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This thesis demonstrates how general and fundamental is the 

notion of event in the theory of computation. 	It points the way to 

a more complete theory of events. 

The central idea is that of event structures consisting of 

relations on sets of events. 	Event structures are accompanied 

by an idea of state called .configuration. They model the behaviour 

of computations in time. 	To reflect this finiteness restrictions 

are appropriate. 

Using event structures as an intermediary the approaches of net 

theory and denotational semantics are related. 	This is formalised 

by representation theorems which express mathematically the 

translation between equivalent though apparently very different 

descriptions. 	In this way, for example, the net theoretic notion 

of confusion is related to concrete domains while using natural ideas 

of state of event structures Petris finiteness axiom of K-density 

on causal nets is assessed as too restrictive and accordingly his 

formulation of state, as a case, too wide. 

Apart from their unifying role event structures are important in 

themselves because of their abstract yet intuitive and operational 

nature. Their range of importance is widened considerably by the 

demonstration that event structures may represent functions of 

arbitrary type - rather abstract objects - while still preserving 

their operational nature. This is achieved by relating event 

structures to the bidomains of Berr 
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I 

Chapter 1. 	Introduction 

The idea of an event in computer science arises in the work of 

many different authors sometimes with different aims in mind (for 

example in distributed computing with [Pet], [Hew] and [Lam], and in 

denotational semantics with [Kah and Pio]). 	This thesis examines the 

role of. events, teasing-out the concept where it occurs implicitly and 

relating sometimes apparently divergent approaches. In nature the 

thesis is exploratory, and consequently a little unbalanced, but it is 

hoped that it will at least help towards an appreciation of the 

important role events can play in the theory of computation. I see 

the work here as a step on the way to a theory of events in 

computation. Such a theory, important in its own right, would have 

a strong unifying influence in the theory of computation. 

1.1 Basic ideas 

This section is an informal introduction to those basic and 

general ideas which guide and continually appear as this thesis 

develops. 

What is an event in computation? Many examples will be given; 

typical are acts of synchronisation between computing agents 

operating concurrently, and atomic actions of input or output.. Just 

as in physics, what is considered to be an event depends on how 

abstract is the level of description. The creation of a supernova, 

the collision of two billiard balls, the communication of two agents 

in a Milner net are all regarded as events but at very different 

levels of abstraction. A shared property is that once started they 

must finish; strengthened a little we might suppose they have 

connected compact duration in time. The naive view is that an event 

is essentially an instantaneous action. More accurately, according 

to this view an event is atomic, that is has no internal structure 

(at that level of description), and an all-or-nothing character, at 

any time it either has or has not occurred. An event, still atomic, 

but with a duration in time can be reduced to this case by splitting 

it into(instantaneous beginning and a subsequent end event. We 

mention another possible view of events.. Keep the view that an event 

once started must end but drop atomicity. Accordingly then an event 

might have connected compact duration in time and also internal 

structure, events inside so to speak; defined in this way events could 
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be called episodes. 	It would be possible for episodes to overlap 

and have subepisodes. Unfortunately here we do not follow up this 

line. For most of our work the naive view suffices. 	(In chapter 

9 though, the orders on higher type events, associated with functions 

and functionals, express relations on the internal structure of 

events.). 

We are concerned with how computations can be modelled by 

relations on events. The events with relations are called event 

structures. An event structure is an abstract description of a 

computation picking out certain events related to the computation and 

describing the possible courses the ccmputation may follow. Event 

structures take several forms. Typical are (E,<,) and more 

generally' (E, F ,). 	The set E of events possesses a causality 
relation <, a partial order on E, or - a subset of P(E) x E. 	In 

the case of (E,<,) an event e cannot occur until the events in .f {e} 

have all occurred whereupon it may occur. The causality relation f 
is a little more general; it allows an event to occur in different 

ways. For (Ej-,) an event e can occur once all the events in any 

of 	'Iel have occurred. The relations expresses an incompat- 

ibility between events; certain events occurring exclude certain 

others. Often X will be a binary symmetric relation on E so events 
mutually exclude each other in a pairwise fashion. 

This is really only half the picture. We must somehow express 

the dynamic behaviour of event structures. Alongside an event 

structure we should specify those states or configurations of events 

which can occur in the computation; this expresses formally what the 

two relations on events mean 	For event structures of the form 

(E,<,* ) configurations, which are sets of events which have occurred, 

will at least be <-left-closed in accord with the intuition of <. 

Some consistency requirement will be imposed by 	too; for X  a 

binary and symmetric relation a configuration cannot include two 

events in that relation. 

Scott domains of information can be reDresented by event 

structures with the construction above. Less information about the 

computation corresponds to less events having occurred, so config-

urations are naturally ordered by inclusion which, it turns out, gives 

a domain. 	In fact event structures represent suitable classes of 



domains, generally specified by axioms; not only do event 

structures yield the class of domains but also from a domain D in 

the class an event structure can be recovered naturally so that its 

domain of configurations is isomorphic to D. This is the form of 

a representation theorem. It expresses that two classes of 

descriptions are equivalent and provides a means of translating back 

and forth between the two equivalent descriptions. Typical examples 

of representation theorems appear in group theory and lattice theory: 

for example rings of sets correspond to distributive lattices and 

fields of sets to boolean lattices etc. ([,r]EG]).Event.-structure 

representations of domains are generally far simpler and more 

intuitive than the represented domain. 

In addition Petri nets represent event structures,with some 

qualification (see chapter 4). Thus representation results are a 

fundamental tool in relating theories with radically different 

vocabularies. Coupled to a theory of events they could sometimes 

justify or falsify an assumption of another theory perhaps through 

checking its physical feasibility or relating it to something more 

intuitive and acceptable. 	(This is just begun here, though see the 

appraisal of K-density - chapters 2 and 5 - and 5.6 where Scott's 

thesis - "computable functions are continuous" - has implications for 

event structures.) 

An important fact about event structures is that they model 

possible behaviour in time in an intuitive way. They have an oper-

ational yet simple nature. If an event is to occur it must occur 

at finite time. This will impose finiteness restrictions on the way 

in which an event is caused. In this thesis we use a variety of 

finiteness restrictions; the one natural to net theory where an 

finite set of events can occur concurrently to cause another is less 

restrictive than that appropriate to denotational semantics. Here is 

one we use a lot for event structures of the form (E,<,): 

-f l  f e} is finite. 
An event need only wait for finitely many events in order to occur. 

For event structures of the form (E,/-,) the corresponding 

restriction will be on the definition of configurations; in any 

configuration an event must have depended on only finitely many events 

to occur so every set of possible immediae causes of e in 	el 
can be assumed finite. 

8 
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structure. As described an event structure stands for all possible 

courses .a computation may follow. 	(it represents a datatype.) An 

event is under no obligation to occur even when it is given unbounded 

time to do so. For some computations naturally associated with 

such an event structure this may well not be the case for certain 

events (see 2.3 ), an example where the same event structure 

represents two situations we would like to distinguish formally. 	(An 

attempt is made using restless events in 6.4.) 

Finally I should apologise for one big omission. There is no - 

chapter dealing with morphisms on event structures, although morphism-

like constructions are occasionally used.. This is largely because of 

lack of time and partly because it is still unclear what extra 

structure to put on event structures to "force" event-occurrences. 

(The natural idea of contracting a convex set of events in (E,<,) to 

an event depends on this issue.) 

1.2 Events in context 	 - 

A major aim of theoretical computer science is the 

development of a mathematical theory in which to model reasonably 

completely the world of concepts and ideas in computer science. Such 

a theory must be both broad enough in. scope and rich enough in its 

power of abstraction to handle the full range of phenomena at approp-

riate levels of detail. Two main theories of this nature are 

denotationaJ. semantics [Sco] initiated by Scott and Strachey and net 

theory [t'IFroc] started by Petri.. As indicated in section 1.1 we can 

relate the two theories using representation results and the inter-

mediate concept of event structures. 

Roughly Petri nets are a generalisation of flowdiagrams to 

allow concurrent activity and non-determinism. The emphasis is on 

modelling control through focussing on how actions (interpreted by 

events in the theory) and local states (interpreted by conditions) 

depend on previous occurrences of actions or states holding. Nets 

highlight the pattern of behaviour in time which in the case of 

transition nets is simulated by playing the "token game" on markings. 

Concurrency is represented more naturally than in alternative approaches 

where it is generally represented as non-deterministic interleaving. 

Net theory is a useful pragmatic tool in the understanding and design 

of distributed systems and hardware; it includes techniques to prove 

5 
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properties of such systems. 	In adlition the graphical represent- 

ation of nets guides the mind's eye in design and makes them attractive 

to ,  those involved in the pragmatic side of computing. 

The mathematical approach in denotational semantics, originated 

by Scott, is more abstract. In denotational semantics a programming 

construct is attributed with a mathematical meaning; it is denoted 

by an element in a partially ordered domain of information. The 

denotations of compound constructs are built-up by operations on the 

denotations of the sub-constructs. Only for domains corresponding to 

basic datatypes such as the booleans does the information order 

directly reflect the idea of later behaviour in time. Nevertheless 

some idea of behaviour in time is captured by formalising the notion 

of those points of information which may be realised by a computing 

agent in finite time and by requiring that computable functions 

between domains be continuous - this expresses that eventual behaviour 

in time is exactly the "limit"' of the finite behaviours. 	Denotational 

semantics has been very successful in giving a formal meaning to a 

wide class of programming languages thus enabling proofs of properties 

of programs. It has the advantage over more operational methods of 

giving semantics in that it cuts down on the arbitrary detail such 

semantics often possess. 

We now discuss deficiencies in the two theories at their present 

stage of development. The general line is: denotational semantics 

is sometimes not operational enough while net theory is sometimes not 

abstract enough. Where possible we point out how a mathematical 

theory of events should help and how the issues raised in section 1.1 

have a bearing. 

For net theory I think it is fair to say that the mathematical 

foundations have not been worked out very thoroughly, and it is the 

more foundational aspects which coirn us here. I believe there is 

a reason. Net  theory, and the foundational work in particular, 

attempts to be very general. In practice when a net is used to model 

some situation it bear inscriptions as part of the modelling process. 

The inscriptions relate the net to the situation described, sometimes 

serving to interpret the conditions and events or detailing when events 

may or must occur. Such inscriptions play an essential role in the 

modelling. 



However they appear to be ignored in the foundations (see the 

treatments of K-density and morphisms in [NA'c] for example). 

There very little commitment is made to the range of interpretations 

in mind. Once the range of interpretation is unclear it becomes 

very hard to recognise when and what extra structure is required; it 

is difficult for the theory to recognise its limitations and grow. This 

may be one reason why the theory of net morphisms is so weak. 	- 

Unfortunately we say little on morphisms in this thesis. However 

we can be more constructive in our appraisal of causal nets and 

K-density where again I believe lack of commitment has misled. 

Causal nets were chosen by Petri to represent the net analogue of 

history or partial history; they are chosen to represent a course a 

computation may follow. As such their events and conditions are 

regarded as having occurred or as being" inevitable. This is not true 

of events generally. This cries out for extra structure. Petri has 

insisted that causal nets be K-dense, imposed as a finiteness 

restriction.. 	(it is intended to ban Zeno machines for instance.) 

Using a simple theory of states of event structures and representation 

results we shall give a critical appraisal of K-density, conclude that 

the present Thrmulation is too restrictive, while proving a restricted 

form of 'K-density does hold. In other words, we agree with the 

spirit of K-density but not with its exact statement. This disagree-

ment stems from Petri's formalisation of the idea of (global) state 

(taken to be a case - a maximal cut across the net) so it is quite 

fundamental. 

We now present some limitations of denotational semantics which 

are fairly well-defined. 

Denotational semantics does not, as yet, handle concurrent 

computations in a natural way. Successful treatments have depended on 

simulating concurrency by non-deterministic interleaving of 

uninterruptable actions often atomic events (see [PloJ and [Mill]). 

We call attention to Miler's book [Mill] which sets a paradigm for 

future work on concurrent computation because of the ideas it introduces 

and the "scientific approach" it adopts. Algebraic laws on the 

communication of computing agents are justified by notions of 

observational equivalence; even interleaving is shown appropriate once 

7 
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observations are restricted to being serial. 	It is hoped that by 

using event structures, the ideas there can be brought closer in 

spirit to net theory, and concurrency treated more naturally. 

There is no uniform way in which to treat problems associated 

with "fairness". Particular fair implementations can generally be 

modelled; the problem is to find a denotation which is both an 

abstraction from all possible implementations and still expresses 

that certain events will occur eventually. Perhaps event 

structures are an appropriate framework in which to express ideas 

of abstraction and inevitability of occurence (see the relations 

of 5.3 and restless events in 6.4). 

Related to the fairness issue are technical problems associated 

with infinite non-determinism when generalising Plotkin's power-

domain construction based on finite non-determinism [Plo 2]. From 

the work of Park [Par] and Plotkin (unpublished) it appears that 

continuity should be generalised to model infinite non-determinism 

successfully. As continuous functions have been a basis for a 

successful theory, domains of information associated with infinite 

non-determinism should carry extra structure to distinguish them 

from those used formerly. Event-structure ideas may help here. 

Interestingly continuity can be. rescued for infinite non-determinism 

by "padding-out" denotations with extra operational detail (e.g. 

in [Bac] taking denotations built from sets of histories does this). 

This can be seen as part of a general trend to add details of a 

more operational nature to denotations in order to model situations 

correctly. 

The correctness of a denotational semantics with respect to 

operational ideas is determined by the criterion of full-abstractis; 

a semantics is fully-abstract if denotations are identified iff 

they are operationally equivalent. This notion enables one to 

home-in on inadequacies of denotational semantics, highlighting 

those operational features which it does not and should treat 

explicitly. For example the full-abstract,,ss problem for PCF 

(see chapter 8) led Berry to an important new ordering on domains 

of functions, the stable ordering. 	It is an ordering on 

behaviours of functions and viewed in an event-structure setting 



with functions regarded as configurations (chapter 9) it is 

associated with finiteness restrictions. This is new but back in 

'75 Kahn and Plotkin recognised the need for some kind of event-

structure representation of basic input and output domains in order 

to define the notion of sequential function, involved in the PCF-

problem. I was led to study event structures by the problem of 

injecting time into domains so that denotations also included the 

time complexity. 

It is hoped that event structures associated with domains by 

representation results will prove fruitful in semantics by capturing 

operational ideas. in a natural, intuitive way. 

A word on work outside the two main streams of net theory and 

denotational semantics: Hewitt's actor model of distributed 

computing [Hew] uses the concept of an event - r Hw1* ai 

ç -Ij r 	.e]2J 4 actor ;he presents some finiteness 

restrictions on a form of event structure. Lamport's paper [Lam] 

constructs an event structure from deterministic processes 

communicating; his ideas on logical clocks and time-stamps implicitly 

impose 	 finiteness restriction, 	ee41ts(see 5.6). 

1.3 	Summary 

We summarise the work, in the thesis. 

In chapter , 2 we introduce net theory. The manner of intro-

duction has been motivated by the future issues with which we shall 

be concerned; for this reason it is not unbiased or uncritical. 

Initially we show how nets, structures built-up from events 

and conditions (2.1) may be given a dynamic behaviour (the "token 

game" on transition nets) in terms of markings (subsets of 

conditions) changing according to the firing rule which determines 

those concurrent occurrences of events which are possible (2.2). 

In particular we define and illustrate the notions of concession 

(that situation in which an event may occur), conflict (when event 

occurrences are mutually exclusive) and confusion a phenomenon 

due to conflict not being localised. Starting from an initial 

marking repeated application of the firing rule yields the forwards
.  - 



reachable markings. We then illustrate how transition nets with 

initial marking can be used to model computations such. as those 

described by Milner nets, Kahn-MacQueen networks and datatypes like 

the integers or infinite tapes (2.3). These illustrate how events 

may be interpreted as atomic actions and conditions as local states. 

For Milner nets and Kahn-MacQueen networks there are inadequacies 

in the modelling by nets. ThisGtraced to an ambiguity in the firing 

rule; occasionally one does not wish events to have concession 

forever - some events must occur or lose the ability to occur 

eventually (the idea of restless events). 

Petri defined causal nets (see 2.4) in order to formalise the 

idea of a course that a computation. may follow. Causal nets are 

the net-analogue of history or run and can be associated with 

particular plays of the token game. Petri has imposed a kind of 

finiteness restriction on them called K-density based on an idea of 

state for causal nets, formalised as a case. We present a precise 

though informal argument for K-density based on evidence in the 

literature ([Pet 11, [Bes]) and fair I hope,as using it we find a 

point to disagree; we take issue with Petri's formalisation of 

state as case. 	(Later, chiefly in chapter 5, we present more 

detailed evidence). 

Finally we introduce and..examine net morphisms a little (2.5), 

defining and. illustrating concepts such as subnet and folding 

inorphisms. 

Chapter 3 deals chiefly with the concrete domains [Kah and Plo]. 

They are, I believe, the first example where events came to be 

treated explicitly in denotational semantics. 

We start with a racy summary of the main definitions and ideas 

in denotational semantics, presenting such concepts as complete 

partial order, isolated element -algebraic domain and continuous 

function informally relating them to computations. 

Concrete domains are domains of basic input or output 

information which support a definition of sequential function. 

As part of the process of axiomatising the domains Kahn and Plotkin 

required a representation theorem for them. A concrete domain is 

10 



represented by an event structure in the form of a matrix (3.2.3) 

rather like a Petri net. The domains consist of information about 

what events have occurred. The events are localised to occur at 

places. When an appropriate set of events (not necessarily unique) 

has occured a place is allowed to be occupied by one of a set of 

mutually exclusive events. The representation theorem recovers 

events and places "hidden" in a concrete domain- they are recovered 

as equivalence classes of prime intervals (3.2.17)  based on the 

covering relation (3.2.12). As a sort of appendix to chapter 3 

we present in section 3.3 an improvement of the proof of the 

representation theorem in [Kah and Plo]; the proof is also a little 

more general - it works for a broader class of event structures 

than matrices. 

One notable axiom of concrete domains is axiom F (3.2.11) 

saying that an isolated element only dominates a finite number of 

elements. In terms of the representation this means an occurrence 

of an event is only dependent on a finite number of events having 

occurred. Axiom F is a form of finiteness restriction.. (In 

section 5.6 we present an argument for it based. on Scott's thesis 

that computable functions are continuous). 

In chapter 4 we give the basic machinery for translating back-

and-forth between nets, event structures and domains. We generalise 

Petri's causal nets to yield. the class of occurrence nets, so- 

called because in an occurrence net events and conditions stand for 

unique occurrences -. not so for nets in general. The definition 

of case generalises easily too. However, surprisingly perhaps 

Petri's definition of-sequential process does not. We then define 

the unfolding of a transition net to be that occurrence net which 

describes all possible courses the token game may follow. We 

associate an event structure with an occurrence net essentially by 

forgetting the conditions but remembering the conflict they incur. 

Such event structures have the simple form (E, :5,'() where X is 

the conflict relation and :5, the causality relation, is a partial 

order, corresponding to the fact that an event can occur in a 

unique way. Consequently when we pass over to domains events 

manifest themselves in a particularly simple way, in fact as 

complete primes. Accordingly there is a very simple representation 

11 



theorem in terms of complete primes rather than equivalence 

classes of prime intervals. 

Chapter 5 provides event structures with a theory of states. 

We work chiefly with fairly general definitions chosen to reflect 

net-theoretic intuitions in order to extend the translation begun 

in chapter 4. 

Our definitions of state are based on the concept of an 

observer for an event structure; intuitively an observer stands 

for a run or history of a computation. The definition of observer 

(5.1.1) depends on two assumptions about the nature of the 

computations described which are called the initiality and 

discreteness restrictions. The definition allows an infinite set 

of causally unrelated events to occur within finite time. An 

observable state is defined to be the set of events some observer 

records in finite time while for a state time may be unbounded. 

It is observable states which capture those intuitions motivating 

Petri's definition of a case. We characterise both forms of state 

using a metric (5.2) closely allied to the idea of reachable 

markings of a net. The finiteness restriction of finite depth 

(5.2.11) on event structuresfollows from the definition of observer. 

Using the techniques of chapter i.  the notions of state are 

transferred to nets (5.). 	Observable states transfer to a subset, 

generally proper, of cases of an occurrence net. We call them 

observable cases. In the situation where the occurrence net is an 

unfolding of a transition net, reachable markings are precisely the 

images of the observable cases under the folding map (5.4.4). 

Only in the situation where cases are observable would one 

expect K-density to apply and in fact restricting cases to being 

observable we prove a restricted form of K-density (5..7). Under 

certain conditions we prove a neat equivalent of K-density (5. 1 .8). 

The translation of the concept of confusion in nets is far 

more direct and less qualified. We show in section 5.5 how it 

connects with concrete domains. Confusion turns out to be a 

property of event structures; conditions play no role other than to 

express conflict. A major result of this chapter is that the 

domain associated with a net is concrete 1ff the net is confusion- 

I 1z 
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free. (5.5.9). 

We examine an idea of computationally feasible which induces 

a further finiteness restriction, that of finite width (5.3.2). 

This is intended to capture the idea that only a finite number of 

computing agents can be in operation at a finite time. It is 

based on the definition of observer which is determined solely by 

the causality and conflict relations :5 and . We introduce 

relations 	and 	between event structures to express ideas of 

implementation (5.3.12) particularly by finite-width event structures. 

Following how states go through the implementation relations suggests 

a more abstract definition of observer closer in spirit to denotational 

semantics (5.3.18). 	In short, section 5.3 shows how constructions 

based on ideas of abstraction, natural for net theory, yield a more 

abstract notion of state like that in semantics. 

The final section of chapter 5 deals with alternative finiteness 

restrictions and definitions of states as expressed by other authors. 

We briefly look at restrictions imposed by Hewitt's [Hew] and Lamport's 

[Lam] approaches and in a little more detail how the ideas of 

denotational semantics relate. We translate Scott's thesis 

("computable functions are continuous", [Sco])to a finiteness 

restriction on event structures (5.6.5). 

Chapters 6 and 7 are concerned with following-up our ideas in 

net theory. 

In chapter 6 we are concerned with conditions. When we pass 

from nets to event structures they are ignored;-  many different 

occurrence nets may induce the same event structure. Here we are 

concerned with what, if anything, is lost in this process. This 

involves considering how conditions are to be interpreted; we regard 

them as local assertions having extents in time. 

The work begins by noting that with an extensionality principle 

on conditions one may recover the conditions of occurrence nets 

inducing an event structure from the event structure alone. Then 

using the simple machinery on states we have developed it is 

possible to define natural relations on the conditions of an event 

structure. One particularly useful relation formalises the situation 

where one condition holding implies thatc.h other holds (6.1.6). 
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Using such- relations given an event structure we may define a net 

which. is in some sense the minimum net inducing that event 

structure. We can also define the maximum net associated with an 

event structure (rather trivially this time). For such occurrence 

nets we show K-density results (6.1.32) which are close to Petri's 

original ideas. 

In section 6.2, regarding conditions as sets of assertions, 

we introduce a relation between nets which compares their degree of 

expressiveness. This relation enables us to characterise (6.3) the 

two constructions of nets from an event structure. - They will both 

be in the class of nets of maximum expressive power, one being included 

in and the other including all nets of this class. 

Finally in section 6.4 we look briefly at restless events of 

an event structure. They express an idea of inevitability. The 

topic appears to involve generalising Petri's conditions. 

In chapter 7 we take another look at observers for - an event 

structure. This time we do not insist on the initiality restriction 

- generally net theory does not. The results translate to causal 

nets.. We determine-when (countable) event structures have a total 

observer (7.1.7) - so all events are recorded at some time. 

Observers determine a reachability relation on observable states 

as in chapter 5.. However now there may be more than one 

equivalence class of reachable states. We characterise those 

(countable) event structures with one and only one (7.2.7). Then 

the event structure (or causal net inducing it) can alone be regarded 

as describing a course of computation (this is close to a remark 

by Petri motivating K-density in [Pet 2]). The mathematics involves 

such ideas as collapsing a convex subset of events to an "event", 

a kind of quotienting operation (7.1.10). As usual a restricted-

K-dens ity result applies (7.14.3). 

In chapter 8 we introduce an as yet open problem in 

d.enotational semantics, the full-abstractness problem forPCF. 

In chapter 9 we define higher-type event structures in which 

configurations represent functions. We produce a cartesian-closed 

category of event structures which is naturally equivalent to a full 



subcategory of Berry's bidomains,ha major step on the way to a 

solution of th.e PCF problem. Finally we indicate how by 

strengthening the axioms and restricting configurations a fully-

abstract model might be produced. 
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Chapter 2. 	Introduction to Petri nets 

In this chapter we introduce Petri nets and outline net theory 

in so far as it connects with our later work. A Petri net models a 

computation. Thus we shall be concerned with two aspects, the 

formal definitions and properties of the nets themselves, and, how 

they model computations. We use the word "computation" in a 

slightly vague way. We shall say more on this later. For the time 

being we note that what one thinks of as being a computation depends 

on what theory one has in mind. For instance one might sometimes 

think of a computation as inerelypartial function from input to out-

put. 	In net theory one is concerned with how computations proceed 

focussing on such properties as concurrency and conflict. Of course 

every theory automatically stakes out its own territory by virtue of 

what primitives it takes and what basic assumptions it makes thus 

determining what it can and cannot describe. Net  theory takes events, 

conditions and causal dependency as its primitives and views the world 

accordingly. Nets have proved very useful as models of control. 

2.1 Basic definitions 

We shall take a slightly more general definition of a Petri 

net than is customary. 

Definition 2.1.1 

A Petri net N is a tuple (B,E,P) where: 

B is a set of conditions 

B is a set of events 

F ' (B x E) ,.j (B x B) is the causal dependency relation 

satisfying: N1.B ,-E = 

Notation 2.1.2 

Let N be a Petri net. 	If x € B LIE we write 'x (respectively 

x) for {y IyFxI (respectively {y Ixpy}). 	If x € Ewe call 'x the 

Preconditions and x' the postconditions of x. 	If x € B we call ° x 

the preevents and x' the postevents of x. 

The definition of a Petri net is more general than usual because 

we allow F to be null and do not insist that the field of F, 

{x € B E 13 y € B '-' B xFy or yFx}, is B LI B. Thus we allow a net 

to consist of a single condition or event. 	We recall the standard 



graphical representation of Petri nets in which events are 

represented by squares " s " and conditions by circles 11 0 and the 

relation F by oriented arcs "-*-". Note that with this represent-

ation we allow 

Later we shall sometimes impose a further axiom on nets which 

ensures conditions are extensional in the sense that two conditions 

with the same pre and post events are identical (N2 below). It is 

convenient to define another axiom (N3) too. We shall not use 

either till chapter 4. 

Definition 2.1.3 

Let N = (B,E,F) be a Petri net. 	N satisfies N2 if f 

N2.: Vb 1 ,'o 2  E B • b 1  = • b 2  & b 	= b 	=> b 1  = b 2 . 

If N satisfies N2 it is condition-extensional 

N satisfies N3 iff 

N3:Ve €E eLd &et$. 

This net satisfies neither N2 nor N3: 

2.2 Tratisition nets 

Perhaps the most familiar part of Net theory is the "token 

game in which markings of conditions in the net change as events fire. 

We deal with this now. We should remark that within net theory there 

is a semiformal idea of level of net description, the higher the level 

of the net the more abstract is the net description. The token game 

occurs at the level of transition nets. Here the events are usually 

called transitions and the conditions places. At this level nets are 

endowed with a dynamic behaviour in which markings change according to 

the firing rule. A marking is a subset of conditions usually 

represented by a distribution of tokens on a graphical representation 

of the net. 	(Only a single token is allowed on each condition of the 

marking.) 

Definition 2.2.1 

Let N = (B,E,F) be a net. A marking of N is a subset of B. 

The firing rule depends on two notions, concession and conflict. 

An event may fire only when it has concession. 

Definition 2.2.2 (concession) 

Let N = (B,E,F) be a net. 	Suppose M is a marking of N and e € E. 
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Then e has concession at N iff,'e G N S. ea, N = 

Definition 2.2.3 (conflict) 

Let N = (B,E,F) be a net. 	Suppose N is a marking of N and 

e0 ,e 1  are in E. Then e0  and e 1  are in forwards conflict at N iff 

they both have concession and e0 n e 1  95. They are in backwards 

conflict at N iff they both have concession and e p e 	95. 
They are in conflict at N if f they are in forwards or backwards 

conflict at N. 

Now we can give the firing rule which specifies when a subset of 

events may fire concurrently. 

Definition 2.2.4 (The firing rule) 

Let N = (B,E,F) be a net. 	Suppose N and N' are markings of N 

and that X E. 	Define M[>M' if±' (i) each member of X has concession 

at N, (ii) no two members of X are in conflict at N, 

(i±±) N' = (M\UVeI e E x}) ¼1U{e e € x}. 
(Then events in X are said to fire concurrentl y.) 

Thus the firing rule gives a "one—step forwards" reachability relation 

between markings. Note if two events are in conflict one excludes the 

other from firing. 

Example 2.2.5 Thistrating concession) 

X X 
Here e has concession in 1 but not in 2 and 3. 

Example 2.2.6 (illustrating conflict) 

e0 	 C, 	 e0 

N 1 , Forwards conflict 
	

N2, Backwards conflict 

In the above net N 1 , e0 ,e 1  are in forwards conflict for the 

marking shown as they both have concession and share a common 

precondition. 	In N2 , e0  and e 1  are in backwards conflict for the 

WO 



marking as they both have concession and share a common post-

condition. Referring to the firing rule note that in either case 

only one of the events e0 ,e 1  can fire. 	Thus implicit in the firing 

rule is:: 	The change in a condition-holding that takes place as a 

result of an event occurrence is associated uniquely with that 

occurrence. 

Example 2.2.7 

bO 	bQ 	bO 	b'Q 

e 	 e 	 e 	••• e 0 0 	 1 	 2 	 n 

b 	 b2 	b 

In this example the net is infinite. As the firing rule does 

not require that only one event fires at a time the marking 

ibli n € 4)} is reachable from the marking shown through the concurrent 

firing of {eI xi E 

So far we have only dealt with one application of the firing 

rule. Repeated applications of it give a forwards reachability 

relation between markings. The precise nature of this reachability 

relation depends on how fast one is allowed to play the token game 

(see gL4_.2 ). However the following-definition-seems to be accepted. 
Definition 2.2.8 

Let N = (B,E,F) be a net. Suppose M and M' are markings. Write 

M -' M' 1ff 9 X E M{M'. 	Define -> to be the transitive closure 
of 	If M -> M' say M' is forwards reachable from M.. 

Net theory generally deals with a symmetric reachability relation 

(the symmetric closure of ->) so it is also concerned with backwards 

reachability. However in our work we shall generally assume 

transition nets have an initial marking from which the forwards 

reachable markings are obtained by the firing rule. 

Definition 2.2.9 

Define a transition net with initial marking to be a pair (N,M) 

consisting of a Petri net N together with a marking M. The 

(forwards) reachable markings of (N,M) are all markings M' such that 

1  

N - N'. 



Example 2.2.10 

Here the initial marking 1b0 ,b 1 } is marked. The events e0 ,e 1  are in 

conflict. 	Either e0  or e 1  can fire to yield the marking {b 1 ,b2 }. 

One of them may fire concurrently with e 2  to yield the marking 

{b2 ,b3 }. The further firing of e 3  would then return us to the initial 

marking and the cycle could be repeated. 

Later we shall be concerned with contact-free transition nets 

with initial marking. 

Definition 2.2.11 

Let (N,M) be a transition net with initial marking. 	The (N,M) 

is contact-free 1ff for any reachable marking M and event e we have 

'e.M=> ecM=$. 

Example 2.2.12 (nets which are not contact-free) 

X0 
We shall also be concerned with the concept of confusion in 

transition nets. Confusion can occur in two forms, symmetric and 

asymmetric. We illustrate these below deferring tIE formal 

definition until after. 

WAI 



Example 2.2.13 (confusion) 

21 

e l  

Symmetric confusion 	 Asymmetric confusion 

In the case of symmetric confusion at a marking two events e 1  

and e3  can occur concurrently. Through the occurrence of e 1 ,e3  is 

brought out of conflict with e 2 ; through the occurrence of e 3 , 

e 1  is brought out of conflict with e 2 . 

In the case of asymmetric confusion at a marking e 1  and e3  can 

occur concurrently. Through the occurrence of e 1 , e3  is brought into 

conflict with e 2 . 

For simplicity we define confusion for a contact-free transition 

net with initial marking. 	 - 

Definition 2.2.14 (confusion) 

Let (N,M0) be a contact-free transition net with. initial marking. 

Let M be a reachable marking. 

Say N is symmetrically confused at N if f there are events e 1  ,e2 , 

e3  such that e 1  and e2  are in conflict and e2  and e3  are in conflict 

at N but e 1  and e3  are not in conflict at M. 

Say N is asymmetrically confused at N iff there are events e 1  ,e 2 , 

e3  such that e 1 ,e3  but not e2  have concession at N and M[e1'>M'  so that 

and e3  are in conflict at N. 

Say (N,N0) is symmetrically (asetrically) confused iff for 

some reachable marking N we have N is symmetrically (asymmetrically) 

confused at N. 

Say (N,M0) is confused iff it is symmetrically or asymmetrically 

confused. 

In net theory it is said that "resolution of conflict is not 

objective" when confusion occurs. The following informal argument 

is used. It uses the idea of an observer - we shall make the 



explanation more solid in the next section where we discuss one 

possible notion of observer. We sketch the argument: In the case 

of symmetric confusion in example 2.2.13 if e 1  and e3  occur concur-

rently one regards this as meaning they can occur at any time 

relative to each other according to an observer. Thus it depends on 

the observer whether conflict has been resolved between e 2  and e3 . 

Similarly for asymmetric confusion it will depend on the observer 

whether or not conflict is resolved between e 2  and e3  [I.prvp.4J. 

2.3 Examples of modelling computations by transition nets 

In the previous section we have outlined the dynamic 

behaviour of transition nets (the token game) and illustrated some of 

the basic concepts such as concession, conflict and the more obscure 

notion of confusion. This was discussed purely within the theory of 

transition nets. In this section we illustrate how transition nets 

may be used. to model situations in computer science. The examples 

will necessarily be limited; we refer the interested reader to the 

literature 	por&cuIr see 	 pointing out that net theory is a 

growing subject consisting of far more than will be mentioned in this 

thesis. Nevertheless we see the theory of transition nets as a. 

keystone of net theory, from which more recent work has been done in 

securing it by examining assumptions to be made on lower level nets 

[Pet I ] and also extending it to higher levels as in the work of 

Genrich and Lautenbach, and Jensen ([Ten], CGenl). 
Thus the examples will illustrate some basic issues. 

A. Modelling Milner nets by transition nets 

We first dwell a little on Milner nets. These are fairly easy 

to understand intuitively as computations although there are many 

subt2ies which we shall gloss over. Our use of them here is the 

modest one of providing a (for us) semiformal description of some 

computations which we can model by transition nets. The interested 

reader is referred to the fast-growing literature on Milner nets 

(e.g. [Mill)). Milner nets are constructed by "wiring together" a 

collection of computing agents each with its own internal program 

determining its behaviour following the communications it makes with 

its fellow agents. An agent has ports at which it may communicate. 

These are labelled. From the outside r  an agent A may look like this: 

Z2 
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111~ 

The label 	o( indicates that Avi7a, f. make an 0<-communication 

with another agent with port labelled by & (called the Co-label of o). 

(Thus A above could make a fi -communication with another agent 

labelled with 	.) Here we shall assume that the communication 

is purely one of synchronisation (a "handshake" between agents). 

After making a communication an agent will move into a new state 

determining whether and how it is prepared to communicate. At any 

stage an agent may be prepared to make several communications. 

However, significantly, it is only allowed to make at most one; thus 

an agent is not allowed to make two communications concurrently. 

Given these constraints the internal program of an agent may be cast 

in algebraic form as a synchronisation tree or its equivalent algebraic 

expression. For the agent A above an example program p would be: 

P = oc::NIL + : (':NIL + :NIL) 

or drawn as a synchronisation tree, p 
=oe - 

0< 	i2 

Thinking of a program as a. tree the nodes of the tree determine 

states, the future behaviour from a node being given by the subtree 

with itas root. The program NIL, represented as a. tree with one node 
ft WIt, says no future communication will occur. The program p above 

means that the agent is prepared to make either an 0< or a iscommun-

ication. If the external world of other agents is such that it 

performs an cK -communication then it may do a 1'3-communication 

whereupon it loses interest in future interaction with any other 

agents there may be. On the other hand the external world may 

provide a ts-communication.. Then it is prepared to do an or a 

communication, not both, before losing interest. 

It remains to describe the operatinns on agents. For Mil ner 

et al these operations yield agents - remember an agent has a 

particularly simple internal program. This is achieved by 

simulating parallelism by interleaving so a compound agent formed 

by setting two agents in parallel still possesses an internal program 

of this simple form. 	In fact congruence classes of programs then 
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form a natural domain of denotations once one has settled on a 

suitable tion of equivalence of behaviours. However our concern 

is different; we wish to associate a transition net with the 

compound agent to exhibit any concurrency it may possess. We will 

have two operations derived from Miler's: one will take a set of 

agents and link them together in parallel; the other will screen-

off certain labelled ports. Both these operations use the labelling 

on ports. 

Think of the operations as being done physically on the agents. 

Picture three agents: 

1' 

Conbining them in parallel yields the following picture of a compound 

agent; call it par{s,t,r}. 

The link between 	and ? for instance shows that s and t may 

communicate via their respective 7 and ' ports. Of course, how the 
compound agent behaves depends on the internal programs of s,t and r.. 

Having set up such an agent one may wish to screen-off certain ports. 

For example at present s can still make a communication with the 

external world via its 	port. If we wish to prevent this we can 

remove the labels r1 
 and 7 to form the new compound agent 

parfs,t,rl\ fyj, which has j',y' ports hidden from view. We can 

Z4. 

picture this as 
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Similarly we can screen-off any set of labels. 

Well, how do we associate a transition net with such compound 

agents? It is natural to take the communications as events. For 

the conditions we take states of the agents; thus we interpret 

conditions as local elements of a global state. The state of an 

agent is altered by the occurrence of a communication; this induces 

the causal dependency relation. A little cars is needed to ensure 

that the token game is correct. For example suppose we have an 

agent which starts in some state from which it may communicate to 

return immediately to the sane state. In some appropriate compound 

agent this will yield an event with a precondition and postcondition 

in common which will be marked initially. According to the token 

game the event will not have concession whereas from the Milner net 

point of view we would like it to be able to fire. I see three ways 

out. One is to change the definition of concession so that it 

differs from the usual one (say an event e has concession for a 

marking M iff • e q M and (e 'e) f\ M = $). Another is to ditiguish 

different occurrences of holdings of the same place.. Finally (a sly 

trick'-) we could choose our agents so this can never occur. We pick 

the latter by assuming in examples that our agents have finite internal 

programs. 

We give some examples showing how a transition net with initial 

marking is associated with a Milner net. In fact the transition nets 

have a bit of extra structure due to labelling the events.. This is 

because there are essentially two different kinds of event. There 

are "external events" (which we label by o( or  for example) corres-
ponding to possible communication with an external agent (ports 

labelled(R or o) not in the Milner net. There are "internal events" 

which we label by ' (as in [Mu 1 ]) corresponding to internal 



communications between agents in the Milner net. 

Example 2.3. 1  

For the single agent 0 with internal program 

PO  = o<:Nil + ê:NIL the corresponding transition net 

Note the conditions are associated with the states of the agent 0 - 

they are pairs consisting of the agent and one of its possible states. 

The initial state of 0 is marked. The agent is initially prepared to 

make an 0< or a 	communication. 

When the agent 0 above is set-up in parallel with other agents 

we may get internal communications as the next example illustrates. 

Example 2.3.2 

Suppose the agent of 2.3.1 is set in parallel with. two other 

agents, 1 and 2 with programs p 1  and 2 as shown: 

PO  = c(L + :NIL 

P1 =&:NIL 

P2 	
c. :NIL. 

The transition net associated with par{0,1,2} is: 



This time 0 may make a communication with 1 or 2. The corres-

ponding events are labelled 	- they are internal to the Milner net 

above. 

If o( and /I 
ports were screened-off from external communication 

those events labelled by c><,c,<,,6 could never occur. 	This is 

reflected by omitting these events from the net. Thus the tran-

sition net associated with par{0,1,2}\ {o,} is: 

In the next example we show how confusion can arise from Milner 

nets. To make the drawings simple we only consider internal 

communications.. 

Example 2.3.3 (How symmetric confusion can arise from Milner nets) 

Consider the above compound, agent consisting of four agents 

0,1,2,3 linked in parallel. We can write it as par{o,1,2,3}\ 

The respective programs are: 

PO  =oltET 

p 1  =.:NIL + 	:NIL 

P2 
=:NIL + )':NIL 

P3 
NIL 

The corresponding transition net below is an example of 

symmetric confusion 
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From left to right the three eventq a,b,c labelled '' , correspond 

to 0 and 1, 1 and 2, 2 and 3 communicating. 

Example 2.3.4 (How asymmetric confusion can arise from Miler nets) 

This time the compound agent par{0,1,2,3}\ {o,1ô,} is formed 

from four agents 0,1,2,3 with respective internal programs: 

P0  = :NIL 

P1 = c:ê:NIL 
P2 - :NIL + 7:NTL 

P3 = 7:NIL 

Our associated transition net is now an example of asymmetric 

confusion: 6" L) L 

C 

O,I.JtL) 

2,p) 
X 

7 	 The three events a,b,c labelled 

1 and 2, and 2 and 3 commun- 

/17 	\ 	 by '2 correspond to 0 and. 1, 

4 
Oip) 	 icating respectively. 

Recall that in the previous section we gave the traditional net 

theoretic analysis of confusion in which it is said that confusion 

occurs when conflict resolution is not objective i.e.. it depends on 

the observer if and between what events conflict is resolved. We 

left, somewhat up in the air, the idea of what an observer is. One 

possible idea is that of a run or history of the computation by which 

is meant a record of what events happened and when they happened. In 

a particular run of the Milner nets in examples 2.3.3 and 2.3.4, 

because we know nothing of the relative speeds, conflict between b and 
c may or may not occur even when certainly occurs sometimes during 



the rim. 

A Petri net can be regarded as determining a set of possible 

runs or histories, as above. However this intrudes on another 

issue, one which we have deliberately left ambiguous till now and 

which we shall only mention here. In the Milner nets of examples 

2.3.3 and 2.3.4 a,b,c the events labelled 't' have been screened-off 

from interruption by the outside world. For this reason (see 

[Mu 1 ]) in the Milner net of 2.3.3 either b or a and c commun-

ications will eventually occur and in the net of 2.3.4 either a and 

c or a and b will eventually occur. The Petri nets modelling Milner 
It 

nets do not express this. In examples 2.3.3 and 2.3.4 all the 

events are internalised so one could make the token game behave 

correctly for these examples by appending another rule which ensures 

a kind of fairness: 

ito event can have concession forever; it must either eventually fire 

or lose its concession through a conflicting event firing. 

Of course in general a Milner net will include a mixture of internal 

and external communications. To reflect this the associated 

transition net must bear extra structure. One idea is to distinguish 

a subset of events, perhaps called restless events, such that no event 

in the subset can have concession forever; it must either eventually 

fire or lose its concession through a conlicting event firing. 

Our chief aim was to illustrate how transition nets can model 

the computations associated with Milner nets. For this reason our 

approach was very informal. Undoubtedly it could be made more 

systematic and general. For example Mogens Nielsen has given a 

formal semantics for Milner nets (like the ones we have used) in terms 

of labelled event structures. Importantly then an agent can commun-

icate concurrently. 

B. Transition nets as datatypes 

The issue of restless events above suggest another class of 

computations described by transition nets, namely those in which no 

events are restless. Such computations correspond naturally to data-

types. A dataty-pe is a possible set of values associated with a 

computation (the set may have a lot of structure of course). 

Typical datatypes are the Booleans, the integers, finite and infinite 

strings or tapes and,if we are prepared to go to higher types, partial 



20 

functions and functionals. 	(It night be thought that causality 

structures such as transition nets are so inherently "low-type" 

that the latter are beyond their range; however see chapter 9 on 

event-structures of higher type.) 

Example 2.3.5 (The integers) 

.. 	. 

. . 

Here at most one value, an integer, can appear. Thinking of this as 

occurring at some place, such as a square on a tape, one can give a 

physical interpretation of the conditions. The bottom condition 

corresponds to no value having occurred there and the upper conditions 

to particular values having occurred. Imagining this net to occur 

as part of a computation which may yield an integer value,it is 

possible that no integer is ever produced through the computation 

diverging; then the bottom condition would hold forever. 

Example 2.3.6 (Possibly-infinite tapes or strings over io,i}) 

or 

folded version 

Looking at the figure on the left it is easy to see how 

arbitrary tapes over {o,i}. including the null tape can be generated 

by playing the token game; the null tape corresponds to the token 

getting stuck forever in the initial place and infinite tapes to 

infinite games. Regarded as part of a computation yielding tapes as 

output the token getting stuck forever at some place corresponds to 



the computation diverging at this stage. To the right we have 

drawn a folded version of this net in which even occurrences and odd 

occurrences have been collapsed together. Note we could not take 

as a folded version and keep the 

standard notion of concession (another 

reason for changing the definition of 

concession?) 

Frequently datatypes will be associated with possible input or 

output values for a computation. As such they may be represented by 

"subriets" (we give a precise definition in 2.5) of the net associated 

with the entire computation. Again in general this will give rise to 

a transition net where some events will be restless and some not. The 

events associated with input will not be restless; the choice of 

input and whether or not there is to be any is decided by the outside 

environment. The remaining events may well be restless in the net 

corresponding to the entire computation. We give a simple example. 

Example 2.3.7 

Ii 

N2  

Regard N 1  as the input datatype and N2  as the output datatype in the 

following computation in which one event e 3  is restless so marked by 

an "R". When e 1  and e2  occur as input e3  eventually occurs as output. 

ec &) 

C.. Modelling Kahn-MacQueen networks by transition nets 

We now sketch how to model Kahn-MacQueen networks [Kah and Mac] by 

Petri nets. They provide examples of a process interacting with data-

types. Kahn-MacQueen networks consist of processes which may 

communicate through channels able to queue arbitrarily long sequences 

of values. The processes are deterministic and the states of the 

channels can be regarded as forming a datatype. For simplicity we 

31 



assume that in a network distinct processes cannot share a common 

channel to output or input to, and that the values exchanged are 

always from a set V. The act of outputting a value to a channel we 

call writing, the act of inputting from a channel reading. Then our 

assumption implies each channel c has at most one process writing to 

it; call it w(c) if it exists in the network. 	Similarly each 

channel c has at most one process reaching from it; call it r(c) if 

it exists in the network. It is customary to draw diagrams like the 

following to represent Kahn-MacQueen networks.. 

Example 2.3.8 

C6 05-  

? 

This diagram represents a network consisting of three processes p 1 , 

connected to six channels marked as arcs directed to show how 

information flows. We have w(c 4) p2  and r( C4) = p3 . Note we 

do not insist on each channel having both a writer and a reader - the 

ttprocessesv? w(c 1 ) and r(c3) are in the external environment. 

Rather than describing a programming language to determine the 

internal programs of the processes we give them an informal semantics. 

Call the semantic denotation of a process a behaviour. As with 

Milner nets we have the behaviour of doing nothing-evermore which we 

call "NIL". Otherwise a process may be in a reading state, when it 

is about to read from a definite channel if it can, or in a writing 

state, when it is about to output to a definite channel. After 

accomplishing these actions it will follow some subsequent behaviour. 

Of course, if the action is that of reading a value its subsequent 

behaviour will depend on the value in general. Thus a behaviour If 

of a process p has three forms according to p's state: 

(reading state) b 	(c,f) where c is a channel s.t. r(c) = p 

and f is a function from V to behaviours. 

riting state) b = (c,(v,b')) where c is a channel s.t. w(c) = p, v € V 

and b' is a behaviour. 

(null state) b = NIL 

(This can be regarded as an inductive definition of a set of finite 

behaviours or alternatively behaviours may be thought of as elements 
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of a recursively defined domain. Here we do not care, though the 

latter would be necessary for infinite or non-terminating behaviours.) 

Now we show how to construct a transition net with initial 

marking modelling a network satisfying our assumptions. The events 

will be actions of reading or writing. Conditions will correspond 

to states of processes and local states of the channels. 

Process-conditions will be of the form: 

D  p, b where p is a process and b is a behaviour. 

Of these conditions those in which b is the initial behaviour of p 

will be marked initially. 

Essentially a channel i$ a queue of values. A process writes 

the latest value onto the queue and reads (and removes) the earliest. 

Roughly we shall represent the queue as the (temporal) sequence of 

values written to the channel (the temporal order is indexed by t in 

CO below) with additional constraints. The constraints ensure that 

the sequence behaves like a queue in that a process may only read in 

order from the beginning and write in order onto the end.- 

Associated with a channel c we have three kinds of place.. The 

temporal position of a value writtis represented by places 

where t E ). 

th This means the t value has not yet been written to c but all 

previous values have been written to c. Accordingly the place 

9c,O,- is marked initially. To keep track of what values have been written to c,- for future 

reading we have places 

(EiE) 
This means the tth  value has been written to c, it is v, and it has 

not yet been read from c. 

Lastly, we have a further set of places to guarantee a process 

reads in order from the beginning of the queue. These are 
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Writing 

A process can write to 

at 
th  value vtoa 

channel c only if the 

channel has had the 

previous value written 

to it. 

Initial reading 

A process can read the 

initial value provided 

it has not yet been read 

off. 
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9 	where t €A). 
This means the t 

th value has been written to c and read from c. 

The events will be of two forms. We have, for c a channel, 

t E CO and v € V, 

r 
c,t,v 	 and 
	 c,t,v 

corresponding to the actions of writing and reading value v as the tth 

value of c. 

The transition net with initial marking is determined by the pre 

and post conditions of the events. We draw these now, but only for 

those channels c such that w(c) and r(c) exist; otherwise simply omit 

places referring to the non-existent process. The variables used are 

understood to range over the obvious sets. 



Further reading 

A process can read off 

the t+ith  value once 

the t+ith  value has k, 
written to c and the t th 

value has been read off C. 
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Again, as with our transition net models of Milner nets,. we 

have problems with the standard definition of concession. It is 

possible for an event, which we would like to be able to fire, to 

have a place which is both a pre and post condition. This occurs 

for example if a process has behaviour f with f(v) = f for some 

value v. (Then f will be an infinite behaviour.) Here again the 

revised, definition of concession is appropriate. Recall this says 

an event e has concession for a marking M iff • e M and 	- 

(e \e) ( N = 95. In the following example, where the process has 

finite behaviour, the standard definition of concession works. 

Example 2.3.9 

In this example a process p reads,- outputs, reads again then 

outputs again before going into the null state. The network is 

c 1 	a2  

where c 1  takes values 0 or 1 and c 2  takes only 0's as values.. We 

draw the associated transition net derived from our construction, 

marking those conditions which represent the states of p and whether 

events are reading (r) or writing (w) actions. We first draw the 

net so as to exhibit the subnets corresponding to c 1 , p and c2 . We 

also draw the subnet of c 1  so as to separate the writing-part and 

reading-part. The reading-events of c 1  are identified with reading 

transitions of p and the writing-events of p are identified with 

writing-events of c 2 . The identification is marked by a dotted 

line. Note the writing events of c 1  depend on the external environ- 

ment. 



3' 

writing to channel c 1 	reading to channel c 1 	the process p writing 
to chan-
nelc2  

One can, of course, draw the net so appropriate events are 

identified; then it looks more like a heap of spaghetti, thus: 



channel c 1 	 process P 	 channel 

The above example illustrates a. computation which can be viewed 

more abstractly-as determining a function from an input d.atatype 

(associated with c 1 ) to an output datatype (associated with c 2 ). 

The process will read a value if it is in a read—state and there is 

a value to read. Also it will write a value if it is a write—

state. The corresponding transitions are thus restless. However 

the write—transitions of c 1  are not; they depend on the outside 

world. 

In the examples we have given particular constructions of 

transition nets modelling computations. In example 2.3.9 many 

other transition net descriptions are possible even once the inter-

pretation of transitions has been fixed. One would like a means 

of expressing the relationship between net descriptions which in 

particular induces notions of equivalence (the latter corresponding 
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to "are essentially the same description of a computation"). 

2.4 Causal nets, cases and K-density  

Historically transition nets came first in the development 

of net theory. Later Petri, in particular, has attempted to 

develop the foundations of net theory by analysing the assumptions 

to be made at "lower conceptual levels" [Pet I ]. 	It is hoped 
that a theory of morphisms (see section 2.5) will make this precise. 

Causal nets [Pet I ] appear at the "first conceptual level". 

A transition net description of a computation determines a set of 

possible courses (called "processes" by Petri in [Pet 1 ]) the 

computation may take. 	(We avoid the words "history" or-"run" as 

for us they invoke a time-scale.) Petri requires a type of net to 

formalise the idea ofcourse of computation. At the very least 

he requires such nets to be causal nets. In addition he also 

requires them to be K-dense. Petri has said that the set of causal 

nets associated with a transition net constitutes its semantics 

[Pet. 2 ]. 
There are difficulties with the formalisation of the idea. of 

course of a computation by causal nets.. A causal net is being used 
as a net-analogue of history.. As such the events are regarded as 

eventually occurring so we encounter the restless events issue again. 

It appears courses are allowed to have infinite pasts which introduces 

some subtleties (see chapter 7). Also, importantly, K-density seems 

far too restrictive an axiom.. As we shall argue against it later 

(see chapter 5) we shall spell out the arguments given for K-density 

in [Pet I ] 
and CBes] 	. The axiom of K-density involves the net- 

theoretic idea of state of a causal net, called a case. 

As we mentioned, the courses of a computation must at least be 

representable by causal nets. As net analogues of histories they do 

not possess conflict. However causal nets are not marked so this 

is banned in a formal way by the axioms N4. and N 	•. In order 
that the events and conditions of a causal net correspond to occur- 

rences loops in F are also disallowed (axiom Nt). 	(Note as our 

definition of a Petri net is a little more general than usual so too 

is our definition of a causal net.) 

NO  



Definition 2.4.1 

A Petri—net N = (B,E,P) is a causal net iff 

V  E B 	< 1 

V b E B l'bI <1 

is irreflexive. 

The following are examples of causal nets which we shall refer 

to later. 

Example 2.4.2 
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6, 

Example 2.4.3 

Qb, 

Ok 
Example 2.4.4 

De 



e, 

6, 
e0 

60 

4-0 

Example 24.5 

Example 2.4.6 

Example 2.4.7 

€0 

6, 

e2. 



h1 

Example 2.4.8 

a 	S 	

a e., 	a  

C 
Note in example 2.4.5 an event e is dependent on an infinite 

chain of events e0 ,e 1 ,... . 	In examples 2.4.6 and 2.4.7 the event 

is dependent on an infinite chain of events e 19 e29
... stretching 

into the past. In example 2.4.8 the event e depends on chains of 

events of unbounded length. 

For a causal net it is easy to define a concurrency relation, 

representing causal independence between events and conditions; it 

is simply the complement of the causal dependency FL)F 

Definition 2.4.9 

For a causal net N = (B,E,F) the concurrency relation 

CON c (B U B) x (B j E) is defined by 

= (B u B) x (B o B) 	(F 	()-1 ) 

From our axioms on causal nets it follows that co 1  is symmetric 

and. reflexive and that any two elements of B .J B are either causally 

dependent or concurrent. 

The concurrency relation is used in defining the net—theoretic 

notion of state. This is taken to be a maximal subset of B '..) B 

pairwise related under CON,  and is called a case. This form of 

definition occurs frequently in dealing with nets so we spend a 

little time on notation. 

Proposition 2.4.10 

Let X be a set with binary relation R s.t. R 2 l (the 

identity on x). 	Then a ken of P. in X is defined to be a maximal 
subset of pairwise R—related elements of X. Note, for Y ç  X, Y is 



a ken of R in X iff the following holds: 

V  E  X(Vy £ Y xRy <=> x E 

Definition 2.4.11 

Let N be a causal net (B,E,F) with concurrency relation CON. 

A case of N is defined to be a ken of CON  in B o B. 

The definition of case (only defined for causal nets) is 

intended to formalise some notion of global state. 	In example 2.4.2 

{e41, {b2 ,b3 1 and {e2 ,b2 } are some of the cases. 	In examples 2.4.4 

and 2.4.5 {b0 }, {b 1 ,b1, {e 1 ,b}, 	 as well as the 

infinite set {btn = 1,2...} are cases. 

To state the axiom of K-density we need a further definition. 

Definition 2.4.12 

Let N = (B,E,F) be a causal net. A sequential process of N is 

a ken of (Ftj p*1)  in B v B. 

The name "sequential process" is apt for the 'tsubnets" corres-

ponding to Miler's agents or Kahn-MacQueen processes when there is 

no conflict. Note sequential processes may possess a variety of 

order-types. In examples 2.4.6 and 2.4.7 the sequential process 

({e. \ i E C0 1 U lb. I i £ c)}) has order-type w. 	In example 2.4.5 the 
sequential process ({b1 1 i EU)} j {e./ i €w} ç leD has order-type 

C*)+ 1. 

Now we state the axiom of K-density giving our' intuitive inter-

pretation of it later. It says any case determines a unique "local 

state" of a sequential process. 

Definition 2.4.13 (The axiom of K-density) 

Let N = (B,E,F) be a causal net. - The net N is said to be 

K-dense iff every case intersects every sequential process. 

Notice that because of the properties of co any non-null 

intersection of a case and a sequential process is a singleton. As 

Petri noted, any finite net is K-dense. Also the nets in examples 

2.4.2, 2.4.3, 2.4.6 and 2.4.8 are K-dense. 	However the nets of 

examples 2.4.4, 2.4.5 and 2.4.7 are not. 	In examples 2.4.4 and 

2.4.5 the cases described by {b'n = 1,2...} do not meet the 

sequential processes (lb .J I (ic,..} J {e. i €w}) and 
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({b. ( i Ewl j {eJ i E co} j{eI) respectively. 	In example 2.4.7 

the case {b i € wi does not meet the sequential process 

i €wI Q JbJ j 

In [Pet I ] K-density is announced as a thesis; there it is 

stated that a causal net representing a course of computation is 

K-dense. 	Thus the nets of 2.4.5 and 2.4.7 and the seemingly 

inoffensive net of 2.4.4 are banned from representing courses of a 

computation. Examples 2.4.3 and 2.4.4 show that the property of 

being K-dense or not depends crucially on what conditions are 

included. As later we shall deal with event structures, essentially 

nets without conditions, it is important we understand at least the 

intuition behind K-density. In fact we shall disagree with it. To 

us the net of 2.4.4 seems reasonable even though, incidentally it 

cannot be associated with the course of a finite transition net. For 

instance the conditions bl of 2.4.4 might correspond to resource n 

being made available by an agent on transition e 1  from state b 1  

to b. Thus we must find a point on which to disagree. 

It is hard to argue directly with the thesis in [Pet I ] or 

the "simplicity" - and-'attractiveness" argument in [Bes] 	. 	in 

contrast we sketch how K-density may be deduced once certain 

assumptions are made. The assumptions are based on discussion of 

examples in [Pet I ] and [Bes 	]. 	In representing a course of 

computation by a causal net we assume all conditions and events occur 

sometime. This can be made precise using the idea of an observer 

(see 5.1 and 7  for formal uses of this concept). An observer is a 

projection of the entire course of computation onto a time-scale; 

accordingly all the events and conditions of the associated causal 

net are ascribed extents of time consistent with the causal 

dependency relation. Our first assumption can be replaced by:there 

is an observer for the causal net. An observable state can now be 

defined as the set of conditions which hold and events whiCh fire at 

one time according to some observer. We mentioned that cases 

represented a notion of global state. From [Pet I ] and [Bes 

it seems that cases are observable states, our next assumption. 

Our final assumption may be summarised as infinite secuential 

processes take infinite time according to observers. By this we 

mean an infinite chain x0Fx 1 Fx2 ...PxF... is never completed at any 



finite future time according to an observer. Also an infinite 

chain x F 1 x 1 F 1  ... 	 never begins at a finite time in the 

past according to an observer. 

We examine the examples to see if they are consistent with the 

assumptions, before deriving K-density from them. In example 

2.4.4the sequential process ({el i ec} j {b. i € wI) can never 

be observed completed at finite time. Thus the case {b' n = 

is not an observable state contradicting our second assumption. 

Thus the net of example 2.4.4 cannot represent courses of computation 

according to the assumptions. We have already seen that it. is not 

K-dense. Similarly the net of 2.4.5 fails the assumptions. 	(In 

addition the event e could never be observed.) The non-K-dense net 

of example 2.4.7 has a case which can only hold in the infinite past, 

again contradicting the assumptions. The remaining examples of 

causal nets do not contradict any assumptions. 

We now outline the argument for K-density. Suppose a causal 

net were not K-dense. That is, suppose some sequential process did 

not meet some case for N. Eike Best has shown that this implies one 

or other of the following situations [Bes 	J. 	Either there is a 
case C above an infinite F-chain i.e. there is 	x O x 1  x 	n 

P F ...Fx F... 

in  with Vx.  c € qx.F
± 
 c or there is a case C below an infinite 

F1* -chain i.e. there is x 0 	1 	2 F x F x ... 	

n 
F x F-1 ... with 

V x 3 c € qcF+x. 

The two situations can be seen in examples 2.4.4 and 2.4.7 

respectively. In the first situation the case can only be seen by 

an observer in the infinite future while, for the second, it can only 

be seen in the infinite past. In both situations we contradict at 

least one of our assumptions. 

Whether or not the above assumptions are acceptable to net-

theorists, in rejecting K-density we must reject at least one 

assumption. In future we shall not assume cases are observable 

states. If our analysis is correct our disagreement with Petri's 

foundational work on net theory is as fundamental as the notion of 

state. Of course, there is something correct in the spirit of 

K-density; for the most part one does rule out courses of 

computation like that described by 2.4.5..in which an event depends 

on an infinite chain. 	(Such computations represent Zeno machines 



[Hew 	].) Also note we expect a revised form of K-density to 

hold when cases are restricted to being observable. 

2.5 Net morphisms  

Net morphisms are intended to provide a framework for 

operations on nets like refinement, contraction, extension, 

restriction and completion (see [W.Prc] - we shall illustrate some of 
I 

them). The current definition of net morphism ir 
	

--i" 10O ' 

does not take into account markings, cases or any other represent-

ation of the idea of state. Roughly it is a local definition based 

on the idea that conditions and events are generalisations of 

respectively open and closed connected intervals of time. We try to 

explain the idea of it before giving the formal definition. Firstly 

assume a morphism from a net N0  to N 1  is a function f from the 

elements of N0  to the elements of N i . 	It is reasonable that it 

should be F-respecting that is: 

xF0  y=> f(x)F1 IJ1 f(y) 

Thus maps like these are allowed so far: 

The first two "collapse" part of the net while the third "identifies" 

elements of the net. However note at present the following maps are 

allowed too: 

Taking composition as the usual function composition gives the nets 

and 	are isomorphic. In this sense we fail to account 

for the different nature of events and conditions. The net-

topology is intended to do this. 	In the topology singletons of 

conditions are open and 	singletons of events closed. 



Proposition 2.5.1 

Let N = (B,E,P) be a net. Taking as open sets those subsets 

X of B ,.i  E satisfying V e € X n B e X L e S X gives a topology 

(the net topology). Closed sets are characterised as being subsets 

X sucL that VbØ,,Xb SX & b S X. 

Thus if an open set contains an event it must include its pre and 

post conditions. 	If a closed set contains a condition it must also 

include its pre and post events. (Note the symmetry in the 

definitions of open and closed - the closed sets also form a 

topology.) 

Currently a.morphism is defined to be a map which is 

F-representing and continuous with respect to the topology. 

Definition 2.5.2 

Let N.
1 	1 1 1 

(B.,E.,F.) for i = 0,1 be two Petri nets. 	Then a net 
- 

morphism from N0  to N is defined to be a map f: B 0  E0  -> B 1  .j B 1  

which is such that (i) xF0y => f(x)F 1 	I f(y) 
(ii) f is continuous with respect to the net 

topology. 

Diagrammatically, continuity implies the dotted arrows follow from 

the solid arrows in "building-up" the two morphisms below: 

4-'; 

9im 
The further property of respecting F guarantees that the causal 

dependency relation cannot switch direction under a morphism. 

In fact morphisms may be defined in an alternative way as those 

maps respecting the F-relation and an adjacency relation (generally 

denoted P) which we now define. 

Definition 2.5.3 

Let N = (B,E,F) be a net. 	Define the adjacency relation P to 

be the relation B x  ,i (F LiF). 



Lemma 2.5.4 

Let N. = (B.1
,E.

1
,P.) for i = 0,1 be two Petri nets with 

1 	1 

adjacency relations P 0  and P 1  as defined above. Then a map 

f: B0 J E0  -> B 1  .J E 1  is a net morphism iff 

xP0y => f(x)F 1  j 11(y) and 

xP0y => f(x)P1 ij if(y). 

Proof 

Suppose f is a net morphism N0  -> N 1 .- We require I to be 

P-respecting. 	Suppose xP0y. 	Then for some b € B0  a: -..d e E 

either bP0e or eF0b if bF0e then f(b)F 1  j 11(e). Thus if 

f(b) € B 1  we have f(b)P 1 t.., 1f(e) as required. 	Otherwise f(b) € B 1 . 

Then as f is continuous closed sets pull back to closed sets under 

f •1 	This means as b € f {f(b)} we must have e € f {f(b)J i.e.. 

f(e) = 1(b). Thus f(b)P 1  U 11(e) as required. 	Similarly if eF0b. 

Suppose f is a map B0  k./ B0  -.> B 1  i B 1  such that (i) and (ii) 

above hold. We check 1 is continuous.. Suppose e 6 f X i.e. 

f(e) E I. If eF0b then f(e)P 1 j if(b). Thus assuming f(e) € 

gives f(b) € X i.e. b € f 1 X. 	Otherwise 1(e) E B 1  in which case 
CS P  w 	-çC) u f$'&) o ' (Li€ 'B 	o•. 	tnz dcfti . 4 P 

f 1 X. Thus e E f- 
1 
 X implies e 	f- 

1 
 X. Similarly 

e f 1 X => e 9 X. This means f 1 X is open as required for I to 

be continuous.5 

Example 2.5.5 (Some morphisms) 

Recall we allow nets to be singletons so f 1 : 01 	E] and 

f : Dt 	>o are morphisms. So are these: 

> I 
	

The maps 13  and 14  pinch 

together" the encircled 

> 	conditions. 

4- -7 

The map f5  introduces a 

loop by ident top and 

bottom conditions. 



o 	-c 
The map f6  "collapses" the 

small net on the left to a condition. 

It is hard to see a uniform intuitive interpretation of the above 

morphisms. 	(For example the obvious maps induced on markings by 

and f6  are in opposite directions.) 

There are possible criticisms of the above definition of 

morphism. There may not be an intuitively acceptable ttmorphism t 

which fails either of the properties (i) or (ii) in 2.5.2. However 

the definition is perhaps too general in that it allows morphisms 

which are hard to justify intuitively. As remarked a mor:phism as 

defined, in 2.5.2 takes no account of markings and markings are crucial 

to the dynamic behaviour of the token game. 

We look at some specific intended uses of net morphisms. 

According to their use we expect further restrictions in their 

definition. Recall that certain types of causal net are the net-

theoretic representation of the possible courses of a computation 

described by a transition-net (section 2.4). The fact that a causal 

net N is the course of a computation described by a transition net 

N2  is represented by a special form of morphism from N 1  to N2  called 

a folding. Example 2.3.6 showed a folding. Before the formal 

definition of a folding we give a further example where the net 

folded is a causal net. Petri has said that the class of causal 

nets which fold into a transition net constitute its semantics [Pet Z]. 

Example 2.5.6 

ej 

Lb 
N 1  N2 



Here the net N 1  corresponds to an infinite tape of 0's while 

the net N2 represents the datatype consisting of possibly infinite 

tapes of 0 1 s and l's. The net N 1  might be the output from a 

computation with possible outputs represented by N 2 . The map f is 

defined by: 

f(b.) = p0  if i is even, p 1  otherwise 

f(e. 
1 	0 	 1 ) = t if i is even, t otherwise. 

The map f is an example of a folding. We have ignored initial 

markings and the fact that all the events of N 1,are  supposed to occur 

eventually (they are restless). 

Definition 2.5.7 

Let N0  and N 1  be nets. Then a map f: B0 j E0  -> B 1 j E is a 

folding iff 

(i) xF0y => f(i)F 1 f(y) 

(±) fB0  ç. B 1  9, fE0 

This differs from the definition in [Pet] where instead of (ii) 

there is the property f preserves P. However when the field of P 

is B J E, an assumption generally made on nets, (i) gives that (ii) 

above is equivalent to £ being P-preserving. 

In modelling Kahn-MacQtieen networks by transition nets we saw 

how nets representing datatypes were, in some sere, subnets of nets 

giving a more complete description of the computation. We give a 

formal definition of the idea of subnet now. 

Definition 2.5.8 

Let N. = (B.,E.,P) be nets, for i = 0,1. 	Then a map 
3. 

f: B0 J E0  -> B1 '-'1 
 is a subnet morphism iff f is a 1-1 net 

morphism sending conditions to conditions, events to events and such 

that f(x)F 1 f(y) => xF0y. 

If f is the inclusion ma then N 1  is a subnet of N. 

We confess that the extra restriction of preserving events and 

conditions is redundant in the presence of the assumption generally 

made on nets N = (B,E,F) that B c. E equals the field of F i.e. 

B cj3y E 3 k B iF7 or yFx. 

Then the assumption of £ being a 1-1 morphism implies f preserves 



events and conditions; it does not. imply f is a subnet morphism, 

however. 

We illustrate another type of morph-ism which seems important 

though we shall not give it a formal definition because there appear 

to be difficulties. 

Example 2.5.9 (Contraction) 

I ) 

The map f drawn schematically above contracts the "boxed-off" 

part of N to a single event of N2 . 

The map f of the above example is certainly a morphism. It has 

a seemingly natural interpretation: N 2  is a more coarsely grained 

description than N with event a standing for the subcomputation 

described by eFbPe 1 . With this interpretation there is a problem 0 1   

if e occurs but e 1  never occurs. 

would begin but never end firing. 

about events namely that occurrences of events should take up extents 

of time which are compact connected intervals. The situation can be 

remedied for example 2.5.9 by ensuring that e 1  will occur once e0  has 

occurred. However the extra structure is necessary to reflect this 

fact and ensure f does not violate our intuitions about events. 

Of course, for another interpretation of f the above argument 

may not even make sense. For instance one could think of f as 

standing for a computation from an input datatype described by N 1  to 

an output datatype described by N 2 ; the map f then determines the 

output values produced by input values (cf. examples 2.3.7 and 2.3.9). 

This points out the danger of not having a precise interpretation in 

mind; non-commitment to a particular interpretation can lead to at 

best vaguenessworst error and rarely to a theorem. 

50 

Then correspondingly the event 

This contradicts one intuition 



Chapter 3. Introduction to concrete domains and seguentiality 

In this chapter we see how the idea of events came to be treated 

formally and explicitly within denotational semantics. This arose 

through the collaborative work of Gilles Kahn and Gordon Plotkin in 

formalising the idea of concrete datatypes (or domains) and 

sequential functions in the autumn of 1975 ([Kah and  Plo]). 	Concrete 

domains are domains of information about "basic" input or output 

which also support a general and natural notion of sequential function. 

Kahn and Plotkin discovered that their concrete domains were 

represented by matrices, objects similar in form to Petri nets. 

In the first section we give some background results from 

denotational semantics with some illustrations of Dana Scott's idea 

of information ([Sco]). 	The presentation is inevitably rather "racy- 11 ; 

for further background see [c.or] for applications and [Wad] for theory 

and practice. 

In the second section we outline in fair detail the fundamental 

results on concrete domains, how they are represented by matrices (the 

representation theorem) and the definition of sequential function. 

The relevant work here is [Kah and Plo],  [cur] and [B€.r and C4r]. 

In the latter, Gerard Berry and Pierre—Louis Curien produce a 

cartesian closed category of concrete domains taking algorithms (an 

abstract form of deterministic program) as moiplisms. They show 

sequential functions are precisely those functions realised by 

algorithms. We omit the category theoretic aspects of concrete 

domains, in particular rigid embeddingwhich enable concrete-domain 

solutions to a restricted form of recursive domain equation. 

In the final section, a kind of appendix, we prove the 

representation theorem in detail. 	(In fact we prove a more general 

result for a kind of event structure.) 

3.1 Background material 

In denotational semantics the meaning of a programming 

construct such as a procedure or command is denoted by an element of 

a particular form of partial order called a domain. The partial 

ordering reflects an idea of information. 

Definition 3.1.1 

A partial order (D, ) is composed of a set D and an ordering 

CO 0  
UNIP 
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relation 9 on D that is a binary relation g satisfying 

(i) 
	

€ D x x 	(reflexivity) 

V x,y ED x y .Z y x => x = y 
	

(antisymmetry) 

V x,y,z E D x 9 yS.- y z => x 
	

(transitivity) 

We write x y for x y& x / Y. We sometimes write x 2 y for 
yx. Two elements x and  are comparable when x Qy or yx; 

otherwise they are incomparable. If x y we sometimes say y 

dominates x. 

Notation 

Let (D,) be a partial order, X a subset of D and y a member of 

D. Then y is an upper bound of X iff V x E X x y (we abbreviate 

this to Xc); similarly y is a lower bound of X iff Vx € X y x 

(abbreviated to y X). The supremum of I, written Ux, is an upper 

bound. which is dominated by all upper bounds of X. 	inflsnum of X, 

written fix, is a lower bound which dominates all lower bounds of X. 

If X is {a,'o} we write a t.-i b and an b for Lix and [lx respectively. 
If X possesses an upper bound we say X is compatible (and write XT 
incompatible (and write x-). 	If X is fxtyl  we write X  as xl y  

and X4_ asxy. 

Definition 3.1.2 

In a particular order (D, ) a subset S of D is directed iff S 

is non-null and 	2 S 
3 53  € 	 53 1 

For example an 60 -chain x 1 	x2 	 ... 	 ... is directed. 

Definition 3.1.3 

A partial order (D,9 ) is a complete partial order (cpo) iff 

D has a minimum element L 
All directed subsets of D have a supremum in D. 

Cpos are the objects in which denotations are taken. They are often 

called (semantic) domains. 	In a cpo the elements of a directed set 

S can be thought of as earlier approximations to the element U 
which the directed set eventually determines. There is another 

possible definition of cpo in terms of (.--) -chains which is perhaps 

more intuitive. In the presence of natural restrictions the two 

notions coincide. 	We choose to work with directed sets simply 



because this is the most common approach in the literature. 

Example 3.1.4 ('D) 

43 is a very useful little domain consisting of 2 elements 
land T with J-9 T. It looks like this: 

Exanrple 3.1.5 (T -:.the domain of truth values or Booleans) 

The domain I is represented above; it consists of a set LL,tt,ff I 
with ±ctt and _L 	ff.. The symbol tt denotes true and ff false. 

The set of tt and ff is incompatible. We give an idea of the 

intuition behind the ordering. Suppose a computation may give a 

single truth value as output. Before it has terminated with a value 

we have information .1 about the output i.e.. no information at all. 

Once it terminates with value true we have information tt and similarly 

if it terminates with false we have information ff. If it should 

diverge (never terminate) we always have information .J_ about the 
output. The information J_ may grow into the information tt or the 

information ff. 

Example 3.1.6 ( !W - the domain of integers) 

I 	. 
consists of _L'u 	(where (Afl) denotes the natural numbers) 

ordered by J_ 9 n for all n in 0) . The intuition of the ordering 
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is like that for 91' . All the domains (1) , T and N  are examples 

of discrete (or flat) cpos. 	They are formed by adjoining the 

below a set. In them information has an all-or-nothing character; 

in t711 for example the information is either a truth value or nothing 

at all J • JThese two properties of domains crop up frequently: 

Definition 3.1.7 

Let (D, Q) be a cpo. 

It is consistently complete iff for all compatible subsets X we 

have the supremum U X exists in D. 

Say X a subset of D is pairwise-compatible iff for all x,y in X 

we have x and y are compatible. The cpo (D,.) is coherent iff every 

pairwise-compatible subset X has a supremum U X in D. 

Example 3.1.8 

zi: 
The first domain is not consistently complete while the second is but 

is not coherent. Thus coherence is strictly stronger than consistent 

completeness.. 

Consistent completeness has this characterisation: 

Lemma 3.1.9 

A cpo (D,) is consistently complete iff all compatible pairs 

x'y have a supremum xl-J y. 

Proof Suppose all compatible pairs of D have suprema. 

• Suppose X D. If X = $ then Ux = .L. If X is non-null take 

S to consist of elements x 1  i.j x2 ...0 x for x 1 ,...,x in X. 	(We get 

U. .... Li x exist in D by a simple induction.) 	Then S is directed 

so Us exists and is easily checked to beLjX. The converse is 
trivial. Z 
Consistent completeness implies infina always exist-for non-null subsets. 

Lemma 3.1.10 

Let D be a consistently complete cpo. Then for all non-null 

subsets X of D, flx exists in D. 



Proof 

Let X be a non-null subset of D. Define Y = {y € DI y 	xI. 
Then 	U Y exists and may be checked to be fl X. 

We now look at functions between partial orders. 

Definition 3.1.11 

Let (D., .) for i = 0,1 be two partial orders. 	A function 

D0  -> D1  is monotonic 1ff Vx, y  E D x 	=> fx) 	1 f(y). 	The 

function f is an order isomorphism 1ff there is a monotonic 

D1  -> D0  such that gof = 1D and fog = 1D • 	(This is equivalent 

to f being 1-1, monotonic and 9(x) Q 1 f(y) =>
1  x ç0y for x,y  in D0 .) 

Then D0  and D1  are (order-) isomorphlc.5We are interested in 

computable functions. Suppose a computation gives output according 

to input. For more input information it will give more output 

information. Thus it will correspond to a function f between the 

domains of information which is monotonic. The input information 

may be presented over time (possibly unbounded) as a chain 

x 1 	... ax 	which has supremum U {x n E 	 The corres- 

ponding output information will be f(x 0)f(x1 )... 	f(x) 

with supremum U f(x) n E c,I. We expect the eventual output for 

the eventual input LJIX n  I n € w) to be no more than the supremum 

\J {(')l n ECt)}. 	This means we require f(U{xt n €u}) = 

[J {r(x) n € W}. 	It is this intuition which the continuity 

restriction on functions expresses. 	(See [c°1,ti.iJA3)- 

We give the definition in terms of directed sets rather than W -chains 

because this is the most common approach. 	(For 60 -algebraic 

domains for instance the two definitions agree.) 

Definition 3.1.12 

Let (D0 , 	and (D 1 , 	) be two epos. 	A function f: D0  -> D 1  

is continuous 1ff it is monotonic and for all directed sets S of D0  

f(LJ0S) = LJ1 {f(s) J s € S. 

ProDosition 3.1.1 

The continuity property is preserved by the usual function 

composition. 	If D is a cpo the identity function 1D is continuous. 

This means epos and continuous functions form a category. In 

fact it is a cartesian closed category with product and exponentiation 

objects given by the following constructions. 
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Q4E) 

(J-,J-) 

NT 

(r) 

tf) 

Example 3.1;16 (Two products) 

çL,T) 

(i1i) 

Definition 3.1.14 

Let (D0 , 0), (D 1 , 1 ) be two epos. 	Define their product 

Do  X D 1  to be all pairs D0  X D1  ordered co-ordinatewise by 

(x0 ,x 1 ) 9 ( y0 , y1 ) 1ff x0 Q0yO  & x. 	1 y1 . 	Define their 

function space IDO  -> D 1 ] to consist of all continuous functions 

-> ordered pointwise by f f' iff V x € D0  f(x) f'(x). f: D0   

(The definition of product generalises to arbitrary sets of cpos.) 

Proposition 3.1.15 

The product D0  x D1  of two cpos D0  and D 1  is a cpo with minimum 

element J_= (L0 ,J); the supremum of a directed set S of D 0  x D 1  is 

(U0s0 , U 1 s 1 ) where S0 = {X01 3 x 1  (x0  ,x 1 ) € S} and S 1  = 	- 

s}.. 	 - 

The function space ED0  -> D 1 ] of two cpos D0  and D1  is a cpo 

with minimum element : ' 
	 the supremum of  directed set 

S of [D0  -> D 1 ] is the function x J—' U 1 {f(x) ( f € s}. 

A function f from D0  x D 1  is continuous 1ff it is continuous in 

each argument separately (i.e. the function x0 .f(x0 ,x 1 ) is 

continuous for all x 1  and \x 1 .f(x0 ,x 1 ) is continuous for all x0 ). 

Of course, the function space generally includes far more 

functions than the computable ones. To see how the theory of 

computability can be grafted onto domains see [Smy] for example. 

ro 

Example 3.1.17 ([ jJ -> i ]) 

The continuous functions j ->(\J form the domain E N -> J J. 
Here all monotonic functions -> are continuous and the point-

wise ordering gives f Q f' 1ff 

Vx € J f(x) = n €Q => f'(x) = n. 
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Thus f f' means "less defined thai". 	Some maximal functions of 

IN -> J ] 
are of the form f: x i—' n for all x in (jJ and some 

fixed n E(.iJ; then f(_L) = n so the function "disregards" the input 

and always outputs n. The other maximal functions induce total 

functions W -> t) and must act so -L!->-L to guarantee monotonicity. 

Clearly there are many more continuous functions N -> N than there 

are computable functions. 

The least-fixed-point operator is used to give a denotation to 

recursively defined functions or procedures and iterative constructs 

like while loops. 	If D is a domain and f is a function in ED -> D] 

then the least-fixed-point operator acts on f to give its least fixed 

point. 

Proposition 3.1.18 

Let D be a opo. 

If f € ED -> D] then the least fixed point of f exists and 

d. 	Ifc!_) 	
nEOJ} 

ef 

The function Y: ED -.> D] -> D given above is continuous. 

Proof 

We shall only prove (i). For f in ED ->• D] it is clear that 

= f° (J_) 	f(.L) 	•. 	f"(-L) 	... is an cJ -chain and so forms a 

directed set. Continuity of f gives f 	 so '{(f) is a 

fixed. point. 	Suppose x is another fixed point of f i.e.. f(x) = X. 

Then as 	x we get 
fn(1) q f11(x) = x by repeated application of 

the monotonic function f. Thus 	(f) = Li {fn(L) n 	x so 

is the least fixed. point. 

Example 3.1.19 

We indicate how the fixed point operator is used to give 

denotations of recursive procedures. In a programming language a 

procedure giving the factorial function might be defined by: 

f(x) = if x=1 then 1 else x X f(x-1). 

Assume for definiteness that evaluation of f is. call-by-name and 

that x-y is 0 if x<y. 	If f is called for argument an expression t, 

then the expression is passed to the defining body of f. The test 

("if x=1") attempts to evaluate t. 	If and only if this terminates 



the appropriate branch of the conditional is selected. In 

general this will lead to f being called again and if t evaluates to 

0 to f being called an infinite number of times. Define semantic 

versions of conditional, test, multiplication and subtraction by: 
N12 

cond: 	I 
nfl  

X 

cond(I,n,m) = 

cond(tt,n,m) = n,cond(ff,n,m) = m 
2 eq: 	uJ 

,j1 
	-> 

eq(n,m) = .1. if n = j. or m = 

=ttifn,mIJ_ £- n = m 

= ff otherwise 

P: N 2 > ft) 
p(n,m) = J_.if n =_L or m = I 

= n X m otherwise. 

Subtraction s is similar. 

Then the recursive definition determines a continuous function 

U: [J -> N  ] -> E 	 > 	 )\ • 	 = 	x.cond(eq(x, 1) 9 1, 

p(x,f(s(x,1)))). 	Each iterate [1n (1.) agrees with the factorial 

function on 1,2,...,n in I)V and is J.... elsewhere. 	Roughly an iterate 

gives the information about f which may be got in a certain finite 

time.. The procedure f is denoted by the least fixed point (f7) 

in [ W -> tlJ] which is all the information which may begot ever. 
Algebraic domains are those domains of chief importance in 

d.enotational semantics at the moment. They are determined by their 

isolated elements which form a basis. 

Definition 3.1.20 

Let D be a cpo. Say x in D is isolated iff for all directed 

sets S in D 

x 	lJs=> 3s €Sxs. 

Denote the set of isolated elements by D° . 

Definition 3.1.21 

Let D be a cpo. Then D is algebraic if for all x in D we have 

{y € Do  yx} is directed and  = 	€ Do  yx}. 	D is 

&j-algebraic iff it is algebraic and D°  is countable. 



Lemma 3.1.22 

Let D be a cpo. Then J_ £ D°. Suppose x,y E D° . Then if 

x LI  y exists x Li y € D0  

Proof 

We have _L € D°  as directed sets are non-null. Suppose 
x,y £ D°  with x Li yin D. Let S be a directed set with xLI y 	uS. 

Then x s and y 9 t for some s and t in S. Thus x Li y Q u for some 

u in S by the definition of directed. Thus x Li  y € D0.I 

Proposition 3.1.23 

Let (D, ) be an algebraic cpo. 	Define 	(D0) to consist of 

-left closed directed subsets of D°  ordered by inclusion. 

(S 	is c-left- closed if  Vx,y E D°  x Q y € s => x € s). Then 

D 	(D°) under the map x 1-4 {y E D°  ySE x}. Thus D is determined 

by (D0 ,) to within isomorphism. 

Provided domains are consistently complete algebraicity is 

preserved by the function space and product constructions. The 

isolated elements of the function space are step-functions. 

Definition 3.1.24 

Let (D0 , 	(D1 , 	) be algebraic cpos. 	Define the function 

e[x,yJ for x E D and y € Dby e[x,y](z) = y if x 9 z 
= J_.otherwise. 

A step-function in [D0  -> D 1 ] is a function of the form e[x0 ,y0]u... 

LI e[x,.y] for x. in Dg and yi  in D. 

Step functions can be drawn to look like steps. The vertical 

direction represents increasing information in the range D1  and in 

the horizontal direction (right to left) increasing information in 

the domain D0. 

5.s  



Proposition 3.1.25 

Suppose (DO , 90) and (D 1 , 1 ) are consistently complete 

(w-) algebraic epos. Then 

(i) D0  x D1  is consistently complete and ()) algebraic; 

D0  x D1 ) °  = Dg  x D. 

(2) [D0  -> D1 ] is consistently complete and (6-) algebraic, 
r 	i 
LD0  -> D1 j O  is precisely the set of step functions. 

The domains 11P , and -  [ tU -> fJ] are (A) -algebraic and 

consistently complete. We have 

To ='P 

[fJ -> J ]O = I f E I N -> N I I fU_) E C) or fl:A) is finite}. 

Intuitively an isolated element of an algebraic domain corresponds to 

the information a computing agent may extract or produce in finite 

time through performing -  a finite number of actions. 

The following types of function are of particular importance. 

We shall use them later. 

Definition 3.1.26 

- Let D0  and D1  be epos. Suppose 	't'E [Do  -> D1].  Then 	'is 

strict iff ')t, ( 1 ) _J... 
Ilk 

is a projection if 	[D -> D0 ] 

ø= 1 D& ,0&Y 
(then 0' is called an embedding). 
Embedding-projection pairs are used in solving recursive domain 

equations. Roughly they give the relation of one domain approximating" 

another. Strict functions are necessary to give semantics for call-

by-value evaluation. 

We shall often be concerned with distributive domains. 

Definition 3.1.27 

Let D be a consistently complete cpo. Then D is distributive 

if 

y 'f' z=> xfl(yLJz) = (xrly)u (xflz). 

0 



3.2 Concrete domains, matr'ices and sequential functions 

Continuity is a general restriction on functions between 

domains which have a chance of being computable. It is natural to 

ask for a general restriction on functions which have a chance of 

being computable in "a deterministic way", that are in this intuitive 

sense sequential. 	(Note all the functions are determinate; they 

can only yield one value for one argument. We are concerned with 

whether or not such functions can be realised by a deterministic 

computation.) Some care is needed with the idea of deterministic. 

For example we would not allow the computation to depend on information 

about time not present in the domains; if this were allowed we could 

simulate parallel evaluation of the arguments. We wish any current 

(single) activity of the computation (its "flow of control") to be 

determined solely by information in the domains. 	(The algorithms 

of Pierre-Louis Curien ([Cur], [Ber and Cur])  provide one may of 

formalising this idea.) 

Example 3.2.1 

(_1T) 

61 

(T) _L) ,T) 

(J!J 

Regard the functions in 
[2  -> 	] as being on two arguments 

(x,y) in 0 2 	i deterministic computation from input 	to out- 
put 0  should proceed according to the following general scheme 

(borrowing ideas from [cur]). 



0 U .f' V 	

2. 

0UfO 
	 .oy 

VE 

SbWb 

(Horizontal lines correspond 

to output activity, slanting 

lines to input activity.) 

A deterministic computation will determine any partial branch 

beginning at start. Thus initially at its start the computation 

either examines a particular argument or ignores the arguments and 

perhaps, but not necessarily, outputs. Any completely slanting 

branch (including the single node "start") realises the function j.. 

in 	—> ]. The two maximal branches 

both correspond to the least monotonic function giving (T,T)t—T, 

which we can draw on 
(j)2  as: 

Consider the least monotonic function giving (T,±) i— T and 

(.i.., T) I— T drawn on p 2 as: 



This cannot be realised according to the scheme above; it examines 

its two arguments in parallel. 	It should not be a sequential 

function. 

We seek a definition of sequential function between domains 

based solely on the structure of the domains themselves. Two early 

definitions of sequential function were proposed independently by 

Robin Milner and Jean Vuillemin. These depend on viewing a function 

f: XD. -> E as being of n arguments (viewed as being more or less 

arguments may change its character according to these definitions) 

Definition 3.2.2 

Let D0 ,...,D 1 ,E be cpos. 	Let f be a continuous function: 

X D. -> E. Then f is M-sequential (Milner) iff either it is constant 

or there is an integer i (with Oi<n) such that f is strict in its 

argument ((x). =1 => f(x) =L) and the function obtained by 

fixing its 
1th  argument (\x0 , ...xi1 ,1j± 1 , ...1n 1.f(x0 , ...xji , xj , xj+11 xn_i)) 

is M-sequential. 

Also f is V-sequential (Vuillemin) 1ff it is a constant or there 

is an integer i (with OIi<n)  such that y2 x and () = (x). implies 

f(y) = f(x). 

The-two above definitions of sequential do not agree in general. 

However importantly they do coincide and appear correct in the 

situation where 	 and E are flat cpos. Note their 

dependence on argument places. 

Gilles Kahn and Gordon Plotkin sought a very geneil definition 

of sequential function which unlike M and V-sequentiality was 

independent of the way- that the function was viewed as having 

arguments. Reasonably, the definition should agree with M and 

V-sequentiality in the case where the donain and codomain were of 

the form XD. and E respectively for flat domains D. and E. They 

achieved 1this by axiomatising a wide class of domains for which 

there was a natural definition of places accessible from a point. 

Places are a generalisation of argument-places which can take values 

from a flat cpo. Unlike argument places, however, places are 

defined independently of the way the domain is viewed as a product. 

Their definition of sequential then agrees locally with M or 

V-sequentiality. Recognising that the notion of sequential depended 



on the nature of the objects denoted in the domains they chose to 

axiomatise only those domains corresponding to basic input or output 

values. Certainly integers, truth values, tapes and trees are basic 

and almost physical (their names often suggest it too!) whereas 

functions are not. In a computation a function must be represented 

for instance by the text of a procedure whereas basic values present 

themselves directly and concretely. Concrete domains are domains 

representing basic values and supporting Kahn and Plotkin's 

definition of sequential function. There are domains of basic values 

which are not concrete (any confused Petri net provides an example - 

see chapter 5). 

Kahn and Plotkin first axiomatised the concrete domains and then 

discovered they could be represented by matr(rather like Petri 

ne. Our presentation is the other way round. A matrix consists 

of places which can be occupied by at most one of a set of decisions 

or events. In general a place may not be occupied immediately but 

must wait until this is enabled by certain events. A place may be 

thus enabled by several different sets of events. (As an example 

the nth place of a list is enabled by the event of making the (n-1)th 

entry.) We now give the formal definition of a matrix M and its 
configurations ordered by inclusion I'(M).. Note _.L in P (M) 
corresponds to nothing has happened. 

Definition 3.2.3 

A matrix M is a quadruple (P,E,l,(—) where: 

1 • P is a set of places 

E is a countable set of events 

1 is a function from E onto P locating events at places. 

F- is a subset of (E) x P called the enabling relation. 

( f4(4-denotes the finite subsets of E.) 

We say M is strongly—deterministic iff A !—?&A' t— p => A = A'. 

Let X be a subset of E. 

Say X is consistent iff \7'e,e' E X 1(e) = l(e') => e = e'. 

Suppose e € X. Say e is secured in X iff e 0 ,..,e E x 

e = e & 'v"i<n 3 A 9 1 e0 ,.0 ,e. I A l-1(e.). 
Say X is secured iff all elements of X are secured in X. 

Say X is a configuration of N iff X is consistent and secured. 

'4: 
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Denote the set of configurations ordered by inclusion by 

Say N generates f1 (M). 

For a matrix N the partial ordering C (N) will be an 
)-algebraic domain satisfying certain axioms F,C,R and Q which 

determine the concrete domains. Conversely a concrete domain will 

be generated to within isomorphism by a matrix. 	(The represent- 

ation theorem for concrete domains.) 

The following definitions are important in defining sequential 

functions. 

Definition 3.2.4 

Let M be a matrix. Suppose x E 
(1 

(N) and p is a place of M. 

Say x fills p 1ff 	e E x 1(e) = p. 

Say p is accessible at x iff x does not fill p and Je 0 , ... ,e € x 

B 	 f— p 

Vi—<n 3A 	{e0 ,...,e1 1 1,A t— 1(e1 ). 
Write p(x) for the set of places accessible at x. 

For x,y  in r (N) write x 4.y iff x y and p is accessible at x and 

y fills P. 

Thus we can tentatively define a function f: ('(rI) -> ('(MI) to be 

sequential if it is sequential at all x in P(M) where this means 
'c/pt p(f(x)'),(3z3 i,f(x)3 f(z)) => 3 p € p(x) V:1,(f() 4 f(y) => 

This says to fill p' accessible from f(x) there is some p accessible 

from z which must be filled; it generalises V-sequential. Of 

course, it is not yet clear that this definition gives the same notion 

of sequential for different ways of generating isomorphic domains. 

This will fall out of the representation theorem. We give the main 

ideas in this section and the detailed proof in the next. 

We give some examples of matrices (and thus concrete domains). 

The first example illustrates a convenient way of drawing matrices. 

Example 3.2.5 

Let N be the matrix given by: 

P = {p,q,r} 

E = {o,1,2,3} 

i(o) = i(i) = p, 1(2) = q, 1(3) = r. 



J0,3 

{o}ffr, {1,2}I— r, 0 f— p, Ø — q. 

We draw this as 

11 
r 

 

Boxes represent places, their contents the events which are located 

there, "fused" arrows 	 the enabling relation. 

fl (x) has the form: 

M. 

ES 
Represented by an aerial view labelling arcs by the additional 

events this is : 
r) 

I 	I 
2. 	2 	 2 	iz 

This is often a more 

U 	 I 
	 convenient form. 

Flat domains are easily generated. 



VA 0 

P(M0) 	
N 

Example 3.2.6 

$ 
 _,Iz 

00  

11 (M0) 

0 ) 01:1  

M I 

7!2~v 
r1(M1) 

MA  

Sometimes two domains are isomorphic even though one is 

generated by a strongly-deterministic matrix and the other is not as 

here: 

Examvle 3.2. 

£1 

Some matrices which are not strongly-deterministic represent 

physical things. 
£s11'J73 

• Example 3.2.8 

   

I
r  

M 
	

r() 



The bulb b is turned on by either of the switches s 1  or s which 

are not mutually exclusive. 	P (M) is not generated by any 
strongly-deterministic matrix. 

Example 3.2.9 

Every place has one event. 

A place is enabled by any adjacent 

event.. 

"Blobs't (a discrete approximation to the quarterplane) 

A matrix is physically realisable in this sense 	Interpret each 

place as a computer capable of not terminating or outputting a set in 

1-1 correspondence with the events located at the place. Assume all 

computers are switched-off initially but are switched on according to 

the enabling relation. 

From the definition of a matrix N and its configurations r(M) 

the following properties are easily established. 

Proposition 3.2.10 

Let N be a matrix (P,E,l,1- ). 	Then: 

Two configurations x,x' in fl (N) are compatible if f Ve 
e' € x' 1(e) = l(el) => e = e'... 	If 'x,  and x' are compatible ther 

supremum in r,  (M) is x u x'. 

The- poset P (N) is coherentIf X a subset of P(M) is pairwise 

compatible then U X is the supremum of X in P (N). 
3.. The poset r(M) form an W-algebraic domain. Its minimum 

element is 	(so_I_ = ?S). The isolated elements of r(N) are 

precisely the finite configurations.. An isolated element dominates 

only finitely many elements in r (N). 
Proof 

1. and 2., follow obviously. 

Clearly 0 is the minimum element of P (N). :From 2. P(N) is a cpo. 

It is obvious that finite configurations are isolated in r(M).. To 

show the converse suppose X is isolated in r(M). For each e in X 

choose A. = {e0 ,...,e} 	X so that 

zJ 



7 
e & $ H 1(e0) g ViIn  3B c {'e0 ,..,e11 1 B(— 1(e.) - clearly 

possible as X is secured. Take S to be the directed set consisting 
of all configurations A .j ..* hA4  for e 1  , ... ,em in X.T1ei XU5 so some 
X = A u ... UAqm. As each Aei  is finite X is finite. As every 

i 	
C 	r1 I\ O 

corif igurati ai X s secured we have X = 	x E 	M) x - X 

Thus fl (M) is algebraic. As E is countable fl (M) is w -algebraic. 
As an isolated element is finite it can only dominate a finite number 

of elements. 

Kahn and Plotkin [Ka.h and Plo] showed that a cpo is generated by 

some matrix iff it is W -algebraic and satisfies four axioms 

F,C,R and Q. We now introduce the axioms and illustrate why they 

hold for domains of configurations. 

Definition 3.2.11 (Axiom F) 

Let D be an algebraic domain. Then D satisfies axiom F if f 
I vx € D0  I  ED1 yxç(<O°. 

Of course we have already proved this for configurations in 

proposition 3.2.10 part 3. 

Events of a matrix N show themselves in the domain ['(M)  as 

coverings. 

Definition 3.2.12 

Let (D,) be a partial order. Suppose x,x' 	€ D. 	Then Xt  is 

said to cover x, written z—Cx 	iff x 	x' 	- x 

V z € D 	c z 	x' => (z = x or z = 

Let x,y € D. Then a covering chain from x to y is a sequence 

x= x0 ,x 1 ,...,x = y where x.Cx.1  for i<n. n 	 2. 

The next lemma follows easily.. 

Lemma 3.2.13 

Let D be an algebraic domain which satisfies axiom F. Suppose 

X E D and y E D°  and x 9 y. Then x € D°  and there is a covering 

chain from x to y. 

It is easy to characterise —C in domains Fl (M)  for a matrix N. 

Lemma 3.2.14 

Let N be a matrix. For x,y in P (N), x—Cy if  
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3 e E E e A x 	y = x {e}. 
Hence a covering in f (M) corresponds to an occurrence of an event 

at a configuration. Also note that any covering (an occurrence of 

an event at a configuration) is reflected by a covering in 

Lemma 3.2.15 

Let IVI  be a matrix. For x,y in fl (N), x —Cy => 9 x' ,y' € fl (M) 0  
x ', y yx'_<yy'\x'=y\x. 

Proof 

Take e as the unique element of y x and use the ideas of 

proposition 3.2.10 (3). U 

Thus an event e of a matrix N manifests itself in (N), if at 

all, as a covering x —( y where y x = {e} and x may be assumed 

isolated. Of course the same event may occur at some other 

configuration. For example we may have x —C. 	x —'C z, y t z and 
y z. 	This means y = x i {e}, z = x u {e'} for two events e and e' 

such that 1(e) 4 l(et). 	Clearly yLJ  z exists and is x kj {e 1 ,e'} so 

y-uz\z={eI. 	 Ui 

The covering z —C y Li z represents the same event e as the covering 

x—Cy. (Also the coverings x —Cz and y —( yU z represent the 

same event e'.) This suggests we can recover events from domains 

by a relation based on "little squares" like that above. Axiom C 

ensures there are enough "little squares". 

Definition 3.2.16 (Axiom C) 

Let D be an algebraic domain. Then D satisfies axiom C iff 

for all x,y,z in D°  x --Cy 	x—Cz2 y'Iz& yz implies yLJ z 

exists and y —C y U z. 2 z -C y U z. 

We have seen above that r(N) satisfies axiom C. It expresses a 

form of orthogonality between compatible coverings of an element. 

In a picture it says 



Axiom C typically forbids 

11 

(In fact in the presence of axiom F it gives upper semimodularity 

which ensurec all covering chains between comparable isolated 

elements have the same length. See lemma 3.3.4 in our proof of the 

representation theorem for this and a lot more.) 

We now formalise how events are to be recovered from a domain. 

Definition 3.2.17 

Let D be an algebraic domain satisfying P and C. A prime 

interval of D is a pair 	where x---C Y. 	If [x 1 ,y 1 ] and Ix 29Y21 
are prime intervals with x1,r1  in D°  write 

< [,y] iff x 1 —Cx2  and 

Define '-' to be the reflexive symmetric transitive closure of <'. 

A prime interval is no more than a pair of elements in the covering 

relation. 	The relation [x19y1] < [ 2 , 2 ] 
looks like 

2 

and the relation 1x 1 ,y 1 ]c..i[x2 ,y2] like 
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In a domain r(M) a prime interval has the form 	u {e}]. 

When x and y are isolated it is easy to see that 	u 

[y,y .jfell] implies e = e' so that a tv-equivalence class 

represents an occurrence of the same event at different isolated 

configurations. 	(It may not be all occurrences of this event 

because of examples like N0  in 3.2.7.) 

We extract events from domains by taking A) -equivalence classes. 

For this to be done safely we must guarantee that an "event" has at 

most one occurrence at any isolated configuration..-that is a 

,-., -equivalence class has at most one member [x,y] for any fixed 

isolated x. 	This property is clearly true of 1 1 (M). 	it is 

expressed by axiom R. 

Definition 3.2.18 (Axiom R) 

Let D be algebraic and satisfy F and C. Then D satisfies 

axiom R iff for x in D°  and all prime intervals [,y], 

[x,y]rv[x,z] => y= z 

Axiom R forbids domains like the following in which all prime inter-

vals belong to the same r'.i -equivalence class: 

*<T>  
In a similar way we can extract places from domains. For 

this, notice if we consider a configuration x in fl(M)°  and two 

events e and e' such that x u {el and x j fell are configurations 

we have 1(e) = l(el) iff either x u {eI = x i{e' I or x j {e} tx j {e' 

in P(M). This suggests the following definition: 

Definition 3.2.19 

Let D be an algebraic domain satisfying F and C. 	Let lx,x 1 1 
and [x,x2 ] be two prime intervals of D with x in D° . Define çj by 

[, 1 ] s' [,x2 ] iff x 1  __x or x11 '2 	
Define 	to be the 

symmetric transitive closure of ('v cv). in equivalence class of 

is called a direction of D. 
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Directions are to be the domain analbgue of places. For this the 

further axiom Q is required. 

Definition 3.2.20 (Axiom Q) 

Let D be an algebraic domain. Then D satisfies axiom Q iff for 

all x,y,z in D°  

Axiom Q has two parts, an existence part (got by ignoring uniqueness) 

and a uniqueness part. These typically forbid these respective 

domains: 

  

z z 

.

11 

We look at Q in a domain r  (M). Suppose y.x-C.z and yz in r(M) ° . 

Then z = x j  Ie} for some event e. As 	there is an event et  in 

y so that l(el) = 1(e) and e' e. Then taking t = x {e'} shows 

the-existence part of Q is satisfied. Suppose there were another 

t'  y so x -C.t' Z. Then t' = x u ett> with l(e") = 1(e) and 

e. 	Then for events e',e in y we have l(el) = 1(e"). 	This 

must mean e' = e", establishing - uniqueness. 

We can now define concrete domains and state Kahn and Plotkints 

representation theorem. 

Definition 3.2.21 	 - 

A concrete domain is an 0) -algebraic domain satisfying axioms 

F,C,R and Q. 	 - 

Theorem 3.2.22 

Any (strongly deterministic) matrix generates a (distributive) 

concrete domain.. For any (distributive) concrete domain D there is 

a (strongly deterministic) matrix M such that r(M) D. 

Basic construction: 

We present a complete proof in section 3.3. 	Here we give the basic 

construction of a matrix from a concrete domain. Let D be a 

concrete domain. Define a matrix M in the following way: 



P is the set of directions of M ({[x,x'],( x € D°  x.-cxtI) 

E is the set of-equivalence classes ({[,'] / x € D° 	i__Xt}) 

1 is the map [x,x'],j - 

A i— p iff there are 	€ p and a covering chain 

1.. = x 0 	 n 	 i~ l -< ... -Cx = x and A = {[x,x 	]tI__, O<i<n}  - 
(We show in § 3.3 that A is independent of the choice of covering 
chain.) 

We show in 3.3 that fl(M) D and that if D is distributive then 

A-p & A'- p=> A rA' -  p. Thus then we may define an enabling 

relation )._fr  by taking fl{A I AI- p I __* p. 	This gives a strongly- 
deterministic matrix M* = (P,E,l, 1*) s.t. fl(M*)D. 

Using the representation theorem it is easy to show that 

concrete domains are closed under products. 	It is a consequence of 

the following observation. 

Proposition 3.2.23 

Let D0  and D1  be concrete domains. 	Then there are matrices,- 

M. = (P.,E.,l., J-) for i=0, 1 with P0  rt P 1  = E0  ,'\ E1 = 0 such that 
.: r(M.) 	D. for i=0,1. 	Define Mod)eM1 = (P0w p1,. 

E0 ç, E l , l0 jl 1 , 	-o  V 	Then M0 M 1 isa matrix with 

r(Moo M 1 ) 	D0  x D 1  under x i- ' ((x r\ E0),ê1(x  t'E 1 )). 

Similarly concrete domains may be shown closed under6u-products. 

Early on in this section we indicated how sequentiality was to 

be defined. It was unclear whether or not the notion of sequential 

depended on the matrices generating the domains. We can follow the 

same idea on the canonical matrix produced by the representation 

theorem. 

Definition 32.24 

Let D be a concrete domain. Let ci be a direction of D. 

Suppose x € D. Say r fills d. if±' [x0 ,y] E d y 0 E x. Say 

ci. is accessible at x iff 10 ,  yo 
E D°  x0  ç x 9,  [x0 ,y0 ] € d 

YO T x 

Write d(x) for the set of directions accessible at x. 	For x,y in 

D, write x - y iff x y and ci. is accessible at x and y fills d. 

Fortunately a function being sequential with respect to the 

14- 



definitions above is equivalent to it being sequential with respect 

to any other matrix generating an isomorphic domain. This is 

because of the following proposition. 

Proposition 3.2.25 

Let M be a matrix. Suppose x E 11 (M). Define 
j: () -> d(x) by i (p) = 	u e}],,, where e is any event s.t. 

1(e) = P. Then ix 
 is 1-1 and onto and is natural in the sense that 

if x1Z y and if p € p(x)p P( Y) then i(p) = 

Definition 3.2.26 

Let D,D' be concrete domains. Suppose f € ED -> D']. Then f 

is sequential at x iff Vd' E d(f(x))(-9 z _1  x f(x) 	f(z)) => 
3d € d(x) Vyx(f(x)f f(y) => xy). 

Say I is sequential iff it is sequential at all x in D. 

Such sequential functions in fact form a cpo (not generally 

concrete) when ordered pointwise. By virtue of proposition we have 

reassuringly that: 

Proposition 3.2.27 

Let,M,M' be matrices.. Suppose x E r(M) and 1€ { (' ( ii) -> 

Then I is sequential at x iff p' € p(f(x)) 	(z J x f(x) - 1(z)) => 

3p € p(x) V y i x(f(x) 	f(y) => 

Finally from the work of Curien and Berry ([Cur], [gr and C..tr]) 

the sequential functions between concrete domains are characterised 

as those functions which may be realized by a deterministic algorithm. 

3.3 The representation theorem 

Here we give a proof of the representation theorem for 

concrete domains. It improves the one in tKah and Plo].main1y 

because of the early lemmas and because it also gives a more 

general result. At first we work with a new axiom, axiom V, which 

is weaker-than axiom Q. We first prove a representation result 

between O)-algebraic domains satisfying F,C,R and V and event 

structures of the form (B, F,) now defined. 

Definition 3.3.1 

An event structure consists of a triple (E,H,) where B is a 

countable set of events B, /—C(E) x B is the enabling relation 
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and X is a binary relation on E called the conflict relation. 
Say E is strongly—deterministic ([Ber and  Cur])  iff 

A Fe & A' He => A = A'. 

Let X be a subset of E. Then X is consistent iff 

V e,e' E X 7 (e 	e'). 	Assume- e € X. 	Say e is secured in X if±' 

3 eO,...,en € X e = e, 	 A 2 	 } A - 

Then say X is secured 1ff all its elements are secured in X. 

Define a configuration of E to be a consistent secured subset of E. 
Let PE denote the set of configurations ordered by inclusion. 

Say E generates r (E). 

Clearly a matrix M = (P,E,1, F—) produces such an event 

structure (E, H,) by defining e 	e' iff 1(e) = (e) and 
A F- e iff A F— 1(e).. The structure r(E) for an event structure E 
will be L4 —algebraic and satisfy the axioms F,C,R and V. Here is 

the new axiom V: 

Dfinition 3.2 (Axiom v) 
Let D be an algebraic domain satisfying F and C. Then D 

satisfies axiom V iff for all x,x t  ,y,y t xIt ,y'
I  in D 

Ix, x'] '-" ty,y'] 2( [1,xtt] ,[y,y"]  g x' t x" => y' 	
yfl• 

For the domain of configurations it expresses that the conflict of 

two events is independent of what other events have occurred. We 

outline a proof that the configurations of an event structure satisfy 

the axioms. In addition note that strongly—deterministic event 

structures generate distributive domains - we include a converse to 

this in the representation theorem. 

Theorem 3.3.3 

Let (E,/—,.) be an event structure. 	Then r7 (E) is an 
AN 

& —algebraic domain satisfying P,C,R and V. If E is strongly—

deterministic r(E) is distributive. 

Proof 

Let (E,F,) be such an event structure. 	First it is easily 

seen that for S a directed subset of r(E) the supremum of S exists 

and is Us. Thus P(E) is a cpo. As in proposition 3.2. 10 
the isolated elements. of r(E) can be characterised as precisely 

the finite configurations (the proof is virtually identical). 



As eVry -  event is secured by some finite subset inside a 

configuration and E is countable we get fl  (E) is c.)-algebraic. 
The other axioms are easily shown because X —C X' for configurations 

X and X' means 	= X \) {e} for some e in E. To show axiom V for 
example: Suppose [x,f]"-'[y,y'] & [x,x"]c"[y,y"] 2 X , 	in 

1.1 (E) 0 . 	Then x' \ x = y' \ y = {e} say,and. x" ' x = y" \ y = {e'} 

say. As x' 1' x" we have i (e ' eO. 	Thus y' j y" is a 
configuration giving y' 1' y" as required. 

Now assume E is strongly-deterministic. Clearly now 

11 = (\ so the distributivity property y z => x n (y i_i z) = 

(x 11 y) L..j (x ii z) obviously holds for 
We remark that algebraicity can fail when the enabling relation is 

allowed to range over arbitrary subsets of events. 

We now begin a proof of the converse, that if D is an W -algebraic 

domain satisfying axioms F,C,R and V then D is isomorphic to the 

configurations of some event-structure. We initially work with 

W -algebraic domains satisfying -  axioms F and C and impose R and V 

only when needed.- Throughout we let D denote an .zJ -algebraic domain 

satisfying axioms F and C. Note because of axiom F there is always a 

(finite) covering chain of isolated elements between comparable 

isolated elements of D. We work almost solely with the isolated 

elements of D viz. D° .. The first lemma extends the Jordan-Holder-

theorem a little bit [Bin. 

Lemma 3.3.4 

Suppose y ' E D°  the isolated elements of D. 	If 

y=x0 _-< x 1 _<..._.x=yt and y=z0_Cz 1 __C..._czY t  

are two covering chains from y to y' then {[x1,x±1] 01i<n1 } = 

[z,z1+i]I 0<i<m}. Moreover the number of representatives of each 

v —equivalence class is the same in both chains i.e.-for a 

cv -equivalence class e 

I {[x1.,i±i x 	] I [. 1 1,x.+ 	 1 i+-i ] € e}J = I{[z.,z 	] I [zz+i E el 

Proof 

The proof is by induction on n taking as induction hypothesis 

the statement of the lemma. If n=i then m=1 and x 0=yz0  and 

by axiom C. 

Assume n>1 and the induction hypothesis for n-i. Suppose 
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W.-i 

Y =x0-...--CX 	= y' and Y = zO(•••_CZm  = y'. 	If x 1  = 

we are home by induction so suppose x 1 	z 1 . 	By axiom C, x 1  u z 1  

exists and x 1 ,z 1  -Cx Li z 1 . 	By 

/ axiom F we can find a covering 

chain x 1  LI z 1  = wO -C... --Cwk = 

By the induction hypothesis 

• 	{[xx] 	 ,x] 	} = 

• [ 	 [ x 1 ,w0 ], w0 ,w 1 ],... wki , Wk]} 

Vol 

where the number of representatives 

r-  of each event is the same in the 

chains x—Cx 	...-cx 	and 1 	2 	n 
x 1—C w0-< ••s_Wk• 	Consequently 

k = n-2 so z 1 -Cw0--C . . . 
--c wk  is of length n-i, so applying the 

induction hypothesis again gives {[ 1 , 2 ] ,...[z 	1 ,z ] 	= 

[z 1 ,w0],[w0 ,w1],. ..[wkl  ry  Wki 	where the number of representatives 

of a particular event is the same in z1 -Cz2--C ..._czm 	and 

Combining these facts with [x 1 9,w0 ] r [y1,z1] 

and [z1,w0]'-'[y1x1] maintains the induction hypothesis. 

The lemma above justifies the following definitions. 

Definition 3.3.5 

Define B = {[,']J x,x' E D° 2 x-x'}. 	For un D°  define 

S(x) = {[ ,x 1 ]) 0<i<n} for some covering chain 

= x0-C x. ... . -C x =  X. 

and N(x,e) to be the number of representatives of e in such a 

covering chain. 

Using N above we can count representatives along chains like 

x0-C x - 

 X2)--x33---C 
... where the covering relation may "switch 

direction". Such chains occur when considering /'V . 

Lemma 3.3.6 

• 	0 
Let x ,x ,...x be a sequence in D such that x.—x. 	or 

01 	n 	 .1 	i±i 

Then N(x,e) = N(x0,e) + t{[x.,x. ~ i ] I 0<i<n& 

• 	 xi—(xi+1  £ [Xj Xjj] €  ell  

- t{[ +i ,x] / 0i<. £ 
x +1__x& [x.1,x.] € el( 

Proof 

By induction on n. 



If n=O it is obvious. 

Suppose n>O and the result holds for n-i. First suppose x 1 -Cx. 

XIi 

 

Then N(x',e).;'(,B) i.[x 	e 
l n 

N(x 1 ,e)+1 otherwise. 
t-f 

Now suppose x n--< x   n-i • This time 

N(x 1 ,e) =N(x,e) if OCO -'  
= N(x,e)+1 otherwise. 

Equivalently N(x,e) = N(xni,e) if Ex n Xn_i] A e 
= N(x n-1 e)-1 otherwise. 

In either case the induction hypothesis is maintained. 

Corollary 

(i) Suppose x-Cx' and x = 	 is a sequence in D°  such 

that x—Cx. or x. —Cx. and x' x • Then x.-Cx. for some 
1 	i+i 	i+i 	1 	 fl 	 1 	i+1• 

1j'1j+1 
so that 

If D satisfies axiom R too and in D °  —CX.' y—Cy t  then 

[x ,xt]'t [y,y']. 

(iii) If D satisfies axiom R then for all x in D N(x,e) equals 0 

or 

Proof 

Immediate by 3.3.6. 

Suppose otherwise i.e. x-Cx' & y-.-.Cy' and [x,x t ]c*, [y,y t ]. 

Then we would have 	 with x0 X,X=X',X=y,XY' 

where (x.-.-Cx. l 	 i 

	

and z! 	x! ) or (x -Cr. and x! -Cx!). 	By 
1 	+i 	1 	i+l 	 +i 	1 	i+i 	1 

(i) for some i we have x_-Cx 1  and [x.,x+]t1 	 Considering 

the r,.,  -chain this would mean 

for some x!,x! 	such 
I 	 s--- 	 1 i+l 

j- 	
-- 	 that 

CQ 

But this contradicts axiom R. 

Immediate by (ii). 

We now look at how the map s behaves on supremum in D and 

characterise incompatibility. 

7q 



Lemma 3.3.8 

Suppose x,x',y £ D°  such that f x—Cy and x' t  Y. 
Then x' Li y exists, x'---'x' u y and s(z' u y) = s(x') LI {[x,y]j. 

Moreover if x'—x' ijy1en [',' u 

For x,y in D° , if x t y then x Li y exists and 

s(x u y) =S (x) 

For x,y in D° , if x 1 y then 

B z,z',z" £ D0[z,z']0%, € 	- [z,z"]€ (y) Z 

Proof 

Take a covering chain x = x0  --- C... -_.x = x'. 	We show 

(i) by induction on n. For n=O it is obvious. 	Suppose n>O and 

that (i) holds for n—i. 	If y--x i  it is obvious. 	
Otherwise axiom C 

0; Lij 	gives x 1  Li y exists with 

- 	

U y and y -.--cx1  u Y. 

Clearly then x"—:3x 1—< x 1  U y with x 	x1  U y so we get 

x' ~ x' u y by induction. Also 
5(Xt u y) = s(x' u 	u y)) = s(x') L/ {[x 1  ,x 1  U y]) by induction 

= 5(1') i.j  {[x0,y]}. 

Take a covering chain I = y0—c 	ym = y and form 

X tJy0 , iL-i Y1 = (z  Lj y0 ) u  y 1 ,... 	inductively showing 

y.) = s(x) '.j s(y.). 

Take a covering chain up to y viz. .1 = YO--C ... 	=  Y. 

As x y there is i s.t. yt x and y 1  X. Form x U y. Then 

x u y.. Take another covering chain from y to x Uy i  viz. 

yi
= w0—c ...-..w = x uy. 	(See the figure below.) 

We have [w.,w +1 ] E  s(x) for all i<m. 	If 	1"wj  we have the 

desired result. 	Otherwise, as y+ 1> x  LI 7., repeated use of 

axiom C must eventually give some j s.t. w. '1' 	wJi.But+J€n 1jtf]r.J 

[,JaivJ . + 1. 	Thus [w.,w. Li Yi+1 £ s(y) and as 

[w.w ±i],,.,E s(x) we have the required result. 
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Illustrating the proof 

Corollary 3.3.9 

The domain D is consistently complete. 

Proof 

This follows directly from 3.3.8 (ii) using 3.1.9. 

In constructing an event structure to represent the domain we 

take events to be the /V —equivalence classes E with conflict 

relation given by: e0 	e 1  if[x ,y0] € e0 ,[x ,y1 ] € e 1  

Lemma 3.3.8 (iii) showed incompatibility could always be traced to 

such a situation. The next lemma is a key result. Axiom R is 

necessary. It says if we have this picture with the relations on 

prime intervals indicated 

4' 

---i 
ie 

then somewhere we must also have 

/ 

Lemma 3.3.10 

Suppose D satisfies axiom R as well. 	Suppose for x,x',y,y', 

t,tt in Do  that 



(i) xx',x" and 

(iii) [,']rv[y, y '] and [x,x"]v[t,t']. 

Then for some w,w',w" in D°  we have w-Cw',w" and 	 [X,x] and 

it 
[w,w"] v[x,x"] and w' l'w. 

Proof 

As [y,y']c..'[x,x'l we get a sequence of prime intervals 

[z0,z],...tzn,z] where z y and z =x-and for all 
0 	n 

[zi  ,z!]fv'[x,x'] 

and (z i 
 - 1+1  Cz 	with [z 1 ,z1+1 ]tEx, x'] 

or z i±1 	1 
-Cz. with [z- 1+1 

 ,z  1 ]'[,']) 

This uses axiom R. 

As [t,t']c'[x,x'],identically we get a sequence of prime 

intervals 	 with x=-w0 , t=w where for all ± 

and (w - i 
1 	+1 ..<w 	

1 
with [w.,wi+1 ]4[x,x"] 

or (w1._w1 with Ew 
j+1 ,wi  ]4[x,x lt ]) 

Now consider the sequence y=, z 1  . . . Z=I=W0 W 1  • • 

By 3.3.7 (i) for some iw-Cw1+1  and [w.,w. 1 ]/'[x,x']. 	Thus 

somewhere along the chain giving [x,x"]i..i[t,t'] we have: 

/ 

Taking ii., w '=w11 ,wtt=w! 

gives the required result. 
U 

Unfortunately in the proof of the next lemma we need axiom V. 

If it could be avoided then we could immediately prove CO-algebraic 

domains satisfying P,C,R were represented by event structures where 

conflict 	was now a C- -rightclosed predicate on events (or 
equivalently was replaced by the complement of such a predicate, a 

consistency relation). See example 3.3.17 and the remark which 

T 



follows it. 

Lemma 3.3.11 

Suppose D in addition satisfies axioms R and V. Then for 

x,y in D 
0  

s(x)s(y) => xy. 

Proof 

Suppose •x,y are isolated elements of D with s(x) 	s(y). 

Take a covering chain J_= x0—C •••CXn = x. We show by induction 

on n that x n Q y. If n=O it is obvious. Suppose n>O and the 

result for n-i i.e. that 	y. Take a covering chain 

= y0-<y.. .—Cy = y. For some i we have ty,1] T'-' 

- 	 [xn i ,]. 	We have x 

as otherwise we would contra- 

'7 	 dict axiom V by 3.3..9 (iii) 

and 3.3. 1 0. 	By lemma 3.3.8 

/ 

	

	
we get y.—<x1  U y. with 

EYj,mnu Yj](J[xyx]• 

Thus lyj x u y ]/ 1[y 	 so by axiom 	= xU y3 . 

Therefore certainly xL y as required to complete the induction step. 

We now give the main theorem. We have seen how event 

structures E give domains P(E) satisfying all our axioms. This 
theorem shows that if a domain D satisfies the axioms then there is 

an event structure B such that r(E) ' D; the event structures of 

3.3.1 represent domains satisfying the axioms. Moreover if D is 

distributive then there is a strongly-deterministic event structure 

B so that r(E) = D. 

Theorem 3.3.12 

Suppose D is an W-algebraic domain satisfying axioms F,C,R and 

V. Then there is an event structure (E,H,) as defined in 

3.3,1 such that r(E) ' D. 

Also if D is distributive the event structure B may be taken to 

be strongly-deterministic. 

Proof 

Let D be such a domain. 	Define 

23 



B= {[x,x'],(x,x' € D° 	x—x',AFe 1ff A E {s(x)f[x,x'] € e} 

e 	iff 3x,x',x" € D°  [,x'] € e 2. [x,x"] C e' £ 

(Note by axiom V,e 	e' if  Vx,x',x" ED°  [x,'] C eJ<  [,"] Ce' 

£c x' 

To show D 	r(E) it is sufficient to show their :isolated elements 

are order isomorphic (see 3.1.23). 

Suppose x C D° . 	Clearly s(x) is a finite configuration as 

otherwise by 3.3.11 axiom V is contradicted. 	The map s: D
0  -> 

is monotonic by 3.3.4 and 1-1 by 3.3.1 1 . 	Also by 3.3.11 

s 1 :sD°  -> Do  is monotonic. Thus we only require that s is onto. 

To this end: 

Suppose A € r(E) ° . Then A is a finite configuration. Thus 

we have A = { a , ... ,a J so that 

	

a 1  and )Vi 3 B S {a 1 ,.....a1 1 }BHa. and IV i,j 	(a. 	a.). 

For some x 1  we have [.L,x1] C a 1 . We inductively construct a 

covering chain 	 s.t. 	 Ca.. Then 

= A as required. Suppose the chain has been constructed up to 
r 	1 

for i<n-i-1. 	Then for some y,y' in D 
0  we have Ly,y'j € a. with 

S(Y)j- a and s(y) 	s(x 1 ). 	Thus yx1. 1  (by 3.3.11)... By 

3.3.9 (iii) we have x. 1 tj y' exists. 	As [y,y'] A s(x. 1 ) we get 

y'. 	Take x. = x i-I  L-1 y'. 	Then [x. 1 ,x.] € a., 

completing the induction step. 

Now assume D is distributive. Taking E as defined above let 

e E E. 	Choose x minimal so that [y,x] € e. We show by induction 

on the length of the t'-'-chain that if [',X'],[,X] then xx'. 

Suppose [y',x']'[y.x] and the hypothesis is true for all 

ç'.' -chains of lesser length - it is clearly true for chains of length 

0 and 1. The only difficulty occurs if wo have 

cc 



with x / x" and y y" where by induction x 9 x" • From distrib-

utivity as y 'j' x' we have 

xn(yUx') = (zn y)u (xrjx'). 

But xy LJx' as s(x) 	s(y) u s(z) and x f1y = y so the distrib- 
utivity equation becomes 

X = y tJ (x i-i 

- 	Because e E s(x) = 	i s(x n x') and e A 	we have e € s(x ri 

As x is minimal x 9j x' as required. 

Therefore if D is distributive we may define 	by 

A 1__ e iff A= () Is(x)( [,'] Eel. 

This gives a strongly-deterministic event structure (E, 

generating r(E) 	D. 

Of course now we may work either with domains satisfying the 

axioms or with their representation. As an illustration we show the 

domains are coherent and irreducible-algebraic, now defined. 

Definition 3.3.13 

Suppose (L, 	is a partial order. 	Suppose y € L. Then y is 

an. (irreducible) complete irreducible iff for-all (finite) subsets 

X of L with suprema y = Ux => x € X y = x.. If L is further an 

algebraic domain then L is irreducible-algebraic iff 

x € L x = U{ y  x I y is a complete irreducible}. 

(Note for algebraic domains complete irreducibles are necessarily 

isolated; in general they need not be) 

Proposition 3.3.14 

If D is an W -algebraic domain satisfying axioms F,C,R and 

V then D is coherent and irreducible-algebraic. 

Proof 

By the representation theorem we may work with r (E) D for 
some event structure E. Coherence is then obvious. For an event 

e in B a 	-minimal configuration containing e is a complete 

irreducible. Conversely any complete irreducible of r (B) is such 
a configuration. Any configuration is clearly the union of these. 

Later, from chapter 4 on, we shall make considerable use of a 



particular kind of irreducible, the , complete primes. For example 

in the case where D may be represented by a strongly-deterministic 

event structure the complete irreducibles coincide with the 

complete primes. We remark that one can by-pass the use of prime 

intervals to represent events and instead use complete irreducibles 

with equivalence relation based on one irreducible replacing another 

in an irredimdant decomposition of an isolated element into 

irreducibles. 

Structures of the form (E,1-,* ) are interesting in themselves. 

They are a generalisation of the matrices of concrete domains. 

Later (from chapter 4 on) we shall consider a form of strongly-

deterministic event structure; then fr can be replaced by a partial 

order . Note we could relax the definition of securing H so 

that an event could be enabled by an infinite set. Such structures 

would generalise matrices and the event structures of chapter 4.. 

(Their configurations which were complete irreducibles need not be 

isolated and the configurations would no longer generally form an 

algebraic domain.) Structures like (E,H,) can be represented as 

Petri nets where an event may occur through several alternative sets 

of conditions holding; we can draw this as: 

The event e can fire when b 0  and b 1  hold or when b 2  and b3  hold. 

Such 'disjunctive"' causality relations occur naturally in physics 

(not just example 3.2.8! For example the post light-cone of a 

point p in space-time consists of all points at which events might 

occur to cause an event at p). 

We have done most of the work necessary to get the represent-

ation theorem for concrete domains. These differ from the domains 

above in that axiom V is replaced by axiom Q. We use the following 

lemma to show axiom Q implies axiom V, in the presence of the other 

axioms, so then we can use the above representation result. Recall 

axiom Q: 

z x-cy & z ty => 	t Q z x—ctP'y where all elements can be 

assumed isolated. 

0-9 



Lemma 3.3.15 

Suppose D is 	algebraiCand satisfies axioms F,C,R and Q. 

Then for elements in D°  

If x—C xt ,x t 	x'Ry—C 3,1' & x, x11  < { t,ttt] 	then 

3 yt y—Cy' £ y i . Pytt 9, tx,x']i' 

If X—C x', x" £ x'5' x' t  4, y—Cy" £ [y,y'] <' [,"] then 

3yt Y --Cy ,  ' y'5y Y< ty,y'] < 

If x—x', Xtt 	X t 4X t & y—'y" £ y,ytt][x,xit] then 

3y 1 y C Y ,  9< y'y" Z [y,y']-'[x,x']. 

Proof 

Take x,x',x",y,y in Do  as shown: 
(I 

From the uniqueness part of axiom Q x' I y. Then by axiom C 

X 1  1-1 y exists and ',y—<X'LJ y. 

Take y' : X t  U Y. 

Take X , X t, Xtt,y,ytt in D0  as shown: 

lDlZt" 

As Zt4  x" we have x' 	because x" is x LI y". Thus by the 

existence part of axiom Q By' = x y -•C y?)?/y?t. By axiom C 

{y,y'] <l {,x']. 

(iii) This follows by repeated use of (i) and (ii) along a sequence 

of < 1  or > steps connecting [,x"] and [y,ytt] by the N -relation. M  

In the representation theorem for concrete domains we use the 

above lemma to show concrete domains satisfy axiom V. Then we can 

certainly represent the domain by an event structure of the form 

(E rfr,) where E, fr and 	were defined in the proof of 3.3.12. 



The extra strength of axiom Q. gives ,Ul an equivalence relation 

(the equivalence classes are places) and that - respects IA\ V1 

(it enables places). 

Theorem 3.3.16 

The configurations of a matrix M ordered by inclusion f7 (M) 

form a concrete domain. 

If D is a (distributive) concrete domain then there is a 

(strongly-deterministic) matrix M such that 11 (M) ' D. 

Proof 

(1) As in 3.3.3. 

(ii) Let D be a concrete domain. Thus it is Cv-algebraic and 

satisfies axioms F,C,R and Q. 

We first show Q implies V. Suppose in Do  we have 

x -Zx', x" le  xx' £- y—cy',y t' R tx,x']tty,y'] Z: 

By 3.3.16 (iii) above and axiom R we get y' y" as required. 

Thus as in 3.3.12 we have D fl (E) where B = i[x,x'] x,xt E D°  X-C  xt 

A I- e iff A € {s(x)/ [,'] € e} 

e) e' ift x , x t,xtt ED°  [x, x'] € e 9< [x ,x lt] E e' 

However now because of axiom Q the relation AV 1 is an equivalence 

relation: In showing this the only case of interest is when 

e 1 	e2)' e3  and e 1 	e3 where we require e 1 	' e3 . 	By 3.3.15 
K11

(iii) 	we obtain some x,x 1 ,x2 ,x3  so that 

'I' •x 
-j1 	 with [x,x 1 ] E  e1,tx,x2] € e, 

Ex, 
X3] 

E e3 . 

By the uniqueness part of axiom Q,x 1 I> x3  thus e 1 	e3  as required. 

Also by lemma 3.3.15 (iii) the relation H respects >X j1-equivalence 
classes: Suppose e1) e and A F— e 1 . Then for some y,y' in D°  

A = (y), y —Cy' and [y,y'] E e 1 . 	Also for some x, x',x" in Do  we 

have x—Cx'.x" and 	x', [x,x'] E e 1 , and [,"] € e,. 	By 

3.3.15 (iii) we get some y s.t. y—C y' t  and yt.ytt  and[y,y"] € e. 

Thus A F- e2. 



T 
Now we get a matrix by taking places as 	V 1-equivalence 

classes and enabling relation from events to places induced by 

If D is distributive a strongly-deterministic matrix can be made 

as in 3.3. 12 .1 

We conclude with a little example to show that axiom V is not 

implied by coherence in the presence of the other axioms 

60 -algebraicity and axioms F,C and R. 

Example 3.3.17 	- 

We construct a domain which is finite, so certainly (-0-algebraic, 

also satisfies F,C,R, is coherent but does not satisfy axiom V. It 

is best seen as the configuration of a new kind of event structure in 

which the binary conflict relation has been replaced by an 

inconsistency predicate. We have four events E = 11 ,20,41. The 

enabling relation is $ i- 2,3,4,5 and 121 F-  1,{3} p- i,{41 i- 1 and 

{5} F-- 1. Thus 1 is enabled in 4 different ways. 

The inconsistency predicate 	contains {2,3}, 14,51 and {1,2,4}. 

The configurations are then the secured subsets which do not include 

an element of 	•. They give this domain pictured "aerially": 

3 

The points circled highlight where axiom V fails; the events 1 and 

2 can occur compatibly at one configuration but not at the other. 

However the domain does satisfy C and R (consider its representation) 

and is coherent: Let A be a subset of configurations which is rt 

compatible. 	This means (JA includes {2,3}, 14,5 or{1,2,4}. If 
it includes {2,3} or {4,5} then there are a 1 ,a2  in A such that either 



2 € a1 . 3 € a or 4 E a 1  £ 5 € a2 ; then in either case a 1 1a2 . 

Otherwise (IA includes {1,2,4} but does not contain 3 or 5. Then 

there are a ,a in A with (11,2152 a 1  2 4 € a ) or 

({i ,41 	a 1  £ 2 € a2 ); in either case a 1  ja2 . 	Thus AP implies 

there are a 1 ,a2  in A with a 1 a2  i.e. the domain is coherent. 

The form of event structure used in this example is a natural 

one. 	I conjecture that event structures of the form (E,k,) as 

in 3.3.1 but where 	ç(E) (so configurations are secured and do 

not include an element of 	) represent. domains which are 

() —algebraic and satisfy axioms F,C, and R. 



Chapter 4. Petri nets Rive Scott domains 

In this chapter we shall establish some basic, and essentially 

formal, connectinfls between Petri nets and domains using the inter-

mediate notion of an event structure. Here we shall see an 

example of a (very simple) representation theorem in which a domain 

of state-like elements is represented by a partial order. Initially 

we shall work with causal nets later extending the results to 

occurrence nets (defined below) which are argued to be a possible 

semantics for contact-free transition nets with initial marking. 

4.1 Causal nets 

Recall the 

and that for them the 

rences of holdings of 

Further each event is 

({x E B V  B I x F e}) 
I  

({x€BuEeF
+ 
 xl) 

in general. 

elementary event structures and lattices 

lefinition of a causal net (definition 2.4.1) 

conditions and events correspond to occur-

conditions and occurrences of events. 

"caused by" a unique subnet 

and "causes" a unique subnet 

a fact which may not be true for transition nets 

It is natural to focus on the pattern of occurrences of events 

of causal nets. The relation F specifies a certain dependency; 

if e F+ e' in the causal net then in. the course of the computation 

described by the net e' cannot occur without e having occurred 

already. This leads to the following definition of a "causality" 

structure on events: 

Definition 4.1.1 

An elementary event structura is a partial order (E,) where 

B is a set of events; and 

is the partial order over B called the causality relation. 

Thus here we choose to study the structure of events of a net 

rather than the structure of conditions. 	(One could explore the 

implications of dropping events) Our approach gives a neat 

translation of nets to domains but there are other reasons for 

focussing on events. Conditions can to some extent be recovered 

from the structure on events and, as will be seen in chapter 6 
have a far more complicated structure. It is natural to consider 

the easier events first. 



The relation between causal nets and elementary event 

structures is obvious. 

Theorem 4.1.2 

Let N = (B,E,F) be a causal net. 	Then 	(N) =d$(E,F* t\ E2 ) 

is an elementary event structure. 

P. Only asymmetry in non-trivial and this follows from N6 of 

definition 2.4.1. 

From an elementary event structure we can produce a causal net; 

in general there will be more than one. 

Theorem 4.1.3 

Let (E,<) be an elementary event structure. Then there is a 

causal net j(E) such that E = 0 QjV'( E). 
Pf. We take N(E) to be the net (B,E,F) formed from events E and 

B = {(e,e')f e,e' E E, e 	e'kJ 

(O,e) I e E E} j {(e,1) e € El U {(o,i)1 

and 

F = 
	

) e,et E E & (e,e') E B} 

U{(e,(e,e') )I e,e' E E Z(e,e') EB} 

U 1((o,.e),e) 
	

e E E} tj {(e,(e,.1)) I e E El. 

Note if E is null th net )/' (E) consists of a single condition. 

The axioms on. causal nets follow trivially as does the fact that 

E = 

• Note that we have lost structure in passing from a causal net 

to its elementary event structure. Take the net N as example 

2.4.2. 	Its associated elementary event structure 	(N) is 

e 2<: > e3 

qz 

and .JVOE(N)  is (notice the isolated condition (0, 1)) 



q3 

which contains more conditions. It is fairly clear that many 

definitions of Iff  would work in theorem 4.1-3. The one we have 

chosen is maximal once we accept an extensionality restriction on 

conditions (I'T2) which identifies conditions with the same pre and 

post events. 	This is why the isolated condition, (o,i) in the 

construction, has been included. 

From our point of view it is reasonable to accept the 

following' euivalence relation on causal nets 

N 1 = N2  iff P, (i'r 1 ) = 

However it would seem undesirable from the view of traditional net 

theory; we lose track of too many conditions and the following 

K-dense and non-K-dense nets are identified. 

However as mentioned before we disagree with K-density and we shall 

spell out our case in the next chapter. 



We now use a little more computational intuition in answering: 

That is the natural domain of information points associated with an 

elementary event structure, and thus a causal net? In following a 

course of computation we are interested in what events have occurred 

and we also know that for one described by a causal net N, or its 

associated elementary event structure E, that an event having 

occurred implies its predecessors have occurred. Thus information 

points are certainly left-closed w.r.t. 	E or <. 

Definition 4.1.4 

Let (E,) be an elementary event structure. Then x ' E is 

left-closed iff 

e < 	x => e E x. 

We take 	to be the left-closed subsets of E ordered by 

inclusion. 

Ordering 	(E) by inclusion corresponds to the intuition that 

the more events that have occurred the more information we have. 

We can characterise the structures 	p(E) quite easily; we use the 

concept of a complete prime which will pop-up frequently. 

Definition 4.1.51 

Let (D,.) be a partial order. An element p E D is a complete 

prime (prime) iff for- every X D (every finite X D), if U X 
exists and p c Ux then there exists an x E X S-t. p !. x. The set 

of complete primes of D is denoted Pr(D). 

Definition 4.1.6 

A partial order (D,) is prime algebraic iff for every element 

d. E D, LJPd exists (where P d 
{p 	d p E Pr(D)J) and d = UP. 

Example 4.1.1 

In the above representation of partial orders the (complete) primes 

are circled, and it is easy to see that none but the last of these 

qh- 



partial orders are prime algebraic. 

We relate the concept of prime algebraicity to more standard 

lattice-theoretic concepts in the next proposition. 

Proposition 4.1.8 

A complete lattice is prime algebraic iff it is algebraic and 

every finite (or isolated) element is a lub of complete.primes. 

Further in such a lattice every complete prime is finite, an element 

is a complete prime iff it is completely irreducible and the 

distributivit3r property holds. 

We now present results leading to the characterisation of the 

structures 

Theorem 4.1,9 

Let (E,.i) be an elementary event structure. 	Then , (E) is a 

prime algebraic complete lattice. Its complete primes are those 

elements of the form [e] =5te' € E e' < el for e € E. 

Proof The structure 	(E) is a complete lattice with Ux = ox (and. 

flx= (x).. 
Each Eel is clearly left-closed, and. is a complete prime as if 

[e] Ux = Ux, then e € Eel 	X and so for some x in X, e E x,. 

and so [e] c x. As we have x = U{[e] e € x}, for any x in 

- (E),. each element is a lub of the complete primes below it, and so 

(E) is prime algebraic. 

Finally,, if x is a complete prime, then as we nave 

x = U {[e] I 9' € 	we must have x . [e] for some e in x. 	But then 

we must have x = Eel, which completes the proof. 

This theorem indicates how to map our lattices to elementary 

event structures. 

Definition 4.1.10 

Let (D, ) be a prime algebraic complete lattice. The 

elementary event structure P(D) is defined as 

(Pr(D), 	Pr(D) 2 ). 

Before stating the characterisation of the structures 4 (E) 
we shall need- the following general lemma. 
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Lemma 4.1.11 

Let (D,) be a prime algebraic partial order. Then the map 

D -> j (P(D)) is defined by 

	

iT (d) =def 	€ Pr(D) ( p dl 

is an order monic (i.e. 1T(d)rr(d') iff d Q d.'), it preserves and 

reflects complete primes, and preserves those lubs that exist in D. 

Proof Clearly ir is monotonic. 	If, on the other hand, 1F(d) E7  Tr(d') 

then from prime algebraicity of P 

d = Li {p E Pr (D) p G d} = UTr(d) UTr(d') = d'. 

Let p be a complete prime of D then 7r(p)  is a complete prime in 

/ (f(D)) from Theorem 4.1.9. 	On the other hand, it also follows 

from the theorem that if 1T(d) is a complete prime, then d is a 

complete prime, too. So, T preserves and reflects complete primes. 

Finally, if UDX exists then 

ir(U x) = { p E Pr(D) I p QH X J 

	

p = 
	

{p € Pr(D) J p xl (by the definition of complete 

= U() 	 primeness) 
x€X 

We shall often make use of the well-known fact that any mapping 

between partial orders which. is onto and an order monic is an 

isomorphism. This happens in the proof of the next theorem, which 

states the very close relationship which exists between our 

lattices and event structures.. 

Theorem 4.1.12 

Let (E,<) be an elementary event structure; then 

Similarly, let (D,) be a prime algebraic complete lattice; then 

D 	(D)). 

Proof Define 	E -> 	((E)) by )fr(e) = [e]. 	Then 	is well- 

defined and onto from Theorem 4.1.9. 

proved to be an ordermonic, and hence 

proves the first part of the theorem. 

is known from Lemma 4.1.11 to be an o 

since for any element X of 

and 

Furthermore, 	is easily 

it is an isomorphism, which 

As for the second part -Ti-

rdermonic; fl is also onto, 
I, 	 IS4 

exists (D,,complete lattice) 
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4x) = XEX 
T, (-) 
	

(by Lemma 4.1.11) 

	

= U[x]1x € xl 
	

(by the definition of IT ) 

= X. 

So, 11 is indeed an isomorphism. 

Example 4.1.J3 

a, 	 a 

a 	 a) 

('J 

a) 

a, r:1 

('J 
4 

Take E to be the elementary event structure associated with the 

causal net from Example ZJ+.2. E and ,(E) are pictured 

above- 	-. The primes of f4 (E) are circled, and it is easy 

to see that E '  '((E)). 	 - 



Theorem 4.1.12 shows that elementary event structures and 

prime algebraic complete lattices are equivalent structures, in the 

sense that one does not lose any structural information going from 

one to the other via the pand 	mappings— in contrast to the 

earlier result about the relationship between causal nets and 

elementary event structures. 

The framework we have set up so far can be pictured as 

(loses structure) 

Causal nets 	 > Elementary 	Prime algebraic 
event 	 complete 
structures 	7' 	lattices 

A lot of our work in the next few chapters will be in extending and 

consolidating this set-up. 

In. the last chapter on concrete domains we saw another 

representation theorem in which events were extracted from the 

domains by taking equivalence classes of prime intervals under r'1  

the reflexive, symmetric, transitive closure of < 1  given by 

[x,x'] <' [y,yt] if x-Cy& x' —Cy'.. There the elements 

x,x',y,y' were assumed isolated. A. more general relation, between 

arbitrary prime intervals, is the following: 

Definition 4.1.14 

Let D be acpo. 	For [x,x'] and [y,y'] prime intervals of D 

define [,'] I [y,y'] iff y' = y Ii x & r = y r7 x'. 	Define 
to be the symmetric transitive closure of . 

The relation ,-..,' extends the relation.-/ -v of chapter 3. 	The 

,'v -equivalence classes are in 1-1 correspondence with the 

ij'-equivalence classes for the domains of chapter 3; this follows 

from the representation theorem which shows that for such domains 

events are secured by a finite set of events. 

In many ways prime intervals correspond more closely to our 

intuitions about events; a prime interval corresponds to a unit 

jump in information. How do these two notions of an event tie up? 

For a prime algebraic lattice there is a one-one correspondence 

between primes and ,--equivalence classes of prime intervals. 

This follows most easily using the above representation theorem. 



Proposition 4.1 .15 

Let (D,r)  be a prime algebraic complete lattice. Then for 

any prime interval [d,d'], 1T(i') NiT(d) is a singleton. 	Hence if 

we put 

pr([d,d']) E T1(d.') \TV(d) 

then pr is a well-defined map from prime intervals of D to Pr(D). 

The following theorem states the relation between the 

equivalence ,- j '  and pr. 

Theorem 4.1.16 

Let (D,.) be a prime algebraic complete lattice. Then the 

following are equivalent for prime intervals [d1, '] and [d2 , di]: 

Ed l ,d l l,-'._- ' Ed dt] 2f 2 
pr([d 1 ,d]) = pr([d2 ,d]) 

3.. There exists a prime interval [d 3 ,d..] s.t. 

[d 1 ,d] > [d3 'd] <[d,d] 

Further, if p is a complete prime of D then 

p=.pr([U{p' € Pr(D) I p' :p},p]). 

Proof 

1. => 2. It follows easily from the definition of < that 

[d 1 ,d] < [d2 ,d.] => pr([d 1 ,d]) = pr({d2 ,d]). 

2.=>3. Define d3 =d1 fld2  and d.=dr1d. 

3 => 1. Trivial.. 

The last part of the theorem is obvious. 

This theorem is the lattice-theoretic statement of the fact 

that an event is enabled (or caused) in a unique way. It proves a 

one-to-one correspondence between the complete primes and the more 

intuitive equivalence classes of prime intervals. This justifies 

our-translation of events into complete primes. 

Now, it is easy to see that the events of a causal net N are in 

one-to-one correspondence with the events of (N), and the events 

of an elementary event structure E are in one-to-one correspondence 

with those of W(E). On the other hand, the events of E are also 

T 
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in one-to-one correspondence with those of 	and the events 

of a prime algebraic complete lattice are in one-to-one corres-

pondence with those of 

The situation for translation of conditions is a good deal less 

pleasant. Our main tool for handling conditions is the 

extensionality axiom N2 which allows us to identify any condition b 

with its pre- and postevent (Th and b). For simplicity, we shall 
only demonstrate how conditions translate into elementary event 

structures. 

A condition of an elementary event structure E is taken to be 

any condition of J1f(E). By definition this gives a nice one-to-one 

relationship between conditions of E and 11(E), but, obviously, it 

is more interesting to see how conditions of a causal net N corres-

pond to certain conditions of ' (N). 	Define the map, bed, between 

these two sets of conditions as follows: 

(oet) if 	b = 	and b' = {e'} 

Vb E Br bed(b) = <'(e,1) 	if Th 	{e} and b = 
(o,i) 	if •b = 	and be  = 

I( 
	

i 	
0 
	fell e,e') 	f 

0b = je and b = 

It follows from the axioms of causal nets that bed is well-defined, 

and that it is one-to-one.. However,, in general bed will not be onto,, 

obviously because of our construction of At(E) ,.. which in general 

generates a lot of redundant conditions. One could try to remedy 

this by a characterisation of the "essential" conditions of E. The 

following lemma is such an attempt. 

Lemma 4.1.17 

Let (E,) be an elementary event structure, and b one of its 

conditions. Then the following two conditions are equivalent: 

For every causal net N (B,E,F) for which E = 	(N), 

b € bed(B). 

b = (e,e'), where e' covers e (with respect to the relation 

Proof Assume b of the required form, then clearly for every causal 

net N = (B,E,F) for which E = 	(N), there must exist a condition 

b' € B such that eFb'Fe',. and hence b = bed(b'). 	On the other hand, 
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if b is not of this form, construct a slightly modified form, N, 

of X(E) leaving out the condition corresponding to b, such that 

E = 	(N) and b , bed(B).a 

This lemma shows that the only essential conditions are the 

"points of non-density". However, the net consisting of the events 

of E and all essential conditions will not in general be mapped onto 

E by 	. Indeed., considering, for instance, the elementary event 

structure associated with the rationals shows that it is even possible 

for no condition to be essential. 

In the next section we shall see how the causal dependency and 

the concurrency relation of causal nets translate nicely into the 

event and lattice structures. 
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4.2 Occurrence nets, event structures and domains 

In chapter 2, introducing Petri nets, we often had to 

distinguish events (or transitions) from their occurrences and 

similarly conditions (or places) from their holdings (e.g. in the 
tcW 

discussion of 2.2.10). Here we shall showAan occurrence net, in 

which conditions and events stand for occurrences, can be associated 

with a contact-free transition net with initial marking. For one 

thing this will enable an especially simple definition of the 

concurrency relation. For another the associated occurrence net 

of a transition net seems a canonical representative of the 

computation described by the transition net at that level of 

description. We would like some category theoretic characterisation 

of the occurrence net of a transi1on net to clarify and support 

this view. At least it is an unfolding of the transition net (see 

section 2.5). Petri has said that the process level semantics of a 

transition net is the class of causal nets it unfolds into, where 

all the choices associated with such an unfolding are "made by the 

environment" [Pe4 The occurrence net unfolding of a transition 

net represents such a class. Again we shall not worry too much 

about computational intuition here, sidestepping issues like what to 

take as states of the occurrence net (see chapter 5), how we play 

the token game on transition nets, whether or not we allow events to 

have concession forever etc. For the sake of definiteness however 

one can assume that no events are restless so that the transition 

nets here may be imagined to describe datatypes. 

In general because of the presence of forwards and backward 

conflict the subnet "caused byor"causing" an event or condition 

is not. unique. In an occurrence net we wish the elements to 

represent occurrences as was the case with causal nets. From this 

point of view backwards conflict seems undesirable. For instance 

in 

e0  1 
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the condition b can be caused to hold in two ways, either through 

the occurrence of e 0  or e 1 . 	In occurrence nets we choose only to 

allow (formal) forwards conflict marked by events sharing a common 

precondition. 	(We say formal because for the moment we do not 

discuss whether or not there is a state at which this conflict really 

occurs.) In net theory this might seem undesirable as there one is 

sometimes concerned with "information leaving the system" ,which 

• 	meanc getting to a state which could have arisen through 

different conflict resolutions. However our concerns are different. 

Firstly I am not clear what the semantics of a transition net with 

contact should be. Secondly we shall use 

occurrence nets to go from transition nets to domains of information. 

Here following Scott the level of information is determined by a 

partial order not, as would seem appropriate in net theory, by a 

digraph or category. This is because an information point in a 

domain "remembers" its past; it is like a partial history. On the 

other hand in net theory it is less standard to look at all the 

information potentially available to the environment as a system 

runs.. There the information is stored by the system itself; because 

a. system can loop there can be loops in the "can lead to" relation 

on information points.. 

As we have chosen to deal with forwards conflict only and we 

wish to stay close to causal nets it is natural to look for a 

replacement to axiom,N4- in the definition of causal nets (2.4.1). 

Axioms N5 and N6 are maintained as,respectively,we still disallow 

backwards conflict and wish events and conditions to be occurrences. 

Definition 4.2.1 

Let N = (B,E,F) be a Petri net satisfying N and N of 

definition 2.4.1 (that of a causal net). Foi any a E B U E let a 

denote the subset of E defined by 

= {e EEjeF*al. 

Two events e 1  and e2  are said to be in (formal) direct conflict, 

e1#IN e2  1ff e 1 A e2 Z e 1  n °e 2  $ 

Two elements of Bi B, a 1  and a2 , are said to be in (formal) 

conflict, 
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a 1 	a2  iff 	e 1 ,e2  C E e1 € 
	e E a2 	e 	e2 . 

We can now generalise the notion of a causal net. 

Definition 4.2.2 

A Petri net N is an occurrence net iff it satisfia 96  and Wcb 

	

of definition 2.4.1 and further: N4' 	is irreflexive. 

We shall sometimes need to distinguish conflict as it arises 

in playing the token game (chapter 2) and what we call formal 

conflict which arises simply through F*..predecessors of two elements 

sharing a common precondition. This makes no mention of "reachable 

markings". Indeed, here we have not discussed what a state of a 

causal net or occurrence net should be in our view. Until we do 

it cannot be clear how real formal conflict will be in general. 

Occurrence nets will be our new class of semantical nets.. Elements 

of E and B still represent unique occurrences and holdings, 

respectively, and N4' guarantees that no event (or condition) is in 

conflict with itself (can occur on two different branches of the 

computation, so to speak). More importantly, the concept of 

concurrency carries over nicely: 

Definition 4.2.3 

For an-occurrence net N = (B,E,F), the concurrency relation 

coN_ (B '....' B) x (B .j E) is defined by 

Co
x  = 	(( B V E) x (B v E))N(? U (F) —1U N). 

The following proposition is an immediate consequence of our 

definitions. 

Proposition 4.2.4 

Let N = (B,E,F) be an occurrence net. Then coN  is symmetrical and 

reflexive. Furthermore, any two elements of B U B are related in 

one of the three mutually exclusive ways: causally dependent, 

concurrent or in conflict. 

Now we can generalise Petri's idea of case (though I do not 

regard it as the correct formulation of state - see next chapter). 

Recall the definition of ken (2.4.10). 

Definition 4.2.4 

For an occurrence net N = (,E,F) a case is defined to be a 
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ken of CON. 

Unfortunately there are difficulties in correctly 

generalising the definition of sequential process to occurrence 

nets. An obvious definition would take them to be kens of 
- 	41N)• Then a generalised definition of K-density 

would result from using the generalised definitions of case and 

sequential process in 2.4.13. One would expect generalised 

sequential processes to be trees and generalised, K-density to at 

least hold for finite occurrence nets. Significantly neither is 

the case as the next examples show. 

Example 4.2.5 

Above we have drawn a finite occurrence net N.. A case is marked 

by the dotted line. A ken of (p* Li consists of all 

the ancircléd elements.. Not - only- does this "sequential process" 

have an odd form but also it does. not meet the case chosen. Thus 

this net would not be K-dense in the generalised. sense suggested 

above.. 

The next two nets show how peculiar is the suggested generalised 

definition of sequential process. 

Example 4.2.6 

e0  

b 1  

so 
to  

S i 

t l  

N 1 	I  
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For N 1  the set {b.I j ECU} i.j  Ie.( i € cU1 U {s.j i EC.A.)}c) {t Ii €w} 

is a ken of F 	 • For N2  the encircled events form a 

ken of F C) 	 4N 2.1 

We show how an occurrence net may be associated with a contact-

free transition net with initial marking (N,M0). Recall that a net 

is contact-free iff' for any reachable marking M and transition t, 

t M => ° t A N = $. The idea behind our construction is that the 

behaviour of N will be described by an occurrence net with precisely 

one condition for each residence of a token on a place, and precisely 

one event for each firing possible for N. Roughly, in the 

construction the event and condition occurrences are taken to be 

transitions or places respectively together with the "minimal way" in 

which they are "caused' according to a local application of the 

token game. In more detail: The occurrence of a place is taken as 

the pair consisting of the place together with the transition 

occurrence which causes it. to hold; the occurrence of a transition 

is taken as the pair consisting of the transition together with a 

set of concurrently holding- occurrences of its preplaces from which 

it may occur. We grow the associated occurrence net inductively 

in. stages starting from-the initial marking as a. set of occurrences. 

Definition 4.2.7 

Let N = (P,T,') be a contact-free transition net with initial 

marking N0 . 	Define- 	'((N,M0)) inductively as follows..' ollows. 	(We use 

and -1 
 to denote the first and second co-ordinate of a pair.) 

Initially define B0  {ol x N0  

E0=t 2 

with F0 = *0 = and coo  =' B0 .. 

Then inductively define 

B 1  = BL) I ({e},p) I p E PS e € E £ p(e) 

E 1  = EJ{(f3t) /t E TAO 9 	B. -& (i)1 = 't(Yb,b' € 	bcob')) 

with relations F1, 	r+l,con+1 on (B 1  j E +1 ) 2  given by 

x F +1 x' iff x € 

	

1 x' iff5e,e' € E 	 e 	e' g e F 	x S, e' F*+i x t . 

(e),(e') / 0 
+ 	/ ± -1"- t+,).co 	 )F1  = B 1 jE 11tj 1 )  

Foy'A A- set (A ) = ?x I3 	( 1j)€A a..t.I s3ar( 

e. 'C—ia, ao( C- ) 	La c IoL k set). 
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Finally define 0((N,M0)) to be the net (B,E,F) where 

B= L)B,E= U  and F= UF. 
flE 	ii 	nEW fl 	 flEw fl 

We have used the contact-freeness of N where we assumed a 

transition could occur solely through its preconditions holding. 

The very simple transition nets below illustrate the point. 

Exaiirple 4.2.8 

LO 
N 1 	 N2  

In N 1  there is contact immediately. It would be unreasonable to 

have an event occurrence for t firing. In I\12  contact can happen 

through backwards conflict; our construction would allow f and t 1  

to occur. 

The next example illustrates a transition net with initial 

marking together with the occurrence net constructed as in 4.2.7. 

We have indicated what parts of the occurrence net have been grown 

by the nth stage of the inductive definition. 

Example 4.2.9 

A net N with initial marking 



S tag 

Stag 

Stag 

Stag 

Stage 4 - - -. 

In the inductive construction of the occurrence net associated 

with a transition net we have chosen to take the occurrence net as 

grown after ci) iterations. It is noteworthy that the closure 

ordinal [Mos] associated with the inductive definition may well be 

greater than &) in general 	For example the following transition 

nets with. initial marking would give closure ordinal 0) +1. 
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According to definition 4.2.7 their occurrence nets would be 

If one could play the token game very fast, so that the final 

events could occur, definition 4.2.7 would be inappropriate 

(This kind of issue occurs in discussing the 	s-mind to lend 
intuition in recursion theory  see [Rog].) One could then 

accordingly continue the inductive constructi Dli up to the closure 

ordinal. Note this would require a more general definition of 

contact-free; ours is based on the reachable markings of chapter 2. 

We remark that definition 4.2.7 is more general than that in 

[Niel which was for finite transition nets; that approach would 

not produce a transition occurrence if it depended on an infinite 

set of transitions occurring concurrently. 	As in [i'Tie] the 

construction gives an occurrence net for which there is a natural 

folding to the original transition net. The proof of this 

proposition follows from the inductive construction. 

Proposition 4.2.10 

For any contact-free transition net N with initial marking M0 , 

satisfies the axioms fdr occurrence nets. The map f, 
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defined below, from B tJ B to places and transitions of N is a 

folding: 

f((O,p)) = f(({e,p)) = p, 

Let us now see how conflict is handled in event structures and 

domains. Since elementary event structures were our "poorest" 

structures, it is not surprising that the only way of introducing 

conflict is by adding structure. 

Definition 4.2.11 

An event structure is a triple (E,<,), where 

El. (E,.i) is an elementary event structure, 

E2. 	is a symmetrical and irreflexive relation in B, 

satisfying V e 1 ,e2 ,e3  E B: e 1  > e2 e3  => e 1 	e3  

X is called the conflict relation. 

With these generalisations of causal nets and elementary event 

structures, the next two theorems provide straightforward general-

isations of the mappings 5  andjV'  the results of Theorems 4.1.2 

and 4.1.3. 

Theorem 4.2.12 

Let N = (B,E,F) be an occurrence net. Then 

(N) =def 	
E2, *N f' E2) is an event structure. 

Proof The irreflexivity of 	follows from N4 1 . Then 

follows from the definition of*N. 

Theorem 4.2.13 

Let (E,<,.) be an event structure. 	Then there is an 

occurrence net 	/(E) such that B = 	(JV(E)). 

Proof Define the set /E)as follows: 

Kj E)= f  {xc B IV  e,e' E x: e 	e' => e 

The events of IV(E) are obviously those of B, and the set of 
conditions is defined by 

B = (e, x) 	e € B, x €J(E) and 'V'e E x e < e  

{(o,x) I x EJE 
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Finally, the F relation is defined as 

	

F = {(e,x ,e') 	(e, x) € B, e' € x} (.2 

	

((o,x),e') 	(o,x € B, e' € xl 'J 

	

{(e,(e,x)) ( 	(e,x) € B}. 

It follows that VV(E) is a well-defined occurrence net for which 

= 	and. restricts to give 	on events, and hence 	(J'/ (B)) = B. 

	

This construction of 	may seem more unnecessarily complicated 

than the one from the proof of Theorem 4.1-3. 	Obviously, many 

simpler ones would do; however, we have again chosen a "maximal" 

construction, in the sense that any condition in any occurrence net 

N for which conditions are extensional and for which 6 (N) = B has 
a representative in ,4/(E) (which means that our treatment of 

conditions in elementary event structures discussed in the previous 

section carries over to event structures). 

Things get a bit more interesting when we move on to our 

lattice structures and generalisations of the mappings 4 and 
Intuitively, an event structure represents a class of courses of 

computation (processes according to Petri) where e 	e' means 

that e and e' never occur in the sane course. So, not all left-

closed subsets of an event structure make sense as information 

points. Only the conflict free left-closed subsets can be the 

sets of occurrences at some stage of an associated course of 

computation. 

Definition 4.2.14 

Let E = (E,<,) be an event structure, and let x. be a subset 

of B. Then x is conflict free 1ff 

V e,e' Lx -, (e' 	e'). 

Our idea about the ordering of information points is still he 

same, though. 

Definition 4.2.15 

Let B = (E,<,) be an event structure. 	Then '(E) is the 

partial order of left-closed (w.r.t. ..) 
and conflict free subsets 

of E, ordered by inclusion. We shall sometimes call x in (B) 

a configuration of B. 
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What about our characterisation of the structures 

Obviously, we do not any longer get complete lattices. Two 

points will be incomãiL€ (have no upper bound) iff their union 

(as sets of events) contain conflict. 	But any comp&b1e set of 

points will have alub (their union), so the structures will be 

consistently complete. For a characterisation we need the even 

stronger condition of coherence (see 3.1). 

Theorem 4.2.16 

Let (E,<,') be an event structure. 	Then ',(E) is a prime 

algebraic coherent partial order. Its complete primes are those 

elements of the form [e] = té l  € B J e' < el. 
Proof Let X 	(E) be pairwise consistent. Then U  is conflict 

free,. and so Ux = Ux, showing that 7(E) is coherent. 

The rest of the proof proceeds is in the proof of Theorem 4.1.9, 

noting that all elements of the form [e] are conflict free from E2, 

and that for any x in 	(E) the set {te] e E xl is pairwise 

corx,16k. R 
From this theorem we see how to generalise the mapping P. 

Definition 4.2.17 

Let (D,) be a prime algebraic coherent partial order. Then 

-P(D)  is defined as the event structure (Pr(D,), where < is 

restricted to Pr(D),. and for all e,e' € Pr(D): e 	e' iff e and e' 

are inconipEile. in D. 

It is easy to see that '1(D)  is indeed an event structure, and 

we are now ready to prove the equivalence between event structures 

and prime algebraic coherent partial orders corresponding to 

Theorem 4.1.12. An isomorphism between two event structures is 

naturally any one to one and onto mapping, which respects and 

reflects both causality and conflict. 

Theorem 4.2.18 

Let (E,<,) be an event structure, then E 

Similarly let (D,) be any prime algebraic coherent partial 

order, then D 

Proof Define 	: E -> 7 '( ' ( E)) by '(e) = [e]. 	It follows 
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along the lines of the proof of Theorem 4.1.12 that 	is an 

isomorphism with respect to  and the corresponding relation in 

Furthermore, 	is easily seen to respect and reflect 

the conflict relation. 

The mapping 7T as defined in Definition 4.1.11 is known to be 

an order monic from D toi,((Pr(D), rPr(D) 12$)) (from Lemma 4.1.11). 

From definition , ((D)) is a subordering of 	((Pr(D)gf'Pr(D))) 

so all we have to prove is that the range of IT is equal to the set 

of elements of'j('(D)), i.e. for every left-closed set, X, of 

complete primes of D: 

3d E D 1(d) = X iff Vp,p' EX p and p' are corn 

The "only if" part is trivial. Assume X satisfies the right hand 

side assumption. Coherence of D implies the existence of UDX 

and it follows that 7r (UDX) = X (just like in the proof of 
Theorem 4.1.12) 

1n Example 4.2.19 an occurrence net N is pictured with its 

associated event structure 	(N) and the coherent prime algebraic 

partial order 

Example 4.2.19 

19 

el 
	 '3 

e0q) 
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Theorem 4.2.18 has an intuitive interpretation. For an 

event structure E the domain ,(E) may be thought of as a set of 

possible courses of computation. The theorem says that two event 

structures are isomorphic 1ff the structure of the courses of 

computation they determine are isomorphic. Given an occurrence net 

N an element x of'. ( 8 (N)) determines a causal subnet of N namely 
the net consisting of events x, conditions {b 13e € x b € e LI e0  

with F-relation induced by N. Recall it is. causal nets which Petri 

chooses to represent courses of computation. As a contact-free 

transition net with initial marking determines an occurrence net it 

also determines a class of causal nets.. 

So, we have now established a complete generalisation of the 

picture from the previous section: 

La  (loses structure)  
Occurrence 	 > 	Event. 	). Prime Algebraic

Iff  
Nets 	_ 	

Eture
j Coherent Poseta 

<--  

All considerations about translation of events and conditions work 

as in there. 	Formally, Proposition 4.1.15 and Theorem 4.1.16 hold 

for prime algebraic coherent partial orders, and a straightforward 

version of Lemma 4.1.17 can be proved. 

Restricting ourselves to these relations on events, the 

following should now be obvious to the reader. 
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Occurrence Nets 	Event Structures Prime Algebraic 

N = (B,E,F) 	 (E,i,) 	Coherent Posets 

(D,E) 

Causality 	F r E2 	< 	r Pr(D) 2  

Conflict 	4k E 2 	j  
Concurrency E2\(FL (F+)_ 1 N)l E2\(<> v) 	Pr(D)2\(') 

Finally, let us see what these relations look like in terms of 

prime intervals of partial orders. 

Definition 4.2.20 

Let (D,) be a prime algebraic coherent partial order. The 

relation -4--("may occur before") on Pr(D) is defined as follows: 

P1 > 	
iff there exist prime intervals of P, tx 1 ,x 1'],[x2 ,x], 

such that pr( [x 1 ,x]) 	p.1 , pr([x2
1
x]) = p2  and x 	x2 . 	The 

complement of --- is denoted 

Proposition 4.2.21 

Let (D,) be a prime algebraic coherent partial order, and let 

Pr(D). 	Then 

PI 	p2  iff (p
1  _-.—p2) g_ 

p 1 	p2  iff (p 1 	_p2 ) A  (p2  4_-p1) 
and hence p 1  and p2  are concurrent iff (p --)k (p2—>--p1). 
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Chapter 5. 	States and observable states 

In this chapter we look at the key idea of states of an occur-

rence net in detail using event structures as an intermediate notion. 

We shall look at these intially later 	 ?D -. occurrence nets. 

We introduce two types of state of an event structure, observable 

states and states in general.. 	Observable states correspond to states 

which may be observed in finite time whereas states may require 

unbounded time. Using the idea of an observer we arrive at 

definitions of these two notions of state consistent, it seems, with 

the net-theoretic intuitions. 	(Observable cases of an occurrence 

net will be determined by observable states of the associated event 

structure. The reachable markings of a transition net are the image 

of the observable cases of its occurrence net unfolding.) Through- 

out this chapter we shall assume the computations have a fixed initial 

state at which they start (see the initiality restriction). We 

shall relax this in chapter 7. We shall also assume that the extent 

of the holding of a condition lasts at least unit time (see the 

discreteness restriction). The technical machinery we develop on 

states leads to a batch of results. 	One is a. more concrete appraisal 

of K-density.. Unfortunately we shall disagree with it though give 

some results consistent with its spirit (as Petri himself has agreed 

in a letter). We- shall also investigate the assumption of finite 

width which is appropriate to descriptions of computations involving 

only finitely many agents at any finite time. The property of finite 

width will depend on a finitely-branching property. However we shall 

reserve the term "finitely-branching" for-event structures which-

possess only finite non-determinism in a sense to be made clear 

In 5,5 we show how the notion of confusion translates over to event 

structures and domains, establishing a connection with concrete 

domains. - 

5.1 Observers, states and observable states 

In chapter 2 we gave several examples of a transition net 

modelling a computation or datatype (itself an extreme form of - 

computation in which no assumption is made about whether an event can 

have concession forever-or not). In chapter 4 we showed how such a 

transition net could be unfolded into an occurrence net to which in 

turn we could associate an event structure. These then become 
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descriptions of computations. 	In more detail an event structure 

(E,<,) is an abstract description of a computation which picks out 

certain event occurrences related to the computation and'represents 

causality and conflict on E through the relations < and 	• The 

concurrency relation and the relation 	U 1 are not the identity in 

general; this reflects, respectively, the indeterminacy of the 

relative speeds in the various subprocesses and the choice of course 

that a run of the computation will follow. Having described a 

computation by an event structure, E, it is natural to associate 

information about a particular course of computation with an element 

of 	(E). However it is not so clear whether every element of -4 (E) 

corresponds to a state that the computation may reach in finite 

or unbounded time. Informally, we take an observable statelan 

element C of '7o (E) for which there is a finite time in the course of 

a computation for which events in C are precisely those observed by 

that time. A state is defined similarly but here the observation 

time is allowed to be unbounded. We give some examples to illustrate 

this.. 

Example 5.1.1 

e 	- 
Here E 1  is the (elementary) event structure 

ea 	 consisting of an unbounded chain 
e. 1 	 e0  < e 1  < e < ...: below an event e. 
e0  

Example 5.1.2 
8 

e. 	 Here E2  is the (elementary) event 

structure consisting of e with chains 

e nO 	ni 	nn < e < ... < e of unbounded 

length leading up to it. 
ella 

Example 5.1.3 

e0 	 Here E3  is the (elementary) event structure 

e 1 	 consisting of an infinite chain e 0  > e 1  > e2>... 

e 
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Consider computations described by E 1 , E2  and E3 . 	(Note that 

they are the event structures associated with the causal nets of 

examples 2.4.5 9  2.4.8 and 2.4.krespectivel3r.) 	First let us suppose, 

that there is a uniform lower bound on the extent of time which 

passes between the occurrences of e and e' if e < e'. Thinking of 

occurrence nets which induce E 1 . E2  and E3 , this ib equivalent to 

assuming a uniform lower bound on the extend of the holdings of the 

conditions. Then as the events e in E 1 	2 	 fl 
and E and any event e of 

dominate chains of unbounded length, if the computations always 

start with no events having occurred e E E 1 , e € E and e € E3  can 

never occur. 	Thus for such computations [e] € '7, (E 1 ), [e] e 	(E2) 

and [en] € 7, (E3) are not states. If we keep the first assumption 
for computations but no longer insist that they start at some definite 

time the events e of E 2 	n 
and e of E could now occur. 	(We shall look 

at this possibility in detail in a later chapter.) If we drop our 

first assumption as well then for instance example 5.1.1 is naturally 

associated with Zeno's paradox and the event e to Achilles catching up 

with the tortoise (a very peculiar computation). Thus depending on 

what assumptions we make on the computation and the event structure 

description of it the left-closed conflict-free subsets may or may not 

correspond to states.. Also without extra assumptions the observable 

states are not derivable from the event structure alone. 

In making the last statement we diverge from the approach of 

conventional net theory where we understand the observable states of 

a causal net are identified with its cases. 	(See section 2.4 in 

which-it is shown that the K-density axiom is natural once this commit-

ment is made.) With this interpretation of a case as an observable 

state, insisting on K-density for a causal net guarantees every 

observable state determines a unique point in every sequential process. 

We shall not feel bound by K-density but note we expect a revised 

version of it to hold in a causal net where we restrict cases to 

observable cases (viz, those determined by observable states of the 

associated event structure). We establish this in section 5.4. 

Referring back to the examples and the ensuing discussion we 

shall make two restrictions on the nature of the computations and our 

event structure descriptions of them. With these restrictions we 

shall be able to identify states with left-closed conflict-free 
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subsets. We insist that if in an event structure E, for events 

e and e', e < e' then their occurrence must be separated by at least 

unit time. 	(We call this the discreteness restriction.) 	As 

pointed out above this is equivalent to assuming that the extents in 

time of the holdings of conditions in an occurrence net inducing the 

event structure have a uniform lower bound. Thus we avoid the 

problems of dense event structures such as the rationals and the reals. 

We will also assume there is a state of null information, when no 

events have occurred from which the computation starts (we call this 

the initiality restriction). 	In chapter 2 we d5d Oh€ A06-0h of 
what the "reachable markings" were in playing" the token game. (The 

issue of how fast one could play it arose in defining the occurrence 

net unfolding of a transition net.) The initiality restriction 

accords with transition nets having initial markings and the discrete- 

ness restriction will imply a formulation of reachable whicha6tm wi 2.22, 

probably the most intuitive. 

We now formalise the intuitions above. We first define the 

concept of an observer which corresponds to a particular (complete) 

run or history of a computation where each event'a.occurrence is 

recorded together with the time at which it occurred. Time will be 

discrete starting at zero and we use the symbol "" to "record" 

events which never-occur - according to a particular observer. An 

event may never occur either - through being in conflict with a 

preobserved event-through the computation diverging before the event,. 

or simply through the event being "too far" from the starting state as 

in example 5.1.10 Time will be represented byWL/,} ordered as 

usual. 

Definition 5.1.4 

Let E be the event structure (E,<,). 	An observer for E is 

a map 0: E -> W U 
{ 	

such that 

e < e' g  0(e) <.t'=> 0(e) < 0(e') 

e < e' 	i(-O(e) =oq  => 0(e') 

0(e) < do ' 0(e') < oo => -i(e 	e') 

We denote the set of observers for E by 0b(E). 

The above paragraph explains clauses 2 and 3 in the definition 

and clause 1 formalises our first restriction on computations. 

Note that the above definition allows computations to diverge at 
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any itage; 	no events are obliged to lose concession 

eventually" extra assumptions would restrict the class of 

observers and the states though not the observable states. We have 

already motivated the following definition of the latter two notions. 

Definition 5.1.5 

Suppose (E,<,) is an event structure and C . E. 	Say C is an 

observable state of E iff 

3o e Ob(E) at €w C = e E E\ 0(e) < t. 

Also say-  C is a state of E iff 

30 € Ob(E) at €W -i {OO C = {e € E J 0(e) 	t}. 
We write and. S(E) for the observable states and states 

respectively, ordered by inclusion. 

From these definitions it is obvious that 

Lemma 5.1.6 

For Ran event structure, 

() 	() 9  4 (E).. 
The next section provides a simple characterisation of 

and 

5.2 Distance measures on events and states 

In this section we define a distance measure on events 

and. then use it to define an integer metric on left-closed conflict 

free subsets - strictly speaking it is not quite an integer metric 

as it is possible for two states to be infinitely far apart. The 

ideas are simple. The distance measure 	(e,e') between two events 

9-and e' of event structure E is the supremum of the lengths of 

chains between e and e'; it represents the minimum time possible 

between the observation of e and e'. 	The distance d(C 1 ,C2 ) between 

two elements of 4 (E) is the supremum of L (e,e') fore and e' in 
(c 1  + c2) the symmetric difference of C 1  and C2 . 	First we define 

the distance measure on events. The set WL/fool is ordered as 

usual 

Definition 5.2.1 

Let (E,<,) be an event structure. 	Define 
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L: E2 	-> ijfool by 

L (e,e') = Sup{n 	 E E e0<...<e n S, ((e0  = e 	en = e') 

or (e0  = e' - en = e))} 

Note A may be infinite as occurs in the next two examples. 
Example 5.2.2 

2 

e 0 
	 C 

In E 1  there is an infinite chain between e 0  and e 	so 

A (e0 ,ew) = . In E2  there are chains of unbounded length between 

e and e' so A  (e,e') =Co 

We note that A is symmetric and that Li (e,eO = 0 1ff e = e' 
or e and e' are <-incomparable. Suppose we have three events 

e < e' <e". Then in general there may be more chains from e to e" 

than go through e'. These remarks account for the following lemma. 

Lemma 5.2.3 

For E. and A  as in definition 5.2.1 we have: 

1.. 	L(e,e') = I(et,e) 

(e,e') = 0 1ff e = e' or e and e' are <-incomparable.. 

For e < e' < e lt, 

(e,e ' ) +tI(e',e") I.i.(e,e'O. 

Notice that 3. is the "wrong way" triangle inequality. We 

remark that such measures occur in cosmology but there the analogue 

of < means "may be a cause of" (see exercises 	in [Sac ]). 

From A on E we obtain a metric on 	E) the left-closed 
consistent subsets. 	(Strictly speaking d is not quite a metric as 

it may be infinite.) 

Definition 5.2.4 

For E andA as in definition 5.2.1 we define 

d: 1, (E) 2  —p Ct) LI {o} by 

d(C 191C2) = sup{L(e,e') + 1 e,e' € (c + 
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We say for C 1 ,C2  € 4 (E) that they are reachable from each other 
iff d(C 1 ,C) <00 . 

The latter concept of reachability allows two incompatible 

conflict-free left-closed subsets to be reachable from each other. 

This may seem unusual. We shall relate it to the perhaps more 

standard idea of forwards reachability after the next lemma detailing 

the properties of d. 

Lemma 5.2.5 

For d as defined in 5.2.4, if C 1 ,C2 ,C3  Ea (E): 

1.. 	d(C 19 C) = 0 <=> C = C2  

d(c 1 ,C2) = d.(c,c 1 ) 

d(C ,c2) + d(C 2 ,C3 ) > d(C 1  ,c3 ) 
d(C 19 C) = Sup{d(C 1  , C2 ,C 1 ),d(C 1  ç c 2 ,c} 

s. 	c 1 	c2  c C3  => a(c 1  c2) < d(c 1  ,c3). 

Proof Use the fact that C 1 ,C2 ,C3  are left-closed. 

1 • and 2. are obvious from the definition of d. 	if c 1  = C3  the 
result is obvious so suppose w,l.o.g. there is chain between e and e', 

with e < e', in C
3
' \C . Then the chain splits into two chains one 

possibly null in C2. \C 1 , the other possibly null in C 3\C2 . Pictorially 

we have: 

C3  

C2  

C  

The two parts make a contribution of at least the length of the 

chain to d(C 1 ,C 2) + 

Chains in (C 1\C2) .i(C2\C 1 ) are either in C 1\ 1 n C 2)or in 
C2"(C1 

t-1 
c. 

Clear. 

Now we can relate our relation of reachability given in 5.2.4 
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to forwards reachability. Note thatthe one-step-forward 

reachability relation below corresponds closely to the relations 

[-> and- 1  of 2.2. 

Proposition 5.2.6 

Let E be an event structure. For C 1  ,C 2  in 7(E) define one-

step-forward reachability by 

C 1  f— C2  iff C 1 	C2  &. Ve E CC1 	{e} 	C 1 . 

Then define the forward reachability relation as the transitive 

closure of F-1 . 

Suppose C 11 C2  are in '(E). 	We have 

C1 F— C2  if C 	C2  & d(C 1  ,c 2 ) < Co. 

The reachability relation of 5.2.4 is the least equivalence 

relation extending -. 	In fact d(C 1 ,C2 ) < 	iff C 1  #'\ C2  1— C 1  - 

C 1  t •  C2  -i C2 . 

Proof 

1. Clear from the definitions. 

2.. This follows from property 4. in 5.2.5. 

We use the following definition in characterising states. 

Definition 5.2.7 

For d and event structure (E,<,) as above and e E E, say e 

has finite depth in E iff d(t,[e]) <' 

It is obvious that: 

Lemma 5.2.8 

If e has finite depth in event structure E and et < e then e' 

has finite depth in E. 

We could have defined fir)ite 	depth by introducing a fictitious 

event i below all events in the event structure E, defining A  as 

above on the amended event structure, and then said an event e of E 

had finite depth iff L (i,e) <ce. 

The characterisations of 	(E) and 	for event structure 

E now follow: 

Theorem 5.2.9 

Suppose E is an event structure with metric d. on L (E) as defined 
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in 5.2.4. 	Then for C € % (E) 

C E 	(E) iff V e £ C e has finite depth. 
C E(E) if  d($, C) < cO. 

Proof 

Suppose C € ' (E). Then each event in C is observed 
in finite time and thus by the definition of an observer is of finite 

depth. 

"4?' Define the observer by 0(e) = d(Ø,[e]) if e € C, o 

otherwise. 

2. As for 1. but this time we have a uniform bound on the 

depths of the events. 

Corollary 5.2.10 

For an event structure E, 

= 	(E) iff for all events e are of finite depth. 

O' (E) is closed under intersections and finite consistent 
unions. 

If an event is not of finite depth it can never be observed. 

Consequently the states only involve events of finite depth. Thus 

it is natural to restrict ourselves to event structures in which all 

events are of finite depth. For example this excludes the event. 

structures 	E and E of examples 5.1.1, 5.1.2 and 5.1.3 respectively, 

even though. 4f(E2) is K-dense. 

Definition 5.2.11 

An event structure E is of finite depth if f every event of E 

has finite depth. 

Theorem 5.2.12 

If (E,<,) is an event structure the following are equivalent: 

E is of finite depth. 

(E) = f,(E) 
V e € E 30 € Ob(E) 0(e) € w 

V 	E (Va 1 ,a2  £ A '7(a 1 	az)) => 3o E ob(E) A . 0 1 W 

Proof 

Let E = (E,<,) be an event structure. 
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=> 2. by theorem 5.2.9 part 1. characterising states 

=> 3. Assuming 2. we have [e] € 	(E) for any event e. Thus by 

the definition of state 3  0 € Ob(E) 0(e) E () 

=> 4. Supposing 3. gives that every event e has finite depth thus 

we may define the required observer 0 by 0(e) = d.($,[e]) if e E [A]. 

otherwise. 

=> 1.. as {e} is certainly a conflict-free subset of E so there is 

an observer seeing e, giving that e has finite depth.5 

Thus if an event structure E is of finite depth 	(E) = '(E) so, 

by the results of the last chapter, we can recover E, to within 

isomorphism from (E). It can also be recovered directly from the 

observers for E. 	Precisely: 

Theorem 5.2.13 

If (E,<,% ) is an event structure of finite depth then:. 

. r <and *= nw,  
o€ob(ET° 	 0€Ob(E) 

where 

e < e' <> 0(e') <'Q => 0(e) <0(e') 

ee' <=> (0(e) 	OQ <=> 0(e') =oo). 

Proof 

Obviously by the definition of an observer 	 and. 

Qo so 	we require- 

(e < e') => 	0 E ob(E) —i (e 	e') 
( 	-syJ 	,', 	 -' 	.-', / 	 / 	"- 

an, 7 \C'j).. 	'; =.' _...ju € uoi1 	i.e 	e') respectively.. 

The latter follows from theorem 5.2.12 part 4. 	For the former, 

as E. is of finite depth, take 0 E Ob(E) such that 0(e') € C4) 

If e 	e' (i.e. 0 is unsuitable) take 0' defined by 

" o'() = 0(e) if 
0(.) + j(e') + 1 otherwise. 

Then. 0' is the required observer. 

5.3 Event structures with finite width and finite branching 

So far we still allow computations of a very general nature. 

For instance we allow an infinite number of concurrent events to form 

an occurrence net or event structure. For real computational 
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would expect that an infinite Milner net for example would have to be 

grown, perhaps by a recursive definition, over an infinite stretch of 

time. In such a Milner net,in any finite time only a finite number 

of events (including communication and possibly "births" of agents) 

would occur. The next example shows this a little more formally. 

Example 5.3.1 

A Milner net might be defined recursively by p = po ll p the 
parallel combination of p with p where p is some fixed net. Imagine 

the behaviour of p described by an occurrence net abbreviated, as S 
and the behaviour of p by an occurrence net abbreviated as @. One 

implementation of the recursive definition of p would give rise to 

this occurrence net. 

12 

Here each event drawn represents the action of expanding the net 

further according to' a single application of' the recursive definition.. 

We can draw successive expansions of the net' like this: 

Po 	p 

a 
. 	. 

The recursive definition preserves the fact that at any finite time 

only finitely many events can have occurred. 

The above discussion motivates the next definition of finite 

width. However note that a more detailed analysis of what class 

of computations to allow would perhaps yield a more restrictive 

definition (see example 5.3.19). 
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E 

I al 

Definition 5.3.2 

Let E = (E,<,) be an event structure of finite depth. Then 

E is of finite width iff all observable states of E are finite. 

Note that we presuppose E to be of finite depth. This is because 

such event structures are natural for our definition of observable 

state expressing.those events which may occur in finite time. Such 

event structures will arise from the occurrence net unfolding of a 

finite transition net. 

If E is an event structure of finite depth then for any event e 

in E we have Eel is an observable state. Thus for finite width event 

structures {e] must be finite. Also considering a total observer for 

an elementary finite width event structure E we have that E is a 

countable union of finite sets and is thus countable. 

Lemma 5.3.3 

Let E be an event structure of finite width.. Then for all e 

in E we have {e] is finite. 	If E is elementary too then E is cot.)nbZl'Ie. 

Thus the left-closed consistent subsets of a finite width 

event structure satisfy axiom P of chapter 3. The converse does not 

hold however; the event structure consisting of an infinite set of 

<-incomparable events with null conflict relation is not of finite 

width and yet gives a domain satisfying axiom F. 

Thinking- of characterising finite width some finite-branching 

property springs to mind. Perhaps the most obvious one is that 

{et €! ee'} is finite for all events e, where we have used—< 

for the covering relation in E. This is incorrect however as the 

following example shows. 

e 

The above example of an elementary event structure, E, is of 

finite width-yet we do have {e' €EJ e—<ell infinite. Thus 

imposing 
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V e € B let E El e--.< et}  is finite 

is too strong even restricted to elementary event structures. The 

correct finite-branching property follows. First we have some 

notation generalising that in 4.1.9. 

Definition 5.3.5 

For B and event structure and A £ B define [A] to be the left-

closure of A i.e. 

[A] = {e € B 	a € A e< a1.. 

Definition 5.3.6 

For B = (E,<,) an event structure and A E B. we define the 

concession of A by 

conc(A) = {e € B ( e A [A] g, <1 
 {e} c [A]} 

and the immediate futures of A by 

IF(A) = {B ç B 	B is -maximal s.t. B is a conflict-free 

subset of conc(A)}. 

Then B is said to be finitely-enabling iff 

VA B I A( <00 	=> 	V 	e, IF(A) fBI 	< 00. 

We avoid "finite-branching"' which is more appropriate for finite 

non-determinism. 	We then have:- 

Theorem 5.3.7 

For E an event structure (E,i,) of finite depth,- R is of 

finite width iff E is finitely-enabling. 

Proof 

Suppose E is of finite depth and finite width and that A 	E 

and (A( <° . 	Take B E IF(A). 	Define C = A (\ [B].. 	We have 

B € ir(c). As C is conflict-free and I C I < cv using finite depth 

and 5.2.9 part 2 we get [c] € O' (E). 	Now d(Ø,[B]) < a(Ø,[C]) + 1 <00. 

Thus by 5.2.9 again [B] E (2J' (E). As B has finite width this means 

l B) 	< 2. 	 - 

It<.Jt Suppose E is finitely-enabling. Then one shows by induction on 

n that the following induction hypothesis holds: 

VC E LIO(E) d(Ø,C) < n => id 	< 



Corollary 5.3.8 

For E an elementary event structure (E,<) of finite depth, 
E is of finite width iff VA E JAI <00 => Iconc(A)f <00. 

Proof 

Simply note for elementary event structures we have 

IF (A) = {conc(A)} for A S E. 

In general the observable states of an event structure E will not 

correspond to the isolated elements of 	((E),.) (written 

(E) ). 	However: 

Theorem 5.3.9 

Let E = (E,<,) be an event structure of finite depth. Then 

= 	(E) iff E is of finite width. 

Proof 

• Let E = ( E,<,() be an event structure of finite depth. 	First 

note that the isolated elements of 	(E) take the form 

L [e.] fore. Ex. 
O<in 1 	 1 

Obviously an element taking such a form is isolated. For the converse 

simply see that x is the supremum of the directed set 

[{e0 ,...,eIII 	 €. xl and use the fact that x is isolated. 

Thus as E has finite depth 	(E) 

"<=" Suppose E has finite width then observable states are finite 

so O ' ( E) 9 3(E) °  giving 	(E)0  = 

Suppose 	(E) = S(E) °. We require Vx E O'(E) lxi <co 

Suppose otherwise i.e. for some x € 	'(E) 14 = 
Define z  = {e € x id($,te]) = ni. 	As x c O(E) by 5.2.9 with 
m = d($,x) we have x = 0 for n > m. Thus for some i (i < i < m) we 
have x an infinite set of -incomparable events. Thus 

Ix i i A 	(E) ° . 	Yet [] € C4' ( E) by 5.2.9,. a contradiction. 
Therefore \71'x € O(E) I r( <Oo and E has finite width as required. 
Thus those event structures of finite depth and width are characterised 

by the observable states coinciding with the isolated elements in 

the domain of states. 

Finite-branching ideas suggest ideas along the lines of KBnig's 

1   
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lemma. 	So it is with finite width. We shall use th4y result 

below later, in establishing an equivalent of the K-density axiom 

under some restrictions. 

Theorem 5.3. 1 0 

Let E = (E,<) be an elementary event structure of finite depth 

and finite width. Then if E is infinite there is an infinite chain 

in E. 

Proof 

Suppose E satisfies the hypotheses of the theorem and (El = 

We divide E into sections according to depth by: 

Define E n = fe £ El d(Ø,[e]) = ni for n = 1,2,... 

We note: Every  event belongs to a unique E; no En  is null; 

each event of depth n+1 has a <-predecessor of depth n. 

We now define t, a (finitely branching) tree with all nodes but 

the root labelled by elements of E, as consisting of the least set 

satisfying 

0€ U 

e € E 1  => (0,e) € t 

€ t 9, 	0 	(o)i € E => {(o,e) (o) < e 9, e € E n+1 

ordered by the transitive reflexive closure of 4 where 

if 	c'= (c') 

(We use ( ), ( ) to denote the projection functions.) 

Then (t'44)  is a tree, a non-root node cK being labelled by 

€ E. 	It is finitely branching by the observations made of the 

En 's above. Moreover every event e of E labels some node of t. 

For suppose e £ E. 	Then we choose a chain e 1  < e2  < ... < en = e 

where e. € E. and n is the depth of e. 	Induction on n shows that 

= (...(((O,e 1 ),e2 ),e3 )...,e) € t as required. 

Thus t is infinite and finitely branching so we may apply 

K1nig's lemma to yield an infinite branch 

0 < oK K• 	-< ... <c( - 	... 
This gives an infinite chain in E i.e. 
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< 	< ••• < °'n1 < 

which proves the theorem. 

Corollary 5.3.11 

Let E = (E,<,) be an event struc,ure of finite depth and 
40 

finite width. Then x E 	(E)\C(E)Xincludes an infinite chain. 

Proof Let E satisfy the hypotheses of the theorem. 

obvious. 

tL>It Take x € S (E)\Uf(E). 	Then define E to be the 
elementary event structure (x, .('x). This is of finite depth and 

width. Moreover x is infinite. Therefore by 5.3.9 x has an 

infinite chain. 

Consider the elementary event structure E0  consisting simply 

of an infinite set of <-incomparable events. We can draw it as 

e0 	e1 	.... e 

Our definition of observer (5.1.4) allows all the events to occur 

within some bounded time. Of course the event structure is not of 

finite width. However we can regard it as derived from finite width 

event structures in which we ignore some events. For example the 

following event structures are of finite width: 

e 

: e 

eo\j 

5 

) 

- 

Think of E and E as two possible finite width "implementations" 

of E 	 the event structure E is obtained by ignoring the infinite 

branches of E and E2 . Think of E as an abstraction from all 

possible implementations in the above sense. 	Then our definition of 

observer would be made less general so that any observer of E is the 

restriction of the observer of a finite width implementation. In 

fact the observers of E would then be all observers such that only 

finitely many events of E occur by any finite time. We now spend a 

little time formalising these ideas but only for elementary event 
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structures. 

Firstly we define two natural ideas of implementation. 

Definition 5.3.12 

Let (E,<) and (E',I') be elementary event structures. 	Define 

E' 0 EiffEE'R < 

and E' 	B iff B ¶2 El< = <' r E. 

(Say B' 4-impiements or 	-itnlements B respectively.) 

The relations B' 	B and E' 	B give two ways that B' may 

implement E. The relation 4 corresponds to the idea above while for 
4 we would have B' 	B for theent structures: 

e2  

e 	 * 1 	 e0 	e 1 	e2  

e0  

B' 	 B 

Both relations are partial orders and 	has an easy characterisation. 

(We use OE to mean the observer 0 in Ob(E') restricted to B a subset 

of B') 

Lemma 5.3.13 

Both the relations 

partial orders. We have 

event structures with E' of 

aJ.ent to either of 

1.. B 	E'2 Va' E Ob(E') 

2. BcE' &V" C' 

Proof 

Routine. fl 

and 	on elementary event structures are 

C 	Let B and E' be elementary 

finite depth. 	Then B' 	E is equi..v 

0' i' E E ob(E) 

C' ( B 

According to the views of this section "real computations" 

will give rise to event structures with finite width implementations. 

To characterising those event structures which have finite width 

implementations (in both the 4 and 	sense) the following lemma 

is useful. We give two proof s,one very simple, the other less so but 

more intuitive. 
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Lemma 5.3,14 

Let (E,<) be a countable elementary event structure such that 

for all e in E we have LeJ is finite. 	Then there is an order- 

preserving countable enumeratinn of E i.e. there is a countable 

enumeration 	 of E such that if e < e' in E then 

e = e. and e' = e with i < j for some i,j in 0.) 

Proofs 

Enumerate the countable elementary event structure E as 

a0 , a 1  , . . . , a, . 

Easy proof: Let p be the nth prime. Represent e by c(e) = 

fl {pj a.< el, the product of primes corresponding to those elements 
below or equal to e. The ordering <' given by e <' e' iff 

c(e) < c(et) is a total ordering of order type W 

Intuitive proof: The idea is to regard the sequence a 0 ,a 1 ,... as 

assigning a priority to elements of E and then to serialise E by 

inductively "firing" the event with highest priority (earliest in the 

enumeration) amongst those with concession at any stage. 	Clearly .< 

is well-founded. Take e 0  as the earliest <-minimal event in the 

enumeration. Inductively define e as the earliest <-minimal event 

of E {e as the earliest <-minimal event of E\{e.\ i < n} in the 

enumeration. 	Thus we produce an enumeration eO,el,...,en... of E. 

By its construction it is order-preserving. Also any element of E 

is in the enumeration by induction on <. Consider any element of E; 

it will be an  in the enumeration, for some n. Inductively assume 

{e( e < a}c. {e.J i. €ui}. 	Then as lei e < a} is finite it is 

included, in {e0,ei,...,e} for some in. 	Also a is <-minimal in 

• As an  is preceeded by n elements in the enumeration, 

it will be contained in {e0 , .. .em+n). 	(Alternatively one can define 

the required enumeration ordering recursively from the original 

enumeration a0 ,a 1 ,...,a ,... and work with that. 	Let the priority 

of e)written p(e) = n if e = a in the enumeration. Write e for 

the immediate <-predecessors of e. Then new enumeration <' is 

defined recursively by 

e <' d iff(3d 1  € d e <' d 1 ) or (d <' e g Oe (' d £ p(e) < p(b)) 

The recursive definition is justified by the well-foundedness of <.) 
U 
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Corollar 

Let E be an elementary event structure. Then E' 	E for 1 0  

some elementary event structure E' of finite width iff E is countable 

and for all e in E we have [e] is finite. 

Proof 

Clearly if E' 	E where E' is of finite width we have E ' E' 

with El countable and < C <1 P E with <' 1 {e} finite so E is countable 

with [e] finitein E. The above lemma provides the converse; take E' 

to be the set E ordered as in the order-preserving enumeration it 

provides. 

Event structures which may be -implemented are characterised by 

the same properties. 	Lemma 5.3.14 simplifies the proof. 

Theorem 5.3.16 

Let E be an elementary event structure. 	Then E' 	E (or E 	E) 

for some elementary event structure E of finite width iff E is 

countable and for all e - in E we have [e] finite. 

Proof 

Suppose E is an elementary event structure. Suppose E' < . E 

with E' of finite width. Then clearly as E ' E' and E' is countable 

we have E countable. For e in E we have [e] finite in E as [e] is 

finite in E'. 

Conversely suppose E is countable and for all e in E we have [e] 

finite. 	If E is of finite width take E! = E. 	Otherwise countably 

enumerate E in an order-preserving way as 	 Form 

E' by adjoining the event structure 	 - 

e 

More formally define E' = E 	I i € w } where each e A E with 
causality relation <' = < 	t(2.,.)J j, j €L < j}{(.e)I j,j EW 



As the enumeration e 0 ,e.1 ,... is order -preserving it follows that <' is 

a partial order. The event structure E' has finite width and 

E' 

Thus domains of event structures which can be implemented by finite 

width event structures will satisfy axiom F of chapter 3. 

Now we characterise those observers of an event structure which 

result by restricting the observers of its finite width implementations. 

Regarding an event structure as an abstraction from such implement-

ations these observers are the only ones possible. 

Theorem 5.3.17 

Let E be a countable event structure such that for all events e 

we have [e] finite. 	Suppose 0 € Ob(E). 	Then 3 E' 	B B' has 
finite width & 0' € Ob(E')L 0 = 0' B iff 

Vt € w Ile E B 1 0(e) < t} <DO- 

The observers formed by restricting observers of 0-implementations are 

characterised identically. 

Proof 

Clear. 

Suppose 0 € Ob(E) s.t. Vt € co Ile € B I 0(e) < tJJ < " 
We extend B to a finite width event structure E'. However now we 

must take care that 0 extends to an observer of E' so the construction 

of B' is a little more complicated than that in 5.3.14. 	Let 

e0 ,e 1 ,...,e,... be a countable order-preserving enumeratii of 

E\0c.o .. 	Take JE ( i € C4 I disjoint from B. 	Define B' by: 

B' = B 	
i 	

€ C'.) 

< =< 	2 	 i,j E )j< j}){(.,e)j 0(e) €LuO(e) > i 

U 1( 2.,e.) i,j EWS:j < 3}. 

The idea: For the chain Is  i Ji E £Q } we ensure that E.. is <' all 
events which are really observed by 0 after time i and also <' all 

events which are not observed (except at a ) but at i or later in 
the enumeration. Because the enumeration was chosen to be order-

preserving <' is a partial order. The event structure B' is of 

finite width with B' 4 B, and has observer 0' where 

135• 
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0'(e) = 0(e) if e E E 

=i ife=E 

= c%D otherwise 

Then 0 = 0 E and E' E as required. 

The proof for, rather than, is similar. 

As a corollary we characterise the observable states of an event 

structure which result by restricting the observable states of a 

finite width implementation. Again regarding an event structure as 

an abstraction from all such implementations these observable states 

are the only ones possible. Recall that for event structures E of 

finite depth the isolated elements of $ ( E), written 3 (E), are 
precisely the finite sets in 

Theorem 5.3.18 

Let E be a countable event structure such that for all events 

ewe have [e] finite. '  Then (SE' (E,C' E O(Et) E' is of finite 

width £ C = C'E'I E) 

iff a € 

An identical statement holds replacing 4. by 

We , summarise the last batch of results. 	(Here all event 

structures are elementary.) Assuming "real computations" determine 

finite width event structures we can still interpret event structures 

not of finite width; provided they are countable and any event has 

only finitely many pre—events, they can be regarded as an abstraction 

from all possible finite width implementations (5.3. 1 5 and 5.3.16). 

The possible observers and possible observable states are restricted 

accordingly; in particular states which really can be observed at 

finite time are now exactly the isolated elements (5.3.18) in the 

domain of states. 

We have argued that with respect to the definition of observer 

in this chapter "real" computations determine finite width event 

structures. The converse, that any finite width event structure is 

determined by a "real" computation is not so obvious. Clearly it 

would depend on precisely what class of computations we wished to 

represent. Reasonably it might be a class of Milner nets in which 

a single communication could be between a finite set of agents not 
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necessarily just two. 	Then as in chapter 2 communications could 

be- represented as events and local states of agents as conditions 

in a transition net. A suitable class of Milner nets would give 

occurrence net unfoldings inducing event structures of finite width. 

Importantly one would expect only finitely many conditions to hold at 

any finite time corresponding to there only being finitely many 

agents at any finite time. However not all event structures of 

finite width are induced by such occurrence nets. The next example 

gives & finiteIwidth event structure such that any occurrence net 

inducing it must have infinitely many conditions holding initially. 

Example 5.3.19 

Consider the event structure E induced by this occurrence net N: 

The event structure E = 	(N) consists of an infinite set of pairs 

en,en' of conflicting events with e 0 ,e 1 ,...,e ... pairwise in conflict 

and 	 pairwise in conflict. Formally 

= {(e,e') n € W } j f(e,e)l n,m €OJ 	ii 	m.1 
n,m €W24nml. 

Suppose N' is an occurrence net s.t. ' (N) = E. Then N' must 

jflc,luJe the conditions k. shown i.e. it must have an infinite set of 
initial conditions. However E is of finite width; at most two 

events can ever occur. 

One can regard E as modelling the following computation: the 
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computation consists of two output places 0 and n t  both of which 
may be filled by a single integer provided the integers in the two 

places differ. 

The role of the finitely-enabling restriction (guaranteeing 

finite width) is to ensure that the number of conflict-free events 

can only grow finitely in finite time. It is natural to look at 

another finite-branching property namely one ensuring the comput-

ation possesses only finite non-determinism. We shall look briefly 

at ways to formalise this for event structures. The idea is well- 

known for purely non-deterministic processes which can then be modelled 

by finitely-branching trees. These computations are said to possess 

finite non-determinism, a property which has been useful in constructing 

powerdomains ([Pic, [Smy21). 	I believe that the assumption of finite 

non-determinism is more technical than that of finite width for 

example. With it one can give denotations to a wide class of non-

deterministic programs. The assumption is made in constructing the 

possible denotations, the elements of a domain, and not about the 

structure of the domains themselves. The domain of integers does not 

present any technical problems even though it has infinite conflict 

(thinking of the associated event structure). In Petri nets and 

event structures there is no explicit distinction between dataty -pe and 

denotation but still we press on with attempts to define finite 

branching in event structures so as to capture the intuition of finite 

non-determinism in a computation. 

Any definition of finitely-branching event structure should 

generalise the finite-branching property of trees. One possible 

definition could express that the event structure is built from 

purely non-deterministic processes individually capable of at most 

one of a finite set of actions at any time. Such processes would 

generalise the sequential processes of chapter 2 and as nets look 

like 

This gives a local idea of finite branching. The following seems 

the correct formal definition. 
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Definition 5.3.20 

Let E be an event structure. Say E is locally finitely-

branching 1ff there is an occurrence net N s.t. g (N) = B and for all 
conditions b of N we have b. finite. 

But of course all event structures are locally finitely-

branching in this sense. 

Lemma 5.3.21 

Any event structure is locally finitely-branching. 

Proof 

Let E be an event structure. 	Define N to consist of events B, 

conditions B defined by 

B = I(e,{e'}) € E 	 e < e'} v {(o,{e,e'})l e)4 ell 
with F-relation: 	Ye iff e £ (b) 1  and eFb 1ff e = (b) 0. Then 

(N) = B and for all b we have b finite.0 

Thus we look for a more global definition of finitely-branching 

expressing that at any finite time the computation can only choose 

between finitely many courses. The idea of finite time is formal-

ised by using observable states so we naturally take event structures 

to be of finite depth. The following is suggested: 

Definition 5.3.22 

Let B. be an event structure of finite depth.. Say B is finitely-

branching iff IV C € 	(B) IIF(C)1 < C 11 _ (where IF was defined in 

5.3.6). 

The definition excludes the following example. 

Example 5.3.23 

e0 	e 	e 1 	e 	e2 	e 

Here the event structure consists of a countably infinite set 

of conflicting pairs. Thus in finite time the computation may 

choose between'.u.ncountably many courses. 

I believe the definition of finitely-branching is equivalent to 

Vn ECU {c € Of (E)i C is -maximal £ d(Ø,C) < n} is finite. 
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In the presence of finite width the Thllowing is equivalent 

V C E O (E) fconc(C) ( < 00 as is probably: V C € OX (E) 	K a ken 
of 'j in conc(C) => K finite. 	Of course this should not be the 

final word on finite-branching. One should seek alintuitive 

characterisation and if there are not any change the definition. 

5.4 States of occurrence nets and K-density" 

So far we have worked with event structures. Here we 

translate our results to occurrence nets. Firstly we can extend the 

notions of finite depth and finite width to occurrence nets. 

Definition 5.4.1 

An occurrence net N is said to be of finite depth iff 	(N) is 

of finite depth. Furthermore if N is of finite depth it is said to 

be of finite width iff 	(N) is of finite width. 

We wish to associate a case of an occurrence net N = (B,E,F) 

consisting purely of conditions with an observable state of 

In order to do this we impose the axiom: N3. V e E E e 	e 0  A 0. 
We associate holdings of conditions in an occurrence net N with 

elements of 	o ' (N) by the following. 

Definition 5.4.2 

Let N = (B,E,P) be an occurrence net. For C € 4 o (N) define 
the frontier of C in N, written FrN(C),  by 

FrN(C) = (U{e° ( e € C} U b € B\ Th = $})\U{e \e € 

The idea: Given C a left-closed consistent subset of events of a net, 

the frontier of C is those conditions which hold because the events in 

C have occurred. The axiom N3 ensures that every event occurrence is 

reflected in a change in holding-of the conditions. 

In general such a frontier will not be a case. However 

Proposition 5.4.3 

Suppose N = (B,E,F) is an occurrence net of finite depth 

satisfying N3. Then for C E 	 (N), FrN(C)  will be a case. 	We 

call such frontiers observable cases of N and FrN(0)  the initial case. 

The map FrN15  1-1. 

Proof 

We sketch the proof that FrN(C)  is a case for observable states C. 
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From the fact that C is left-closed and consistent it follows that 

all conditions in Fr (C)are CON  to each other. 	That it is a ken 

of CON  follows as C does not include any infinite P*.ascending 

chains and its complement E\C does not include any infinite F*- 

descending chains.1 

The definition of observable cases of an occurrence net allows 

us to extend proposition 4.2.9 a little. 

Proposition 5.4.4 

Let N be a contact-free transition net satisfying N3, with 

initial marking M0 . Recall the occurrence net unfolding 

and the folding f from O((N,M,.)) to N (see 4.2.9). 	Then f takes 

observable cases of U((N,M0))to reachable markings of (N,N0). 

Conversely any reachable marking of (N,M 0) is the image of an obser-

vable case in 

Proof 

We give the idea. That observable cases Fr(C) are mapped onto 

reachable markings is proved by induction on d(,C). To show the 

converse ., take C to be those event occurrences giving N 0  -> N for the 

reachable marking M. 	C is observable by induction on the length of 

—> 

 

and M=fFr(C).l 

We now move on to a discussion of K-density.. First note that 

our assumptions of finite width, finite depth and axiom N3 are 

independent of K-density, either separately or in combination. The 

net 	/1/ ' ( E2) for the event structure E 2  of example 5.1.2 is K-dense 

and. satisfies N3 but is not of finite depth. Also note that the non 

K-dense net of example 2.4.4 satisfies N3 and is of finite depth and 

width. 

It is useful to note that the restriction of finite depth forces 

sequential processes to take a particularly simple form.. Without 

this restriction various order types are possible for sequential 

processes as the following causal nets illustrate. 
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Example 5.4.5 

e0  

b0  

e. 

b 1  

e 

e 

e 1  

e0  

In both the causal nets N 1  and N2  the set fel L,  {e ( n  Eco]u{b 
n  ( n 

€w 

forms a sequential process. In N 1  it does not include any post-

conditions of the event e while in N2  it does not include any pre-

conditions of the event e.. For nets of finite depth this is 

impossible. 

Theorem 5.4.6 

Let N be a causal net of finite depth. 	Its sequential processes 

are precisely maximal sequences of the form x 0Fx 1 Fz2 ... where x0  is an 

F*_minimal element of N. 

Proof 

Let N be a causal net of finite depth. Using finite depth and 

proposition 2.4.10, maximal sequences of the form above are sequential 

processes. 	Conversely suppose S is a sequential process. Then 

inductively produce a maximal subsequence x0Fx 1 F...Px... of S using 

proposition 2.4.10; while S\{x I 0 < i < n} 	inductively take 
xn+1 as the F-minimum element of S\{x 

i 1 0 < i < n}. This process 
either yields a maximal finite chain whose elements are S or an 

infinite chain. In the latter case finite depth guarantees the 

chain includes all elements of S . 0 
We now prove a restricted form of K-density. 

Theorem 5.4.7 

Let N be a causal net of fini depth satisfying N3.  Then every 

observable case meets every sequential process.. 

Proof 

Let N = (B,E,F) be a causal net of finite depth satisfying N3. 
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Suppose C is a case not meeting some sequential process S so 

S r C = jZ. 	We show that C is above S (i.e. V s € S c € C sFC) 

and that S is infinite. From this it follows that C cannot be 

observable. 

By theorem 5.4.6 we know S has the form b Fe Fb Fe ...b Fe 0011 	nfl 
where b0  is an F*_minimal  condition in N. As b0  A C and C is a ken 

of cc where Co = (B (i E) x (B& E)\(Fj () -'), we have b0Fc0  for 

some c0  E X. As b = {e0 }, for-some e0  €-E, we have e 0  € S. Thus 

e0  A C giving e0Fco o Then for some b 1  € B, fb I = S r e. There-

fore as b 1  A C, a ken of co, we have either b 1  F c or c 1  F b 1  for some 
± 	.. 	-1- 

e 1  € C. The latter yields c 1  F e0  winch with e 
0  F c0  gives c 1 F

+ 
 c0  

contradicting 	 Thus b 1 Fc 1 . This process may be continued 

inductively to show that S is an infinite sequential process below C 

as required. Thus an observable case meets every sequential process. 

The proof indicates how essential conditions are for IC-density ojr 

restricted form of it to be true. 	See 7.4.3 for a generalisation of 

the above theorem.. 

This follows as observable states do not include infinite 

ascending chains. For both the above proposition and theorem we note 

that a weaker notion of observable case and finite depth would suffice. 

Taking N as (B,E,F), the restriction of finite depth could be replaced 

by:. 

Mr- x E BLiE, any ken of F* .1 p* 1 in {' Jx'Fx} is finite. 	This 

says no (sub) sequential processes below an element are infinite.. 

Of course the element x may be restricted to range over events. The 

new observable cases could be taken as the frontiers of left-closed 

conflict-free subsets C in which any ken of (< c.' ) is finite. 

Presumably one could paraflèl the results of this chapter for these 

different notions aid a generalised idea of observer. For finite 

width structures, new and old definitions and results should coincide 

in the main as by Corollary 5.3.10 the two ideas of observable state 

do. 

We conclude our discussion of K-density here with a result which 

illuminates and reinforces our net-theoretic argtent for K-density in 

chapter 2. With suitable restrictions on a causal net we can give an 

equivalent of the K-density axioms; then a causal net is K-dense iff 

all cases (in Petri's sense) consisting solely of conditions are 
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observable cases (in our sense). 

Theorem 5.4.8 

Let N = (B,E,F) be a causal net of finite depth, finite width 

and satisfying axiom N3. Then, taking FrN  as defined in 5.4.2: N 

is K-dense 1ff the map Fr  from C( (N))  is onto the cases of N 
consisting purely of conditions. 

Proof 

Let N = (B,E,F) be a net satisfying the above conditions. 

tt<=tt Suppose Fr 
  is onto the cases consisting purely of conditions i.e. 

all such cases are observable cases. Moreover assume N is not 

K-dense i.e. C r S = 0 for some sequential process S and case 
C 	E u B. 	Defining c' = (a t., (a i) E) )\CriE gives C' a case with 
C' 	B and Cl/) S = 0.. But then C' is an observable case, as FrN  is 

onto, not meeting S - a contradiction by theorem 5.4.7. 

=>" Suppose N is K-dense and that C is a case of N with C c B. 

Define x = le € E 13 b € C eFb}. We require x £ Oo (N). Suppose 

otherwise i.e. there are chains of unbounded length in x. By the 

assumption of finite width this implies there is an infinite chain in 

x (theorem 5.3.10). The infinite chain will determine a sequential 

process S in N such that S (\ C = 0 - a contradiction as we assume N is 
K-dense. I 

The role of finite width in the above proof is to convert there 

being chains of unbounded length in x to there being an infinite chain 

in x. A revised version of this theorem would hold in which we 

merely required that observable states included no infinite chains; 

then we could omit the requirement of finite width. The next example 

shows why finite width is necessary for the above theorem with our 

definition of observable case. 

Example 5.4.9 

b  9 	
b1 

0 

	:n 	. 

6 



The causal net consists of an infinite set of sequential processes 

each of finite length - the nth process has length n - but overall 

of unbounded length. The net is not of finite width. The net is 

K-dense but clearly the case Jbn ( n E Col is not observable. This 

shows that finite width is necessary for the equivalence of theorem 

5.4.8. 

Reasonably assume a course of computation is represented by a 

causal net of finite depth and width. 	By theorem 5.4.8 the assum- 

ption of K-density is then equivalent to assuming all cases are 

observable cases. But why should all cases be observable? Assuming 

so bans the innocent net of example 2.4.4. According to our view 

K-density is too restrictive an axiom. However the intuition 

motivating it remains: An observable case does meet any sequential 

process (theorem 5.4.7). 

5.5 Confusion and concrete domains 

K-density proved to be a concept which did not translate 

very cleanly into the framework of event structures and domains. 

Fortunately confusion does translate well; indeed confusion-freeness 

was discovered independently by Glues Kahn and Gordon Plotkin in 

their work on concrete domains. 

Recall our discussion of confusion in chapter 2. 	It arose 

because of two violating situations called symmetric and asymmetric 

confusion. In net theory these are introduced formally at the level 

of transition nets. The following are the obvious corresponding 

definitions for an occurrence net. 

Definition 5.5.1 

Let N = (B,E,P) be an occurrence net of finite depth satisfying 

N3. 

We say N is symmetrically confused iff there are an observable 

case C and events e,e',e" such that 

('e,e', e" ' 	C) ,&(e c'e' 	) R ('e' r e" 	) . ('e r'i e" 

We say N is asymmetrically confused iff there are an observable 

case C and events e,e',e" such that 

('e,'e" 	C).('eC) & (e'(C\e).j e')2 (e r\°et = 

£(e'c'e" 	Ø) 

1 



Finally we say N is confused iff N is symmetrically or 

asymmetrically confused; otherwise N is confusion-free. 

Example 5.5.2 

I 

 

- Symmetric confitsion 

Asymmetric confusion 

In the special case where the occurrence net is the unfolding of 

a transition net definition 5.5.1 reflects the situation in the 

transition net; observable cases of the unfolding determine the 

reachable markings under the folding map and firings from a reachable 

marking are images of occurrences from an associated observable case. 

Proposition 5.5.3 

Let.(N,M0) be a contact-free transition net with initial marking 

MO P satisfying N3. 	Then (N,N0) is symmetrically (respectively 
asymmetrically) confused iff the occurrence net unfolding 0 ((N,M0)) 

is symmetrically (respectively asymmetrically) confused. 

In order- to see how confusion manifests itself in event 

structures and domains we define the relation ,pover an event 

structure, representing immediate conflict. 

Definition 5.5.4 

Let E = (E,<,) be an event structure. 	Define 9. by putting 
for e,e' in E: 

e 	e' i f f e' e' & 	C E X(E) C Li-[e],C j  -te'} 

We then say e and e' are in immediate conflict. 

The relation of immediate conflict between events e and e' 

represents the possibility of a stage in the computation at which 

either of e and et (but not both) may occur. 	Its properties are 

summarised in the lemma below. 



14-7 

Lemma 5.5.5 

Let E = (E,<,) be an event structure of finite depth and 

suppose 	is as defined in 5.5.4. Then 

is a symmetric relation. 

e 	1ff ewe' 	(V <e(e&(V€' < i 

eke' 1ff 3E, 9 E E E<e 	' 

Proof 

Obviais. 

"<=" This follows by taking C = [e]u Eel] \{e,e'}. 

"=>" Suppose e W/-  el i.e. e )e' and C u{e3',c.i {e'} €C '( E) 
for some C E OS(E) . Merely note C 1 {ej, C 1 {e'} 	C. 

3.. Suppose e 'e'. 	By the well-foundedness of < that finite 

depth provides we may find a minimal pair in {(,')I E< e,& 

< e'2, E ''} w.r.t. to the ordering on pairs defined 

componentwise. Such a pair will be 	related. 

We can now transfer the notion of confusion to event structures 

using 	and its properties. 

Theorem 5.5.6 

Let N = (B,E,F) be an occurrence net of finite depth satisfying 

N3 and define NV as in 5.5.4. 	Write 	(N) as E. Then 

N is symmetrically confused 1ff 3e,e',e ll  £ E e 	e 	ell 

—i (e'j I e s'). 

N is asymmetrically confused iff 

e , e t, e tt £ E e 	e" k e < e''i (e < e").. 

Proof 

for 1. and 2. follows by "unwrapping" definitions.. 

1 • "<" Take C, the required observable case, to be 

FrN([e]O[e]\i [e"]\{e,e', ell  j) 

2.. "=>" Without loss of generality suppose e is a <-maximal element 

below e' with 1 (e < e"), so e —<e'.. 	Take C, the required 

observable case, to be 

	

Note the occurrence of "u" and not 	in part 1 of the 

above theorem. 	In our next theorem we shall show, in the course of 

the proof, that 	ria tfplateA U. 	 once N is known to not be 
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asymmetrically confused. With our next theorem in mind as 

justification we give a definition of confusion-freeness for event 

structures. Clause 2 below can be interpreted as requiring 

enablings to respect the 	-. equivalence classes provided by 

clause 1. 

Definition 5.5.7 

Let E = (E,<,) be an event structure of finite depth and 

take 	as defined in 5.5.4. 	Then 

E is confusion-free iff 

( is an equivalence relation 

e < e 	e" => e < e". 

Now we look at the domain version. 

Theorem 5.5.8 

Let N be an occurrence net of finite depth satisfying N3. The 

following are equivalent. 

1. I'T is not confused. 

2.- 	(N) is confusion-free. 

o (N) satisfies axiom Q of concrete domains. 

Proof 

"1 <=> 2" By theorem 5.5.6 N not. being asymmetrically confused 

is directly equivalent to 5. 5. T part 2 holding for 	(N). From 

this it follows that if N is not asymmetrically confused then for 
\YZ€ B e 	e' 	e" £ i (e( u I e") <> 

e,,M. 	e"Z i (e,u  L/ 	the fact that then the 

enabling < respects 	. Thus given N is not asymmetrically 

confused, N is not symmetrically confused iff part 1 of 5.5.7 holds. 

(This justifies part 1 of definition 5.5.7.) 	Therefore 1 <=> 2. 

"2 => 3" Suppose ' (N) is confusion-free. 	We wish to prove 

axiom Q. which we remind the reader takes the form 

) x = y R z 	y => 	! t x 	t 	y  

Thus suppose z )— x 	y 2 z 	y in 	(N). Then 

z = x L,{e}, e 	e' and e' € y\x for some events e and e' of 
(N). Then by part 2 of definition 5.5.7 of a confusion-free 

event structure, t = x J {e'} is also in ' o (N). 	Thus using 
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part 2 of definition 5.5.7 we have the existence part of axiom Q. 

The uniqueness follows from part 1 of definition 5.5.7. 

93 => 2" The existence part of axiom Q yields part 2 of 5.5.7 

and then the uniqueness, part 1. To show part 2 of 5.5.7 suppose it 

were false i.e. that we have e < e' 	e" and e /f e". 	We may 

assume e is <-maximal so that e < e' 2 e / ett - then e' covers e in 

the event structure. 	Take x = ([e']\{e,e'})'([e"]\{e"}). 	Take 

z = ([e']\te,e'})[e"]. 	Take y = [e']u [e"]. 	Then z)— x Q Y. 

However by the choice of x,y,z we have x -ct 	y implies t\ x.= {e} 

so t'j'z contradicting the existence part of Q. 	To show part 1 of 

5.5.7 assume 	e' 	e' and e e". By the above the existence 
- 	 - 

part of Q gives <-1 	<
1 

tel = 	le'} 	<
1 
 je'j. 	Suppose —i (e... 	e") 

Then take x = < {e}, y = [e]jte'] and z = te']. 	This choice 

contradicts the uniqueness part of axiom Q so we have e 	e" as 

required. 

Corollary 5.5.9 

Let N be an occurrence net satisfying N3. Then 

E is countable 

F*1  tel is finite for all events e, and 

N is confusion-free 

iff to (N) is a distributive concrete domain. 

Proof 

	

The domain J o 	is prime algebraic so distributive and 
satisfies axioms C and R by the work of chapter 4. It being 

i -algebraic and satisfying axiom F correspond to (1) and (ii) 

respectively. Axiom Q corresponds to (iii) by the above theorem. 

Recall the intuition in net theory that confusion leads to 

,,conflict-resolution not being objective; whether or not conflict 

appeared to be resolved between events depended on the observer. 

Confusion-free nets can be represented by the matrices of Kahn and 

Plotkin. Then conflict between events is localised in that two 

immediately conflicting events will always be enabled at the same 

time and be competing for the same place. All observers will 

agree whether or not conflict has been resolved and at which place 

the resolution occurred. 
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5.6 Alternative axioms on event structures and other ideas of 

observable state 

In this section we remark on other ways of formalising the 

intuition behind observable states. We have worked largely with 

(E) for an event structure E. 	The elements of 	are 

consistent left-closed subsets of E uniformly reachable from the 

initial null-state. The restriction to event structures of finite 

depth is then natural; no event not of finite depth can ever occur. 

We mentioned the weaker definition taking consistent left-closed sub-

sets which do not include infinite chains. Then the finite depth 

restriction is replaced by: 

Definition 5.6.1 

Say an event structure E is well-based iff for all events e any 

total order below e is finite. J_(  Thesedefinitions were sufficient 

to prove the results on K-density in 5.4.) We prove further 

restrictions (implying axiom F) follow from Dana Scott's thesis that 

computable functions are continuous. All the definitions express a 

finiteness constraint on event structures and on those states which 

can be observed in finite time. For event structures of finite width 

they agree. All these restrictions on event structures imply a form 

of discreteness. As yet it is unclear how to represent non-discrete 

or ttCOfltj.flUOU5It processes by event structures. 

Recall the idea of observable state.. An observable state is a 

subset of events consisting of all those events which may be observed 

in finite time in a history of observation. in this chapter we have 

taken an observer to be intuitively a run or history of computation. 

This form of observer is passive, playing no computational role. 

We take another look at £ ' (E). Apparently this definition 

	

rather than the weaker one is more appropriate to net theory. 	(In 

a letter Petri said he wished to ban nets associated with the event 

structure of example 5J.2). This definition is also appropriate to 

the ideas of local time introduced in [Lam]. In [Lam] an elementary 

event structure is built up from chains of events representing 

processes in which some events represent the sending or receipt of 

messages between processes. A ("logical") clock is associated with 

each process so that the time ascribed to an event is greater than 

the time ascribed to all events on which it is causally dependent. 



e e 

E3  

e 

161 

The weaker definition, taking observable states to not include 

infinite chains is implied by Hewitt's axioms [Hew] on the event 

structures associated with actors. Hewitt imposes the axiom, called 

E-discreteness in [Bes], that there are no infinite chains between 

events. Then saying there are no infinite chains between an initial 

fictitious starting event and any other event (i.e. the event 

structure with initial event in E-dense) is equivalent the well-

based restriction 5.6.1. According to this restriction starting from 

the initial null state the event e may occur in E but not in E or 

below: 

Only infinite chains of events are obliged to take infinite time. 

Regarding the event structure as modelling a set-up as in [Lam] no 

restriction is made on the relative rates of clocks ascribed to 

process beyond that they all agree that only finite time has passed 

at events corresponding to communications. 

ifl chapter 4 we took JP (E) as the natural Scott domain of 

information to associate with an event structure E. Let us explore 

a little further how the ideas of Scott [Sco] translate to event 

structures. Scott proposed the thesis that all computable functions 

are continuous (see 3.1). 	In more detail, datatypes are represented 

as complete partial orders of information (cpos) and computations from 

one d.atatype to another as functions between the associated cpos; 

Scott's thesis says computable functions are continuous in this 

framework. 	The thesis has an intuitive justification (see 3.1,or 

[Wad] for more detail). We give an argument which characterises 

those elementary event structures which agree (in a formally defined 

way) with Scott's thesis. 
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In examples 2.3.7 and 2.3.9 we showed nets associated with 

computations between datatypes. The datat3rpes were subnets of the 

net of the computation with :less causal structure than the 

computation as a whole. Recall the relation 	on event structures 

introduced in 5.3. For elementary event structures E and E' we have 

E 	E' jff E' 	E and <' 	<rE'. 	We shall regard E' as a data- 

type involved in the computation described by E. Suppose E 

and E 4 E 1 0 Regard E0  as representing an input datatype, E 1  as 

representing an output datatype and E as the computation between them. 

Take '10(E0)  and j (E 1 ) as the associated domains of information. 

The event structure E determines a function between 'o(E 0) and 

in this way: 

Definition 5.6.2 

Let E be an elementary event structure. Suppose E 	E0  and 

E ' 
	

E1 . 	Then define 

0' 1 
E : 	(E0) -> 	(E 1 ) by 

fE0'E1 (x)={eEE1 I Eel 	 E0 x. 

To intuitively justify the function f E E suppose an event of E occurs 

once the appropriate "reading" events 1n 	can occur through input 

having been supplied. It is clear that: 

Lemma 5.6.3 

The function f 
EOYE 

 defined above is monotonic. 
1 

However in general the function will not be continuous. We give 

examples below. According to Scott's thesis it should be; further-

more it should be for any choice of E 0 and E 1  with E 	E0  and E 	E1 . 

Intuitively such event structures are those consistent with Scott's 

thesis, they respect continuity. 

Definition 5.6.4 

Let E be an elementary event structure. Say E is continuity-

respecting iff 

E Y,E 	=> f 	is continuous). 

Such event structures have a familiar characterisation. 

Theorem 5.6.5 

Let E be an elementary event structure. Then E is continuity- 
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respecting iff V' e E E Eel ( < Co. 

Proof 

Let (E,) be an elementary event structure. 

"=>It Suppose E is continuity-respecting i.e. 

V E0 ,E 1  (E 	E 	> 	E is continuous). Suppose for 

some e in E we had Eel infinite. 	
1 

Take E0  = {e' € E l et < el and < the identity relation on E0 . 

Take B = {e}. Define S to be all finite subsets of E0. Then S 

is a directed set in ,(E0). Moreover no element of S is E0  as 

is infinite. However then f EE (Us) =. {e} while 
0 , 1 

U fE0' E1 S = in ' (E 1 ). 	Thus 1'E E is not continuous,contra- 

dicting the fact that E is continui
r
y
'
-r

1
especting.. Thus [e] is finite 

for all e in E. 

tt<=t Suppose Eel is finite for all e in E. Assume E 	E0  and 

E 	E1 . Let S be a directed set of -4,(E0). Abbreviate 

E to f. As f is always monotonic we have ,)f  5 	f(US). 

Sup ose e E f(JS). Then Eel ( E c Us. As [e] is finite so is 

Eel r E0 0 	Thus because S is directed {e] (1 	S for some s in S. 

Then e E f(s). This gives f(US) SUfS so f(US) = JfS. There-

fore f is continuous and E is continuity-respecting  as required. 

If the notion 	were used instead of . 	in the definition of 

continuity-respecting-the corresponding weaker characterisation would 

be that the event structure E satisfies: 

(i) Ve,e' € E(e' < e => Ej e € E e' < e"< e) 
(2) For e in E if A is a pairwise incomparable subset of Eel 

then A is finite. 

(We use —< to mean the covering relation in E i.e. e -< e' iff 

e < e' £ V e" (e < e '  < e' => e" = e or e" = e IM 

In this context axiom F on domains is a consequence of Scott's 

thesis, Of course we do not expect axiomF to apply to domains in 

general, such as function spaces; our argument depended on the 

domains being of basic input or output values where increased 

information corresponded to later behaviour in time. 

The theorem is a little surprising - continuity-respecting  event 
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structures are discrete! How is it that non-discrete event 

structures, (e.g. the reals) have been ruled out? It might be 

thought due to taking 	(E) as the domain of information even when 

the event structure represents a "continuous" computation. The 

following example suggests not and that in order to extend the notion 

of continuity-respecting to "continuous" event structures the relation 

should be restricted in accord with some topological structured 

(The causal order should follow or at least be closely related to the 

topological structure.) Appropriate mathematics might be [Nac] and 

[Ch. k±]. 

Example 5.6.6 
- 

We consider two very simple analogue computations based on a meter 

which may indicate any real value in to,']. We assume the indicator 

is initially at zero and that the value indicated can only increase in 

time. It is natural to associate the meter with the event structure 

E = [o,i] ordered by < on reals. 	The event e- in [o,i] stands for 

"the value e is indicated". 

For the first computation suppose we know nothing further about 

the meter; regard it as a datatype. Then two kinds of deflection of 

the indicator are possible; it may deflect to some real value e in 

[o,i] and stay there or it may deflect so as to approach closer and 

closer to some real value e in [0,1] but never reach it. 	The two 

kinds of deflection give information [O,e] and [O,e) respectively. 

Thus in this situation 	([o,i]) is appropriate as the domain of 

information. 

For the second computation the indicator makes a maximum 

deflection to value 1. 	(By the way is [o,i] now more appropriate 

than ' ([o,i]) as the domain of information of E?) For some r in 

(o,i] take B0  = [O,r) ordered by < and B 1  = {i}. 	The f E B is not 

continuous. 	However choosing E of the form ([O,r],)  a 	1 E1  = Iii 
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does give fE' E continuous. 	The set 	is closed while 	is not. 

Thus it is hpe that by restricting 	o according to topological 
structure the functions f EE 

 will be continuous. 
0' 1 

So Scott's ideas imply axioms on event structures. 	Can we 

interpret isolated elements as some form of observable state? Yes, 

by the results of 5.3, but only if we accept that the event structure 

is an abstraction from one of finite width. 	Note that Scott's thesis 

does not seem to tell us, for example, how to interpret an event 

structure consisting of W incomparable events, if it should be 

regarded as an abstraction from a finite width event structure or 

whether'all the events can occur in finite time.. However by theorem 

5.6.5 it does imply that no event can occur if it depends on an 

infinite set of events occurring. In this sense a computation cannot 

recognise or observe in finite time that the infinite set of events 

has occurred; only the isolated elements can be so observed as is 

formalised in the rext lemma. 

Lemma 5.6.7 

Let E be an elementary event structure such that [e] is finite for 

all events e (i.e. E is continuity—respecting). Then for x E 

x EL(E)° iffE 4 E (Ve.' € E'[e']I < oo ) L (se' € E' 
x= le € E' 1 e <' e'}) 

Proof 

To get E' adjoin an event e' above the finite set of events 

X.,  

"<" Given the r.h.s. x is finite so isolated.. 

For a very simple situation, it says isolated elements correspond 

precisely to information which can cause an event to occur, th2kfa can 

be "observed" by a computation. This intuition is held for 

isolated elements of domains of a far more general nature - isolated 

elements are regarded as finite information. Appropriately there 

will be more general results (with more difficult proofs). 

As a final remark it should be possible to cast Scott's thesis 

in the form: Behaviour over infinite time is the "limit" of the 

behaviours over finite times. As such it would be seen to express 

a physical principle. 
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Chapter 6. 	Conditions 

In the previous chapters we have dealt only a little with 

conditions. In net theory they have three main uses: To mark 

conflict; as part of the modelling process where they stand for 

physical or abstract states; to define a case, a notion of state. 

In this chapter we interpret conditions having extents in time. 

In the first section we show how to associate conditions with an 

event structure and study an intuitive relation on conditions. 

It yields a new construction of a net from an event structure. In 

the second section we introduce the idea of an expressiveness 

relation on nets; roughly one net is more expressive than another 

if it supports more interpretations. Expressiveness provides a 

characterisation of the new net-construction from an event structure - 

the third section. Finally we look briefly at the extra structure 

on an event structure which distinguishes certain events as being 

ttrestlesstt (recall such events cannot have concession forever). 

This seems to involve a kind of generalised condition. 

6.1 Conditions of an event structure 

We illustrate some basic ideas by examining conditions of 

a causal net. Consider this simple causal net: 

b i  

b OF 
A condition is associated with its pre and post events. In fact 

if the net is condition-extensional (i.e. b = b' Lb = b' => b = b'), 

as this one is, the association is a 1-1 correspondence. 	The 

pre-event of a condition marks the beginning of the condition 

holding. The post-event marks the end of the condition holding. 

Regard a condition's holding as having an extent in time. Then 

clearly whenever b0  or b 1  holds so too does b2 . Of course for 

causal nets this is easy to formaUe in terms of the pre and post 

events of conditicns. 
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Definition 6.1 .1 

Let N =(B,E,F)be a condition-extensional causal net. Define 

b 1 b' iff b' < °b A.,  b' < b" 

Recall the idea of essential conditions of a causal net in 4.1. 

A condition was said to be essential iff it occurred (to within 

condition-extensionality) in every net inducing the elementary 

event structure. 	In 4.1.17 these were characterised as those 

conditions b such that b' covered b in the associated event 

structure i.e. b is 	-minimal. 

Lemma 6.1.2 

Let E be an elementary event structure of finite depth (or 

well-based). Let b be a condition of a net inducing E. Then b 

is 7 -minimal iff every causal net N inducing E has a condition b' 

s.t.. b' = Th £ bt' = b. Also for any causal net N such that 

(N) = E the subnet determined by its 1 -minimal conditions inducesE. 

Thus the ~) -relation enables us to construct the minimum condition-

extensional causal net inducing an elementary event structure of 

finite depth. We look for occurrence-net analogues of these ideas. 

In 4.2 we showed how to produce a net 4"4(E) from an event 

structure E. The net was the maximum condition-extensional net 

preserving the underlying event structure E. We pick out part of 

its construction as a definition. 

Definition 6.1.3 

Let E = (E,<,) be an event structure. 	Define 

= [A IS E f 'Va l , a € A a 1  >O v  I a }. 	Then define the 
conditions of E by 

B (E) = {(e,A)j e C E LA E J (E) A e < Al 

{(o,A) /A c <(E)} 

(We use e < A to abbreviate Va € A e < a. 	It is convenient to 

regard the symbol 0 as a fictitious starting event below all other 

events and by convention we shall regard it as a member of every 

left-closed subset of E.) 

Recall from chapter 4 that the conditions of a condition- 
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extensional net inducing E can be regarded as a subset of 8(E). 

We shall sometimes draw a condition (e,A) as a "cone", like: 

e 

A condition holding is associated with the condition beginning 

and not having ended. It is easy to formalise the idea.. (Recall 

the conventions concerning the fictitious starting event 0.) 

Definition 6.1.4 

Let E be an event structure. Suppose b E 8(E) of the form 

b = (e,A) and C € '4(E). 	Then define 

beg(b,C) iff e € C 

end(b,0) 1ff A i\ C 0 
on(b,C) iffe ECArc=Ø 

For b a condition and C a member of (E) the predicate beg(b,C) 

means b has begun to hold for C, end(b,C) that has begun and ended 

holding while on(b,C) means that b holds at C, it has both begun 

and not yet ended.. 

From these basic predicates we can construct relations between 

conditions. For example here are some familiar ones: 

Lemma 6.1.5 

Let E be an event structure. Suppose b = (e,A) and 

bt = (e',A') are conditions of E and so conditions of 

Then 

bcob' iff 2C E 	(E) on (b,C) ' on(b',C) 

1ff 	(e 	e') 9. (A u AOfl ([e] V  [e s
]) 

b tz b' if  VC € ,( E) beg(b,C) => .1 beg(b' ,c) 
iff e 	e' 

bF*bt 	1ff VC € 1(E) beg(b',C) => end(b,C) 
1ff 	a € A a < e'. 
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Trivial consequence of the definitions. • 

There is a natural partial order on conditions, called 

which has this intuitive interpretation: For conditions b and b' 

of anent structure, b -s b' iff whenever b holds b' holds too. 

Definition 6.1.6 

Let E be an event structure. Define the relation -s on cond-
itions of E by: For b and b' conditions of E, 

b-sb' 1ff 	€ '.(E) (on(b,C) => on(b',C)). 

In the next lemma we characterise - and as a corollary show it is 

a partial order. We also show that for event structures of finite 

depth the relation - could have been defined equivalently by 

restricting ytification to the observable states.. This means 

b -s b' iff whenever b is observed to hold b' is observed to hold. 

(One could formalise this further by extending our definition of 

observer to conditions of the event structure - a condition would be 

observed after the occurrence of its pre-event and before the 

occurrence of any of its post-events.) 

Lemma 6.1.7 

Let E be an event structure. 	Let b = (e,A) and. b' = (e',A') be 

conditions of E. Then 

(i) b —s b' iff e' < egVa' € A' (a')' e or 3 a *  E A a < at). 

(2) If E is of finite depth then 

b -b' iff 	'C € O4(E) on(b,.C) => on(b',C).. 

Proof 

Suppose b = (e,A) and b' = (et,At) are conditions of the event 

structure E. 

(i) "=> 't  Assume b -sb'. 	Take C in '.(E) to be [e]. 	Then 
on(b,[e]) so  on(b',[e]). 	Thus e' < e. 	Take a' in A'. 	Assume 

1 (a's e). 	Then C 7[a']¼J[e] € 	(E). 	As i on(b',C) we also 

have i on(b,C). 	This means either e A [a']L/[e], clearly 

impossible, or A(\ ([a']tj[e]) 	. 	Thus 3a € A a <a'. 

(i) "<=' Assume the r.h.s. of (i) above. 	Suppose on(b,C) for 

some C in 'j41 (E). 	Then e € C and A C = 0. 	Thus e' € C. 	If 
a' € C for some a' in A' then by the .r.h.s. either a" 	e 
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contradibting the consistency of C or A ., \ C 93 a contradiction. 
Thus A' f C = 93. 	Therefore on(b',C). 
(2) Suppose E is of finite depth. 	Now (2) is clear as all the 

elements of j,(E) used in the above proof are then observable. 

Corollary 6.1.8 

The relation 	is a partial order. 

Proof 

Reflexivity and transitivity were already clear. To show 

antisymmetry suppose we have (e, A) —s (et,At)_._. I (e,A) for conditions 

(e,A) and (e',A') of an event structure. 	By the above e = e' 

immediately. Take a' €A'. 	As 1(a' 	e') for some a in A we have 

a < a'. Similarly for some a" in At  we get a tt < a. Therefore 

all < a < a' with a')XL1l a". 	Thus 'a = a'. 	This shows A' 	A and 

the converse A 	A' follows the sane way giving A = A'. Therefore 

(e,A) = (e',A') as required. 

Concurrency propagates upwards under -. Formally:,  

Lemma 6.1.9 

Let B be an event structure. Let co be the concurrency 

relation on JV(E). Then for b,b' ,b" in 	(B) we have 

b co b - b" => b co 

Proof 

Clear as the concurrency relation may be equivalently expressed 

by b co b' 1ff 3 c g 1.(E) 	(b C 	 '.' 
\ , / 	 , '-1 • — 

We illustrate the relation .—with some examples. 
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Example 6.1.10 

A6.  
1  ~411 6  
iV 

6, 
Here. • .b n ... .. -i b  2 —  1 	0 b - b . (Thus 

the relation - may "propagate high 

UP" the net.) 

The last example shows how "non—local" is the relation - 

We now define a "local'! subrelation of .__ called 	- soon we shall 

justify extending-the notation of 6.1 .1. 	We use 	to construct a. 

net ii,(E)  from an event structure E; the net '(E) will express 

conflict in an economical way. In fact we shall show its 

conditions are essential in some generalised sense over an important 

subclass of occurrence nets, those which are maximally expressive. 

Clearly from example 6.1.10ff bkbt  then it is possible for b' to 

end holding without b ever having held. B restricting - to 	this 

is forbidden: if b 4,  b' and b' ends holding then b must have held 

for a subinterval of the time that b' held. ' - 

Definition 6.1.11 

Let E be an event structure. For subsets A,AL  of E define 

AA' iff 'Val €A' 3a EAa<a'. 

Then for conditions b = (e,A) and b = (e',A') of E define 

b 4,  b' iff e' < e £ A 	A' 



12 

(Recall the convention for a.) 	The definition of b 1 b' has two 

parts; the first says if b has started holding then so has b'; the 

second that if b' has ended holding then so has b (started and) 

ended holding. The relation I is a partial ordering. 	(In fact 
when restricted to t2.(E).) 

Lemma 6.1.12 

Let E be an event structure. The relation I is a subpartial 

order of 	. 	 Suppose b = (e,A) and b' = (e',A') are conditions of 
B. Then 

A 	At iff V  € 	(E) end(b',C) => end(b,C) 
b I b' iff b - b' £ 	€ '/,,(E)(end(b',C) => end(b,C)) 
b - b' . • b = °b' => b ~I b' 

Finally for F. an elementary event structure <1 = - and iI coincides 

with the relation in 6.1.1 for 

Proof 

By the characterisation of —s we have 	is a subpartial order of 

—.Properties 1., 2. and 3.  follow in an obvious way from the 

definitions. The conditions of an elementary event structure are 

always of the form (e,A) where A is null or a singleton. This gives 

the final remark. E 

We illustrate 4,  with some examples.. 
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Example 6.1.13 

v 
The following example shows El is not well-founded in general, even 
for event structures of finite depth.. 

Examp16 6.1.14 

to 	. 



"4 

The event structure consists of an infinite set {e. ( i € C01 of 

pairwise conflicting events. 	Clearly b = (o,e.) i < m}), for 

m. €c), is a condition as is b,,,, = (O{e ± I i Ek) }). 	Obviously 

... 4b1 ... 4 b 1 J b0 . 

So we see the ordering <1 is not well-founded in general. 
Assume E is an event structure which is well-based (5.6.1), implied, 

of course, if E is of finite depth. Then there are sufficient 1 - 
minimal conditions to determine the event structure. In fact then 

4, will be atomic in the following sense: 

b a b' 	b b ' in 1 -minimal. 

The relation b._4 b' on two conditions b,b' of E may be pictured as: 

) 

In subsequent work we shall use a particular form of 1 -minimal 
condition below b'. 	Suppose b' is (e,A'). 	Then there is a 

-a-minimal cond±±ion b = (e,A) with b i b'. Pictorially it looks 

like 

The condition b begins to hold when b' does but may end before. 

We show the existence of such a condition b as a corollary to the 

following. 

Lemma 6.1.15 

Let E be an event structure so < is well-founded. Suppose 

(e,A) e b (E). 	Then the set IA' € 11(E) I e < A' 1= Al has a 

minimal element. 
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Proof 

Let E be an event structure so < is well-founded. Suppose 

(e,A) E (B). We show 	0-descending chains in A' € 	1 e<A' 	A 

have a lower bound in the set. The result then follows by Zorps 

lemma. 

Let JA 	Y € fl  I be such a chain indexed by a total order fl. 
Define A*  to be the <-minimal elements of U A, . By the well-
foundedness of < we have A* 	U A . 
In fact A* E )(E): For suppose e, e' € A*. 	Then e' € A and 

e £ A where w.l.o.g. A 1 	A 1 . But then e € Ay  by he 

definiions of A*  and 	Thus2as A., £ )< ( E) we have e / 	e' 

so A* £ }<(E). 	
1 

Obviously e < A*. Thus we have the desired lower bound.W 

Corollary 6.1.16 

Let B be an event structure so < is well-founded. Suppose 

b = (e,A) is a condition of E.. Then there is a 	-minimal element 

b* of the form b* = (e,A*) with b 	b. 

Proof 

Suppose b = (e,A) is in B (E). Take A to be a' -minimal 

element of IA' € K(E) I e < A' E. Al. 	Define b* = (e,A*). 	If 

= (el a') 	(e,A*) we have e <e' and A? 	A* with e' < Al. 

Thus A? = A*. Supposing e < e' then implies e < Ia' I 	contra- 

dicting the definition of A*..  Thus  b*  is 	-minimal as required. 

In example 6.1 • 14 b corresponds to any b and b*  to b,.. The 

condition bw  was formed from aken of 	1 above the "event" 0. 

This is true in general. 

Lemma 6.1.17 

Let B be an event structure. Suppose e € B '-' {o} and A € k(E). 

Then any 0-miaimal element of IA' 	E K(E) f e < A' = 	 Al in K(E) 
is a ken of 	'u 1 	in 	{e' 	€ B 	e < 	e'}. 

Proof 

Suppose A*  in k(B) is a 0-minimal element described above. 

Certainly \/e,e' c A* 	e'. 	Suppose A*  were not a ken. 

Then A*  may be strictly extended to a ken B. But then B 	A, a 



contradiction. 

Corollary 6.1.18 

Let E be an event structure. Suppose b is a I -minimal 
condition of E. Then for some event e we have b = (e,A) where A 

is a ken of A  1 in {e' € E e < e'). 

Note it is not true that any ken A of ' _1 1  in {e' e < ell for 

some event e always arises from such J -minimal condition. This is 
shown by the next simple example: 

Example 6.1.19 

E: 	:O e2 

The ken of )%<...i 1 ,  1e 1  ,eI can never appear as a 	-minimal condition. 

Such a condition must be of the form (0,{e 1 ,e2 }). 	However clearly 

(O,e0 ,e2 1) 4 (O,{e 1 ,e 2 }). 

We can now show that the net formed from an event structure by 

taking the j -minimal conditions induces the original event structure 

provided it is well-based. First we formally define the net 

construction. Note '(E) does not have the isolated condition 

(o,) possessed by X(E) unless E is null. 

Definition 6.1.20 

Let E be an event structure. Define '6(E) b be the < -minimal 
conditions of 

Define i't(E) to be the occurrence net with events E,. conditions 
and causal dependency relation F given by 

eFb iff e = (b) 0  

and bFe iff e € (b) 1  

for e in E and b in 

Theorem 6.1.21 

Suppose E is an event structure which is well-based. The 

net -(E) is a condition extensional occurrence net satisfying N3 

and 	(- ,( E)) = E. 

Proof 

Let E be a well-based event structire. 	It is obvious that 

I 
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yields a condition extensional occurrnce net. We show 

(ii,(E)) = B and -yt.(E) satisfies N3. 

Obviously eF*eI in-il,(E) implies e < e'. 	The converse follows 

by induction on the length of chain using corollary 6.1.16. If for 

some b in T(E),b E F*{e} i1 F* 1 1et} in (E) then e, 	e'. 

Conversely supposing e, e', take e" <-maximal in £. € B (< e,e'l. 
Using corollary 6.1.16 there is a condition b* = (e,A) j (e",{e',e"}). 

Then by the choice of e' t  as e .tet  we have e,e' in A so b* € e (\ e' 

in-sl..(E). 	Thus 	on(E) = B. 

For an event e there is a condition (e,). Then using corollary 

6.1.16 there is b in(E) with b = (e,A) i (e,Ø). 	Thus e 	0 in 
'.(E). 	To show •e 0 let e' be <-maximal in 	B .j o}( e < e}. 

Then (e',{e}) is a condition. 	Using 6.1.16 we produce b in • e. 

Therefore,t.(E) satisfies N3.I 

The construction of-fl(E) is natural, at least mathematically. 

We shall characterise it later in section 6.3. For the time being 

we point out why a few obvious conjectures fail. 

As earlier when we looked at causal nets we may define a 

condition to be essential iff it belongs to every net inducing the 

event structure. Because there are so many different ways to 

express the same conflict by conditions rarely are sufficient 

conditons essential to recover The underlying event structure from 

them. For instance any pairwise conflict between three events can 

be expressed at least two ways by conditions as is shown in the next 

example. 

Example 6.1.22 

e0 	e1 	e2  

B 

(e,O) 	(e,0) 	(e2,$) 

{e0 ,e 1  ,e 2 }) 

%(E) 

As the same event structure is induced by 



e0  

the condition (0,1e 1 ,e2 ,e2 1) is not essential. 

In section 6.3 however we shall show that 	-minimal conditions 

are essential for a suitable subclass of nets namely those which are 
11mima11y expressive". 

Note that 4 -minimal conditions do not always express immediate 
conflict (denoted between events. Here is an example showing 

this. 

Exanrple 6.1.23 

The induced event structure 

of this occurrence net is 

e2  clear. The conditions b* 

and b are identified 8S 

(o,e0 ,e 1 ,e3 j) and 

(0,{e0 ,e2 }). The condition 

b* is 	-minimal (and b*J  'a) 

yet,. while e0 	e2 , we do 

not have e0  'e 1  or e 1 e2 . 

(Note the above net is 

symmetrically confused - 

consider e0 ,e2 ,e4.) 

This example serves as a basis for the next example in which 

above has been replaced by an infinite conflict-free set of events. 

This means there will be an infinite number of copies of b*  each a 

-minimal condition. 
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Example 6.1.24 
 

The event e 1  of 6.1.23 has been 

replaced by {e 1  (n EC)}. Corres-

pondingly there are an infinite 

number of copies of b*  written 

b*(n €c,). Here Yn b1 b. 

Thus in general there are far more (possibly infinitely more) 

-minimal conditions than are needed to express the underlying event 

structure. This example also shows that the net-r(10 may be such 

that Oe is infinite for an event e even though there exists a net N, 

such that S (N) = E, with a finite number of preconditions for each 
event. 

Definition 6.1.25 

Say a Petri net N = (B,E,P) has finite-preconditions iff for all 

events e we have e finite. 

Say an event structure E satisfies the finite-preconditions property 

iff there is an occurrence net N having finite-preconditions such that 

= EL 

The following gives a characterisation of the finite-preconditions 

property for event structures. 	It refers to the immediate conflict 

relation 	5.5. 

Lemma 6.1.26 

Let E be a countable event structure of finite depth. Then E 

satisfies the finite pre-conditions property iff (i) V e € E \[e]  <oo 

and (ii) 	A1  ,... ,A E k'(E) 	L.' I {e} = LA.. 

Proof 

Let E be a countable event structure of finite depth. 

Assume E satisfies the finite preconditions property. Assume 

[e] is infinite for some event e. Without loss of generality suppose 

e is of minimal depth so that [e] is infinite. Then e covers an 

infinite number of events in the ordering <. Thus any net inducing 

E must have e infinite, a contradiction. Therefore [e] is finite 

for all events e. To show (ii) consider any event e. 	In some net 
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inducing Ewe have e = {b 1 ,...,h}. 	If e )e' we have b.Fe and 

b1Pet for some i. 	Thus taking A. = b. gives property (ii). 

Conversely assume properties (i) and (ii) above hold. We give 

a very crude construction of a net having finite preconditions and 

inducing E. We determine it by determining its conditions. First 

we include all conditions of the form (e,{e'}) where e' covers e for 

the <-ordering - this ensures the net induces the partial order <. 

So that it induces the conflict relation 	while maintaining finite 

preconditions first enumerate E as e ,e ,...,e ,... . 	By (ii) we have 

for any m that there are Am,...,Am  with 	i' le } = •U A''. 
1 	1 	

/A. 	m 	11 	1 

Clearly we may assume em € A1m. 	
m 

Inductively add these conditions: Initially add the finite set 

{(o,4),....,(o,A° 
 )} 

as preconditions of e0 ; subsequently add the
RO  finite set {(O,A{e ,...e 	1)1 0 < i < n } 

as preconditions of e 
i'. 0 	m-1 	 m 	 m 

By the construction, for a particular event, no extra preconditions 

are added after a finite stage in the induction. Thus the net deter-

mined has finite preconditions. 

The above proof is a bit unsatisfying. The net constructed 

depends on the countable enumeration of E. It is hard to see a more 

canonical definition or construction (on the lines of the definition 

of -E)) for the general class of countable event structures with the 

finite preconditions property. 	The following example illustrates 

the difficulty. 

Example 6.1.27 

The net below has finite preconditions. 
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The net consists of an infinite set of pairs of conflicting events 

e.,e with {e} u {e. i EC01 and {ej '-' {e! ( i €c} pairwise 

conflicting. 	Note that the sets 	 are kens of'ui and 

there are associated conditions. 	If included,e would have an 

infinite set of preconditions and the associated net would not have 

finite preconditions. 	Yet, it is hard to see any significant 

difference in kind between conditions of the form (O,{e,e.,e!}) and 

those of the form (O,{e.,e!}). 	Certainly the net construction n 

would include conditions of the former sort too. 

When event structures with the finite preconditions property 

satisfy restrictions there may be a canonical net which has finite 

preconditions. Confusion—freeness is one such restriction (the next 

lemma) while finite width does not appear to be - the net of 

example 6.1.27 above is of finite width. 

Lemma 6.1.28 

Let B be a confusion—free event structure such that [e] is 

finite for all events e. Then B satisfies the finite—preconditions 

property. 	In facti*(E)  has finite—preconditions. 

Proof 

Let B be a confusion—free event structure s.t. [e] is finite for 

all events e. We show-n.(E) has finite—preconditions. By the 

definition of confusion—free, the 1 —minimal pre—condition of an 

event e will be of the form (e' 	{e}) where e covers e' in the 

event structure with the fictitious starting event 0 adjoined. 

There are only finitely such conditions. 

Of course one would prefer a similar result based on a less powerful 

restriction than confusion—freeness • This would further justify 

the net construction-n.. 

In section 4.2 we showed there were peculiarities in 

generalising Petri's notion of sequential process of a causal net to 

occurrence nets. The obvious definition, taking a sequential process 

of an occurrence net to be a ken of the complement 'of the concurrency 

relation, gave odd—looking subnets which did not meet every case. 

This was so even for finite occurrence nets 	Fortunately if B is an 

event structure of finite depth, kens of the complement of co have a 



simple form in the nets .JV(E) and )i,(). Then injV(E) and n(E) a 

"sequential process" looks like a tree and a revised-]<-density result 

can be proved once cases are restricted to being observable. 

Definition 6.1.29 

Let N =(B,E, be an occurrence net. 	Say N is tree-like iff 

(B,F* t' B) is a tree. 
Note the tree may be infinite. A tree-like net has the form: 

Thus tree-like nets are a generalisation of sequential processes of 

causal nets of finite depth (see 5.4.6). 	Clearly no two distinct 

elements of a tree-like net can be in the concurrency relation which 

is the complement of (F*._, 	). 	Thus: 

Lemma 6.1.30 

Let N = (B,E,F) be a tree-like occurrence net. Then for all 

x,x' in B 	B we have x(F*..i FU 	).' that is X Co X' => X = X'. 

Now we characterise "sequential processes", regarded as the kens 

of the complement of co, in the nets X(E) anctil.(E) for B of finite 

depth. They are tree-like and satisfy further conditions (a), (b) 

and (c) to ensure their maximality. 

Proposition 6.1 .31 

Let B be an event structure of finite depth. 

1. Let S be a subnet of N( E)., Then S is a ken of (FF*J  4) 
iff S is tree-like and 

For some condition b in S we have ('o) = 0. 

For all conditions b in S we have • b S S & b . S £. b is a 

ken ofvI in {e € B \ (b) 0  < el. 

For all events e in S we have er' S / 6. 

2. Let S be a subnet of -(E). 	Then S is a ken of (F* Li 

iff S is tree-like and 

(a) For some condition b in S we have (b) 0  = 0. 

l'12 
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For all conditions bin S we have 'b 	S. b' S S. 

For all events e in S we have e' 0 => e ( S 0. 

Proof 

Let E be an event strudture of finite depth. Recall 

F* U 	is the complement of co in JV(E). 

Assume S is a subnet of 	which is tree-like and 

satisfies (a), (b) and (c). 	As Sis tree-like we clearly have 
x(F* t.) F*_ 1 u 	)x' for all x,x' in S. 	For S to be a ken we 

further require x(F* j F*'u zfj )s to imply x E S. Assume x is an 

event e and e(F* Li 
p*44 )s. Let b0  be the condition of S with 

(b0) 0  0. As i (e cob0) we must have e0  < e for some e 0  in b. 

Take b to be the P*_maximal condition in S so that e' < e for some 

e' in b e  - such a b exists aS. e has finite depth. 	It follows that 

e = e' and so e e S: Suppose otherwise, that e' < e; then e t 

so there is a condition b' in S with ° b' = e'; as -i(e co b') we get 

e > e" where et' E b' contradicting the maximality of b. 	If x 

happened to be a condition b then the above argument shows e = b E S. 

The condition in S with pre-event e is concurrent to b and so is 

identical with b, giving b € S. 

tt>tt Assume S is a ken of (F u F* U*). It is inductively 

shown that S has a subnet 5t  which is tree-like and satisfies (a), 

(b) and (c). By the above S' is a ken so S = S'. As S is a ken 

for any b in S we have • b,. b °  . S. We define the subnet 5' by 

inductively picking its conditions. 	Initially, let A,. be. the 

<-minimal events of SrE. Then as S is a ken of (F*, F*L) 

we have A0  € K(E) so we may define b0  to be the condition (0,A0).. 

Then b0  E S and A0  is a ken of Wu I.- We initially pick b 0  as a 

condition of S'. For each event e in A 0 
 (=b* ) define Ae  to be the 

set of .<.-minimal events in S t\ {e' € El e < e'}; then (e,A) is a 

condition in S which we include in 5'. Continuing we define a 

tree-like subnet S' satisfying (a), (b) and (c). 
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2. "<=" This follows from 1 • 	as for a condition b of ft(E) we 

have b is a ken of,tJ1 in {e 1(b) 0  < el. 

IL...>tt Following the induction in 'el. =>" each condition chosen will 

now be 4, -minimal. 

For the special nets .Af(E) and-(E) of a finite depth event 

structure E we show a restricted form of j(-density holds. 

Proposition 6.1.32 (Restricted K-density) 

Let E be an event structure of finite depth. Then for the 

nets ..i(/(E) and 11.(E) every ken of the complement of co meets every 

observable case. 

Proof 

Let E be an event structure of finite depth. The same proof 

works for N =-71(E) or N = JV(E). Let S be a ken of (p* , F*, * ) 

in N.. Suppose C € O(E) 	3y finite depth we take e to be the 

<-maximal event of S in C if such exists; otherwise take e = 0. 

Let b be the unique condition in S s.t. (b) 0  = e. If end(b,C) then 

(b) 1  ti C 	Si1. 	However (b) 1 	S so supposing end.(b,C) contradicts 

the maximality of e. Thus b € Fr(C) (' S as required.. 

Note the above proof would work taking S to be a ken of (F*-Q

the proof depends only on S being an 	-maximal tree-like subnet - 

the simplest example of such a net would be a chain b 0Pe0P....bFe... 

of maximal length where (b0 ) 0  = 0. Presumably the last two 

propositions also hold when finite-depth is replaced by well-based 

and the definition of observable state weakened appropriately. 
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6.2 Expressiveness 

In this section we present a formal way of interpreting 

an occurrence net. 	Each condition is interpreted as asserting a 

conjunction of propositions. This induces an expressiveness 

relation between nety associated with the same event structure. 

Roughly one net is more expressive than another if it supports more 

interpretations. In the next section we shall use the ideas to 

characterise the construction fl(E) from an event structure E. 

In the main our formal development is rather brutal. Many 

of the ideas should work to produce expressiveness relations between 

the more general class of transition nets with initial marking. This 

may open a Pandora's box of possibilities. 	In the final part of 

this section we shall sketch some of them. 

Throughout we shall assume a fixed (sufficiently large) set of 

propositionsP. We shall also assume all nets are condition—

extensional and satisfy axiom N3 (i.e. all events have at least one 

pre-condition and post-condition).. 

Definition 6.2.1 

Let N be anet (B,E,F). An interpretation of N is a map 

I: B-> 	(p). We denote the set of interpretations by 

With respect to an interpretation I a condition b asserts all 

propositions 1(b) are true. 

In general one works with interpretations satisfying-restrictions 

(there will be examples later).. Restrictions determine an inter- 

pretation class.. 

Definition 6.2.2 

An interpretation class is a map ' from nets such that for all 

nets 

- '(N) S I (N). 
We denote the interpretation class of all interpretations by 

An interpretation extends to markings in the obvious way. 

Definition 6.2.3 

Let N be a net (B,E,P) and I an interpretation of N. For 
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M 	Bdefine 

1(M) = U (b) 

We summarise the idea of expressiveness (with respect to an 

interpretation ciass)in the following proposition. Here it is 

defined only between occurrence nets inducing the same event 

structure. We shall outline extensions of the idea later. 

Proposition 6.2.4 

Let 'E be an event structure of finite depth. Let I ' be an 
interpretation class. We define an expressiveness relation 

between nets {N IN is an occurrence net and (N) = El by 

N, N 1ff VIE 	'(N) 31' E f'(N') Vc € O(E) 
I a Fr1(C) = I'OFTN,(C). 

Then 	is a preorder. Thus the relation 	defined by 

N 	, N' 1ff N 	, N' 2- N' 	, N 

is an equivalence relation. 

The definition of expressiveness depends on what we take to be 

"essential structure" of an interpreted net. In the above definition 

of expressiveness we have taken it to be the interpreted, observable 

statesdefined using the map Fr. 

Definition 6.2,5 

Let N be an occurrence net of finite depth. Let I be an 

interpretation of N. Then define C(N) to be the set 

C €(N)} 

with relation -.> given by 

(c,i o FrN(C)) _>• (c;I 	FrN(c')) iff C 	C l  & d(C,C') = 1 

The structures 	(N) are useful in establishing the relation 

between nets (see the examples below). More importantly they draw 

attention to a "parameter" in the definition of expressiveness pointed 

out in the following obvious lemma. 

Lemma 6.2.6 

Suppose the event structure E, 	', and nets N and N' are as 

in the definition of expressiveness (6.2.4). 	Then 
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N 	Nt iff VIE J'(N) 1I' E 	t(NI) O(N) = 

The lemma can be regarded as saying NN' iff for any inter-

pretation of N there is an interpretation of N' such that the 

interpreted nets are equivalent or.have essentially the same 

structure. Here that structure is taken as 	N) for an occur- 

rence net N with interpretation I. One would get different 

expressiveness relations by replacing the C(N) 's by different 

forinalisations of essential structure. 

We now look at some examples illustrating the expressiveness 

relation. 	where j is the interpretation class of all inter- 

pretations. Clearly for this interpretation class in establishing 

N1 	N we may assume the conditions of N1  are interpreted as 

singletons. 	(This will also be the case for. the other inter- 

pretation classes we deal with.) 

Example 6.2. 

5 

e2 

r 

q \ 

0 

p LI 

s- 

r 

19 

In this example we have N 1 	I'T2  where 	is the interpretation 

class of all interpretations. To establish N 1 	N it is 

sufficient to consider only those interpretations I. such that 1 1 (b) 

is always a singleton. Above we have marked such an interpretation 

I and an appropriate 12  showing N 1 	N2. To show the converse 

that N2 -N1 ,again a singleton interpretation 12  of N2  suffices. 

Suppose it is given as: 
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Then an appropriate I establishing N 2 	N1  is: 

rAt 

qA t 

p 

Importantly not all nets of an event structure are equally 

expressive as the following example shows.. 

Exaurple 6.2.8 

SK-1 

O U. 

e0 	e 

 02 
1p qO rU 

s,r 	tAq 	uAp 

N1 	 N2  

Certainly N1 	N2: For the typical singleton interpretat.on of N 1  

shown above the interpretation 12  of N2  suffices; both O''1(N1)  and 

()" '2(N2 ) take the form: 

s , ri 

{pqr} 

However we do not have N2  z N 1 . Interpret N2  by 1
2  marked by 
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-, p 
Then OX

I 	
has the form 

{ q } 	{rI 	{sI 

{p} 

Suppose there was an interpretation I of N 1  such that O1(N1) 

had this form. Then without loss of generality 1 1 (b01 ) maybe 

supposed to contain p. But then p would hold, after the occurrence 

of e2 , a contradiction. 	Thus IT2 

Consider the equivalently expressive nets of example 6.2.7.. 

Their equivalence can be made more intuitive by assuming that event 

occurrences do not occupy extents in time but that they are instant-

aneous changes in the holdings of conditions. Consider a typical 

event occurrence. For-simplicity assume e has only one precondition 

and only one poatcondition b 1  so it looks like 

bo  

Regard the event e as marking the end of the holding of b0  and 

simultaneously the beginning of the holding of b 1  without any gap in 

tjone .in between. 	Thus the extents in time (represented by 	of 

the holdings of b0  and b 1  might be represented by the following 

intervals 

b0  holds 	b 1  holds 

time --so- e occurs 

(This suggests a formal definition of an observer for interpretations 

according to which an observer allocates abutting semiclosed intervals 

of 9 to holdings of propositions of F2-related conditions. 



However we do not follow-up this.) 

We now focus on some particular interpretation classes. 

We might assume that no single proposition can be concurrently 

true throigh the concurrent holding of two distinct conditions. This 

means that holdings of the same proposition must be causally related. 

This would occur for example in modelling a Milner net by an inter-

preted occurrence net so that each proposition referred to strictly 

one agent. This restriction attempts to capture an idea that 

propositions refer to local states of affairs. Formally: 

Definition 6.2.9 

Let 	be the interpretation class on occurrence nets given by: 

For N an occurrence net (B,E,F) 

I E 	1(N) iff 'V' b,b' E B b co b's- I(b)r, I(b') 	0 => b = b' 

In other words for such local interpretations two assertions of the 

same proposition must be causally related. 

We have mentioned that intuitively event occurrences may be 

taken to be instantaneous changes in holdings of conditions. 

Accordingly propositions interpreting the pre and post conditions of 

an event will hold before during or after the event's occurrence. 

We may wish to identify an event with the change in proposition 

holdings its occurrence sometimes or always incurs. To guarantee 

such event extensionality" we can restrict interpretations. The 

stronger restriction is: 

Vc.c' E Qo 	(N) c' = C .' {e} —\ T. 1-.. 
 -, 	 r 

(An event e must always incur a change in proposition holdi ngs.) 

The weaker restriction is: 

C, C' EUO 	(N) C' = C 	{e I £ I'FrN(C) 	1°  FrN(C'). 

(An event e sometimes incurs a change in proposition holdings.) 

Consider the following examples. Example 6.2.10 fails both 

restrictions while example 6.2.12 fails only the stronger. 

Example 6.2.11 satisfies both.. 

Example 6.2.10 
For this net with the interpretation shown the 

instantaneous occurrence of e involves no change 

e 	 in those propositions which hold. 

p 
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Example 6.2.12 

q 	 q 	 For this net and interpretation (not 

in the interpretations class 	) the 

e0 	 e 1 	 occurrence of e 1  is sometimes associated 

- with a change in the holding of 

p 	 propositions and sometimes not. 

For the interpretation class 	both restrictions are 

equivalent to the extra restriction in the following definition. 

Definition 6.2.1 

Let 	le be the interpretation class consisting of inter- 

pretations I in 1 1 which. in addition satisfy.: For all events e 

I(e) 	I(e). 

(Then say I is event extensional.) 

It is natural to ask how the expressiveness relation changes for 

different interpretation classes.. In the next section we consider 

and 	for occurrence nets: associated with the same 

event structure. 

Of course one may restrict the interpretation class further 

basically transferring more of the computational structure to the 

interpretation.. For example one might like an interpretation class 

consisting of interpretations, r, for which the structure consisting 

of interpreted markings of the form I o FrN(C) with induced reachability 

relation determined the event structure. 

We now examine some issues involved in extending the idea of 

expressiveness to more general classes of nets such as all occurrence 

nets or initially-marked transition nets. Such a re]ion will 

depend on what we choose as the essential structure of an inter-

preted net. Let us suppose a net N (perhaps with initial marking) 

with interpretation I in interpretation class 	' has essential 

structure M'(N). Then the expressiveness relation over an inter- 

pretation class 	will have a definition of the following form: 

N 1 	N2  iff VI € 	'( N1) 	I2 E 	'(N2 ) j44,1(N) 	J '2  (N) 

The problem is thus to find, intuitively acceptable vV and 
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Consider first defining an expressiveness relation between 

occurrence nets not necessarily associated with the same event 

structure. 	Certainly taking the tt(I (N) above as 	'1(N) makes 
nets with different event structures incomparable under an 

expressiveness relation. The following example suggests more 

general choices of 
jilt 

Example 6.2.14 

r 	59 	 r,s 

rAq 

p 	q 

't 1 	 I  

rt S 

fAa 

N2  

r A 

s 	

r A s 

pA 	 S 

as 

In this example the nets 	and N with the interpretations shown 

are "interleaved simulations" of the net N 1  with interpretation 

shown. We have indexed the interleaved events of N and N 2  by 

the events of N 1  they correspond to. The net N2  has an additional 

event 1 2 denoting the simultaneous occurrence of events 1 and 2. 

If we draw the observable states together with the one-step-forward 

reachability relation we get for N 1  ,N2  and N3  respectively: 
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fr 

1 rjj 	, 	f q c 1  

4 p s} 

where we have marked-in I 0 Fr(C) for the observable states C. 

If we identify states when the same propositions hold there we get 

{r,s} 

[r,q] <> fp'sl 

{p,q• } 

for both N 1  and N2 . This reflects the fact that the possible extents 

of time of the holdings of propositions for the interpreted nets N 1  and 

N2  are the same. For N. however, we get 

{r,s} 

ip,qc 

Taking such diagrams as the essential structure thus gives N 	N 

In fact also N2  N1  and N1  N3 . The diagrams are based on one-

step-forward reachability. If instead we based essential structure 

on forwards reachability (its transitive reflexive closure) we would 

then have N 1 	N3  as well as N1 	N2 . 

The above example suggests that given an occurrence net N and 

interpretation I we take as its essential structure the set 

{Io FrN(C)  C an observable state 

together with some reachability relation 	induced by the 

reachability relation on observable states. Such a definition 

requires care. For definiteness take -> the 1-step forward 
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reachability relation on observable states. An obvious definition 

of 	is 

I a Fr1(C) _>I I a Fr(C') iff C -.> C'. 

In general this will lead to loops in -> or even 	which are not 

intuitively reasonable as the following example shows. 

Example 6.2.15 

For the interpreted net q 	p 

V 
we get, according the above definitions, 

\I 

For the interpreted net 

ej 

P 

we get 
q 

\4~ 
p 

In both cases the initial condition interpreted by p can end so q 

holds while the terminal conditions interpreted by p cannot. Thus 

states have been identified which have different future behaviours. 

One could avoid such problems by-restricting interpretations, 

for instance so loops were banned, while keeping the above definition 

of _>i.  This would not generalise to transition nets. Alter-

natively one could seek a more refined definition of equivalence of 

interpreted nets including transition nets. 	it is suggested that a 

definition of observational equivalence of interpreted nets along the 

lines of that used by Hennessy and Nilner in [Hen] for defining 
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equivalence of synchronisation tree is appropriate. Roughly 

this would say two interpreted nets are equivalent (have essentially 

the same structure) iff whatever "interpreted state" can be reached in 

one can be reached in the other with the same subsequent behaviour 

under the interpretations. Perhaps category theory is the approp-

riate framework; take objects to be (interpreted) states and 

morphisms to be events. 

6.3 The constructions jV andgive maximally expressive nets 

Here we shall look at the constructions of occurrence nets 

/4E) and(E) for an event structure E from the point of view of 
expressiveness. Our main result is to characterise the construction 

ji,(E). 	For the three interpretation classes 	 tje of the 

last section the net a.(E) will be maximally expressive in the set of 

nets associated with EL In addition the net .(E) will be included 

in all such maximally expressive nets. We work with the expressive-

ness relation defined in proposition 6.2.4 and chiefly with the 

interpretation class 

Throughout this section we assume nets are of finite depth 

condition—extensional and satisfy axiom T13 i.e. for all events e we 

have 'e and. e non—null. Note the results go through for a weaker 

notion of event structure and observable state; we shall only use 

the 'fact that observable states do not include infinite chains of 

events. 

Notation 6.3. 1  

We write 	, 	
and 	ie for the expressiveness relations 

associated with the interpretation classes' 	
and le 

respectively. 

Amongst the set of occurrence nets inducing the same event 

structure it is obvious the maximal net /\f(E)  consisting of all 

possible conditions of an event structure E is maximal with respect 

to the expressiveness relations 	,. 	
or 

Theorem 6.3.2 

Suppose E = (E,<,) is an event structure of finite depth. 

Let J1/"( E) be the occurrence net defined in 4.2.13. 	Then for all 

nets N 

=> N <A,t(E) 



Example 6.3..3 

63  0 	01 6 7  6-7 

where 	is any of the expressiveness relations 	 or 7<1 1e 

Proof 

As we assume all nets are condition-extensional all conditions 

of the net N above are "included" in the conditions of W(E). 
Interpret such conditions in X(E) identically and others as 

It is no surprise that the maximum net associated with an event 

structure is maximally expressive. That net includes all conditions 

possible under condition-extensionality. We now show that the net 

1(E) of 6.1 constructed by taking conditions to be 1 -minimal is also 
maximally expressive. In addition every maximally expressive net 

will include ii,(E). This means every condition of-n(E) will be 

included in every maximally expressive net i.e. the J -minimal 

conditionsof an event structure are precisely the "essential" 

conditions of the maximally expressive nets. 	(Compare 4.1.17 

characterising essential conditions of a causal net.) 

Suppose N is an occurrence net such that (N) is the event 

structure E. For any 	1-interpretation I of N we require aft 

interpretation fl of-n(E) such that 

'VC -  E C(E) IOFrN(C) =I t oFrE)(C). 

We illustrate how I' is determined, by I through an example. 

Above we have drawn (E) and a net N with (N) = E for an 

event structure E. Suppose p E 1(b). 	What conditions of 1(E) are 

to be labelled by p? We have a choice. We could label b 1  and b2  

by p. However then e0  might occur so b still holds while b 1  and b2  

do not. Thus we must also label b 3  by p. Alternatively we could 

label b4, b5  and b7  by p. As the interpretation ofii.(E) is to be 
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in 	we cannot label all b 1 ,b2 ,b,b4 ,b5 ,b7  by p. 	Note that in, 

for example, the first choice although in a sense the subnet 

determined by b 19 b2 ,b3  simulates b we do not have b 3 3 b. 

It might be thought that the ambiguity in the labelling is due 

to confusion. The following example gets rid of that idea. 

Example 6.3.4 

VO 
MAMMAW 

(E) 
	

N 

The condition b may be "simulated" by either {b 0 ,b 1 } or {b2 ,'o3 }. 

We accent the choice of conditions of fl(E) used to simulate a 

condition by means of a choice function. Given a condition (e,A) 

this simply chooses a unique 	-minimal condition (e,A') with 

(e,A') <I (e,A) (such exist by lemma 6.1.16). 

Definition 6.3.5 

Suppose E is an event structure. A choice function for E is a 

map 9 	(E) -> 9(E) s. t. 

X((e,A)) = (e,A') 	(e,A) for some A'. 

Thus in example 6.3.3 we might have(h) = b 1  and. (b) = b for 

xi = 

Henceforth in this section we work with a fixed event structure 

E of finite depth together with a fixed choice function 	. For a 

condition b of B(E)  we now define a set S,(b)  of conditions in 

which simulate b in this sense: 

VC E U(E) (on(b,C) <=> 3.b' E S(b) on(b',C)).. 

The idea is to use X to divide up the extent of b into a set of 
-minimal conditions which determine a tree-like subnet of ii.(E). 

(For the obvious X this would yield S,< (b) = {b 1  ,b 2 ,b3 1 in example 

6.3.3.) 



?3 Ø) 

('(o) 

Definition 6.3.6 

For A a subset of E define 

p(A,e) = {a € A e < a}. 

Definition 6.3.7 

Let b = (e,A) be in B (E). 	Define S(b) = 	 where 

s(b) is defined inductively by:, 	
nEW 

s+ 1 )(b) 	{%((e',p(A,e'))b' 	s'(b) e' € b''\ A}. 
1XI 

Picture b = (e,A) as 

Then the second stage of the construction of S%(b) may be pictured as 

e 



The events e0 ,e 1 ,e2 ,e3  are taken to be in ('6(b)) 1 . 	Theshaded 

regions denote events not below A. so p(e 0 ,A) and p(e3 ,A) are null. 

In the drawing %(e2 ,p(A,e2)) is a condition with p(A,e2 ) non-null. 

There are extra conditions in S(b), corresponding to b 3  of example 

6.3.3, of which one holds whenever b can no longer end holding. In 

the drawing 	(e,Ø) and 	(e3 ,) represent such conditions. The 

set S,(b) has been constructed so that b holds iff one and only one 

condition in S%(b) holds. 	We now prove this, 	Firstly S , (b) 

determines a tree-like subnet offl.(E) called 

Definition 6.3.8 

For b in V (E) define the net 	(b) to consist of conditions 
sz(b) and events {'b' b' E S(b)} {b1"( b' E S(b)}  with F-relation 

F  induced by 

Lemma 6.3.9 

For b in B (E) the set 	(b) is a tree-like subnet of -n(E). 

Further if b is of the form (e,A) then A equals the set of Ft-maximal 

elements in the net 	(b) which ara events. 

Proof 

Suppose b in (E) has the form (e,A). 	From. its inductive 

construction it follows that(b) is a tree-like subnet of-W(E). 

We show for all a in. A. there is a chain eOFblFel..FbkFek  in 

with e0  = e and e., = a.. The chain is constructed inductively. 

Initially put e0  = e and b 1  % (b).. Suppose we have defined 

e- .IVO 	 Fe a chain, in Z'(b) with e < 'a. 	If e = a we have 01 	fl 	fl 	 fl 	 fl 

produced the desired chain. Otherwise extend the chain by putting 

b +i = %(en,p(A,en)) and  en+l  as the unique event in b 1  below a. 

As-there are no infinite chains below a we eventually construct the 

required chain. 

Thus by the definition of S,(b) no condition of S(b) has pre-

event a in A so each a in A is a maximal event in ,b).. The set 

A is precisely all such events as by the construction of S(b)  any 

event in 2 (b)\A has a postcondition in Sb).N 

In theorem 6.3.11  we use the above lemma to show that if a 

condition b holds for an observable state then a unique condition in 

holds. 	The converse, that a condition of S..(b)  holding for 

an observable state implies b holds too, is ensured by the next lemma. 



Lemma 6.3. 1 0 

Suppose b E ' ( B). 	Then 

Vb' € s (b) b' - b. 

Proof 

Suppose b has the form (e,A). 	Assume b' € s(b) and b' = (e',A). 

Clearly e < e'. Suppose a € A. By the characterisation of 	we 

require a A  e' or 	a' € A' a' < a. From the construction of S(b) 

we have A' is 	0-minimal s.t. e' < A' 	o p(A,e'). 	If a € p(A,e') 
then 3 a' E At a' < a as required so assume. a A p(A,e'). 	Then 

a. By the above lemma a, e' E 	b) and a and e' are F*_ 

incomparable in x(b).  Thus as b) is tree-like there is an 

F*_xjmum condition b0  in S(b) so that b0  F*e and b
0F*a in the 

net %(b). This gives a e' as required. 

Now we can prove the precise sense in which S ,(b) simulates b. 

Theorem 6.3.11 

For b E 

VC € 	(E) (on(b,C) <=> 3b' € S(b) on(b',C)). 

Proof 

Let b = (e,A) £ 	(E) and assume C E Of (B). 

If on(b,C) then e £ C and A .i C = 0. 	Let e' be the 
<-maximum event in % (b) (' C - as C does not include infinite chains 

e' exists. 	Take b' to be the condition in s(b) with (b') 6  = e'. 

Such a b' exists as e' A A as A is the set of F*_ maximalevents in 
Then on(b',C) and b' is unique as z(b)  is tree-like. 

If on(b',C) for some b', necessarily unique, in S(b) then, 

as b'—b, we have on(b,C). 

It is now simple to show that (E) is maximally expressive 

amongst the nets inducing B. 

Theorem 6.3. 1 2 

Suppose N is an occurrence net such that (N) = B. Then 

N 	n(E). 	Also N,(E). and N 	le' 

Proof 

Suppose an occurrence net  is such that (N) = B. 	For I
2, 

interpretation 	n of N, define the 	1_ interpretation of(B) 

10 
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by I'(b) = (J{I(b')J b € s% ( bt)l. 	For all observable states we 

have 

= 	i'(c). 

Thus N 	n(E) as required. 

	

In addition for I in either of the interpretation classes 	or 

i le taking I'(b). = U{i(')i b E S(b')]gives I' also in the 

interpretation class I  or Ile  respectively. (From the properties 

of S,,b) it is easy to show I( -e) = I' ('e) and I(e) = I' (e°) so that 

I in 	implies I' in 4 ). As above this choice of I' from I 
le 	 le 

gives N =K j(E) and N le n(E).S 

The following is an occurrence-net analogue of 4.1.17. It 

means 4.  -minimal conditions are essential for the subclass of 

maximally expressive nets (w.r.t. to any interpretation class 

1. 
or 
 Ile 

Theorem 6.3.13 

Suppose N = (B,E,F) is a maximally expressive net (w.r.t. j 
11 or) and 	(N) = E. 	Then 1,(E) 	B.  Ile 

Proof 

Let N = (B,E,F) be such a maximally expressive net. We know 

n(E). Take I to be the interpretation of (E) which to 

condition b associates the singleton fpblso  thatPb = b' 
=> b = b'. 

As-n(E) 	N there is an interpretation of N, call it 12  ,such that 

I1Fr 	
= I2 0 Fr,(C) for all observable states C. Assume 

b € 	(E) is of the form (e,A). 	Taking C = [e] gives some b' in B 
s.t. 	E 12 (b'). 	Obviously b' has form (e,A') for some A' in /<(E) -. 

consider the beginning of the assertion of 	Consider endings of 

the assertion 	formally: Take C = [a] for a in A; then as b' has 
ended for some a' in A', at € [a]; thus A' 	A0 . 	This gives 

b i5,1 b. 	But b is 	-minimal so b = b'. Therefore j(E) G B asr9tth'ec/R 
Thus the conditions are essential within the class 

of maximally expressive nets; any Ej -minimal condition is contained 

in the conditions of any maximally expressive net. The net-n(E) is 

a subnet of every maximally expressive net. 

The demonstration that (E) is maximally expressive suggests the 

following characterisation of the expressiveness relations on nets 
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inducing B. The expressiveness relation with respect to an inter-

pretation class merely expresses that in some sense each condition 

of one net may be simulated by a subset of conditions of the other - 

the manner of simulation is restricted in accord with restrictions on 

the interpretation class. 

Proposition 6.3. 1 4 

Let N0  and N 1  be condition-extensional occurrence nets satis-

fying N3, inducing B, with conditions B  and B 1  respectively. Then 

N0 . N1  ill 3 f: B0  -> F(B 1 ) f(b) —s b & 

Vc E 	(E)(on(b,C) => 3b' E f(b) on(b',C)) 

N0 
l  N

1  (or N0 le N 1 ) jff 3f: B0  -> '(B 1 ) f(b) — b 

Y  € af (E) (on(b,C) => a Lb' € 1(b) on(bt,C)). 

Proof 

and 2. =>" Interpret N0  by 10 which associates B0  with distinct 

singletons of propositis. As N0 	N1  (or N0 1 N 1  ) there is a 

corresponding interpretation I of N 1 . 	Define f(b) to be the subset 

of conditions of B 1  whose interpretations contain 10 (b). 	(For 

N0 	N1  the nature of Il gives the uniqueness in 2). 

• and 2. <=" For an interpretation 10 of IT define I 1,by 

1 1 (b) = 0110  (b)lb1 € f(b)}.l 

Consider a subset of conditions X satisfying the conditions of 

f(b) in 2. i.e. suppose for a condition b 

X - b .& 	E O() (on(b,C) => 3b' € I on(b' ,c)) 

One expects such X to determine a tree-like subnet satisfying some 

further restrictions dependent on b. It may be that any set Tsuch 

that 

Y —b&-VC € 	(E) (on (b, C) =' 	b' € Ton (b',C)) 

always includes such a set (I expect so). 	If so the above 

proposition gives 1e 
 on occurrence nets inducing B. 

6.4 Restless events 

It is time we dealt with restless events. Mathematically 

they seem to involve constructions similar to those of the previous 

section. How similar is not clear from this section's incomplete 
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development. They may be important to a study of fairness. 

Certainly whether or not the framework suggested in this section 

is appropriate in detail some extra structure must be imposed on nets 

and event structures in order to model situations in which something 

will inevitably occur sometime. That something might be an event or 

some more general property such as an event losing its concession. 

Recall the situations which involved some idea of inevitability: A 

'r-communication in a Milner net was not supposed to be able to occur, 

and not occur, forever (see 2.3A); in a computation determining a 

function from one datatype to another,events other than input events 

occurred eventually if they could (see 2.3C,and. 5.6 where we discuss 

continuity-respecting event structures); the events of causal nets 

representing Petri's real processes are thought of as having occurred 

or inevitably occur'ng (see 2.4 and chapter 7). 	Of course the idea 

also arses, but implicitly, in deterministic computations; it is 

assumed that having finished one task,flow-of-control will move on to 

the next. 

Recall the idea of restless events. An event is said to be 

ttrestless!P if it is not. possible for it to have concession forever; 

of course it may lose concession through occurring itself or if 

another event in conflict with it occurs.. We wish to place extra 

structure on event structures to express this idea of inevitability 

for a subset of events; the extra structure will be a distinguished 

subset of events, those to be regarded as restless. 

Now we look at the formal implications. 	Firstly-  we. can define 

when an event has concession.. 

Definition 6.4.1 

Let E be an event structure.. Suppose e E E and C € f,(E). 
Then e has concession at C, 

con(e,C) <=> <_ 1 fejG C 	( 	 Li ({e}) i C 

Note this is reminiscent of the on-predicate formalising when 

conditions hold. for consistent left-closed subsets. 	We could invent 

a new form of condition which for each event e would consist of a 
1 c 	 I C 

pair (<- e}, ,cj/e}) (or perhaps (<-' , e}) if E were 

of finite depth for example). 	Then 6.4.1 simply expresses that this 

generalised condition holds whenevei <_ 1 1el have all occurred and none 
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of 'L) ({e} have occurred. Note in general that even for 

It conditionslt of the form (C 1 {e}pt.i l ie)) we might not have 

in K(E) - the event structure need not be confusion-

free; however if E is confusion-free they correspond to places in 

a matrix. 

If an event e is specified as restless any observer who sees 

< 1 {e} at some finite time must eventually see at least one of 

Similarly if a subset of events A is specified as rest-

less then this is the case for every event e in A. It is obvious 

how to code in mathematical notation the restriction on observers 

Ob(E).that results when a subset of E is distinguished as restless. 

It is neater however to work with 	(E) rather than Ob(E). To 

justify this we require that for a restless event e we have that C 1 {e} 

if observed is observed in finite time. 	Otherwise the event may get 

concession only after an infinite time; clearly then we would not 

expect it to occur. For this reason,in this section we shall hence-

forth assume that event structures satisfy: 

For all events e,the set [e] is finite. 

Distinguishing certain events as restless disallows particular 

states at infinite time. For example suppose e is restless in the 

simple event structure consisting of a pair e and e' of conflicting 

events 

e 	 el 

Then over infinite time we would get states {e} or {e'}; the 

null-state after infinite time would not be consistent with the 

restlessness of e. More generally suppose E is an event structure 

with a set of restless events R. Those states which. are allowed at 

infinite time (call them eventual states) are those C € 	such 

that 

Y e € R 1  con(e,C) 

i.e. \/e € R(< 1  {e} GC => 	{e} t-1 C 	5). 

In this sense all eventual states are closed under R. 

In the simple example above, consisting of a pair of 

conflicting events e and e' with e restless,for no eventual state 

does e' have concession. 	In this sense e' is also restless. 
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Assuming e is restless implies e' is restless. 	In general suppose 

R is a set of restless events of an event structure E. It deter-

mines eventual states C where V  E R i con(e ; C). Often there 

will be an event e' A R such that 

'Ic E 	(E)((Ve E Ricon(e,C)) =>_con(et,C)) 

i.e. YC € ,( E)(con(e',C) => 	e €R con(e',C)) 

which say: that if events R are restless then so is e'. We turn 

this into a definition. 

Definition 6.4.2 

Let E be an event structure such that te] is finite for all e in 

E. Suppose AEand e E E. Define 

A J e if V  € 1,(E) (con (e,C) =>3a € A con(a,C)) 

Example 6.4.3 

a 	 e 	 a' 

:' 

:r :0 e2  

e (and yet {a.1 	e for i = 0,1,2) 

As the extra structure on events it would be natural to take 

subsets R which are closed under 	in the sense that 

R 	e => e E R 

Unfortunately I cannot yet characterise such R and the relation 

Any nice characterisation seems to involve a generalisation of 

Petri's conditions. The next lemma characterises A 	e. in the 

simple case where A is a singleton 

Lemma 6.4.4 

For the relation k defined in 6.4.2 we have {e} } e' iff 
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Proof 

obvious. 

tL>tt Suppose {e' 	e'. 	Then VC € 	( E)( con(et,C) => con(e,C)). 

Take C = C 1 {e'}. 	Then con(e',C) so con(e,C). 	Thus C 1  {e} 	C 1 {et}. 

Assume elt.'U! e. 	We require e"V e?. 	If e",W e' this is 
obvious so assume 1  e" A  e'. 	Take C = [e"] i_i 

Then 1 con(e,C) so 	con(e' ,c). 	Thus C l jelj 	C. 

=> ('v Ile' 1) c C 	0. 	As < 1 {e'} 52 C we have T v ( {e' }r 
(Eel!] U < 1 {e'}) 	. 	But then IWO  {e'} ,i [e"] 	0. 	Thus 
e" M LII e l . 

Of course distinguished subsets of restless events may not be 

the appropriate extra structure' in general. Perhaps labelled event 

structures on the lines of 2.3A would be a more suitable framework; 

there would be two kinds of events, "complete" events labelled by 

which would eventually occur or lose concession) and "incomplete" 

events which could only occur through communication with the environ-

ment. 
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Chapter 7. 	Event structures with infinite pasts 

In this chapter we present some mathematical results on 

modelling courses of computation with possibly infinite pasts. 

More precisely we examine the implications of removing the 

initiality restriction of chapter 5, while keeping the discreteness 

restriction and imposing the restriction that all events must occur 

sometime. 

From the point of view of denotational semantics this is a 

little off-beat and maybe it is. However in net theory causal nets 

the net-theoretic analogue of history are certainly allowed to have 

infinite pasts. For instance the discussion of K-density in [Bes] 

explicitly refers to the following net: 

It- is not disallowed because it has an infinite descending chain of 

events but because it is not K-dense. 

The definition of causal nets and the axiom of K-density in 

[Pet 11 is an attempt to define a net-theoretic analogue of history 
possibly with an infinite past. In this chapter we have a similar 

goal for event structures.. Again we shall make use of a notion of 

observer. These determine observable states. In defining 

observers we make restrictions on event structure descriptions of 

computations considered.. For instance they will be discrete as in 

chapter 5 and similarly they induce a reachability relation on 

observable states. The results on observable states of an 

elementary event.structure in chapter 5. There will be a special 

case - simply append a fictitious starting event and apply the 

results here. 

If there is more than one reachability class one can argue that 

the event structure alone does not represent a course of computation. 

The main result of this chapter is to characterise those event 	- 

structures with one and only one reachability class. They are 



called adequate. This involves some cute mathematics. 	By 

allowing extra structure on event structures a broader class of 

courses can be represented. 

In chapter 5 we have argued that K-density is too restrictive 

an axiom. In view of this the results of this chapter should be 

significant in defining the class of causal nets corresponding to 

courses of computation. 	It is suggested that a causal net alone 

represents a course of computation iff its associated event 

structure is adequate. It - certainly seems that one would wish two 

cases of a causal net to be reachable from each other (something like 

this is stated in [Pet ] 
to motivate K-density). As in chapter 5 

a restricted form of K-density will hold for a suitable class of 

nets when cases are restricted to being observable. 

7.1 Observers and observable states 

Throughout this chapter event structures will be elementary 

i.e. of the simple form (E,<). 

Example 7.1.1 

e 

e0o  GI 

ei 

e00  

These drawings represent 

event structures consisting 
e20 	of an event e causally 

e 	
dependent on chains of 

21 	unbounded lengths. 

e22  

Here an event structure models a course which may have an 

infinite past. As in section 5.1 an observer is a record of when 

events occur. It is assumed that according to an observer every 

event occurs sometime and also that the occurrences of two 

causally related events are separated by unit time (the discreteness 

restriction of section s.i). Unlike definition 5.1.4 events may 

occur unboundedly far back in the past. Accordingly time is 

represented by Z the positive and negative integers, ordered as 

usual. 

Definition 7.1.2 

An observer for an event structure E is a map 0 : E -> Z such 
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that 

e < e' => 0(e) < 0(e'). 

We denote the set of observers by Ob(E). 

Note the event structures of example 7.1.1 have observers. 	(In 

either case define an observer 0 by 0(e) = 1 and 0(e..) = 

Using this idea of observers we can define a notion of state. 

Definition 7.1.3 

For an observer 0 of an event structure E we define the state 

observed by 0 at time t to be 

os(0,t) = {e € El 0(e) < t} 

and further define the observable states of E to be 

{os(0,t) J 0 € Ob(E) 9, t E.Z. 

Of course not all event structures E have observers so Ob(E) 
01 

and 	'(E) may benull. The restriction on observers isAdiscrete- 

ness restriction; it is clear, for example, that the event 

structure formed by the reals does not have an observer in the above 

sense. Neither does the- following example. 

Example 7.1.4 

et 	 This event structure consists of events 

• • 

	

	e and e' with chains of unbounded length 

between theme 

For the distance—measure on events 	of §5.2, Le,e') 

is infinite in the above example. 	Obviously when A (e,e') is 
infinite for any events e and e' of an event structure the event 

structure cannot have an observer. When the event structure is 

countable the converse also holds. The proof uses convex subsets 

of the event structure. 

Definition 7.1.5 

Suppose E is an event structure and A is a subset of E. 

Then the convex closure of A is defined by 

con(A) = fe EE/3a 1 ,a2  €Aa 1  <e<a2} 
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Also A is said to be convex iff A = con(A). 

It is clear that the convex closure of a set A includes A. 

It is convenient to generalise 	of section 5.2 to convex 

subsets. 

Definition 7.1.6 

Let E be an event structure. For e in E and A a non-null 

convex subset of E define 

(A,e) = Sup{n 	 e0<..<e L ((e0  E A 9< e. A A £ç en = e) or 
(e0  = e A e E A Z e 1  A A))} 

We can picture 	*(A,e) - the solid lines denote chains which count: 

e 

L", e) 

The distance 	*(A,e) is the supremum of chains between the convex 

subset A and event e. As A is convex the direction of the chains 

between A and e will always be the same; if there are any chains 

between A and e they must either all go from inside A to e or all 

go from e to inside A. As for 	the distance measure 	may be 

infinite.. 

We use the new distance measure in the proof of the theorem 

below. Note the event structure is assumed countable. 

Theorem 7.1.7 

Suppose E is a countable event structure.. Then 

Ob(E) 	iff Ve,et E E L(e,e')  <0° 

Proof 

tL>tI obvious. 

Enumerate E as 

Suppose 0 is defined for 

Extend 0 to E. 1  by putt: 

e0 , e 1  , .. . , e., . ... and. define 

Construct an observer 0 inductively. 

E. and OE 1  
. - {-k.

1 
 ,k. 

1 ] 
for some k. in 0) 

1 	 1 

Lng, for e E E. 1 \ E., 
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0(e) = k. + 	*(E.,e) if 	e' € E. e' < e. - 1+1 

=—k. - 	 if 3 e' E E1  . e 1+1 < - e'  1 

= 0 	 otherwise.0 

The following example shows that the countability assumption is 

necessary in theorem 7.1.7 above. 

Example 7.1.8 

We construct an event structure E (not countable) such that 

Ob(E) = 0 and yet " e,e' E E A(e,e') <00. 

The construction starts with B0  a countable infinity of 

infinite chains unbounded above and below; 

e02  e 12  e 

e 01 e 11 e ni 

e00  e 10  e 0  

e 0-1 e 1-1 n—i 

e02  e12  e 2  

This clearly has an observer as it stands. By adjoining 

further events we make the existence of an observer impossible. 

By a cut of EL we mean a subset of B0  containing a unique event 

from every chain.. To each such out C written as e. ,e 	,..e . 

we join the following event structure: 	
I 	0i Ii 	iiia  

e. 
fliT 

nij 
4c 
nn 

n events 

e 
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Thus in E each cut of E is above chains of unbounded length from 

some event. Note that 	is still always finite. 	(The event 

structure E is uncountable as the set of cuts is uncountable.) 

The event structure E does not have an observer. Suppose 

o € Ob(E). Let C be the cut consisting of <-maximal elements in 

os(0,1). 	Then as all events C are observed before time 1 the 

event e   cannot be observed, a contradiction. 

Henceforth we shall chiefly be interested in countable event 

structures with observers. Theorem 7.1.7 justifies the following. 

Definition 7.1. 

Say an event structure B is countable-observable iff B is 

countable and V e,e' € B A(e,e') < oc. 

Formally at least convex subsets may be regarded as events. 

Convex subsets of an event structure when "collapsed" to a point 

yield a new event structure. 

Definition 7.1.10 

Let B be an event structure with convex subset A. By E/A 

is meant the event structure consisting of events 

Ifell e € E\A} V fAJ 

ordered by 

. < 	' iff 3e,e' € B e E 	& € 	' £ e < e'. 

I 	 - 15 convenient to allow A to be nui. ii the above definition.) 

The following define bounded. subsets of an event structure and 

time respectively. 

Definition 7.1.11 

Let B be an event structure. Suppose A is a subset of B 

and k € Ci).. Say A is k-bounded iff V a 1  ,a2  E A 	(a1  ,a2 ) < k. 

Say A is bounded iff A is k-bounded for some k in C.&> 

Definition 7.1.12 

For k1  ,k2  € Z with k1 < k2 , define the bounded interval 

[k 1  ,k2 ] to be in € Z I k1  < n < k2 1. 	Define the length of such an 
interval to be k2-k1. 



Recall the metric a. defined from A  in section 5.2. Its use 

abbreviates the following proof. 

Lemma 7.1.13 

Let E be an event structure. Then E is bounded iff there is a 

bounded interval [k 1 ,k2 ] and observer 0 in Ob(E) such that 

OE 

Proof 

,t<=" is obvious. 

tt>tt Define the observer 0 by 0(e) = d(,{e]). 	It is clear 

that as E is bounded d(,E) is finite and that the range of Ois 

the bounded interval [o,d(gc,E)]. 

The construction of definition 7.1.10 is used in proving the 

following lemma. Under certain conditions, it says for a k-bounded 

convex subset there is an observer recording precisely the events A. 

within an interval of time of length k. 

Lemma 7.1.14 

Let E be a. countable-observable event structure. Suppose A is 

a k-bounded subset of E. Then: 

- (3k19 k2  Ek2-k1  = k S 3 O € Ob(E) A = 0 1 {kk1) 

if  V e E E A*(A,e) <c. 

Proof 

"=>' is obvious. 

<= Supposing Ve € E 	*(A,e) < 0 together with the 

hypothesis on E give L always finite on E/A.. Thus there is an 
observer Q*  for E/A. Without loss of generality suppose 0*(A) = 0. 

Considered as an event structure A has an observer OA such that 

OAA S [0,k] by lemma 7.1.13. Then define the required observer 0 

by 

0(e) = 0A(e) if e € A 
= k + 0*({e}) if e A 	0*({e}) > 0 

= Q*({e}) 	otherwise. 

Corollary 7.1.15 

Let E be a countable-observable event structure. Suppose A 

is a pairwise incomparable subset of E.. Then 
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I) 

I ,  

7 \/ 

d(C,.C') *(A,e) 

2C4. 

0 E Ob(E) 3t € 	 E A 0(a) = t iff Ye € E 	*(A,e) < oo 

Proof 

The set A is pairwise incomparable. Thus A is 0-bounded. 

It is obviously convex. The result then follows trivially from 

lemma 7.1.14. 

Now we characterise observable states. Unfortunately this 

involves the definition of yet, another distance measure. 8 defined 

from the metric d. of 5.2. 

Definition 7.1.16 

Let E be an event structure. Suppose C is a left-closed 

subset of E and e an event. Then define 

S (C,e) = Supd(C,CL'{e'f. e' <e}), d(C,C\{e'te' > e}) 
This may be thought. of as giving the distance from e to the "cut" 

of <-maximal events of C; unlike 	however the distance is the 

supremum of lengths of chains which need not "end up at" the cut. 

(With a trick we can define 5 from a A* measure; adjoin + oô - 
elements to the event structure and then take  

(C', e) = Sup {((C'j {4. cio 9,e),A'Con(C'Q  {_j),e)} where C' is 

the set. of <-maximal events of C.) 

We sununarise the three distance measures 	S and d 
together pictorially - the solid lines denote chains which make a 

contribution to the value: 

The next theorem characterises observable states using 

Theorem 7.1.17 

Suppose E is an event structure and C a left-closed subset of E. 
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Then 

C € X (E) iff /e € E S(C,e) < 00 . 

Proof 

'=>" If C £ 	we have C = os(,t) for some observer 0 

and time t. 	For e in E we have S (C,e) I I t-0(e) 	<00 . 

"=>" If S (C, e) < 00 for all e then define 

0(e) = S(C,e) if e A C 
= -S(C,e) otherwise. 

Then C = os( 0 , 0).0 
7.2 Reachability classes 

We first note that there is a natural equivalence relation 

on observers which induces a reachability relation on observable 

states. (Throughout this section event structures will be countable 

observable.) 

Definition 7.2.1 

Suppose E is a countable observable event structure. For 

0,0' in 0b(E) define 

0 "-i Of iff 	t,t' os(0,t) = os(0',t'). 

Then define /Vas the transitive closure of c'J 1 . Further, for 

C ' C' in. O(E), define 

C 	C' if  30,0' € Ob(E) 	t, t' 0 O & os(0,t) = C 

2< os(0',t') = C'.. 

A major point is that there may be more than one 	-equivalence 

class.. (Certainly there is at least one as the event structures 

are assumed countable observable.) This is best seen through a 

characterisation of 	using the metric d. 

Theorem 7.2.2 

Let E be a countable observable event structure. Suppose 

C,.C' are observable states. Then 

C 	C' 1ff d.(C,C') < 

Proof 

"<=" Suppose C,C' are observable states such that d(C,C') < co. 
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Then by the properties of the metric d (see 5.2.5) we have 

d(C 	c',c) < CPO and d(C 'i C' C') <OO • 	The convex subset C\C' 

is thus bounded. 	Also 	*(C\Ct,e) < 0a for all e (otherwise 

&(C,e) = CIO or &(C',e) =00 for some e). 	Thus application of 

lemma 7.1.14 yields an observer 0 and times k and k such that 

os(O,k 1 ) = C ,i C' and os(O,k 2 ) = C. 	Similarly there is an 

observer 0' and times ki and 	such that os(O',k) = Ct) C' and 

os(O',k) = C'. 	Thus C 	C'. 

"=>" Suppose C Iry C' for observable states C and Ct.  Then 

for some observers 0 and 0' and times t and t' we have 0 -̂/ 0 1  and 

C = os(0,t) and C' = os(O',t'). 	Induction on the number of 

steps in 0 ^v  0 1 , using the triangle inequality for d, gives d(C,C') <q 

The event structure in the following example is now easily seen 

to possess more than one 	-equivalence class and correspondingly 

more than one ry -equivalence class of observers. 

Example 7.2.3 

nn 
-fl 

e01 	 le nj  

' ' 00  e''' 	
'' 

le 
nO 

e01 	e1 	 n-1e1 - 

This event structure consists of a 

countable infinity of unbounded 

chains of events. 	The observable 

states C = [{e. 0 i € 4] and 
C' = [{e..ji Ec}] ('diagonal to"C) 

have been indicated. Obviously 

d(C,C') =c. 

We note a countable-observable event structure may be recovered 

from a rv -equivalence class of observers. 

Theorem 7.2.4 

Suppose E a countable-observable event structure. For each 

observer 0 define: 

e < e' iff 0(e) < O(e'). 
00 

Then < 
= 0110 _01,  

- 

Proof Suppose 0 is an observer of the event structure E. 

Obviously < 	 . 	Conversely suppose e e'. 	If 
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0(e) > 0(e') then (e,et) A 	so (e,e') A Co 5, as required. 
Otherwise define an observer 0' for which 0 1 (e) > 0 1 (e') and 

O'I\' 0 by o'() = o() if e 

=o(e) + O(el) - 0(e) + 1 	otherwise. 

It seems a course of computation should be associated with a 

unique 	-equivalence of observable states and accordingly with one 

and only one c'J-equivalence class of observers. Certainly in 

[Pet 2 ], where the axioms for "ropes" are presented, Petri motivates 
the K-density axiom by saying that "otherwise, there would exist 

cases c 1 ,o2  such that c 2  can be reached from c 1  only by an infinite 

number of steps, by performing a "super task"". 

So, cases are to be reachable from each other in some sense. 

(Interestingly K-density does not do this for the reachability rJakiot 
induces on cases. There is an obvious K-dense net associated with 

the event structure of example 7.2.3.) 	The main result of this 

section is to characterise event structures with a unique 

-equivalence class. Alone, without extra structure, they are 

adequate to represent a course of computation. 

Definition 7.2.5 

Suppose E is a countable-observable event structure. Then E 

is said to be adequate 

iff Vc,c' €. Of(E) d(c,c) < W. 

We define the property characterising adequate event structures. 

Definition 7.2.6 

Let E be an event structure. For A a subset of E we define 

= {e E E 13  € A a < e or e < a}. 	We say E is almost bounded iff 

for some finite subset A of E,E\ /Z is bounded. 

If E is almost bounded then it consists of a "tall thin bit" 

() and a "short broad bit" (E\). 	So pictorially it looks like: 
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E\A 

Theorem 7.2.7 

Let B be a countable observable event structure. Then B is 

adequate iff E is almost bounded. 

Proof Let B be an event structure. We are assuming that B is 

countable and \/e,e' E E i(e,e') < Co. 

If B is althost bounded then for a finite subset A we have 

Ed is bounded by Ic, say. Suppose c,c' € 12f(E). We have 

d(C,C') < Sup({k} 'i { S (c,a) I  E A} t. 	(C',a)1 a E A}) by the 

definitioiof d and S . 	As A is finite theorem 7.1.17 ensures 

d(C,C') < o'o as required. 

"=>" Suppose E is adequate. We assume B is not almost 

bounded to obtain a contradiction. 

Enumerate E as 	E0 1, 	'. 	 '." 

and define B. = 

As B is assumed not almost bounded we can inductively define pairs 

e.,e! where e.<e! with e. = . 	and e! = 	in the enumeration 
1 	1 	Ic. 	1 	1. 

	

1 	 1 

such that 

(e.,e!) > i 

e.,e! A1It 
1 1 	max{ki  ,1 	} -i i-i 

Now define C = {e.1 i E W I and C' = {e! j € (.))}. 	Both C 

and C' are pairwise incomparable. In order to apply corollary 

7.1.15 we establish 	*(C,e) <00 and 	*(CI ,e) < CO for all e. 

To show *(C,e) < Oo suppose e = in the enumeration. We 

have Ic < max{k ,i } for some n. Thus by the definition of the 

pairs e.e[ for i > n we have e incomparable with e... Therefore 
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= L *0e0,...,e1,e) <00. 

Similarly one may show 	*(c ,e) < 00 for all e. 

By application of corollary 7.1.15 there are observers 0 and 0' 

and times t and t' such that IV  c E C 0(c) = t and \71c' € C' 0 1 (c') = V. 

Defining D = os(0,t) and D' = os(0',t') gives two observable states D 

and D' with d(D,D') = Q i.e. the event structure is not adequate. 

This is a contradiction so B must be almost bounded. 

7.3 An axiomatisation of the reachability class 

We have defined the reachability classes of an event 

structure. The elements of a reachability class are ordered 

naturally by inclusion. We can axiomatise those structures and 

mention how to prove the axiomatisatiort is complete by establishing a 

representation theorem. This provides a reachability class of an 

event structure from a partial order satisfying the axioms. In 

stating them we first introduce some new definitions. 

Definition 7.3.1 

Let L = (L, iz) be a poset. Say L is non-null consistently 

complete if  for every non-null subset A 3XLAE x implies U  
exists in L. 

The consistent-completeness property is commonly used. Here 

as we do not necessarily have an initial state we have weakened it a 

little to only cover non-null subsets. 

In our previous work on event structures in chapters 4 to 6 the 

concept of complete primes was the domain analogue of event; in the 

representation theorems of chapter 4 a prime corresponded to [e] 

where e was an event. Here such left-closures may not be observ- 

able states. For this reason the more general concept of "relatively 

(complete) prime" is introduced. 

Definition 7.3.2 

Let L = (L,i) be a partial order with elements x and p. Then 

we say p is completely prime relative to x, and write this as x —3p, 

iff for all non-null subsets A of L for which Li A exists we have: 
xA 	pLJA=> 2 a E A p 	a. 
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We write x —p  iff x - p or x = p. 

Note that —3 need not be transitive. (Consider the obser-
vable states of the event structure consisting of two <-incom-

parable events e and e'. 	Then 	3 {e} —3 fe,ell but 

-/3 {e,e'I.) 

Unfortunately I cannot see how to avoid almost explicitly 

introducing the idea of reachability into the axiomatisation. To 

do this we make the following definition of a domain analogue of 

the metric d. 

Definition 7.3.3 

Let L = (L,) be a partial order. 	For x,y E L s. t. x y 

define 

depth(x,y) = Sup {n 	1p  ...... p (' ' i x —3p.) 	p 1  a p2 EV  

(If the supremum is infinite we denote its value by 00 •) 

We can now state the axioms which will characterise the 

reachability classes. 

Definition 7.3.4 (Axioms for reachability classes) 

Let L = (L,.) be a partial order. 	Referring to the above 

definitions we are interested in the following set of axioms. 

L is a lattice. 

L satisfies non-null bounded-joins. 

Ifxythen Li{ 	y1x 	pI exists inLand equals y. 

UyJ x—Cy} and fl{yI y  —< xj exist in L. 

If x & ythen depth(x,y) <00 . 

A few comments on the axioms: Axioms 1 and 2 are clear; axiom 

3 replaces that of prime algebraicity in the absence of an initial 

null state; axiom 4 is a completeness axiom mirroring the fact that 

we allow an arbitrary set of events to fire concurrently; as 

mentioned above the intention of axiom 5 is to restrict us to a 

reachable class. 

It can be shown that the reachability class obtained from an 

event structure (of this chapter) satisfy the above axioms. Far 

more tediously, from such a structure L one can obtain an event 

structure with reachability classes(ordered by inclusion) naturally 
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isomorphic to L. 	The basic idea is simple. From such a partial 

order L define events to be equivalence classes of pairs [,y] where 

x —3 y. The equivalence relation is the transitive symmetric 

closure = of .11  where 

['] I [x',y'] 1ff x 	xt Bc y = x' Li y. 

The required partial o:dering on such events is 

e<e' iff 3x,x,x" x-3x' & x —3 x" .9—, [x,x'] E e - 
[x , xtt] € e' & x' I;:  x" 

(It requires a fair bit of tedium to show it is a partial order.) 

7.4 Causal nets representing processes with infinite pasts and 

K-density 

As in chapter 5 the results on event structures may be 

transferred to nets so that a restricted form of K-density holds. 

Definition 7.4.1 

Let N = (B,E,F) be a causal net. 	As in chapter 5 define 

(N) = (E,F*rE). 	Say  is countable-observable iff 	(N) is 

countable-observable. 

Say N is adequate 1ff 	(N) is adequate. 

Again as in chapter 5 observable states of the event structure induced 

by a net N determine observable cases of the net via the Fr   map 

introduced in chapter 5; we require the net to satisfy axiom N3 in 

order to get real cases. 

Definition 7.4.2 

Let N be a countable-observable causal net satisfying N3. 

Define the observable cases of N to be those subsets of conditions 

of the form FrN(C)  where C E 

Proposition 7.4.3 (Restricted K-density) 

Let N be a countable-observable causal net satisfying N3. 

Then any observable case is a Petri case. Also any observable 

case meets any sequential process of N. 

Proof We sketch the proof that a restricted form of K-density holds: 

Clearly any kens of < in the induced event structure must have order 

type n, or Z. Let C be the observable case observed by 
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observer 0 at time t in 	. 	Thus observation of a kens of F 

must "straddle" 0, have finished or not yet stated at time t. 	In 

all cases a condition holds at time t which is in the corres-

ponding Petri-case. 

Finally we note from the following example that neither does 

K-density imply adequacy nor adequacy imply K-density. 

Example 7.4.4 

I 	 I 

I 	 I I 
N2  

The net N 1  is K-dense but not adequate. The net N2  is adequate 

but not K-dense. 
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Chapter 8. The full-abstractness problem for PCF - an introduction 

We introduce an open problem in denotational semantics. It 

concerns the language POP (programming language for computable 

functionals) a kind of typed lambda calculus. Terms of ground type 

called programs are evaluated deterministically by rules including 

the lambda calculus conversion rules. This gives a natural 

criterion for determining the operational equivalence of terms of 

POP. The problem is to construct a denotational model which exactly 

reflects this equivalence in a way which does not refer directly to 

the operational behaviour. Only then can we rely on abstract 

semantic properties of the model to prove such things as the 

operational equivalence or non-equivalence of terms. Although the 

language PCP is superficially unlike many programming languages 

essentially the same phenomenon can be found in "real" languages such 

as Algol, Pascal and Iswim whose programs are generally evaluated 

deterministically on a machine. 

In this chapter we outline the existing work. Gordon Plotkin 

introduced the problem [Piol], Robin Milner showed the d.enotational 

semantics was unique [MilI15  and Gerard Berry made significant steps in 

characterising the model for the denotational semantics. [Ber 
]. 

We 

summarise Plotkin's and Milner's work in the first section and 

Berry's in the second. We give sufficient details of Berry's work 

to support our use of event structures to duplicate a bit of his work. 

We shall not discuss the important work of Curien [Cur 1 [Ber and 

Our] in much detail because we do not refer to it in chapter 9. 

If this chapter contains anything original it is probably a 

mistake in copying out, translating or understanding. We refer the 

reader to [Mac] or tArb] for the relevant category theory. 

8.1 The problem 

PCP is a programming language based on LCP, Scott's logic 

of computable functions, ([Pioi],tMim2]). 	It is a form of typed 

lambda calculus in which certain terms are singled out as programs. 

The set of types is the least set containing t (for Booleans), 

i. (for integers) and (o -> 
) whenever it contains 	and t 

We use 	O- ; "c') to abbreviate (c -> 	->
... (o ->l)...)). 

The types ' and 1, are called ground types. 
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Terms are produced from the following collection of constant 

functions with the indicated types: 

(numerals) 

(truth values) 

(increment and decrement by i) 

(test for zero) 

(conditional giving integer result) 

(conditional giving boolean result) 

(least fixed point operator) 

. . ..i' ... 	: type 1 

tt,ff : type 1Y 

type 	•t. -> 

Z: type 

type  

type  

type  

Starting with the above collection of constants and countably many 

variables x. (1 € CO) for each type the terms are given by the 

formation rules: 

Every variable 

Every constant of 

IfM and N are te 

is a term of type 

IfMisa term of  

is a term of type Cr' 

type Cr is a term of type O 

ms o E' type 0 -> 't and Q respectively then (NN 

type ' then ( x'M) is one of type 3 -> 

In the standard way one defines the free variables of a term, 

the closed terms and contexts which are terms with "holes" to be 

filled by terms of the appropriate type; we write c[ ,..., ] for 

a context which when filled looks like C[M 1 9.0.,M]. 	
By [ivi /x. ]N  is 

meant the result of substituting the term M for all free occurrences 

of x in N, making appropriate changes in the bound variables of N so 

that no free variables of iv! become bound. 

The programs are closed terms of ground type. Intuitively they 

yield concrete output; other terms are significant only as subterms 

of programs. 

An operational semantics is given to the language by defining 

eval a partial function from programs to constants. It is defined 

using an immediate reducti'n relation -> between terms: 

eval(N) = c iff M -> * c, for any program M and constant c. 

The immediate reduction relation is given by: 

+1 n> n+1 

-1 n+1 -> n 

ZO -> It 
Zi±L- 
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- ttNN ->M 	'D, 1, 

ff MN -> N j 

If M -> M' then 	M -> 	M' for M,M' of type 	and O 

.type ') or  

If M -> M' then (MN) --> (1VI'N) 

If M is +1 or -1 or Z and N - > N' then (MN) -> (MN') 

Y, N -> M(YM) 

9, ((x.M)N) -> [N/x]M 

The relation -> is a partial function so eval is well-defined 

above. 

We base the notion of a standard model for PCF on type structures. 

A (standard) type structure consists of 

1. AcpoD0- for each type r withD=tJ  and D= T.. 

2.. For all types cY and ' a two place application operation • 
x D. -> D,,  which is continuous and order extensional i.e. 

X' iffVyx.yx'.Y. 

Condition 2. ensures that the elements of D 	are in 1-1 

correspondence with a subset of the continuous functions [D7  -> D] so 

that the ordering on D 	is the restriction of the pointwise 

ordering on functions. 

With respect to a type structure the environment Env consists of 

all type-respecting functions () from variables into UD r. 

A standard model for PCF consists of a type structure D and a 

semantics fl7 a type—respecting map giving values in D to terms in 

an environment 	. They are required to satisfy the following 

conditions: 

The terms ii, ±i, -1, Z, 2 ~D 2 and Y get their usual inter-

pretation. Thus 

YTiE1YJJ,a.o 	= 	 whereabbreviates 

n c'('S. 

'YYlEIIX]lr = PW 
flMN]] = DM]lp o  ThI{N11p 

= IMM11  f 
(f[x/] is the environment obtained from p by changing it so the 
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variable x is associated with o' ). 

Not all type structures determine models; there may be simply not 

enough functions in the domains to support the semantics. An 

obvious standard model is obtained by taking the type structure so 

that D> = [D -> D.],  all continuous functions from Dr  toD 

with the application operator just the ordinary application of 

functions. Many other models are possible and according to 

criteria derived from the operational semantics the obvious model 

is not the best. 

The denotational semantics should"match" the operational 

semantics. Plotkin defined two natural operational relations. 

Terms are of interest only insofar as they are part of programs. 

For this reason it is natural to regard two terms as operationally 

equivalent if they can be freely substituted for each other in a 

program without affecting its behaviour. Formally define the 

equivalence relation by: M 	N if whenever CIM4-]  and C[N]  are rrojmms 

eva1([f4])ondevai(c[1-]) are both undefined or otherwise defined and 

equal. More generally an operational preorder can be defined by: 

Me.. 	Na-iff whenever c[M]  and  c[N]  are programs then whenever 

eval(C[M]) is c then soya1(C[N]). 

Clearly M N iff M 	N and N = M. For a semantics m the 
expected semantic counterparts of these two relations are the 

relations on terms given by M. m  Niff 'YY1 EM ]Jo 7YFN  ]J0 for all 

N 0. 	Nr  iff M 	Nand Ne.- 	M. 

In the circumstance when the relations 	and 	coincide the 

semantics N is said. to be fully abstract. 

For a standard semantics N the denotational relations will be 

included in the corresponding operational ones. However the 

converse will not generally hold. In particular Plotkin showed 

the obvious semantics based on taking D>  as all continuous 

functions [D -> D] is not fully abstract.. The counterexample 

depended on producing two terms which were operationally equivalent 

but denotationally distinct through acting differently on parallel 

or. Parallel or, (call it por) is of type (D,ThV). and has this 

truth table. 
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por  tt ff 

.L _1_ ft 

ft ft ft tt 

ff _j__ 	I 
It examines two arguments in parallel and if either is tt iyields tt. 

Compare it with sequential versions of or (called lor and or) which 

are obliged to look at one argument first (the left argument or the 

right argument). 

br tt ff 

J  I 
tt tt tt tt 

ff I J. 	I tt ff 

ror tt ff 

-LL ft 

tt tt 

tt ff 

br =)\xy.x D  x,y 	 ror =>.txy.y3r,x. 

Unlike !or and ror parallel or turns out not to be definable in PCP 

and because of this no program context can discriminate between the 

two termsPbotkin produced. He showed how by- extending the 

language PCP to allow limited parallelism the obvious model became 

fully abstract. 

Rather than extend the language PCP Milner showed how by 

restricting the model the semantics would be fully abstract. As a 

corollary of more general results he showed there was a unique 

fully abstract model for PCF (to within isomorphism) which he 

characterised as being that model in which all isolated elements of 

the domainwere definable in PCF. (An element is definable if 

there is a closed term which denotes it.) 

In fact in establishing the model's existence, Milner essentially 

constructed it from equivalence classes of terms determined by the 

operational relations. This method failed to specify directly, 

without reference to terms, precisely those functions which were 

allowed in the model. From the results of Plotkin and Milner it 

was clear that they had to be sequential in some sense but no 

existing definition of sequential cuts down the functions 

appropriately. The Kahn—Plotkin definition although precisely right 
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for low types of the form (tT,..., a;') where 0'. and ' are 
ground types does not extend up the types as the concreteness axioms 

fail there. The Milner and lTuillemin definitions, though satisfied 

by the functions are not restrictive enough. The problem remains of 

giving a purely semantic characterisation of the fully abstract model. 

8.2 The work of Grard Berry 

In the last section dOmains possessed only one ordering. 

Call it the extensional ordering as it reflects the extensional 

behaviour of the elements. On functions it was determined pointwise 

and it relates functions according to what values they give on 

arguments. With respect to this order the functions defined in PCP 

were continuous. If further operational behaviour of terms is to be 

reflected semantically so as to cut down the functions in a model of 

PCP one expects that domains should carry extra structure. For 

instance any notion of sequential function between domains should 

account for the nature of the objects represented in the domain. A 

function being sequential between concrete domains representing 

concrete input and output should not mean the function is sequential, 

when the same domains stand for functions ordered extensionally. 

Nor is the converse expected - see examples 8.2.1 and 8.2.2. 	Once 

the extra structure has been introduced to restrict the functions of 

the model one hopes that by then dropping it Milner' s fully abstract 

model will be obtained. These are the ideas of (rard Berry who 

introduced, the stable ordering as new structure ([Berl, [Ber and Cur]).. 

The following-  two examples illustrate the need for extra 

structure which must at least distinguish functions from basic values. 

Example 8.2.1 

The application map ap: [ -> 	x i3 -> D , acting as 
ap(f,x) = f(x) is intuitively sequential. Encircling the least 

values of [(1) .-> (0] x 0 which yield T under ap we get: 



 

i) 

T) 

21'7 

,T) 

 

Clearly the Yomain [D -> 
] 
xQ? ordered extensionally satisfies 

all the axioms of concrete domains and ap is not Kahn-Plotkin 

sequential. 

Example 8.2.2 

The function f: [ 	
-> 

(D] -> (1) defined by >.g.g(g(T,i_),g(J-,T)) 

gives T for the following least values. Again it is not Kahn-

Plotkin sequential. 

We trace -howie stable ordering arose.- One line of motivation 

is from the construction of syntactic models of the lambda calculus.. 

The idea is to capture syntactic properties in a semantic way and so 

restrict the functions present in a model.. For example Berry - 

has shown that the operation of enclosing -terms in a context induces 

a Kahn-Plotkin sequential function between domains of the syntactic 

model. The syntactic ordering in the syntactic model is the prefix 

ordering on Boehm trees, a kind of normal form ([Ber]).  He 

conjectures that for the fully abstract model of PCP the stable 

ordering is the image of this syntactic order. 
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In defining syntactic models of the typed lambda calculus it 

was natural to abandon the extensional ordering and even forget that 

terms defined functions. This led to a more general definition of 

model without the order extensional condition of the last section-

For Berry a model of a typed lambda calculus is composed of the 

following ([Ber 1): 

1 • A set of cpos E 0.- one for each type Cr'. 	(A term in an 

environment denotes an element in one of these.) 

A set of cpos-  D one for each type o . These are the domains 

of values which variables may be associated with. The environment 

Env consists of all type respecting functions 	from variables into 

D . 

Two continuous application functions: 

x 	->D 0 

Er xEnv -> D- 

4.: A semantics ')'Y which is a type-respecting - map- from terms into 

E.- sothat: 

Y}lE[x]J. r = 
JMTW J. = (n7ErM]].,o ) (mN]I1.f) 
(1)11JxM]J.p )oi = Vjmj . O [x/o'] for all in D. 

Such a model is said. to be extensional when for o, o(' in either 

or Er  we have 	= 	iff . 	 for all 

It is said. to be order extensional when for <,( in either 

D>or E we have 0< 	i±'f 'ç 

In this definition of model the cpos E can be thought of as 

functions from Env to values; the use of E leaves open precisely 

what functions to allow and what order to put on them. The 

definition ignores the constant functions of the language. Note 

however that fixed point operators 	can be given a denotation 

exactly as for-the standard models of the previous section because 

3 gives the required. mono tonicity (e 	=> 0< 3 Eo.'). The 

models we shall discuss will always be extensional though not neces-

sarily order extensional. In the work of Pierre-Louis Curien the 

model of algorithms is not even extensional ([Cur], [Ber and Cur]). 

Note that the standard models of the last section are order- 
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extensional models according to the above. definition 

Berry and Curien together found a means of constructing models 

from suitable order-enriched categories called J\,.--categories. An 

order enriched category [Wan] is a category in which morphisms are 

ordered so that the hom-sets form cpos making composition continuous. 

A 	-category is an order-enriched category which is cartesian- 

closed so that category-theoretic constructions satisfy sufficient 

strictness and continuity restrictions. We refer the reader to the 

definition of A -categories in [Ben or [Cur] for the exact details. 

We give the general idea precisely enough to support our exposition 

of Berry's work. 

Suppose we wish to constrain the model by imposing a condition 

P on domains and a condition Q on continuous functions. We shall do 

this soon when functions will have to be stable (Q) and epos 

distributive with continuous meet (P). To obtain a model it is 

sufficient to verify the following conditions (which determine a 

-category): 

Closure under conrposition: If D,E,F satisfy P and if h:. D -> E 

and h': E -> F satisfy Q then h'o h: D -) F satisfies Q. The 

identity 1D 
 for all D satisfying P satisfies Q. 

Closure under products: If D,E satisfy P then D x E satisfies P. 

The projections from B x E onto D and-Z satisfy Q. For all F 

satisfying P and all h: F -> D an& h':. F -> E satisfying Q, the 

function [h,hY] F -> D x E defined by [h,h'](o') = (h(o),h'(o')) 

satisfies Q. Also the same for countable products. 

Closure under erponentiation:. If D,E satisfy P then the set of 

functions [B _>Q  E] which satisfy 0. are ordered by G such that: 

3.1 (ED _>Q  E], Q) is a cpo satisfying P. 

3.2 Application app: [B _> Q  E] x  -> E defined by 

app(h,o) = h(o) satisfies Q. 

3.3 If D,E,F satisfy P an if h: D x E -> F satisfies Q then 

the map curry(h): D -> tE -> Q  F] defined by curry(h) (ac) çe) = 

h(ct',) satisfies Q. 

Continuity properties: The maps determined by composition o, the 

operation [ , ] and 'tcurryfication tt  are continuous (w.r.t. =). 
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Within the above set-up is is easy to construct a model from 

the morphisms: 

Choose D so D>., = ([Do. ->Q  D]Q) and 

([Env _> Q  Dr ], gQ). The environment satisfies P by closure 

under products. Put 1T(r) 	1°(x) and S. ((PC) 	([x/o(] - 

again by closure under products 7T x and S satisfy Q. 

Define the semantic function 'flhl{ 	by 

'YYlE[xII= T1. 
'1)11{MN]1 = app o[MJj,TI1I[NIfl] 

11!L\xN]1 = curry(lllItMJj o s) 

This determines a model. The above three definitions are abstract 

formulations of condition 4 in the definition of a model: 

= -ç.p = f(x) 

VIMNT-P = app o1[tNjfl.jO "yYl[rN]].(' ] 

(Y1i].o ) 
'1YxMJ1.p1 = curry( )'Y1IM]] o 

= (?,1[MII o s)(p ,) 

The category of cpos with morphisms the continuous functions 

ordered pointwise (extensionally) forms a. 	-category. The 

category of concrete domains with morphi.sms the sequential functions 

ordered extensionally does not; this'is because it is not closed 

under exponentiation (see tBer and Cur]).. 

Because ot major difficulties in constructing a sequential 

model Berry initially narrowed his ambitions to forming one from 

an approximate notion of sequential function. He called such 

functions stable functions. Stability is a property in between 

sequentiality and continuity. 

Definition 8.2.3 

Suppose f is a continuous function from cpo D to cpo E.. 

Then f is stable iff it satisfies 

V x E D )V 	f(x) 3 m(f,x,y) € D, y f(x) <=> m(f,x,y) 

The set of stable functions D to E is written as [D -' E]. 

A function is stable if for all arguments x and all approximations y 
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of the result f(x) there is a minimu 'm approximation m(f,x,y) 

which produces y under f. Thus the following functions are not 

stable. 	(Note parallel or is not.) 

Example 8.2.4 (Non-stable functions) 

(T, T) 

(T,±) 	 (-L, T) 

(J-,i) 

The

51  

 function function f: 	
2 -> 0 defined by f(1,i) = 	, f(T,L) = f(t,T) = T 

is not stable as there are two minimal values (T,I) and, (I.,T) which 

produce T under f. 

Parallel or: Importantly the function parallel or is not stable.. 

It has two minimal values (tt,..L) and (J,,tt) which produce tt.. 

All Kahn-Plotkin sequential functions are stable. However the 

converse is false as is now shown.. 

Example 8.2.5 (i stable, non-sequential function) 

	

Define 	T 3 -> (l 
f(J.,tt,ff) = f(ff4,tt) = 

n, 	 i.,- 	 . ixi = i then x dominates 

etc. However f is not s 

to be. the least monotonic funótion such that 

f(tt,ff,.J-) = T. 	Then f is stable; if 

one arid only one of the points ( L,tt,ff) 

equential; the directions from 

correspond to argument places and no one is crucial to producing T. 

Often it is convenient to work with a more general definition 

than that for stable functions. This definition determines the 

class of functions called conditionally multiplicative (mc). Often 

they are precisely the stable functions. 

Definition 8.2.6 

Suppose D,E are two cpos with-meets denoted by fl • Then a 

continuous function f: D -> E is conditionally multiplicative (or 

mc) iff 

V E D x 1' x' => f(x r-, x') = f 	r f(x') 



224 

Call the set of such functions [D -> mc E]. 

Stable functions are always mc between domains with meets. The 

converse holds whenever the domains are algebraic, consistently 

complete and the restriction of the domain's orders to isolated 

elements is well-founded. In general neither the stable or mc 

functions form a cpo under the extensional or pointwise ordering. 

When the domains are consistently complete and algebraic the mc 

functions do form a cpo when ordered extensionally. 

In order to form models from stable or mc functions they are 

required to form A  -categories. In this construction there is one 

major obstacle; the application function is not generally stable or 

mc with respect to the extensional ordering. For this reason Berry 

introduced another ordering, called the stable ordering <, on 

functions from D to E. Let D and E be two domains both with meets. 

To guarantee the application map app, defined app(hp) = h(), is mc 

it is required that 

hjh'ofo" => h 	h I (o< flo(')  =h(c) n h'(o(') 

where ttAI*  denotes the meet of the stable ordering <. 	The stable 

ordering is chosen to ensure precisely this. 

Definition 8.2.7 

Let D,E be domains with meets.. The stable ordering l < on 

[D -> me  E] is defined by 

h<h' iffhh'2 V.0<' ED cDo<.' => h(p) nh'(') =h(')rh'(a() 

(Here hh' means Ii is extensionally less than h') 

Intuitively the stable ordering orders functions according to the 

fashion in which they calculate values from arguments. For stable 

functions h and h' the function h being less than h' for the stable 

ordering means: whenever h gives an approximation to its final 

value for an argument then h' gives that approximation to its final 

value for the argument and moreover the minimal argument determining 

that approximation is the same for h and h' • The stable ordering 

is an ordering on the "behaviours" of functions. We make this more 

precise. 
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Proposition 8.2.8 

Let h and h' be stable functions from domains D to E which 

have meets and whose isolated elements are well-founded. Then 

h < ht iff h h' and V x € D 'y h(x) m(h,x,y) = m(h' ,x,y) 
where m(h,x,y) and m(h',z,y) are the minimal arguments given by 

the definition 8.2.1 of stable functions. 

We omit the proof (which is not hard) but give some examples. We 

denote the extensional or pointwise ordering on functions by qj and 

the stable ordering by <. For these examples stable functions 

equal mc functions. 

Example 8.2.9 

 

 

S 
([cP -.> 

Example 8.2.10 

=y ,  
D= 
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([71 ->s o 1  G ) 	 ([ tlr —> 3 c1 ].i) 

Example 8.2.11 	c 	 T 

U 2 
  

(10 2 	CD ]1) ([(p2 —> 8 
(D],) 

Having quit the extensional order in favour of the stable one 

some further properties must be imposed on domains to get 

exponentiation. As yet we do not even know stable functions and 

mc functions from a cpo under the stable ordering. However the 

exponentiation of two domains will exist when they have continuous 

meets. This assumption is preserved by stable exponentiation when 

the domains are distributive, a property which is easily inherited 
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by products and exponentiations. The end result: 

The category of distributive cpos with continuous meet having 

morphisms the me functions ordered by the stable ordering is a 

-category. 	(And analogously when the morphisms are stable 

functions.) 

Berry distinguishes a full subcategory of both the above 

categories. It is the category of dI-domains with objects those 

ópos which are in addition consistently complete, Cu -algebraic and 

satisfy axiom F. In this category the notions of me and stable 

coincide. 

From the above A  -categories a model for PCF can be 

constructed. The "parasite' parallel or has been eliminated. 

However a new kind of "parasite" has been introduced namely functions 

which are not monotonic with respect to the extensional ordering. 

Such models cannot be fully abstract; they are not even order 

extensional with respect to the "hidden" extensional ordering.. 

Fortunately this can be remedied. The trick is to order the domains 

in two ways, both extensionally and stably. Then in forming the 

exponentiation functions must be continuous with respect to the 

extensional ordering and me or stable with respect to the stable 

ordering. Then dropping the stable ordering on morphisms gives a 

..A-category ordered extensionally. This produces an order 

extensional model (a standard model of the previous section); 

ground types are chosen so that the two orderings coincide. 

The most general. bi-ordered domains Berry considers form the 

category of BIOPCDs. 

Definition 8.2.12 

A biopcd is a structure (D,c,<,,,L)  such that 

The structure (D,,L) is a cpo with continuous meet 

The structure (D,<,..L) is a cpo. 	The identity 

1D: (D,<,j) -> (D,c,i) is continuous. 

The function fl is <-continuous. 

(±v) The following property holds 

V S,S' 	D S,S' I= -directed 
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(Vs €S Vs' E St a  t e S,t' €5' s Gi t,s' 	t ,  ' t < t') => Us < 	Us'. 

Definition 8.2.13 

The category BIOPCD is defined to consist of biopcds as objects 

with morphisms functions which are continuous w.r.t. the extensional 

ordering and me w.r.t. the stable ordering. 

The category BIOPCD is cartesian closed and "forgetting" one or other 

of the orders on morphisms yields two A -categories. One is 
ordered extensionally and produces order extensional models. 

An important cartesian closed full subcategory of BIOPCD is 

DBIOPCD which has distributive biopcds as objects. 

Definition 8.2.14 

A biopcd (D,,<) is distributive 1ff (D,i) is distributive and 

x Ti y implies the stable supremum x  y exists and equals the 
extensional supremum x U y. 

The category DBIOPCD consists of objects the distributive 

biopcdz with niorphisms the me functions. 

The smallest category Berry introduces is the category of 

bidomain BIDOM.. The extra restriction defining them ensures that 

w.r.t. the stable ordering they are dI-domains. Thus considered as 

a full subcategory of BIOPCD the me restriction, on functions in 

8.2.13 is equivalent to insisting they are stable w.r.t.- . 

Definition 8.2.15 

A biopcd D is said to be a 'aidomainiff D is distributive and 

there is a <-increasing sequence { 'n I  € w} in [° -> me  D] so that 
the 	are (<-) isolated and <-projections with limit 

The category BIDOM is defined to consist of objects the 

bidomains with morphisxfunctions which are continuous w.r..t. 

and stable w.r.t. <. 

BIDOM is a cartesian closed full subcategory of BIOPCD (and 

DBIOPCD).. Forgetting about one or other of the orders 	or it 

produces two vk -categories; the extensional one gives an order 
extensional (standard) model of PCF - the domains at ground type are 

chosen to be D1,  = (/ J , , ) and Db  = ( 71' , , L). 	The model cuts 

out such functions as parallel or. However it is still not fully- 
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sequential but still included. 

By induction on types Berry shows that the stable ordering is 

'thidden't in the fully abstract model of PCF and that the functions in 

it are stable with respect to it. As remarked above the fully-

abstract model cannot contain all such functions. For first order 

types (of the form (o 1 ,...'cr; ') where 	and IC are ground types) 

he shows that the stable order is the image of the syntactic order 

and that the extensional order is the image of Plot]dn's operational 

preorder 	on terms. He conjectures that this state of affairs 

holds at all types in the fully-abstract model.. 

The work of Berry and Curien (tBer and  cur], [Cur]) on-models 

of algorithms shows the stable ordering will be very important for a 

semantic construction of the fully-abstract model. Some obvious 

approaches do not work however. The stable ordering alone does not 

support sequential functions; both parts of axioms Q.. for < can fail 

(see 8.2.10) and even coherence of < goes (consider < for example 

8.2.5).. This is why they have produced models of algorithms which 

are not extensional but do preserve the concreteness axioms up the 

types. Crudely put, an algorithm is built up from "events" which may ie 
decisions to output or decisions to test input.. 

22 
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Chapter 9. 	Higher type event structures 

In this chapter we show how event structures may be used to 

represent exponentiations and products of domains. 	In particular 

we produce a category of stable event structures which represent a 

cartesian closed full subcategory of Berry's bidomains. We 

construct the category independently of Berry's results though, of 

course, the basic intuitions come from Berry's work. 	Finally we 

link up configurations of the event structures with bidomains. In 

fact this is how it was done based on a few heuristic guidelines 

which we present in the first section. There are many gaps in our 

understanding. In particular we introduce a new ordering 	a 

sort of dual to Berry's stable ordering; how is it to be inter-

preted and is there a natural operational characterisation like the 

one Berry conjectures for the stable ordering? In the final section 

we indicate how the techniques might be refined to construct a fully-

abstract model of POP which depends on capturing its sequential eval-

uation. There are many issues raised and left open by this chapter; 

in this sense it is an introduction albeit a rather lengthy one. We 

refer to [Mac] for the basic category theory used. 

9.1 Introducing higher type event structures 

We start with a simple example of a higher type event 

structure which illustrates what we mean by them and how they are to 

be used. 	Let us look at event structures of the form (E,<,') satis- 

fying the single axiom e > e' 5 e tt => e 	e". 	These were introduced 

in chapter 4 where we showed how such event structures represented 

coherent prime algebraic domains. We showed that such an event 

structure determined and was essentially determined by a coherent prime 

algebraic domain; the left closed consistent subsets of an event 

structure E ordered by inclusion formed the coherent prime algebraic 

domain 	(E) and conversely such a domain D determined an event 

structure E, with events the complete primes, so that L(E) = D. 

Suppose (E1.1) for i = 0,1 are two such event structures. 

Can we also represent the function space [1..(E0) -> '(E 1 )] of all 

continuous functions ordered pointwise? After Scott [Sco] we know 

the step functions form a basis of isolated elements. 	A little work 

characterises the complete primes of [L(E0) -> t (E 1 )] as precisely 

those step functions of the form '> y.y a x -> [e] ,J_ , abbreviated 
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as e[x,e], where x is an isolated element of ,E 0) and e an event 

of E 1 . 	In fact [,(E0 ) -> 'j,(E 1 )] is coherent and prime algebraic. 

Define the event structure E 0  -> E 1  to consist of events (x,e) 

(standing for e[x,y]) ordered by (x,e) < (xt,eI) iff x' 	x 	e 

with conflict relation (x,e) 	(x',e') iff x "t' x' S. e 	e' 

where we have simply expressed the ordering and incompatability in the 

functions space. Then by the representation result of chapter 4 we 

have 	(E0  -> E1) ' [(E0) -> '(E1 )]; 	the isomorphism simply 

expresses a continuous function f as the configuration 

(x,e) e E f(x)}. We have represented the function space as an 

event structure. 

Even more simply, we can represent products of coherent prime 

algebraic domains. 	Let (E.,<., 1) for i = 0,1 be two event structures 

as above. 	Take E0 0 E1  to be their disjoint ji.taposition defined 

by the disjoint union () of their sets and relations: 

E0 	E1 =(E0 aE 1 , 

Then 4  (EQ 	E1) '  1,(E ) X 	(E1 ); the isomorphism expresses a pair 

as the configuration which is a disjoint union of the pair's arguments. 

Of course we have ignored intuition about what the causality 

relation < on event structures means. In the above constructions it 

can no longer generally mean "must occur before in time". Accordingly 

a finiteness restriction on the relation such as an event dominates 

only finitely many events will not generally hold in representing a 

function space. 	(This occurs for the construction E0  -> E 1  in the 

innocent circumstances of E0  including an infinite conflict-free 

subset and E 1  being non-null.). A chief virtue of event structures is 

supposed to be their operational nature; they have previously 

prescribed possible behaviours in time. Can event structures like 

-> E 1  representing a function space be made to reflect behaviour 

in time? What finiteness restrictions can be imposed which reflect 

this? We expect some extra structure is involved in order to 

distinguish the behaviour of the functional events (in E0  -> E 1  say) 

from say basic input events. 

Suppose (E1,.~.1,) for i = 0,1 are event structures representing 

input and output domains. To reflect this, on both we impose the 

additional axiom 

{el I <M for events e. 



([b],td) 	- ([a],d) 	
' 	(1,d) 

R 
([a],e) 

R 	 R 

,. L 	 (_t_,e) 
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The domain of continuous functions between the input and output 

domains is represented by E 0  -> E 1 . 	It is the ordering given by 

(x,e) < (x',e') iff x' cx and e <. e' which forces the finiteness 
restriction to go. However it naturally factors into two parts 

(z, e) <L  (x' ,e) <R  (x' ,e') where: 

(z, e) <(x' e') iff x'G0 x 2 e = e' 

(X, e) <R (x',e') iff x = x 	e <e'. 

Then we have the two finiteness properties: 

k<1 	{el( <Co and(<L fell <QO. 

The original order < can be recovered as (<L  v <' with < factoring 

as <L 0  <R. 	(Clearly the factorisation is unique too.) We can draw 

pictures of event structures using the orders <L  and 

Example 9.1.1 

Let E0  be the event structure consisting of two events a and b 

with a < b. Let E 1  be the event structure consisting of three 

events d,e,f with d. < e < f. 	The continuous functions, 

[(E0) -> 	(E1 )], can be represented by <-left closed subsets of 

-> E 1 .1 Draw E0  -> E 1  with the <L  and  <R  orderings between events 

L 	 L 	(-I, f') 

The function 	is determined by the following <-left closed 

subset of E0  -> 

L 	 L 

y 
A 

L.. L 
> 

The function 01 can  be viewed as having this behaviour: output event 
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d. regardless of input; thereupon inspect the input for [a];  where-

upon output e; thereupon inspect the input for [b];  whereupon output 

f. 	This behaviour traces out a "path": 

Notice that the behaviour is determined by the <L-maximal events of 0 1 , 

marked by 'd's 
 in the above diagram. 

Consider another function 	determined by the following 

<Lii events: 

I- 

jq 

(-. 

The function 02 is  certainly extensionally greater than 0 1 . However 
neither has a behaviour which is part of the other's. They do 

however share, a common subbehaviour, namely: regardless of input, 

output d. Call the third function this induces 	The extensional 

ordering between functions i '2'3 corresponds to inclusion of their 

configurations whereas the ordering on behaviours (Iti a sub-behaviour 

of") corresponds to jflciUSIQn of their < -maximal event- -e 

This is no more than a suggestive example, of course. However 

note that for a configuration x of E -> E 1 ,. corresponding to a 

function, we can define ?I(x) to be its <L-maximal  events so that 

every event of x is < 
L-below an event of MW. This is because Di 

satisfies axiom F.. Then M is a 1-1 correspondence from configurations 

x to their <kmaximai  elements M(x). The above example suggests this 

ordering as one on the behaviours of functions: 

x = x' iff M(x) 	M(x'). 

The stable functiais can be characterised easily using <L;  they 

correspond to configurations x such that 

V e E x 3e' E M(x) e <L  e'. 
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Call these stable configurations. 

A pay-off: The ordering 1. R is the image of Berry's stable 

ordering on stable functions. These facts follow from the 

definition of stable function (8.2.3) and the characterisation of the 

stable ordering (8.2.8). 	It also turns out that there is an 

ordering 	L on stable configurations so that 	factors uniquely 

as 	
L 	R o G R. (This fails if we take all configurations however; 

factorisation exists but is not generally unique.) Both 	and 

"extend" the corresponding relations J  and <R  of the event structure. 

Example 9.1.2 

The continuous functions from 91' X(1) to (j) , I ¶ x4) -> 0 ], 
are built up from these events. 

((tt,T) ,T 
	

(tt,.1) ,T) 

14  

T)'  

I 
((ff,T),T)J 	L . 	/(ff,i),T) 

We use T to denote both the maximum element of (1) and the 
corresponding event. A function in [ ¶ x D -> D] is represented 
on this diagram by marking its 	 imal  events its M-image. We 

define the functions f 1  ,f2  and f3  in this way. 

f3  

The function f 1  disregards its inputs and outputs T. The 

function f2  inspects its first argument giving T if this is ft other-

wise it inspects the second argument until T appears whereupon it 

gives T as output. The function f 3  has an intrinsic parallelism in 
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that if the first ar ument turns out to be ff or if the second 

argument gives out T it yields output T. Functions f 1  and f2  are 

stable whereas f 3  is not. Using 8.2.3 the functions f 1  and f2  are 

easily checked to be stable. 	Function f3  is not because it outputs 

T for minimal inputs (I,T) and (ff,i_) which have the (least) upper 

bound (ff,T). This means that the event ((ff,T),T) is < -below 

two elements of M(f3 
 
) 
the <L-maximal events of f3 . 

We extend these results beyond first order functions. Event 

structures have the general form E,< ,< ,sj  where the extensional 

order < is recovered as (< <1)*. For an event structure 

representing basic input or output < = 1 and? 	. The precise 

nature of the axioms they satisfy depends on the definition of config-

uration used. 

In this chapter we are chiefly interested in stable config-

urations - the definition mimics that of the first order. The 

associated event structures are called stable. They satisfy axioms 

which are preserved by a stable exponentiation ->. They possess a 

unique factorisation property: If < is defined from <L and? as 
,LR;* 	 L 	R 

i,j < 	then < factors uniquely as s o s • A stable event 

structure E has configurations R(E) ordered in three ways, by 

inclusion 	, by 9 R and by = L so that 	factors uniquely as 
L 	R 

	

; in fact the structure RE), 	, i. j is a bidomain. 

Given two stable event structures 	 for i = 0,1 we 

define the orderings < and? by: 

(x,e) <L  (x'.e') jff x 1 	x and e 	e' 

(x,e) ? 
(x',e') iff x' 	x and e 	e'.. 

This generalises the first and zeroth orders dealt with, has an 

elegant symmetry clearly preserves unique factorisation and the 

finiteness properties of < and ? and provides a representation of 

Berry's exponentiation on bidomains. 	In other-words it works. 

Surely there must be a more direct justification. (i have in mind 

some argument based on intuitive interpretations of < L  and <R  or 

some formal argument forcing this definition as that which gives 

cartesian closethiess of events structures under some general 

assumptions sifted from the work of 9.8 demonstrating cartesian-

closedness.) The conflict relation on E 0  -.> E 1  is defined by: 
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(x,e) 	(x',e') iff x Ix' & e'1  e'. 

Configurations will be i-left-closed and satisfy two 

constraints, one ensuring consistency with respect to conflict 

relation 	and- the other stability. 	In fact 	will only impose a 

weak constraint in forming configurations, expressing the fact that 

configurations do not determine many valued functions. If one 

wished to represent domains of ground-type which were not coherent 

the conflict relation would have to be abandoned. Instead we could 

work with an inconsistency predicate (as in 3.3.17) or a consistency 

relation on events. Virtually all results of this chapter (not 

necessarily those stating coherence) go through if either of these 

is used instead. A consistency relation con on events E is a sub- 

set of the 	subsets of E such that: 

conAL BA=>conB 

conAV 	
1c,)coB 

C-(E) 

If E0  and B 1  are event structures with consistency relations con 0 , 

con  respectively the consistency relation con of B 0  -> E 1  would be 

given by 

con {(x,e) (OE41 iffV4 {xp ( 	€ B}1' 	=> con{e I8Ei. 
Because the assumption 7 con A => 3e 1 ,e2  E A 1 con{e 1 ,e2 } (for A 

finite) is preserved by 	we can get by with a simple conflict 

relation. 	(In section 9.10 the sets of <L_maximal events associated 

with sequential functions of order 1 will he characterised. as 8ert1SdVeS eu 

configurations with respect to some enabling and consistency relations. 

A conflict relation alone would not be adequate.) 

A word on the examples: We shall draw event structures to 

illustrate properties or failure of properties. Event structures 

will represent bidomains and often those examples will correspond to 

fairly simple bidomains constructed from 7F and 0 by exponent-
iation and product. Where this is so we shall indicate the corres-

ponding bidomain and sometimes one which has essentially the same 

features. The manner of the correspondence is not strictly 

justified until later so we enclose these indications in brackets. 
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9.2 Stable event structures 

We begin the formal development motivated by the last 

section. The following axioms arose to support the definitions of 

stable configuration and exponentiation given there. "Arose" is a 

euphemism because other axioms true up to first order seemed natural 

too but were not preserved by exponentiation so had to be dropped. 

Definition 9.2.1 

A stable event structure consists of a quadruple (E,<L,<R,) 

where 

1. E is a countable set of events 

2. The relations <L  and  <R  are partial orders on E. 

3. Define < = (<L , 	Then 

e<e' => 2e" E E e <L ell <R e l .  , 

4. Define 	= (>L <R)* 	Then 

The set fe l l e' 	el is finite for all events e. 

The relation 	is a partial order. 

5. If two events e and e' are <L_compatible  then they have a 

.iL-supremum in E. 

6. The conflict relation A  is a binary irreflexive, symmetric 

relation on E such that for the < defined in 3. we have e > e' 

e" => e 	' et. 

The key axioms are 2., 3. and 4 (i).. The relation < defined in 3. 

represents the extensional ordering - we shall show it is a partial 

order. Axiom 3  expresses that < factors uniquely as <L o 

Axiom 4(i) certainly implies the finiteness properties of <L  and 

we introduced in the last section (viz.. < 	{e} and <L  e} are 

finite); its extra strength is needed so that -.> preserves them. 

Orderings based on 	have operational significance as we shall see 

and has been suggested in the introductory example 9.1.1. While not 

strictly necessary 4(u) facilitates showing this. Axioms 1. and 5. 

mean we get a bidomain from configurations while axiom 6. means 

expresses an extensional conflict relation; it imposes a weak 

constraint in forming configurations. Later we shall see some 

further assumptions which can be imposed on event structures so that 

preserves them. In an informal sense the axioms given are 

minimal with respect to the proofs. We give an example of one 
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natural choice of axiom true at order 1 and suggested by example 

9.1.1 but unfortunately false. 	It might seem that 

(e <H  e' & e <L  e") => 3 £ € E e' <R 9, e' <L 2 

or that (e' <R e , e" <L  e) =>3 	€ E . <R e 	<L e'. 

L 
e 1___.._.1E 

	

R+ 	
A..R 

	

e 	ell 

,, e 	Le 

H 

However neither is preserved by _> 9 (cee ex 

Throughout this section we shall work with a fixed stable event 

structure E referring to orderings as they are defined in 9.2.1. 

The unique factorisation property expressed by axiom 3. is very 

powerful. It enables a style of ttp±c4u.e  proof" using arrows 

and " _____' for <L  and <H 	This is illustrated in the following 
lemma. 

Lemma 9.2.2 

The relation < defined in 9.2.1 is a partial order.. 

Proof 

The relation < is certainly reflexive and transitive. To 

prove antisyinmetry we use a picture proof. 

Suppose e <,e' and e' < e. Then pictorially by factorising < 

for some events E and C we have: 

L<, 	
e' 

R 

From 

2. 

4R 
e. 	L 

we know e 	• Thus by factorising e < 8 we get: 
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Sn<R 
i.e. e 	 e for some 

But e 1 L 0  1R  e so the uniqueness of factorisation gives e = 

Then as <R  is a po e = a • Therefore the first picture collapses 

to 

L 	e l 

e 

The uniqueness of the factorisation of e' < e' gives e = e' as 

required. 

The following notation is useful. 

Notation 9.2.3 

For events e and e' write 

e 	e' i±± se" € E e <L  e".2. et  <L  e" 
iL 	 L 	L 

e 	e' iff 	e" E E e" < e - e" < e' 

and when the < L-join and <L-meet exist write them as e 
V  

et and 
L„.R 	R 	R 	R 

e A et respectively. Define I , 	, V , A similarly. For 

the ordering j we use  , 	V, A.. Thus for example axiom 5.. 

may be expressed as: 
AL If e 	e' then e L 
	exists 

L 	R We also write —< , —< and —< for the covering relations of 

<L <R and <respectively. 

R 
Thus e —c(' e' means e c, e: and 

or e' = e”. 

9.3 Stable configurations 

V e" E E e < R e" <Ret => e = e lf 

Suppose E is a stable event structure. 	In this-;section 

we define its stable ccnfigurations, characterise them in terms of 

their <L-maximal events (given by M) and examine the extensional 

order () given by inclusion. 
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Definition 9.30 

Let x be a subset of E. Say x is • 	-consistent iff 

V e,e' 	€ x 1 (e '5 	eO. 
Now we define the (stable) configurations of E. 

Definition 9.3.2 

Define the stable configurations of E to be subsets x of E such 

that 

x is <-left closed and 	-consistent. 

e,e' E x 	e 	e' => se" € x e,et <L e lt., 

Define (R(E),) to be the stable configurations R(E) ordered by 

inclusion. (Thus = R (E).) We write Li , .j and fl , n 

for suprema and infna of (R(E),) where they exist 

The definition imitates the first order one in § 9.1.. The 

condition (ii) restricts configurations to be stable. The ordering of 

inclusion on stable configurations corresponds to the extensional 

ordering on functions. 

As in section 9.1 the stable ordering will correspond to 

inclusion of the <Ljmai events of stable configurations. Such 

sets of <L-maximal events of configurations also provide another way 

of looking at stable configurations and in particular a character- 

isation of them (903.8)0 

Definition 9.3.3 

For x in R(E) define M(x) to be the < L-maximal events in x. 

We can establish the existence of sufficiently many IL-maximal 
events of stable configurations for the map M to be a 1-_1 corres-

pondence. 

Lemma 9.3.4 

V x € R(E) Ve E x 	e' E M(x) e <L  e'. 

Proof 

Suppose e E x E R(E). 	From 4(i) of definition 9.2.1 we have 

{e' e <L  ell finite. 	Thus 3 e' € M(x) e <L et. 	To establish 
uniqueness suppose e < L e' and e < L e

,, for e',e' € Mx). 	Then 

e' 	ell so using condition 11) of 9.3.2 defining stable 
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configurations we have e' = e " . a 
Definition 9.3.5 

For x in R(E) and e an event in x define ni(e,x) to be the unique 

event e' provided by lemma 9.3.4. 

We can now use the following obvious fact in our picture-proofs. 

Lemma 9.3.6 

Suppose x € R(E). 	Then 

e € x £ & € x X e 
,L 
 e' => m(e,x) = m(e' ,x). 

In the main we shall draw <L  (or--) across the page and 
1R 

 (or 

.-._) up the page. 	Then lemma 9.3.6 can be pictured as 

<R-direction 

R 	. ' m(e,x) =m(e',x).. 

- 	L> 	 M(x) 
<-&irecti on 

It is now obvious that M is 1-1. 

Lemma 9.3.7 

The-map M defined in 9.3.3 is 1-1. 

Proof 

- 	Suppose x,f € R(E) and that M(x) = M(x-). Take e in x., 

Then m(e,x-) € M(x'). 	As M(x') 	x' 	and x' is <-left closed, we 

have e € 1t Thus x S Xt  and similarly x t 	- x so x = 

We can characterise sets of the form M(x) for x in R(E).. 

Theorem 9.3.8 (Characterisation of the range of M) 

ax€R(E) y=M(x) 

if f 

y is 	-consistent 

Ve,e' € y e 
IL  e' => e = el 

'v'e € 37 Ve' ? e  3 e" € y e' 	e". 
Proof 

11>l? Suppose y = M(x) for some x in R(E). 	Then (i) is obvious 
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and (ii) is clear by 9.3.4. To show (iii) suppose e € y and 

e' <R  e. 	Then e' € x so e' . 	in(e',x) € y. 

tt<_t? Suppose y LE and y satisfies (i), (ii) and (iii). 	Define 

X = { e E E 13  e' € y e <L  et}. 	We show x € R(E) and y = M(x). 

First note x = {e € E(e' € y e < e'}. 	For suppose e < e' E y. 

Then e <L  e"  <R  e' E y so by (i±) above 	y e't <L 	giving 

e <La. 

Thus x is <-left closed. Also x is consistent as y is. 

Suppose e,e' € x and e 	e'. 	Then e 
<L 	 L 

and e' 	' for some 

in y-. But IL e' so by (ii) above = E. Thus 
e,e' <L  S C x. Therefore x C R(E). 	Obviously M(x) 	y and from 

(ii) the converse inclusion is clear giving y 

This theorem is very important technically. It also is very,  

suggestive.. Conditions (i) and (ii) can be regarded as together 

being a consistency requirement while (iii) indicates a kind of 

securing.. We explore this later in section 9.4. 

We now examine the structure (R(E)g).,- the domain ordered 

extensionally.. 

First- some notation. 

Definition 9.3.9 

For A a subset of , E we define [A] to be the <-left closure of A 

i.e. 

[A] =- {e € E 	E A e < a 

We shall write[e]  for [{e}]. 

Theorem 9.3.10 (Properties of (R(E),)) 

(i) V  E E [e] € R(E) and 

Ve,e' €E (e <e' <=> [e][e']). 

(R(E),) is an C4 -algebraic, consistent complete cpo with 

...-L=Ø 
The supremum of a directed set S is Us. 
For X a non-null subset of R(E) we have Fix = fl  x. 
For x in R(E) the element x is isolated in (R(E),) i'ff 

M(x) is finite. 
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Proof 

(i) Suppose e E E. 	Then [e] is certainly <-left closed and 

is easily seen to be consistent. Assume 0, 	[e] and 

Thus in a picture factoring E. e and 8 1  < e' we get: 

e 

for some 	in E. 

it 	• 
Unique factorisation gives fl= fl) so 	, 	 E [e]. 

	Thus 

Eel E R(E). 	For e,e' in E it is clear e < e' <=> {e] 	[e']. 

(ii) (a) The null set is clearly in R(E) and it is the 

-minimum element. 

Let S be a directed subset of R(E). 	Clearly if the 

supremum of S, say llS, exists then Us cjJs. Thus it suffices to 

show Us € R(E). This is trivial.. 

Suppose 	x<R(E). 	Clearly ifñl E R(E) then 

()X = fix. However () X is certainly :j-left closed and consistent and 
• also if e, e" € i iX with e 'IL e. then for any x in I there exists 

e V L.  et which is in x giving e V e' in flx. 
From (c) it follows that (R(E),.) is consistent-complete. 

Suppose for I a subset of R(E) and. y in R(E) we have X Y. Then 

(•\ {' I K 	yt I is in R(E) and equals Lix. 

Suppose x € R(E) and JM(x)j <oo • Then as 
x = {e' € E 	e € M(x) e' < e} we get x is isolated.. Conversely 

suppose x is an isolated element of (R(E),). Assume AM(x). 

Then it may be checked that , ( -" A) 	M(x) satisfies properties (i), 

(i±),. (iii) of theorem 9.3.8. 	Thus t 	1A (\M(x)] € R(E). 

Consider 

S = [ [ -,< -'A /N M(x)]j A is a finite subset of M(x)}. 

The set S is directed and x 	S. Thus 

= [ 1 A 1 	M(x)] 	•.. 	[ 1AM(x)] 

for some finitesubsets A l . ... ,A of M(x). 	Therefore 
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As each A. is finite each 	A. is finite. 	Thus M(x) is 

finite as required. 

To show (R(E),) is algebraic suppose x E R(E). 	Then 

x= (J{[1ArM(x)]!Aisauinite subset  ofM(x)] 

as above where each element { 	A ,'\ M(x)] is isolated by (d) 

above. Finally it is W -algebraic by (d) as E is countable. 

pfme abe4/a1c 
InrelL1e cpo (R(E),) is not/nor are elements of the form [e] 

prime, and LI L U generally,, The following 

simple example suffices. 

Example 9.3.11 

Suppose E has this form: 

elt 

>T' 
Then [e] u [et] A R(E) so [e] i.j [e'] = [e s'].. 	As Li II 

the cro  (R(E),) is not prime algebraic. 	(E is the event 

structure of. [(p2  _> 01.) 
9.4 Images of P4 are-configurations, some "'staircase" orderings 

Throughout this section we work with a fixed stable event 

structure E. 

Recall theorem 9.3.8.  It characterised configurations x in 

terms of the set P4(x) of its <L'-maximal elements. It said y was 

of the form P4(x) for some i in R(E) iff 

y- is 	-consistent 

Ve,e' € ye 	e' => e = e' 

V  E y Ve' <R  e 3 ell  y e' J  ell. 
These conditions make y itself look like a configuration.. 

Conditions (i) and (ii) express the consistency of Y. 

Condition (iii) suggests events in y are secured with respect to 

an enabling relation k— so that for e in r 

{ett € y 	e' .<R  e & e' <L ett} 1— e. 



Because 	is always finite we know events really are 

secured. We can picture the securing of an event in y as: 

We have only drawn one "thread" through the securing. 

Such "threads" look like staircases. In a sense they 

represent "relativisations" of 	to sets of the form M(x) for x 

in R(E). They are not restrictions of 	as the following 

example shows. 	(A more-real-life example is the event structure 

of [[PxP-> 5  Q ] ->1].) 
Example 9.4.1 

Suppose E consisted of three events 

as shown. Set r = {e0 ,e}. 

Clearly e2 	e0  yet —K' { e0 } = 0.. 

M(x) 

 

There are however three candidates for the relation 	relativised. 

to M(r); we might say two events e and e' were in this relation if 

any of these situations held.: 

- 	

II 

L, 

L L 

IL 

M&) 	 M(z) 
Fortunately  they all determine the same relation which we call -< M  

_\ x• 
In proving  this we use the following relations. 
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Definition 9.4.2 ("Staircase" orderings) 

Suppose x E R(E). 	Define the following relations on E. 

=>L 	R o 	 (e 	e':  
It,  

= 	t x2  (e 	e': 
= 	jM(x) 	(e 	

I) 

- >L P X2 0  <R2 (e 
	e':  

M 1 >L M() 
t 	o 	 (x) (e 	M 1e':  -  

Define 	= and 
X, 

	
M 	JM1* 
x 

The following-  lemma shows that a 	chain determines a 

unique - 
	chain as its image in M(x). 	(This will be important 

later for the 	ordering on configurations.) This is then 

use& to show that the three relativised versions of 	above are 

the same. 

Lemma 9.4.3 

U) For e,e' in x where x € R(E) 

 e 	I 	e' 	=> m(e,x) 1vt1  m(e' ,x) 

 e -< 	e' => m(e,x) _41 
"- m(e',x) 

(ii) rM(X)2 = 

Proof 

(i) Suppose e,e' E x where x E R(E) 

(a) Assume further that e 41 e' so e >L a  <.R et for some 2. 

We have this picture: 

cc 
L 

'F 

------k- ----- 	 i 
2 
	

L 	 L 

where the dotted line represents the factorisation of 6 < m(e',x). 



We have n I  e so by lemma 9.3.6 we have m(,x) = m(e,x) so 
L  
 m(e,x). 	Thus m(e,x) 	

Ml
m(e',x). 

(b) This follows by induction on the number 	links in the 

chain e to e' using (a). 

(ii) Part (i) (b) gives 	= 	 We now show 

=Clearly 	 X . We prove conversely 

that 	
(e 	e' => ee') 

by induction on the well-foundedness of 	For minimal e' it 

is -clear. 	Otherwise suppose e < e' S,, e p  e'. 	Then by the 

definition of 	we have, for some e", that e 	e" _<R  e'. 

Then m(e",x) Ji3 e' and, by (i) (b), also e M m ( ett, x). 

In a picture: 
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e 

By induction e .J-3 m(e",x). 	Thus e --- 	e' as required. 

It is quite possible to have e 	e' and n(e,) = m(e',x) as 

the following example shows. 

Example fl  '. 4 .  r A 
 - 

e 	L 	
Take x = [ e1] in the event structure 

R 	 eft 	drawn. Then e 	e' and m(e,x) = 

e 	L 	 in(e',x) = e". 

(This situation occurs in the event structure of [[ (D -> (1) ] _>O].) 

Using the new relation 	we can give a characterisation of 

elements of the form M(x), for x in R(E), as a kind, of configuration. 

We define the appropriate enabling and conflict relations below 

(Cf. definition 3.3.1). 

Definition 9.4.5 

Define the stable-conflict relation 	by: 
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Say a subset x of E is 	-consistent 1ff 

V e,e' € x i (ee'). 5 

Define the stable-enabling relation !— 	&(E) x E 
by: 	A F5 eiff(i) Va€Aa — e 

A is 	'-consistent 

\ie 	e 3 a € A e' <L  a. 

Suppose e E E and x 	E. Say e is H-secured in x iff 

e,...,e € x e = e2 V'i < nA 	{e0 ,...e. 	A I- e.. 

Say x is H-secured iff all events in x are l-5-secured  in x. 

Say a subset x of E is an s-configuration iff 

(1) x is a-consistent 

(ii) x is j--secured. 

Theorem 9.4.6 

3 x € R(E) y = M(x) iff y is an s-configuration. 
Proof 

tt>!t Suppose y = M(x) for x in R(E). 	By theorem 9.3.8 y 

is 	-consistent. Suppose e € y. That e is \-5-secured in y 

follows by induction on (- 	1 {e}t : first note-4x 1 {e} F e; 

then by induction each element of M 	{e} is secured so e is 

secured. 

Suppose y is an s-configuration. Then y satisfies (i) and 

(ii) of theorem 9.3.8 as y is X-consistent. To show (iii) we 

prove by induction on the well-foundedness of that 

V e'(e' <R  e € y => 3e" Eye' <L e tt) 

Suppose e' <R  e c y and further that e' ? e"— e for some 

e" (if no such e" exists the induction hypothesis is obvious). 	As 

e is secured in y we have some £ in y such that e" < E . In 

a picture: 



L. 

y 

'Factorising e' < 	we have e' <L a ,  <Rc for some 	'. As 

8 	e,by induction we have for some e" in y that' 	e". 

This/gives e' <L eft as required. 

Of course we have already studied configurations of the form 

given in definition 9.4.5. Then configurations were ordered by 

inclusion. From the results of chapter 3 we canmediately write 

down a corollary to theorem 9.4.6. 

Corollary 9.4.7 

The set MR(E) ordered by inclusion is an irreducible-

algebraic coherent cpo satisfying axioms F,C,R and V. 

Using the following observation we strengthen Irreducible-

algebraic to prime-algebraic. 

Lemma 9.4.8 

Let (E,/,) be an event structure as defined in 3.3.1. 

Suppose A F—e . A' )—e & At...' A' is consistent => A , A' He. 

Then P(E) the set-of configurations ordered by inclusion is 

prime-algebraic. 

Proof 

Let (E,F ,5) be an event structure satisfying the property 
above. Complete irreducibles are minimal securings of events. 

By induction on the depth of securing the supposition gives any 

two distinct complete irreducibles associated with the same event 

are incompatible. Let x be a complete irreducible, associated 

with event e, and assume x cUT for Y q P(E). Then e € y for 

some y in Y. The complete irreducible associated with e and below 

y must be x - any other would be incompatible. Thus z is a 

complete prime. Therefore any complete irreducible is a complete 

prime and P(E) is prime-algebraic. 



Corollary 9.4.9 

The set MR(E) ordered by inclusion is a prime-algebraic 

coherent cpo satisfying axioms F,C, R and V. The complete primes 

are minimal securings of events. 

Proof 

By the definition of 	we have A /- e . A' - e 

A / A' implies a ), a' for some a in A and at  in A'. 	Then use 

the above result. The complete primes coincide with the complete 

irreducibles which are minimal securings of events.I 

Note the axioms C and R follow from prime-algebraicity anyhow while 

axiom V is then a consequence of coherence. 

In the next section we look at the structure (NR(E),c) in 

more detail. Intuitively it is the set of behaviours ordered by a 

sub-behaviour relation which will turn out to be Berry's stable 

ordering; we expect axiom F in such a situation. 

9.5 The structure (R(E),R) 

Again we work with a fixed stable event structure E. We 

study the inclusion ordering on sets of the form IYIR(E). As M is 

1-1 it is a partial order on R(E) which we call cZ. 	(As 

remarked it is Berry's stable ordering in fact - see section 9.7.) 

Definition 9.5.1 

For x,y in R(E) define 

y iff M(x) 	M(y). 

We note some simple facts about 	it is a partial order 
R 

extending < 

Lemma 9.5.2 

The relation 	is a partial order on R(E). 

e E M[]) iff e <.R  e'. 
F. , 	ri 	Rr 

L e 	e iff LeJ 	e' 

Proof 

Clear as M is 1-1. 

Suppose e E M([e']). 	Then e < e' so by 

factorisation for some e" we have e <L  e" 	e'. 	But e is 



2-1 

in [e] so e = e giving e <R  e'. 

fl<=tt Suppose e <R  e'. 	By unique factorisation e E 

(j±) This follows from (ii) as Eel 	
R  [e'] iff 

From corollary 9.4.9 we know (R(E),R)  is a coherent prime 

algebraic cpo. We now list some properties of the suprema and 
R 	 R 

infima of 	. Note that for 	-compatible subsets suprema 

and. infiina coincide with those for 

Lemma 9.5.3 (the sup. and inf. properties of çR) 

The structure (R(E),R)  is a coherent prime algebraic cpo, 

with J. = $, such that 

If x is a = R 	tble subset of R(E) then 

M(L)RX) = UMX A. URx=L/x=LJx 

	

and M(flRX) = flMX 	flRxC}xflx 

If S is a 	di 	td subset of R(E) then 
LIRS =  Us. 

Proof 

The additional properties (±) and (ii) follow using theorem 

9.3.8. 

Note that in general flRx  does not equal ()x as shown in 

the following example. 

Example 9.5.4 

e 	 e' 	For this event structure (associated with 

[C 

 

_>s D 
ri 	Eel] 	r 	, i 	ri 	Rr 1  
LeJ ,' Le J = Le J . Y' = LeJ fl 	Le 

There follows an easy characterisation of .R_compatibility. 

Lemma 9.5.5 

For X a subset of R(E), x is 	R_compatible iff 

X is s-consistent 	,x2  E X Ve € x1 A x2  

m(e,x 1 ) = m(e,x2 ). 

Proof 

Use theorem 9.3.8. 



Corollary 9.5.6 

For x,x' in R(E) and e,e' in E, AR  x' A e E x e' € f 
, 	\ 

< e 	e => mte,x) = m / e',x 

Proof 

Use 9.5.5 with 9.3.6.0 

We already know (R(E), q ) is prime-algebraic with the 
complete primes corresponding to minimal securings of events. The 

next lemma provides an alternative characterisation of the complete 

primes. 

Lemma 9.5.7 

Suppose x,y are in R(E). Then 

x 	y => Ve € M(x) 	M(y) 	M 1 { e } = M1 i} 

Proof 

Suppose x 	y for x,y in R(E) and that e € M(X)/) M(y). 

It is shown by induction on the well-foundedness of 	that 

•{e 	M-1 fel using lemma 

Another characterisation of the &_compiete primes: 

Lemma 9.5.8 

Let x be in R(E). 	Then x is a complete prime of (R(E) 	R) 

iff ae € M(x) Ve' € M(x) e' 	e. 

Proof 

Suppose x € R(E). 
n 	tt 	 / => Assume x is a complete prime of iR/Ej, R . 	Then 

	

/ .. 	M-1 	 c M-1 Mix) = 	.. 	where each set 	 satisfies the conditions 
eEM(x)X 	 X 

of theorem 9.3.8. 	Thus as x is a complete prime x = 1 {e} for 

some e in M(x). 

'<= Assume M(x) =,', M-1
.le} for some e in M(x). 	Suppose 

x 	URA for some 	-compatible subset of R (E). Then 

M(x).M(a). 	Thus for some a in A we have e € M(a). By 

lemma 9.5.7 as x 	a we 	ow Ml{ e } =.M_l{e} = M(x) so 
N(a) i.e. x 	a. 	Thus x is a complete prime. 

The above result justifies this definition. 

62 



Definition 9.5.9 

Denote the set of complete primeof (R(E), 
gR

)  by 

Pr(R(E)). 

Define ev: Pr(R(E)) -> E by setting ev(p) equal to the unique 
M-1 

event e s.t. p = 	je 

We sum-up some properties of (R(E),cR). 	Note that the 

R_isolated elements of (R(E),c. 	are precisely those config- 

urations x such that M(x) is finite; thus they coincide with the 

isolated elements of (R(E),(). 	Any configuration x decomposes 

into complete primes. From the characterisation above this can 

be expressed simply in terms 

Theorem 9.5. 1 0 

The structure (R(E),R)  is a coherent C)  -prime algebraic 

cpo satisfying axiom? 	= ;. the complete primes below x 
r -.. M-l

i
c 	-i 

are those elements of the form Lejj for e in x. 	The 
R_ isolated elements are characterised as those configurations x 

with M(x) finite. 

Proof 

Clear from 9.4.9 and the results of this section. 

As the isolated elements of R(E) with respect to the two 

orders 	and g are the same the following terminology is not 

ambiguous. 

Definition 9.5.11 

Define R(E) 0  = 	€ R(E)j jM(x)L < bo}. 	Say the elements of 
f.\0 REj are isolated. 

9.6 The structure (R(E),i) 

With an eye 

structures we introd.0 

configurations. For 

ç )* and it is 

The new ordering 

to defining stable exponentiation on event 

e a further ordering 	L on stable 

an event structure 	is defined as 

assumed < factors uniquely as 

is defined so that 	factors uniquely as 

Definition 9.6.1 

Define the relation C. on R(E) byi For x,y in R(E), 

5-8 
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If there exists 	L so that C= factors uniquely as 

the above definition gives it. For arbitrary partial 

orders instead of 	and 97 R the definition does not necessarily 

yield a partial order. That 	is a partial order will follow 

soon from the characterisation of G= L Unique factorisation 
follows directly from the fact that Q R_ compatibl e  elements of 

R(E) have a Q Rmeetq.ig( e 

Lemma 9.6.2 

For x,y in R(E). 

x 	y => 	z € R(E) 	 y. 

Proof 

Suppose x,y E R(E) and x 9 Y. 	Take z = IkR{ z t \x zt 	
R 

flz'jZ'ri by lemma 9.5.3. 	From the definition of 	we get 
L 	R 

x 	z 	y. The definition of x guarantees uniqueness. 

The characterisation of ..
L  is suggested by the following 

simple observation. 

Lemma 9.6.3 

For x,y in R(E), 

x 	y iff Ve E N(x) 	e, rz M(y) e < e'. 

Proof 

Suppose x,y E R(E).. 

=> 	is obvious by lemma 9.3.4. 
It<!t Suppose e € M(x). 	Then m(e,x) <L  e' for some e' in M(y) 

giving  e < L e' so e € y. 

Note that the event el is unique in the statement of 9.6.3. 

We can represent x 	y pictorially 
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The next theorem characterises M(z) for the unique z such that 

z 	y as being the smallest KM_left  closed subset of M(y) 

containing the <images of M(x). 

Theorem 9.6.4 (characterisation of G L) 

Let x,y  be in R(E). 	Then 

y iff (i) V e € M(x) E1 & € M(y) e <L  e' 

(ii) V e E M(y) a e € M(x) e' 	M ni(e,y). 

Proof 

Suppose x,y € R(E).. 

"<=" Assume (i) and (ii) hold. By lemma 9.6.3 we have x 	y. 

Suppose x 	Z 97  y. 	Suppose e' € M(y). 	Then e' 	m(e,y) 
\ for some e in M( x).. As x z and z ' - y we have m

/ e,y) = /  

(by lemma 9.5.5). 	Then by lemma 9.4.6 we have e' E M(z). 	Thus 

z = y as required. 

Suppose x 9 L  y. Certainly (i) holds by lemma 9.5.3. 

Suppose (ii) failed i.e. for some e' in M(y) we had 

V e E M(x) ' (e' 	tn(e,y)). 
640, 	

3t 

rhen\set M(y)\ 	M e ?1 satisfies all conditions of theorem 

9.3.8. 	Thus it defines an element y' of R(E). 	Clearly 

x 	y'y so x 	y-, a contradiction. 	Thus (ii) holds as 

required. m 
Corollary 9.6.5 

The relation 	L on R(E) is a partial order. 
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Proof 

Reflexivity and antisymmetry now follow easily. To prove 

transitivity use part (i) (b) of lemma 9.4.3. 

The ordering = extends J in this sense: 
Corollary 9.6.6 

For e,e' in E 

L 	
L
ri 	L 

L
r e< e' iff 	9J '= 	e,  

Proof 

follows easily using theorem 9.6.3. 

Clearly m(e,[e']) <R e'. 	Also by theorem 9.6.3 for 

some 	<R ewe have m(a,[e']) = e'. 	Lemma 9.4.3 gives 

m(€ ,[e']) = m(e,[e']) o e < e' as required. 

From the characterisation of L it follows that any isolated 

elements of R(E) is =L_domjflated  by only finitely many elements 

of R(E) which are necessarily isolated. 

Corollary 9.6.7 

Suppose x € R(E) 0 . 	Then {y € R(E) \ x L 
 y} is finite and 

for all y E R(E) if x q y then y € R(E) ° . 

Proof 

If x € R(E) 0  then M(x) is finite. 	Thus E' 1 M(x) is finite. 
Suppose x .L  y. By the characterisation of 	L we have 

M(y) 	M(x) so M(y) is finite so y is isolated. 	As 

1 M(x) is finite there can only be finitely many such y. 

At this point it is useful to extend some previous notation. 

For e an event in a configuration x we use m(e,x) to denote the 

unique <kmaximai  event of x <L_ above e. We have extended <L  and 

	

on events to orderings 	and 	R on configurations so that 

unique factorisation is preserved. 	Consequently we may extend in. 

Definition 9.6.8 

Suppose x,y are in R(E). 	For xy define-(x,y) to be 

the unique element x' in R(E) such that x 	x' EjR  y. 

Note ,M.([e],x) = 	1 {m(e,x)} fore in x (thus j. gives the 

prime generated by e in M(x)) and also that m(e,x) = ev(,,It([e],x)). 



We note some peculiarities of C L (it seems a very 

pee uliar ordering from the point of view of denotational semantics). 

It appears that x 	y means the behaviour of y "simulates" that 

of x but for less input (see 9.6.11). 

Example 9.6.9 
	 1 ;7 

A 

eo 2. > 

	

E 	 (R(E) 
In this example we have drawn an event structure E and alongside 

it the domain (R(E),R) — the dotted line represents the 
\ 	L additional ordering — gives. 	Below we draw i i  Rt/  Ej,( ). Note 

that 	• 	L. hl w-i1h 11 nihr' 	 hii 	41 

.. _minimum. 

e 0 1 

L i

. 
le 11 {el , e2} 	{e2} 

(The event structure E is that associated with stable functions 

from Tto 	.) 

Example 9.6.10 

e
ll 	 e 

E 

For the event structure E above (associated with [ N -.> D ]) stable 

configurations are either subsets of fe . i E(i)}  or the full set 

E. Ordering by inclusion gives 	. 	Ordering sets of the first 

57 
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form by inclusion with E above 0 'but otherwise incomparable with 
RL sets of the first form gives g . Accordingly 	looks like: 

t. en-null subsets of  fe ~ t~D 
So the configuration E =L_domiflates  an uncountable set of 

configurations. 

Example 9.6.11 	 -- 

io 

eO

- 	 '-. 

MC) 	 ) 
In this event structure take M(x) = {e0 ,e 1 ,e 2 1 and 

= {e, i 9213 	Then x CL y. 	Note 22  is not 
>L  any eveL in M(4. 

(T1e even&s+rticiure occurs ;n {[1x—iij—] with e0 = 60 = (€,T), 

= 	 e2  = (4 ,T), e 1  = ( )) ,T),. 	= (T ,T) and 

= ( 	,T) where we represent functions from 9T'xO =I to 

by the minimal points at which they give T. I am grateful 

to P.L. Ourien for - this example.) 

L I do not understand 	. atall well: The converse relation 

has the more intuitive properties (e.g. 9.6.7). 

9.7 Stable erponentiation and products of event structures 

We have established many properties of R(E) for an event 

structure E satisfying  the axioms of 9.2.1. 	In particular we 

defined two partial orderings 	and 	such that 	, 

equalling (L 	R)* factored uniquely as 	
L 	

We now 

define an exponentiation on event structures satisfying the 

axioms of 9.2.1. 	The term "exponentiation" will be justified in 

the next section where we define a category of event structures. 



Definition 9.7.1 

Let E0  and E be event structures satisfying the axioms of 

9.2.1. 

Define E 0 	l -> E to consist of events s 

{(x,e) 	 € 	 e E E 1 }
0  ) 0 

ordered by iL  and < where 

(x, e) <L (x'e') 	x' 	x 	e <
L

e' 

(x, e) <R 	,ee) iff x' 	
L 
 x 	e 	e' 

with relation' given by 

(x,e) 	(x',e') iff xtx' R e 	e'. 

(In the above definition we have not indexed relation symbols to 

indicate their domain,which above, and in future, should be clear 

from the context.) 

It would be a sick joke if, having got this far, the axioms 

failed to hold for the exponentiation of event structures. They 

do. The only difficulties are in showing axiom 4 is true for the 

exponentiation. From the definitions of the orderings < L  and 

	

on the exponentiation the relation (x,e) 	(x',e') has two 

parts; one is e 	e' in E while the other is 
(Lf'R(E) 	RfR(E)O)I 	By previous results an isolated 

element 	-dominates and is = L -dominated by-only isolated 

elements. This gives 

Lemma 9.7.2 

Let E be an event structure as in 9.2.1. Then the relation 

(jLR)*tR(E)Q is identical to the relation 

(.LtR(E)° 	RR(E)O) 

Definition 9.7.3 

Let E be an event structure as in 9.2.1. 	Define 	on R(E) 

as 	 and 	as 	J'R(E) ° . 

Proofs of properties about 	on exponentiations will depend 

on corresponding properties of 	above holding. For example 

showing 	is a partial order on E0  -> 	will require that 

is a partial order on R(E0 ) P. In fact the next lemma shows this. 
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It has an intriguing proof. 

Lemma 9.7.4 

Let E be an event structure satisfying the axioms of 9.2.1. 

Define 	on R(E) 0  as in 9.7.3. Then 	is a partial order on 

R(E)0 . 

Proof 

We need only show antisytnmetry. Thus suppose for x.,x! in 
/ RE we have: 

(i)0 R ,L x1 
 .R 	 L 	R 	£ x = x0 L x 

We shall show x. = x! = x. = x for all 	 the 
01 	1 	3 

definition of - 	it follows that 	is antisyminetric. 

Define fix =IIM(r.). 	We first show fix E MR(E). 	Conditions 

(i) and (ii) of theorem 9.3.8 are obvious. 	It remains to show 

(iii). 

Thus suppose e E fix and 	e. Consider the chain 

As x0  q R X 1  we have in(,x0 ) = m(,x6). At the next link in the 

chain x 	
L x

1  with € in x and x 1  so m(',x) >L m(,x 1 ) (by 

lemma 9.3.6). 	In a picture: 

Continuing in this way along the chain (i) we get:. 

m(9-,x0) = m(E,x) >Lm(e ,x 1 ) = m(2.,x >L m(,x2) 

>L m(,x). 

But x0 = x 	m(2,x0) = 
m(€,x0) for all i. 	Thus m(€,x0 ) 

(iii) of 9.3.8. 

As <L  is a ro,m(,x.) = 

E fix so fix satisfies condition 

Consequently fix € MR(E) and clearly [fix] R X•,X for aii'L 
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It remains to show [fix] = X. = x! for all i. Without loss 

of generality it suffices to show x 0  =x = [fix]. 

Take e € M(x). 	Then by repeated use of theorem 9.6.4 

characterising 2i' we deduce from (i) that 
jM 	, L 	, L 	L 	 L 

(2) e = 	e0 	e1 	,ei > e2 ...> e 	e l  > e+1... 
0 	 1 	 m] 

(here [m] is mmodulo n) 

for some e. in M(x[]) and e! in M(x[.]) where i € ( i. 

The sequence has been continued infinitely by going around 

and.. around the loop (i). 	As M(x0) is finite and the sequence (2) 

visits M(x0) infinitely often there must be em,  e  in N(x0) such 

that m 	and [mm = [] = 0 and em = eq . Then as 4 is  po, 
e = e' = e 	=...= e . 	Thus e E fix so the sequence (2) 
m 	m 	m±1 	q 	m 	 R 
eventually contains an element of fix. As fix l 	x.,x I 

for all 1, 

using lemma 9.5.6 we have e0(=e) must be the earliest element of 

(2) in fix. But e was chosen to be an arbitrary event in M(x). 

Thus M(x) = fix.. Therefore x 0  = x = [fix] as required. 

Thus the relation 	0  on R(E) °  is a partial order.1 

The next lemma is used to prove 4 (i) holds for the 

exponentiation of two event structures. It generalises axiom 

F on (R(E), cR)  and corollary 9.6.7. 

Lemma 9.7.5 

Let E be an event structure satisfying the axioms of 9.2.1. 

Define -,< 0 on R(E) as in 9.7.3. 

Then for x in R ( E)0 	 - Jo—ic , we have 	is finite. 

Proof 

As x € R(E) °  we have'l MWI < 00. Also by theorem 9.6.4, 

characterising 
L  it is clear that 

Z' -,< O ' x => Ye' € M(') .E1 e € M(x) e', e. 
Thus x' 	x => M(x - ) 	J{{e} I e. € M(x)}. 	As M(x) is finite 
and 	lel is finite for any event e we have ix' x' 

2O  x} is 

finite, as required. 

It is not clear that <is a partial order/at least not 

from the proof that 	is. 



It now follows that the exponêntiation -> ea event structures 
preserves the axioms of 9.2.1. 

Theorem 9.7.6 

Suppose E0  and E are event structures satisfying the axioms 

given in 9.2.1. 	Then E0  -.> E 1  satisfies the axioms too. 

Proof •  

Axiom 1 is clear. Axiom 2 follows as 	and Q are pos. 

Axiom 3 (unique factorisation) follows from the unique factorisation 

of E 1  together with the unique factorisation of Q as 

Axiom 4 (i) follows directly from E 1  satisfying 4 (i) and lemma 

9.7.5. 	Axiom 4 (ii), that 	is a partial order on E0  -> E 1 %,  

follows from the corresponding fact for B 1  and lemma 9.7.4. Axioms 

5 and 6 are straightforward. 

We point out some further axioms which are also preserved by 

Proposition 9.7.7 

The following axioms may be added (together or separately) to 

those of 9.2.1 so that a direct analogue of theorem 9.7.6 holds: 

IL 
1) e je'=>e 	e' 

iL 	 •L 
11) e 	e' => e A e' exists in E. 

Proof 

We shall only show how (i) is preserved by ->. Suppose 

B,. and B, satisfy the axiomsof 9.2.1 and (i) above.. Suppose 

 in E _> B 1 . Then € and £' have the form 

	

= (x, e) and 	j = (x' , e' ) . ;.As 	
, 	

' we have 

	

e 	e'. As (i) holds f or B 1  we know e 	e' i.e.. 

e,e' J e". 	By lemma 9.5.3,9ivihj con Ee7k-cpiâne,xrl R 
 x' exists. 

Combined we get 

' 	(x 
flR 

 x',e") as required. 

We give, an example showing how properties may fail to be 

preserved by exponentiation. After introducing the axioms we 

mentioned two "reasonable" further axioms true at zeroth and first 

order but which were not preserved by -.>. Recall the two 

properties; informally they said that in the event structure we 

could complete 	and 	,f toF 	
andj, 	respectively. 

• 	 I 



Example 9.7.8 

We show the following properties are not preserved - by our 

exponentiation construction: 

(i) e <R ell & e <L  e' => 	E e' < 	ell  .L 

(2) e' <R e £ ell 	<L  e => 3 e E E P, 21  e", e'. 

We first show why (2) fails to be preserved by _>. Suppose 

e = (x,1,), e' = (x', 10,  e" = (XI?, yLtt ) and et < Re 2, e" J  e. 
Then we must have x  =  L x'  and  x . R x for the isolated x,x' ,x It  

ri' 	4-,.. 1, +~ i= ti 	 Cz nTniz I nl P±d Y so that ,, = L 

. Thus if we can produce an event structure E 

	

/ \ 	 ,, 	R 	L 
satisfying 2j but such that for some x,xt ,x with x 	x —  

there is no 	so that x' 	 xt' we have shown -) does not 

preserve (2). 

L  it x 

	

R) 	 4R 

	

x 	L 

Here is a suitable event structure H (it is associated with 

[Tx_>3O]): 
•L 

L 

H  

4 
Clearly it satisfies (2). 	Take M(x) = {a},. M(Xt) = {b} and 

	

'I?' 	 ,, 	R 	L. Mx = ja,c. Then we have x 	x —  X.  • However 

implies x' =% but then we cannot have x" 

Thus there is no X such that x' 	
L1, 

Therefore (2) is not preserved by ->. A further simple 

observation uses this fact to show (i) cannot be preserved either. 

Let 1.} be the event structure consisting of a single event 
(it represents (C) ).. Let the event, structure H and its config-

urations x,x',x"  be as above. Then in the event structure 

((H _> {}) -> {•}) we have: 
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ett = ([(",.)],.) 

R 

e = ([(x,.)],.) 	
L 

	e' 

Clearly H satisfies N. If -.> preserved (i) then we could 

complete the above diagram to a "square" and this would give some 

z so that in R(H _>•}): 

L).  

4 	 R 

__________ 

,3 
However by the characterisation of 9 L  there would then be an 
event (%,.) in M(z) such that 

(x",.) 	
L 	

) 

R
+ 

 

But then we would, have- 	
,, 	

L 	 which we 

R  

	

X 	L 

proved impossible.. Thus (1) is not preserved by 	either. 

The product of two event structures is defined simply as 

(disjoint) juxtaposition. 	The use, of the term "product" will 

be justified in the following section. 

Definition 9.7.9 

Let E. = 	 ), for i = 0,1,. be two event structures 

satisfying the axioms in 9.2.1. Define B0 ® B 1  to be the event 

structure (B0  C,  B1, <C<, 	'O) where 	denotes 
disjoint union. 

Similarly define 	E., where i ranges over an indexing set 
- 	 jEI 1  I, to be 



(CE., y 	P4 ,  Qwi) 
where U denotes disjoint union. 

It is clear that the axioms in 9.2.1 are preserved, by 

countable "products". 

Theorem 9.7.10 

Let I be a countable set, indexing event structures E. 

(i E I) which satisfy the axians in 9.2.1. 	Then 	E. satisfiesiEI  
the axioms too. 

We point out an alternative way of producing higher type event 

structures. With the wisdom of hindsight it would be a better way 

to proceed. From our results in, 9.4 it is clear that we could have 

worked with the s-enfigurat±ons M(x) rather than the configurations 

r, for x in R(E).. This would have advantages. Firstly our 

definition of the configurations R(E) is a little unnatural because 

of condition (ii) in 9.3.2. 	Secondly the-conflict relationX only 

imposes a very weak constraint in forming configurations.. 

Interestingly our work can be paralleled in the following way. 

Define event structures instead as being of the form (E,<L,<R, A&•) , 	, rf1. 

satisfying all but axiom 6 whereL 1 is to replace 	as the 

conflict relation determining s-configurations. Let the definition 

of exponentiation be like 9.7.1 with the one modification that 

(x, e) 	(x1,et) iff x 	x' 	e j' e'. 

Then the assumption that A'I-q determines the same s-configurations 

as 	(which equals 	u( 	remember)is preserved by 

exponentiation and product. 	(It is not the case that their' being 

identical is.). Thus the ordering <L  is used explicitly in defining 

the enabling relation but need not be mentioned in defining the 

conflict relation appropriate to s-configurations.. 

9.8 The category of stable event structures 

In this section we form a category from event structures 

satisfying the axioms in 9.2.1. We show the category is cartesian 

closed and in the next section that it determines a cartesian- - 

closed full subcategory of Berry's category of bidomains. Within 

the category of event structures -> and ) will correspond to 

exponentiation and product thus justifying those terms in the 
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previous section 

A configuration x of E0 	E1  has an obvious interpretation 

as a function x now defined. 

Definition and proposition 9.8.1 

Suppose E0  and E 1  are event structures satisfying the axioms 

of 9.2.1. 	For x in R(E0  -> E.) taking 

= {e E E 1 	(y,e) E x y g x0 l for x0  in R(E0) 

defines a function : R(E0) -> R(E 1 ) which is continuous with 
R respect to It and stable with respect t0.. In fact xt-3' 

defines a 1-1 correspondence between the configurations and such 

functions. Also 

= {e € E J3 (y , e) € M(x) 

Proof 

Let E and E be event structures satisfying the axioms of 

9.2.1. 	Suppose x E R(EQ  .-> E 1 ). 	From the fact that x is a 

configuration it follows that for x0  in R(E0) the set (x0) is a 

configuration of E0 . Thus x is a function: R(E 0) -> R(E 1 ). 

That it is continuous w.r.t. 9 follows routinely. 

We now show for x in R(E0) that M((x0)) = {e € E113 ( y,e) E 

M(x y 9 
R 	Let e be in M(i(x0)). Then there is z with 

z G x0  and (z,e)in x. 	The element m((z,e),x) of M(x) has the 

form (y,e) with y 9 x showing e € r.h.s. as required. Conversely 

suppose for some (y,e) in M(x) we have y çR  x0. Assume 

e' E - (x where et is <L-comparable with e (so e 
L 
 e'). 	Then 

(y',e') E x where for some y 1.  x0 . 	Clearly as (y,e) 1, (y ,. ) 
.11 / 	\ 	 \\ as  required. in x,y',e') 	y,e) so e' <L  e. 	Thus e E MI

,-x ,x0  ))  

From the above characterisation of M(i(x0)) it follows that 
- 	 n.R 	 / ' x is i -continuous. 	Suppose z • 	z' for Z,Z' in RE0 ). 	Then 

z ri z' = z n z'.. For i to be stable we further require 

(z nz') = ( z) n (z'). 	By .monotonicity we have 

(z flz') 	R()  n (zt) where i(z) n (z') = (z)r 	(z'). 

Suppose e € (z)r (z'). 	Then (y,e),(y',e) € x for some 
R 	, 	 i R y — z and y 	z'. As x s a configuration and y i 

we have (y n R  y',e) € X. 	Therefore e € - x(z 11  z'). 	Thus the 

sets (z nz') and (z) n (z') are equal so 	is stable. 



We now construct an inverse to x 1—> L Suppose 

f: R(E) -> R(E 1 ) is continuous w.r.t. 	and stable w.r.t. 

Define 

$(f) = {(z,e) € R(E0) °  x Ed e € f(Z)J. 

We show (f) € R(EQ 	E1 ) and 077 = f and Ø() = x. 
In showing (f) E R(E6 -> E 1 ) it is easily checked to be 

.1-left closed and consistent. 	Suppose for (z,e), (zt,et) in x we 
I 	\1L I 	 AR have 	 z',e'); then z i 	z' and e 	e'. 	As f is 

R 	 / z) n R , 	 / \ AR ( 

	

-monotonic f 	fz'). 	Thus as we have flz) 	fz') 

e E f(z)' e' E f(z') & e.,L e' by lemma 9.5.6 we get m(e,f(z)) = 

ni(e,f(zt)). 	Put € = m(e,f(z)). 	Then as f is stable w.r.t. 

it follows as G € f(z) and 8 € f(z') that e € f(z n z'). There-
fore (z ri z',€) € 0(f) with (z,e),(z',e) <L  (z ri z', €.) as required 
to show 0(f) is a configuration. 

As £ is continuous 077 = f. Also by a direct translation of 
the definitions $() = x. Thus the map x i—p i is 1-1 .e 

We now define the category of event structures. Morphism from 

to E 1  are taken to be configurations of E0  -> E 1 . Composition 

x • y is defined so that x • y equals i a y the usual function 

composition on the function x and y. 

Definition and roposition 

Define C to be the, category consisting of objects event 
structures E satisfying the axioms in 92.1, morphisms E 0  to V. 

being elements of R(E0  -> E) with the following composition denoteds: 

For x in R(EQ  _> E) and y in R(E 1  -> E) define 

Y • x = {(x0 ,e2 ) E R(E) x E2 1 3 (x i  ,e2 ) E y 

Then y 0 x € R(E0  -> E) and y. x = y a x the usual composition 

oc the functions and 3F. 	(We call 	the category of stable 
event structures.) 

Proof 

First we must check that the definition is correct, that E is 
indeed a category.. We check that for x in R(E0  -> E) and y in 

R(E 1  -.> E) we have y •x in R(EQ  -.> E2 ). 	It is easy to check that 

y • x is <-left closed and consistent. 	Suppose for (x0,e2), 



(x',e) in y • x we have (x ,e ) j,.L (x',e) i.e. x 	and 

e2 4.L e. 	We show (x0  t-i P  x, . ) € y • x for some 	> e el 

As (x09 e2 ) and (x,e) are in y 0 x we have for some (x 1 ,e2 ) and 

(x,e) in y that x 1 	(x0) and x; 	(x); clearly by factor- 

isation,without loss of generality,we may assume x 	x (x) and 

R (x). Summarising the facts in a picture: 

-,. U R 

—X ( x6) 

R 

However as y is a configuration containing (x 1 ,e2) and (x;,e) 

with (x1,e2) 
4L  (x' e') there exists (X-,) in _y such that 

Xc x 1  ,x and e2 ,e 	. As x is stable x(x0  

(x0) 	
R 
M x) = 

R 	 R Thus % 	(x 	 X6 , ) € yx 

as required. 	 - 

Suppose x € R(EQ  -> E 1 ) and y E R(E 1  _> E). 	Then routine 

manipulation of the definitions gives for any x0  in R(E0) that 

= yo x(x0). Thus yx = 

Finally composition is clearly associative as function 

composition is and each object E has an identity morphism 

1E(=I(x,e) e € xD in R(E -> S  E). Thus E is a category as stated. 
The category EE is closed under products.. Given two event 	- 

structuresand. E 1  in 	a product will be (E0  e E 1 , 	m) 
where the projection function Ii to E. are obtained by restricting 

II  configurations to EL. 	(It is well-known that products of E0 ,E 1  

are isomorphic.) 

Lemma 9.8.3 

The category E  is closed under (w-) products. A product 
of BO  9  E in 	will be (E0 ® E 1 , 0 , it) where. 

= {(x,e) € E0  6 E 1  -.> ELI e € x t't E.} for i = 0,1. 

Proof 

Let E0 and E 1  be event structures. 	First note for 	as 

( 

MV 
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defined above Ti: € R(E0  ® 	-> E). 	In order that   
s

2 
(E0  3 E 1 , 71- 3 , ii) be a product we require for any x in R(E -> E) 

and x in R(E _> s E ) there exists a unique element [x 0 11x 1 ] in 

R(E -.> E e E 1 ) such that x0  = fl.fx0 ,x 1 ] and x 1  = 1T. [x0 ,x 1 ]. 

E 

/ 	EQGE1 

IT 

BO 	
E1 

For the above set-up taking [x0 ,x 1 ] = x0  j x 1  (where strict±y 

speaking the configurations x are formed on the disjoint copies of 

the events E0  and E 1  in 	E1 ) makes the above diagram commute in 

the uniqueness of [x 0 9.x 1 ] follows by routine manipulation. 

We now give some useful notation. 

Definition and Notation 9.8.4 

Suppose we have the following set-up in 

zQ  x i  where x0  € R(EQ  -> 	E) 

€ R(E 1  

Then certainly by the above result EO e E, and El ® E ll are 

products in E . The operation 	extends to a functor. For 
the morphisms x0 ,x 1  above define x0 ® x 1  to be the unique map 

making the following diagram commute: 



E0  0 E 1  

E 	
i xo  + x 1 E1  

0 

z 

L11 1T. 	IT 

 
E t 	E t 

Z, 

So using the notation in the above proof x 0 	x 1 s[x0 . 710 ,x 1  • iT 1 1 
and has the commutativity properties IT.x0  ® x 1  = x.. Tj . for 
i=O,1. 

Consider the following diagram in which the null configuration 

is used as a morphism: 

1E0 	
'in0 0 
I  

EO  ® 

E0 
ZZO 	

E 1 

Clearly by the properties of product there is a unique morphism in  

making the above diagram commute. Similarly there is a morphism 

in 1 : E 1  -> E0  c 	E 1 . 

The following observation allows us to simplify notation. 

Lemma 9.8.5 

Let E0 ,E 1  be event structures in E . Let 

Th1: E0 ® E 1 -> E for i = 0,1 be the projection morphisms 

introduced in 9.8.3. Then R(EQ  ® E 1 ) is isomorphic to 

R(E0) x R(E) consisting of pairs ordered coordinatewise under the 

map 

x! 	>(#(), *1(X)). 

'7O 
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Notation 9.8.6 

Henceforth we shall identify R (E0 	E1 ) with 

R(E0) x'R(E 1 ) in which the orderings are determined coordinatewise. 

Thus instead of x in R(E0  (D E 1 ) we shall often write (x0 ,x 1 ) in 

R(E0) x R (E 1 ) where x0  =(x) and x1  =ft1 (x). 	With this id.entif- 
ication,the function x0 ® x 1 : R(EQ 	E) -> R(E ® E) may be 
expressed as the function (y0 ,y1 )i- 	( 0(y0),i1 (y1 )) by simply 

using the commutativity properties of x 0  ® x 1 . 

To show 	is cartesian closed we require the further fact 

that it is closed under exponentiation. In establishing this we use 

the following configurations which correspond to application (ap) 

and curryification, or abstraction (ab). 

Definition and proposition 9.8.7 

Suppose E0 ,E 1  and E are event structures in 	. Then, with 

respect to E and E 1  defining 

ap = {((x,x0 ),e 1 ) € (E0  -) E1) ® E0  -> E 1  (x0 9e 1 ) € x} 

gives ap E 	 -> E1) (j E -.> E 1 ). 

Also,with respect to E0 ,E 1  and E2 , defining 

ab = {(x,(x0 9(x 1 ,e2))) € (E ® E 1  ->'E2) -> (E0  -) E 1  -.> 

((x01 x 1 ),e2 ) € x} 

gives ab € R((E0 J E -> E 2) _> (E0  -> E 1  -.> E2 ))... 

Proof 

The subset ap is clearly <-left closed. Suppose 

((x,x0),e), ((xt,x),et)  are in ap and ((x,x0),e) L 
 ((z',x),e'). 

Then x Ila  x', x0 'i x and. e 	e t . 	Thus (x01 e) € x and 

(x,e') € x' with (x0  ,e) 
,L 
 (x,e') and x'i x'. 	By 9.5.6 we have 

nI((x0 ,e),x) = m((x,e'),x'); call this common event (X,2). Then, 

as required, we have ((x,x0),e), ((x',x),e') 	((x ii R X', X) 	) E ap. 

The proof that ab is a configuration is similar. 

That the configurations ap and ab do correspond to application and 

abstraction of functions is justified by the next lemma. 

Lemma 9.8.8 

For' the situation described in 9.8.7 

(i) for all (x,x0) in R((E0  -> E) ® E) 
= 

(iii) letting y be 	for x in R(E0 (D E 1  -> E), for all 
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(z09 z 1 ) in R(EQ  G E) 

= 

Proof 

A routine consequence of the definitions.R 

Theorem 9.8.9 

	

The category 	is closed under exponentiation. An 

exponentiation of E0 ,E 1  in E  is (E0  -'> E 1 ,ap) where ap is as defined 

in 9.8.7. 

Proof 

Let E and E 1  be event structures in EFl. . As in 9.8.7 we 
have ap E R((E0  -> E) () E _> E 1 ). 	In order for (E0  .-> E 1 ,ap) 

to be an exponentiation we require for any E in F  and any x in 
R(E ® E .-> E 1 ) there is a unique y in R(E -> 

S 
B -> E 1 ) such that 

x = ap.(y G 1E 

----p 
- 

	

(E0 -> 5 E 1 ) 	E0 	 E 

The requirement is satisfied by taking y = ab(x). Firstly the 

diagram commutes. Let (z,z0) be in R(E ® E0). Then 

ap • y ® 1 E(z,zo) 

= ap 0 y ® E (z,z0) 
0 

= ap(y(z),z0 ) 

= (z)(z0 ) 	by lemma 9.8.8 part (i) 

=x (z,z0) 	by 9.8.8 part (ii). 

Thus the functions i and ap . y (D 1E  are equal. As x 	is 1-1 
we have the diagram commutes when y i 0s 7b-(x). To establish that this 
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choice of y is unique assume x = ap . (w 6 1E  for w in. 
R(E 	(E -.> E 1 )). 	Then as in the above manipulation 

= 

for any (z,z0) inR(E ®. B0). Therefore using.the fact that 
x I— x is 1-1 w equals y as required. 

We note one further fact about the category 

Lemma 9.8.10 

The category 	has a terminal object, the null event structure. 

Proof 

Clearly for any event structure B in E  there is a unique 

morphism $ in R(E _>) so the null event structure is the terminal 
object of 

Collecting facts together we have: 

Theorem 9.8.11 

The category 	is cartesian closed. 

In fact now it follows routinely that the categories (, R)  

and.. 	obtained by ordering the morphisms by just 	or just 

are .J\-categories. There are stable event structures 

representing the domains T and N ; the truth values T are for 

example represented by ({tt,ff),1,1,(tt,ff)}). 	By the result of 

Berry and Curien we have two models for PCF. The one obtained from 

is order extensional. We show 	represents a full sub- 

category of bidomains in the next section. 

We end the section with cute characterisations of the 

application and identity morphisms. 

Lemma 9.8.12 

The application morphism ap defined in 9.8.7 is characterised. 

by 

M(ap) = {((p,x),e) I p E Pr (R(E0  ->)2. (x,e) = ev(p)}. 
%

The identity morphism of B in E is characterised by 
M(1E) = {(p,e) I p € Pr (R(E))& e = ev(p)}. 

Proof 

Simply consequences of .-maxiItality.R 
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9,9 Cartesian closed categories of domains 

	

We introduce two categories of-domains, R 	with objects 

of the form (R (E), Q L 
	R) and BIF with objects of the form 

(R (E) , , R). 	The categories R 	and B 	will be trivially 

isomorphic as categories and both equivalent as categories to 

In this sense F represents them. The category B. will-be a 
cartesian closed full subcategory of Berry's category of bidomains 

(BID0M). 

We start with a lemma which is a key result in proving F  is 

equivalent to the category RE and also that our future definition 

of HE is proper. 

Lemma 9.9.1 

Suppose E is in 	. 	Then 	e E E x = tel iff (i) x is a 
R 	 , 
-complete prime and (ii) y  x0,x1 	

= I 
- 	x 

x = x 0  0 x 1 =>(x = x or x = xi). 

Proof 

9=>Il' Suppose x is of the form Eel for e an event in event 

structure E. Then (i) is clear, by the characterisations of 
n 	 r-i 	n -i complete primes. 	Supposing x 	R Le], 11 	L Lej and ej = x0U 11 

gives e E 10 or e E x 1 . 	Thus x = Eel or x= [] as required for 

(ii) to hold. 

	

"<=" Suppose (i) and (ii) hold for x in R(E). 	If x were not 

of the form [e] where e = ev(x) then taking x = Eel and 
= [4M 	

{e '}]for  some e' E M(x)\[e] contradicts 

Thus events identified with [e] in R(E) may be picked out as those 

R_compiete primes x with no non-trivial decomposition as x U 

with 10 =x and x 	I. Having picked out such representatives 

of events in the domain the orderings q 
L 
 and Q restricted to the 

representatives return <L  and  <R  by lemmas 9.6.6 and 9.5.2 (iii). 

\ 
We wish to form a category of domains i \ L , 

 C-R ) fromE.  

As morphisms from R(E0) to R(E 1 ) we take functions I for x in 

R(E0  -> E1 ). However a little care is needed as distinct event 

structures may yield the same domain; we want 'the definition of 

morphisms in the new category to be independent of the event 

structures chosen to represent the domains R(E0) and R(E1). 



Precisely, we require this lemma. 

Lemma 9.9.2 

Suppose E
01 
El and Ei,E1 are in 	. 	Then (R(E . ) , L , R) = 

(R(E!) ,, R) for i 	0,1 implies (R(E0  -> 	 = 

(R(Ec -> Ep,L,cR). 

Proof 

Using 9.9.1 it is clear that the events and orderings of 

E0 	E and E .-> El are identical. 	Suppose X £ R(E0  -> E 1 ) and 

X J R(E .-> E). Then this must be because,for some (x,e0) and 
(x,e 1 ) in X,we have e 0 	e 1  where 	is the conflict relation of E. 

However e0 ,e 1  are in (x) which is in R(E) so consistent, a contra- 

diction. 

We may now define the category RE assured the definition is 

good. 

Definition 9.9.3 

Define RE to consist of objects (R(E),cL,l) for E in IF 
with inorphisms R(E0) to R(E 1 ) precisely the functions for x in 

R(E0  _> E 1 ) with the usual composition. 

Clearly by the properties of xF-we have: 

Lemma 9.9.4 

The structure RE is a category. 

We establish that RE and F are equivalent as categories 
[Mac] so the categorical properties of E transfer to 

The category 	represents the category RE. 

Proposition 9.9.5 

Define R: F -> R 	to act on objects by E —R(E) and on 

arrows by x t—> X. 

E 	 R(E 0 ) 

R' 

R(E1) 

15' 



Then R is a natural equivalence of categories. 

Proof 

That R is a fuiictor follows directly from proposition 9.8.1. 

In [Mac] (theorem 1 page gi) it is shown that R is an equivalence of 

categories is equivalent to R being full, faithful and dense (R is 

dense if each object in the codomain category of R is isomorphic to 
an image object under B.) As R is onto the objects of R E the 

functor R is clearly dense. 	Proposition 9.8.1 shows R is full and 

faithful.I 

In the above sense the category of event structures F  represents 

the category of domains R . 	If domains of the form R(E) were 

axiomatised a more impressive representation theorem would hold. 

From a domain D satisfying the axioms one would obtain an event 

structure representing it as follows: For events take those elements 

of D satisfying (i) and (ii) of lemma 9.9.1 ordered by the 

restrictions of 	and Q with conflict relation e 	e' iff 

Y X € D e CZ x => e' 	x. 

Because of proposition 9.9.5 the categorical properties of 

transmit to RE 

Proposition 9.9.6 

The category R F,  is cartesian closed. A product of R(E0), 

R(E 1 ) in RE is R(E0) x R(E 1 ) the set of pairs having orders 

and 	determined pointwise with projections the usual set-theoretic 

projection functions. An exponentiation of R(E0), R(E 1 ) is 

(R(E0  _> E 1 ),) where ap is defined in 9.8.7. 	A terminal object 

in RE  is {$}. 

From the category R E it is easy to construct an isomorphic 

category which will turn out to be a full subcategory of Berry's 

category of bidomains (BIDOM). Recall for a domain (R(E),c,.R) 

we 	 a,uIs (L u R)* 

Definition 9.9.7 

Define BE to consist of objects (R(E), 	 for E inlE with 

morphisms R(E0) to R(E 1 ) which are functions for x in R(E 0  -> E) 

with the usual composition. 



Theorem 9.9.8 

The structure B. is a cartesian closed full subcategory of 

BIDOM, Berry's category of bidomains. 

Proof 

We conclude BE is a cartesian closed category directly from 

theorem 9.9.6 as RE and B. are obviously isomorphic categories. 

The functor establishing this is given by 

(R (E)c) .- (R (E),(LR)*,) 

on objects and as the identity on morphisms; noting we can recover 

from - and Q provides the inverse. 

We cannot immediately prove the objects of B E are bidomains 

as these are defined in terms of morphisms in the category of 

distributive biopcd.'s DBIOPCD (see section 8.2). We first show the 

objects of B e are distributive biopcd's. Refer to2.2 and 14 

for the axioms on distributive biopcd's. 	(Throughout this proof we 

will abbreviate (R(E),, 	R)  to R(E),) 

Suppose R(E) is an object in BE The distributivity axiom 

clearly holds for R(E) by the properties of 	in particular that 

(R(E), R) is prime algebraic. 	Of the remaining axioms all but 

axiom (IV) follow directly.. Recall axiom (IV) is: 

VS,S' S,S' 	-directed subsets of R(E) 
Vs E S ' s" € s' 3 t.  € s,t' € S' s 	t 9 s 	t 	t 	R  t 

=> UsUs'. 

Assume the hypothesis of the axiom 	Remember US = Us for 
-d.irected subsets S. We require M(US) 	M(US'). 	Take e in 

M(ZJs). Then e € M(s) for some s in S. 	As e is <L-maximal in 

Us (= Us) we have 
(i) 	V  €S s 	t => e € M(t). 

By assumption, taking s' some arbitrary elements of S', we have for 

some t in S and t' in S' 

CZ 
R 
 t Z st & 5' Q t'. 

tJèirig (i) we get e € M(t'). 	Suppose t' CZ t. 	Then again by 
assumption e E M(t), Thus for tj 2 t we have e € M(t). Thus 
e € M(Us') as required. We conclude the objects of B E are 
distributive biopcd' s. 

11 



The inorphisms of DBIOCPD are exactly those functions which are 

continuous with respect to the extensional order and stable with 

respect to the stable order. As the objects of BE are 

distributive biocpd's from proposition 9.8.1 we get that B E is a 

full subcategory of DBIOCPD. 

As BE is a full subcategory of DBIOCPD we know that products 

and exponentiations in BE are respectively products and exponent-

iations in DBIOCPD. Berry's exponentiation is formed from a set of 

functions which are ordered both pointwise and according to his 

stable ordering on functions. Ours is defined as a set of config- 

urations ordered by 	(inclusi xi) and 	However as exponentiatiDns 

are isomorphic the two constructions of exponentiation give isomorphic 

domains and, in particular, our ordering 	coincid.eswith the stable 

ordering on functions. (That the ordering Q
R on configurations x 

induces the stable ordering on functions x can be proved directly 

without using the fact that BO= is a full subcategory.) In view 

of this fact we use R for Berry's stable ordering on functions. 

It remains to show that each R(E) is a bidomain. Recall from 

definition 8.2,15 that the one further requirement on R(E) is that in 

DBIOCPD the identity 1 B  is the 9 
R_supremum  of a countable 

QR~-increasing chain of finite projections w.r.t. Q .. We have 

1 	= T . 	 The set M(i,) is certainly co untable; enumerate its 
RE, 	g 	 M-1 
elements as e0 , e 1  , . .. , e, . ... . 	Define X = 	{e0 ,.. . , el. 

Then {[x] n EC4J I forms the required chain of projections. 

Thus B is a cartesian closed full subcategory of BIDOM. 

Corollary 9.9.9 

Products and exponentiations in BE are isomorphic to the 

products and exponentiations, respectively, in BIDON. In 

particular the configurations x in R(E Q  -> B.1 ) are in 1-1 corres-

pondence with the functions R(E0) to R(E 1 ) in BIDOM with Q and CR 

on configurations inducing Berry's extensional and stable orderings 

on functions. 

9.10 Sequential configurations 

We have seen how-  stable event structures determine a full 

subcategory of bidomains. Thus they yield a stable model for POP. 

'18 



Can the method using event structures be refined to construct a 

fully abstract model of PCP? The definition of suitable event 

structures and configurations of them must capture the sequential 

evaluation of PCF; it is hoped that then a fully abstract model will 

result. This approach has some promise as the results of this 

section show. 

Although we have largely worked with <-'-'Left closed sets as 

configurations x it turned out that the <L-maximal elements M(x) 

could themselves be regarded as another form of configuration. It 

is this form of configuration which captured the operational 

behaviour more closely. We noted that all the work of this chapter 

on stable event structures could be based on a definition of a stable 

configuration which determined subsets of the form M(x). It is an 

interesting fact then we can define stable configurations (M(x)) as 

subsets y such that 

(1) V e E yVe' <R e 	elt E y e' <L  et' and (ii) y is 

consistent where 	is inherited up the ty -pesby (x,e) 	(x',e') 

iff x IR
x' & e A e'. Thus the ordering <L  is involved in the 

enabling but need not be mentioned explicitly in the conflict 

relation. 

It is hoped that by adding axioms to 9.2.1 and refining the 

definition of configuration a category of sequential event structures 

with sequential configurations can be formed.. To capture the 

operational flavour it seems best to work with the configurations 

M(x).. They should be secured as in (i) above and consistent in some 

sense. Consistency is open. Firstly we cannot. get away with a 

simple binary 	relation like A. as the example 8.2.5 shows. 

Rather we must work with a consistency relation. There is a chance 

that it need not explicitly mention < L  and be inherited up the types 

in a way only mentioning 

The following modest results at first order add some faith to 

this approach. 

Lemma 9.10.1 

Let A and B be concrete domains. Suppose f is a continuous 

function from A to B. Then f is Kahn-Plotkin sequential iff 

(*) Vz c  V q  € d(f(1'7Z))((Vz € z f(flZ)-'( f(z)) => 

(Bp € d.(flZ)V z € Z flz<z)). 



Proof 

"->" Suppose Z A and q € d(f(flZ)). Assume 

V z € Z f(flZ)-< f(z). If Z is null it is obvious so assume Z is 

non-null. Then from the definition of sequential for some p in 

d.(flz) we have Vx n  f(flZ)-'f(x) =>flZ-<x. 	Thus by the 

assumption on Z we have V  € zflz- z as. required. 

"< 	Assume (*) above. 	Suppose x E A and q € d(f(x)) and 

that 3  z 	x f(x) -  f(z). 	Then define Z = Iz 1  x f(x) -' f(z)}. 
It is non-null. We have x F1 Z. 

If x = n  we have f(x) = r(flz) so by (*) above 

€ d(x) Vz € Z x - z. Thus 
3p € d 	V z -_J x (f (x) 4 f 	=> xz) as required. 

If z 	n  then x.—c x' 	flz for some x'. Take p = [,'] 
i.e. take p to be a direction at x filled by x'. Then 

VZ E Z x-/, z so by the definition of Z we have 

Vzx f(x)-4f(z) => x - z as required 

Proposition 9.10.2 

Let E. = (E.,<.,.) i = 0,1 be event structures so that 

.(E.) U = 0,1) are distributive concrete domains.. Define 
E0  -> E 1  to be the event structure consisting of events 

(E0) 0  xE ordered by (x,e) <L  (x',eO iff x' 	x R e = el 

(x,.e) <R  (x',e') if  x' = x 	e < e' 

with this consistency relation: 

con{(x.,e)J i € II iffJc Ile . j € 	occupy the same 

direction implies either (i) 	d Vj €3  flx. - x. 
j€J 3  

or (ii) Vj,k € r (x.,e.) = (xk , ek). 

For y a subset of E0  -> E 1  say y is a configuration 

iff (i) 	e € y Ve' <R e' je" € y e' <L  e" (y is secured) 

and (ii) con(y) 	 (y is consistent) 

Then y is a configuration iff y is a sequential function: 

-> 
(The proof uses the above lemma.. In its present state it is 

inelegant and uninformative, so omitted.) 
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Chapter 10 Conclusion 

In conclusion we summarise the achievements, problems and 

inadequacies in the work presented here. The inadequacies should 

guide us in future work to a more complete theory of events in 

computation. 

10.1 Achievements 

The unifying role of events has been apparent in this thesis. 

Even at the most superficial level, the number of introductory 

chapters, necessary to its development, is atestimony to this. 

The approach relates to some degree the theories initiated, by Petri 

and Scott and some more specialised work of authors like Kahn and 

Plotkin, Berry, La.mport and Hewitt. 	The thesis providesan 

introduction to apparently diverse fields through following a common 

theme, the fundamental part played by events in computation. 

We have seen how nets, and thus event structures, model 

computations and receive definite interpretations (section 2.3). 

In particular this 	highlighted when extra structure was called 

for and exhibited the nature of computation, for' example, how - 

d.atatypes were involved in the process of computing. 

Through new representation results we linked and compared 

theories. This established some concepts in common and some 

rMnt (f 	 nrtiii 1 g' it cast 	'  is f Petri 

("real processes determine K-dense causal nets") and, admittedly 

far less thoroughly, the thesis of Scott ("computable functions are 

continuous'-in the new light of an event-structure setting. Event 

structures inject a new venom into the theories of nets and of 

denotational semantics; for net theory it is a more abstract 

approach to foundations and for denotational semaaics a way of 

incorporating ideas of behaviour' more completely. Specifically 

we contribute mathematical ideas on states, conditions, expressiveness 

and extra structure to the foundations of net theory while to 

denotational semantics we provide more physical realisations of 

its ideas with some promise of solving full-abstractness problems. 
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10.2 Problems 

Here are listed some mathematical problems left unsolved in 

this thesis. 

1. (End of section 3.3) 

Axiomatise the class of domains represented by event structures 

of the form (E, H,) defined as in 3.3.1 but now with 'c'(E) 
(the set of finite subsets of E); configurations x are secured as in 

3..3 and consistent in a new sense: VAX A x. 

Subsequently axiomatise the classes of domains Dom (n€) 

represented by event structures of the form (E, - , 3 ) as above 

but with. restriction: VA- ' IA.I.. :5 n. 	(Note we have represented 
the domains Dom2  as then the incompatibility predicate can be 

replaced by a binary conflict relation). 

It might be thought that event structures of the form above 

relate to transition nets where more than one token may reside on 

a condition [NP]. However the domains represented. by such event 

structures satisfy axiom .0 while those represented by such nets do 

not, for example: 

This time conditions may carry 

3 	more than one. token so although 

events-2 and 3 cannot occur 

together initially, they can 

after event 1 has occurred. The 

appropriate domain is 

which fails axiom C. What is the representation result for domains 

represented by such nets? 
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(Section 6.3 

Are the expressiveness relationsand 4 the same on condition-

extensional occurrence nets of finite-depth and satisfying N3? 

Let E be an event structure of finite depth. Forb in B (E), 
characterise those subsets X of B (E) which satisfy 

VC COS (E) (on (b,C)3b 1 E X on ( b',C)). 

(Such sets X arise for the expressiveness relation 	- see 6.3.). 

(Section 6.4) 

Characterise the relation 	(of 6.4.2),for restless events. 

Ii.. (Section 7.3) 

Can the reachability classes be axiomatised neatly, without 

using a direct driain analogue of the metric? 

5. (Chapter 9) 

Can the work of chapter 9 be mimGL(ed_ for exponentiation 

corresponding to all, continuous functions while maintaining 

identical definitions of M and G so that 	is still natural as 

an ordering on behaviours? (This will involve appropriate axioms 

on orderings 5L  and 

6.. (Section 9.7) 

Is. the relation (defined in 9.7.3)  on all stable 

configurations a partial order? (It is when restricted to isolated 

configurations by 9 .7'.4). 

7... (Section 9.8) 

What were the key event-structure facts which enabled us to 

construct a cartesian-closed category of event structures in 

section 9.8? 

8. (Section 9.9) 

Axiomatise the domains in RL 
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9. (.Section 9.10) 

Can the full-abstractness problem for PCF be solved on the 

lines indicated in section 9.10? If so, is there a syntactic 

characterisation of 

10.3 Future work 

This thesis has demonstrated the fundamental and unifying role 

of events in computation. However here is presented only the 

beginnings of a reasonably complete theory of events; while 

indicating the scope and depth of such a theory there are several 

counts on which our work is inadequate or incomplete. This is 

due, in part, to its exploratory nature and our attempts to relate 

different approaches. Though there is still a fair deal to be 

done at this general level much should be learnt by trying to solve 

specific more well-defined problems within the. framework of event 

structures. Of course solutions to well-chosen problems can (&row 

light on the theory overall. We sketch some future projects. 

They have various degrees of openneSs as sometimes basic concepts 

involved have yet to be formalised to give the problems a strictly 

mathematical nature. 

It would be very- satisfying if the full-abstractness problem 

can be solved on the lines suggested by chapter 9. We need a far 
L 	 L 

clearer understanding of the 	VecuJiar :5 and 	orderings. From 

1 LU WSi
b 
  JLC c on f 	 . 

SI24. 0. Id .S.'.dS.&I 	 '..# .1. 	 r LLLOSSSUCA.S c V Cia. u .a S'.J*J.fl. SSJSC VASS.. 

objects  to study. Even if this fairly direct approach fails the 

approach of Berry and. Curien [Ber and Cur] may well succeed and it 

uses event-structure concepts. At present they have a cartesian-

closed category of concrete domains with algorithms as morphismS. 

Though this does not yield an extensional model they hope to achieve 

extensionality by a form of quotienting. If successful they will 

be essentially mapping algorithm configurations (with extra control 

events) to function configurations which should determine the 

definitions of higher type event structures and configurations 

appropriate to PCF, as well as providing some ideas on event 

structure morphisms. 

Another major project is to link-up net and event-structure 



ideas with. those In Mimer' $ book [Mull. 

replacing synchronisation trees by event 

more general definition of observational 

synchronisation trees suffice, as Milner 

might yield a mathematical. justification 

fundamental role of the concurrency re1a 

A prerequisite for 

structures will be some 

equivalence; without it 

shows. If successful this 

of Petri's ideas on the 

ion in parallel computations. 

g5- 

A major inadequacy of the work presented here has been the 

omission of a systematic treatment of event-structure morphisnis. 

We have seen how to formalise some idea of implement5 	one event 

structure by another (5.3) and how to regard one event structure as 

a datatype involved in another (5.6) using the relations  

The relations are close to inorphisms. In chapter 7 we used the idea 

of collapsing a convex subset of events to an event, again suggesting 

morphisms. In chapter 9 morphisms arose in a different way; they 

represented continuous functions, essentially by introducing extra 

causality relations between event structures.. All this should be 

unified. Then for example one might settle the question of whether 

or not an event structure is physically feasible by demonstrating 

that it can or cannot be implemented by one which clearly is. 

(This is like the. result\3which showed that being implemented 

by a finite-width event structure induced restrictions, like 

countability for instance). Another example: One would expect 

that event structures of the form CE, F , ) would be "generated" 
by morphisms from a basic class of the form (E,.:5, 	) which assume 

an event is caused in a unijie way 	As the definition of observer 

stands (5.1),  time, is in a sense outside the theory. 	Should we not 

regard recording time-of-occurrence as a computation based on 

modelling a clock as a process? Then observers themselves would 

be morphisms within the theory of event structures. Unfortunately 

many ideas of morphism depend for their naturalness cA, event 

structures hing add.i - onal structure, for example to ensure certain 

events occur. 

Here are some cases where event structures must possess 

additional structure if they are to model correctly. We have seen 

how some new idea is needed to distinguish situations where 

something (like an event occurrence) is inevitable from other 



situations C2.3 and j 6.4). A careful modelling of Milner 

processes on the lines of 2.3A should help clai'-ify things. 

More speculatively It might be informative to study episodes (see 

the introduction) which. are events without the atomicity restraint; 

they are a. bit like critical, regions. And, how can event structures 

he generalised to continuous processes like example 5.6.5? Perhaps 

ideas like those of CardeLli [Car] might guide and motivate such a 

study. 	Suitable mathematics might be [Nac] and [C&.iaiJ. 
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