ii) bofb, & €1F1b1 = Jleg. Y}(EQ) =¢e; & eoFobo.

Proof.

370

{i) Assume boBb; & by € M. If bo & Mo then eoFoby for some event eg, which by the
properties of morphisms implies there is some event e, Fyby—impossible as b, € M;.

(ii) Assume boBby & e Fibi. As (n,0) is a morphism by ¢ Mo so there is a unique event eg
such that egFabo. By the properties of morphisms n{eg) Fib; and so n{ep) = €y, the unique event in
5. B

As a corollary we see that morphisms between occurrence nets reflect F~chains and conflict in
the following sense.

3.3.6 Lemma. Let Ny = (Bq, Eo, Fo, Mo} and Ny = (By, E1, Fy, My} be occurrence nets. Let
{n,B) : No — Ni be a morphism.
()If

b Fre™Mp Y b ()

is a chain in Ny and n{eéo)) = ego), with eg)) € E;, then there is a unique chain
b Foel b - p{0) Fpel”

in No such that b(()i)ﬁb(‘i) and n(e{")) = e foro <i<n.
(i) For events eq, e}, of Ny and ey,¢€} of Ny and conditions bo, b, of No and by, b of Ny:

n(eo) =e1 & nlep) =€) & er # ey = eoFep,
bofb, & b6ﬁ61 & by #b'l :>b0#b'o.

(iif) For events eq, €}, of Ng and e; of Ny and conditions by, by of No and by of Ny:

nleo) = e; & nleh) =e1 = €0 =¢e or eofteq,
boﬂbl & bloﬂbl = bo = b6 or bo#b:)

Proof.

(i) The proof proceeds by induction down the chain bg")Fle(ln)bg"-l) AN bgo)Fle(lo) We are given
n(e((,o)) = ego). By the properties of morphisms there is a unique condition béo) such that béo)ﬁbgo).
Now by the above lemma there is a unique eél) such that n(eél)) = e(ll). Continuing we obtain the

result. Notice, by the lemma, if b§n> is marked initially then so is bé")A

(ii) Suppose €1, ¢} are two events in conflict with n{eo) = e; and n(ep) = €). Then this can only
arise through two events ¢;,t, being in immediate conflict with ¢1Fe; and ¢t} Fye|. So t1#mt) t.e.
ty # t§ with by Fit; and by Fy¢} for some condition by. But then two simple applications of part (1)
yield events fo,t) in immediate conflict {with nto = t; and 7t = t} so that toFjeo and tLF]el.
This makes e # €}. The same argument works to show: If bo8b; and 8,85, and by # b} then by#b).

(iii) Suppose n7(e0) = n(eo’) are defined and equal e;. There is a chain

CnFldn e le;CgFldo

in Ny with do = €, and ¢, € M;. Applying part (i) we obtain chains

an()Cn e €1FoboF0€0 and
b Foel - ey Fobl Foel,.

3N

such that n(e;) = n(e;’) = d; and b;8¢; and b,'B¢; for 0 < i < n and *b, = *b," = ®c, = 0. As
f is a morphism, 3° is a function when restricted to initial markings so b, = b,’. We can now
show eo(# Ul)e,. Suppose e # ef,. Then the chains leading up to these events must differ at some
earliest point, giving rise to one of these two situations:

e;=¢) & by #b_, (1)
bi:bll & e,';éeg (2)

for some ¢ < n. Case (1) is impossible as 3°7 should be a function restricted to d;* — e;*. The
remaining case, case (2), implies e; and €] are in immediate conflict so eq # ej. The same argument
shows conditions with the same image must either be equal or in conflict. §

There is a natural idea of depth of an element of an occurrence net, useful to prove properties
of occurrence nets by induction.

3.3.7 Definition. Let N = (B, E, F, M) be an occurrence net. Inductively define the depth of an
element z € BU E as follows:

For b € M take depth(b) = 0;

For e € E take depth(e) = max{depth(b) | bFe} + 1;

For b € B\ M take depth(b) = depth(e) for that unique e such that eFb.

3.3.8 Proposition. An occurrence net N = (B, E, F, M) is the least upper bound, with respect to
the subnet order, of its subnets N™) of depth n i.e. Define N =ges (BM™,EM™ F(®) M) where

B = {b€ B| depth(b) < n}
E™ = {e € ¢ | depth(e) < n}
tF™y o z,ye BMWUE® & zFy.

Then N is a subnet of N and N = |J,_._N™) —the coordinatewise union of the nets N(™.

new

Proof. Clear. 1

3.3.9 Theorem. Let N = (B,E,F,M) be a safe net. There is a unique occurrence net YN =
(Bo, Eo, Fo, M) with a folding f = (n,8) : UN — N which satisfies:

Bo={(8,6) | b€ MU {({eo},b) | e € Bo & be B & nfeo)Fb},
Eo={(S,e) | SCBy & Co(S) & ec E & (S = *e},
zhoy & Jw,z. y = (w,2) & €z,
Mo = {(0,6) | b€ M},
and
eonie < 35 C Bo. €0 = (S, ¢),
boBb o beM & bo=(0,b) or Jeo € Eo. bo = ({eo}, b).

Proof. The existence is shown by giving an inductive definition. It is routine, tedious and omitted.
The uniqueness follows because every element of an occurrence net has finite depth. &

3.3.10 Definition. Let N be a safe net. Define its occurrence net unfolding, U(N}, to be the
unique net and folding morphism that satisfy the requirements of theorem 3.3.9 above.

372

3.8.11 Example. This example illustrates a safe net together with its occurrence net unfolding.
The associated folding morphism from the occurrence net unfolding to the original net is indicated
by the inscriptions.

A characterising property of the occurrence net unfolding is expressed in the following propo-
sition. Roughly it says every possible occurrence of an event in the original net is matched by a
unique event in the unfolding.

3.3.12 Theorem. Let N be a safe net. The occurrence net unfolding U(N) and folding f = (n,8) :
U(N) — N satisty
CoS & (S ="e= Fleg. S ="ex & nleg) =, (%)

where e is an event of N and ey is an event and S a subset of conditions of No. Further, U(N) and
the folding f are determined to within isomorphism by (*) i.e. if f{ : Ny — N is a folding from an
occurrence net Ny which also satisfies () then there is an isomorphism h : Ny = U{N) such that

fi=Ffh

Proof. Let N be a safe net. It is follows directly from their definitions that the unfolding U(N) of a
net N and the folding f : U(N) — N satisfy ().

To show uniqueness to within isomorphism, assume fo : Ng — N and f; : Ny — N are foldings
from occurrence nets No = (Bo, Eg, Fo, Mo) and Ny = (By, E(, F1, M;) onto N which both satisfy
(*). For an occurrence net O = (B, £, F, M) let 0*) = (B(") E(™ F(») Af(")) be the subnet of
conditions and events of depth < n, for n € w, and write fé") and ffn) for the restrictions of the
foldings to the subnets N{™ of Ny and N{™ of Ny, so f{™ : N{™ — N and f{™ : N{® - N.

We construct by induction on n € w isomorphisms (" = (n{") g . N(()n) — Ngn) which
satisfy
£ pte) = glm)

For the basis, define (%) = (9, 3®) : N{” = N{% where

boBby ¢ bg € Mo & by € My & Sobo = Bib.

Certainly, 1{0) RO = fo(o} because Bp, and 31, restrict to 1-1 correspondences between the initial

markings My and M, and M; and M respectively, and hence (°) is a 1-1 correspondence My — M;.

373

Now for the step in the inductive definition, assume h(") to be defined so that h{™) is an isomorphism
and fl(") R(") = f(g"). Take ~("*1) to be a pair of relations (n{**t1), g(*+1)) given by:

eon" Ve if no(eo) = mile1) & B e = %y,
boB" by if Bobo = Brbyr & 1"tV = .

Of course, it needs to be shown that A("*1) is an isomorphism with fl(nH) Rnt1) = fé"+1).

We first show n("+1) is a 1-1 correspondence between the events of N(()n'H) and Ngnﬂ) such
that no(eo) = 7™ Vn,(eo) for all events ey of N(()n+1). Suppose e is an event of Né"+1). Then
no(eo) = e say. As fo is a morphism Bp%eq = *e. Because ey has depth at most n + 1, ®eg consists
of conditions in Nén). Because h(™) is a morphism Co(3("%e;) in Ng") and by commutativity
6188 = 338 = *e. By the property (%) of fi we see there is a unique event ey in Ny such that
*ey = B(")%¢; and n1(e1) = e. Thus eon(® e, for some e;. It is unique because if egn (e, e
then from the inductive assumption ni(e;) = ni(e}), forcing e; = e} by (*). Similarly, if e; is

(n+1)
1

an event of N there is a unique event e, such that eon(™*Ve;. This shows n(**+1) is a 1-1

correspondence. Clearly n((,nH) = n("“)ngnﬂ) from the definition of n(™+1).

A similar argument shows 8("t1) is a 1-1 correspondence too. Let by be a condition of Nénﬂ).
Then bg8b for some b € B. The case when *by = @ has been dealt with in the basis of the inductive
construction, so we may assume eqFybo for some unique event eg in Nénﬂ). As fo is a morphism
there is some e with eFb and no(es) = e. By the previous argument ("1 (ey) = e; for some
event e; of N§"+1). As f1 is a morphism there is a unique condition by of Ng"ﬂ) so that by 51b.
Now we see from the inductive assumption that Fo8("+1b,. Moreover such a b; is unique. For,
suppose boB(" 1), 6%, Then e Fyb1,b) and by,b,3,b. But then by = b, as f; is a morphism. Thus
glnt1) . Bénﬂ) — B§"+1) is a total function. Similarly, if b; is a condition of N(1n+1) there is a
unique condition by such that bo3(*T1b,. Hence 8(**1) is a 1-1 correspondence. Clearly from its
definition ﬂé’”’l) = ﬂ("+1)ﬁ§n+l).

Now we can define h = (U,n{™,J,8(") to obtain the required isomorphism No = N;. 1

3.3.13 Theorem. Let N be a safe Petri net. Then the occurrence net unfolding U(N) and folding
f are cofree over N i.e. for any morphism g : Ny — N with Ny an occurrence net there is a unique
morphism h : Ny — U{N) such that the following diagram commutes:

N)-—f———vN

u(
n] A
Ny

Unfolding extends to a functor U : Net — Occ which is a right adjoint to the inclusion functor
Occ — Net. Further, this adjunction is a coreflection: the folding f : U(O) — O for each occurrence
net O forms a natural isomorphism.

Proof. Assume N = (B, E, F, M) is a safe net which has an occurrence net unfolding Y (N) =
(Bo, Eo, Fo, M) and folding f = (10, 80) : U(N) — N. Assume N; is an occurrence net of the form
N; = (B1, E1, F1, M,) and that g = (n1,61) : Ny — N is a morphism.

It is convenient to first establish necessary and sufficient conditions for there to be a morphism
making the above diagram commute, and then later to construct a pair of relations which is unique
so the conditions are satisfied.

374

Let h = (q,ﬂ) consist of a partial function » from E; to Eo and a relation 8 C B, x Bg. We
show that A : Ny — U(N) is a morphism and ¢ = f & iff the following conditions are satisfied:

(1) nle)) =0« 3ec E.eo = (B%1,e) & nifer) = e for all eq, ey,
(1) b1Bbo & 3b € B.bo = (n°b1,b) & b1Byb for all bo, by.

Firstly suppose h is a morphism such that ¢ = f h. We show that the conditions (I} and (II)
must then be satisfied.

0

“=.” Let n(e1) = eo. Then because g = fh we have n;(e;) = e for some e and S such that
eo = (S, ¢). However because k is a morphism we must have S = 3%¢, as required.

“<«=.” Suppose eg = (8%, €} and 771(e;) = ¢ for some e € E. We first show eq € Ey. Because h
is a morphism Co(8°e;) and by the commutativity So{8%€1) = 5:*%¢1 = *e. Thuseg = (8¢, €) € Ey,
and no(ec) = e. By commutativity n(e;) = ¢} and no(eh) = ¢ for some e, € Ey. As h is a morphism
*ep = ey Thus el = {8y, ¢} = ep. Hence n{e;) = €o.

Wy

“=».” Suppose b;Bby. Then by the commutativity, by 816 and bgSob for some b € B. If *by = 0
then by € M so bg € My and *by = 0. Otherwise *by = {e1}, for some event e;, so as h is a
morphism 75(e;) = eo, for some eg, and by = {eo}. In either case by = (®by,b).

“4=.” Suppose by = (n*hy,b) and b1 315 for some b € B. Either by € My or *b; # . Assume
b1 € M;. Then bo = {8,6) € My. As h is a morphism there is some 6 € M; such that b 3b.
As g is a morphism b; = b} so b;8by as required. Now assume the other case, that *b; # 0 and
let e; be the unique event such that e; Fib;. As g is a morphism n{e;) = e and ¢Fb, for some e.
By the commutativity n(e;) = eq, for some eq. Thus by = ({eo},b) € By and eoFoby. As his a
morphism there is some b} so that b] 8by and e, Fyb}. Therefore by the commutativity 4} 516. Thus
both e, F1b) with 8,8.b and e Fib; with b;31b. But, then as g is a morphism, b; =). Therefore
b18bo as required.

Thus we have shown that if A : Ny — U(N) is a morphism such that g = fk then the conditions
(I) and (II) are satisfied. Now we show the converse, that the conditions (I) and (II) ensure that h
is a morphism such that ¢ = fh.

Suppose the conditions (I} and (II) are satisfied. First-we show & is a morphism A : Ny — U(N).
We check that the conditions {i), (ii) and (iii) of proposition 3.1.9 hold:

(i) Clearly, by (II), if b1 8bg & by € M, then by = (0,b) € My. Also, if we assume b;,b] € M, and
b1B8bo and b} Bbo then, by (II), b, 8,6 and b} 3,b for some b which implies b; = b}, as g is a morphism.

(ii) Suppose n(e1) = eo.

Assume egFobo. Then, by (I}, e0 = (8%€¢1,e) & ni{es) = ¢ for some e € E. From the definition
of the unfolding, eFb & by = ({eo},5) for some b € B. As g is a morphism e; F14; and 48,5 for
some unique condition &; € By. Therefore, by (I}, &; is the unique condition such that b;8by and
e Fiby, as required.

Assume boFpep. Then, by (I), eo = (8%¢1,¢) & n1(e1) = € for some ¢ € E. By the properties
of the unfolding, by € §%e;. Thus b18bs & &1 Fie, for some by € By, We also need the uniqueness

375

of by. Let Bo(bo) = b. Assume b\ Bby & b\ Fiey for some b} € By. Then by (ii) b}B1b, which
combined with b{ Fie; implies by = b1 as g is a morphism. So, as required b; is unique so that
blﬁbo & b1F1el.

{ili} Suppose &; B8b;.

Assume €1 F15). As g is a morphism, 71(e1) = ¢ and eFb for some e € E. By (II), b0 = (1°b1,b)
and b;3,b for some b € B. By the definition of the unfolding, egFoby and no(eo) = e for some
€0 € Eo. Thus n°by = n{e1} = {eo}. Hence nle;) = ¢o.

Assume by Fie; for ey € E;. By (II), bo = {n®b1,b) & b,0:b for some b € B. As g is a
morphism 6Fe & n1{e;)} = e for some e € E. Take eg = {#%e;,¢). Then, by (I}, n{e1) = eo, and
clearly bg Foeo.

Now by proposition 3.1.9 we can conclude A is a morphism N; — U(N) In addition, we require

the commutativity g = f h i.e. (n1,81) = (n0,80) (n,8). These follow from (I) and (II} by the
following arguments:

Suppose non{er) = e. Then n{e;) = ep and nofeg) = e for some ¢g € Eo. By (I}*=",
ni{e1) = e. Now suppose n;(e;) = ¢. Take e; = (#%¢1,¢). Then by {I)“<" 5{e;) = €. Therefore
{no n)er = nolea) = e. Combining these results we see 7o = 7;.

Suppose b1(8of)b. Then bBbg and boBob for some by € By. By (I1)“=", this implies b,5,b.
Suppose by B1b. Take bo = (n*by,b). Then by (I)“«=” by € Bo and so bofob. Therefore by (8o 8)b.
Combining these results we see 8o = §1. This completes the proof that g = f h.

We have completed that part of the proof showing that A : Ny — (N} is a morphism and
g = fh iff h satisfies (I} and {II). Now it remains to show that such a morphism % exists and
moreover is unique.

We show the existence of such an & by giving an inductive definition—see [Acz|. Define h =
(n,8) to consist of the pair of smallest relations n C E; x Eg and 8 C By x By which satisfy:

eo = {B%y,e) & ni{ey) = e = nle;) =€ and
b() == (n.b;,é) & blﬁlb = blﬁbg.

This inductive definition provides a least 2 = (5, 8) which satisfies (I) and (II). (Note the inductive
definition has closure ordinal w because we assume an event depends on only a finite number events.)
Thus by our previous work h : Ny — U(N) is a morphism for which g = fh.

The ultimate step in the proof is to show that the h defined inductively above is the unique
morphism k : Ny — U(N) for which ¢ = fh. Suppose k' = (¢, a) were another morphism such that
g = fh'. Then it too would satisfy {I) and (II). Consequently by the definition of k, n C € and
B8 € o. The converse inclusions are established by induction on the depth of the conditions and
events of Ny:

Zero Depth: Clearly if by € M; and byabo then, as a satisfies (II), by3bq too.

Nonzero Depth: Assume €e; = o where depth{e;) =n + 1. As e satisfies (I) we have ey = {a”e;,¢€)
and 77;{e;) = e for some ¢ € E. Each condition in a®e; has strictly less depth than n + 1. Thus
a’e; = % so as n satisfies (I} we obtain n{e;) = e;. Assume byaby where depth{(h) =n+1. As a
satisfies (II), b = (€*b1,d) and 6;3:6. Here the unique event e; such that e; Fib; has depth n + 1.
By the argument just given eyeeq ¢ n(e1) = eg. Because 7 satisfies (II) we obtain by 3bo.

376

This induction shows that € C n and o € 3 which together with the previously shown converse
inclusions yields h = h’. We have established the existence and uniqueness of a morphism h : N; —
U(N) making g = fh.

Finally, we conclude that U (N}, f is cofree over N. The adjunction follows from the cofreeness—
see [Mac, p.81]. Clearly each folding f : U{O) — O, for O € Oce, is an isomorphism, so the
adjunction is a coreflection. §

3.3.14 Corollary. The unfolding operation on safe nets preserves limits; in particular it preserves
products. Thus the unfolding of the product {in Net) of two nets U(Nog x N1) is isomorphic to
the product (in Occ) of the unfoldings U (No) X occ U(N1). To within isomorphism, the product of
two occurrence nets No Xocc N1 in Occe is the net U(No x Ni). The inclusion functor Occ — Net
preserves colimits and in particular coproducts. The category Occ has coproducts which coincide
with those in Net.

Proof. As remarked (see {Mac|} right adjoints preserve limits and left adjoints preserve colimits. To
prove the result characterising product in Occ note that the unfolding of an occurrence net yields
an occurrence net isomorphic to the original. Because the inclusion functor Occ — Net preserves

colimits, it follows directly that coproducts in Occ coincide with those in Net. §

‘Now we consider coproducts further. The next example shows that the unfolding need not
preserve coproducts however.

3.3.15 Example. This example is essentially the same as that given in [W3] for a category of
transition systems where unfolding yields a tree. The unfolding of the net is of course itself,

The unfolding of the net

is

O—F 00— ---

The coproduct of their unfoldings in Occ and the unfolding of their coproduct in Net are:

—{ =0 - - —

Of course we can restrict to subcategories of nets so that unfolding does preserve coproducts.
A subcategory for which this is true is that for which nets satisfy: every condition in the initial
marking has no pre—events.

3.4. Occurrence nets and prime event structures.

We show the relationship between the category of occurrence nets and a full subcategory of
prime event structures. We show that constructions given in [NPW| determine a coreflection from

377

these event structures to nets. This pleasant categorical set—up extends that of the previous section
and makes it easy to relate semantics given in terms of nets to those in terms of event structures,
stable families, finitary prime algebraic domains and trees, and through them to other models like
the pomset model of V.Pratt [Pr] and the behaviour systems of M.Shields [Sh].

Clearly an occurrence net determines an event structure [NPW]; just strip the conditions away
but remember the more abstract causal dependency and conflict relation they induce.

3.4.1 Definition. Let N = (B, E,F, M) be an occurrence net. Define £,(N) = (E,Con, F*[E)
where X € Con iff X Cpin E & Ve, ¢! € X. —(e # ¢').

A morphism between oecurrence nets N and N’ consists in part of a partial function n : & — E’
between the associated sets of events. The partial function n is a morphism on the associated event
structures.

3.4.2 Lemma. Let (n,8): No — N be a morphism between occurrence nets. Then n: £,(No) —
&o{Ny) is a morphism in P.

Proof. Assume Ny = (Bo, Eo, Fo, Mo) and Ny = (By, Ey, F1, M1). We are required to show:

Vz e LE,(No). (nz € LE(N1) & (Ve,e’ € x.n(e) =n(e') #* = e=¢)).

Let z € £&,(Na).

Consider nz. Suppose e; Fre| € nz. Then ne,) = €| for some event e}, € z. By lemma 3.3.6
(i) there is some event eoFj el such that n{es) = e;. Hence nz is left—closed. If two events ey, e} in
nz are in conflict then by lemma 3.3.6(ii) this can only arise through two events events eg, e}, € =
being in conflict, which is impossible as z is consistent. Thus z is consistent and left—closed so
nz € LE,(N'). By lemma 3.3.6 (iii}, because r is consistent it follows that each event in nz is the
image under 7 of a unique event in z. i

3.4.3 Corollary. The operation £, extends to a functor Oce — P from occurrence nets to prime
event structures by defining &, on morphisms (n,8) by &(n,8) =1n.

Proof. We have seen &,(f) : £(No) — &(N1) is a morphism. Clearly &, preserves identities and
composition so it is a functor. 1

Remark. Note that now we not only have a functor £, : Occ — P from occurrence nets to event
structures but also the functor £,U : Net — P, translating arbitrary safe nets to event structures.

The prime event structures determined by occurrence nets have a special form; their consistency
predicates are induced by a binary conflict relation and the consistent sets are precisely those finite
sets which are conflict free. We focus on the corresponding subcategory of P.

3.4.4 Definition. Let (E,Con, <) be a prime event structure. Define the conflict relation #
between events e, e’ by

ed e & {e,e'} ¢ Con.

3.4.5 Proposition. Let E be an event structure. The conflict relation # is a binary, symmetric,
irreflexive relation which satisfies
efe <e' e

378

Proof. Clearly # is a binary, symmetric relation. Because {e} € Con it is irreflexive. Suppose
e’ <e”. Then {e,e} € Con = {e,e'} € Conand hence e # ¢’ => e #e”. 1|

For any prime event structure, for a finite subset X of events, we have
X € Con= Ve,e'. —~e # ¢
In the subcategory of interest the consistency predicate is determined by fhe conflict relation.
3.4.8 Definition. Define P¥ to consist of those prime event structures E = (E, Con, <) for which
XecCone XCpn B & Ve,el € X. ~(e#e).
In this case we shall write E as“(E, #,<).

We characterise morphisms in P¥ in terms of the conflict relations on event structures. They
preserve enablings and reflexive closures of the conflict relation.

3.4.7 Proposition. A morphism between prime event structures (Fo,#q, <o) and {(E1,#1,<)1) is
a partial function 8 : Eq —, Ey such that

Ve € Ey. 8{e) is defined = [6(e}] C Ole] &
Ve,e' € Eq. (8(e) #1 6(e') or 6(e) =8(e")) => (e #1 € or e=¢).

Proof. Directly from earlier characterisations of morphisms on prime event structures specialised to
this case.

By the definition of P# we have a functor &, : Oce — P¥#. It is natural to ask if, conversely,
an event structure in P# can be identified with an occurrence net. Of course we would like every
morphism between event structures to correspond to net morphism between the associated nets. We
seek a functor N : P — QOcc which “embeds” the category of event structures in the category of
occurrence nets, so &, N (F) is naturally isomorphic to the original event structure E. Ideally, we
would hope that £, would be a right adjoint to N making a coreflection. This is indeed the case and

we have all the benefits explained earlier. We explain the construction of N, a minor modification
of that in [NPW].

An event structure in P¥ can be identified with a canonical occurrence net. The basic idea is
to produce an occurrence net with as many conditions as are consistent with the causal dependency
and conflict relations of the event structure. But we do not want more than one condition with the
same beginning and ending events—we want an occurrence net which is “condition-extensional” in
the terms of {Br]. Thus we can identify the conditions with pairs of the form (e, A) where e is an
event and A is a subset of events causally dependant on e and with every distinct pair of events in
A in conflict. But not quite, we also want initial conditions with no beginning events.

3.4.8 Definition. Let E = (E, #, <) be an event structure. Define N (E) to be (B, E, F, M) where

M={(8,A) | ACE & (VYa,a' € A. a{# Ul)a")}
B=MuU{{e,A) |ecE & ACE & {(Va,d € A a((# U1))d'} & (Va€ A. e <a}}
F={(e,(e;4)) [(e, 4) € BYU {((c,; 4)¢) | (c,A) € B & e A}.

379

The proof of the coreflection between occurrence nets and event structures uses the following
notation and lemma which expresses a property of the relation between conditions in a morphism
between occurrence nets.

3.4.9 Notation. Let (E,#,<) be an event structure. Define

[|8]] =E and
[{e}| ={€E|e<e}.

We also use this notation for occurrence nets with the understanding that it applies to the underlying
event structure.

3.4.10 Lemma. Let h = (n,08): No — N; be a morphism between occurrence nets. If b3b,, for
conditions by, by, then

(Ve. eFobo & n(e)Fiby) & bo® = (n7'5,°) N e

Proof. Suppose byf3by, for conditions bo, b;. Directly from proposition 3.1.9 we see {Ve. eFpby &
n{e)F1b1) and bo® T (n715:°) || (*ho)]| Take e € {(p1b;*) N {|{*bo)]|. We show e € by® and hence
establish the converse inclusion. There are two cases: when *by = § and when *by # @. Assume
first *bo = §. In this case by € Mo and b; € M;. Because n{e) € 5,° and as h is a morphism there
is a b, with 8, Foep and b,8b;. By the property of morphisms on initial markings we must have
by = bj,. Hence in this case ¢ € bo*. Now assume the other case, that *by # 0. Then *by = {eo}
and *b; = {n{eo)} for some eg. Also n{e} € b;*. Because h is between occurrence nets, by lemma,
3.3.6, there is a b such that e Fyb Foe and b(8b,. But now as h is a morphism by = b). Hence
e € bp®. Thus in either case we have established the required converse inclusion and so shown

bo® = (n7t01*) N {[(“bo))]. N

This time it is easier to establish the coreflection by showing the freeness of the occurrence net
associated with an event structure.

3.4.11 Theorem. Let E be an event structure in P¥,

Then N(E) is an occurrence net. Moreover, £, N (E) = E.

The net N(E) and identity function 1g : E — E,N(E) is free over E with respect to &, i.e. for
any morphism 1 : E —» £,(N) in P# there is a unique morphism h : N(E) — N in Occ such that
E(h) 1g =1 (i.e. E(h) =n).

Proof. Let (E,#,<) be an event structure. It is easy to see N{E,#,<) is an occurrence net and
& N(E,#,<) = (E,#,<). We prove freeness.

Let N € Occ and n : E — &,(N) be a morphism in P#. Define A = (,8) by taking
boBby ¢ (Ve. eFobo < n(e)Fib1) & bo* = (n7 ') N {[(*bo)]], (1)

for by a condition of Ng and b; a condition of N. We require that A : N(E) — N is the unique
morphism such that &,{h) = 7.

To show h is a morphism we use the characterisation of proposition 3.1.9 and show # satisfies
the conditions (i), (ii) and (iii) written there.

(i)If *bo = @ then *by = @ so My C M;. Let by € M;. Take by = (0,77 16,*). Then by € M,
because 77 16;* is pairwise (# U1), and boBby by (1), the definition of 3. Suppose b,8b; and

380

bl € Mo. Then *bf = *bp = 0 and 55° = (7 15:°) N [[(*bh))] = (n™ 1 6:") " |[{*bg)]| = &o®. By the
condition—extensionality of ¥(E} we obtain by = bf.

(i) Assume n{eg) = e;.

If bo € eo® and bofBb; then *b; = n®by = {e;}. Hence feg® C e1®. Let b; € ¢;*. Take
bo = ({eo},n *b1* 11 ||{eo}]])- Then by € By by the properties of morphisms on event structures.
Also by € eo®. Suppose b),3b; with b}y € eo®. Then *b}) = *by = {eo} and 65° = (g~ 16;*) || (*b})]] =
(n='6*) N {leo]] = bp®. By condition extensionality b} == bo.

Suppose by € *eg and bofBby. Then ey € bo® = (n72b1*) N |[(*b)]] so e; = n(es) € b1° which
makes by € ®e;. Hence 8%¢; C ®e;. Let by € *e;. Consider the two cases: *b; = 0 and *b; # 0. If
*by = 0 take by = (0,77 1b,"). Otherwise *b; = {¢'}, say. Because n: E — & (N) is a morphism of
event structures n(e) = ¢ for some ¢ € E. In this case take by = ({e},{n7'8;*) (1 [le]]). In either
case by € Bo and by (1) we see bof3b;. Assume b}8b;. Then from (1}, the definition of 3, we see
*bh, = *bo and 8,* = by*. By condition-extensionality b)) = bo.

(iil) Now suppose bofby. If eoFobo then by (1), n{eo) is defined and n{eq)F1by. If boFpeg then
€0 € bo®* C 7', * 50 n(eg) is defined and by Fin(eo).

By proposition 3.1.9, we conclude h = (7, 3) is indeed a morphism N(E) — N.

It remains to show that kA : N(E) — N is the unique morphism such that &,(h) = . We do this
by showing that any such morphism f = (n,8') : N(E) — E must satisfy (1) ¢.e.

boﬂ'lh < {Ve. eFoby & YI(C)Flbx) & bO. = (??‘lbl.) A u(.bo)ﬁ’
which makes 8’ = § so f = h. By the lemma above any such morphism f must satisfy
boﬁlbl = {\7/6 eFpby & W(C)Flbl) & bo. = (7]‘151.) N U_('bo)”

To show the converse assume (Ve. eFoby & 7(e)F1b) and bo* = (n7161°) N ||(®ho))|. Because f
is a morphism, 5,86, for some b}, with *bf, = ®by (consider the two cases *by = @ and *by # 0).
By the lemma above b,* = (n=2b:°*) r1 |[(*b})]] = (n7'61°) N |[(*bo)]] = bo®. By the condition—
extensionality of N(E), by = b], so bo3’6;. Thus 3’ satisfies (1). Hence 8’ = 8 so f = h, establishing
uniqueness. &

Thus there is a coreflection between event structures and occurrence nets with &, as its right
adjoint and N as its left adjoint. This composes with the coreflection between occurrence nets and
safe nets to give a coreflection between event structures and safe nets.

Reasoning in the same way as we did for the coreflection between Net and Occ, we see, for
instance,

EO(NO X Occ Nl) = EO(NO) xp é‘O(NI)
Foxp Bl = EOU()‘/(E()) X Net N(El))
Eo+p B = EOU(N(EO) + Net N(E])),

which translates constructions in one category to constructions in the other, giving the product and
coproduct in P* in terms of the product and coproduct in Net. With extra labelling structure on
nets one can carry out the construction for parallel composition and the other constructions needed
for Procpretty much as before, secure in the knowledge of how the different models and semantics
are related.

We can summarise how the different categories are related in a diagram where all functors are
left adjoints. The functor P — P# is a left-adjoint to the inclusion functor P# — P; it takes an

381

event structure (E, Con, <) in P to the event structure (E,#,<) in P#. This and the adjunctions
involving trangition systems TS and event structures in general E, are not proved here. The
inclusion functor identifying trees with a certain kind of transition system has the unfolding functor
as a right adjoint—see {W3|. The-inclusion functor E — E, from stable event structures to general
event structures has a right adjoint which essentially makes enough copies of the events to ensure
the stability condition.

T—-D+F -E—-E,;

L1/

TS P

4

P* - Occ — Net

In particular the functor DF&,U : Net — D translates safe nets into domains, and we can ask what
properties of domains correspond to what properties of nets. There is a result relating confusion in
nets to concreteness in domains. Say a net is not confused iff there no reachable marking at which
either symmetric or asymmetric confusion occurs.

3.4.12 Theorem. Let N be a safe net. Then

DFE,U(N) Is concrete iff N is not confused.

Proof. See [NPW]| for an account and [W] for the full details. &

Part 4. HIGHER TYPES.

As motivation the full-abstraction problem for typed A—calculi is introduced. This motivates a
more operational approach to domain theory. It is shown how event structures can be used to model
datatypes of functions and functions on functions ete. . Using another definition of morphism event
structures can be made into a cartesian closed category equivalent to one discovered by G.Berry. In
this category functions are not ordered extensionally, by the pointwise order, as in Scott’s category
of domains but intensionally, by the stable order, which takes into account the manner in which
they compute. It is indicated how a model of the A—calculus can be constructed.

4.1. Background.

At first sight it is perhaps rather remarkable that event structures should provide models for
programming languages with higher types such as the typed or untyped A calculus. For one thing
it is not immediately clear what an event at higher type is. More strikingly, the well-known models
for such languages originating with D.Scott make essential use of a particular function space con-
struction on domains, that formed by taking the set of continuous functions ordered pointwise. This
construction quickly takes domains outside the finitary ones, and as we have seen all domains deter-
mined by event structures are finitary. Nevertheless there are forms of function space construction
on event structures, yielding cartesian closed categories of event structures. The one we shall define
gives rise to a different function space constructions on domains, and is associated with a more
restricted class of functions than just those which are continuous, and the ordering on functions is
different too.

In [P}, Plotkin uncovered the full-abstraction problem for PCF, a programming language, built
around a typed lambda calculus with fixed—point operators, whose terms at ground type—call them

382

programs—compute integers or truth values. We explain the problem briefly (refer to (B, C, W},
especially [C], for more details). Plotkin defined a natural preorder on terms. In PCF only programs
can yield definite results, and terms at higher type are of interest only in so far as they are parts
of programs. It is natural to regard two terms (of the same type) as operationally equivalent iff
they can be freely substituted for each other in any program without changing its output behaviour.
Formally define the equivalence relation to hold between terms M and N of the same type by

M = N iff for all program contexts C| | either the evaluations of both
C{M] and C[N] diverge or they converge to the same value.

More generally, an operational preorder can be defined by taking

M =< N iff for all program contexts C| | if the evalnation of C[{M]
converges to a value then so does that of C|[N| converge to the same
value,

A denotational semantics also provides a preorder on terms. Write M C N iff the denotation of M
is below that of N. Ideally one would hope that the two preorders, operational and denotational,
are equal. In such a case it is said that the denotational semantics is fully abstract.

Unfortunately, as Plotkin showed, the obvious denotational semantics for PCF, interpreting
higher types using the space of all continuous functions, does not lead to a fully abstract model.
Plotkin produced two terms which were operationally equivalent but denotationally distinct through
acting differently on “parallel or”. “Parallel or” is a function which takes a pair of truth values
including L for “unknown” and gives value “true” if either argument is “true”. “Paralle]l or” existed
as a function in the domain but could never be defined in the language or supplied in a program
context. Plotkin went on to show that by extending PCF to allow limited parallelism the obvious
model became fully abstract. Milner filled out the picture by showing there is a fully abstract model
for the original PCF but his method was essentially to construct a term model from the operational
semantics. There remained—and still remains—the problem of providing a semantic construction
of the fully-abstract model.

The full abstraction problem led G.Berry, and following him P.L.Curien, on the quest to find
a semantic characterisation of the concept of sequential function at higher type. They hoped to
eliminate problematic elements like “parallel or”. Attacks on the problem led Berry to discover
a range of new cartesian closed categories of domains. {Roughly, a category is cartesian closed
iff it has products and function spaces—see [Mac|.) Here it will be shown how the simplest of
these, the category of finitary, distributive domains (which Berry called the dI-domains) with stable
functions can be represented as a category of event structures. Other cartesian closed categories of
event structures which are better approximations to the fully abstract model can be found in [W|
and [BC, C|. I would especially like to highlight the work of Berry and Curien on CDS presented
in [BC, C]. CDS, standing for “concrete data structures”, is a programming language, which has
been implemented, in which the data types are concrete data structures and the computations are
“algorithms”, in a technical sense, between them. CDS has an elegant mathematical theory; concrete
data structures and algorithms form a cartesian closed category of objects intimately linked to event
structures and so many of the concepts overlap those encountered in the study of Petri nets.

4.2. Higher—type events.

The simplest new cartesian closed category in [B] consists of the finitary, distributive domains
with stable, continuous functions. As we have seen such domains are precisely those formed as the
domains of configurations of stable event structures, so we can get an equivalent category by taking

383

the objects to be stable event structures and the morphisms between event structures to be stable,
continuous functions on the associated domains of configurations. (It is easily confirmed that it is
indeed a category under the usual function composition.)

4.2.1 Definition. Define E;.p to be the category with objects stable event structures and with

morphisms from Eo to E; the stable, continuous functions f : {F{Eo), &) — (¥(E.),C) on their
configurations, i.e. f is continuous and

YXCF(E). X#8 & X1= f(NX)=NfX
Composition is composition of functions and identities are the identity functions on configurations.
The product in the category is obtained very simply. The event structures are allowed to operate
disjointly, completely in parallel, neither one having an effect on the other. It is easily defined for

all event structures not just the stable ones.

4.2.2 Definition. Let Eq = (Ep, Cono, o) and E; = (£, Cony, i1} be stable event structures.
Their disjoint product, Eo @ Ej, is the structure (£, Con,) where the events are

E={0}x Equ {1} x Ey,
a disjoint union, the consistency predicate is given by
X e Cone{e|(0,e) e X} €Cony & {e](l,e) € X} € Cony,
and the enabling by

XteoaXeCon & ecE &
[(Beo € Eo. e = {0,e0) & {€/ | (0,¢) € X} Foeo) or
(361 € FEi.e= (1,61} & {e” I (1,6’) & X} 1 61)].

Define the projections py : F(Fo @ E{) — F(E¢) by taking px(z) = {e | (k,e} € 2z}, for k=0, 1.
4.2.3 Proposition. Let Ey and E, be event structures with events Eo, E1 respectively. Then

z€ FEo®E) & zC EqWE, & po(z) € F(Eo) & pi(z) € F(E1).
There is a 1-1 correspondence between F(Eq & E;) and 7 (Eg) x f(El)' given by

£ = (po(z),p1(z))-

The disjoint product is 4—continuous.
Proof. Obvious. Routine application of lemma 1.6.9 gives the continuity of the disjoint product. &
Thus we can identify z, a configuration of a disjoint product, with the pair {(po(z),pi(z)).

4.2.4 Theorem. The disjoint product Eo; @ E; of stable event structures Eo and E;, with
projections o, 71, is a product in the category Egigs.

Proof. Obviously the disjoint product of stable event structures is stable. It is easy to see that
the projections are stable functions. The disjoint product is easily seen to be a product now its
configurations are recognised to be essentially pairs of configurations of the components. &

384

To be cartesian closed we must somehow represent the space of stable, continuous functions
f : Eg — E; between two stable event structures E¢ and E; as an event structure itself. This
is done by taking the events of a “function space” event structure to be basic parts of functions
(z,e) standing for the event of cutputting e, an event of Ey, at input x, a finite configuration of
Eo. The function f will correspond to a configuration of events (z, €} in which z is a minimal input
configuration at which e is output.

4.2.5 Definition. Let Ey = {Ep, Cong, o) and Ey = (Ey, Cony, i) be stable event structures.
Their stable function space, [Eg — E,] is defined to be the event structure {E, Con,) with events
E consisting of pairs {z,e) where z is a finite configuration in #(Eq) and e € Ei, a consistency
predicate Con given by

{(-'EOyeO)a"'v(xn—laen—l)} € Con
HEVIC{0,---,n—1}. U, zi € Cong = {e, 1€ I} € Cony &

Vi, j<n.z;1z; & e, =¢; =z, =15,
and an enabling relation given by

{(zo,€0)s (Tn-1,6n—1)} F (z,€) iff {e; | 2, S x} e

4.2.6 Proposition. The stable function space of two stable event structures is a stable event
structure. The stable function space construction is d¢—continuous.

Proof. Let Eg = (Eo,Cong, -g) and E; = (Ey,Cony, 1) be stable event structures. Obviously
their function space forms an event structure (£, Con,). Suppose

{{(wi,a;) |1 €I} F(z,€),
{{v:,0) | € J} F (z,¢} and
{(wi’a’i) ‘ te I}U {(yiabz) 1]‘ [J}U {(1},8)} & Con.

Then, by the definition of enabling and consistency in the function space,
{ai l wy g 1:} 5‘1 €,
{b;|y; Cz} Fieand
{a, |w; Cz}U{b: |y, Cz}U{e} € Cony.

As E, is stable {a; | w; Cz} N {b; | y, C z} 1 e. By the definition of consistency on the function
space a; = b, = w; =y, so

{{lw,,a;) | 1€ Iy {{y,0:) | €T} F (z,¢).
Thus the function space is a stable event structure.

It is easy to check [— | is monotonic in each argument. The operation obtained by varying the
right hand side argument is obviously continuous on events. Because events in the function space
are built from only finite configurations so is that for the left hand argument. By lemma 1.6.9 the
function space operation is <—continuous. §

Remark. Given two event structures Eg and E;, not necessarily stable, a similar construction can
be given to provide an event structure {Eg —. Ey], again not necessarily stable, whose configura-
tions are in 1-1 correspondence with the continuous functions (F(Eo),C) — (F(Eo),<). (This is

385

remarked in [G} though for the more restrictive category of qualitative domains.) However, unlike
the stable function space, this construction will not be the exponentiation in the category of do-
mains of configurations with continuous functions. The category of event structures with continuous
functions between their associated domains is not cartesian closed by Smyth’s lemma 5 in [Smy], or
Curien’s theorem 2.4.13 and the remark that follows in [C] {p.158-160).

In fact the stable function space [Eqg — E{] of stable event structures can be provided with a
stable, continuous application function ap : [Eo — E] @ Eoc — E{ given by

ap(f,z) = {e1 € Ey | 320 C 1. (z0,€1) € f}

for f € 7([Eo — Ei]) and z € 7(Eo). (We have identified (f, z) with the corresponding configuration
of the disjoint product.}) As we shall see this makes the function space an exponentiation in the
category Egiqp. Firstly though it is helpful to show how the configurations of a stable function space
[Eo — E;| correspond to stable, continuous functions 7(Eq) — F(E1).

4.2.7 Definition. Let Eg and E; be stable event structures. .
For F € #([Eo — E4]) define

(6(F))(z) = {ec E, | 3z’ Cz. (z',¢) € F}

for z € #(Eo).
For f : #(Eo) — F(E1) astable, continuous function define u(f) a subset of events of [Eg — Ey]
by
(r,e) e u(f) @ ec f(z) & (Vo' Cz.ec f(z') = 2’ = 2).

4.2.8 Theorem. Let Eg and E; be stable event structures.

(i) For F € #(]Ey — E,|), the function ¢(F) : ¥(Ey) — F(E1) is continuous and stable.

(i) For f : #(Eog) — F(E,) a stable, continuous function, the subset u(f) € 7(|[Eo — Ei]).

(iii) Further, ¢ and p are mutual inverses giving a 1-1 correspondence between configurations
F([Eo — E\]) and stable, continuous functions ¥(Eq) ~ F(E;).

Proof. Assume Eq = (FEo,Cong, to), E1 = (E1,Cony, ;) and the function space [Eg — Eq] =
(E,Con,).

(i) Firstly we check ¢(F)(z) € F(E,) when F € #([Eo — E,]) and z € F(Ep). So we require that
&(F)(z) is consistent and secured in E;.

Suppose Y Cfin ¢(F)(z). Write Y = {eo,...,en—1}. Then there are finite configurations
Tg,...,Zn-1 of Eo such that {zo,e0),...,(Zn_1,€n—1) € F and zo,...,zZpn1 € z. Thus |J;,z: €
Cong and so as F is consistent in {(Eg — E;| we obtain ¥ = {eq,...,en_1} € Cony. Therefore
#(F)(z) is consistent.

Suppose e € ¢(F)(z). Then (z',e) € F for some finite configuration z’ of Eg. As F is a
configuration of [Eq — E|, so secured, there is a sequence (z9,€0), -, (zn,€n) = (z',€) in F such
that {(zo,€0)," -, (zi—1,€i—1)} F (x4, €;) for all © < n. Recall this means {e, | j <7 & z; Cz;}
e;. Thus without loss of generality we may assume z; C z’ for each 7 in the securing—any event
(z:,e:) failing this can be removed to still leave a securing for (z/,€). For such chains €g,...,en is a
securing for e in ¢(F)(z).

Hence ¢(F)(z) is consistent and secured, and so an element of 7(E;). This shows ¢(F) Is a
function ¥(Eo) — F(E;). It is obviously monotonic. That it is continuous follows because F consists

386

of events of the form (x, €} with z finite. Suppose X is a nonempty, compatible subset of #{Eo). By
the monotonicity of ¢(F) we see

(F)(NX) € Nyex(F)(z).

Suppose ¢ € [,cx9(F)(z). Then for any = € X there is a finite configuration m, of Eo for which
mg C x and (my,e) € F. The set {m, | z € X} is compatible and as F is consistent each m, =m
say for z € X. Now m C (X making e € ¢(F){(NX) as, of course, (m, e} € F. Therefore

S(F)NX) = Neexd(F)(o),
showing ¢(F) is stable.

(ii) Let f : F(Eo) — F(E1) be a stable, continuous function. We show u(f) € F([Eo — E.]), i.e.
that u{f) is consistent and secured in [Eq — Eq].

Suppose {{zg,€0)," " s {Tn-1,€n—1)} C p{f). Assume I C {0,...,n — 1} and {J;c,2: € Cono.
Write £ = |J;,2; € Cong. Of course z € F(Eo). We have {e; | i € I} C f(z). Consequently
{e; | i€ I} € Con;. Assume z; U z; € Con and ¢; = ¢, = e say. Then as f is stable

flzinzj) = flzs) O flzg) De.
As z; and z; are minimal inputs yielding e we must have z; = z; N z; = z;. Thus ulf) is consistent.

We now require that
(IH) (z,€) € u(f) = (z,€) is secured in p(f}.

for all finite configurations z of Eg. We show this by induction on the size |z| of the finite con-
figuration z. When |z| = 0 then z = 0. If (0,¢) € u(f) then e € f(0). As f(D) is secured
there is a securing eg,...,e, for e in f{@). This makes (8,¢c),...,{8,en) a securing for {0, ¢} in
u(f). Assume now that [z] > 0 and that (IH) holds for all strictly smaller configurations. As-
sume (z,¢) € p{f). Then e € f(z) so there is a securing €g,...,e, = ¢ for ¢ in f(z). There are
Zp,.-.,&n C z such that (2o,€0),...,(Zn,en) € u{f) with £, = z. Working along this sequence, we
see that for each 4, 0 < i < n, either z; C = so (z:,¢;) has a securing s; in u(f) by (IH),orz; =z
so {(zo,€0)s- ., (Ti—1,€i-1)} F (s, €:) and 85" -+ s, (24, €i) Is a securing for (z;, ;). This shows
(z,€) is secured in p(f).

We conclude u{f) € #{{Eo — E1}}.
(i) Now we show ¢ and p determine a 1-1 correspondence.

Let F € F([Eo — E;]). We require u¢(F) = F. Suppose (z,e) € F. Then e € ¢(F})(z). If
e € ¢(F)(z') for z' C z there would have to be some y C z with (y,e) € F, impossible by the
consistency requirement on F. Therefore (z,€) € u¢(F). Suppose (z,€) € ud(F). Then e € ¢(F)(x)

and (z',e} € F for some z' C z. But the minimality of & ensures z = 2/, giving {z,¢) € F. We have
shown pé(F) = F.

Let f : F(Eq) — F(E1) be stable, continuous. We require ¢uu(f) = f. Then, using the continuity
of f,
e€ f(z) © 31’ Cz. (2,¢) € ulf) & ec (du(f))(z),

for any ¢ € E; and z € F(E¢). Therefore ¢u(f) = f, and we have established the required 1-1
correspondence. §

387

At this point we can quickly prove the cartesian closure of Eg;45, based on the observation that,
for stable event structures E, Eq, E; the two event structures

[E®Es — B4

and

[E = [Eo — B4}

are the same up to a natural renaming of events.

4.2.9 Lemma. Let E, Ey, E, be stable event structures. There is a 1~1 correspondence § between
the events of [E @& Eo — E;| and [E — [Ey — E;]] given by

0:({w,z),e) — (w,{z,e)),
for w, z finite configurations of E, Ey and event e of Ey, such that
X € Conp & 6X € Conp

and

X Fpew X trb(e),
where Conp, &-p are the consistency and entailment relations of [Ey ® Ey — E,| and Conp, by are
the relations of [Ey — [E, — E]].

Proof. Let E = (E,Con,), Eq = (Es,Cono, o) and E; = (Ey,Cony, t-1) be stable event struc-
tures. Assume
[E® Eg — E;] = (P,Conp, Fp),

[E ~ [Eo — Ey]] = (F, Conp, Fr),
[Eo nd El} = (Ez,Conz, t"g).

Clearly H : P — F defined above is a 1-1 correspondence between sets of events.
Compare the notions of consistency.
Consistency in [E — [Eo — E4]]:
{{wi,{zi,e:)) | 1 € I} € Conp iff
{7} VI C L {w; i€ J}= {{z:e,) |1 €T} € Conz &
1(77) Vi, g€l w;Tw & (xi,€) = (zj,¢5) = w; = wy.
Consistency in |[E @ Eg — Ei|:
{((wi,x;),€)) | © € I} € Conp iff
2(3) VI C I {{wi,z;) | i€ J}T=>{e; | i€ J} e Cony &

2{u1) Vi,jel.wiTw, & z;72; & e;=¢; 3w, =w; & z; =1z;.

Assume {{w;, (zi,e:)) | 1 € I} € Conp. We show it follows that {{{ws,2:),€:)) | ¢ € I} € Conp.
Because 1{r) holds 2(s) follows directly. To show 2{i1), assume w; T w; and z; 7 z; and e; = ¢;. By
1(z), {(zi, i), (z5,€;)} € Con. Therefore z; = z; by the property of consistency in a function space.
Now (z;,e;) = {zj,€;) so w; = w; by 1(iz).

388

Assume {((w;,;),e:)) | t € I} € Conp. We show it follows that {{w;, (z,e:)) | 7 € I} € Conp-
1{73) follows directly from 2(i7). We show 1(i). Let J C I and suppose {w; | 7 € J} I. We need
{(zi,e;) | i € J} € Conz. But this is proved as follows: Let K C J. I {z; | i € K}.] then
{(wi,z;) |1 € K} so{ei| i€ K} € Cony by 2(¢). If z; T z; and ¢; = e;, for 4,7 € J, then, because
w; T wy too, by 2(¢7) we obtain z; = z;.

Thus the correspondence preserves and reflects consistency. It also preserves and reflects en-
tailment:

{{wi, (zi,8:)) | 1€ I} by iw, (z,€)) @{{zi, e} | wi S w} Fa(z,€)
ole, wiCw & z;Cz} ke
<‘:>{((w1,$i)7ei) ‘ LE I} '_F ((w,z),e).

Certainly Eg¢qp has products including the null event structure as terminal object. The above
results yield a natural 1-1 correspondence between morphisms Eg & E; — E; and Eq — [BE; — Eo]
and so show that Egq.s is cartesian closed [Mac. p.95-96]. We show the exponentiation more
explicitly.

4.2.10 Theorem, The category Egqp is cartesian closed. It has products as shown and an
exponentiation of two stable event structures Eg and Ey has the form [E; — E,}, ap where ap :
[Eo — Ei| ® Eo — E, is given by .
ap(f,z) = (¢f)(=)

for f € F({Eo — E;]) and = € F{Eo).

(We have identified (f,z) with the corresponding configuration of the disjoint product.)

Proof. By the preceding remarks the category Egqp is cartesian closed. Alternatively, this is shown
by the following explicit demonstration of an exponentiation of two stable event structures. Let Eo
and E; be event structures. For ap as defined above we see

ap(f,z) ={e€ Ey |3’ Cz. (z',e) € f}

for f € F([Eo — Ei]) and z € F(Eg). The function ap is easily checked to be continuous and
stable. In order for [Eq — E;],ap to be an exponentiation it is required that for any morphism
f :E®Eq — E; there is 2 unique morphism ¢ : E — [Ep — E;| such that the following diagram
commutes:

[Eo ‘*EII@EOégEBlEu Ea® E,

ap‘l /
E,
Let ab: [E® Eo — Eq] = [E — [Ep — Ei]] be the isomorphism

ab: F v {{w,{z,€)) | {{w,2},€) € F}.

provided by the previous lerama. Take ¢ = ¢ ab u(f). This ensures g is a morphism. Then, recalling
definitions,

glw) = {{z’,¢) | ' Cw. (v, (2, €)) € abu{f)}

for any configuration w of E. Hence

ap(g(w), z) =(¢g(w))(z)
={e | Fw’ Cw,z’ Cz. ((v',2'),¢) € u(f}}
=(ou(f))(w,z)
=f(w,z).

389

This establishes the existence of g making the diagram commute. Uniqueness follows as if ¢ also
makes the diagram commute then {¢g{w))z = {¢¢'(w))z for all w,z. But then ¢g{w) = ¢¢'(w) for
all w. As ¢ is 1-1, g(w) = ¢'(w) for all w. Hence g =¢’. 1

In the traditional function space used in denotational semantics the functions in the function
space [D — E|, where D and E are domains are ordered pointwise, ¢.e. two continuous functions
f,g are ordered by

fCgevde D. f(d) C gld).

This ordering is called the extensional {or Scott) order. The inclusion order on the configurations
of [Eg ~ E,] induces another order on stable, continuous functions (¥ (Eo), C) — (F(E4), <) which
we have seen can be expessed as

f<geufCug

This order is called the stable order (a name due to Berry). We give an example.

4.2.11 Example. The two point domain O consisting of L T T can be represented as the the
configurations of the obvious event structure with a single event », so L =@ and T = {#}. All the
monotonic functions O — O are stable and continuous. Ordered extensionally they are

(Az. L) C(Az.z=T — T|L) C (Az.T)
while according to the stable ordering we only have
Az L)< (dz.z=T - TIL) and {Az.1)< (Az.T),

because (Axr. z =T — T|L1) £ (Az.T). For two functions to be in the stable order it is not only
necessary that they are ordered extensionally but also that if they both output a value for common
input then they do so for the same minimal value.

As an example we indicate how the category can be used to give a model for a A—calculus with
atoms.

4.2.12 Example. We can use the sum construction on event structures (it is a functor on Eg,s)
and a constant event structure A of atomic events to define an operation

Es—»A+[E—>E].

This operation is <—continuous, being the composition of continuous things, and so has a least fixed
point which can serve as a model for the A—calculus with atoms following standard lines.

We return briefly to the problem of full abstraction. Even more simply than in the example
above, we can give a denotational semantics to any typed A—calculus including PCF'; function types
are interpreted as the stable function space. Because “parallel or” is not stable we have succeeded
in eliminating it from the function spaces. However the model is not fully abstract—far from it. It
now includes functions which are not monotonic with respect to the Scott order (in Berry’s terms
the model is not order extensional [B]) and these elements, like “parallel or” are not definable in
PCF, and cause similar difficulties. Berry realised a fairly simple way to eliminate such non—order
extensional functions. The basic idea was to work with bidomains which carry the extra structure
of the Scott order which can then be used to cut down the functions allowed in the function space
(see [W] for another approach based on event structures). Certainly this leads to a much more
refined model of PCF than one based on the Scott function space but the fact remains that there
are finite stable functions which are not definable in PCF. So at this point Berry and P.L.Curien, his
student at the time, embarked on the study of sequentiality at higher type; they hoped to proceed

390

by analogy with Berry’s work on stable functions and bidomains. Unfortunately, while this work
did take exciting turns (the results are reported in [C]), it did not yield a fully abstract model. The
full abstraction problem is still open.

Recent work of Girard has pointed the way to another appplication for the category of event
structures with stable functions, or the equivalent category of dI-domains. In [G], Girard works with
a proper subcategory of E,qp with objects called qualitative domains and shows how they give a
model to his System F, the polymorphic A-calculus. From the point of view of semantics qualitative
domains are a little too restrictive because they are not closed under the useful operations of lifting
(prefixing) or separated sum. However Girard’s ideas can be extended to E, which is (see [CGW]).

Acknowledgements

I am grateful for discussions with Mogens Nielsen and Gordon Plotkin, and to the anonymous
referee for suggested improvements.

References

[A] Aczel, P., A note on Scott’s theory of domains. Unpublished note, Math. Dept., Univ. of
Manchester, (1983).

[Ac] Aczel, P., An introduction to inductive definitions. In the handbook of Mathematical Logic,
Ed. Barwise, J., North-Holland (1983).

[B] Berry, G., Modéles complétement adéquats et stables des lambda—calculs typés. Thése de Doc-
torat d’Etat, Université de Paris VII (1979).

[Bk] Brookes, S.D., On the relationship of CCS and CSP. ICALP 1983, in Springer— Verlag Lecture
Notes in Comp Sc , vol.154 (1984).

[Br] Genrich, H.J., Lautenbach, K., and Thiagarajan, P.S., Elements of general net theory. In Net
Theory and Applications, {(Ed. Brauer, W.), Springer-Verlag Lecture Notes in Comp. Sci., vol.84
(1980).

[C] Curien, P.L., Categorical combinators, sequential algorithms and functional programming. Re-
search notes in theoretical comp. sc., Pitman, London (1986).

[29] Coquand, T., Gunter, C., and Winske!, G., Polymorphism and domain equations. Submitted
to Third Workshop on the Mathematical Foundations of Programming Language Semantics, New
Orleans, LA 1987.

[F] Fogh, T., En semantik for synkroniserede parallelle processer. Master’s thesis, Comp. Sc.,
Aarhus Univ., Denmark (1981).

[G] Girard, J.Y., The system F of variable types, fifteen years later. Manuscript, (1985).

|GR] Goltz, U. and Reisig, W., Processes of Place/Transition Nets. Icalp 83 and appears in Infor-
mation and Control (1984).

(He|] Hewitt, C., and Baker, H., Actors and continuous functionals. In “Formal description of
programming concepts (ed. E.Neuhold), North Holland (1978).

[H| Hoare, C.A.R., Communicating sequential processes. Prentice Hall (1985)

391

[HBR] Hoare, C.A.R., Brookes, 8.D., and Roscoe, A.W., A Theory of Communicating Processes,
Technical Report PRG-16, Programming Research Group, University of Oxford (1981); in JACM
(1984).

[KP] Kahn, G., and Plotkin, G., Domaines Concrétes. Rapport IRIA Laboria No. 336 (1978).

[La) Lamport, L., Time clocks and the ordering of events in a distributed system. CACM 21, (1978).
[LW] Larsen, K., and Winskel, G., Using information systems to solve recursive domain equations
effectively. In the proceedings of the conference on Abstract Datatypes, Sophia-Antipolis, France
in June 1984. Full version submitted to the journal “Information and Control” and appears as a

report of the Computer Laboratory, University of Cambridge (1983).

[LC| Lauer, P. E. and Campbell, R. H., Formal semantics for a class of high-level primitives for
coordinating concurrent processes. Acta Informatica 5 pp.297-332 (1974).

[Maz| Mazurkiewicz, A., Concurrent program schemes and their interpretations. Report PB-78 of
the Computer Sc. Dept., University of Aarhus, Denmark (1977).

[Mac| Maclane, S., Categories for the Working Mathematician. Graduate Texts in Mathematics,
Springer (1971).

[M] Milner, R., Fully abstract models of typed lambda-calculi. Theor. Comp. Sc., vol.4(1), 1-23
(1977).

[M1} Milner, R., A Calculus of Communicating Systems. Springer Lecture Notes in Comp. Sc. vol.
92 (1980).

[M2] Milner, R., Calculi for synchrony and asynchrony. Theoretical Computer Science 25, pp.267-
310 (1983).

[MS] Montanari, U., and Simonelli, C., On distinguishing between concurrency and nondeterminism.
Proc. Ecole de Printemps on Concurrency and Petri nets, Colleville (1980).

[NPW)| Nielsen, M., Plotkin, G., Winskel, G., Petri nets, Event structures and Domains, part 1 .
Theoretical Computer Science, vol. 13 (1981).

[P} Plotkin, G.D., LCF considered as a programming language. Theor. Comp. Sc., vol.5(3), 223-256
(1977).

[Pe] Petri, C.A., Nonsequential processes. GMD-ISF Report ISF-77-05 (1977).

[Pr] Pratt, V. R., On the composition of processes. Proc. of the 9th annual ACM symposium on
Principles of Programming Languages, (1982).

[8] Scott, D. S., Domains for Denotational Semantics. ICALP ’82. Springer—Verlag Lecture Notes
in Comp. Sc. 140 (1982).

[S1] Scott, D. S., Lectures on a mathematical theory of computation. Oxford University Computing
Laboratory Technical Monograph PRG-19 (1981).

[Sh1,2] Shields, M., Non-sequential behaviours: 1 and 2. Reports of the Comp. Sc. Dept., University
of Edinburgh {part 1: 1982, part 2: 1983).

392

[Smy] Smyth, M.B., The largest cartesian closed category of domains. Theor. Comp. Sc., vol. 27
pp. 109-119 (1983).

[St] Stoy, J. Denotational semantics: The Scott-Strachey approach to programming language theory.
MIT Press (1977).

{W] Winskel, G., Events in Computation. Ph.D. thesis, available as a technical report, Comp. Sc.
Dept., University of Edinburgh (1980).

[W1] Winskel, G., Event structure semantics of CCS and related languages. Proc. ICALP '82.
Springer—Verlag Lecture Notes in Comp. Sc. 140 and as a report of the Computer Sc. Dept.,
University of Aarhus, Denmark (1982).

[W2] Winskel, G., A representation of completely distributive algebraic lattices. Report of the
Computer Science Dept., Carnegie-Mellon University (1983).

[W3] Winskel, G., Synchronisation trees. In Theoretical Computer Science, May 1985.

[W4] Winskel, G., A New Definition of Morphism on Petri Nets. Springer Lecture Notes in Comp
Sc, vol. 166 (1984).

[W5] Winskel, G., Categories of Models for Concurrency. In the proceedings of the workshop on
the semantics of concurrency, Carnegie-Mellon University, Pittsburgh, Springer Lecture Notes in
Computer Science 197 (July 1984), and appears as a report of the Computer Laboratory, University
of Cambridge (1984).

(W6] Winskel, G., Petri nets, algebras, morphisms and compositionality. Report 79 of the Computer
Laboratory , University of Cambridge. To appear in Information and Control. An extended abstract
appears in “Advances in Petri Nets”, Springer-Verlag Lecture Notes in Comp. Sc. (1985).

