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A b s t r a c t  

Event structures are a model of computational processes. They represent a process as a set 
of e'cent occurrences with relations to express how events causally depend on others. This paper 
introduces event structures, shows their relationship to Scott domains and Petri nets, and surveys 
their role in denotational semantics, both for modelling languages like CCS and CSP and languages 
with higher types. 

I n t r o d u c t i o n .  

Event structures are models of processes as events constrained by relations of consistency and 
enabling. Their study in denotational semantics first arose as a biproduct in the pioneering work 
of G.Kahn and G.Plotkin on some foundational questions in denotational semantics (See 1.5). The 
concrete data structures of Kahn and Plotkin were later realised to be closely related to confusion- 
free Petri nets (see part 3 and [NPW]) and this led to the more general definitions discussed here. 
Since then they have been developed as a model in their own right and for certain applications (e.g. 
see part 4) they are easier and less clumsy to use than Petri nets to which they are closely related 
however. These notes are intended to present the mathematical theory of event structures, show how 
they are related to Petri nets and Scott domains, and how they can be used to provide semantics to 
programming languages for parallel processes as welt as languages with higher types. 

A goal in working with event structures has been to develop a theory of concurrency which 
incorporates both the insights of C.A.Petri and D.S.Scott. To some extent this has been achieved. 
On the one hand, event structures consist of relations on events and bear a close relationship to Petri 
nets. On the other, the configurations or states of an event structure naturally reflect information 
about what events have occurred and determine a Scott domain of information. Because of this dual 
nature event structures stand as an intermediary between the theories Petri nets and denotational 
semantics, sharing ideas with both. As such they can serve a bridge between the two theories. For 
example the insight of Scott that computable functions ifiduce continuous functions on domains 
appears as a finiteness axiom on event structures (1.4), which can be readily interpreted for Petri 
nets, while the restriction of confusion-freeness on a Petri net translates to concreteness on a domain 
naturally associated with it (1.5, 3.3). There remains the curious mismatch noted in [NPW]: a 
computation which is described by an event structure, or Petri net, gives rise to a whole domain 
whereas usually in denotational semantics a computation denotes a single element of a domain. 
This indicates, I believe, that we are still some way from the comprehensive theory of events in 
computation envisaged in [W]. 

The notes are organised in four parts. The first introduces event structures and their relations 
to families of configurations and certain kinds of domains which are viewed as different presentations 
of essentially the same idea. It develops the framework in which event structures can be defined 
recursively. Here the closeness of event structures to domains has another pay-off. It is easy to 
adapt ideas from denotational semantics to provide a smooth framework for recursion. In parts 
2 and 4 this work is extended to particular applications. In part 2, event structures are used to 
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provide a non- in t e r l eav ing  model  of languages  like CCS and  CSP. T h e  approach  is qui te  a b s t r a c t  
and  ma thema t i ca l ,  using some ca tegory  theory, bu t  has  the  benefi t  of es tab l i sh ing  once and  for 
all, in a uni form way, a variety of semant ics ,  inter leaving and  non- in te r l eav ing ,  and  the  re la t ions 
be tween them.  We can  now move on, use the  semant ics ,  and  try, for example,  to advance our  
u n d e r s t a n d i n g  of the  re la t ionship of models  of " t rue  concurrency"  wi th  opera t iona l  semant ics  and  
the  logic of concur ren t  programs.  The  guts of the  work of this  pa r t  appea red  in [W1]. Pa r t  3 shows 
how the  same ideas can  be  carr ied t h r o u g h  for Petr i  nets ,  giving rise to a more  algebraic t r e a t m e n t  
of nets  t h a n  usual,  and  gives a formal  t r ans l a t ion  between nets  and  event  s t ruc tures .  (Sections 3.1 
to 3.:1 can be read  w i th ou t  any knowledge of the  earl ier  sections.) In pa r t  4 some work of G.Ber ry  
is presented in a new light. It is shown how event  s t ruc tu res  can  be made  into car tes ian  closed 
category and so be used to model  p r o g r a m m i n g  languages wi th  h igher  types.  This  pa r t  is mean t  as 
a p repara t ion  and  indicator  to fu r ther  work, bo th  Berry  and  Cur ien ' s  work (see Icl  especially) and  
some recent  work of Gi ra rd  on a model  for his System F, the  po lymorphic  A-calculus (see [G] and  
[CGW]). The  work after  pa r t  1 will use some basic ideas f rom category theory. Our  main  reference 
is [Mac l. 

1. E V E N T  S T R U C T U R E S ,  C O N F I G U R A T I O N S  A N D  D O M A I N S .  

This  pa r t  gives the  definit ion of event  s t ruc tures ,  focusses on special  forms, and  shows how 
par t icu lar  kinds of Scott  domains  of in format ion  are formed by the i r  configurat ions (or s ta tes) .  
Scot t ' s  thesis is re la ted  to the  axiom of finite causes and  the  mach inery  is es tabl ished for defining 
event  s t ruc tures  recursively. In addi t ion ,  the  re la t ionship  be tween event  s t ruc tu res  and  concrete  
domains  is exhib i ted  wi th  a br ief  ind ica t ion  of the  relevance of concre te  domains  to deno ta t i ona l  
semantics .  

1.1. Event  s tructures .  

Pic ture  a process as performing events  as t ime  goes on. W h a t  we choose to regard  as events  of 
the  process will depend  on the  level of abs t r ac t ion  a t  which we view the  process. For the m o m e n t  
let us not  worry a b o u t  wha t  kinds of events  they are. Suppose t h a t  this  is set t led on and  we 
have decided t ha t  the  events of in teres t  to us come from a set E of events  or more s tr ic t ly  event  
occurrences.  General ly  for various reasons some events  exclude some others  f rom occurr ing so not  all 
subsets  of events can  occur together  in a his tory  of the  process. For example  one event  may exclude 
ano the r  for physical  reasons,  you jus t  c a n n o t  have two values at  the  same t ime at  some place or 
they may be in conflict  because they compe te  for the  same resource. Wha teve r  the  reason we can  
only expect  cer ta in  subsets  of events  to  be able to occur  in the  same  history.  We can  express  th is  
as as a consistency predicate  Con C_ F i n ( E )  on the  finite subsets  of E .  And of course if a set X of  
events  can occur toge ther  in the  same his tory  then  so can a subse t  Y c~ X so we can pu t  Y E Con 
too. There  is a addi t iona l  cons t ra in t  on the  occurrence of events.  Genera l ly  an event can occur  only 
after  cer ta in  other  events  have already occurred,  and  na tu ra l ly  we can  assume they are consis tent .  
We capture  this  by use of an  enabl ing  re la t ion ~G Con × E where  intui t ively an  event  e can only 
occur  after  a set X ,  wi th  X ~- e, has  occurred  previously. 

1 .1 .1  D e f i n i t i o n .  An event structure is a tr iple (E,  Con,  k) where  
(i) E is a set  of events, 
(ii) Con is n o n e m p t y  subset  of F i n E ,  the  finite subsets  of E ,  called the 

consistency predicate  which satisfies 

X ~ C o n  & Y C X = ~ Y E C o n ,  and  
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(iii) kC Con x E is the  enabling re la t ion  which satisfies 

X F e  & X C Y E C o n ~ Y  k e .  

Our  intui t ive u n d e r s t a n d i n g  of the  consis tency predica te  and  the  enabl ing  re la t ion  are expressed 
in the  not ion of conf igurat ion (=s ta t e )  we adopt  for event  s t ruc tures .  A conf igura t ion  is a set of 
events  which have occurred by some stage in a process. According to our u n d e r s t a n d i n g  of the  
consis tency predicate  a conf igurat ion should  be cons is tent  in the  sense t h a t  any finite subse t  is in 
the  consis tency predicate .  And according to our  u n d e r s t a n d i n g  of the enabl ing  re la t ion  every event  
in a configurat ion should  have been enabled  by events  which have occurred previously. However the 
chain  of enabl ings  should  not  be infinite but  eventual ly  end  wi th  events  which are enab led  by the 
null set,  and  so need no events to occur previously. 

1 .1 .2  D e f i n i t i o n .  Let E = (E,  Con, ~-) be an event  s t ruc ture .  Define a configuration of E to be a 
subset  of events x C E which is 

(i) consistent: V X  C fin x. X ~ Con, 
(ii) secured: Ve e z 3 e o , . . . , e ~  E x. en = e & Vi < n. { e o , . . . , e i _ ~ }  ~- ei. 

The  set of all configurat ions of an event  s t ruc tu re  is wr i t t en  as 5r(E). 

It  is helpful to unwrap  condi t ion  (ii) a little. It says an  event  e is secured in a set x iff the re  is 
a s'equence of events e0, • • - ,en = e in x such t h a t  

0 k eo, {e0} U q,. . . ,{e0,- .- ,ei-1} k e~,...,{e0,...,en ,} ~-e~. 

We call such a sequence e0, e l , . . . ,  en = e a securing for e in x. The  following propos i t ion  expresses 
when  an event can be added to a conf igurat ion to ob ta in  ano the r  configurat ion.  We use X C fin Y 
to m e a n  X is a finite subset  of Y. 

1 .1 . a  P r o p o s i t i o n .  Let E = (E,  Con, F) be an event structure. Suppose x 6 f ( E )  and e E E.  

Then x U {el  E ~'(E) iff 
(i) V X  C_fin x. X U {e} 6 Con and  
(i 0 3 X  c si,~ z. X k e. 

Proof. Clearly (i) and  (ii) are necessary for x u {el  to be a configurat ion.  Conversely,  assume (i) 
and  (ii) hold. Then  by (i), x U {el  is consis tent .  By (ii) there  is some X _C/in z such t h a t  X F e. 
Write X as { e 0 , . . . , e ~ - l } .  Each ei has a securing s~ in x. Form the  chain  s ~ s ' ~  . . . ~ s ~ _ l e  by 
conca tena t ion .  T h e n  this  chain  is a securing for e in x U {el .  | 

1 .1 .4  E x a m p l e .  Event  s t ruc tu res  ma.y be infinite. For example ,  define ~ to be the  event  s t ruc tu re  
wi th  events  the nonnega t ive  integers w, wi th  any finite subse t  cons is tent  and  enab l ing  re la t ion  

x k n ~ { n ' l  ~ ' < ~ } c x .  

T h e n  fl represents  a process, like a "t icking clock", which can per form the events  0, 1,- • •, n , . .  • in 
sequence. 

1 .1 .5  E x a m p l e .  Event  s t ruc tures  can  exhibi t  nonde t e rmin i sm ,  or conflict. Cons ider  the  event  
s t ruc tu re  wi th  two events  O, 1 in which 0 k 0 and  0 ~- 1, {0},{1} E Con and  yet {0, 1} ~ Con. Its 
configurat ions have the  form: 

{ 0 } - , ~ 0 . ~  {1} 

Nonde te rmin i sm appears  as "branching"  in the  par t ia l  order  of configurat ions  o rdered  by inclusion. 
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1.1 .6  E x a m p l e .  Event  structures can exhibit parallelism, or concurrency. The event structure 
with two events 0, 1 in which 0 ~- 0 and O ~- 1 and this t ime {0, 1} E Con, has configurations of the 
form: 

~,{0,1} 

Concurrency of events appears as a "little square" in the part ial  order of configurations. 

1 .1 .7  E x a m p l e .  A parallel switch: 

An event may be enabled in more than one way even in a single configuration. Assume initially both 
switches are open. Closing either one enables the event of the bulb lighting up. The configurations 
have the form: 

/ ~ . { 0 ,  1, b} 

{0, b } (  i " ~ { X , b }  

Thus each event s t ructure determines a family of subsets of events, the configurations of the 
event structure.  Such families have a simple characterisation.  

1 .1 .8  D e f i n i t i o n .  
Let (P, E_) be a partial order. 
Say a subset X of P is compatible, and write XT,  iff 

~ p E P V x ~ X .  z E p .  

We can use this notion in the particular case where P is a family of sets ordered by inclusion. In 
the special case where X is a set of two elements {x, y} we write x ~ y for X T. 

For families of configurations we shall use a more delicate notion of compatibility. Say a subset 
X is finitely compatible, and write X~ fin, iff 

VX0 ~f i~  X. XoT, 

i.e. when every finite subset is compatible.  

1 .1 .9  T h e o r e m .  Let E = (E,  Con, ~-) be an event structure. Its configurations F = 7(E) form a 
set of  subsets of E which satisfy 

(i) finite-completeness: 

(ii) finiteness: 

Oil) 

AC_ F & A T $ i ~ U  A C F ,  

Vx E FVe E x3z  C F. (z is finite & e E z & z ~ x), 

coincidence-freeness: 

VxEFVe ,  e ' E x . e ~ e '  ~ (~ .y~F.  y C x  & ( e E y ¢ ~ . e ' ~ y ) ) .  



329 

Proof. The  proof is a rout ine  exercise using the  definit ion of conf igura t ion  of an  event  s t ruc ture .  
] 

1 . 1 . 1 0  D e f i n i t i o n .  Let  F be a set of subsets .  Say F is a family of configurations w h e n  it satisfies 
the  axioms of f in i te-completeness ,  finiteness and  coincidence-freeness  above.  Say F is a family of 
configurat ions of E when  E = U F. 

1 .1 .11  L e m m a .  Let  F be a family of configurations. For all x, y C F 

z c y ~  3e~ y \ z .  zu  {e}EF. 

Proof. 

Suppose x C y for x ,y  E F. T h e n  there  is some event  e E y \ x. By finiteness e E z C f in  y for 
some finite config z. By f in i te-completeness  xU z C F. Of course, x C x u  z c y. Thus  it is sufficient 
to prove the  lemma in the  case where the  set y \ x is finite. We do this  by induc t ion  on the  size 
]y \ x I of the  set difference, taking the s t a t e m e n t  of the  l emma  as the  induc t ion  hypothesis .  

If jy \ x I = 1 t hen  obviously y = x U {el  for the  unique event  e wi th  e E y \ z. 

Suppose ]y \ x[ > 1 and  assume the  induc t ion  hypothes is  for s t r ic t ly  smal ler  sizes. There  are 
then  two dis t inct  events  co, el C y \ x. By coincidence-freeness  there  is a conf igura t ion  z con ta in ing  
one and  not  the other .  ( W i t h o u t  loss of genera l i ty  assume e0 E w and  el ~ w.) Hence x c x u w  C y. 
Therefore  by the induc t ion  hypothesis  there  is some e e ( x u w ) \  x for which xU {el  E F, a n d  clearly 
e E y \ x, as required. ] 

1 .1 .12  D e f i n i t i o n .  Let F be a family of conf igurat ions  of a set  E.  Define a s t r uc tu r e  £ (F) = 
(E,  Con, t-) on E by tak ing  

X E C o n ~ d ~ s X i s f i n i t e  & 3 x E F .  X C x ,  
X k e c c ,  d e f X E C o n  & ~ x E F .  e C x  & x C X U { e } .  

1 . 1 . 1 ]  T h e o r e m .  If  F is a family of configurations then £ (F) is an event structure such that 
~re (F) --- F. 

Proof. Let F be a family of configurat ions.  It is easy to see t h a t  £ (F) is an  event  s t ruc ture .  

Suppose x E f £  (F).  Then ,  by the  def ini t ion of the  enab l ing  re la t ion  of ~ (F),  for each e E x 
there  is a configurat ion xe E F such t h a t  e E ze C_f~n x. By the  def ini t ion of the  consis tency pred ica te  
of £ (F) ,  the  set {xe I e E x} is a finitely compat ib le  subse t  of F. Therefore  

x = U { x ~  ! eEx }  E F. 

Suppose x E F. We show x E ~ '£(F) .  Cer ta in ly  x is consis tent .  Suppose  e E x. By the  finiteness 
proper ty  of F there  is a finite conf igurat ion y for which e E y C f in x. Repeatedly  apply ing  l e m m a  
1.1.11, s t a r t ing  wi th  the  interval  0 c y, we ob ta in  a sequence e l , . . . ,  e l , . . . ,  en such t h a t  

{ e , } , . - - , { e ,  . . . .  , e ~ } , - - - , { e ~ , . . . , e i  . . . . .  ~ n } C F  

with  { e l , . . . , e i , . . . , e n }  = y. As e occurs  in some stage of the  sequence this  provides us wi th  a 
securing for e in x. Hence x is a conf igura t ion of £ (F) .  I 

Notice we do not  have £ 7 ( E )  and  E equal  in general  for event  s t ruc tu res  E. 
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1.1 .14  C o r o l l a r y .  Let Fo and Fi be families of conligurations. I f  ~ (Fo) - E(F1) then Fo = F1. 

Proof. If ~(Fo) = ~ (FI )  then Fo = 7 ~ ( F o )  = Fd'(F1) = F1, by the theorem above. I 

Of course the configurations of an event s t ructure  form a part ial  order when ordered by inclusion. 
It is sensible to think of the points of this part ial  order as elements of information expressing how far 
the process has progressed; the computa t ion  has progressed further when more events have occurred. 
The idea of information is familiar from Dana Scott 's  work and in fact the configurations of an event 
structure do form a domain when ordered by inclusion. Though  note it is a rather  special kind 
of domain. In particular it satisfies the finiteness axiom that  an finite element dominates only a 
finite number of elements. This is because the concept of more information is t ied very closely to 
the progress of the process over time. The  associated domains are closely related to the concrete 
domains of Kahn and Plotkin (see [W, KP i and section 1.5) Recall: 

1 ,1.15 D e f i n i t i o n .  Let ( D , ~ )  be a partial  order. 
~ay D is consistently complete iff all finitely compatible subsets X C D have least upper bounds 

UX. 
:Note a consistently complete partial  order has a least element, viz. ± = L]O, though it may not have 
a greatest. 

Say a subset S of D is directed iff all So C/ i~  S have upper  bounds in S. (So S is finitely 
compatible and cannot be empty.) An element e of D is said to be finite iff for all directed sets S, 
if c E i l S  t h e n e E _ s f o r s o m e s E S .  

A consistently complete part ial  order is algebraic iff for every element d 

d = U{e E_ d I e is finite}. 

We call a consistently complete algebraic partial  order a Scott domain (or simply a domain). 
A finitary domain is one in which every finite element dominates  only a finite number of elements, 

i.e. {d ] d E_ e} is finite. 

1 .1 .16 T h e o r e m .  Let F be a family of  configurations. The partial order (F, C_) is a finitary Scott 
domain with finite elements the finite configurations. 

Proof. As the family F is f ini tely-complete,  the partial  order (F, _C) is consistently complete. Clearly 
every configuration which forms a finite set is a finite element. Let x E F. Each e E x is contained 
in some finite configuration x~.C x by the finiteness axiom. Obviously x = (.j{xe t e E x}. Hence 
(F, C) is algebraic and so a Scott domain. I 

The thesis [W[ contains a characterisat ion of the domains that  result f rom event structures 
in the case when the consistency relation is induced by a binary conflict relation between events 
(see later, 2.3). I am not sure of the characterisat ion of domains associated with the more general 
event structures presented here. However such representation results are part icularly smooth for the 
slightly more restrictive class of stable event structures,  introduced in the next section, which are 
st, itable in most cases. 

Thus when we picture a process as an event s t ructure we can choose, if we wish, to regard it 
more abstractly as determining a family of conf igurat ions--when we abstract  from the precise nature 
of the consistency and enabling re la t ions- -or  more abstract ly still as a domain of conf igurat ions--  
when we abstract from the precise nature  of the names we use for events. Conversely we can regard 
families of configurations and domains of configurations as special kinds of event structures. As we 
shall see we can abstract in other  ways too, and see these means of abstraction in a categorical light. 
(The trees which underly the interleaving models of CCS and CSP are a similar abstraction from 
the extra detail present in the non-inter leaving model  of event structures.  ) 
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1.2. S t a b l e  e v e n t  s t r u c t u r e s .  

Many people [Pe, He, La, Ma, NPW, W, Sh, MS, F, Pr} represent concurrent processes as 
part ial  orders of events where an event e0 precedes an event  el if the occurrence of the event eo is 
necessary in order for el to occur,  in other  words if the event el causally depends on the event co. 
Often in these t reatments  all possible events of the process are put  in the part ial  order whether  or 
not  they are in can occur in the same history; there is a global partial  order of causal dependency. 
We shall t reat  models like these in the next section. It is useful to look at a more general class of 
structures for which there need not be one global part ial  order but  where each configuration has its 
own local partial  order of causal dependency. 

We look for a special class of event structures for which there is a partial  order of causal 
dependency on each configuration. This can not be done so obviously for all event structures.  
Consider the event structure of example 1.1.7, representing a parallel switch where the event b 
causally depends not on a unique set of events but rather on either the occurrence of 0 or on the 
occurrence of 1. It is incorrect to say b causally depends on both 0 and 1 because the occurrence of 
only one of them enables the occurrence of b. The ditficulty arises because there is a configuration 
{0,1, b} in which there is an event b which is not enabled by a unique minimal set of event occurrences. 
We can rule out such possibilities by insisting event s t ructures  satisfy the following stability axiom. 

1.2.1 Def in i t ion .  
following axiom 

Let E = (E, Con, k) be an event structure.  Say E is stable if it satisfies the 

X ~ - e  & Y k-e & X U Y U { e } E C o n ~ X N Y  k e .  

1.2.2 E x a m p l e .  Let E be the event s t ructure with events {0, 1,2} with consistency predicate the 
least one such that  

{0,1}, {0, 2}, {1, 2} e Con, 

so {0, 1, 2} ~ Con, and enabling relation the least one such that  

0 ~0, 0 ~1, {0} ~2, {1} ~ 2  

Then E is a stable event s t ructure and the configurations 5(E)  have the form 

{0'2} l I {1'2} 

The stability axiom ensures that  an event in a configuration is enabied in an essentially unique 
way. Assume e belongs to a configuration x of a stable event structure.  Suppose X ~- e and X C x. 
Then X tO {e} E C o n - - t h e  enabling X t ~ e is consistent.  Take 

X o = ~ { Y I Y C _ X  & Y k-e}.  

Because X is finite this is an intersection of a finite number  of sets and we see by the stabil i ty axiom 
tha t  32o ~- e. Moreover X0 is the unique minimal  subset of X which enables e. More formally, for 
any event structure,  stable or otherwise, we can define the min imal  enabling relation ~-mi~ by 

X F-mi,~ e v> X k- e & (VY C X .  Y ~- e ~ Y = X) .  
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T h e n  for any event  s t ruc tu re  
Y k - e = c ~ 3 X C Y .  X ~ m , ~ e .  

But for s table  event  s t ruc tu res  we have uniqueness  too, a t  least for cons is tent  enabl ings:  

Y k-e & Y U { e } E C o n = ~ 3 ! X C Y .  X ~-mine. 

It follows t h a t  for s table  event  s t ruc tures  

X ~rnin e & Y k 'mine  & X U Y U e E Con =C, X = Y 

Consequent ly  the  families of configurat ions of s table  event  s t ruc tures  sat isfy the following intersect ion 
property.  

1 .2 .3  T h e o r e m .  Let E be a stable event structure. Then its family of  configurations IT(E) satisfies 

v x  c IT(E). x ~ 0 & x T ~  N x  c IT(E). 

Proof. Suppose X is a n o n e m p t y  compa t ib | e  subse t  of configurat ions.  T h e n  Vx ~ X. x E_ z for some 
conf igurat ion z. Clearly N X  is consis tent .  Suppose  e ~ r ) x .  Then  e c z so there  is some securing 
e 0 , e l , . . . , e n  = e for e i n  z. By stabil i ty,  for any e E N X i f Y  k-rain e and  Y C z then Y C= ~ X .  
Therefore  the securing for e in z becomes a secur ing for e in N X  by omi t t ing  all members  of the 
sequence not  in ~ X .  Thus  ~ X  is secured,  and  so a configurat ion.  I 

1 .2 .4  D e f i n i t i o n .  Say a family of configurat ions  F is stable when it satisfies the following axiom 
(in addi t ion  to those in 1.1.9) 

(stability) V X C F .  X # O  & X T ~ [ - ] X C F .  

Thus  the configurat ions of a s table  event  s t ruc tu re  form a s tab le  family. For a s table  family 
there  is a par t ia l  order  of causal  dependency  on each configurat ion of events.  

1.2.5 D e f i n i t i o n .  
define 

W h e n  e E x define 

Let F be a s tab le  family of configurat ions.  Let x be a configurat ion.  For e, e t E x 

eJ<_~eec, V y ~ F . e ~ y  & y C x = c ,  e E y .  

We say a set y is <_~-left closed when  it satisfies 

e r < ~ e  & e C y : 4 - e 1 C y .  

As usual,  we w r i t e e  I < z e f o r e _ < ~ e  t & a c e ' .  

1 .2 .6  P r o p o s i t i o n .  Let x be a configuration of a stable family F. Then <_~ is a partial order and 
[e 1 . is a configuration such that 

[ d  ~ = {~ '  ~ .~ 1 ~' <-~ ~}. 

Moreover the configurations y C x are exactly the left-closed subsets of  <_~. 

Proof. Let x be a conf igura t ion of a s table  family F. 
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The relation <= is clearly a preorder. Further  it is a part ial  order by coincidence-freeness. 

The  fact that  the set [e] = is a configuration follows directly from its definition as the family 
is stable. Suppose e' <~ e. Then e E [e]~ c_ x so e' E [e l~, Thus [e l= is <z- le f t  closed. Suppose 
e' E [e 1 ~. Then from the definition of [e 1, we see directly that  e' <~ e. Hence 

rel.= = {~'1 ~' <-= ~}. 

Supposey  6 F and y _C x. Assume e ~ <~ e and e 6 y. Then by the definition of < ,  we see 
e ~ 6 y. Thus y is left closed. The converse also holds. Suppose y is left closed and y C x. Then  
clearly 

= U { [ 4 ~  I e c y} ,  

and {[elz I e E y} t ,  each element being a configuration included in x. Therefore by finite-  
completeness of the family we see y 6 F. ] 

Let x be a configuration of a stable family. Intuitively an event e in x can only occur once all 
its predecessors {e' E x I e~ <z e} have occurred. 

1 .2 .7  E x a m p l e .  Refer to example 1.2.2. Let x -- {0, 2} and y = {1, 2} be particular configurations. 
Then 0 <~ 2 and 1 _<y 2 but  0 ~y 2 and 1 ~ 2. The  orderings <~ and <y cannot be the restrictions 
of a "global" partial  order on events. 

1.2.8 T h e o r e m .  
Let E be a stable event structure. Then its family of  configurations 7 E  is stable. 
Let F be a stable family of  conIigurations. Then ~ ( F) is a stable event structure. 

Proof. The first part  is simply a res ta tement  of 1.2.3. We show the second part. By 1.1.13 we 
already know ~(F) is an event structure.  Suppose X ~- e and Y ~- e with X u Y u { e }  6 Con in 

(F). Then 
e E x  & x C X u { e } a n d  

e C y  & y C Y U { e }  

for x, y 6 F. Thus x u y C~ X U Y U {e}, a consistent set, so x T y- Therefore x n y E F and clearly 
e 6  m a y  & x N y C  ( X N Y )  U{e}.  Thus X N Y  ~ e, as required to s h o w £ ( F )  is a stable event 
structure.  I 

1.3. P r i m e  a l g e b r a i c  d o m a i n s  a n d  p a r t i a l  o r d e r s  o f  e v e n t s .  

We consider the form of domain associated with stable event structures. First ly we define the 
relevant properties. 

1 .3 .1  D e f i n i t i o n .  
Let D = (D, E) be a consistently complete part ial  order. 
Say D is distributive iff it satisfies 

y T z :* • n (~ u z) = (~ y) u (~ n z).  

Say D is infinitely distributive iff it satisfies the following two laws: 

(U x )  n y = u { x n y  I ~ e  X} ,  
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where X is a compatible subset of D and y E D, and 

( H X ) .  u = I I ( ~  u v I x e x }  

where 0 # X C D and y E D. 
A complete prime of D is an element p E D such that  

p K [ ~ X  ~ 3xC  X. p K x  

for any compatible set X .  
D is a prime algebraic domain iff 

x - U{P E_ x I P is a complete prime}, 

for all x ~ D. 

Thus a prime algebraic domain is a Scott domain of information which possesses a special kind 
of sub-basis.  

Pr ime algebraic domains have a characterisation as familiar structures, a result which follows 
directly from [W2]. 

1.3.2 T h e o r e m .  Let D be a consistently complete partial order, 
D is a prime algebraic domain iff it is infinitely distributive and algebraic. 
If D is finitary then it is prime algebraic iff it is distributive. 

Proof. The proofs are quite lengthy and so are omitted.  They can be found for lattices in [W2] from 
which the results follow for consistently complete orders. I 

Families of configurations of stable event structures are prime algebraic. The axiom of stability 
on event structures has as its counterpart  the axiom of distr ibutivi ty on domains. 

1 .3 .3  T h e o r e m .  Let F be a stable family of configurations. The partial order (F, _C) is a finitary 
and prime algebraic domain; the complete primes are the set {[e]z I e • z & x C 7(E)}.  

Proo£ 

By 1.1.16 we know (F, C) forms a finitary Scott domain. 

S u p p o s e e E  x E  F. Assume [e l~ C UW.  Then e E w for s o m e w C  W. By stability and the 
fact that  [e] ~ T w we see [e 1 ~ c w. Hence [~] ~ is a complete prime. 

Let x ~ F. Clearly (Ue]¢ I e E x}Tfm.  Thus x = I){[el~ I e E x}. Therefore (F ,C)  is prime 
algebraic. I 

Thus stability of event structures appears as distr ibutivity of the domains of configurations. 
The fact that  events must  be secured in configurations, expressing the intuition that  an event 's  
occurrence can only depend on a finite number  of previous occurrences, reappears as the fact that  
domains of configurations are finitary. 

Conversely, given a finitary prime algebraic domain we can easily generate a stable event struc- 
ture which has an isomorphic domain of configurations. There is a natural  choice of events associated 
with a finitary prime algebraic domain, viz. the complete primes. They inherit the ordering from 
D and this partial order can be viewed as a causal dependency relation. Unlike the local causal 



335 

dependency relations of the previous section which were defined with respect to part icular  config- 
urations this is one global relation. There is an obvious consistency relation on complete  primes; 
take a finite subset of primes to be consistent iff they are compatible. The  family of configurations 
is easily generated from these relations. Structures (P, Con, <) can be thought  of as another  kind 
of event structure in which the enabling relation can be expressed in an especially simple form, as 
a global partial order of causal dependency. 

1.3.4 D e f i n i t i o n .  Define a prime event structure to be a structure E = (E, Con,_<) consisting of 
a set E ,  of events which are partially ordered by <,  the causal dependency relation, and a predicate 
Con C F inE,  the consistency relation, which satisfy 

{e' ] e' < e} is finite, 

{e} ~ Co., 
Y C X C C o n ~  Y~_ Con, 

X ( :  Con & -~e'C X. e < e' ~ X U { e } E  Con 

for all e E E ,  and finite subsets X, Y of E.  
Define its consistent left-closed subsets, £(E) ,  to consist of those subsets x C E which are 

consistent: VX C fi~ x. X ~ Con and 
left-closed: Ve, eq e f < e C x --~ e r C x. 

In particular, define [e] = {e' C E I e' < e}. 

1 .3 .5  T h e o r e m .  
Let E be a pr ime event structure. Then £(E) is a stabIe family of configurations. The domain 

(£(E) ,  C) has complete primes those elements of the form [e] for e C E.  

Proof. Routine. | 

Conversely, as we have indicated, any prime algebraic domain is associated with a prime event 
structure in which the events are its complete primes. 

1 .3 .6  D e f i n i t i o n .  Let D be a finitary prime algebraic domain. Define Pr(D) = (P, Con, ~) ,  where 
P consists of the complete primes of D, 

p < _ f  ¢~pE_p ' ,  

for p,p' C P, and 

for a finite subset X of P.  

X E Con ~ X T 

1 .3 .7  T h e o r e m .  Let D be a [initary prime algebraic domain. Then Pr(D) is a prime event 
structure, with ¢ : D ~ (£Pr(D) ,  C) giving an isomorphism of partial orders where 
¢(d) = {p E_ d t P is a complete prime} with inverse 8: £Pr(D) -+ D given by 0(x) = Ux.  

Proof. 

It is easy to see that  Pr(D) = (P, Con, <) as defined is a prime event structure.  

Obviously the maps 0 and ¢ are monotonic i.e. order preserving. We show they are mutual  
inverses and so give the required isomorphism. 

It is easy to see that  the maps ¢ and 0 are well defined. 
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First ly we show 0¢ = t .  Thus  we require d - U{P E P I P ~ d} for all d E D. Bu t  this  is ju s t  
the  condi t ion of pr ime algebraicity.  

Now we show ¢0 : 1. Let x E £ P r ( D ) .  We require x : ~O(x) i.e. x : {p E P [ p E Ux}.  
Clearly x C {p E P [ p E Ux}.  Conversely if p E mix, where p is a complete  pr ime,  then  cer ta in ly  
p E q for some q E x. However x is left-closed so p E x, showing the  converse inclusion. 

Thus  we have es tab l i shed  the  required isomorphism.  I 

Thus  finitary pr ime algebraic domains  and  pr ime event s t ruc tu res  are equivalent;  one form of 
s t ruc tu re  can be used to represent  the other .  Pr ime  event s t ruc tu res  are very s imple and  de te rmine  
the  same domains  of conf igurat ion as the  s tab le  event  s t ruc tures  so why do we not  work solely wi th  
them?  The  reason is t h a t  pr ime event s t ruc tu res  do not  always combine  very easily. Cons t ruc t ions  
on stable event s t ruc tu res  are generally easy whereas it can often be quite awkward and  clumsy to 
make the cons t ruct ions  yield pr ime event s t ruc tu res  directly. For example the  p roduc t  (see section 
2.3) and funct ion space (see sect ion 4.2) of two prime event s t ruc tu res  are complicated when defined 
directly. By in t roducing  the  more general class of s table  event s t ruc tures  we get the best  of b o t h  
worlds; cons t ruc t ions  are easy and  we can always ob ta in  p r ime  event s t ruc tures  wi th  isomorphic  
domains  of configurat ions by theorems 1.3.5, 1.3.7. We should  r emark  t h a t  f initary pr ime algebraic 
domains  have appeared  in the  context  of Berry 's  work; in [B] he considers dI-domains which are 
f initary d is t r ibut ive  domains ,  which by the  results  above are exactly the f ini tary pr ime algebraic 
domains .  

As example 1.2.7 shows the  local par t ia l  orders of causal dependency are not  necessarily par t  
of a global par t ia l  order  on events .  The  above theorems show t h a t  at  the  cost of r enaming  events  
they can made  to be  so. Suppose  E = (E,  Con,  ~-) is a s table  event  s t ructure .  Ins tead of taking the  
events  as E we might  change our  view and  regard  the  events as be ing  P = {Iel ~. I e ~ x ~ Jr(E)}, so 
a new event  is a complete  p r ime  which includes the  informat ion  a b o u t  how it occurs. W h a t  causal  
dependency relat ion should  be  pu t  on the  events  P ?  An event  p can  only occur once all events  p~ 
str ic t ly  included in p have occurred.  The  global causal  dependency  relat ion < on P given by 

And when  can a finite set  of events  X C fi~ E occur  together  in a configurat ion? When  they are 
compat ib le  as configurat ions of E. This  is the  consistency predica te  on events P :  

X ~ Conp ~ X ~f~n P & X T • 

In this way, by renaming  events ,  a s table  event s t ruc tu re  E de termines  a pr ime event s t ruc tu re  
(P, Conp ,  ~) .  Of course, the  configurat ions of (P, Conp ,  <)  are no t  the  same as the  configurat ions  
of the  original event s t r u c t u r e - - t h e  events are different. Still, the  two domains  of configurat ions  
are isomorphic as par t ia l  orders.  This  jus t  expresses the  fact t h a t  the  domain  of configurat ions of a 
s table  event s t ruc tu re  is p r ime  algebraic. 

In [NPW] and  [W] it is po in ted  out  t h a t  events also manifes t  themselves in a domain  as p r ime  
intervals.  We say d is covered by d' in a domain ,  wr i t ten  d -< d ' iff 

d u d  t & d ¢ d '  & (Vz. d E z E d ' ~ d = z  or z = d ) .  

The  re la t ion -< is called the  covering relat ion.  A prime interval is a pair  [d, d '  t such t h a t  d < d I. In  
a domain  of configurat ions a p r ime  interval  is associated wi th  the  occurrence of an event  a t  some 
configurat ion;  in a domain  of conf igurat ions  (F, C),  the  re la t ion x -< x ~ holds iff there  is a n  event  e 
such t ha t  e ~ x and  z '  = x U {e} wi th  x , x  ' ~ F. Define 
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Form the  equivalence relat ion ~ as the symmetr ic ,  t rans i t ive  closure of <,  and  wri te  [d, dP]_ for the  
equivalence class of [d, d '  1 wi th  respect  t o  ~ .  In a domain  of configurat ions,  [c, c'} ~ [d, d '  I implies 
c ' \e  = d~\d = {e} for the  same event  e. So ~ -c las ses  are associated wi th  unique events .  For domains  
represented as families of configurat ions of complete  pr imes  this  associat ion is a 1-1 correspondence.  

1 .3 .8  P r o p o s i t i o n .  Let D be a finitary pr ime  algebraic domain. Let ¢ : D ~ £Pr(D) be the  
isomorphism d ~-~ {p E_ d I P is a complete prime}. Define the following m a p  from H-classes to 
complete primes: 

[d, d'] . . . . .  p 

where p is the unique m e m b e r  of ¢(d') \ ¢(d), This map is a 1-1 correspondence with inverse 

where d = U{c  I c C P ~ c ~ p}  and d' = p. 

Proof. R o u t i n e - - o r  see [NPW]. | 

Later  in some proofs we shall  make use of the  fact t h a t  if d is a finite e lement  of a f ini tary pr ime 
algebraic domain  D then  there  is a covering chain 

2_ = do -< dl -~ . . .  < dn = d 

in D up to d. This  is obvious because we can represent  any such domain  as the  left closed consis tent  

subsets  of some pr ime event  s t ruc ture .  

We tu rn  now to one special kind of pr ime algebraic domain.  Trees form a basic model  of 
computa t ion .  Of ten  b ranch ing  represents  n o n d e t e r m i n i s m  as for example  in Mi lner ' s  synchron i sa t ion  
trees. We show how such trees can  be taken to be pa r t i cu la r  kinds of pr ime algebraic domains  and  
hence can be identified wi th  cer ta in  kinds of event  s t ruc ture .  

1 .3 .9  D e f i n i t i o n .  A tree is a pr ime algebraic doma in  which satisfies 

x T y ~ ( x ~ y  or y E x ) .  

Thus  for our  purposes  a t ree  is a special k ind of d o m a i n  whose order  s t ruc tu re  is t h a t  of a t ree  
in the convent ional  sense bu t  wi th  l imit  points at  the end  of every infinite b ranch .  Of course such 
trees are in 1-1 correspondence wi th  cer ta in  forms of p r ime  event s t ruc tures  and  a t ree  T, as we 
have defined it, can  be identified wi th  its image Pr(T)  as a pr ime event  s t ruc ture .  Its events  are 
complete  pr imes  which are in 1-1 correspondence  wi th  p r ime  intervals which are the  arcs of the  tree. 

A f ini tary  pr ime algebraic domain  de te rmines  a t ree  in a na tu ra l  way, a cons t ruc t ion  which will 

be i m p o r t a n t  la ter  in pa r t  2. 

1 .3 .10  D e f i n i t i o n .  Let D = (D ,U)  be a f ini tary p r ime  algebraic domain .  Define a covering 
sequence of D to be a sequence (do,all , . . .  , d ,~- l , . . . } ,  which may  be empty,  finite or infinite~ in 

which 
- L = d 0 - ~ d t  - ~ ' " - < d ~ - ~  - < . . . .  

Define T (D)  to consist  of all the  covering sequences in D ordered  by extension.  

1 .3 .11  P r o p o s i t i o n .  Let D be a finitary prime algebraic  domain. Then Y(D)  is a tree. 
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Proof. Clear. | 

The  t rans la t ion  f rom event  s t ruc tu res  to domains  has perhaps  seemed ra the r  formal. However 
as was argued in [NPW, W] it does provide a bridge between concepts  expressed in te rms of Scot t ' s  
idea of informat ion and. the  ideas of Pe t r i  and  others .  And of course as we pointed  out  domains  of 
configurat ions can be associated wi th  cer ta in  kinds of event s t ruc tures  in a na tu r a l  way. 

1.4.  S c o t t ' s  t h e s i s  a n d  t h e  a x i o m  o f  f i n i t e  c a u s e s .  

Dana  Scott proposed the  thesis t h a t  computab le  funct ions are cont inuous.  Here it is unders tood  
t h a t  da ta types  are associated wi th  domains  of in format ion  and  t h a t  computab le  functions between 
da ta types  are associated wi th  funct ions  between the i r  domains  of informat ion .  Recall a funct ion  
f : D --~ E from one cpo D to ano the r  E is continuous iff it preserves least upper  bounds  of d i rected 
sets i.e. for all d i rected sets S 

UfS : f(US). 

Note a cont inuous funct ion is monotonic, i.e. 

vx, y c D. x E y ~ f(=) ~ f(y),  

In par t icular ,  a cont inuous  funct ion should  preserve least upper  bounds  of w-chains ,  i.e. for all 
chains  xo C xl  E . . .  E x,~ ~ - . .  in D we have 

[_]nc~f(z~) = f (Ur~c~xn).  

Intui t ively the u l t ima te  o u t p u t  value should  be no more  t han  the l imit of the  values de te rmined  at  
finite stages in delivering the  input ,  so we can approx imate  the u l t ima te  o u t p u t  value a rb i t ra r i ly  
closely by the o u t p u t  values at  finite stages.  Scot t ' s  thesis has an intui t ive just i f icat ion (see e.g. [St]), 
and  plays a key pa r t  in the  m a t h e m a t i c a l  basis of denota t iona l  semant ics .  We show how Scot t ' s  
thesis implies the  thesis t h a t  for a computab le  process the occurrence of an  event depends on the  
previous occurrence of a finite n u m b e r  of events. 

We need first to  mot iva te  some definitions.  For s implici ty we assume a process is modelled by 
a par t i a l  order on  events ,  E -- (E,  < )  say, and  show how the  process will obey Scott 's  thesis iff i t  
satisfies the  axiom of  finite causes: 

Ve E E.  {e' E E I e' < e} is finite. 

Of course we need to make clear w h a t  we mean  by "obey Scot t ' s  thesis".  This  hinges on associat ing 
da t a types  and cont inuous  funct ions  wi th  E. 

We can choose to imagine some of the events  of E as being events of input  E0 f rom some 
da ta type ,  some as in ternal  events,  and  o thers  as events of ou tpu t  E i  to some da ta type .  The  da ta types  
may have their own causal  dependencies ,  which con t r ibu te  to the  dependency  of the  full process,  
so the  input  da t a type  can  carry an  par t ia l  order E0 = (E0, _<o) and  the  o u t p u t  da ta type  a par t i a l  
order  E1 = (E l ,  <1)- T he  order ings  of the  da ta types  should  be s u b - p a r t i a l  orders of t ha t  of the  
process, i.e. 

E o C E  & E 1 C E ,  

mean ing  <0C_< and  _ < i ~ .  There  are na tu ra l  domains  of informat ion  associated with the  two 
da ta types ,  viz. thei r  domains  of left-closed sets of events.  The  process induces a funct ion between 
the  domains .  Define 

fE , ,Z ,  : £ (E0)  ~ 2:(El)  to map o: ~-* {e E E1 I [el F1 E0 C_ x}. 
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The idea is that  an event of E occurs once the necessary input  events have occurred. It is clear that:  

1 .4,1 L e m m a .  The function fEz,EL is monotonic. 

Proof. Obvious. l 

However for partial  orders in general the function may not  be continuous. Consider, for example, 
the partial  order 

e 

eo e l  e2 • . .  e n . . .  

with E0 = {e~ [ n E ca} and El  =- {e} ordered by the identity relation. Then taking S to be the 
directed set consisting of all finite subsets of E0 we see (as in the proof of the theorem below) that  
the least upper bound of S is not preserved by fEo ,EL .  If E is to represent a computable process, 
according to Scott 's thesis, fE,,,E~ should be continuous. Furthermore it should be for any choice of 
n events for the input  and output  datatypes. We say g obeys Scott's thesis iff 

VE0,E1. (E0 C E & E1 C_ E => fE,,,E, is continuous). 

Now by an elementary argument  we can show those partial  orders of causal dependency E which 
obey Scott 's thesis are precisely those which satisfy the axiom of finite causes. 

1.4,2 T h e o r e m .  The partial order E obeys Scott's thesis if[ 

Ve E E. {e t C E t e' <_ e} is finite. 

Proof. 

"=>" Suppose E obeys Scott's thesis. Suppose for some e in E we had Iel infinite. Take 

E 0 = { e ' E E  l e ' < e } a n d E 1 - { e } ,  

with both ordered by the identity relation. Define S to consist of all finite subsets of E0. Then  
S is a directed subset of ~(E0). Moreover no element of S is E0 as E0 is infinite. However now 
f E o , E ,  (U S) = {e} while U f E o , E L  S == O. Thus f E o , E ,  is not continuous which contradicts the 
assumption that  E obeys Scott 's thesis. Thus ~e 1 is finite for all e E E.  

"¢:" Suppose [et is finite for all e in E. Assume Eo C_ E and E1 c E.  Let S be a directed 
subset of £(E0). Abbreviate fE,,,E, to f .  As f is always monotonic we have U f S  c f ( U s ) .  
Suppose e E f ( U S ) .  Then [e] • E0 ~ U S. As Iel is finite so is [e 1 N Z0. Thus because S is directed 
[e I N E0 C s for some s E S. Then e E f(s). This shows f ( U  S) c U f s  so f ( U  S) = U f S .  Therefore 
f is continuous. Hence (E,  <) obeys Scott 's thesis, as required. ] 

1.5. C o n c r e t e  d o m a i n s .  

Event structures first arose in denotat ional  semantics through the work of Kahn and  Plotkin 
on concrete domains [KP]. They were interested in extending the definitions of sequential functions 
used by Milner and Vuillemin. It had become clear that  often there was a mismatch between de- 
notat ional  semantics and operational semantics because the denotat ional  semantics failed to take 
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account adequately of the sequential nature of the evaluation performed by machines. The problem 
was realised in its most acute form in [P], where the failure of full-abstraction for the denotational 
semantics of languages with higher type was traced to an inadequate t rea tment  of sequential func- 
tions. For much more on these notions of sequentiality and ful l-abstract ion,  their importance,  and 
work which s temmed from them see P.L.Curien's  book [C]. (For a little more see section 4.1.) 

Let 0 be the simple domain consisting of two points ± E T. Then the product 0 × O, as a 
domain,  is got by taking all ordered pairs (x, y) E {_L, T} 2 ordered coordinatewise: 

(~, y) E (x', y') ~ ~ E_ 5' & y E y'. 

This yields a domain which may be pictured thus: 

(T,T) 
( T , • ) ~  

(i,±) 

( L , T )  

Consider the least monotonic function giving (T, _L) ~ T and (_1_, T) ~-~ T which can be drawn as 

(T,T) 

(T, ~ _ ) ~  (±, T) 
( i , l )  

encircling the minimal points at which T is output.  This function cannot be realised according to 
the operational semantics of many languages because often they are deterministic and so cannot 
express functions like this one which examines its two arguments in parallel. It is not a sequential 
function. 

We seek a definition of sequential function between domains based solely on the s tructure of 
the domains themselves. Two early definitions of sequential function were proposed independently 
by R.Milner and J.Vuillemin. These depend on viewing a function f : D1 × ' "  × D~ ~ E between 
domains as having n arguments x = (Xl , . . .  ,x~ , . . .  ,x~) (viewing the function as having more or 
less arguments may change its character according to these definitions!) Assume f is a continuous 
function. 

Then f is M-sequential (Milner) iff either it is constant or there is an integer i (with 1 < i < n) 
such that  f is strict in its i th  argument  (i.¢. xi = • ::> f(x) = t_) and the function obtained by 
fixing its i th  argument is M-sequential.  

On the other hand, f is V-sequential (Vuillemin) iff it is a constant or there is an integer i (with 
1 < i < n) such that  

for any x , y  E Do × --- × D1. 

Note the definitions depend on the grouping of argument  places, and in particular that  if 
we regard x as occupying a single argument  place the function f would then be both M and V 
sequential. The two above definitions of sequential do not agree in general. However, importantly,  
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they do coincide and  appear  correct  in the  s i tua t ion where D o , . . . ,  D1 and  E are fiat domains , i .e .  
those for which d = 2 or ± -< d for all e lements  d. 

G . K a h n  and  G.P lo tk in  sought  a very general  defini t ion of sequent ia l  funct ion  which  unlike M 
and  V sequent ia l i ty  was independen t  of the  way t h a t  the  funct ion was viewed as hav ing  a rgumen t s .  
Reasonably,  the  definit ion should  agree wi th  M and  V sequent ia l i ty  in the  case where the  domains  
D1 , . .  •, D~ and  E are flat. They  achieved this  by ax iomat is ing  a wide class of domains  for which  
there  was a na tu ra l  definit ion of places accessible f rom a point .  Places are a genera l i sa t ion  of 
a rgument -p laces  of funct ions.  Unlike a r g u m e n t  places, however,  places are defined independen t ly  of 
the  way the  domain  is viewed as a product .  The i r  definit ion of sequential  then  agrees locally wi th  M 
or V sequentiali ty.  Recognising t ha t  the not ion of sequent ial  depended  on the na tu re  of the  p rog ram 
terms denoted  in the domains  they chose to axiomatise  only the  first -order domains  consis t ing of 
basic inpu t  or o u t p u t  values and  so include domains  of integers,  t r u t h  values, tapes  and  trees. 

K a h n  and  Plotkin  first axiomat ised  the concrete domains  and  then discovered they could be 
represented by a concrete data structure ( ra ther  like a Petr i  net) .  Our  p resen ta t ion  is the  o ther  way 
round.  A concrete da t a  s t ruc tu re  consists of places which can  be occupied by at mos t  one of a set  
of events.  In general  a place may not  be occupied immedia te ly  but  must  wai t  unt i l  this  is enab led  
by cer ta in  events.  A place may be thus enabled  by several different sets of events.  (As an  example  
the n t h  place of a list is enab led  by the event of making  the  (n - 1)th entry. We now give the  formal  
defirdtion of a concrete da t a  s t ruc tu re  M and  its configurat ions.  

A concrete data s t r u c t u r e  C is a quadrup le  (P, E ,  I, }-) where: 

P is a set of places, 

E is a coun tab le  set of events,  

l is a funct ion from E onto P locating events at  places, 

[= is a subset  of F i n e  x P called the enabl ing relat ion.  

Such a concrete da t a  s t ruc tu re  de termines  an event  s t ruc tu re  and  so a family of conf igurat ions .  
The  events are the  same. Define the  consis tency predicate  by 

X ~ C o n ~  X C / i , ~ E  & Ve, e ' ~ X . l ( e )  =f(e ' )  ~ e - e ' .  

Thus  events are not  allowed to occur together  if they occupy the  same place. Define the  enabl ing  
on the event s t ruc tu re  by 

X ~-evv  3 Y  C X ,  p ~  P . Y  ~ p  & l ( e ) = p ,  

for X #2 Con and  e ~ E.  The  configurat ions of C, wr i t ten  jr(C),  are taken to be the conf igura t ions  
of the  associated event s t ruc ture .  Say C is stable iff the  associated event s t ruc tu re  is. 

Domains  which are isomorphic to (7 (C) ,  c_) for some concrete  da t a  s t ruc tu re  C are said to be  

concrete. 

The following definitions are i m p o r t a n t  in defining sequent ia l  functions.  

Let C be a concrete  da t a  s t ruc ture .  Suppose x ~ Jr(C) and  p is a place of C. 

Say x {il/s p iff 3e E x. l(e) - p. 
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Say p is accessible from x iff x does not  fill p and ~X C x. X t= p. 

Write p(x) for the set of places accessible at x. 

For x ,y  in Jr(C) and a place p write x v ~ y iff x E y and p is accessible from z and y fills p. 

Thus we can tentat ively define a function f : Jr(C0) ~ 7(C~) to be sequential if it is sequential 
at all x in Jr(C0) where this means 

Vp' E p( f (x ) ) .  ([~z. x E z & f ( x )  P'-~ f(y)} 

~p e p(x). IVy. ~ C y ~ f(~) P' , f(y)  ~ ~ ~ y]). 

This says to fill p~ accessible from f (x)  there is some p accessible from x which must be filled; it 
generalises V-sequentiality. Of course, it is not immediately dea r  that  this definition gives the same 
notion of sequential for different ways of generating isomorphic domains. This is the case however, a 
fact which follows from the particular representation provided for concrete domains in [W, BC, C]. 

We shall not give the most general representation theorem here but  mention a simpler one in 
the case when the concrete data  structure is stable. It involves an axiom called Q by Kahn and 
Plotkin. 

1 .5 .1  T h e o r e m .  
Let C be a stable concrete data structure. The family of configurations ordered by inclusion 

forms a finitary prime algebraic domain which satisfies 

(Q) x i ~ y  & x ~ z  & x ] ( y = > 3 ! t E y ,  x ~ t  & t / z .  

Let D be a finitary prime algebraic domain which satisfies axiom (Q). Then D is a concrete 
domain. 

Proof. It is easy to check stable concrete da ta  structures satisfy (Q) and the other properties have 
already been dealt with for event structures.  We omit the construction which shows that  the domains 
mentioned are concrete. Proofs can be found in [KPI, [W 1 or {C 1. A key idea is to recover places 
from the domain as equivalence classes of prime intervals under the least equivalence relation ~ such 
that  

( ( c = d  & c ' Z d ' )  or [c,c' l ~ [ d , d ' ] )  ~ [ c , c ' } ~ [ d , d ' ] .  

As we have already seen events can be recovered as equivalence classes of prime intervals under ~.  
| 

1.6. A c o m p l e t e  p a r t i a l  o r d e r  o f  e v e n t  s t r u c t u r e s .  

There is a useful ordering o n  event structures which is a representation of the notion of rigid 
embedding in [KP i. t t  is useful for giving meaning to recursively defined event structures. The  order 
is based on an idea of substructure.  

1.6.1 D e f i n i t i o n .  Let E0 = (E0,Con0,  t-0) and E1 = (E l ,Con1 ,  ~-1) be event structures. Define 

E0 ~ E1 ¢*E0 c E l ,  

VX. X C C o n 0  ¢vXC_ E0 & X E C o n l  and 

VX, e. X ~-o e ca X G Eo & e E Eo & X ~l e. 
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In this case say Eo is a subs t ruc ture  of E l .  

The  notion of substructure is closely tied to that  of restriction, an important  operat ion in its 
own right. 

1.6.2 D e f i n i t i o n .  
of E to A to be 

where 

Let E = (E,  Con, ~-) be an event structure.  Let A C_ E.  Define the restriction 

EIA = (A, ConA, F-A) 

X C COnA ¢=~ X C A & X E Con, 

X ~ A e z ~ X C A  & e E A  & X ~ - e .  

1.6.3 P r o p o s i t i o n .  Let E (E, Con, ~-) be an event s tructure .  Let  A C_ E .  Then  E[A  is an 
event s tructure.  

Le t  Eo = (Eo, Cono, ~o) and E1 = (El ,  Con1, ~1) be event s tructures.  Then  

Eo~E1 ~Eo=EI[Eo. 

I f  Eo ~_ E1 and Eo = E1 then Eo = El .  

Proof. Obvious from the definitions. | 

This clefinition of substructure almost gives a complete part ial  order (cpo) of event structure.s. 
There is a least event structure,  the unique one with the emptyset  of events. Each w-chain 6f 
event structures,  increasing with respect to ~ has a least upper bound, with events, consistency and 
enabling relations the union of those in the chain. But of course event structures form a class and 
not a set and for this reason alone they do not quite form a cpo. We call structures like cpos but 
on a class rather  than a set large cpos. This is all we need. (Very similar approaches for solving 
domain equations, or equations for structures like domains, occur in [C], [LW], [W1], [A] and IS1].) 

1.6.4 T h e o r e m .  The relation ~_ is a part ial  order on event s tructures .  It  has a least event  s t ruc ture  
0_ =gel  (O,{O},0). An w-chain  o f  event  s t ructures  Eo ~_ E l . . .  ~_ E,~ ~ . . .  where E,~ = (E,~, Conn, ~-~) 
has a least upper  bound  

Proof. Routine. | 

It is easy to extend the substructure relation to n- tuples  of event structures.  They form a large 
cpo too. 

1.6.5 D e f i n i t i o n .  Write IIj  for the project ion map H / ( E 0 , . . . , E n - 1 )  = E 1 on n- tup les  of event 
structures. For n- tuples ,  

f I t _ . . , E n _ l )  iff & E,~- i  ~_ E n _ l .  (E0 . . . . .  En-1)  ~ (E0,. Eo~_E~ - . - &  

1.6.6 P r o p o s i t i o n .  For a part icular  integer n, the relation ~ is a part ial  order on n - t u p l e s  
o f  event  s t ruc tures  wi th  least e lement  (_0,... ,0_). There are least upper  bounds  o f  increasing w- 
chains in n - t u p l e s  o f  event  s tructures;  in each coordinate  j the least upper  bound  U i E i  o f  a chain 

E0 _~ E1 " " ~  en  ~" . . E  satisfies n j ( U , E , )  = U , H j ( E d .  
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Thus ,  as an  example,  the  above proposi t ion says the  project ion maps  II 3 are con t inuous  on  
tuples of event  s t ruc tu res  ordered  by ~. 

For tuna te ly  in reasoning  abou t  the monotonic i ty  and  cont inui ty  of an  opera t ion  we need only 
consider  one input  coordina te  and  one o u t p u t  coordina te  at  a t ime because  of the  following facts,  
we l l -known for cpos. 

1 .6 .7  P r o p o s i t i o n .  Let F be an operation on n- tuples  of  event structures. 
It is monotonic, respectively continuous, (with respect to ~) iff it is monotonic, respectively 

continuous, in each argument separately (i.e. considered as a function in any  one of its argument, 
holding the others fixed). 

Similarly it is monotonic, respectively continuous, (with respect to ~_) iff it is monotonic, re- 
spectively continuous, considered as a function to each output  coordinate (i.e. each function H i F 
is continuous for j < n). 

Thus  in verifying t h a t  an  opera t ion  is monotonic  or cont inuous  we u l t imate ly  have to show 
cer ta in  unary  opera t ions  are cont inuous  wi th  respect  to the  subs t ruc tu r e  re la t ion ~. The  next  
l emma will be a great  help in proving  operat ions  cont inuous .  General ly  it is very easy to show t h a t  
a una ry  opera t ion  is monotonic  wi th  respect  to ~ and  cont inuous  on the  sets of events,  a not ion  we 

now make precise. 

1 .6 .8  D e f i n i t i o n .  Say a u n a r y  opera t ion  F on event  s t ruc tu res  is continuous on events iff for any  
u - c h a i n ,  E0 ~_ E1 --- ~_ E,~ ~_--. E ,  each event  of F ( ( J /E i )  is a event of U~F(Ei) .  

1 .6 .9  L e m m a .  Let F be a unary operation on event structures. Then F is continuous iff F is 
monotonic with respect to ~ and continuous on events. 

Proof. 

only if: obvious. 

if: Let E0 ~ E l - - "  5 E~ _~... E be an  u - c h a i n  of event  s t ructures .  Clearly UiF(E~) fl F ( ( J iE , )  
since F is assumed monotonic .  Thus  from the  a s sumpt ion  the  events of U~F(Ei)  a re  the  same as 
the  events  of F((.JiEi ). Therefore  they are the same event  s t ruc tu re  by propos i t ion  1.6.3. I 

Now we relate  the  s u b s t r u c t u r e  re la t ion on event  s t ruc tu res  to cor responding  relat ions on fam- 
ilies of configurat ions and  domains .  The  s ubs t r uc t u r e  re la t ion  represents  the  rigid embeddings  of 

K a h n  and  Plotk in  [KP]. 

1 . 6 . 1 0  D e f i n i t i o n .  Let Do and  D1 be domains.  Let f : Do ~ D1 be a cont inuous  funct ion.  Say 
f is an  embedding iff there  is a cont inuous  funct ion g : D1 -+ Do, called a projection, such t h a t  

gf(d) = d for all d E Do and  

fg(c) U_ c for all c E D t .  

Say f is a rigid embedding iff it is an  embedd ing  wi th  project ion g such t h a t  

c E_ f(d) => fg(c) = c 

for all d C Do,c E D1. 

1 . 6 . 1 1  P r o p o s i t i o n .  Let Eo and E1 be event structures such that Eo ~_ El .  The inclusion m a p  
i :  3r(Eo) - ,  3r(E1) is a rigid embedding with projection j :  ~r(EI) -* 3r(Eo) given by j (y)  = U { x  E 

Z(Eo) 1 • ~ Y} fo, ~ e Z(E~). 
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Proof. Straightforwgrd. II 

It is well-known that  continuous functions on cpos have least fixed points and the argument  is 
vir tual ly the same for continuous operations on large cpos. 

1 .6 .12  D e f i n i t i o n .  Let D be a large cpo ordered by ~, with least upper bounds U X when they 
exist. Let F be a continuous operation on D. Define fix F to be the least upper bound 

U,,.~ F'(~). 

1.6 .13  P r o p o s i t i o n .  For the situation in the above definition, the element fix F o l D  is the least 
fixed point of  F. 

We finish this section with a simple example of a recursively defined event s t ructure.  The  
operat ion we consider is that  of prefixing (sometimes called lifting, or guarding) whose effect on an 
event structure is to adjoin an extra initial event. Then once it has occurred the behaviour  resumes 
as that  of the original event structure. 

1 .6 .14  D e f i n i t i o n .  Let a be an event. For an event structure E = (E, Con, k) define aE to be 
the event structure (E ' ,  Con' ,  ~_r) where 

E '  = {(0, a)} U {(1, e) I e C E},  

X E  Con'  ¢* {e t (1,e) 6 X} e Con, 

X ~ - ' e ' c = ~ e ' = ( 0 , a )  or [ e ' =  (1,el)  &: (0, a) e X & {e ] (1,e) E X }  ~ e,]. 

1 .6 .15 P r o p o s i t i o n .  For any event a the operation a( ) is g. continuous on event structures. The 
least fixed point fix a( has events in 1-1 correspondence with strings in the regular language l*0a;  
any finite subset of  events is consistent and the enabling relation satisfies 

0 ~-Oa, 

X ~- l~Oa ¢v {Oa,--- , ln- lOa} C X, 

for n > 1. In fact the map l=0a ~-~ (n + 1) gives an isomorphism fix a( ) ~ f~-- the  two event 
structures are the same but for renaming of  events. 

Proof. Exercise. | 

One thing may be puzzling the reader; why do we build a large cpo from the relation ~ ra ther  
than the simpler relation based on coordinatewise inclusion of an event s t ructure in another? This 
is a part ial  order and does indeed give another  large cpo and in many cases does suffice. However 
it suffers a drawback; the function space construct ion on event s t ruc tures- -def ined in part  4 - -whi te  
being continuous in its right argument is not  even monotonic in its left a rgument  with respect to 
this inclusion order. 

2. E V E N T  S T R U C T U R E  S E M A N T I C S  O F  C O M M U N I C A T I N G  P R O C E S S E S .  

Event structures are applied to give a non-inter leaving semantics to parallel p rogramming  lan- 
guages like CCS and CSP, based on the idea that  processes communicate  by events of synchronisa- 
tion. There are natural  morphisms between event structures including for example morphisms which 
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project the events of a parallel composit ion to events of its components.  Useful constructions like 
parallel composition and sum of event structures are derived simply from from categorical construc- 
tions. These yield abstract characteris~tions of constructions to within isomorphism. Morphisms on 
event structures induce morphisms on other classes of models like trees. The relationship between 
models can often be expressed as a corefiection between categories. Because of the way coreflections 
preserve limits and colimits, this leads to a smooth translat ion between semantics in terms of one 
model  and semantics in terms of another.  Then there are adjunctions between with other  models 
and semantics in terms of them can be expressed as adjunctions 

2.1.  M o r p h i s m s  t o  e x p r e s s  s y n c h r o n i s a t i o n .  

Here, in part  2, we choose a part icular  interpretat ion of events. They are to be either internal 
actions or actions of synchronisation of the kind that  appear in CCS and CSP (see [M1, 2], [H, 
HBR]). Henceforth, we shall deal mainly with stable event structures.  

2 .1 .1  N o t a t i o n .  We shall be working with partial  functions 0 on events. We indicate that  0 is 
a partial  function from E0 to E1 by writing 0 : E0 --** E l .  Then it may not be the case that  0(e) 
is defined and sometimes we use * to represent undefined, so 0(e) = * means the same as 0(e) is 
undefined. It is a nuissance when using predicates like 0(e) E X to always have to say "provided 0(e) 
is defined". Instead we adopt  the convention that  the basic predicates of equality and membership  
are strict in the sense that  if they mention 0(e) this implies 0(e) is defined. Under this convention, 
for example,  

O(e) e X =~ O(e) is d.efined, and 

O(e) = O(e') ~ e(e) is defined & e(e') is defined. 

As usual we represent the image of a set under a partial function by 

OX= {O(e) I e e X  & O(e) is defined}. 

Here morphisms are introduced which show the way. in which the occurrences of events of in 
one process imply the synchronised occurrences of events in another  process. 

2 .1 .2  D e f i n i t i o n .  Let E0 = (Eo, Cono, ~o) and E1 = ( E , , C o n l ,  k l )  be stable event structures.  
A (partially synchronous) morphism from E0 to E1 is a part ial  function 0 : E0 --~, E1 on events 
which satisfies 

(i) X E Con0 ~ OX E Conl ,  
(ii) { e , e ' } E C o n 0  & O(e) = 0 ( e ' )  ~ e - e ' a n d  
(iii) X ~-0 e & 0(e) is defined ~ OX ~1 O(e). 

Say a morphism is synchronous if it is a total function. 
(Note by the convention stated in 2.1.1 the t ruth of 0(e) = 0(e') asserts also that  0(e) and 0(e') are 
defined.) 

For a morphism 0 : Eo --+ E1 on event structures an event e is imagined to synchronise with 
the event 0(e) whenever it is defined. The partial function 0 preserves consistency (i) and enabling 
(iii) and (ii) expresses tha t  it preserves events in the sense that  no two distinct events which are 
consistent with eachother can together synchronise with a common event in the image. When 0 is 
synchronous every occurrence of an event of E0 is linked to a synchronised occurrence of an event 
in E l .  



347 

2.1.3 P r o p o s i t i o n .  
Stable event structures with morphisms of  event structures form a category with composit ion 

the usual composition of  partial functions and identity morphisms the identity functions on events. 
Stable event structures with synchronous morphisms form a subcategory. 

2.1.4 D e f i n i t i o n .  
Write E for the category of stable event structures with morphisms of event structures.  
Write Esu~ for the category of stable event structures with synchronous morphisms. 

As one would hope morphisms preserve configurations. 

2.1.5 P r o p o s i t i o n .  Let 0 : Eo ~ Ea be a morphism of  stable event structures. Then 

Proof. Let x E Y'(E0). Any finite subset of Ox is the image of a finite subset of x which is consistent.  
Thus by property (i) in the definition of morphisms we see Ox is consistent. Suppose 9(e) C Ox. 
Then, by (iii), the image of a securing for e in x forms a securing for 0(e) in Ox. Hence Ox C ~r(E1). 
The additional property follows directly from (ii). II 

Similarly, morphisms between event structures induce functions on domains.  

2 .1 .6  D e f i n i t i o n .  Let (D0,E_0) and (D1,E1) be partial orders. Let f be a function f : Do -* D1. 
Say f is 

(i) additive iff 
V X  C_ Do. 'X T ~ f ( [ J X )  = U f X ,  

(ii) stable iff 

VXC_D0. X # 0  & XT==>f([IX) = l ] f X ,  

(iii) ~_-preserving iff 

Vx, a:' E Do. x < x'  :::> f ( x )  ~_ f ( x ' ) ,  

(iv) -<-preserving iff 

vx, ~' c Do  • ~ ~ ' ~  f(~) -< f ( ~ ' )  

(We use x -:< x I to mean x = x t or x ~ x/.) 

2 .1.7 P r o p o s i t i o n .  Let 0 : Eo --+ E1 be a morphism of stable event structures. Then the 
function x v-+ Ox from ~r(Eo) to 7(Ex) is additive, stable and X-preserving. I f  O is synchronous then, 
moreover, it is ~<-preserving. 

Proof. Easy. ! 

Note incidentally that  the substructure relation is associated with a morphism. 

2.1.8 P r o p o s i t i o n .  Suppose Eo <_ El.  Then the inclusion map i : Eo ~ E1 is a synchronous 
morphism. 

Proof. Obvious. II 
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2.2.  C o n s t r u c t i o n s  o n  e v en t  s t r u c t u r e s .  

The categories E and Esy,~ have produdts and coproducts. Of course like all limits and colimits 
they are determined uniquely up to isomorphism. They are intuitively na tura l  constructions and 
provide a basis for defining and proving relations between different semantics for languages like 
P r o c L .  They generalise and make more uniform and less ad hoe the kind of constructions used in 
iF] and [MS], and elsewhere. 

2 .2 .1  D e f i n i t i o n .  Let E0 = (Eo, Con0, k-0) and E1 = (El ,Con1,  k-l) be stable event structures.  
Define their partially synchronous product E0 × E1 to be the structure (E, Con, t-) consisting of 
events E of the form 

E o x ~ E l : { ( e 0 , * )  I e o C E o } U { ( * , e l )  [ e~ e E 1 } U { ( e o ,  el) [ e o e E o  & et E E I } ,  

the product in sets with partial functions with projections rq : E --+~ Ei,  given by ~ri(eo, el) - e:, 
for i = O, 1, consistency predicate Con given by 

X E C o n e v ( X C _ f i n E  & r roXCCono & 7 r l X C C o n l  & 

w ,  g e x.(,~o(e) = ,~o(~') or ~, (e)  = , u ( g )  ~ = g ) ) ,  

enabling relation k- given by 

' X  k - e ~ X E C o n  & e C E  & 

(~ro(e) is defined ~> ~roX k-o 7to(e)) & (~rl(e) is defined ~z 7rtX k-1 rq(e)). 

2 .2.2 T h e o r e m .  The partially synchronous product Eo × El of  two stable event structures Eo 
and El,  with projections ~ro and 7rl, is a product in the category E. 
The product is continuous with respect to ~. 

Proo£ Clearly E0 × El  is an event structure,  which we shall assume is (E, Con, k-). It is also s t ab le - -  
the proof uses both parts in the definition of Con. It is easy to see that  the projections r0 and ~rl 
are morphisms. Assume 00 : E' -+ E0 and 01 : E' -÷ Et are morphisms from a stable event s tructure 
E' = (E' ,  Con' ,  k-'). To be a product we require that there is a unique morphism 0 : g '  --~ E0 × E1 
making the following diagram commute: 

Eo × E1 

OI l - E1 

E' 

Because the events and projections E0 x ~ E l ,  ~r0, 7rl are a product in the category of sets with partial  
functions there is no doubt about the uniqueness of ~; if it exists it is the partial  function which acts 
on an event e of E' according to 

0(e) = (eo(e),e,(e)) 

with the understanding that  (*, *) is interpreted as undefined. (Recall our use of * for undefined.) 
Thus it onty remains to show that  8 as defined is a morphism g '  -+ Eo × E, ,  i.e. that conditions {i), 
(ii) and (iii) hold in 2.1.2: 

(i) Let X ~ C o n  I. We require 0X C Con. But certainly r k O X - - O k X ~ _  Conk, f o r k  = 0 , 1 ,  a seach  
Ok is a morphism. Further if e,e' C O X  then e,e '  have the form e - O(t),e = O(t'). If ~rk(e) - rrk(e'), 
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for k = 0, 1, then Ok(t) = ~rkO(t) = ~rkO(t') = Ok(t'). As both Oo and 01 are morphisms,  in either 
case, k = 0 o r  k =  1, we o b t a i n t = t  l s o e - e  ~. 

(ii) and (iii) use arguments  of a similar style and are left to the reader. 

Finally, we see that  x is fl-continuous by an application of lemma 1.6.9. It is s t ra ightforward 
to check that  it is monotonic and continuous on events for each argument separately, and so is 
<-continuous. II 

We characterise the configurations of the product  of two event structures in terms of their  
configurations. 

2.2.3 P r o p o s i t i o n .  Let Eo × E1 be the product of stable event structures with projections ~ro, ~rl. 
Let x C Eo x .  El ,  the events of the product. Then x C Y(Eo x El) iff 

(a) ~rox e Y(Eo) & ~ lx  ~ .T(EI), 

(b) Ve, e' C x. ~o(e) = ~o(e') or ~1(~) = ~l(e ' )  ~ ~ = e', 

(d) V e E x 3 y C x . ~ r o y E  Jr(Eo) & ~r~y~Jr(E,)  & e ~ y  & lY[ < ° a  and 

(c) ve , e '  e ~. e ¢ e' ~ 3y c z .  ~o~ ~ 7 (Eo)  & ~ y  E ~(E~)  & (e ~ y ~* e' ¢ y). 

Proof. Routine. I 

R e m a r k .  Refer to [Wll(examples 3.11 and 3.12) for examples which show the necessity of properties 
(c) and (d) for the "if" direction of the proof. 

2.2.4 E x a m p l e .  

look like: 

The configurations of the product  of two trees 

(1, , ) ~ " ' ~ '  
~ (*,2) "/l (1,*) 

(0, , 1 ~ . I ~  
(,,2) 

2.2.5 D e f i n i t i o n .  Let Eo = (E0,Cono,  ~-0) and E1 = (E l ,Con1 ,  ~-1) be stable event  s tructures.  
Their  synchronous product, E0 ® El ,  is defined to be (E0 × E l ) [ E 0  × E~. 

2 .2 .6  T h e o r e m .  The synchronous product Eo x E1 of two stable event structures Eo and El ,  
with projections the restrictions of 7to and ~rt, is a product in the category of event structures with 
synchronous morphisms, Es~n. 
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The operation ® is <a-continuous. 

Proof. This proof is similar to the proof for the product but  this time the underlying category of 
events is that  of sets with total  functions. I 

2 .2 .7  E x a m p l e .  Let E = (E,  Con, }-) be a stable event structure.  Let fl be the event s tructure 
defined in 1.1.4 (the "ticking clock"). Then E®fl has events E × w ,  consistent sets those X C_/in E x w  
such that  

(V(e ,n) , (e ' ,n ' )  6 X. ¢ = e '  or n : n ' = ~  (e,n) = (et, n ' ) ,  ~roX E Con & 

and enabling 
x ~- (e ,n)  ~ [n - 11 <_ ~ l x  & ~ o X  ~ ~. 

Thus the configurations are "sequences" 

{(e0,0), ( e l , G . . . , ( e ~ , n ) , - - . }  

of distinct events from E such that  {e0, e l , ' "  ,en} E Y(E) for all n. 

2 .2 .8  D e f i n i t i o n .  Let Eo = (Eo, Cono, }-0) and E1 = (E~,Con~, ~-1) be stable event structures. 
Their  sum, Eo + El ,  is defined to be the structure (E, Con, }-) with events E = {(0, e) t e E Eo}U 
{(0, e) t e E El} ,  the disjoint un ion  of sets Eo and E l ,  with injections ek : Ek --* E,  given by 
~k(e) = (k, e), for k = 0, 1, consistency predicate 

X C Con Ca (3X0 C Con0. X = toXo) or (~Xt E Con1. X =/,1Xl), 

and enabling relation 

X t - e C a X E C o n  & e E E  & 

[ ( 3 X o e C o n o , e o e E o .  X = e o X o  & e=Lo(eo) a Xo ~-oeo) or 

(3X,  e COnl,et  E El .  X = t ,  IX  1 & e = ~1(¢1) & X', }-1 e,)]. 

2 .2 .9  T h e o r e m .  The sum Eo + El of two stable event structures Eo and El, with injections ~o 
and L1, is a coproduct in both the categories E and E ~ .  
The operation + is <:-continuous. 

Proof. It is easy to check that  the sum is a stable event s tructure and that  the injections are 
synchronous morphisms. Assume 00 : E0 --* E' and 81 : El  --* E'  are morphisms from a stable event 
s tructure E'. To be a coproduct we require that  there is a unique morphism 0 : E0 + E1 --* E'  
making the following diagram commute: 

Eo + El 

/ 
0 E1 

E I 

Because the disjoint union of events with injections is a coproduct in the underlying category of sets 
with partial  functions the uniqueness of 0 is guaranteed. It is a simple mat te r  to check that  this 
unique 0 is a morphism. Moreover if 00 and 01 are synchronous then so is 0 ensuring that  the sum 
is also the coproduct in Esun. 
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The continuity of + follows directly by lemma 1.6.9. | 

It will be useful to consider more general sums as is done for t ransi t ion systems and trees in 
the work on CCS and SCCS (see e.g. [M1,2]); this will help in relat ing our work to Milner 's .  

2 .2 .10  D e f i n i t i o n .  Let Ek = (Ek, Conk, t-k), for k C K ,  be a set of stable event  s t ructures  
indexed by a set K.  Define their  indexed sum, ~keKEk,  to consist of events E = {(k,e) t e E Ek}, 
the disjoint union of events, with injections ~k : Ek -+ E ,  for k E K ,  consistency predicate  Con, 
where 

X E Con ¢~ 3k C K. 3Xk E Conk. X = ~kXk 

and enabling relation ~-, where X ~- e iff 

XC Con & e C E & (3k C K ~ X k , e k .  X = LkXk & e : Lk(ek) & Xk  ~-k ek). 

We understand the empty sum to be the null event s t ructure ~_. 

2 .2 .11  P r o p o s i t i o n .  Let Ek = (Ek, Conk, ~-k), for k C K ,  be a set of stable event structures 
indexed by a set K with injections ~k for k E K.  
It is a coproduct in E and Esu=. 
It is a continuous K - a r y  operation with respect to ~_. 
Also 

Proof. Obvious. | 

Sums of event structures induce simple operations on families of configurations; for example  
configurations of E0 + E1 consist of copies, after renaming events, of the configurations of Eo and 
El .  Intuitively a sum has the capabilities of its components.  

2.3.  S y n c h r o n i s a t i o n .  

Individually a process P0 is thought of as capable of performing certain events. Some of them 
may be communications with the environment  and others may be internal events. Set in parallel 
with another process PI an event e0 of P0 might synchronise with an event el of P1. Whether  they 
do or not will of course depend on what  kinds of events e0 and el are because P0 and P1 can only 
perform certain kinds of synchronisation with their environments.  But if they do synchronise we 
can think of them as forming a synchronisation event (eo, el) .  The  synchronisation event (e0,el)  
has the same effect on the process P0 as the component  event e0 and similarly on P1 has the same 
effect as the event el.  

Of course generally not all events of P0 will synchronise with events of Pt;  there might  be an 
internal event of P0 for example which by its very nature cannot synchronise with any event  of PI.  
So we cannot expect all events of the parallel composit ion to have the form (e0,el). Some will have 
no component event from one process Or the other. We can represent these events in the form (e0, *) 
if the event e0 of P0 occurs unsynchronised with any event of P1 or (*, e l )  if the  event el of P1 occurs 
unsynchronised. The  * stands for the absence of an event from the corresponding component .  

Thus we can view synchronisation as forming compound events from component  events; a 
synchronisation event is viewed as a combinat ion of events from the processes set in parallel. Whether  
or not  synchronisations can occur is determined by  the nature  of the events. We use the idea of a 
synchronisation algebra to specify how events synchronise. We label events of processes to specify 
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how they interact  wi th  the  env i ronment ,  so associated wi th  any par t i cu la r  sychron isa t ion  Mgebra  
is a par t icu lar  paral lel  composi t ion.  By specialising to par t icu lar  synchron isa t ion  a lgebras  we can  
ob ta in  a wide range  of parallel  composi t ions .  

A synchronisation algebra,  ( L , . ,  *, 0), consists  of a binary,  commuta t ive ,  associat ive opera t ion  * 
on  a set of labels which always includes two dis t inguished elements  * and  O. The  b ina ry  opera t ion  * 
says how labelled events  combine to form synchron isa t ion  events and  w h a t  labels such combina t ions  
carry. No real events are ever labelled by * or O. However the i r  in t roduc t ion  allows us to specify the 
way labelled events synchronise  wi thou t  recourse to par t ia l  opera t ions  on labels. I t  is required t h a t  
L \  {*,0} ¢ O. 

The  cons tan t  0 is used to specify when  sychronisa t ions  are disallowed. If two events  labelled )~ 
and  A r are not  supposed to synchronise  then  the i r  composi t ion  A • .V is 0. For th is  reason 0 does 
indeed behave like a zero wi th  respect  to  the  "mul t ip l ica t ion"  • i.e. 

VAE L. A - 0  = 0 .  

In a synchronisa t ion  algebra,  the  cons tan t  * is used to specify when  a labelled event  can  or 
canno t  occur  asynchronously.  An event labelled A can  occur  asynchronously  iff ,~ • * is not  O. We 
insist  t h a t  the only divisor of * is * itself, essentially because we do not  want  a synchron isa t ion  event  
to disappear .  We require 

VA,A I C L .  A . 3 , / = *  ¢ : > A = A  I = * .  

We present  two synchronisa t ion  algebras as e x a m p l e s - - m o r e  can be found in [W1,2 I. 

2 .3 .1  E x a m p l e .  The synchronisation algebra for CCS--no value passing: In CCS [M11 events  
are labelled by a , # , - . ,  or the i r  complements  ~ ~ , - . .  or by the  label r .  The  idea is t h a t  only two 
events  bear ing complemen ta ry  labels may synchronise  to form a synchronisa t ion  event  label led by 
r.  Events  labelled by r canno t  synehronise  fur ther;  in this sense they are invisible to processes in 
the  envi ronment ,  t hough  the i r  occurrence may lead to in ternal  changes of state.  All labelled events  
may  occur  asynchronously.  Hence the synchron isa t ion  algebra for CCS takes the  following form. 
The  resu l tan t  parallel composi t ion,  of processes p and  q say, is represented as Plq in CCS. 

a 0 r 0 0 

r 0 0 0 

f l  0 0 0 T 

• - -  r 0 

- . .  r 0 
• .- 0 0 
• . .  0 0 
--- 0 0 

2 .3 .2  E x a m p l e .  The synchronisation algebra for n in CSP: In the form of CSP in [H, HBR,  Bk] 
events  are labelled by a , 3 , - - - .  There  are also silent moves and  following the  more  opera t iona l  
semant ics  in [Bk} we label t h e m  by r. For its parallel  composi t ion  1[ events mus t  "synchronise  on" 
a ,  ~ , - . . .  In other  words non-v - l abe l l ed  events canno t  occur  asynchronously.  Ra the r ,  an a - l a b e l l e d  
event in one componen t  of a parallel  composi t ion  mus t  synchronise  wi th  an  a - l a b e l l e d  event  f rom the 
o the r  componen t  in order  to occur; the  two events  m u s t  synchronise  to form a synchron i sa t ion  event  
again  labelled by a .  The  synchronisa t ion  a lgebra  for this  paral lel  composi t ion  takes  the  following 
form. 



• * (3( , ,,,~ 

• " * 0 0 

a ] O  a 0 

• " "  T 

" ' "  T 

• .- 0 
. . .  0 

0 

0 

0 
0 

Using synchronisation algebras one can define a generic programming language, inspired by 
CCS, SCCS and CSP but parameterised by the synchronisation algebra. For a synchronisation 
algebra L, the language P r o c L i s  given by the following grammar:  

t : := nil I x t  At ( t + t  ( t ( ~ t  )t[A) t[~] I recx.t 

where x is in some set of variables X over processes, A C L \ {*, 0}, A C L \ {*, 0}, and • : L -+ L is 
a relabelling function preserving * and 0 and such that  ~(A) = * ~ A = * and ~(A) = 0 ==~ A = 0 -  
otherwise it would not lead to a sensible labelling of events. 

We explain informally the behaviour of the constructs in the language P r o c L .  The  behaviour  
can be described accurately by the models presented in the next sections. Roughly, a process 
of P ro ccde t e rmines  a pat tern of event occurrences over time. The  nature  of the events, how 
they interact with the environment,  is specified by associating each event with a label from the  
synchronisation algebra L. The term nil represents the nil process which has s topped and refuses to 
perform any event. A prefixed process At first performs an event of kind A to become the process 
t. A sum t + t '  behaves like t or t '; which branch of a sum is followed will often be determined by 
the context and what kinds of events the process is restricted to. A parallel composition process 
t (~) ff behaves like t and t ~ set in parallel. Their  events of synchronisation are those pairs of events 
(e0, e l) ,  one from each process, where eo is of kind .k0 and el is of kind A1 so that  A0 • A I ¢  0; the 
synchronisation event is then of kind A0 * A 1. The restriction t [£ behaves like the process p but  with 
its events restricted to those with labels which tie in the set £. A relabelled process t [ -  =] behaves like 
p but  with the events relabelled according to ~. A closed term reex.t recursively defines a process x 
with body t. 

2.4. D e n o t a t i o n a l  s e m a n t i c s .  

We sketch how to give denotat ional  semantics to a range of simple parallel p rogramming lan- 
guages PrOcLwhieh despite their simplicity, by varying the synchronisation algebra L, include pure 
CCS (just synchronisation, no value-passing [M1]), SCCS (synchronous CCS [M2]) and the bet ter  
part  of (theoretical) CSP of [HBR] but  with just  one parallel composit ion.  

To pin down the intuitions given earlier we can take each closed t e rm in P r o c L a s  denoting a 
labelled event structure. This is simply an event structure E, with events E labelled by elements 
of L, and so a structure (E,I) where l : E -~ L \ {%0}. Parallel composit ions of event s tructures 
are defined with respect to a synchronisation algebra which specifies those pairs of events which can 
synchronise, those which cannot and those which may occur asynchronously. 

2 .4 .1  D e f i n i t i o n .  Let (E0,lo) and ( E l , / l )  be labelled event s tructures with events Eo and E l  
respectively. Assume their labels lie in a synchronisation algebra L = (L, *, *,0). Define their  
parallet composition 

(~:o,to) ® (E, ,I1) : ([E0 × E~][S ,0  
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where 
S ={e E E0 x~ E t  f lozro(e) • ll~rl(e) ¢ 0} and 

l(e) =~0~0(e) • h~l(e)  

the  set of allowed events in the composition, and for any event e of the composition. The  other  
operations are simple to define; prefixing, sum and restriction are just  as before but  taking account  
of labels, and the operat ion of retabelling simply alters the labelling function. 

In order to give a meaning to the recursivety defined processes of the form recx.t we use the fact 
that  the operations are continuous with respect to a large c.p.o, of labelled event structures.  The  
large c.p.o, of event structures ~ extends natural ly to labelled event structures in such a way that  
operations like parallel composition are continuous. 

Let L be a synchronisation algebra. Define the ordering ~L on labelled event structures by: 

(E0,/0) St. (E1,/1) ~=~E0~_E1 & 1 0 = l l [ E o ,  

where Eo is the set of events of E0. The null labelled event structure (0, 0) is the least L- label led 
event structure with respect to -~L' Of course, --~L has least upper bounds of w-chains; the lub of 
a chain (E0,/0), ( E l , / l ) , . . . ,  (E~,ln) . . . .  takes the form (U,~En,Unln). All the operations prefixing, 
sum, restriction, relabelling and parallel composit ion are continuous with respect to ilL. Thus we 
can give a denotational semantics to P r o c L b y  representing recursively defined processes as the least 
fixed points of continuous operation. 

2.4.2 D e f i n i t i o n .  Denotationat semantics for PrOCL: Let L be a synchronisation algebra. Define 
an environment for process variables to be a function p from process variables X to labelled event  
structures. For a te rm t and an environment p, define the denotat ion of t with respect to p wr i t ten  
~t~p by the following s tructural  induction. Note syntactic operators appear  on the left and their  
semantic counterparts on the right. 

~nil~p =(0, O) ~t IA~p =~t~p IA 
Izlp , =p(z) ~t[E]lp =It lp[~ =] 
~At~p =A(~t~p) ~tl @ t2]p=~tl ~p 0 ~t2]p 
~tl + t2~p=~tl]p + ~t2]p ~recx.t~p =fix F 

where r is an operation on labelled event structures given by r(E) = It~p[E/x] and fix is the 
least-f ixed-point  operator.  

R e m a r k .  A straightforward structural  induction shows that  F above is indeed continuous with 
respect to 9.~, so the denotat ion of a recursively defined process is really the least fixed point of the 
associated functional F. 

Choosing L to be the appropriate synchronisation algebra we immediately obtain denotat ional  
semantics for CCS, SCCS and CSP with one parallel composition. Of course, in the semantics 
of CCS, for example, denotations of processes carry far more detail  than the semantics generally 
given. In particular they include information about  the concurrency or causal dependence of events,  
information which is missing from the interleaving semantics in [M1, 21 . Results from the next section 
show how the semantics relates to Milner 's in [MI!; as you would expect Milner 's  synchronisation 
tree semantics is obtained by serialising, or interleaving, the denotations of the event s t ructure  
semantics. 
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2 . 5 .  O t h e r  c a t e g o r i e s .  

We have given denotational semantics to P r o c L i n  terms of event structures.  In a similar way 
we might give semantics using families of configurations, domains,  prime event s t ructures,  or trees. 
All such classes of structures form categories too with morphisms induced by those on stable event 
structures. 

2 . 5 . 1  D e f i n i t i o n .  
A morphism between stable families of configurations F0, F1, of events Eo, E1 respectively, is a 

partial function 0 : E0 -~.  E1 such that  

V x E F o .  [ 0 x E F I  & (Ve,e'Ex.O(e) = 0 ( e ' ) = > e = e ' ) l .  

It is synchronous when 0 is total. 
A morphism between prime event structures (Eo,Conn,_<o) and (El,Con1,_<_1) is a partial  

function 0 : Eo --% E1 such that 

ge C Eo. 0(e) is defined => [0(e)] _C 0[el & 

V X e  Cono. lex e C o n ,  (V, ,e '  e X. e(e) = e(e ')  e = e')l.  

It is synchronous when 0 is total. 
A morphism between finitary prime algebraic domains Do and  D1 is a function f : Do ~ D1 

which is additive, stable and "<-preserving. It is synchronous when f is <-preserving.  
A morphism between trees To and 7"1 is a function f : To ~ T1 which is -<-preserving and such 

that  f(0) = 0. It is synchronous when f is -<-preserving. 

Morphisms on prime event structures can be characterised in a slightly different way which 
recalls the simple way in which their configurations are generated. 

2.5.2 P r o p o s i t i o n .  Let Po and P1 be prime event structures with events Po and PI. A partial 
function 0 : Po -% P1 is a morphism 0 : Po --+ P1 of prime event structures iff 

Yx E £(Po). (Ox e £.(Pt) & (Ve,e' C x. 0(e) = 0(e') => e = e')). 

Proo£ Routine. II 

The classes of structures with the appropriate morphisms under function composit ion give rise 
to categories. 

2 . 5 . 3  D e f i n i t i o n .  
Let F be the category of stable families of configurations with morphisms of families composed as 
functions. Let Fsy,~ to be subcategory with synchronous morphisms. 
Let P and P ~  be corresponding categories of prime event structures. 
Let D and D ~  be corresponding categories of finitary prime algebraic domains. 
Let T and Tsy,~ be corresponding categories of trees. 

We have defined the categories above in such a way that  there is a natura l  chain of functors 

E ~ ~ F  P ~ D  T ~ T .  

The functor ~" acts on an event structure E to give ~'(E) and on morphisms 0 : E0 --~ E1 to give 
~'(0) : 7(E0) --* 7(EL) which is the partial  function 0 restricted to the events of 7 (g0) .  It is easily 
checked that ~r preserves identity morphisms and composition and so is indeed a functor. 
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The  functor  P acts on a family F to give the domain  ( F , C )  and  on morph i sms  0 : F0 ---* F1 to give 
the  funct ion O(O) : P(F0) ---* P(F1)  which acts (P(0) ) (x)  = Ox for x C F0. It is a t r ivial  m a t t e r  to 
verify t h a t  /) is well-defined a n d  a functor.  

Morph isms  on  trees are clearly the  same as morph i sms  on t h e m  when  regarded  as domains ;  trees 
T form a subeategory  of domains  D.  Morphisms  are also induced by a "sequential[sat[on" func tor  
f rom domains  to trees. The  func tor  T acts on a doma in  D to give the  tree T D  consis t ing  of all t he  
covering sequences in D and  on  morph i sms  f : Do -+ D1 to give the  func t ion  T ( f )  : T (Do) --+ T (D1) 
which acts 

(T ( f ) ) (do ,d l  . . . . .  dn , . . . .  ) = ( f ( d o ) , f ( d l ) , . . . , f ( d n - 1 ) , . . . )  

on a covering sequence of Do. It is easy to see T is a functor .  

There  are a n u m b e r  of categories now, each could be used to give deno ta t iona l  semant ics  in a 
m a n n e r  very similar to the  last  section; again because the  behaviour  of parallel  composi t ions  should  
be t ha t  allowed when we project  into the componen t s  we expect to model  it as a res t r ic t ion of a 
product .  At first sight we face the  laborious task of defining parallel  composi t ions  and  sums in each 
category and  showing how they  rela te  to eachother .  Th i s  is needed in order  to verify t ha t  all t he  
semant ics  are compatible .  For tuna te ly  however, the  categories bear  a s imple re la t ionship  wi th  one 
another ;  there  is a coreflection between any two. This  fact,  es tabl i shed  next ,  gives us, as a corollary, 
the  form of parallel  composi t ions  and  sums in the  different categories and  yields s m o o t h  t rans la t ions  
between the  various semant ics .  

A coreflection is a special form of adjunct[on.  An adjunct [on between two categories A and  B 
involves a pair  of functors 

F : A - ~  B ,  G : B - ~ A  

between them.  Recall one way of de te rmin ing  an  ad junc t [on  between two categories (see [Mac] p.81). 
Let G : B ~ A be a functor  be tween categories A and  B.  Suppose for an object  A ~ A there  is an  
object  F(A) E B and  a m o r p h i s m  ~A : A ~ GF(A)  in A which is universal  in the  following sense: 
For any morph i sm f : A --~ G(B) in A with B ~ B there  is a unique m o r p h i s m  h : F(A)  ~ B in B 
such t h a t  (G(h)) ~?A = f ,  i.e. so the  d iagram below commutes .  

A ~?A ~ GF(A) F(A) 

!a(h) hl 

In this s i tua t ion  we say F(A),  ~A is free over A, with  respect  to G. In the  case where for each A, we 
have such F(A),  YA free over A there  is an ad junct [on  from A to B.  T h e n  F extends  to a func tor  
F : A -* B by taking F ( f ) ,  for f : A -+ A' in A,  to be the unique m o r p h i s m  F(A)  ~ F(A')  in B 
such t h a t  G F ( f )  ~]A = ~?A' f .  T he  functor  F is called the  left adjoint of G, while G is called the  
r ight  adjoint of F. If each m o r p h i s m  ~?A, for A ~ A,  is an  i somorph ism then  the  ad junct [on  is called 
a coreflection. 

The  role of the following l emma will be to de te rmine  m o r p h i s m s  on event s t ruc tu res  f rom 
morphisms  on  domains,  where  events  are exhib i ted  as pr ime intervals.  

2 .5 .4  L e m m a .  Let f : Do -~ Dt be a morphism in D. Then 

([c,c '  l ~ [d,d'] & f(c)  ~ f(c ' ))  =~ (f(d) < f(d ' )  & [f(c), f(c ')]  ~ [f(d), f(d')]) .  

Proo[. 
get 

Let c < e' and d < d' in D and  suppose [d, d'] ~ [c,c']. Because f is addi t ive  and  s table  we 

f (d)  = f(d '  F-I c) = f(d ' )  V~ f(c) ,  

f (c ' )  -- f (d '  ~-:: c) = f(d ' )  U f(c) .  
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Because f is -<_-preserving too the above equations make f (d) -< f (d ' )  iff f (c)  -< f (c ' ) .  
that if [d,d'] ~ [c, c'] and f (d) ~ f(d')  then If(d), f(d')] ~ [f(c), f(c')]. I 

The following theorem establishes the coreflections between the various categories. 

It follows 

2 . 5 . 5  T h e o r e m .  
The event structure £(F)  with morphism 1F : F ~ Y £ ( F )  is free over F with respect to 5 ,  for each 
F E F .  
The family gPr(D) with morphism ~ : D ~ D gPr(D) is free over D with respect to P,  for each 
D E D,  where 

¢(d) = (p K d t P is a complete prime}. 

The tree T with morphism CT : T ~ T ( T )  is free over T with respect to T ,  for each T E T ,  where 

cT(d) = {do,d1 . . . . .  d~ , . . . )  

where A_ = do -< dl "< " .  -< d~ < . . .  with d = [ In d,~ (i.e. the sequence is a branch up to d). 
The resulting coreflections cut -down to coreflections between the associated categories with syn- 
chronous morphisms. 

Proof. The first two isomorphisms presented above are known by earlier results (1.1.13 and 1.3.7). 
We only present the proof of the coreflection from D to F. The other two coreflections are easier 
to show, and left to the reader. The proofs go through virtually unchanged with synchronous 
morphisms instead giving the coreflections in the synchronous cases. 

Let D E D. Certainly, by previous results, ~Pr(D) e F and ¢ : D .~ P~Pr(D) when defined as 
above. Suppose F E F and f : D ~ (F, C_) is a morphism in D. We require a unique 0 :/~Pr(D) ~ F- 
i n F s o t h a t  P(0) ¢ =  f.  

Recall the 1-1 correspondence between complete primes and prime intervals of D under the 
equivalence relation ~,  shown in 1.3.8; an equivalence class [d, d~]~ corresponds to the unique prime 
p in ¢(d~)\¢(d). This makes it easy to define the required partial function 8 : P --+~ E from complete 
primes P of D to events of F. It is easy to see that if [z, z'] ~ [w, w'] in (F, C) then z' \ z = w' \ w, 
both containing the same unique event. Thus, by the lemma above, the following definition of 8 is 
well-defined: 

For p E P, take a prime interval [d, d'] whose equivalence class corresponds to p. If f (d)  -< f (d  r) 
then take 8(p) to be the unique event in f (d ')  \ f (d) ,  and otherwise take O(p) to be undefined. 

Let d be a finite element of D. Take a covering chain up to d: 

A_ = do -< dl -< . . .  ~ d,~ = d. 

By induction along the chain we obtain O¢(d) = f(d) .  As both functions are additive this implies 
0¢(d) = f(d) for all d E D, so the functions are equal. Hence, provided we can show 0 is a morphism 
we do have the required commutativity (DO) ¢ = f.  

Now we show 8 is a morphism. Suppose x C •Pr(D). Then 

Ox = f ¢ - l ( x )  e F. 

Suppose p, pt E x and O(p) = O(p') being equal to e say. Assume p # p', in order to obtain a 
contradiction. Take a covering chain up to p u p~ in D. Without loss of generality we may assume 
this yields 

d < d~ K c < c ' 
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whe~:e the equivalence class of [d, d'] corresponds to p and that  of [c, c'] corresponds to p'. The image 
under  f yields 

f(d) C f(d')  C_ f(c) C f(c')  

where f(d') \ f(d) = f(c')  \ f(c) = {e}. But this is impossible. Hence p = p' .  

Therefore 0 is a morphism 0 : /~Pr(D) --~ F in F so that  (P(0)) ¢ = f .  Any other morphism 0' 
satisfying (P(0')) ¢ = f must  satisfy (P(0')) = f ¢ - :  = (/9(0)) and so equal 0. So 0 is unique too. 
| 

There is also a triangle of functors: 

F P ) D  

P 

Here/~ takes a prime event s tructure P to its family ~(P)  of consistent, left closed subsets, and acts 
on a morphism 0 : P0 -+ P:  to give /~(8) : x --~ 0z - - th i s  is a morphism in F by proposition 2.5.2, 
and so well-defined. The functor Pr acts on a domain D to give the prime event s t ructure Pr(D). 
Its action on morphisms is more complicated to describe, and is best done using lemma 2.5.4. Let 
f : Do -+ D: be a morphism in D between domains Do and D1 with complete primes P0 and P:  
respectively. Each complete prime p E P0 corresponds to an equivalence class of prime intervals, 
as in 1.3.8, and because f respects this equivalence-- the content  of lemma 2 .5 .4 - - f  determines a 
partial  function 0 : P0 -*- P: .  More precisely, let p E Po correspond to the equivalence class [d,d~]~ 
in Do. Define (Pr(f))(p) -- p' if f(d) < f(d') and p' corresponds to If(d), f (d ' ) ]  in D: ,  and undefined 
otherwise. By lemma 2.5.4, Pr(f) is a well-defined partial function, and,  as in the proof of 2.5.5 
above, it can be checked that  it is a morphism Pr(Do) ---+ Pr(D1) of prime event structures (or see 
appendix B, | emma BD, of [Wlt). Theorems 1.3.5 and 1.3.7 show how for any prime event s t ructure 
P there is an isomorphism P ~ 2 r P / ' ( P )  and for any domain D E D there is an  isomorphism 
D ---- P£Pr(D) .  Further  it is easy to show these are natura l  isomorphisrns in the sense of [Mac], 
which is precisely what is required to establish an equivalence of the categories P and D.  In this 
way we have shown: 

2 .5 .6  T h e o r e m .  The functor PC : P -~ D is an equivalence of categories with adjoint Pr. 

We can interpret this theorem as expressing that ,  while on the surface the categories P and D 
look very different, they are essentially the same model of processes. 

Thus the various categories are all related by coreflections--recall coreflections compose. Ad- 
junct ions satisfy a useful property: right adjoints preserve limits like products and left adjoints 
preserve colimits like coproducts [Mac p.l14]. These facts, with the na tura l  isomorphisms of the 
coreflections, enable us to construct  products and sums in the various categories. On these can then 
be based constructions like parallel composit ion and sum in the same manner  as in the last section. 

2 .5 .7  Theorem.  
(i) Fo ×F F: ~ Y(~(Fo) ×E ~(F1)) for Fo, F: C F. 
(ii) Do x 9  01 ~- P(r.Pr(Do) XF /:2r(D1)) for Do,D: C D. 
(iii) To ×T TI ~ T(To XD T1) for To, T1E T. 

Proof. (i) For F0, F1 C F we have •(F0) ×E £ (F t )  is a product in E.  It is preserved by the right 
adjoint 7 so 

7 ( f ( F 0 )  ×E £(F1))  ~ (Yf(Fo))  UF ()r~'(F1)) ~ Fo ×F F: .  
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The proofs of (ii) and (iii) are similar. | 

Because left adjoints preserve coproducts we know how to construct e.g. the coproduct of two 
families Fo, F1 provided it exists. If Fo +F F1 exists then by the preservation of colimits, 

E(Fo +F Fi) ~ ~(Fo) +E ~e(F1). 

Hence 
Fo +F F1 ~ :7"~(Fo +F F1) ~ ?'(E(Fo) + s  3(Fi)) .  

But of course it must exist for this argument to apply. The following lemma provides a sufficient 
condition for existence. 

2.5.8 Lemma.  Let F : A -+ B be a coreflection from A to B with right adjoint G. Suppose B has 
~ p r o  . . . . . .  Let ~0 ,~ t  E A. , f r o [ r ~ t o ) + B F ( A 1 ) )  ~ F(Ao)+BF(A1) then G(F(Ao)+BF(A1))  
is a coproduct of Ao,A1 in A. 

Proof. Consider the image category ImF. It is a full subcategory of B and F : A --~ I m F  is an 
equivalence of categories with adjoint the restriction of G. Let Ao, A1 E A. Then their images 
F(A0), F(A1) have a coproduct F(Ao)+B F(A1) in B. If FG(F(Ao) +B F(A1)) ~ f (Ao)  +B F(A1) 
then there is an object D in I m F  isomorphic to F(Ao) +e F(AI). The object D is a coproduct of 
F(Ao), F(Ai) in ImF.  Hence G(F(Ao) +B F(A1)) ~ GD is a coproduct of GF(Ao), GF(AI),  and 
thus of Ao, At, in A. | 

2 .5 .9  T h e o r e m .  
(i) Fo +F F1 ~- 7(£(Fo) +E £(F1)) for Fo,Fi E F. 
(ii) Do +o D1 ~ P(£Pr(Do) ÷~ £Pr(D1)) for Do, D1 E D. 
(iii) To +T T1 -~ T(To +D Ti) for To, Ti E T. 

Proof. It is easy to see: 

(i) £3r(Z(F0) +E $(F1)) ~ $(F0) + s  £(F1) for F0,Fi  E F, 

(ii) LPrD(ZPr(Do) ~-F LPr(D,)) ~ L:Pr(Do) +F ~Pr(Di) for Do, Di E D, 

(iii) T(To +D T1) ~ To +D T1 for To,T~ E T, 

from which the results follow by the lemma above. | 

It is not hard to see that the sum of families has the effect of taking their union, once the events 
of the families are made disjoint, and that the sum of domains and trees essentially glues disjoint 
copies of them together at their bottom elements. Similarly we can define indexed sums so that they 
are coproducts too. For example we can define 

k 

EkEKFk = 3r(EkEn~ (Fk)), 

and we shall encounter a use for indexed sums of trees soon. 

R e m a r k .  Similar theorems hold in the synchronous case. 

The theorems above construct products and sums in the different categories. But of course they 
are all based on constructions on event structures. There are generally more direct characterisations 
of the constructions in the different categories. By theorem 2.5.7(i) above and 2.3.3 characterising 
the configurations of a product we obtain immediately such a result for families. 
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2.5 .10  T h e o r e m .  Let Fo and Fi  be stable families with events Eo and El. Their product in F is 
the family consisting of those subsets x C_ Eo x .  Ei which satisfy (a), (b), (c) and (d) of proposition 
2.3.3. 

Proof. The product F0 × F F l  in F is isomorphic to 3r(~'(Fo) xE £ (F i ) ) .  But 2.3.3 characterises this 
family as those subsets of Eo x ,  E1 which satisfy (i), (ii), (ill) and (iv). | 

The characterisations of the product on trees T are simplified through the use of another functor 
TF : le --. T behaving like T but  acting on families instead of domains. Let F E F be a family 
with events E.  Define TF(F) to be the set of finite and infinite sequences s of events E ordered by 
extension which have the form 

s = ( e l , e ~  . . . . .  e n , . . . )  

where {e l , e2 , . . .  ,e{} E F for all i at which ei is defined. Let 0 : Fo --* F1 be a morphisrn in F.  Then 
0 : E0 -~,  El .  It can be extended to sequences by insisting 

r ( O )  : O, 
and 

{O(e)0 *(s) if 0(e) is defined, 
0*(es) = O*(a) if 0(e) is undefined. 

We use es where e is an element and s is a sequence to denote the result of prefixing e to the 
beginning of s. 

2 .5 .11  L e m m a .  The operation TF is a functor Tv : F -* T.  We have 

Tr(F) ~ T P(F) 

for F E F. Moreover this isomorphism is natural in F. 

Proof. Clearly covering chains 
O-4xt < x 2  -4 . . .  ~ x n  -4 . . .  

in (F, C) are in 1-1 correspondence with sequences 

(el, e2 , . . .  ,en, . . . )  

where x~ = {e l , e2 , . . .  ,en} for each n. This gives an isomorphism Tr(F)  ~ T( (F ,  ~)) = TD(F) .  It 
is easily checked to be natural .  | 

Thus the two functors Tr,  TD : F --~ T are natural ly  isomorphic, so TF is a right adjoint too. 
As such it preserves products yielding the following characterisation of the product  of trees. 

2 .5 .12 L e m m a .  Let S and T be trees. Then 

s × T  TU :~(£Pr(S) ×F £Pr(T)). 

Proof. As a right adjoint TF preserves products. Thus TF(f.Pr(S) xF £Pr (T) )  is the product  in T 
of TF£Pr(S) a n d / ] P r ( T ) .  However 

Tr£pr(S) ~ TP~:Pr(S) ~- : (S)  = S, 

using the natural  isomorphism between "rE and T P, the eqivalence of categories D and P and the 
corefiection from T to D. | 
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This explains the product of trees in terms of the image under TF of the product of families. 
Such an image can be understood very simply. 

2.5.13 L e m m a .  Let Fo and F1 be stable families with events Eo and E1 respectively. Then 

TF(Fo XF F1) 

is the product of trees TF(Fo), TF,(F1). Moreover, for s a sequence of events in Eo x .  E l ,  

s E TF(Fo XF FI) *~ 7r;(s) C TF(Fo) & try(s) E TF(F1), 

where ~rk are the projections Eo x .  E1 -+. Ek for k = O, 1. 

Proo£ The tree TF(F0 XF F1) is the product stated as Tp preserves products. By the definition of 
how TF acts on objects, if s E TF(F0 XF F1) then ~r~s E T~'(F0) and ~r~s E TF(F1), The converse 
follows by 2.3.3 characterising configurations of the product, l 

For a family F, the construction consists of the sequences of events allowed by F. The result 
above expresses the intuitive fact that the sequences of events allowed by the product of families are 
precisely those sequences whose projections are allowed by the components. 

Another characterisation of the product of trees yields Milner's expansion theorem. 

2.5.14 Def ini t ion.  Define prefixing on domains to be induced by the operation on event structures. 
Let D E D and e be any element (not generally in D). Define eD to be the domain P3r(eg~.Pr(D)). 

2.5.15 T h e o r e m .  Let S and T be trees. Then 

S ~ Z aS~ and T ~ Z bTb 
s E A  bEB 

for some sets of  events A and B and trees Ss and Tb indexed by a E A and b E B respectively. We 
have the following characterisation of the product of S and T in Tr : 

SxT-~ ~(a,*)SsXT+T Z (a,b)SaxTb+T~(*,b)SxTb. 
s E A  aEA,bCB b c B  

Proof. In proving the characterisation it is smoothest to represent trees as sequences of events 
allowed by families. We introduce some notation. Let S be a set of sequences and a an element. 
Define 

Let F be a family of configurations with a configuration {a}. Define the family of sets 

e / a = { x \ a l a E x  & x C F } .  

Clearly if F is stable then so is F/a .  

Let F be a stable family. Then directly from the definition we obtain this recursive characteri- 
sation of TF 

Tr(F) = U{~}eF a~  TF(F/a). 

Let F0 and F1 be stable families. By lemma 2.5.13, 

u E TF(F0 x f  F0) *~ ~r0(u) E TF(F0) & rE(u) E Tr(F1), 
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where r0, r l  are the projections of the product  in; F.  Write A = {a I (a} E F0} and B = {b I {b} E 
F1}. Considering the different forms an initial event of a non-nul l  sequence u can take, we see 
U E TF(Fo ×F F1) i ff  

{ (a,*)u ~ for a E A  & ro*(u t) E (Fo/a)  & r l * ( u  ~ ) E E l o r  
u---- (a,b)u ~ f o r a E A  & b E B  & 7r0*(u ~)E (F0/a)  & 7rl*(u ~) E (F1/b) or 

(*,b)u' for b • B & 7r0*(u') • F0 & rl*(u') • (El /b) .  

Hence TF(F0 XF F1) = 

U~ea(a, *)~Tr(Fo/a x F  F1)U 

~aeA(a,*)--Tr(Fo/a) XT" TF(F1)+ 

P.(a,b)EAxB(a,b)~Tr(Fo/a) x r  Tr(Fz/b) + E b e B ( * , b ) ~ T r ( F o )  ×T TF(F1/b). 

This is the product of T f (F0 )  and TF(F1) in T.  

Assume now that  S and T are trees. Take Fo = /:Pr(S) and FI  =: £Pr (T) .  Then  S ~ TF(Fo) 
and W ~ TF(FI) .  Writing Sa = T r  ( f0 / a )  and Tb = Tr  (F t /b)  we obtain the result. I 

Restricting the events of the product in accord with e.g. the synchronisation algebra for CCS we 
obtain the recursive characterisat ion of the parallel composit ion of synchronisation trees tha t  Milner 
uses in [M1]. In this way we obtain a formal translat ion between the noninterleaving semantics 
using event structures, their families, prime event structures and the equivalent domains and the 
interleaving semantics in [M1] all of which factor through a semantics in terms of synchronisation 
trees. (See [W3] for more on trees, synchronisation trees and semantics using them.) 

3. P E T R I  N E T S  A N D  E V E N T  S T R U C T U R E S .  

It is shown how Petri  nets also possess morphisms "extending" those on event  structures.  The 
morphisms preserve net behaviour (unlike those in [Br]) and can be viewed as special kinds of 
homomorphisms on nets viewed as algebras. The definition of morphism generalises the process 
morphisms in [GR I. Safe Petr i  nets are related to a full subcategory of prime event structures via 
a corefiection, and it is in this sense that  their morphisms extend those on event structures.  The  
coreflection uses the idea of unfolding a net to a net of occurrences. The categorical constructions of 
product and coproduct of safe nets are closely related to construct ions in common use in net theory 
for modelling parallel compositions and nondeterminist ic sums. 

3.1. M o r p h i s m s  on  P e t r i  ne t s .  

In [W5,6] it is proposed that  we view Petri  nets as kinds of two-sor ted algebras over multisets, 
and that  a useful definition of morphism on nets, appropriate to synchronised communicat ion  results 
by taking a restricted kind of homomorphism between nets viewed as algebras. This notion of 
morphism is markedly different from the s tandard kind defined in [Br t which do not respect the 
behaviour of nets. In this section we give a brief introduction to the new kind of morphisms, and 
refer the reader to [W4,5,6] for more details. (I do not hold with all the axioms generally placed 
on Petri nets, which I regard as too restrictive, so the reader is warned to expect  some differences 
in some definitions. For example,  I shall allow a Petri  net to consist of a single marked condition,  
disallowed according to the s tandard  definition.) 
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3.1 .1  D e f i n i t i o n .  A Petri net  is a 4- tuple  ( B , E , F ,  Mo) where 
B is a non-nul l  set of conditions, 
E is a disjoint set of events, 
F is a mult iset  of (B x E)  U (E x B),  called the causal dependency 
relation, 
Mo is a non-nul l  multiset  of conditions,  called the initial marking,  

which satisfies the restrictions: 

(i) V e E E 3 b E B .  Fb,~ > 0  and V e E E B b C B .  Fe,b > 0  and 

(ii) Vb C B. [Mob ¢ O or (?e ~ E. F~,b ¢ 0 )  or (3e C E. Fb,~ ~ 0)]. 

Thus we insist tha t  each event causally depends  on at least one condit ion and has at least one 
condition which is causally dependent  on it. It is insisted tha t  nets have no isolated condit ions (i.e. 
that  a condition is ei ther marked initially or the pre or post  condi t ion of some event) in order  to 
give a simple t rea tment  of morphisms,  in which the mult irelat ions never have infinite multiplicities.  
This restriction is no handicap  because, according to the dynamic behaviour  of nets,  an isolated 
condit ion can never hold. 

R e m a r k .  In more recent work I have found it useful to impose even less restr ict ions on the definition 
of a Petri  net so as to allow the emptynet ,  useful for defining nets recursively, and perhaps  even 
the net consisting of a single isolated event, for the purpose of labelling events of a net  within the 
category of nets. In this s e t -up  the only axiom is (ii) above, and initial markings may be empty.  
This work is still a little experimental ,  and so here we shall assume the more restr ict ive definition 
of a Petri  net given above. 

Now we make precise the sense in which Petr i  nets can be identified with special algebras. 

3 .1 .2  P r o p o s i t i o n .  A Petri net (B, E, F, Mo) determines a 2-sorted algebra over multisets: It 
has sorts multisets of conditions ~B and multisets of  events #E,  with operations a constant multiset 
Mo over B and two unary operations "( ) a multirelation from E to B with matrix (Fb,e)beB,eeE, 
and ( )"  a multirelation from E to B, with m a t r i x  (Fe,b)beB,eE E. 

We describe the "token game" on Petri  n e t s - - i t  differs from some others in tha t  we do not 
play the token game by firing only one event at a t ime but allow instead t ransi t ions  in which finite 
multisets of events fire. 

Let N = ( B , E , F ,  Mo) be a Petri  net.  

A marking M is a mult iset  of conditions,  i.e. M E ~B. 

Let M,  M ~ be markings.  Let A be a finite mult iset  of events. Define 

M A ~ M I C ,  OA<_M & M t = M _ O A + A . .  

This gives the transition relation between markings.  
(This definition has used mult iset  sum +,  difference - ,  and mult iset  subset  so X < Y iff each 
multiplicity in X is less than  the corresponding multiplicity in Y.) 
The t ransi t ion M A ~ M r means tha t  the finite mult iset  of events A can occur concurrent ly  f rom 
the marking M to yield the marking M ~. When  we wish to stress the net  N in which the t rans i t ion  
M A ~ M ~ occurs we write 

N : M -  A , M ~. 
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A reachable mark ing  of N is a marking M for which 

M0 A(! ~ M1 ~ " ' "  A.-~ ) M r  = M 

for some markings and finite multisets of events. 

The reason for only allowing finite multisets of events to occur as transit ions is in order that  
the occurrence of an event only depends on a finite set of event occurrences, and so to t ie - in  nicely 
with the finiteness properties of configurations event structures.  

Our morphisms on Petri  nets are a restricted kind of homomorphism between algebras in which 
the multirelation between events is assumed to be a part ial  function. 

3.1.3 D e f i n i t i o n .  Let N = (B, E,  F , M )  and N' = (B ' ,  E ' ,  F ' , M ' )  be nets. A morph i sm  from N 
to N' is a pair of ( r l , f )  consisting of a partial  function 7/ from E to E '  and a mult i re la t ion/3 from 
B to B '  such that  

f - M  = M t & VA C/zE .  "(rt-A) = f . ( ° A )  & (r/.A) ° = ft-(A*). 

(We use e . g . f . A  to s tand for the application of the mult i relat ion f to the multiset  A.) 

Morphisms of nets preserve initial markings and the environments of events. As a consequence 
they respect the behaviour of nets in the sense of the two following results. The  first lemma invokes. 
the proviso that  a part icular  application of a mu[tirelation to a multiset  should converge. Remember-  
multirelations and multisets are not necessarily finite so, in general, such an application can lead to 
infinite sums. (A more complete t rea tment  of muttisets can be found in [W6 I.) 

3 .1 .4  L e m m a .  Let  (Tl,fl) : N --+ N ~ be a morph i sm of  Petri  nets .  Then,  prov ided  f . M  is convergent,  

N : M  A ~ M ' : ~  N ' : f . M  n.A , f . M ' .  

Proof. Directly from the definition we see that  ;3 preserves the initial marking. The  remaining fact 
is proved using simple facts about  multisets and multire |at ions.  Assume N : M 4 ~ M t. Ther~ 
°A < M,  so °r/ .A = /~- (°A)  <_ ~ M ,  and 

M '  = M - ° A + A  °. 

Now applying f ,  assuming the application f - M  converges, 

f l -M '  = f . ( M  - "A + A ' )  

= / 3 . M  - f - (*A)  + / 3 . ( A ' )  by linearity 

= / 3 . M  - "(r/.A) + (r/-A)" by the defn. of morphism. 

But these facts express that  N r : f . M  n.A~ f . M  ~. I 

3 .1 .5  T h e o r e m .  
Let  (71,fl) : N --* N l be a m o r p h i s m  o f  Petr i  nets.  Then  ~ preserves the  init ial  mark ing  and  

preserves reachable mark ings  i.e. i f  M is a reachable mark ing  o f  N then 13.M is a reachable mark ing  
o f  N ~. Further,  i f  M A ) M '  and M is reachable in N then f . M  - n:A , f . M  t i n n  ~, 

Proof. By repeated application of the lemma above. I 
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For safe nets  a condi t ion only holds or fails to hold and  an event e i ther  occurs or does not  occur; 
they do not  h a p p e n  wi th  multiplici t ies.  

3 .1 .6  D e f i n i t i o n .  Say a Petr i  ne t  N = (B,  E ,  F, Mo) is safe iff each mul t ip l ic i ty  is a t  mos t  1 in F 
and  M ,  for any reachable  mark ings  M .  For safe nets  we wri te  x F y  ins tead  of F~,y = 1. 

3 .1 .7  P r o p o s i t i o n .  Let N = ( B , E , F ,  Mo) be a safe net. 
Let  M be a reachable marking. Let M ~ be a marking of  N and A a ~nite mult iset  o f  its events. 

I f  M A ~ M ~ then M , M  v and  A , ° A , A  * are sets. Further, M - ~" ~ M ¢ iff M ,  A , M  t are sets and 

( V e C A . * e C M )  & (Ve, e ' E A .  e # e ' : = > ° e n ° e ' = 0 )  & M ' = ( M \ ' A )  tAA °. 

For a safe net  N, an  event e is said to have concession at  a reachable  mark ing  M if °e C M .  If 
two events e and  e ~ have concession at a reachable  mark ing  M and  share  a c o m m o n  precondi t ion ,  
so °e A °e'  ~ 0, the  events e, e ~ are said to be  in conflict at  M because  if one occurs  at  M t h e n  the  
o ther  does not .  On the  o ther  hand ,  if M A ~ M ~ the  events  in A are said  to  occur  concurrently. 

When  nets  are safe, jus t  as the i r  behav iour  can be descr ibed us ing  sets and  re la t ions  ins tead  of 
mul t ise ts  and  mul t i re la t ions ,  so can  morph i sms  be charac te r i sed  in a more  e lementa ryr  if less brief, 
m a n n e r  in t ha t ,  for example,  in the  propos i t ion  below f * e  is now the  image,  as a set ,  of t he  set *e 
under  the  re la t ion/3 .  We use flop to s t a n d  for the  oppos i te  re la t ion  to  f ,  i.e. x f °Vy  iff y f x .  

3 .1 .8  P r o p o s i t i o n .  Let No = (Bo ,Eo ,Fo ,Mo)  and N1 = ( B ~ , E 1 , F 1 , M 1 )  be safe nets. A pair 
(rt , f )  is a morphism No --~ Nz iff rl is a partial function from Eo to E l ,  and f is a relation between 
Bo and BI such that: 

(i) f M o  -- M1 and  fop restricts to a total function M1 --* M0, 
(ii) Xf~(e0) = e~ then 

13*eo = "el and flop restricts to a total function *el -+ °eo and 

leo  ° = el* and fop restricts to a total function el* ---+ eo*, 

Oil) If~l(eo) is undefined then /3"eo  = (~ and  l e o "  = ~. 

Proof. See [W6] for details.  T he  proposi t ion  makes  use of the  following observa t ion  re la t ing  set 
appl icat ion to mul t i se t  appl icat ion:  If f : X --~ Y is a re la t ion  such  t h a t  the  opposi te  re la t ion  
fop : y ~ X is a par t ia l  funct ion then  the  mul t i re la t ion  appl ica t ion  f ( X )  of f ,  r egarded  as a 
mul t i re la t ion,  to  X ,  regarded  as a mul t i se t ,  is equal  to the  set image j3X. The  a r g u m e n t  also uses 
the  fact  t h a t  we insist  there  are no isolated condi t ions ;  it is only because  of th is  t h a t  mul t i r e la t ions  
on safe nets  can be represented  as relations.  | 

In proofs we somet imes  find it easier to  reason a b o u t  m o r p h i s m s  be tween  safe ne t s  us ing  the  
following proposi t ion.  It character ises  such m o r p h i s m s  in t e rms  of how they behave  be tween  ini t ial  
markings  and  in the  ne ighbourhood  of events  and  condi t ions .  

3 .1 .9  P r o p o s i t i o n .  Let N :  ( B i , E { , F i , M i )  be safe nets for i : 0,1.  Then (rl,fl) : No --~ NI is a 
morphism of  nets if f  rt is a partial function from Eo to E1 and j3 is a relation from Bo to B1 which 
satisfy 

(i) f Mo C_ M1 and Vbl C M t  3lbo E Mo. bofbl , and 
(ii) i f  ~?(eo) -- el then for bl C B1 

b iFle l  ~ 3!bo. (boFoeo & bofbl)  and  

elFlbl  ~ 3!bo. (eoFobo & bofbl) ,  and 
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(iiO if bomb1 then for eo E Eo 

eoFobo ==~ Hel. (elFlb, & ~?(e0) = el)  and 

b0F0e0 ~ 3e,. (b~flel  ~ ~(e0) = el). 

Proof. We use the characterisat ion of morphisms between safe nets given in the proposit ion above. 

Suppose (~?, fl) consists of a partial  function ~/on events and fl is a relation between conditions 
which satisfy (i), (ii) and (iii) above. The condition (i) says /3340 C_ M1 and that  ~op restricts to 
a total  function M1 -+ Mo. Hence /3Mo = M1. Assume ~(eo) - el.  By (iii), ~ ' e0  ~ "el  and 
/3eo" C e l ' .  By (ii),/~op restricts to a total  function "el  -+ "co and el ° ~-~ co*. Hence/3°e0 = "el  
and /%0"  = e l ' .  By (iii), if ~(eo) is undefined then ~ ' e o  =/~eo" = 0. Thus together conditions (i), 
(ii) and (iii) imply that  07,/3) : No -~ N1 is a morphism. 

Conversely, suppose (~,fi) : No -~ N1 is a morphism. Then (i) above follows as /~M0 = M1 
as multisets. Condition (ii) expresses the fact that  /jop restricts to total  functions *el -~ "Co and 
el* -* e0 °. Finally, (iii) follows because/~(°eo) = °(7/(co)) and/~(e0") = (r/(e0)) °, and so if boflbl 
and eoFobo (or boFoeo) we must have r](e0) is defined with r](eo)Eibl (or blFl~?(eo)). II 

The main category which will concern us is that  of safe nets. 

3 .1 .10  D e f i n i t i o n .  Define N e t  to be the category of safe nets with net morphisms composed 
coordinatewise as functions and relations. 

A remark on notation: sometimes it is easier to write partial  functions as relations, writ ing 
e0,/el for instance instead of r](eo) = el ,  and in this section we shall sometimes follow this pract ice 
when working with morphisms. 

In future we shall have cause to use some rather  special morphisms, subnets and foldings. 

3 .1 .11  D e f i n i t i o n .  Let 0%/~) : No -+ N1 be a morphism of nets. When (,/,/~) consists of 
relations r/ and fl which are the restrictions of the inclusion relations, i.e. c0~el ¢> e0 = el and 
bo/~bl ~ bo = bl, we say the net No is a subnet  of N1. When r / and /3  are total  functions we say the 
morphism (,/,fl) is a folding. 

Notice the subnet  relation is a partial  order. Our definition of subnet  is a little different form 
some others because it involves initial markings, while our definition of folding is more restr ict ive 
than  that  generally proposed. 

3.2.  C a t e g o r i c a l  c o n s t r u c t i o n s  on  ne t s .  

Morphisms on nets give rise to intuitive categorical constructions and the story is very similar  
in theme to that  of event structures.  The category of all nets has products  but  not necessarily 
coproducts though the lat ter  exist in the smaller category of safe nets. For simplicity here we only 
present the both constructions for safe nets and refer the interested reader to [W6] for more details. 

3 .2 .1  D e f i n i t i o n .  Let No = (Bo,Eo, Fo,Mo) and No = (B1,E1,F1,M1) be safe nets. Define their  
product to be the net consisting of events 

E - Eo x .  E l ,  
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associated with projections ~ro : E 4 .  Eo and Ir lE --** E t ,  condit ions 

B = {~0, b) t b • Bo} U {(1,b) I b • B1}, 

a disjoint union associated with relations po C B x Bo and Pl C B x Bz given by btpkb ¢v b' = (k,b), 
for k = 0, I,  initial marking 

M = { ( 0 ,  b) t b • M o } U { ( 1 , b )  I b • M l } ,  

and relation F given by 

eFb ¢~ (3eo • Eo,bo E Bo. e~roeo & bpobo & eoi~bbo) 

or (~elEEl ,b l  • B l .  eTrlel & bplbl & elFlbl) 

bFe ¢v (~eo • Eo,bo E Bo. e~roeo & bpobo & boFoeo) 

or (3e l •E l ,b1  E Bl. eTrzel & bplbl & blFlel). 

Define projection morphisms of nets: 

Iio = (~ro,p0) : No x N1 --* No 
g l  = (Trl ,Pl)  : No × N1 --> NI .  

The product construction can be summarised in a simple picture. Disjoint copies of the two 
nets No and N1 are juxtaposed and extra events of synchronisat ion of the form (eo, et) are adjoined, 
for eo an event of No and el an event of N1; an extra event (eo,et) has as preconditions those of its 
components "eo U *el and similarly 

(eo,l,)~ 

~ostconditions eo ° U el".  

[ N, 

The product on nets is closely related to various forms of parallel composit ion which have been 
defined on nets to model synchronised communica t ion- - for  an early example see [LC]. 

3.2 .2  T h e o r e m .  
nets. 

The above construction No × N1, Ho, H1 is a product in N e t ,  the category of 

Proof. See [W6]. | 

8 .2 .3  De f in i t i on .  Let No = (Bo,Eo,Fo,Mo) and Nt = (B1,E1,F1,MI) be safe nets. Their  sum is 
the net (B, E, F, M) with events E = {(0, e) I e E E0} U {(1, e) t e C E l} ,  a disjoint union associated 
with the obvious injections Lo : Eo --~ Eo + El  and ~1 : E1 --~ Eo + E l ,  conditions 

B = { ( b o , * )  I b o E B o \ M o } U { ( % b l )  t bl • B l \ M 1 } u { ( b o , b l )  I b 0 • 5 4 o  & bl • M t } ,  

associated with injections 
boa+no b 4~ ~b I e B1 L] {$}.  b ~- (bo,bl )  , 

bl{nlb ¢a ~bo • Bo U {*}. b = (bo,bl), 
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init ial  mark ing  M = M0 x M r ,  and  re la t ion F given by 

eFb *~ (3co C Eo,bo C Bo. eo~oe & boinob & eoFobo) 

or (3ei E El ,h i  E B1. comte & blinlb & elFtbl)  

bFe ¢* (~eo C Eo,bo E Bo. eo~oe & boinob & boFoeo) 

or (3el C Et ,b l  C Bl .  eo~le & blinlb & blFlel) .  

Define injection morph i sms  of nets:  

Io = (to,ino) : No ~ No + N1 

I1 = (~ t , in l )  : Nt  ~ No + N1. 

The  coproduct  cons t ruc t ion  can be summar i sed  in a s imple picture.  The  two nets No and  N1 
are laid side by side and  then  a l i t t le surgery is per formed on the i r  init ial  markings .  For each pair  of 
condi t ions  b0 in the  ini t ial  mark ing  of No and  bl in the  init ial  mark ing  of N1 a new condi t ion  (bn, bl) 
is c rea ted  and  made to have the  same pre and  post  events  as b0 and  bt together .  The  condi t ions  in 
the  or iginal  initial mark ings  are removed and  replaced by a new ini t ial  mark ing  consis t ing of these 
newly c rea ted  condit ions.  Here is the  picture:  

;0;2?;ii  
3 .2 .4  T h e o r e m .  

I 

The above construction No + N1, Io, [1 is a coproduct in the category N e t .  

Proof. See [W6 I. | 

3 .3.  O c c u r r e n c e  n e t s  a n d  u n f o l d i n g .  

Nets are ra ther  complex objects wi th  an  in t r ica te  behav iour  which so far has  been expressed 
in a dynamic  way. We would like to know when  two nets  have essential ly the  same behaviour .  In 
[NPW l and  [W 1 we proposed a more  "stat ic" represen ta t ion  of the i r  behav iour  as a cer ta in  kind of 
net,  a net  of condi t ion and  event  occurrences.  This  gave a genera l i sa t ion  of the  familiar  unfolding 
of a s t a t e - t r a n s i t i o n  sys tem to a tree [W2}. T he  nets  of occurrences  we called occurrence n e t s - - a  
name  I will stick wi th  here. (Note here occurrence  nets  may  conta in  forwards conflict.) The  ideas 
here can be  viewed as ex tend ing  those  in [Pel, where  Petr i  proposes  t h a t  the  behav iour  of a ne t  be 
identified wi th  the  those causal  nets  which represent  its "processes".  Ins tead  of a set  of causal  nets  
we represent  the behav iour  of a safe net  by a single net  of occurrences.  

3 .3 .1  D e f i n i t i o n .  An occurrence net  is a safe net  (B,  E,/7,  M)  for which the  following restr ic t ions 
are satisfied: 

(i) b E M *~ °b - 0, so the  init ial  mark ing  is identified wi th  the set of 
condi t ions  which are not  preceded by any events in the  F - r e l a t i o n ,  

(ii) Vb E B.l'b[ _< 1, so  a condi t ion  can  be caused to hold t h r o u g h  the  
occurrence of at  mos t  one event,  

(iii) F + is irreflexive and  Ve C E.  {e' I e 'F 'e}  is finite, so we b a n  repet i t ions  
of the  same event  and  insist the  occurrence of an event  can only depend  
on the  occurrence of a finite n u m b e r  of events ,  
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(iv) # is irreflexive where 

g~rne t ¢d~de f e C E • e ) E E & °e ~ "e r ¢ 0 and 

x ~  x! ~;=~def 3e, e ~ E E . e # m e  t & eF*x  & e tF*x  r. 

In this way we eliminate those events which cannot  possibly occur be- 
cause they depend  on the previous occurrence of conflicting events.  

In an occurrence net  we call the relation ~ ,~  defined above the i m m e d i a t e  conflict relation and 7~ 
the conflict relation. We define the concurrency relation, co, between pairs x, y E B 1.3 E by: 

x c o y ~ d ~ f  ~ ( x F + y  or y F + x  or x ~ y ) .  

It is useful to generalise the co-relation to subsets ,  and not  jus t  pairs, of conditions.  Intuitively 
we say a subset  S of condit ions of an occurrence net  is concurrent  if it possible for all the condi t ions 
in S to hold at some reachable marking. Similarly we say a finite subset  of events is concurrent  
if they can occur concurrent ly  from some reachable marking. For an occurrence net  (B, E,  F , M )  
these notions can be expressed simply. 

3.3.2 D e f i n i t i o n .  For S C B U E define 

C o S  4=~ (Vs, t e S. s co t) & {e e E I 3s  C S. eF*s}  is finite. 

Clearly s co t i f f  Co{s , t } ,  for conditions and events s , t .  The extra restr ict ion simply ensures 
that  together the elements in S only depend on a finite number  of event occurrences. Obviously if 
T is a subset of events and Co T then T must  itself be a finite set. 

3 .3 .3  P r o p o s i t i o n .  Let  N = (B,  E ,  F, M )  be an occurrence net .  
Every  event  o f  N has concession at some reachable mark ing  and every condit ion o f  N holds at  

some reachable marking.  
Let  e, e I be two events  o f  N. Let  b, b f be two condi t ions o f  N. 
The relations ~ ,~  C E 2 and # C (B U E) 2 are binary, symmetr i c ,  irrettexive relations. The  

relation o f  conflict x ~ x t holds i f f  there is a reachable marking M at which events eF*x  and e1F* x ' 
have concession and are in immedia te  conflict e:#=meq 

The  relation co is a binary, symmetr ic ,  reflexive relation between condi t ions  and events  o f  N. 
We have b co b ~ i f f  there is a reachable m ar k i ng  o f  N at which b and  b ~ bo th  hold. We have e co e r 
i f f  there is a reachable mark ing  at which e and  e I can occur concurrently.  

Let  S be a subset  o f  condit ions and  T a subse t  o f  events.  We have C o S  if f  there is some  
reachable mark ing  M for which S c M .  We have Co T i f f  there are reachable markings  M ,  M t for 
which M T ~ M q  

3.3.4  D e f i n i t i o n .  Write Occ  for the category of occurrence nets  with net  morphisms.  

We observe two propert ies  of morphisms between occurrence nets  which we shall use later. 

3 .3.5 L e m m a .  Let  No = ( B o , E o , F o , M o )  and N1 = ( B , , E 1 , F I , M , )  be occurrence nets.  Le t  
(71, fl) : No -* N1 be a morph ism.  Then 

(i) boflbl & bl E M1 =:~ bo E Mo and 
(ii) boZb, ~ ~F~b~ ~ 3:~o. ~(~o) = ~ & ~oFo~o. 

Proof. 
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(i) Assume bomb1 & bl E M: .  If bo ~ M0 then eoFobo for some event co, which by the 
properties of morphisms implies there is some event e:Flbt - - imposs ib le  as bt C M1. 

(ii) Assume bo~bt & elF:b1. As (r/,~) is a morphism b0 C Mo so there is a unique event eo 
such that  eoFobo. By the properties of morphisms rt(eo)F:b~ and so r/(eo) = e: ,  the unique event in 
*b~. I 

As a corollary we see that  morphisms between occurrence nets reflect F-cha ins  and conflict in 
the following sense. 

3 .3 .6  L e m m a .  Let No = (Bo,Eo,  Fo,~lo) and Nt = ( B t , E I , F ~ , M ~ )  be occurrence nets. Let 
(77, ~) : No --+ N: be a morphism. 
(i),r 

b(~)~ o(~)~(~ -l) ~(o) L, _(o) 
[ Z'lCl Ul " ' ' ( J l  Z'lCl 

is a chain in N1 and r/(e (°)) = e~ °), with eg') E Eo, then there is a unique chain 

b ( • )  ~. _ ( , ~ ) : ( , ~ - : )  : (o )  r. _(o) 
0 rOgo ~0 " ' " UO rOCo 

~(')'~(') , (C)  d ') in No such that ~o ~'~l and = [orO < i < n. 
(ii) For events eo,e~ of No and e l ,e  i o f  N: and conditions bo,b~o of No and b:,b i of Nt  : 

' a: el # e'l v ,  eo#e'o, ~(~o) = el a~ '7(go) = q 

bo~bl *~ b~,~b~ a: b: # b', ~ bo#b'o. 

(iii) For events co, e~o of No and e l of  N: and conditions bo, b~o of  No and b: of  N:: 

~(~o)  = ~l ~ . ( 4 )  = e l  - ~o = 4 or  ~ o # 4 ,  

bo~b 1 ~5 blo~bl ::~ b 0 : bto or  bo~:~blo , 

Proof. 

(i) The proof proceeds by induct ion down the chain bl n) Fle~n)b~ ~ -1 ) . .  .b~ °) Fte~ °) We are given 
h(o) a~,( o ) 

r/(e(0 °)) = e~ °). By the properties of morphisms there is a unique condition b(0 °) such that  ~0 ~' ' :  " 

Now by the above lemma there is a unique e(o l) such that  ~(e(o t)) = el :). Continuing we obtain the 

result. Notice, by the lemma, if b{ n) is marked initially then so is b(o =). 

(ii) Suppose e,,e~ are two events in conflict with r/(e0) = e: and r/(e~) = e~. Then this can only 
t :F1%.  arise through two events t:,t~t being in immediate conflict with t : F l e t  and ' * ' So t t # m t ~  i.e. 

t :  ¢ t~ with b:Fl t l  and b:F:t~ for some condition b:. But then two simple applications of part  (i) 
= toF o %. yield events to,t~o in immediate conflict (with r/t0 t :  and ~t~) = t~) so that  toF~)eo and ' * ' 

This makes eo # e~). The same argument  works to show: If bo/3bl and bPo/3bl and bl # b~ then bo#bto . 

(iii) Suppose r/(eo) = rl(eo') are defined and equal e,. There is a chain 

c~ F: d~ . . . d: Ft coFl do 

in N1 with do = ex and cn E M: .  Applying part  (i) we obta in  chains 

b,~ Foe~ . . . et FoboFoeo and 
! t ! ! ! b, F o % ' "  e 1E?boFoe o. 
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such t h a t  r/(e~) -- ~(ei ' )  = di and  bi~3ei and  bJj3ci for 0 < i < n and  °b,~ = °b,~' = "e,~ = 0. As 
f is a morph i sm,  ~op is a funct ion  when  res t r ic ted  to ini t ial  mark ings  so bn = b,J. We can  now 
show e 0 ( #  u1)e~. Suppose e0 ¢ e~. T h e n  the  chains  leading up  to these events  mus t  differ a t  some 
earl iest  point ,  giving rise to one of these two s i tua t ions :  

ei = e l' & bi-1 ¢ bi 1 (1) 

for some i < n. Case (1) is impossible  as f/or shou ld  be  a funct ion  res t r ic ted  to di ° --* ei °. The  
remain ing  case, case (2), implies e~ and  e~ are in immed ia t e  conflict so e0 ~ e~. The  same a r g u m e n t  
shows condi t ions  wi th  the  same image mus t  e i ther  be equal  or in conflict. | 

There  is a na tu ra l  idea of dep th  of an  e lement  of an  occurrence  net ,  useful to prove proper t ies  
of occurrence nets  by induct ion.  

3 .3 .7  D e f i n i t i o n .  Let N = (B,  E ,  F , M )  be an  occurrence  net.  Induct ively  define the  depth of an  
e lement  x E B U E as follows: 

For b E M take depth(b) = 0; 
For e E Z take depth(e) = max{depth(b) ] bFe} + 1; 
For b E B \ M take depth(b) = depth(e) for t h a t  un ique  e such t ha t  eFb. 

3 .3 .8  P r o p o s i t i o n .  An occurrence net N = (B,  E,  F, M )  is the /eas t  upper bound, with respect to 
the subnet order,  of its subnets  N ('~) of  depth n i.e. Define N (~) =def (B(n), E(n), F(n), M) where 

B (~) = {b e B I depth(b) ~ n} 

E (~) = {e e e I depth(e) <_ 4 }  

xF(~)y  t:~ x , y  E B ('~) U E (~) & x F y .  

Then N (~) is a subnet  of  N and N = U ~ N ( ~ ) - - t h e  coordinatewise union of the  ne t s  N (n). 

Proof. Clear. | 

3 . 3 .9  T h e o r e m .  Let N = ( B , E , F , M )  be a safe net .  There  is a unique occurrence net  ~/N = 
(Bo ,Eo ,Fo ,Mo)  with a folding f = (r/ ,~) : L/N --+ N which satisfies: 

B o =  {(O,b) [ bE  M } u { ( { e o } , b )  [ eoE Eo & b E  B & ~?(eo)Fb}, 

E 0 =  {(S,e)  I S C B o  & Co(S) & e e E  & ~ S = ° e } ,  

x F o y v ~  3w, z. y =  (w,z )  & x C  z, 

M 0 = { ( O , b )  [ b E M } ,  

and 

eo~e ¢~ 3S  C_ Bo. eo = (S ,e) ,  

b o ~ 3 b ~ b E M  & b 0 =  (0,b) or 3 e 0 E E 0 .  b 0 =  ({e0},b).  

Proof. The  existence is shown by giving an  induct ive  definit ion.  It  is rout ine ,  tedious  and  omi t ted .  
The  uniqueness  follows because  every e lement  of an  occurrence  ne t  has  finite dep th .  | 

3 . 3 . 1 0  D e f i n i t i o n .  Let N be a safe net .  Define its occurrence net  unfolding, ~/(N), to  be  the  
unique  net  and  folding m o r p h i s m  t h a t  satisfy the  r equ i rement s  of t heo rem 3.3.9 above.  
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3.3 .11  E x a m p l e .  This example illustrates a safe net together with its occurrence net unfolding. 
The associated folding morphism from the occurrence net unfolding to the original net is indicated 
by the inscriptions. 

Q 

3 

, u n f o l d >  

¢1 

A characterising property of the occurrence net unfolding is expressed in the following propo- 
sition. Roughly it says every possible occurrence of an event in the original net is matched by a 
unique event in the unfolding. 

3 .3 .12  T h e o r e m .  Let N be a safe net. The occurrence net unfolding ~l(N) and folding f = (~,fl) : 
ll(N) --+ N satisfy 

C o S  ~ # s  = "~ ~ ~ o  s = "eo ~ . (~o)  = ~, (*) 

where e is an event of  N and eo is an event and S a subset of  conditions of No. Further,  L/(N) and 
the folding f are determined to within isomorphism by (*) i.e. i f  f l  : N ,  ~ N is a folding from an 
occurrence net NI which also satisfies (*) then there is an isomorphism h : N1 "~ U(N) such that 

Ix = f h .  

Proof  Let N be a safe net. It is follows directly from their definitions that the unfolding ~/(N) of a 
net N and the folding f : ~/(N) -* N satisfy (*). 

To show uniqueness to within isomorphism, assume f0 : No -* N and f l  : N1 ---* N are foldings 
from occurrence nets No = (Bo, E0, F0, Mo) and N, = (B1, E l , / ;1 ,  &It) onto N which both satisfy 
(*), For an occurrence net O = ( B , E , F , M )  let O (~) = (B('~),E('~),F('~),M ('q) be the subnet  of 

conditions and events of depth < n, for n 6 w, and write f(~) and f ~ )  for the restrictions of the 

foldings to the subnets N (~) of No and N~ n) of N, ,  so f0(n): N (~) --* N and f [~ ) :  N~ n) -* N. 

We construct by induct ion on n e w isomorphisms h(~) = (rl(n),# (n)) : N (~) --* N~ n) which 
satisfy 

: So 
For the basis, define h (°) = (O, f l(°)) :  N (°) ~ N~ °) where 

bofl(°)bl ¢e, bo E Mo & bl E, M1 & flobo = fllbl.  

Certainly, ].1(o) h(O) = f(o) because #o, and il l ,  restrict to 1-1 correspondences between the initial 
markings Mo and M, and M1 and M respectively, and hence fl(o) is a 1-1 correspondence Mo ~ MI .  
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Now for the  step in the  induct ive  defini t ion,  assume h (~) to  be defined so t h a t  h( 'q  is an  i somorph i sm 

and  f~n) h(n) = f ( ,q .  Take h (~+~) to be a pair  of re la t ions (r/('~+~),fl(~+a)) given by: 

eorl(n+l)el if ~o(eo )  = r / l (e~)  & f l ( '~) 'eo = "e l ,  

bo/3(~+l)b~ if flobo =/~lb~ & r / (n+D'bo  = " b l .  

Of course, it needs to be shown t h a t  h (n+l) is an  i somorph i sm wi th  ~.(,+1) h(~+l)  = fo(,~+1). .11 

ve(~+l) such We first show ~/(~+1) is a 1-1 correspondence  between the  events of No (n+l) and  "'1 

t h a t  ~o(eo) = ,(~+1)~71(eo) for all events eo of N (~+1). Suppose e0 is an  event of N(o ~+1). T h e n  
r/o(eo) = e say. As fo is a m o r p h i s m  flo'eo = "e. Because eo has  dep th  at  most  n + 1, "eo consists  

of condit ions in No (~). Because h (~) is a m o r p h i s m  Co(fl('O'eo) in N~ ~) and  by c o m m u t a t i v i t y  
/31/3(n)s = floS = "e. By the proper ty  (*) of fL we see there  is a unique event el in N1 such t h a t  
"el  = fl(~)*eo and  t / l (e l )  = e. Thus  eor/(~+i)el  for some eL. It is unique because if e0r/( '~+l)el,e~ 
t hen  from the  induct ive  a s sumpt ion  r/l(e~) = ~?l(e~), forcing eL = e~ by (*). Similarly, if eL is 

an event of N~ '~+l) there  is a unique event  eo such t h a t  eo~?(n+l)el. This  shows r /(n+l)  is a 1-1 

correspondence.  Clearly ~o (~+1) = ~?(~+L)~?I~+I) f rom the  defini t ion of r/(~+1). 

A similar a r g u m e n t  shows/3(~+1) is a 1-1 cor respondence  too. Let b0 be a condi t ion  of N (~+l) .  
T h e n  boflb for some b E B. The  case when  "b0 = 0 has  been  deal t  wi th  in the  basis of the  induct ive  

~ ( n + l )  As f0 is a m o r p h i s m  const ruct ion,  so we may  assume eoFobo for some unique event  e0 in - '0 - 
there  is some e wi th  eFb and r/0(e0) = e. By the  previous a rgumen t  r/(~+~)(e0) = el for some 

event eL of N~ n+l) .  As f l  is a m o r p h i s m  there  is a unique condi t ion  5l of N~ ~+1) so t h a t  blfllb. 
Now we see f rom the  induct ive  a s sumpt ion  t ha t  fl0/3(n+l)bl.  Moreover  such a bl is unique.  For, 
suppose bofl('~+l)bl,b]. T h e n  etFlbl ,b]  and  b~,b]13tb. But  then  bt = b] as f~ is a morph i sm.  Thus  

j3('~+~) : B (~+~) ---* ~R ("+t)  is a to ta l  funct ion.  Similarly, if b~ is a condi t ion  of N~ n+l)  there  is a 
unique condit ion b0 such t h a t  bo~('~+l)bl. Hence /3(~+l )  is a 1-1 correspondence.  Clearly f rom its 
definit ion f~( '+ ' )  = /~(n4-1)~ n4"l). 

Now we can define h = ((_J~r} (~), (_j~fl(n)) to ob ta in  the  required i somorphism No ~ N1. | 

3 . 3 . 1 3  T h e o r e m .  Let N be a safe Pe t r i  net.  Then the occurrence net unfolding ~l (N) and folding 
f are cofree over N i.e. for any morphism g : N1 --~ N with NI an occurrence net there is a unique 
morphism h : N1 --~ U(N) such t ha t  the following diagram commutes: 

~(N) f , N f '  
N1 

Unfolding extends to a functor ~/ : N e t  ---* Occ  which is a right adjoint to the inclusion functor 
Oec  --* N e t .  Further, this adjunction is a coreflection: the folding f : ~l (0) ~ 0 for each occurrence 
net 0 forms a natural isomorphism. 

Proof. Assume N = (B,  E ,  F, M )  is a safe net  which has  an  occurrence net  unfolding t /(N) = 
(Bo,Eo,Fo,Mo)  and  folding f = (r/0,/3o) : U(N) -+ N. Assume N1 is an  occurrence ne t  of the  form 
N1 = (BI ,E1 ,F1 ,M1)  and  t h a t  g = (r}l,/31) : N1 -* N is a morph i sm.  

It is convenient  to first es tab l i sh  necessary and  sufficient condi t ions  for there  to be  a m o r p h i s m  
making  the  above d i ag ram commute ,  and  then  later  to cons t ruc t  a pair  of relat ions which  is un ique  
so the  condit ions are satisfied. 
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Let h = (~.,fl) consist of a part ial  function ~? from E1 to Eo and a relation fl C_ B1 x B0. We 
show that  h : N1 --* U (N) is a morphism and g = / h iff the following conditions are satisfied: 

(I) , (e~) = eo ~ ~e ff E.eo = (fl'et,e) & r l l(el)  = e f o r  all co, e l ,  

(II) b~flbo ~¢. ~b~ B.bo = (rt*bl,b) & blfl~b for all bo, b~. 

Firstly suppose h is a morphism such that  g = / h. We show that  the conditions (I) and (II) 
must then be satisfied. 

(i) 

"=~." Let , ( e l )  = e0. Then because g = /h  we have ,1(e l )  = e for some e and S such that  
eo = (S,e).  However because h is a morphism we must  have S = fl°el, as required. 

"4=." Suppose eo = (fl*el,e) and y l ( e l )  = e for some e C E.  We first show eo C E0. Because h 
is a morphism Co(fi°el) and by the commuta t iv i ty  flo(fl°el) = ill°el = °e. Thus eo = (fl*et, e) E Eo, 
and rio(co) = e. By commuta t iv i ty  ~(el)  = e~ and ~o(e~) = e for some e~ e Eo. As h is a morphism 
°e~ = f l ' e l .  Thus e~ = ( f l ' e l , e )  = co. Hence r/(ei) = co. 

(II) 

"=~." Suppose blflbo. Then by the commutat ivi ty ,  blfllb and boflob for some b E B. If "bl = 0 
then bl C M1 so bo E M0 and °b0 = 0. Otherwise °bl = {el}, for some event el,  so as h is a 
morphism ri(el) = co, for some co, and °bo = (co}. In either case bo = (y*bl, b). 

"4=." Suppose bo = (rl*bl,b) and blfllb for some b E B.  Either bl C MI or °bl ¢ 0. Assume 
b1 E M1. Then  bo = (0, b) E 54o. As h is a morphism there is some b] C M1 such tha t  b]flbo. 
As g is a morphism bl = b] so blflbo as required. Now assume the other  case, that  °bl ¢ 0 and 
let el be the unique event such that  elFlbl. As g is a morphism ~71(el) = e and eFb, for some e. 
By the commutat iv i ty  r/(el) = e0, for some e0. Thus b0 = ({e0},b) E B0 and eoFobo. As h is a 
morphism there is some b] so that  b]flbo and e~Flb]. Therefore by the commuta t iv i ty  b]fllb. Thus 
both elFlbtl with b]fltb and elFlbl with blfllb. But,  then as g is a morphism, bl = hi. Therefore 
blflbo as required. 

Thus we have shown that  if h : N1 --~ ~/(N) is a morphism such that  g = fh  then the conditions 
(I) and (II) are satisfied. Now we show the converse, that  the conditions (I) and (II) ensure that  h 
is a morphism such that  g = / h .  

Suppose the conditions (I) and (II) are satisfied. First.we show h is a morphism h : Nt --* U(N). 
We check that  the conditions (i), (ii) and (iii) of proposit ion 3.1.9 hold: 

(i) Clearly, by ( I I ) , i fb l f lb0  & b, C M ,  thenb0 = (0,b) E M 0 .  Also, if we assumeb, ,b~ E M t  and 
blflbo and b~flbo then, by (II), blfi~b and b~fl~b for some b which implies bl = b~, as g is a morphism. 

(ii) Suppose rl(el) = co. 

Assume eoFobo. Then,  by (I), eo = (fl*el,e) & rh(e , )  = e for some e E E.  From the definition 
of the unfolding, eFb & bo = ({eo},b) for some b E B. As g is a morphism elF~bl and bv31b for 
some unique condition bl E B1. Therefore,  by (II), bl is the unique condit ion such that  blflbo and 
elF 1 bl, as required. 

Assume boFoeo. Then,  by (I), e0 = ( f l ' e l , e )  & rh(e l )  = e for some e C E.  By the properties 
of the unfolding, b0 C / / ' e l .  Thus blflbo & blFlel for some b~ C B1. We also need the uniqueness 
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of bl. Let flo(bo) = b. Assume b~flbo & b~Flel for some b~ E B1, Then  by (ii) b~fllb, which 
combined with b~Flel implies b~ = bl as g is a morphism. So, as required bl is unique so that  
bilbo & blFlel .  

(iii) Suppose blflbo. 

Assume elFlbl.  As g is a morphism, .1 (e l )  = e and eFb for some e E E.  By (II), bo = (.*bl,b) 
and blfllb for some b E B. By the definition of the unfolding, eoFobo and rio(e0) = e for some 
eo E So.  Thus , ' b l  = ri{el} = {eo}. Hence , ( e l )  = eo. 

Assume blF~el for e~ E E~. By (II), bo = (.°b~,b) & blfllb for some b E B. As g is a 
morphism bFe & rh(e l )  = e for some e C E.  "Fake eo = (fl°el,e). Then,  by (t), , ( e l )  = e0, and 
clearly boFoeo. 

Now by proposit ion 3.1.9 we can conclude h is a morphism N1 ---* ~/(N). In addition, we require 
the commutat iv i ty  g = f h i.e. ( r h , f l )  = (,0,fl0) (ri,fl). These follow from (I) and (II) by the 
following arguments: 

Suppose ~]o,(el) = e. Then , ( e , )  = eo and ,o(eo) = e for some eo ff Eo. By ( I ) " ~ " ,  
r i l ( e l )  = e. N o w  s u p p o s e  . 1 ( e l )  = e. T a k e  e0 = (fl°el,e). T h e n  b y  ( I ) " 4 = "  . ( e t )  = co. Therefore 
(rio r/)el = ,o(eo) = e. Combining these results we see rio, :- ,1 .  

Suppose bl(flof)b. Then bilbo and boflob for some bo E Bo. By (II)"=~", this implies blfl~b. 
Suppose blfllb. Take bo = ( ,*bl ,b) .  Then  by ( I I ) " ~ "  b0 E Bo and so boflob. Therefore bl (f0 f)b.  
Combining these results we see f/off = ill- This completes the proof that  g = f h. 

We have completed that  part  of the proof showing that  h : N1 -+ U(N) is a morphism and 
g = f h  iff h satisfies (I) and (II). Now it remains to show that  such a morphism h exists and 
moreover is unique. 

We show the existence of such an h by giving an inductive defini t ion--see [Acz]. Define h = 
( , , f l )  to consist of the pair of smallest relations , C E1 x E0 and fl C- B1 x B0 which satisfy: 

eo = ( f ° e l , e )  & . 1 ( e l )  = e : : ~ . ( e l )  = eo and 

bo = (y'bl,b) & bl f lb  ~ blflbo. 

This inductive definition provides a least h = ( . ,  f )  which satisfies (I) and (II). (Note the inductive 
definition has closure ordinal ~ because we assume an event depends on only a finite number  events.) 
Thus by our previous work h : N1 ~ ~/(N) is a morphism for which g = fh .  

The ult imate step in the proof is to show that  the h defined inductively above is the unique 
morphism h : N1 --* L/(N) for which g = fh .  Suppose h '  = (e,a) were another  morphism such that  
g = fh ' .  Then it too would satisfy (I) and (II). Consequently by the definition of h, ri C e and 
fl C a. The converse inclusions are established by induction on the depth  of the conditions and 
events of NI: 

Zero Depth: Clearly if bl ~ M1 and blabo then, as a satisfies (II), bilbo too. 

Nonzero Depth: A s s u m e  ~e~ = eo w h e r e  &pth(~l) = n + 1. As  ~ sat i s f ies  (I) w e  have  ~o = ( ~ ' e , ,  0 

and rh(el )  = e for some e E E.  Each condit ion in a ' e l  has strictly less depth  than n + 1. Thus 
a*el = fl*el so a s ,  satisfies (I) we obtain ri(el) = e0. Assume blabo where depth(b1) = n + 1. As a 
satisfies (II), bo = (e°bl,b) and blf~b. Here the unique event el such that  elF~bl has depth n + 1. 
By the argumefit just  given exee0 4~ , ( e l )  = e0, Because ri satisfies (II) we obtain btflbo. 
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This induction shows that e _C ,7 and a C ~ which together with the previously shown converse 
inclusions yields h = h'. We have established the existence and uniqueness of a morphism h : N 1 -~ 
/2 (N) making g = fh .  

Finally, we conclude that U (N), f is cofree over N. The adjunction follows from the cofreeness-- 
see [Mac, p.81]. Clearly each folding f : t/(O) --* O, for O E Oct,  is an isomorphism, so the 
adjunetion is a coreflection. | 

3.3.14 Corol lary.  The unfolding operation on safe nets preserves limits, in particular it preserves 
products. Thus the unfolding of the product (in Net)  of two nets U(N0 × N1) is isomorphic to 
the product (in Oce) of the unfoldlngs U(No) ×oct U(N1). To within isomorphism, the product of  
two occurrence nets No ×oct N1 in Occ is the net •(No × N1). The inclusion functor Occ -~ N e t  
preserves colimits and in particular coproducts. The category Oct  has coproducts which coincide 
with those in Net.  

Proof. As remarked (see {Mac]) right adioints preserve limits and left adjoints preserve colimits. To 
prove the result characterising product in Occ note that the unfolding of an occurrence net yields 
an occurrence net isomorphic to the original. Because the inclusion functor Occ ~ Ne t  preserves 
colimits, it follows directly that coproducts in Oct  coincide with those in Net .  | 

'Now we consider coproducts further. The next example shows that the unfolding need not 
preserve coproducts however. 

3.3.15 Example .  This example is essentially the same as that given in [W3] for a category of 
transition systems where unfolding yields a tree. The unfolding of the net is of course itself. 

The isUnf°lding of the net ~ 

® - tD " - -  

The coproduct of their unfoldings in Occ and the unfolding of their coproduct in Net  are: 

Of course we can restrict to subcategories of nets so that unfolding does preserve coproducts. 
A subcategory for which this is true is that for which nets satisfy: every condition in the initial 
marking has no pre-events. 

3 .4 ,  O c c u r r e n c e  n e t s  a n d  p r i m e  e v e n t  s t r u c t u r e s .  

We show the relationship between the category of occurrence nets and a full subcategory of 
prime event structures. We show that constructions given in [NPW] determine a coreflection from 
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these event  s t ruc tures  to  nets.  This  p leasan t  categorical  s e t - u p  extends  t h a t  of the  previous  sect ion 
and  makes  i t  easy to relate  semant ics  given in t e rms  of nets  to  those  in t e rms  of event  s t ruc tu res ,  
s table  families,  f ini tary pr ime  algebraic domains  and  trees,  and  t h r o u g h  t h e m  to o the r  models  like 
the  pomset  model  of V . P r a t t  [Pr] and  the  behaviour systems of M.Shields [Sh 1. 

Clearly an occurrence net  de te rmines  an  event  s t r uc tu r e  [NPW]; jus t  s t r ip  the  condi t ions  away 
bu t  r e m e m b e r  the  more abs t r ac t  causal  dependency  and  conflict re la t ion they induce.  

3 .4 .1  D e f i n i t i o n .  Let N = (B,  E ,  F, M )  be an  occurrence net.  Define go(N) = (E,  Con,  F + IE)  
w h e r e X E C o n i f f X ~ f i n E  & V e ,  e I ~ X.  ~(e Cp e'). 

A m o r p h i s m  between occurrence nets  N and  N ~ consists  in par t  of a par t ia l  funct ion  r! : E ~ E '  
between the  associated sets of events.  The  par t ia l  funct ion rt is a m o r p h i s m  on the  associa ted event  
s t ruc tures .  

3 . 4 . 2  L e m m a .  Let (~?,fl) : N o  -~ Nt be a morphism between occurrence nets. Then ~ : go(No) -+ 
go(Nt) is a morphism in P.  

Proof. Assume No = (Bo ,Eo ,Fo ,Mo)  and  Nt = (B~,Ea, F~,M1). We are required to show: 

V x C  ~go(N0).  ( r /xC ~ ' o ( N 1 )  & (Ve, e t E x. r/(e) = tl(e t) 7 £* =~ e = et)). 

Let x E £go(N0).  

Consider  r/x. Suppose elF~e] ~ rlX. Then  r/(e~) = e~ for some event  e~ e x. By l emma  3.3.6 
(i) the re  is some event eoFde~o such t h a t  r/(eo) = et. Hence rtz is left closed. If two events  et,e~ in 
~x are in conflict  t hen  by l emma  3.3.6(ii) this  can only arise t h rough  two events  events  e0, e~ ~ x 
being in conflict, which is impossible  as x is consis tent .  Thus  x is cons is tent  and  lef t-closed so 
~x E £go(N ' ) .  By l emma 3.3.6 (iii), because x is cons is ten t  it follows t ha t  each event  in r/x is the  
image u n d e r  7? of a unique event  in x. | 

3 .4 .3  C o r o l l a r y .  The operation £o extends to a functor Oec -* P from occurrence nets to prime 
event structures by defining £o on morphisms (~, [J) by £o(rh fl) = rl. 

Proof. We have seen go(f) : go(N0) --* £o(Nt)  is a morph i sm.  Clearly go preserves identi t ies  and  
composi t ion  so it is a i~nctor .  | 

R e m a r k .  Note t h a t  now we not  only have a functor  £o : Oce  --+ P f rom occurrence  nets  to event  
s t ruc tu res  bu t  also the  functor  go~/: N e t  ~ P ,  t r ans l a t ing  a rb i t r a ry  safe nets  to event  s t ruc tures .  

The  pr ime  event s t ruc tu res  de te rmined  by occurrence nets  have a special form; the i r  consis tency 
predicates  are induced by a b inary  conflict re la t ion and  the  cons is tent  sets are precisely those  finite 
sets which are conflict free. We focus on the  cor responding  subca tegory  of P .  

3 .4 .4  D e f i n i t i o n .  Let (E, Con,<_) be a pr ime event  s t ruc ture .  Define the  conflict relation # 
between events  e, e' by 

e # e' ~ (e, e'} ~ Con. 

3 .4 .5  P r o p o s i t i o n .  Let E be an  event structure. The conflict relation ~ is a binary, symmetric,  
irreflexive relation which satist~es 

e # e' <_ e" ~ e # e". 
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Proof. Clearly # is a binary, symmetr ic  relation. Because {e} E Con it is irreflexive. Suppose 
e' < e". Then {e, e"} E Con =¢~ {e, e'} e Con and hence e ~ e' =~ e ~ e". II 

For any prime event s tructure,  for a finite subset X of events, we have 

X C Con==> Ve,e'. ~e # e'. 

In the subcategory of interest the consistency predicate is determined by {he conflict relation. 

3 .4 .6  D e f i n i t i o n .  Define P #  to consist of those prime event structures E = (E,  Con, _<) for which 

X E Con ¢> X Ci~= E & Ve,e' E X. ~(e # e'). 

In this case we shall write E as (E, # ,  <).  

We characterise morphisms in pC# in terms of the conflict relations on event structures.  They 
preserve enablings and reflexive closures of the conflict relation. 

3 .4 .7  P r o p o s i t i o n .  A morphism between prime event structures (Eo, #o ,  <_0) and (Et ,  # , ,  _<l) is 
a partial function # : Eo --+. E1 such that 

ge e Eo. 8(e) is defined ::> {e(e)l C 8[e 1 & 

Ve, e ' C  E0. (e(e) # t  O(e') or O(e) : O ( e ' ) )  => (e # ,  e' or e : e'). 

Proof. Directly from earlier characterisations of morphisms on prime event structures specialised to 
this case. I! 

By the definition of 1 ~ we have a functor £o : Occ  ~ W .  It is natural  to ask if, conversely, 
an event structure in 1 ~ can be identified with an occurrence net. Of course we would like every 
morphism between event structures to correspond to net morphism between the associated nets. We 
seek a functor )4 : P --~ O c c  which "embeds" the category of event structures in the category of 
occurrence nets, so ~oJC(E) is natural ly  isomorphic to the original event s t ructure  E .  Ideally, we 
would hope that  Co would be a right adjoint to N making a coreflection. This is indeed the case and 
we have all the benefits explained earlier. We explain the construction of N, a minor modification 
of that  in [NPW]. 

An event s t ructure in P #  can be identified with a canonical occurrence net. The basic idea is 
to produce an occurrence net with as many conditions as are consistent with the causal dependency 
and conflict relations of the event structure.  But we do not want more than  one condition with the 
same beginning and ending events - -we  want an occurrence net which is "condit ion-extensional" in 
the terms of [Br t. Thus we can identify the conditions with pairs of the form (e, A) where e is an 
event  and A is a subset of events causally dependant  on e and with every distinct pair of events in 
A in conflict. But not  quite,  we also want initial conditions with no beginning events. 

3 .4 .8  D e f i n i t i o n .  Let E - (E,  # ,  _<) b e  a n  event structure.  Define X/(E) to be (B, E,  F , M )  where 

M = { ( 0 ,  A) t A C E  & (Va, a' E A. a (#  U1)a')} 

B = M U { ( e , A )  t e ~ E  & A C E  & (Va, a ' E A . a ( ( # U l ) ) a ' )  & ( V a e A .  e < a ) }  

f = {(e,(e,A)) I (e,A) • B} u {((c,A),e) I (c,A) e B & e e A}. 
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The proof of the coreflection between occurrence nets and event structures uses the following 
notat ion and lemma which expresses a property of the relation between conditions in a morphism 
between occurrence nets. 

3 .4 .9  N o t a t i o n .  Let ( E , # ,  <)  be an event structure.  Define 

LLoJJ = E and 

[[{e}Jj = (e' e E I e < e'}. 

We also use this notat ion for occurrence nets with the understanding that  it applies to the underlying 
event structure. 

3 .4 .10 L e m m a .  Let h = (rl,3) : No ---* N: be a morphism between occurrence nets. I f  bo3bl, for 
conditions bo, b:, then 

( r e  eFobo ~ ,7(~)F,b,) a < "  = ( ~ - : b l ' )  n [[('bo)]]. 

Proof. Suppose bo3b:, for conditions bo,bl. Directly from proposit ion 3.1.9 we see (Ve. eFobo ¢=~ 
rl(e)Flb:) and bo ° C ( r / - :b :  °) M [[(°bo)jJ. Take e ~ ( r / - ' b l  °) n [[('bo)Jj. We show e E bo ° and hence 
establish the converse inclusion. There are two cases: when °bo = 0 and when °bo ~ 0. Assume 
first *bo = 0. In this case b0 E Mo and b: E M1. Because y(e) C b:" and as h is a morph ism there 
is a b~ with b~oFoeo and b~o3b:. By the property of morphisms on initial markings we must  have 
bo = b~. Hence in this case e E b0 °. Now assume the other  case, that  °bo 7 G 0. Then  °bo = (eo} 
and °bl = {r/(eo)} for some eo. Also rl(e) e bl °. Because h is between occurrence nets, by temma 
3.3.6, there is a b~ such that  eoFob~oFoe and b~o3b:. But now as h is a morphism bo = b~. Hence 
e E b0 °. Thus in either case we have established the required converse inclusion and so shown 
bo ° = (T- :b :  °) n LL(Obo)jj. I 

This t ime it is easier to establish the coreflection by showing the freeness of the occurrence net  
associated with an event structure.  

3.4.11 Theorem. Let E be an event structure in P#. 
Then J¢(E) is an occurrence net. Moreover, £oJ4 (E) = E. 
The net )F(E) and identity function l s  : E -+ £oN(E) is free over E with respect to Co i.e. for 

any morphism ~ : E -* Co(N) in P# there is a unique morphism h : X(E)  -~ N in Oec  such that 
Co(h)  :~ = ~ (i.~. co(h) = 7).  

Proof. Let (E,  # ,  _<) be an event structure.  It is easy to see X/(E, ~ ,  <) is an occurrence net and 
& ~ (E, # ,  <) = (E,  # ,  <). We prove freeness. 

Let N E O¢c and r / :  E --* Co (N) be a morphism in P~.  Define h = (r/, 3) by taking 

bo3b: <* (W ~Sbo ~ ~(~)F~b,) ~ bo" = (~-%') n l[('bo)]j, (:) 

for b o a  condition of No and bl a condit ion of N. We require that  h : ~ ( E )  --~ N is the unique 
morphism such tha t  Co(h) = ,7. 

To show h is a morphism we use the characterisat ion of proposit ion 3.1.9 and show h satisfies 
the conditions (i), (ii) and (iii) wri t ten there. 

( i ) I f ' b0  = 0 then %1 = 0 so 3M0 C Mi .  Let bl E M1. Take b0 = (0, r / - : b l ° ) .  Then  b0 E Mo 
because r / - lb l  ° is pairwise ( ~  u1), and bo3bl by (1), the definition of 3. Suppose b~o3bl and 
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b~ • Mo.  Then °b~ = °bo = 0 and b~ ° = ( r / - l b l  °) N LL(°bS) H = (~-161") n LL(°bo)j] = bo °. By the 
condit ion-extensionali ty of JY (E) we obtain b0 = b~). 

(ii)  A s s u m e  , ( e o )  = e l .  

If bo • eo ° and bo3bl then °hi = r/'bo = {et}. Hence 3eo ° C et °. Let bl E el °. Take 
bo = ({eo}, r / -%l  ° N [[{eo}]]). Then  b0 E B0 by the properties of morphisras on event structures.  
Also bo C eo °. Suppose bro~bl with b~ ~ eo °. Then °b~ := °b0 = {eo} and b~ ° = ( r l - lb t  °)N [~(°b~)lJ = 
( r l - tb l  °) n l[e0]j = b0 °, By condit ion extensionality b~ = bo. 

Suppose b0 e °e0 and bo3b,. Then e0 E bo" = (r / - tbl  .) N kk('bf0jA so e~ = 0(~0) ~ b," which 
makes bt E *et. Hence 3%o c "et. Let bl • "et.  Consider the two cases: "bl = 0 and "bl # 0. If 
"bt = 0 take bo = ( 0 , ? - t b l ' ) .  Otherwise "bl = {e'}, say. Because r/ : E ~ ~'o(N) is a morphism of 
event structures rl(e) - e' for some e • E.  In this case take bo = ({e}, (r/ lb l"  ) N [~eJ]). In either 
case bo • Bo and by (1) we see bo3bl. Assume b~o[3bl. Then from (1), the definition of 3, we s e e  
" ' b ~ "  = = b o = "bo and bo*. By condit ion-extensionati ty b~ bo. 

(iii) Now suppose bo3bl. If eoFobo then by (1), rt(eo) is defined and ,l(eo)Ftb,. If boFoeo then 
eo • bo" C ? - t b  1. so ?(Co) is defined and blFl~(eo). 

By proposition 3.1.9, we conclude h - (r/,3) is indeed a morphism N(E) -+ N. 

It remains to show that  h : ~ (E) --+ N is the unique morphism such that  ~o (h) = ~7. We do this 
by showing that  any such morphism f = (? ,3 ' )  : ) /(E) --~ E must satisfy (1) i.e. 

bo~tb t ~ (re. eFob 0 ~;~ ? ( e ) F l b l )  ~ bo a ~- ( ~ - l b l ° )  r~ LL('bo)j3. 

which makes/3 '  = 3 so S = h. By the lemma above any such morphism S must satisf~ 

bo[3'bl ~ (Ve. eFobo ~ ?(e)Flbl) & bo ° = ( r / - Ib l  °) n [[(°bo)jJ. 

To show the converse assume (Ve. eFobo ¢* r/(e)Flbl)  and bo ° = ( r / - lb l  °) n L[(°b0)]j. Because f 

is a morphism, b~o3'b~ for some b~) with °b~ = %o (consider the two cases %0 = 0 and °bo ¢ 0). 
By the lemma above b~) ° = ( r / - lb l  °) rq [W(°b~))]] := (r / - tbt  °) N lL(*bo)jj = bo °. By the condition 
extensionality of )¢(E), b0 = b~) so bo3'bt. Thus 3 '  satisfies (1). Hence 3 '  = 3 so f = h, establishing 
uniqueness. II 

Thus there is a coreflection between event structures and occurrence nets with Co as its right 
adjoint and J¢ as its left adjoint. This composes with the coreflection between occurrence nets and 
safe nets to give a coreflection between event structures and safe nets. 

Reasoning in the same way as we did for the coreflection between N e t  and Occ ,  we see, for 
instance, 

Co(N0 xocc N,) ~ Co(N0) Xp ~o(N1) 

Eo xp E1 ~- ~oU(~(Eo) × ~  X(E1)) 

So +p E1 ~ go~l(N(Eo) +Net J¢(E1)), 

which translates constructions in one category to constructions in the other, giving the product and 
coproduct  in 1 ~ in terms of the product  and coproduct  in N e t .  With extra labelling structure on 
nets one can carry out  the construction for parallel composit ion and the other constructions needed 
for P r o c L p r e t t y  much as before, secure in the knowledge of how the different models and semantics 
are related. 

We can summarise how the different categories are related in a diagram where all funetors are 
left adjoints. The functor P --+ pC# is a left-adjoint  to the inclusion functor pC# __~ p ;  it takes an 
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event structure (E,  Con, <) in P to the event s t ructure (E,  (¢, <) in P # .  This and the adjunctions 
involving transi t ion systems T S  and event structures in general Eg are not proved here. The  
inclusion functor identifying trees with a certain kind of transit ion system has the unfolding functor  
as a right adjo in t - -see  [W3]. The-inclusion functor E -+ Eg from stable event structures to general 
event  structures has a right adjoint which essentially makes enough copies of the events to ensure 
the stability condition. 

T --+D +-- F --+ E --~ Eg 

T S  P 

1 ~ ~ Occ  -~ N e t  

In particular the functor P ~ ' o ~  : N e t  ~ D translates safe nets into domains, and we can ask what  
properties of domains correspond to what properties of nets. There is a result relating confusion in 
nets to concreteness in domains. Say a net is not confused iff there no reachable marking at which 
either symmetric or asymmetr ic  confusion occurs. 

3 .4 .12 T h e o r e m .  Let N be a safe net. Then 

P3r£oU (N) is concrete iff N is not confused, 

Proof. See [NPW] for art account and [W] for the full details. II 

P a r t  4 .  H I G H E R  T Y P E S .  

As motivation the ful l-abstract ion problem for typed A-calculi is introduced. This motivates  a 
more operational approach to domain theory. It is shown how event s tructures can be used to model  
datatypes of functions and functions on functions e tc . .  Using another  definition of morphism event  
structures can be made into a cartesian dosed category equivalent to one discovered by G.Berry. In 
this category functions are not  ordered extensionatly, .by the pointwise order, as in Scott ' s  category 
of domains but intensionally, by the stable order, which takes into account the manner  in which 
they compute.  It is indicated how a model of the A-calculus can be constructed. 

4 .1.  B a c k g r o u n d .  

At first sight it is perhaps rather remarkable that  event structures should provide models for 
programming languages with higher types such as the typed or untyped A calculus. For one thing 
it is not immediately clear what  an event at higher type is. More strikingly, the well-known models 
for such languages originating with D.Scott  make essential use of a part icular  function space con- 
struction on domains, that  formed by taking the set of continuous functions ordered pointwise. This  
construction quickly takes domains outside the finitary ones, and as we have seen all domains deter- 
mined by event structures are finitary. Nevertheless there are forms of function space const ruct ion 
on event structures,  yielding cartesian closed categories of event structures.  The one we shall define 
gives rise to a different function space constructions on domains, and is associated with a more 
restricted class of functions than  just  those which are continuous, and the ordering on functions is 
different too. 

In IPI, Plotkin uncovered the ful l -abstract ion problem for PCF,  a programming language, built  
around a typed lambda calculus with f ixed-point  operators,  whose terms at ground type - -ca l l  them 
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programs---compute integers or t ru th  values. We explain the problem briefly (refer to [B, C, W], 
especially {C], for more details). Plotkin defined a natural  preorder on terms. In P C F  only programs 
can yield definite results, and terms at higher type are of interest only in so far as they are parts 
of programs. It is natural  to regard two terms (of the same type) as operationally equivalent iff 
they can be freely subst i tuted for each other  in any program without  changing its output  behaviour.  
Formally define the equivalence relation to hold between terms M and N of the same type by 

M - N iff for all program contexts C[ ] either the evaluations of both 
C[M] and C[N 1 diverge or they converge to the same v~lue. 

More generally, an operational  preorder can be defined by taking 

M ~ N iff for all program contexts C[ } if the evaluation of C{M l 
converges to a value then so does that  of C{N] converge to the same 
value, 

A denotat ional  semantics also provides a preorder on terms. Write M E N iff the denotat ion of M 
is below that  of N.  Ideally one would hope that  the two preorders, operational and denotational,  
are equal. In such a case it is said that  the denotational  semantics is fully abstract. 

Unfortunately, as Plotkin showed, the obvious denotational  semantics for PCF,  interpreting 
higher types using the space of all continuous functions, does not lead to a fully abstract  model.  
Plotkin produced two terms which were operationally equivalent but  denotationally distinct through 
acting differently on "parallel or".  "Parallel or" is a function which takes a pair of t ru th  values 
including ± for "unknown" and gives value "true" if either argument  is "true".  "Parallel or" existed 
as a function in the domain but could never be defined in the language or supplied in a program 
context.  Plotkin went on to show that  by extending PCF  to allow limited parallelism the obvious 
model became fully abstract.  Milner filled out the picture by showing there is a fully abstract  model  
for the original P C F  but  his method was essentially to construct a te rm model from the operational  
semantics. There r ema ined- -and  still r ema ins - - the  problem of providing a semantic construction 
of the ful ly-abstract  model. 

The  full abstraction problem led G.Berry, and following him P.L.Curien, on the quest to find 
a semantic characterisation of the concept of sequential function at higher type. They hoped to 
el iminate problematic elements like "parallel or".  Attacks on the problem led Berry to discover 
a range of new cartesian closed categories of domains. (Roughly, a category is cartesian closed 
iff it has products and function spaces--see [Mact. ) Here it will be shown how the simplest  of 
these, the category of finitary, distr ibutive domains (which Berry called the dI-domains)  with stable 
functions can be represented as a category of event structures. Other cartesian closed categories of 
event structures which are bet ter  approximations to the frilly abstract  model can be found in [W] 
and [BC, C]. I would especially like to highlight the work of Berry and Curien on CDS presented 
in [BC, C]. CDS, standing for "concrete data  s tructures",  is a programming language, which has 
been implemented,  in which the da ta  types are concrete data  structures and the computat ions are 
"algori thms",  in a technical sense, between them. CDS has an elegant mathemat ical  theory; concrete 
da ta  structures and algorithms form a cartesian closed category of objects intimately linked to event 
structures and so many of the concepts overlap those encountered in the study of Petri  nets. 

4.2. Higher - type  events.  

The simplest new cartesian closed category in [B 1 consists of the finitary, distributive domains 
with stable, continuous functions. As we have seen such domains are precisely those formed as the 
domains of configurations of stable event structures,  so we can get an equivalent category by taking 
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the objects to be stable event structures and the morphisms between event structures to be stable, 
continuous functions on the associated domains of configurations. (It is easily confirmed that it is 
indeed a category under the usual func~iorL composition.) 

4.2.1 Def in i t ion .  Define Estab to be the category with objects stable event structures and with 
morphisms from Eo to E1 the stable, continuous functions f : (br(E0), C) --~ (gr(E1), C) on their 
configurations, i.e. f is continuous and 

VXC_iT(E0) .X•0  & X t ~  f ( ~ X )  = ~ f X .  

Composition is composition of functions and identities are the identity functions on configurations. 

The product in the category is obtained very simply. The event structures are allowed to operate 
disjointly, completely in parallel, neither one having an effect on the other. It is easily defined for 
all event structures not just the stable ones. 

4.2.2 Def in i t ion .  Let E0 = (E0,Con0, [-0) and E1 = (El,COn1, F1) be stable event structures. 
Their disjoint product, E0 @ El,  is the structure (E, Con, [-) where the events are 

E = { 0 } x E 0 U { 1 }  x E 1 ,  

a disjoint union, the consistency predicate is given by 

X E C o n c : > { e  I (O,e) • X } e C o n o  & {e t (1,e) e X } E C o n l ,  

and the enabling by 

X ~ - e ~ X C C o n  & e C E  & 

[ (3eoeEo .  e = ( O ,  eo) & {e' I (O ,e ' )EX}  Noeo) or 

( 3 e l e  El .  e =  (1,el) & {e' { ( 1 , e ' ) e X }  k,  e,)l. 

Define the projections pk: 5r(Eo ® El) -+ 5r(Ek) by taking pk(z) = {e t (k,e) • x}, for k = O, 1. 

4.2.3 P r o p o s i t i o n .  Let Eo and El be event structures with events Eo, E1 respectively. Then 

x E 3r(Eo @ E,) ¢~ x C_ Eo • E1 & po(x) C 3r(Eo) & p,(x) E 7"(E,). 

There is a 1-1 correspondence between ~r(Eo G E,) and 3r(Eo) × 3r(El) given by 

. ~ ( p 0 ( x ) ,  p ,  (x)). 

The disjoint product is fl-continuous. 

Proof. Obvious. Routine application of lemma 1.6.9 gives the continuity of the disjoint product.  | 

Thus we can identify x, a conf igurat ion of a disjoint product,  with the pair (po(x),pL (x)). 

4.2.4 T h e o r e m .  The disjoint product Eo @ EL of stable event structures Eo and EL, with 
projections 7to, 7fl, is a product in the category E~,~b. 

Proof. Obviously the disjoint product of stable event structures is stable. It is easy to see that  
the projections are stable functions. The disjoint product is easily seen to be a product now its 
configurations are recognised to be essentially pairs of configurations of the components. | 
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To be cartesian closed we must somehow represent the space of stable, continuous functions 
f : Eo --~ E1 between two stable event structures E0 and E1 as an event s t ructure  itself. This  
is done by taking the events of a "function space" event s tructure to be basic parts of functions 
(x ,e )  standing for the event of output t ing e, an event of El ,  at input x, a finite configuration of 
E0. The function f will correspond to a configuration of events (x, e) in which x is a minimal  input  
configuration at which e is output.  

4 .2 .5  D e f i n i t i o n .  Let E0 = (Eo, Cono, No) and E1 = ( E h C o n l ,  ~-l) be stable event structures.  
Their  s tab le  f unc t i on  space, [E0 ..... Eli is defined to be the event structure (E, Con, i-) with events 
E consisting of pairs (x,e) where x is a finite configuration in 7(E0) and e e E l ,  a consistency 
predicate Con given by 

{(zo,eo), . . . , (~,,- , ,~,,- ,)}  e Con 
i f f V l C  { O , - - . , n -  1}. U , c i x i  C Con0 =~ {e, I i 6  I } ~  Con1 & 

V i , j  < n.  x i  T z i  & e, = e 3 ~ x ,  = x3, 

and an enabling relation given by 

{ ( x o , e o ) , . ' . , ( x ~ - t , e , ~ - l ) }  ~ (x ,e)  iff{ei [ x~ C x} I-1 e. 

4 .2 .6  P r o p o s i t i o n .  T h e  s tab le  f unc t i on  space o f  two  s t a b l e  even t  s t r u c t u r e s  is a s t a b l e  e v e n t  
structure.  T h e  s tab le  f u n c t i o n  space  c o n s t r u c t i o n  is ~ - c o n t i n u o u s .  

Proof .  Let E0 - (Eo, Cono, }-0) and E1 = (E1,Conl ,  ? t )  be stable event structures. Obviously 
their function space forms an event structure (E, Con, b). Suppose 

{(w~,a~) I i e  I} ~ (~,e), 
{(y~,b~) l J E J}  t- (x,e) and 

{(wi,ai) I i e r} v {(y,,b~) I J c J} v {(~,e)} e Con. 

Then,  by the definition of enabling and consistency in the function space, 

{bi I Yj C_ x }  ~-1 e and 

{a, I wi ~ 2::} LJ {hi I Y3 ~ ~2} U {e} ~ C o n  1. 

As E~ is stable {ai I wi  c_ x} N {bi I YJ c x} B~ e. By the definition of consistency on the function 
s p a c e  ai  - b 3:2~ w i  = y2 so  

( ( ~ , ~ )  [ i e  I} n { ( y ~ , b ~ ) I J e J }  ~ (~,~) 

Thus the function space is a stable event structure.  

It is easy to check [ -~ / is monotonic in each argument.  The operation obtained by varying the 
right hand side argument is obviously continuous on events. Because events in the function space 
are buil t  from only finite configurations so is that  for the left hand argument.  By lemma 1.6.9 the 
function space operation is <_-continuous. | 

R e m a r k .  Given two event structures Eo and El ,  not necessarily stable, a similar construct ion can 
be given to provide an event structure [E0 --% Ell ,  again not necessarily stable, whose configura- 
tions are in l d  correspondence with the continuous functions (7(E0),C_) -* (7(U0), C_). (This is 
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remarked in [G} though for the more restrictive category of qualitative domains.) However, unlike 
the stable function space, this construction will not be the exponentiat ion in the category of do- 
mains of configurations with continuous functions. The category of event structures with continuous 
functions between their associated domains is not cartesian closed by Smyth's  lemma 5 in [Smy], or 
Curien's theorem 2.4.13 and the remark that  follows in [C] (p.158-160). 

In fact the stable function space [Eo ~ Eli of stable event structures can be provided with a 
stable, continuous application function ap : [Eo ---* Ell • E0 ---* Ei  given by 

ap ( f , x )  = {e I • E1 ] ~x0 C .T. (.TO,el) • f}  

for f E 0V([E0 -+ Ell)  and .T E J'(E0). (We have identified (f, .T) with the corresponding configuration 
of the disjoint product.) As we shall see this makes the function space an exponent iat ion in the 
category Est~b. Firstly though it is helpful to show how the configurations of a stable funct ion space 
[Eo -~ Ell  correspond to stable, continuous functions 5r(E0) ~ Jr(El). 

4 .2 .7  D e f i n i t i o n .  Let Eo and El be stable event structures.-  
For F • Y'([Eo ---* Eli) define 

(¢(F))(x)  = {e E E~ I 3.T' C .T. (x',e) • F}  

for x E jr(E0). 
For f :  7(E0) --~ Jr(El) a stable, continuous function define tt(f) a subset of events of [E0 -~ E.t] 

by 
(x,e) E # ( f )  *~ e • f ( x )  & (Vx' C_ x. e • f ( x ' )  =:~ x' = x). 

4.2 .8  T h e o r e m .  Let Eo and Ei be stable event structures. 
(i) For r e 7([Eo ~ El]),  the function ¢(F)  : 7(Eo) ---* 7(E1) is continuous and stable. 
(i) For f :  7(E0) ~ 7(E1) a stable, continuous function, the subset U(f) C ~([~0 ~ ~1]). 
(iii) Further, ¢ and # are mutual  inverses giving a 1-1 correspondence between configurations 
7([Eo --~ Et]) and stable, continuous functions Jr(Eo) --+ Jr(E1). 

Proof. Assume Eo = (Eo,Cono, F-o), Ei  = ( E , , C o n l ,  ~-i) and the function space lEo --~ E l ] ' =  
(E, Con, ~-). 

(i) Firstly we check ¢(F)(x)  E 7 (E l )  when F E 7([E0 ~ El]) and x E J'(E0). So we require that  
¢(F)(x)  is consistent and secured in El .  

Suppose Y C fin ¢(F)(x) .  Write Y = {e0 , . . . , en -1} .  Then there are finite configurations 
xo . . . . .  x n - i  of Eo such that  (xo,eo) . . . .  , ( x , - l , e , - l )  E F and z o , . . .  , x , - x  C x. Thus Ui<,x i  E 
Cono and so as F is consistent in [Eo ~ El] we obtain Y = { e o , . . . , e n - 1 }  E Conl .  Therefore 
¢(F)(x)  is consistent. 

Suppose e E ¢(F)(x) .  Then. (x',e) E F for some finite configuration x'  of Eo. As F is a 
configuration of [E0 --* El],  so secured, there is a sequence (z0, e 0 ) , " ' ,  (x=, en) = (x', e) in F such 
that  { ( x o , e o ) , - ' - , ( X i - h e i - 1 ) }  ~- (xi,ei) for all i <_ n. Recall this means {e 3 ] j  < i & xy C xi} ~-1 
ei. Thus without loss of generality we may assume xi C x' for each i in the secur ing- -any  event 
(xi, ei) failing this can be removed to still leave a securing for (x', e). For such chains e0 . . . .  , e,~ is a 
securing for e in ¢(F)(x) .  

Hence ¢(F)(x)  is consistent and secured, and so an element of Jr(E1). This shows ¢(F)  Is a 
function 7(Eo) ---* 7(E~). It is obviously monotonic. Tha t  it is continuous follows because F consists 
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of events of the form (x, e) with z finite. Suppose X is a nonempty, compatible subset  of 3r(Eo). By 
the monotonicity of ¢ (F )  we see 

¢(F)(Nx) c_ N~ex¢(F)(~). 

Suppose e • N~Ex¢(F)(x ) .  Then  for any x • X there is a finite configuration m~ of E0 for which 
mz C_ x and (m~, e) • F.  The set {m~ I x • X} is compatible and as F is consistent each rn~ = m 
say for x • Z .  Now m _ N X  making e • ¢ ( F ) ( N X  ) as, of course, (m,e)  • F .  Therefore 

¢ ( F ) ( ~ X )  = rqzEx¢(F)(x) ,  

showing ¢(F)  is stable. 

(ii) Let f : 3r(E0) ~ 7 ( E , )  be a stable, continuous function. We show it(f) E J'([E0 --+ El l ) ,  i.e. 
that  # ( f )  is consistent and secured in leo --~ El l .  

Suppose { ( x o , e o ) , - - - , ( x n - l , e , ~ - l ) }  C_ b~(f)- Assume I C_ {0 . . . .  ,n  - 1} and U i e l x i  • Cono. 
Write x = U i e r x i  • Cono. o f  course x E Y(Eo). We have {ei I i • I} C_ f ( x ) .  Consequently 
{el I i E I} E Conl .  Assume xi U x i E Con and ei = e~ = e say. Then as f is stable 

f ( x i  n xj) = f (x i )  N f ( x j )  ~ e. 

As xi and x i are minimal inputs yielding e we must have xi = xi Nxy = xj.  T h u s / z ( f )  is consistent. 

We now require that  

( IH)  (x,e) E # ( f )  ::~ (z ,e)  is secured in t t(f) .  

for all finite configurations x of Eo. We show this by induction on the size Ixl of the finite con- 
figuration x. When txl = 0 then x = 0. If (0, e) E # ( f )  then e e f(0).  As f(0) is secured 
there is a securing eo . . . . .  en for e in f(0).  This makes (0 , eo ) , . . . , ( 0 , e~ )  a securing for (0, e) in 
i t ( f ) .  Assume now that  txl > 0 and that  ( IH)  holds for all strictly smaller configurations. As- 
sume (x,e) E i t(f) .  Then e C f ( x )  so there is a securing e0 . . . . .  e~ = e for e in f ( x ) .  There  are 
x0 . . . . .  xn C_ x such that  (x0, e 0 ) , . . . ,  (x~, e,~) C i t (f)  with xn = x. Working along this sequence, we 
see that  for each i, 0 < i < n, either xi C x so (xi,ei) has a securing si in i t(f)  by ( IH) ,  or xi = x 
so {(x0,e0) . . . . .  (X i - l , e i -1 )}  F- (xi,ei) and s ~ ' . . . ~  s['_l(xi,ei ) is a securing for (xi ,e i ) .  This shows 
(x, e) is secured in # ( f ) .  

We conclude/z( f )  E ~r([Eo -+ El i ) .  

(iii) Now we show 4) and it determine a 1-1 correspondence. 

Let F E 3r([Eo + Ell) .  We require i t¢(F)  = F.  Suppose (x,e) E F. Then  e E ¢(F) (x) .  If 
e E ¢ (F) (x ' )  for x '  c x there would have to be some y C x with (y,e) E F, impossible by the 
consistency requirement on F. Therefore (x, e) E / z¢ (F ) .  Suppose (x, e) E # ¢ ( F ) .  Then  e E ¢ (F) (x )  
and (x',  e) E F for some x '  __C_ x. But the minimali ty of x ensures x = x ' ,  giving (x, e) E F. We have 
shown i t ¢ ( F )  = F .  

Let f : jr(E0) --+ jr(E1) be stable, continuous. We require 4)it(f) = f .  Then,  using the continuity 
of f ,  

e e f ( x )  ~ 3x' C x. (x' ,e) E it(f)  ¢* e e (¢/z(f))(x),  

for any e ~ E t  and x E 7(E0).  Therefore ¢/z(f)  == f ,  and we have established the required 1-1 
correspondence. ! 



387 

At this point we can quickly prove the cartesian closure of Estab, based on the observation that ,  
for stable event structures E, Eo, El the two event structures 

[E (D Eo -+ Eli  

and  
[E ~ leo --, El}} 

are the same up to a natura l  renaming of events. 

4 .2 .9  L e m m a .  Let E, Eo, E1 be stable event structures. There is a 1-1 correspondence 0 between 
the events o f[E@ Eo ~ E,] and [E --~ [E0 ...... El]] given by 

0: ( ( w , x ) , e ) ,  , (w, (:~, e)), 

for w, x finite configurations of E, Eo and event e of  El ,  such that 

X E Conp ¢:~ OX E ConF 

and  
X l-p e ~ OX l-F 0(e), 

where Conp, l- p are the consistency and entailment relations of [E0 @ E1 -+ E2] and Conr,  l- F are 
the relations of [Eo --+ le t  --+ E2]]. 

Proof. Let E = (E,  Con, l-), E0 = (E0,Con0, l-o) and E1 = (E1 ,Cont ,  ~-~) be stable event struc- 
tures. Assume 

[E • E0 -~ E,I = (p, Con~,  ~p),  

[E - ,  lEo .... E1]I = (F, ConF,  l-F), 

[E0 -~ Eli  = (E2,Con2, l-2). 

Clearly 0 : P -+ F defined above is a 1-1 correspondence between sets of events. 

Compare the notions of consistency. 

Consistency in [E-+ leo -+ El]I: 

{(w/, (xi, ei)) I i e I }  • ConF iff 

1(i) VJ C_ I. {wi I i E J}~::~ {(x i ,e , )  [ i E J }  ~ Con2 & 

1(ii) V i , j  E I .  wi ~F wj & (xi ,ei)  = (xj ,ey) ~ wi = wy. 

Consistency in [E @ Eo ---* El]: 

{((w¢,x~),e~)) I i ~ x} c Conp iff 

2(i) VJ _C I. {(wi,xi) I i c  J } T ~  {e~ I i c J}  e Conl & 

2(ii) V i , j  E I.  wi T wj & xi T x] & ei = e i ~ wi = w i & xi = xy. 

Assume {(w~, ( x . e d )  f i e I}  e ConF. We show it follows that { ( ( w . x , ) , e d )  I i C *} e Cone.  
Because 1(i) holds 2(i) follows directly. To show 2(i/),  assume wi T wy and  xi T xy and  e~ = e 1. By 
1(i), {(xi,  ei), (xj ,  ey)} E Con. Therefore x~ = xj by the property of consistency in a function space. 
Now (xi,ei) = (xy,ej) so wi = w i by 1(ii). 



388 

Assume {((wi,xi),ei)) I i C I} E Cone.  We show it follows that  {(wi,(xi, ei)) I i E I}  ~ ConF. 
1(ii) follows directly from 2(ii). We show 1(i). Let J C~ I and suppose (wi t i C J} ~. We need 
{(xi, ei) t i E J}  E Con2. But this is proved as follows: Let K C J .  If {xi I i E K}.~ then 
{(wi,xi) ] i E K}T so {ei] i E K} E COql by 2(i). I f x i  T xy and ei = ej, for i , j  E J, then, because 
wi T wj too, by 2(ii) we obtain xi = xj. 

Thus the correspondence pi'eserves and reflects consistency. It also preserves and reflects en- 
tailment:  

~(((w,,xO,eO I ¢ ~ z} ~ ( (~ ,~) ,d .  

Certainly E,tab has products including the null event s tructure as terminal object. The above 
results yield a natura l  1-1 correspondence between morphisms E0 ® E1 -~ E2 and E0 -~ [El ~ E2] 
and so show that Estab is cartesian closed [Mac. p.95-96 t. We show the exponentiat ion more 
explicitly. 

4 .2 .10  T h e o r e m .  The category E~t~b is cartesian closed. It has products as shown and an 
exponentiation of two stable event structures Eo and E1 has the form {Eo --~ ELI, ap where ap : 
leo ~ Eli @ Eo -~ E1 is given by 

up(S, ~) = (~S) ix) 

for f ~ 5({~0 -~ Eli)  and x e ~(~o) .  
(We have identified (f, x) with the corresponding configuration of the disjoint product.) 

Proof. By the preceding remarks the category Est~b is cartesian closed. Alternatively, this is shown 
by the following explicit demonstrat ion of an exponentiat ion of two stable event structures.  Let Eo 
and E1 be event structures. For ap as defined above we see 

ap( f ,x )  : {e C El  [ 3x'  _ x. (x' ,e) C f}  

for f E ~r([E0 -+ EL]) and x ~ ~r(E0). The function ap is easily checked to be continuous and 
stable. In order for lEo --~ E1},ap to be an exponentiat ion it is required that for any morphism 
f : E @ Eo -* E1 there is a unique morphism g : E --+ [E0 ~ Eli  such that the following diagram 
commutes: 

[Eo -+ EI]®Eo~ g@ is. E®Eo 

Let a b :  [E ® Eo --* El] ~ [E -+[Eo ......... El]] be the isomorphism 

ab:  r ~-~ {(w,(x,e)) I ((~,,x),e) C r} .  

provided by the previous lemma. Take g = ¢ a b  #(f ) .  This ensures g is a morphism. Then,  recalling 
definitions, 

g(w) = {(x',e) t 3w' C w. (wt,(x' ,e)) ~ abt t(f)} 

for any configuration w of E. Hence 

ap(g(w), ~:) =(¢g(w))(x)  

: ( ~  I ~ '  ~ ~ , x ' c  ~. ((~',~'),e) e ~(f)} 
=(¢#( f ) ) (w,  z) 

=f(w,x) .  
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This  establ ishes the  existence of g making  the  d i ag r am  commute .  Uniqueness  follows as if g '  also 
makes  the  d iagram com m ut e  then  (¢g(w))x = (¢g'(w))x for all w, x. Bu t  t hen  Cg(w) : ¢g ' (w)  for 
all w. As ¢ is 1-1, g(w) = g'(w) for all w. Hence g = g'.  | 

In the  t rad i t iona l  funct ion space used in deno ta t iona l  semant ics  the  funct ions  in the  func t ion  
space [D -~ El,  where  D and  E are domains  are ordered  pointwise,  i.e. two con t inuous  func t ions  

f ,  g are ordered by 
f ~ g ~ Vd E D. f(d) E g(d). 

This  order ing is called the  extensional (or Scott) order .  The  inclusion order  on  the  conf igura t ions  
of [E0 --+ Ell  induces ano the r  order  on stable,  con t inuous  funct ions (~'(E0), C) --+ ( 7 ( E , ) ,  C) which  
we have seen can be expessed as 

This  order  is called the  stable order (a name due to Berry) .  We give an  example.  

4 . : ] .11  E x a m p l e .  The  two point  domain  O consis t ing  of ± C T can  be  r ep resen ted  as the  the  
configurat ions of the  obvious event s t ruc tu re  wi th  a single event  *, so 2- : 0 a n d  T : { ,} .  All the  
monotonic  functions O ~ O are s table  and  cont inuous .  Ordered  extensionai ly  they  are 

( l x . k )  E_ (>,z. x = T -~ T I± )  ~ (>,x.T) 

while according to the  s table  order ing we only have 

(>,x.±) < ( ~ x  ~ :  r - .  TI ~)  and (>,~.±) ~ (>,x.T), 

because (>,x. x = T --~ T [ k )  :~ (>,x.T). For two funct ions  to be in the  s tab le  order  it is not  only 
necessary tha t  they are ordered extensional ly  bu t  also t h a t  if they bot:h o u t p u t  a value for c o m m o n  
input  then  they do so for the  same min imal  value. 

As an example we indicate  how the  category can  be  used to give a model  for a >`-calculus w i th  

a toms.  

4 . 2 . 1 2  E x a m p l e .  We can use the s um  cons t ruc t ion  on  event  s t ruc tu res  (it is a func tor  on E~t~b) 
and  a cons tan t  event  s t ruc tu re  A of a tomic events to define an  opera t ion  

E ~ A + IE -~ El. 

This  opera t ion is _<-continuous, be ing  the  composi t ion  of cont inuous  th ings ,  and  so has  a [east fixed 
po in t  which can  serve as a model  for the  ,~-calculus wi th  a toms  following s t a n d a r d  lines. 

We re tu rn  briefly to the p rob lem of full abs t rac t ion .  Even more  s imply  t h a n  in the  example  
above,  we can give a denota t iona l  semant ics  to any typed  >`-calculus including PCF;  func t ion  types  
are in terpre ted  as the  s table  funct ion space. Because "parallel  or" is not  s tab le  we have  succeeded 
in e l iminat ing  it f rom the  funct ion spaces. However the  model  is not  fully a b s t r a c t - - f a r  f rom it. I t  
now includes funct ions which axe not  monotonic  wi th  respect  to the  Scott  o rder  (in Ber ry ' s  t e r m s  
the  model  is not  order  extensional  fB]) and  these e lements ,  like "paral lel  or" are no t  def inable  in 
PCF ,  and  cause s imilar  difficulties. Berry  realised a fairly s imple way to e l imina te  such  n o n - o r d e r  
extens ional  funct ions.  T he  basic idea was to work wi th  bidomains which car ry  the  e x t r a  s t r u c t u r e  
of the  Scott  order which can then  be used to cut  down the  funct ions  allowed in the  func t ion  space 
(see [W] for ano the r  approach  based on event s t ruc tures ) .  Cer ta in ly  this  leads to  a much  more  
refined model of P C F  t h a n  one based on the  Scott  func t ion  space bu t  the  fact  r ema ins  t h a t  there  
are finite stable funct ions  which are not  definable in P C F .  So at this  poin t  Ber ry  and  P .L.Cur ien ,  his  
s t u d e n t  at  the  t ime,  embarked  on the  s tudy  of sequent ia l i ty  at  h igher  type;  they  h o p e d  to  proceed  
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by analogy with Berry's work on stable functions and bidomains. Unfortunately, while this work 
did take exciting turns (the results are reported in [C]), it did not yield a fully abstract model. The 
full abstraction problem is still open. 

Recent work of Girard has pointed the way to another appplication for the category of event 
structures with stable functions, or the equivalent category of dI-domains. In [G], Girard works with 
a proper subcategory of ]~stab with objects called qualitative domains and shows how they give a 
model to his System F, the polymorphic h-calculus. From the point of view of semantics qualitative 
domains are a little too restrictive because they are not closed under the useful operations of lifting 
(prefixing) or separated sum. However Girard's ideas can be extended to E~t~b which is (see [CGW]). 
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