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Various models of hardware have been proposed though virtually all of them do not 
model circuits adequately enough to support and provide a formal basis for many of the 
informal arguments used by designers of MOS circuits. Such arguments use rather crude 
discrete notions of strength-designers cannot be too finicky about precise resistances 
and capacitances when building a chip-as well as subtle derived notions of information 
flow between points in the circuit. One model, that of R.E.Bryant, tackles such issues 
in reasonable generality and has been used as the basis of several hardware simulators. 
However Bryant's model is not compositional. These lectures introduce Bryant's ideas 
and present a compositional model for the behaviour of MOS circuits when the input 
is steady, show how this leads to a logic, and indicate the difficulties in providing a full 
and accurate treatment for circuits with changing inputs. 

O. Introduction. 

There are some tricky issues in the verification of hardware. We all know that 
verification of any device can only be done in terms of a model for its behaviour. However 
it is very easy to forget that verification depends crucially on the accuracy of the model. 
The verification of hardware has been very successful when the model assumes there 
are basic trusted functional devices out of which all other devices are built (see e.g. 
[Gorl, She, Mos] and the classical work on implementing Boolean functions). The 
mathematics of functions and functional programs is well-understood so it makes good 
sense to translate hardware into functions; they can be reasoned about or even run as 
functional programs to simulate the behaviour of the hardware. Fortunately this kind 
of model is often appropriate and proofs of properties of hardware amount to large but 
essentially trivial manipulations of expressions for functions or relations. Sometimes, 
however, the physical nature of the device intrudes. Designers, generally indifferent 
to slick proofs of correctness, use their knowledge of the physics of devices to improve 
performance or layout. Designers in metal oxide semiconductor (MOS) technology can 
use a variety of techniques. They exploit bidirectionality and the fact that signals do not 
have uniform strengths to improve their designs. Most approaches model such designs 
in an ad hoc way; directionality is often imposed, rather than derived, and effects due to 
signal strength are fudged. In what sense can a verification, based on such a model be 
trusted? After all directions can only be assigned correctly when the circuit behaviour 
is understood thoroughly and an incorrect assignment can easily lead to an incorrect 
prediction about the circuit's behaviour. As a last resort there are the precise models of 
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physics but, even aside from whether these are tractable or not, they are often far too 
detailed. A designer cannot be finicky about the precise resistance or capacitance to be 
realised in a VLSI chip; designs should be fairly robust in order to tolerate variations in 
manufacture. There is a need for a model and proof system for circuits which while close 
to the logical behaviour of hardware devices also captures the effects used by designers. 

In these lectures we shall look at the most striking problems with many of the 
models in use and attempt to remedy their faults. In addressing these problems we 
shall make use of the ideas in R.E.Bryant's model of MOS circuits. Bryant's ideas 
have been developed chiefly with the aim of accurate simulation in mind and they are 
not directly suitable as a basis for a proof system for circuits. We shall work towards 
achieving this. Firstly, we illustrate some of the problems that arise in other approaches 
to modelling circuits. 

1. Relational models and their problems. 

Modelling circuits as functions can often impose an unnatural directionality and 
lead to inaccurate models which predict the wrong behaviour. Instead we might try 
to model circuits as some form of relation. This is the course followed in [Gor] and 
less explicitly in [Mos]. It should be mentioned that although we base our criticism on 
the work [Gor] this is largely because it is there the problems are shown-up clearly, 
in their basic form. Essentially the same difficulties arise in the treatments [Mos, Mil. 
Incidentally, all the approaches [Gor, Mi, Mos, Sh] seem to cope well at higher levels of 
abstraction. 

Consider a CMOS inverter: 

The effect of the inverter is to output at (3 the inverse of the value input at 1. We 
illustrate for this simple example how one expresses and argues in the framework of 
[Gor2,3] that the circuit drawn meets this specification. 

The circuit is built out of two kinds of transistors. A p-type transistor ptran( a, j3, 1), 

gen",ally d,.wn .. ~>-<I{ 

is a device which, when the voltage value at the gate is low, i. e. VI = L, connects a 
and j3, so Va = V {3. When the value at 1 is high, VI = H, the points a and {3 are 
disconnected so we cannot say what the relation is between a and {3-it all depends 



369 

on what they are connected to. The other kind of transistor, an n-type transistor 

ntran(fJ, 0, 1), drawn ~" 
1--1 

S 
behaves in a converse fashion; when V 1 = H, fJ and 0 are connected and V fJ = V 0, and 
when V1 = L they are disconnected. In approaches like [Gor2,3, Mos] a circuit (and 
hardware in general) is modelled by a relation between values at the significant points 
of the circuit. This is expressed as an assertion. So in the work [Gor2,3] the assertions 
associated with the two transistors are 

ptran(a,{3,l) == (V1 = L -> Va = V(3), 

ntran({3,o,l) == (V1 = H -> V{3 = Vol. 

(We use == to mean definitional equality; the left-hand side stands for the right-hand 
side.) 
Two kinds of sources are used in the CMOS inverter. Power connected at a is regarded 
as maintaining the voltage value as high at a and ground (or earth) at 0 maintains the 
value at low. The corresponding assertions are: 

Pow a == (Va = H), 

Gnd 6 == (V6 = L). 

So each component is described by an assertion about values at the points with which 
it is associated. Their composition, got by joining points in common, meets all the 
relations of the components, and so satisfies the conjunction: 

ptran(a,{3,I) 1\ ntran({3,6,1) 1\ Pow a 1\ Gnd 6 

For the inverter we wish to hide the points a and 6 from the environment. This is 
achieved by existential quantification to give the following assertion for the CMOS 
inverter: 

Inv(T,,8) == :3Va:3V6. ptran(a,,8,I) 1\ ntran({3,8,1) 1\ Pow a 1\ Gnd 6 

The CMOS inverter is intended to implement the specification: 

Spec(T,{3) == (VI = H -> V{3 = L) /\ (VI = L -> V{3 = H) 

A simple proof using well-known rules of logic shows 

Invh,(3) -> Spech,(3). 

We can prove the assertion Invh, (3) implies Spech, (3). In this sense we can prove 
Invh,(3) implements Spech,(3). To recap: We have described the behaviour of circuits 
by assertions, their composition by conjunction, hiding of points by existential quantifi
cation and taken implementation as implication between the assertions for the circuit 
and its specification. 

This general scheme can be followed equally well for dynamically changing circuits 
subject to voltages which change over time [Gor2, 3]. The only change is to model a 
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circuit as a relation between histories of voltage values at the points of interest (histories 
are functions from time 0,1, ... , t,· .. to {H, L}) taking e.g. the assertion for a p-type 
transistor to be 

ptran(a,,B,1) == Vt. Vh,t) = L --+ V(a,t) = V(,B,t). 

The approach is noteworthy because it does not impose an unrealistic directionality 
on devices as would for example be forced in the approach [Sh] were it to tackle such 
low-level circuits. The model and logic are also compositional; one can reason about the 
behaviour of circuits in terms of the behaviour of their components. A similar scheme 
is followed in [Mos], but there assertions in a temporal logic are used instead. 

Unfortunately, there is a major deficiency in this approach-natural and useful 
as it is in many examples. According to this scheme a "short circuit" implements 
any specification! A short circuit, achieved most simply, by joining power and ground 
together at a point a is described by the assertion 

Pow a /\ Gnd a 

But Pow a /\ Gnd a is equivalent to Va = H /\ Va = L, and because Hand L are 
assumed unequal, this is equivalent to If, the logical value false. Thus Pow a /\ Gnd a, 
like If, implies every assertion and so "implements" any specification whatsoever. 

Several ways have been suggested to get around this undesirable situation. Sticking 
with the above method of modelling circuits by assertions, the only course is to use 
some other notion of implementation. In some contexts it appears reasonable to say a 
circuit implements a specification if the associated assertions are equivalent (see [Gor2]). 
But following that line would, in general, lead to unnecessarily detailed specifications. 
Another suggestion, discussed in [CGM], is to say a circuit circ(L,0) with input values 
V L and output values V 0, correctly implements a specification spec(L, 0) iff 

(VVL, Va. circ(L,0) --+ spec(L,o)) /\ (VVL:JVO. circ(L,o)). 

A circuit meeting such a requirement cannot be equivalent to If for any particular input 
value. But this solution depends on having clearly defined input and output points. It 
is hard to see, if this were so at every stage in constructing a design, how the method 
of construction could allow short-circuits to be formed, and any method which bans 
short-circuits outright is too restrictive to provide a general model. Another possibility, 
suggested in [F], is to use the power of higher order logic and make specifications of 
higher type than circuit behaviours. This proposal has promise but has not yet led a 
calculus for reasoning about circuits. Most significant of all, each of these suggestions 
fails to face the fact that voltage values other than high and low can appear in designs, 
often quite innocently, without trivialising their behaviour. 

We look for a model of circuits which can handle voltage values other than just high 
and low, and in particular treat short circuits. When a source of power and ground are 
connected together they give rise to a voltage which has an indeterminate effect when 
applied to the gates of transistors. We can take a voltage to have value X when it lies 
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in a region between those corresponding to Hand L. Similarly we can take a voltage 
at a point to have a value 0 when the point is not connected to any significant sources 
of charge. It will be useful to order the values H, L, X, 0 as 

.x 
b J 

H. .L 

~ b 
.0 

(Note this order is not directly related to the underlying order on voltages, measured 
as reals.) A point connected just to power takes the value H, just to ground the value 
L, to both the value X and to no sources the value 0. Can our earlier ideas be adapted 
to cope with these extra values? For the composition of assertions to be conjunction we 
now require 

Pow a == Va 2: H, 

Gnd a == Va 2: L. 

In this way we allow for the effect of the environment on the value at a. Then the 
conjunction Pow a /\ Gnd a is equivalent to Va = X, as required, and not to if. 
Unfortunately hiding can no longer be treated as simple ::l-quantification. For example, 
connecting and hiding a power source to the gate I of an n-type transistor ntran( a, {3, I) 
should yield a circuit equivalent in behaviour to a wire between a and {3. However 
ntran( a, {3, I) is still described by 

ntran({3, 0, I) == (V 1= H -t V {3 = V 0), 

for the same reasons as before, so using 3-quantification to hide we obtain 

::lVi. Pow 1/\ ntran(a,{3'I) 

which is 
3VI · Vi 2: H /\ (VI = H -t Va = V{3). 

This does not imply Va = V {3, the assertion we would like, because of the possibility 
that VI = X. 

The above example might suggest that when we hide a node the value associated 
with the node should be the least possible-to rule out the possibility that V I = X in 
the example above. However, there are examples where this does not work. Consider 
hiding I in the following circuit: 

It is unclear whether we should hide I with V I taking the value H, L, X or 0-all are 
possible. 
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One way to manage the new value X and still treat hiding by :l-quantification is to 
impose enough directionality on devices so they can be modelled as functions. Again, 
this suffers the drawback of leading to an unrealistic model. There is no easy fix without 
complicating the relational model. We need somehow to express the fact that the values 
associated with a hidden point are precisely those which are maintained by connections 
to sources. We shall address this problem and the related one of providing a model 
which deals correctly with signal strengths. 

2. Signal strengths. 

In NMOS technology p-type transitors are not available so inverters are constructed 
in a different way. An NMOS inverter has the following design 

The design uses a strong resistance 

connected to power. In NMOS this is implemented as a pull-up transistor. The be
haviour of the inverter is remarkably subtle for its size (see [MC, MD]). In those envi
ronments where the point (3 is not connected to any other sources, the inverse of the 
value V" input at 1, is output as V (3 at (3, so as a makeshift description of its behaviour 
we can take: 

V,=L--+V(3=H/\ 

V, = H --+ V (3 = L. 

Later in section 4, after we have given the semantics of circuits and enriched the class 
of assertions, we can provide a complete description of its behaviour and, in particular, 
see what value V (3 takes for input V, = X. The informal English description of how 
the inverter works is sometimes given as follows: 

When 1 is low the n-type transistor disconnects so the only voltage 
contribution to (3 is from the power source so (3 is high. 

When 1 is high the transistor connects so there is a voltage contribution 
of low from ground and a voltage contribution of high from power, 
weakened however by the large resistor, so the contribution from ground 
dominates and the net effect is to make (3 low. 
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Though this argument is perhaps not convincing at first, it can be justified by a simple 
application of Ohm's law. Suppose 1 is high. Then 0: and f3 are connected with a very 
small resistance r relative to the large resist.ance R between f3 and D. Let voI.,v{3,v6 be 
the voltage values (real numbers) at the corresponding points. By Ohm's law we see 

Ir r 

IR R 

which we have assumed is very small. Because VOl. is safely inside the half-open interval 
qualifying as high, taking R large enough ensures v{3 is high too. 

It is often convenient to use the inverse notion of conductance instead of resistance. 
In the literature (e.g. [B, Hay]), sources are pictured as transmitting signals to points of 
a circuit. The signals not only have a value-H, L, X, 0-but also a strength depending 
on the conductance strength of the path along which the signal has travelled. These 
ideas generalise when signals from capacitance, another source of charge, are considered. 

The NMOS inverter illustrates a principle used in circuit design: 

A signal from power or ground via a strong conductance overrides a 
signal via a relatively weak conductance. 

It is not unusual for designs to use three ranks of conductance strengths, a signal 
via a conductance in one rank is overridden by a signal via a conductance in a rank 
strictly above it. 

Extra signal strengths arise from capacitance. A simple dynamic register takes the 
form 

in which use is made of the high capacitance capO< at the node 0:. The points cPI and cP2 
are connected to clocks which alternately send pulses of high and low voltage. They are 
out of phase as shown in the timing diagram below. If a signal, say from power, is present 
at a pulse of cPI, then the left transistor connects and the right transistor disconnects 
and whatever charge was stored at capO< is overridden by the current supplied from L. 

This assumes the clock pulse of cPI is long enough for the opposite charge stored in capOi. 
to drain away. Then when cPI goes low both transistors are disconnecting and capOi. 
stores a high voltage. This is delivered at 0 at the next rise of the clock cP2. Assuming 
node 0: has a very high capacitance relative to 0, the net effect is to produce a high 
voltage at o. This is illustrated in the timing diagram. 

I ll. 3 I. f: --'1 . r---"1 .... 
I . . 

li ,--, .~ 

t ~----------------------------~--
~--fr-~--~--~--~.~v~ ____ ~~ __ 

I) ___ ~ ____ . _____ .•. _ Jr--:--------:---;----"\....~_ 
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More succinctly we can describe the behaviour by 

Vt. V(o,t + 1) = V(L,t) 

where we take a discrete model of time with the high pulses of ~1 and ~2 corresponding 
to alternate numbers. 

We used two principles to explain the behaviour of the dynamic register: 

A signal from power or ground overrides a signal from a capacitance. 

A signal from a large capacitance overrides a signal from a relatively 
weak capacitance. 

A circuit design may involve a range of signal strengths which give a discrete mea
sure of the current driving capability in the analogue circuit. The strength order is 
derived from a deliberately crude ranking of resistances and capacitances. Two resis
tances Rand R' are assigned conductance strengths g, g' respectively, with 9 < g', if 
the ratio RI R' is very large. Then, arguing by Ohm's law, as we did before, if two 
resistances Rand R' of strength 9 and g' are connected in series the resulting resistance 
R + R' should be assigned conductance strength g. g', the minimum of 9 and g'. This 
is because, for example, if R/ R' is very large then so is (R + R')I R'. Connected in 
parallel their resulting resistance, RR'I (R + R'), should be assigned strength 9 + g', the 
maximum of 9 and g'. We would like to conclude that whenever we encounter a chain of 
resistances, of strengths gl,g2, ... ,gn, in series then we can regard it as equivalent to a 
single resistance of strength II {gl, ... ,gn}, the minimum strength along the chain. We 
cannot quite do this because "very large" is a vague concept; even though RI R' is very 
large RlnR' need not be. The point is that with respect to a particular design a very 
large number L can be chosen (to stand for "very large") so that the number of times 
resistances are placed in series or parallel in the design has no significant effect. Still, 
we should bear in mind that such problems can arise through our choosing to work with 
an abstract strength order, and that without care they can lead to inaccuracies in the 
model. 

In a similar way capacitances are ranked in a total order of capacitance strengths. 
The signal stored by a capacitance of strength k is overridden by one from a capacitance 
of strength k' with k < k'. As we have observed, signals from sources override those 
due to capacitance so we arrive at the concept of a strength order as consisting of two 
finite sets K = {k1' ... , km} and and G = {gl,' .. , gn} in a total order 

o < k1 < ... < km < gl < ... < gn < 00. 

We use 0, zero strength, to stand for a strength of a negligible signal, from zero capac
itance or a non-conductance, and 00 to be the strength of a signal from a source via a 
perfect conductance. The restriction K = (K U {O}, :S), is called the capacitance order 
and its elements are called capacitance strengths. The restriction G = (G U {O, 00 }, :S) 
is called the conductance order, with elements called conductance strengths. Often we 
shall write a strength order as S, and sometimes, when we wish to emphasise the con
ductance and capacitance strengths as S K,G. We shall use s ·s' for the minimum and 
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s + s' for the maximum of two strengths sand s'. We can write the minimum of a set 
of strengths A as ITA and their maximum as EA. 

Recall the lattice of values: 

.x 

The value 0 is associated with points which are at 0 strength so they are not connected 
to any significant sources of current or charge. Sometimes it is said that such points 
"float" because they adopt, or float to, the value of whatever they are connected to. 
We can call the 0 value floating, though sometimes we use it in contexts where the 
intuition suggesting this name is not appropriate. Values now form a finite lattice. We 
use U + U' for the join (or least upper bound) of two values U, U', U· U' for their meet, 
and EA, and ITA, for the join, respectively meet, of a set of values A. (Our notation is 
thus consistent with that for the strength order considered as a lattice.) 

Consider how signals are transmitted through a resistance between a and (3 of 
strength g. Suppose a signal of strength g', a conductance strength, and value V E 
{H, L} is applied to one end a of the resistance. By our earlier observation concerning 
resistances in series, the resulting signal at (3 has strength g . g' and value V. 

If instead a signal of strength k, a capacitance strength, and value V is applied at a, 
assuming the resistance has negligible capacitance, the resulting signal at (3 is the same, 
with strength still k and value V. 

ot- ~ f3 
V(···········~ 

k ::~.~.:. k.. V k, V 

In both situations a signal of strength s and value V, applied at a gives rise to a signal 
of strength s . g and value V at (3. A signal of strength s > g is cut-down to a signal of 
strength g while a signal of strength s :S g is unchanged. 

Notice that these assumptions are dependent on connections lasting long enough 
for the charges in capacitances to reach stable levels. We shall have cause to examine 
this assumption more carefully later in the conclusion. 

We have said that directionality in circuits should be derived rather than imposed. 
Where is this directionality to come from? It comes from the effects of resistance. 
Consider a resistance of conductance strength g between points a and (3 in some envi
ronment in which the strength of the signal at a is Sa and that at (3 is S(3. Assume too 
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that the associated values are V 0: and V /3 in {H, L, X, 0}. We know from the behaviour 
of resistances, considering the transmission of signals from 0: to /3 that 

80:·g5,8/3 

(and similarly that 8/3 . g 5, 80:). 
In the case when 80:' g < 8/3 the signal from 0: is overridden and so has no effect on that 
at /3. On the other hand, if 80: . g = 8/3 then the signal from 0: is not overridden and 
has an effect on that at /3. Values "flow" from 0: to /3 and so V 0: 5, V /3. In particular if 
V 0: = H then V /3 = H, or X if /3 happens also to be connected to ground. There is a 
connection, possibly one-way, between 0: and /3, and we can write this suggestively as 
0: ,..:p- /3. We have /3 ,..:p- 0: as well only if 8/3 . g = 80:. It is easy to check that elements 
of this "flow relation" compose, so if 0: -+- /3 and /3 -+- 1 then 0: -+- 1. For this more 
general understanding of the flow relation we still have 

0: -+- /3 --+ Yo: 5, V/3. 

It is helpful to think of the strength function 8 as giving a "height" of each point, and 
indeed 

0: -+- /3 --+ 8/3 5, 80:, 

so flow is never "uphill". This understanding accounts for the following assignment of 
flows, strengths and values: 

~~ 
()O,H ~ g,X .(./" (?OIL 

~ -/;> 
It is the flow relation, rather than the graph of conductances, which plays the central 
control in analysing the behaviour of circuits. 

This exposition has been based largely on Bryant's work (see [BJ). The paper [Hay] 
deals with similar ideas but the model it presents seems only to apply in situations 
where the components can be understood as functions with definite input and output 
ports. Our "flow relation" corresponds to Bryant's idea of "unblocked path" in a steady 
state. Note our subsequent presentation will be markedly different than Bryant's. This 
is because we shall develop a compositional model, one on which we can base a proof 
system structured by the way circuits are built-up. 



377 

3. States of circuits-static configurations. 

Assume a particular strength order S = S K,G' 

We explain the intuition behind the definition of static configuration. Imagine a 
circuit connected to some environment via points A. Assume that in this environment 
the circuit has settled into a steady state. The definition of static configuration is 
intended to formalise this notion, picking out those features essential for the composi
tional account of circuit behaviour that follows. Note here we ignore the possibility that 
a circuit may never settle into a steady state in an environment. This model of circuits 
can be seen as analogous to those models of programs which only capture their partial 
correctness. 

In a static configuration each point of a circuit is associated with a signal with a 
certain strength and value. So each point a is associated with with a strength Sa E S 
and a resultant value Va E V. Some of this signal may be contributed by sources inside 
the circuit; the internal contribution at a can be recorded by a value 1 a E V. 

Of course points are connected to each other according to the state of transistors 
and the connections have certain conductance strengths. This gives rise to a flow relation 
+ between points, though in the rather indirect way we saw in the last section. It is 
this relation, derived from the more basic and detailed conductance relation between 
points, which plays the central role in our model of the behaviour of circuits. Intuitively, 
the relation + captures the flow of information in a circuit; it expresses how the values 
of signals flow (or are transmitted) from points at high strength to points at lower or 
equal strength along flows of conductance. 

3.1 Definition. Let A be a set of points. A static configuration of sort A is a 4-tuple 

where 

(S,v,!,+) 

S : A --+ S (the strength function), 
V : A --+ V (the value function), 
1: A --+ V (the internal value function) and 
+ is a reflexive, transitive relation on A (the flow relation), 

which satisfy 
(i) a + (3 --+ Sa ~ S(3, 
(ii) a + (3 /\ Sa = S (3 --+ (3 + a, 
(iii) a + (3 /\ S(3 E K --+ Sa = S(3, 
(iv) Sa=Of-+Va=0, 
(v) la<;Va, 
(vi) a + (3 --+ la <; 1(3/\ Va <; VB. 

Write sort(u) for the sort of a configuration u. Write Stas[A] for the set of static 
configurations of sort A. We say a static configuration is finite when it has finite sort. 

Property (i) says a signal cannot flow from a point at weaker strength to a point 
at stronger strength. Property (ii) expresses the fact that if a + (3, so information can 
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flow from 0: to (3, and 0: and (3 are at the same strength then (3 -+- 0:, so information can 
flow in the other direction too. To justify (ii) assume that 0: -+- (3 and 80: = 8(3. Then, 
according to the last section, 0: -+- (3 arises iff there is a conductance, of strength g say, 
between 0: and (3 so that 80:· g = 8(3. Hence 8(3· g = 80: too making (3 -+- 0:. Property 
(iii) states that if 0: -+- (3 and 8(3 is a capacitance strength then 80: is the same strength. 
This follows capacitance strengths are always ranked below those of conductance in the 
strength order. Assume 0: -+- (3 and 8(3 E K. Then 80:· g = 8(3 for some conductance 
strength g for which 8(3 :::; g. This can only occur with 80: = 8(3. Property (iv) says a 
signal of no strength has no content and vice versa. Naturally the internal contribution 
cannot exceed the resultant value-property (v). The final property (vi) formalises the 
intention that -+- should represent the direction in which information is transmitted 
through the circuit. 

The strength and value functions are used later to specify when two static config
urations can sensibly be linked together in parallel. It is necessary to keep track of the 
internal contribution to the value function and flow relation to give a satisfactory treat
ment of hiding. They determine when a point may be insulated from the environment 
without changing its resultant signal. 

To make these somewhat abstract ideas a little clearer we present some static 
configurations of basic devices. 

3.2 Example. A source: 

A source Pow 0< supplies an internal contribution of strength 00 and value H to 
a point 0: which may well receive a contribution of L from the environment to yield a 
resultant value V 0: = X. 

80: = 00 1\ Vo: = X 1\ 10: = H 

3.3 Example. A wire: 

A resistance of perfect conductance resd/' can be regarded as a wire between 0: 
and (3 in which signals flow unimpaired between the two points. There are no internal 
sources. 

/3 .. --------------~. 
s, U, ¢ 9, u., ¢ 

So: = 8(3 = s 1\ Vo: = V(3 = U 1\ 10: = 1(3 = 01\ 0: -+- (31\ (3 -+- 0: 
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3.4 Example. A resistance: 

A resistance of strength g contains no internal sources. If (in the environment) 
power and no other source is applied at a and 13 is connected to ground via conductance 
g then the static configuration shown would result. 

:3 
~_----..fB 

00, H, ¢ 

Sa = 00 /\ Sf3 = g /\ 

Va=H/\Vf3=X/\ 

Ia=If3=0/\ 

a ~ /3 /\ ,13 ~ a. 

g,X~¢ 

3.5 Example. A transistor: 

If an n-type transistor nt rano.,(3" is placed in an environment in which positive 
charge is applied to the gate I then a and /3 are connected and behave like a wire. 

1
d 5, tl, ¢ 

~--:-i k, 1-1, ¢ 
ft 5, U,¢ 

Sa = k /\ Sa = 5/3 = s /\ 

Va=V/3=U/\ 

Ia = If3 = Ii = 0 /\ 
a~f3/\f3~a/\ 

,(a ~ I V I ~ a) /\ ,(/3 ~ I V I ~ (3). 

In a static configuration, two points a and /3 may be both in the relation a ~ /3 
and /3 ~ a. In this case the points a and /3 receive the same signals both in value and 
strength. Sometimes neither a ~ /3 nor /3 ~ a-the two points are incomparable
with respect to the flow relation~. Intuitively this means that the signal at one 
point does not affect the signal at the other. We introduce notation to describe these 
circumstances. 

3.6 Definition. Let (J = (5, V, I, ~) be a static configuration of sort A. For a,f3 E A 
define 

a-/3==a~/3/\/3~a 

a II 13 == -o(a ~ (3) /\ ,(/3 ~ a). 

In the special case where the effects of resistance are negligible there is only only 
one positive conductance strength 00, corresponding to perfect conductance, the flow 
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relation + coincides with the equivalence relation ~. The proof is a little exercise in 
using the axioms which define a static configuration. 

3.7 Proposition. Assume there are only the two conductance strengths 0 < 00. 

Then for any static configuration (J the relation + is symmetric and so an equivalence 
relation on points with x + y iff x ~ y for all points x, y of (J. 

Proof. Suppose a + {3. 

Assume 5{3 = O. Then 5a = 0 by (iv) and (vi). Assume 5{3 E K. Then 5a = 5{3 
by (iii). Assume the remaining case that 5 {3 = 00. Then 5 a = 00 by (i). Therefore, as 
in all cases 5a = 5{3, we see {3 + a by (ii). 

Thus a + {3 implies {3 + a, making + symmetric. By definition + is reflexive 
and transitive, so + is an equivalence relation. Hence the relations -+- and ~ are equal. 

I 

Proposition 3.7 may increase our level of confidence in the axioms proposed for a 
static configuration. Still there are sufficiently many axioms, and the idea of static con
figuration sufficiently complicated, to raise the question of their completeness. We have 
used arguments from physics for the soundness of the axioms. To show completeness we 
need an argument showing that there are no properties shared by all static configura
tions of real (or buildable) circuits which do not follow from those written down in the 
definition? Afterall, axiom (ii) does not spring to mind immediately from idea of static 
configuration or the examples we have considered. Later in proposition 4.4 we shall show 
that every structure (5, V, I, -+-) on a finite set of points which satisfies all the axioms 
of 3.1 can be realised as the static configuration of a circuit built-up from resistances 
and sources connected to those points. Then any property of structures (8, V, I, -+-) 
which holds of all static configurations of circuits must also hold of all finite structures 
in 3.1. 

We make the static configurations with sorts A a subset of some universe of points 
II into a partial algebra with operations associated with composition and hiding. 

3.8 Notation. Let L be a complete lattice ordered by :S with binary join + and 
arbitrary join E. Let M and A be sets. Let f : M -+ Land 9 : A -+ L be functions to 
the lattice. We define their join f + 9 : Mu A -+ L by 

for x EMu A. 

{ 
f(x) 

(J + g)(x) = g(x) 
f(x) + g(x) 

if x E M\ A 
if x E A \ M 
ifxEMnA. 

If f : M -+ L we write II A for the restriction of f to the subset Mn A. If R is a 
binary relation on Mwe write Ri A = R n (A x A) for its restriction. 

Let R be a binary relation on M. Let f : A -+ L be a function from A ~ M to the 
lattice L. Define the application of relation R to f to be the function (R . J) : M -> L 
given by 

(R . f)(x) = E{J(z) I z E A & (z, x) E R}. 
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We shall use this operation to transmit the values at a subset of points in a static 
configuration to other points in accord with the flow relation +. 

Assume Uo is a static configuration of a circuit Co and U1 is a static configuration of 
a circuit C1. When can Uo and Ul be composed to give a static configuration of Co and 
C1? When their strengths and values agree at common points; only then do Uo and U1 

make consistent assumptions about the environment. Then the resulting flow relation 
should be the transitive closure of the flow relations in the components and the internal 
contribution should be spread out accordingly. 

3.9 Definition. Let Uo = (So, Vo, /0, +0) be a static configuration of sort Ao and 
Ul = (SI, Vl ,/t,+I) be a static configuration of sort AI. Define their composition to 
be 

where 

_ { (S, V, /, + ) if So r A 1 = SIr Ao and 
UO·Ul - VOrAI = V1 rAo 

undefined otherwise 

S = So + S}, 

V = Vo + V}, 

+ = (+0 u +d* and 

/ =+. (/0 + It). 

Suppose u is a static configuration of a circuit c. When does u restrict to a con
figuration of a circuit like c but in which all points but those in A are hidden? When 
all the points to be· hidden have values (and strengths) which result from the combined 
effect of internal sources and the contribution from unhidden points A. More precisely 
when for all points a to be hidden we have Va = / a + (+. V r A)a. Then the hiding of 
points not in A will make no difference. 

3.10 Definition. Let u = (8, V, I, +) be a static configuration of sort M and A a set 
of points. Define the restriction of u to A to be 

uiA={(SiA, ViA, IiA,+iA) ifV=/+(+.VrA) 
undefined otherwise. 

3.11 Notation. We indicate Uo • Ul and ur A are defined by writing Uo • Ul 1 and 
urA 1. 
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4. The semantics of static circuits. 

Assume the strength order is S = S K,G' Also assume a countably infinite set of 
point names II. 

4.1 Definition. A little language for static circuits-circ. 
The syntax of circ is given by: 

c ::= Pow 0: I Gnd 0: I capkUO: I resg (o:,,8) I ntran(o:,,8,"Y) I ptran(o:,,8,"Y) Ie. c I erA 

where k E K, 0 i- U E V, 9 E G U {oo} and 0:,,8, "Yare distinct point names in II and 
A ~ II. 

The constant terms Pow 0: and Gnd 0: stand for sources providing a signal of 
strength 00 at point 0: with values Hand L respectively. Another kind of source arises 
through charge storage, when the strength S is an element of K. A term caPkUO: repre
sents a capacitance of strength k, charged up with value U. The constant term resg(o:,,8) 
stands for a resistance connecting points 0: and ,8 with conductance 9 E G. The con
stant ntran(o:,,8,"Y) stands for an n-type transistor with a gate "Y which when it is high 
connects points 0: and ,8 with perfect conductance. The constant term ptran( 0:,,8, "Y) 
stands for a p-type transistor with a gate "Y which connects points 0: and ,8, again with 
perfect conductance, when the gate "Y is low. Of course, should the effect of resistance 
be significant we can insert a suitable resistance between 0: and ,8. 

We take the behaviour of a circuit in circ to be the set of possible static configu
rations it can settle into in some static environment. For compactness, in the following 
definition we assume that a static configuration u is (S, V,l, + ). 

4.2 Definition. The semantics of eirc. 
Let Sta = UAcnSta[AI, the set of static configurations with sorts which are subsets 

of II. -
Define the semantic function ~ ] : eirc -> P(Sta) to be the map defined by the 

structural induction 

[Pow 0:] ={u E Sta[o:ll So: = 00 1\ 10: = H} 

[Gnd 0:] ={u E Sta[o:ll So: = 00 1\ 10: = L} 

[capkUO:] ={u E Sta[o:ll So: 2': k 1\ 

(So: = k -> fo: = U) 1\ (So: > k -> fo: = 0)} 
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[resg(a,,8H ={O" E Sta[a,,811 la = 0 /\ 1,8 = 0 /\ 

Sa·g:S S,8 /\ S,8'g :S Sa /\ 

(Sa·g = S,8 +-+ a-+- ,8) /\ (S,8.g = Sa +-+,8 -+- an 

[ntran(a,,8,1)] ={O" E Sta[a,,8,111 la = 0/\ 1,8 = 0 /\ 11 = 0/\ 

1 II a /\ 1 II ,8 /\ (a II ,8 V a ~ ,8) /\ 

(V1 = H -+ a ~,8) /\ (V1 = L -+ a II ,8n 

[ptran(a,,8,1)] ={O" E Sta[a,,8,111 la = 0 /\ 1,8 = 0 /\ 11 = 0/\ 

1 II a /\ 1 II ,8 /\ (a II ,8 V a ~ ,8) /\ 

(V 1 = L -+ a ~ ,8) /\ (V 1 = H -+ a II ,8)} 

[c. d] ={O". p I 0" E [c] & p E [d] & 0". P n 

[cf A] ={O"I A I 0" E [c] & 0"1 An. 

Further terms can be defined. For example, we can define a wire wre( a,,8) between 
a and ,8, with denotation 

[wre(a,,8)] = {O" E Sta[a,,811 la = 0 /\ 1,8 = 0/\ a ~ ,8}, 

which can be realised by a resistance with perfect conductance, i. e. 

[wre(a,,8)] = [resoo (a,,8)]. 

More interestingly, We can define a general source scesua, at a, of strength sand 
value U E V, to have denotation 

[scesua~ ={O" E Sta[all Sa:::: s /\ 
(Sa = S -+ Ia = U) /\ (Sa> S -+ Ia = 0n 

Such a source only makes a contribution at a if the strength of a is exactly s. We only 
consider sources scesua for which s = 0 {:} U = 0-any others could have no static 
configurations. If s is a capacitance strength k then such a weakened source can be 
realised by the charged capacitance caPkU' If s is a conductance strength 9 it can be 
realised by passing signals from ground or power through a resistance of strength g. For 
example, if U = H, we have 

[scegHa] = [(Pow ,8. resg(,8, am a]. 

The one remaining case, sceo0a can be realised as a single connection point standing 
alone, and this can be made by hiding one end of a resistance, i.e. 
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It is helpful to explain the ways sources combine using an ordering between pairs 
sU, where s E Sand U E V and s = 0 iff U = 0. On such pairs define 

sU ~ s'U' iff s < s' or (s = s' & U ~ U'). 

This forms a finite distributive lattice (meet· and join +), mentioned in [Bl] and [Hay], 
which may be drawn as: 

.~. KIH~k'l. 

o¢ 

Now we can list some basic equivalences between circuit terms, which can be proved 
from the denotational semantics. 

4.3 Proposition. Some equivalences on circuits 
Write c = c' iff[c~ = [c'], for circuit terms c,c'. 

Realising sources: If k is a capacitance strength and 9 a conductance strength then 

sceo0a = resg(a,,8)f a, 

scekUa = caPkUa, 
scegHa = (Pow ,8 • resg(,8, a)) r a, 

scegLa = (Gnd ,8 • resg(,8, a))f a, 

Composing sources: scesua. sces,u,a = scesu+s,u,a. 
Resistances in series and parallel: 

(resg(a,,8). resg,(,8,I))f{a,l} = resg.g,(a,,). 
(resg (a,,8) • resg, (a,,8)) = resg+g, (a,,8). 

Wires, resistances and transistors: 

wre( a,,8) = resoo (a,,8) 

= (Pow a. ntran(a,,8,I))f{a,,8} 

= (Gnd a. ptran(a,,8, 1))f {a, {1}. 

Earlier we pointed out the problem of knowing whether or not we had written 
down sufficient axioms for static configurations. From the remarks in the last section it is 
sufficient to show every finite static configuration can be realised as a static configuration 
of a circuit term. This is established in the following proposition. 
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4.4 Proposition. Any static configuration (J of sort A a finite subset of II is the static 
configuration of some circuit c i.e. (J E [4 

Proof. We sketch the proof. Given (J, we define the required circuit to be the composition 
of the following finite set of components: 

{sceSCtua I a E A & Ia = U i- 0}u 
{resg(a,,B) I a +,B & 9 is the minimum conductance strength s.t. Sa· S,B :::; g}. 

This uses our knowledge of how to build all sources scesua as circuits. From the 
definition of sources, resistances and composition, it can be seen (J E [c~. I 

Now we can see how to give a more accurate specification of the NMOS inverter of 
section 2. Its circuit is constructed by the term 

c == (ntran(Ct,,B,T). resg(,B,t5). Pow t5. Gndce)r{a,,B}. 

Informally, its output ,B behaves like a direct connection to ground when its input r is 
high and like a weakened power source when ',is low. Formally, if we define 

Scesux ==Sx 2: s 1\ 

Sx = s -+ Ix = U 1\ 

S x = s -+ I x = U, 

then we can say c satisfies the assertion 

v r = H -+ SceooL,B 1\ 

vr = L -+ ScegH,B. 

This illustrates how the model is closely associated with assertions for specifying the 
behaviour of circuits. Of course we should give a more rigorous treatment of their 
syntax and semantics. This is done in the next section where a complete proof system 
is presented for proving a circuit satisfies an assertion. 

Technically, it will be simpler to work with more basic predicates than V x and Ix. 
Say (J satisfies H a if H :::; Va, meaning a is connected to a source of positive charge 
(either in the environment or internal). Similarly, say (J satisfies La if L :::; Va. The 
assertion Va = H can then be expressed equivalently by H a 1\ ,La, while Va = X 
is equivalent to H a 1\ La. For internal signals say (J satisfies ha if H :::; I a and La if 
L :::; Va. Then, for instance, (J satisfies ha if a is connected to an internal source of 
positive charge. 

To conclude this section, we note we· have not completely eliminated the kind of 
problems raised in the section 1. Certainly we now have an adequate treatment of short 
circuits. In particular 

[Pow a. Gnd a] i- 0, 

and so, when we come to the logic, the circuit Pow a. Gnd a will not satisfy if. However, 
there are other circuit terms which do denote 0 and so will satisfy if. Roughly speaking, 
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these are terms which represent circuits whose only possible behaviour is to oscillate. 
For example the term 

c == (ntran(ct,,8, '1) • resg (,8, 6) • Pow 6 • Gnd ~ • wre(T., ,8))f0, 

with 9 a conductance strength strictly between 0 and 00, "ties-back" the output of an 
NMOS inverter to its input, and then insulates all points from the environment. It can 
be drawn as: 

The circuit c denotes the emptyset, [c~ = 0. (The circuit is a little peculiar in that it 
has an empty sort. A trivial modification-connecting the wire to the gate of another 
transistor-produces a term with nonempty sort and empty denotation.) The logic of 
circuits will thus be akin to the logic of partial correctness assertions (Hoare logic) j a 
purely oscillating circuit will satisfy any assertion just as a diverging program satisfies 
all partial correctness assertions. 
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5. A proof system. 

We show how to construct a proof system for circuits. In this section we highlight 
its main features, and refer to the appendix for the full syntax, semantics and proof 
rules. The proof system consists of a complete set of rules to prove formally that a 
circuit, described by a term c, satisfies a property described by an assertion A. It is 
compositional in that proving an assertion holds of a compound circuit of the form 
ci A or Co • C1 reduces to proving assertions about the components, c of ci A, and Co 

and C1 of Co • C1. Assertions describe the possible static configurations the circuit can 
settle into. We have seen several examples where a static configuration satisfies some 
particular logical assertion. Of course, an assertion determines all those configurations 
which satisfy it, and in the formal treatment we take the meaning, or denotation, of an 
assertion A, written [AL to be the set of all those static configurations which satisfy it. 
Thus we seek a way to prove relations [c~ c:;: [AL which we write as c 1= A, hold between 
circuit terms c and assertions A. In order to establish such relations it is useful to treat 
circuit terms as just another kind of assertion in our semantics and proof rules. We 
write 0 1= c to mean 0 is a static configuration of the circuit c, just as we do for more 
usual assertions. We make use of relations r 1= A between a set r and A where rand 
A are circuit-assertions (see 1.1 in the appendix) which may include, or be built out 
of circuit terms. The relation r 1= A means any static configuration 0 which satisfies 
all of r satisfies A too. Such relations have their syntactic counterpart in the proof 
system. The proof rules are written in a natural-deduction style, keeping track of the 
assumptions in sequents of the form r f- A. 

We settle on a countably infinite set of point names II, with typical members 
a, (3, ... , and a fixed strength order s. It is simplest to assume that point names are 
in 1-1 correspondence with points, so two distinct names cannot be associated with 
the same point (we shall axiomatise the equality relation between points accordingly). 
Our previous work suggests the form assertions should take. A static configuration 0, 

with sort A c:;: II, is a structure (8, V, I, -+) over individuals A. We could treat 0 as a 
structure for a first order logic with function symbols S, V, I and relation symbols -+ 
and =. We do not quite follow this course. There is first of all the problem that the sorts 
are not all the same, and in particular we allow the trivial empty static configuration-a 
source of trouble should we follow a traditional treatment where it is usual to ban empty 
structures. We could use a family of logics, one for each sort, but instead it is much 
more convenient and much less messy to use a free logic in which it is not necessary 
that terms are defined, or denote existing things. In the free logic a static configuration 
o satisfies Vx.A when A[a/x] holds for all points a in sort(o), and similarly 0 satisfies 
3x.A if for some a in sort(o) the assertion A[a/xl is satisfied by 0; quantification is 
only taken to be over existing, or defined, elements. On the other hand, all variables 
are understood to range over all potential individuals II. Our style of free logic is based 
on [Sj and includes an existence predicate E; Ea holds in a static configuration precisely 
when a E sort(o). We have constant symbols from II, a function symbol S, as well as 
relations -+ and = in the logical language. Instead of using funccions V and I we use 
the predicates H x, Lx and hx, Lx mentioned in the last section 4. 

The point relations, prel, have the form 

HIr I LIr I hIr IIIr I Iro = Ir1 I Iro -+ Ir1 I EIr 
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where 11",11"0,11"1 range over points and variables. 

To reason formally about strengths we need strength expressions of the form 

where s E S, 11" is a point or variable and eo, el are strength expressions. Note we need 
an existence predicate for strength expressions as well as points. This is because Sa 
only makes sense, with respect to a static configuration a, if a E sort(a). Define the 
strength relations, srel, to have the form 

where e, eo and e 1 are strength expressions. 

Now the first order assertions of our free logic are: 

A ::= prell srell tt I If I A 1\ A I A V A I A -+ A I :3x.A I \fx.A 

with atoms which are point and strength relations. The full semantics and proof system 
can be seen in the appendix (for the moment ignore the second order assertions and 
rules). Notable, special to a free logic, are the quantifier rules which must take account 
of existence and the rule (refi) the axiom for existence-the equality a = a only holds 
of an existing point a. The paper [S] gives an excellent discussion of the axioms and 
rules. 

5.1 Theorem. A first-order assertion is provable using the proof system in the 
appendix iff it is satisfied by all static configurations. 

Proof. The proof is omitted. Unfortunately, I do not know an adequate reference for a 
completeness result in the form we want it, though completeness can be proved rather 
indirectly from results in [FS] and [Grl. More direct proofs can be got by following the 
lines of Henkin's completeness proof for the predicate calculus. I 

It is as well to get a basic fact about strength relations out of the way. It will be 
useful to observe that any strength relation can be reduced to ones of a special form, 
described in the following. 

5.2 Proposition. Let R be a strength relation. There is a propositional assertion A 
which includes strength assertions solely of the form S7r = s such that f- R +--+ A. 

Proof. 

By structural induction, 

for any strength expression e, where 7r ranges over the variables or points mentioned in 
e. This establishes the proposition for strength relations of the form Ee. 
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By structural induction, 
f- Ee +-+ W sESe = S 

for any strength expression e. It follows from the axioms that 

f- eo· el = S +-+ W s S ES(eo = So /\ el = SI /\ So . SI = s) 
0, 1 

f- eo + el = S +-+ Ws . ES(eo = So /\ el = SI /\ So + SI = s) o ,.::q 

f- eo ::; el +-+ WSO ,8lES(eo = So /\ el = SI /\ so::; st) 

f- eo = el +-+ W, . ES(eo = So /\ el = SI /\ So = SI) . 
.;iO,.:>l 

Whence, by structural induction on expressions, any strength relation of the form eo ::; 

el or eo = el is provably equivalent to a propositional assertion of the required form . 

• 
We are still left with the major problem of how to incorporate rules for reasoning 

about circuit terms in the logic. As mentioned we can include them in the logic, treating 
them much the same way as assertions. They are built-up using restrictions r A and 
composition. from atoms like Pow 0: and ntran( 0:,,8, I)' It is a simple matter to 
incorporate atoms. For example, the rules (L.1O) include an elimination rule of the 
form 

(Pow E) Pow 0: I- So: = 00 /\ ho: /\ '/0: /\ Vx.x = 0: 

whose role is to replace proving a property of a power source Pow 0: to proving a 
consequence of an assertion expressing its behaviour. But how are we to treat compound 
terms? Our approach is to associate modal operations, analogous to weakest liberal 
preconditions, with the operators r A and.. This line was inspired by the general 
treatment in [AJ, though, of course, their specific use in the semantics of imperative 
programming language is well known, largely due to [D]. We also extend the logic to 
include second-order quantifiers, to obtain the following syntactic category of second
order a.ssertions: 

A ::=prell sre/l tt I ff I A /\ A I A V A I A -+ A I 3x.A I Vx.A 

{x: A}1T I P1T I 3P.A I VP.A I 

Though the reason for this will not become clear until we deal with the preconditions 
for composition. 

The treatment of the restriction operator r A, for a finite subset A of IT, is easier to 
explain first. The use of preconditions arises naturally from the requirement that the 
proof system be compositional. The requirement of compositionality begs the question: 

What has to be true of a circuit c in order to be guaranteed that erA 
satisfies an assertion A? 

And this question amounts to: 

What must be true of a static configuration (J so that if (Jr A is defined 
then (J I A satisfies A? 
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Rather tautologously, we can answer that a must satisfy the lA-precondition of A, 
written A A, which has the denotation 

We might instead of AA write [I AlA because [AA~ could have been written equally well 
as 

{a 1 Va'. a 1 A = a' * a' FA}, 

making the precondition look even more like a modal operator of the kind used in 
dynamic logic [Hal. This precondition is analogous to weakest liberal preconditions 
because if alA is undefined then a satisfies A A. We could have worked instead with 
the analogue of weakest precondition. We temporarily introduce it as (r A)A with the 
meaning 

[(IA)A] = {a 1 :la'. arA = a' & a' FA}, 

but do not make any further use of it. It turns out to be definable in terms of A A, and 
is not quite as directly useful. For A A we have the following fact: 

5.3 Proposition. 
Let c be a circuit term and A a second-order assertion. Then 

Proof. 

I 

cr A 1= A iff c FAA. 

crA 1= A iff [crA] ~ [A~ 

iff Va'. a' F cr A * a' FA 

iff Va. (a Fe & ar A 1) * ar A FA 
iff Va. a Fc*(arAl*arA FA) 

iff Va. a 1= c * a FAA 

iff [c] ~ [A A] 

iff c FAA. 

We extend the second-order assertions by preconditions and call the resulting syn
tactic category simply assertions. Proposition 5.3 suggests an obvious elimination rule 
for preconditions: 

in which the semantic relation of satisfaction has been replaced by the syntactic one 
of entailment in a sequent calculus. Standing alone this proof rule would not get us 
very far. True we can eliminate an occurrence of the restriction operator, but only 
at the expense of introducing a precondition. Fortunately it is a purely mechanical 
process, captured mainly in the distribution laws for 11.( ), listed in L.6, to eliminate all 
occurrences of r A-preconditions; an assertion containing them can be proved equivalent 
to an assertion without any. 
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We explain the rules for A( ), leaving the detailed proofs of soundness to the reader. 
Regarding preconditions as modal operators suggests the introduction rule 

familiar from proof systems with modal operators. The other introduction rule for such 
preconditions accompanies the fact that if ur A is undefined then u 1= A A. Take 

G == \:Ix. ,Ax --+ [Hx --+ hx V (3y : A. Hy /\ Y + x)] /\ 

[Lx --+ lx V (3y : A. Ly /\ Y + x)]. 

The assertion G expresses definedness in the sense that 

u i= G iff urAL. 

The other introduction rule for preconditions is 

The remaining A ( ) rules say how the operator distributes over logical operators. 
Their role is to enable preconditions to be pushed through and finally eliminated from 
assertions. Using them we can for instance derive the rule 

where by A r we mean {A P I B E r}, for a finite set of assumptions r. From r f- A 
we derive f- &.,r --+ A and hence f- A(&.,r --+ A). Using the distribution rules we 
deduce G f- &.,Ar --+ AA. This gives G,&.,Ar f- AA which combined with ,G f- AA 
yields &., A r f- A A, and finally A r f- A A. In particular using this we can for instance 
show f- A A f-+ A B if f- A f-+ B; equivalent assertions have equivalent preconditions. 
This means that preconditions of strength relations can be replaced by preconditions 
of assertions of the form given in proposition 5.2 from which all preconditions can be 
eliminated using the distribution rules. 

5.4 Theorem. 
Let A be an assertion, which may include restriction preconditions. There is an 

assertion B, which does not contain any preconditions, such that f- A f-+ B. 

Proof. By the remarks above, using the distribution laws, we obtain 

where C contains no preconditions. But ,G f- A A. Therefore f- A A f-+ (G --+ C), with 
B == (G --+ C) an assertion of the required form. I 

Proving erA 1= A reduces to proving c 1= A A which, by the metatheorem and 
modus ponens, reduces to proving c 1= B where B contains no preconditions-and this 
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can be done formally in the proof system. We have reduced the problem of proving 
an assertion A holds of cr A to proving an assertion B holds of c. We have achieved 
compositionality for restriction. 

The term C may well contain compositions using.. For our proof system to be 
compositional we must "decompose" the proof that an assertion A is satisfied by a 
composition Co • C 1 to proofs that assertions Ao and AI, are satisfied by the components 
Co and Cl, respectively. Problems like this have received a great deal of attention recently 
(see e.g. [deR, OH, St, W]) and our approach throws some light on the problem of 
obtaining compositional proof systems for parallel processes, and even suggests a general 
approach. Again the use of a modal operator plays a central role, this time associated 
with composition. Composition. is a binary operator so the .-precondition of an 
assertion A is satisfied' by those pairs of static configurations (a,p) whose composition 
a • 1', when defined, satisfies A , i.e. 

[eA~={(a,p) la.pl*a.p 1= A}. 

Thus the assertion e A is of a different type than those we have encountered previously. It 
is satisfied by pairs of static configurations. To emphasise that it has a different type we 
call it, and other assertions satisfied by pairs of configurations, product assertions. It is 
useful to define another operator for forming atomic product assertions. For assertions 
A and B, take A x B to be satisfied by those pairs (a,p) where a satisfies A and I' 
satisfies B, i. e. so 

[A x m = [A~ x [B~. 

The full syntactic category of product assertions is: 

D ::=A x B 1 e A 1 E'Ir 1 'Ira = 'lrl 

It I if I Do 1\ DilDo V Dl I Do -+ Dl I 3x.D 1 Vx.D I 

{x: D}'Ir 13P.D 1 VP.D 

which includes the apparatus of first and second order free logic with equality. 

We can treat circuit terms similarly, and with the obvious definition of 1= be
tween product assertions, obtain the following proposition relating the .-precondition 
to composition. 

5.5 Proposition. 
Let Co and Cl be circuit terms and A an assertion. Then 

Proof. 

Co • Cl 1= A iff Co x Cl 1= eA. 

Co. Cl 1= A iff [Co. Cl~ ~ [A~ 

iff Va'. a' I=co.cl*a' I=A 
iff Va,p. (a 1= Co & I' I=cl & a.pl) =,?a.p I=A 
iff Va,p.a 1= Co & I' I=cl*(a.pl=,?a.p 1= A) 
iff Va,p. (a,p) 1= Co X C1 ='? (a, 1') 1= eA 

iff [co x Cl~ ~ [e A~ 
iff Co x C 1 i= e A. I 
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The proposition asserts the soundness of the elimination rule for composition: 

Co X CI f-- • A 

Co. CI f-- A 

We want the proof of Co x C I 1=· A to "factor" into proving 

Co 1= Ao & CI F Al & Ao X Al F· A. 

The key to a compositional proof system for. is to obtain such assertions so that we 
can prove formally the relation between assertions, that Ao x Al f--. A. Then we have 
reduced proving a property holds of a composition CO.CI to proving properties hold of its 
components Co and CI: If there are such assertions then by the rules (x f--) and (tran), 
and provided Co f-- Ao and c[ f-- AI, we can deduce Co x CI f-- • A and so Co. CI f-- A. 
Obtaining suitable assertions Ao and Al is quite involved. 

The rules for .-preconditions are like those for r A-preconditions and are presented 
in L.9. There are two introduction rules, one of which makes use of a definedness 
assertion D, with 

D == 't/x. ([Ex x tt]A Itt x ExJ) ~ 

([Hx x ttl f-+ Itt x HX]A 

[Lx x ttl f-+ Itt x Lx] A 
W SES[Sx = s x Sx = sll, 

so (0', p) F D iff 0'. p 1. This is where the cost of making assertions second-order pays
off. Because we can quantify over subsets (or properties), we can reduce· A to a provably 
equivalent product assertion which contains no preconditions. The quantification over 
sets is used to express the fact that the flow relation in a composition 0' • p, assumed 
defined, is the transitive closure of the flow relations contributed by the components 0' 

and p. This is the role of axiom (d· +). Suppose 0' • P is defined. Then (0', p) F 
-(0: + /3) means simply that 0'. P F 0: + /3 for 0:,/3 E sort(O'. pl. Let A ~ sort(O'. pl. 
Note we can represent the set A as the term A which is {x : W AEA x = A} in the logic. 
Say A is closed, with respect to 0', p, if 

for all 1, I) E sort (0' • p). Now, the flow relation in 0' • P is characterised as being the 
transitive closure of the flow relations of the components, and this is expressed by the 
property that 

Ao: & A is closed * A/3 

for all 0:,/3 E sort(O'. p) and for any A. This gives the gist of axiom (d· +). Notice it 
depends on quantifying over subsets. Once we have gone second-order, the distribution 
axioms for • ( ) enable us to eliminate occurrences of .-preconditions from product 
assertions. 
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5.6 Theorem. 
Let A be a product assertion which may include composition preconditions. There 

is a product assertion B, which does not contain any preconditions such that f- A ...... B. 

Proof. The proof follows the same lines as for restriction preconditions. I 

But, of course, this was at the expense of making our logic second-order and it 
is well-known that there is no complete effective axiomatisation of second-order logic. 
Fortunately we can use the fact that circuits are finite to get around this difficulty. In 
contexts where it is assumed that all points lie within some finite set we can reduce 
second-order assertions to provably equivalent first-order or even propositional asser
tions. (An assertion is propositional if it contains no quantifiers or preconditions.) 

It is easy to define the sort of circuit term by structural induction: 

sort(Pow 0:) =sort(Gnd 0:) = {o:} 

sort( resg (0:,,8)) = {0:,,8} 

sort(ntran(0:,,8,1)) = sort(ptran(0:,,8,1)) = {0:,,8,1} 
sort(c. d) = sort(c) U sort(d) 

sort(ci A) = sort(c) n A. 

In the logic, the fact that a circuit term c has sort A, a finite set, is expressed by 

where Ax abbreviates {y : W)..EAY = A}X and so is equivalent to W)..EAx = A. This 
can be proved in the formal system, though all we need to show completeness is the 
following. 

5.7 Proposition. 
(i) Let c be a circuit term of sort A. Then C f- Vx.Ax. 
(ii) Let Co, CI be circuit terms of sort Ao and Al respectively. Then 

Co x CI f- Vx. (Ao U Adx. 

Proof. The proof of (i) is by structural induction on circuit terms. 

For basic component~ like transistors the sorts are specified in their associated 
assertions so for a basic component C we have c f-- Vx. (sort(c))x. 

Assume we already know c f-- Vx.M x where M is the sort of c. Then C f- Ex -t M x. 
Hence c f- Ax -t Ax 1\ Mx. But this yields c f-- A(Ex -t (AnM)x) from which we derive 
cIA f- Ex -t (A n M)x. Therefore C!- A r-- VX.(A n M)x and, of course, An M is the sort 
of cIA. 

Suppose we already know Co f- Vx.Aox and CI f-- VX.AIX where Ao and Al are the 
sorts of Co and c 1. Thus 

Co f- Ex -t Aox and CI f- Ex -t A1x. 
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By the (x f-) rule, Co x Cl f- [(Ex -+ Aox) x (Ex -+ A1X)j. From the rule (xE) for 
product assertions we derive 

Co X Cl f- Ex -+ ([Aox x ttj V [tt X A1X]) 

from which 
Co X Cl f- Ex -+ (Ao U Adx 

follows. We get 
Co X Cl f- lix.(Ao U Adx 

directly, and from the e ( ) rules we obtain 

Co X Cl f- e(lix.(Ao U Adx). 

Now we see Co. Cl f- lix.(Ao U Adx, as required. 

This completes the structural induction, to show (i). It also makes clear how (ii) 
follows. I 

In contexts where we know every point belongs to some finite set we can eliminate all 
quantifiers, both first and second order, to obtain an equivalent propositional assertion 
(without any quantifiers). 

5.8 Proposition. Let A be a finite set of points. 

Proof. 

Cia) lix.Ax f- ..3x.A +--t W)..EA(E>.. 1\ A[>../x]). 
(ib) lix.Ax f- lix.A +--t !f0.)"EA(E>" -+ A[>../x]). 
(iia) lix.Ax f- ..3P.A +--t W MoA[M/ Pj. 
(iib) lix.Ax f- liP.A +--t !f0.M~AA[M/Pj. 

(ia) Clearly 
f- W)..EA(E>.. 1\ A[>../x]) -+ ::lx.A. 

::lx.A, lix.Ax f- (Ex 1\ A) 1\ W)..EAx = >... 

Hence 
::lx.A, lix.Ax f- W)..EA(Ex 1\ A!\ x = >..). 

Now, using (eq), 
..3x.A, lix.Ax f- W)..EA(E>..!\ A[>"/x]). 

Thus 
lix.Ax r- 3x.A -+ W)..EA(E>..!\ A[>../x]). 

Combining (1) and (2) we obtain (ia). 

(ib) The proof is similar to that of (ia), but using Ii in place of ..3 rules. 

(1) 

(2) 
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(iia) Let P = Q abbreviate 'v'x.Px +-> Qx, where P and Q are second-order variables 
or terms. By structural induction on A the following substitution property for second
order terms: 

f- P = Q 1\ A[P/R]-+ A[Q/R]. 

For any finite set A, we know 

By the distribution of !f0.. over V (a metaresult about the proof system), 

or better, 

Hence by part (i), 
'v'x.Ax f- W M~AP = M. 

Now (iia) and (iib) follow by proofs on the same lines as in part (i). I 

It now follows that for a circuit term c and possibly second-order assertion A that 

c f-A+->B 

where B is purely first-order. The second-order quantifiers may be useful but they are 
not essential, and can be provably eliminated. Indeed, this is also true for the first order 
quantifiers, but having already a complete proof system for the underlying first-order 
free logic there is no need to eliminate them in our earlier work on restriction. However 
at present obtaining a complete system of proof rules for composition seems to require 
a stronger elimination for product assertions. 

5.9 Corollary. Let A be a finite set of points. Let A be an assertion. There is a 
propositional assertion p such that 

'v'x.Ax f- A +-> p. 

Let c be a circuit term, and A an assertion. There is a propositional assertion p such 
that 

c f-A+->p 

Proof. By theorem 5.4 we can eliminate preconditions. Then the first part is proved by 
successively applying the results above. The second part, for circuits, follows by 5.7(i) 
because entailment is transitive. I 

It follows from corollary 5.9 that product assertions of interest can be reduced to 
provably equivalent propositional assertions, in the context of reasoning about circuits. 
Just as before we can eliminate first-order quantifiers, and second-order quantifiers can 
be eliminated at least for the product assertions of concern, those of the form • A. 
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5.10 Proposition. Let A be a finite set of points. 
For product assertions C, 

(aJ 'ix.Ax f- :lx.C +--+ W)..EA(E>../\ C[>../x]). 
(bJ 'ix.Ax f- 'ix.C +--+ tI0..)..EA(E>.. -+ C[>../x]). 

For an assertion A, 
'ix.Ax f- - A +--+ P where p is a propositional product assertion. 

Proof. 

Parts (a) and (b) follow as earlier. 

Arguing in the same way as we did for restriction preconditions, we can derive the 
rule 

from which we observe it follows that if r f- A +--+ B then -r f- - A +--+ - B. By corollary 
5.9, 'ix.Ax f- A +--+ r where r is a propositional assertion. By the observation, we see 

From the distribution rules for - ( ), 

D, -'ix.Ax f- - A +--+ q, 

where q is propositional. Hence 

'ix.Ax f- - A +--+ (D -+ q), 

and now by (a) we can eliminate all the quantifiers in D to obtain the required propo-
sitional product assertion p. I 

5.11 Corollary. Let Co and C1 be circuit terms. Let A be a second order assertion. 
Then there is a propositional product assertion p such that 

Co x C 1 f- - A +--+ p. 

Proof. By the transitivity of entailment using 5.7(ii). I 

Product assertions which are propositional can be put into a useful normal form. 
The purpose of the distribution rules for product (1.8) is to enable this to be done 
formally in the proof system. 

5.12 Proposition. Let A be a product assertion which is propositional. Then 

where I is a finite set, indexing assertions Bi and Ci. 
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Proof. 

Firstly the logic is classical so I- (A ~ B) +-+ (--.,A V B) and so we can eliminate 
occurrences of ~ in favour of --., and V. Thus without loss of generality we can assume 
that A is built up solely using i\, V, --.,. The proposition now follows by structural 
induction on A using basic distributivity properties of the logical connectives. For 
example, to deal with the hardest case of the induction, we show if we assume the 
proposition holds for assertion D then it holds for assertion --.,D. 

and so 
I- --.,D +-+ &-"iEI([--.,Bi x ttl V [tt x --"Ci]). 

But then f- --.,D +-+ WW where W is the set of product assertions 

{[&-"iEIB ; x &-"iEICill 

(B; ==--.,Bi & Ci" == ttl or (B; == tt & c; == --"Ci), all i E I}, 

making D provably equivalent to an assertion of the right form. I 

Now the problem of proving Co • Cl 1= A has reduced to proving Co x Cl 1= 
W iEIBi X Ci. To achieve compositionality we would like to reduce this further, to 
proving assertions hold of Co and CI. We need to show: 

5.13 Lemma. Let Co and Cl be circuit terms such that 

for indexed assertions Bi, Ci. Then there are assertions Ao and Al for which 

Proof. It is simpler to argue that Ao and Al exist in a nonconstructive way which shows 
there exists a proof, so Ao x Al I- WiE1Bi X Ci, without giving it explicitly. Of course, 
this is all that is needed to show completeness. We know Co XCI 1= WiEIBi X Ci. Hence 
there is a function i[ , ] so that for any a 1= Co and p 1= CI there is ira, p] E I such that 

a 1= B i [C7,p) & p 1= C i [C7,P). 

(Note this does not determine i[ , I uniquely). 
Now 

a 1= &-..p FCl B i [C7,P) & P 1= ~C7 FCn Ci[O",pj 

for any a 1= Co and p 1= CI. We use e.g. &-..p FCl Bi[O",pj to mean the finite conjunction 

&-.. {Bi [C7,p) 1 p 1= ct}. 



Clearly 

399 

&p FC! Bi[O',p] f- Bi[O',p] for (1 1= Co and p 1= Cl, and 

&0' FCQ Ci[O',pj f- CijO',p] for (1 p Co and p 1= CI, 

as e.g. the conjunction &p FC! Bi[O',pj contains Bi[O',p] as a conjunct. Thus 

for any (1 1= Co and p 1= C 1. Write 

By (x v), 
Ao X Al f- W (O',p) Fen xc! [&p FC! Bi[O',p] x &0' FCn Ci[O',pJl. 

Also, obviously, 

Therefore Ao x Al f- WiEIBi X Ci. Clearly Co 1= Ao and CI 1= AI. I 

Now we can tidy up all the loose ends and prove soundness and completeness. 

5.14 Theorem. The proof system is sound i.e. 

rl--A=>fl=A 

for a finite set r of circuit-assertions and circuit-assertion A. It is complete in the 
restricted sense that 

cpA=>cf-A 

for a circuit term c and assertion A. 

Proof. We omit the proof of soundness which is routine if tedious. The proof of com
pleteness follows by structural induction on c. 

Suppose the case where c is an atomic circuit term, so suppose for example c == 
ntran(o:,,8,,),). The rule (ntran E) has the form ntran(o:,,8,,),) I-- NT, where NT is a 
first order assertion describing the behaviour of ntran( 0:,,8, ')'). In fact [ntran( 0:,,8, ')' H = 

[NTJ, Suppose ntran( 0:, ,8, ')') 1= A for an assertion A. Then, as we have shown, 
ntran( 0:, ,8, ')') f- A f-+ B where B is a first-order assertion. Thus NT 1= B, so by the 
completeness theorem 5.1, NT f-- B. Hence ntran(o:,,8,,),) f- A. The other atomic cases 
are similar. 

In the case of restriction suppose c r A 1= A and inductively assume that c 1= B iff 
c f- B for any assertion B. Then c ~ A A. By the metatheorem 5.4, we can eliminate 
all preconditions to obtain 
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for some assertion B. But C F= B and by the inductive assumption C f- B. This gives 
C f- A A so CIA f- A, as required in this case. 

In the case of composition, suppose Co. CI F= A and inductively assume Co F= Ao 
iff Co f- Ao and CI F= Al iff CI f- Al for any assertions Ao and AI. Then Co XCI 1=· A. 
Our earlier results show that 

and, the above lemma, that in such a case there are Ao and Al with 

Co i= Ao & Cl 1= Al & Ao X Al f- WiEIBi xC;, 

precisely what is needed to conclude Co x C 1 f- • A and hence Co • C 1 f- A. I 
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6. Conclusion. 

We have presented a compositional model for the behaviour of MOS circuits in a 
static environment. Certainly such a model is necessary for a satisfactory treatment of 
dynamically changing circuits. Their behaviour can often be viewed as going through 
a sequence of static configurations as data changes in synchrony with one or several 
clocks. The data and the clock pulses are held long enough for the circuit to settle into 
a static configuration. It seems natural therefore to represent a possible history for such 
a circuit as a sequence of static configurations. Copying the approach in [Gor2,3j we 
could try to extend our work to the dynamic case by simply including a time parameter 
t E w, and associating devices with assertions expressing time dependencies between 
static configurations at different times. For example, then we could express facts like 
a capacitance would contribute a charge at time t + 1 if it was precharged at time t. 
Although it is not hard to push through this programme, it is disappointing that there 
are difficulties in making the model accurate. A main problem it seems is that short
term capacitance effects influence the physical behaviour but are not captured easily in 
any extension of our model. The strength orders we use assume that the environment 
is stable long enough for sources of current to override charges stored by capacitance. 
This assumption breaks down in some stages needed to explain the behaviour of devices 
like the following register: 

e-n.a.6te 

infut-- 1~~~_-i' out 
. 
'In 

When enable is high, a strong signal at in overrides that already present, and its 
value is established, after two inversions, at out. When enable becomes low the value is 
preserved at out (the input value is stored). Speaking loosely, the latter stage relies on 
capacitance to maintain the value at in until the feedback loop takes over. This occurs 
over a very short time when the assumptions behind the strength order are violated. I 
cannot, at present, see how to extend the model to account for effects over such a short 
time. Through failing to cope adequately with such short-term effects, the models I have 
developed allow more possibilities than are physically possible. By the way, the work 
of Bryant does not address this problem; a simulator need only generate one possible 
course of behaviour and Bryant does this by making a unit-delay assumption. (In his 
simulators all transistors switch with the same delay after their gates change.) 

It is unfortunate that the logic is so complicated even for static circuits. This may 
be in the nature of things. If so it makes even more pressing the task of relating models of 
the kind here to the models and logic like iCor2,3j which are relatively simple to work 
with. There must be "correspondence principles" which express how and when one 
model reduces to another. In general relations between models may be quite complex. 
A physical model implements a discrete model only provided certain conditions are met. 
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So far there have been several successful attempts at relating the physical and the logical 
levels for specific pieces of hardware, e.g. [GH, HD], and carrying through the thesis 
proposal [Me] should lay bare some of the key issues. 

Acknowledgements 

I am grateful to many people for help at various times. I owe a debt to the thesis 
work of Luca Cardelli [Car]; there Luca attempted to give a semantics to circuits on 
roughly similar lines to section 4 though his model was not sufficiently detailed to 
support a satisfactory treatment of hiding. His approach and mine were guided by 
work on CCS and CSP. Mike Gordon's course on hardware verification exposed the 
problems which led to this work. I would like to thank him and members of the hardware 
verification group here for help and encouragement on many occasions in an area where 
I'm still finding my feet. Special thanks are due to Inder Dhingra, Edmund Ronald and 
Edmund Robinson, all of whom contributed ideas. The work [A] of Samson Abramsky 
provided a vital hint on how to make the proof system, and the work in [S] and [P] 
gave useful leads. Many thanks to Mogens Nielsen for his patient reading of this and 
his constructive criticism. Thanks too to Randy Bryant for encouragement. 



403 

Appendix. The logic of static circuits . 

L.1 The assertion language for circuits. 

Assume a particular strength order S (with typical members s, S',·· .), a countably 
infinite set of point names II (with typical members 0:, f3, 1, ... ) and Var a set of variables, 
ranging over points (with typical members x, y, z,· .. ) and Pvar a set of second order 
variables ranging over sets (or properties) of points (with typical members P, Q, R, ... ). 

Define a strength expression, by induction, to have the form 

where s E S, IT E II u Var and eo, e1 are strength expressions. 

Define a point relation to have the form 

where 11",11"0,11"1 E II u Var. 

Define a strength relation to have the form 

Ee I eo :::; e1 I eo = e1 

where e, eo and e1 are strength expressions. 

Define a circuit-assertion, by induction, to have the form 

eire I srel I prel I 
tt I if I A A B I A v B I A -4 B I 3x.A I Vx.A I 
{x: A}IT I P1I" I 3P.A I VP.A I 
AA 

where srel is a strength relation, prel is a point relation, eire is a circuit term, and A is 
a finite subset of ports with x E Var and P E Pvar. 

L.2 Notation. 
We shall take the treatment of free and bound variables, and open and closed 

strength expressions and assertions as understood. Write FV(A) for the set of free 
variables ( first and second order) of an assertion A. We write A [11" I xl for the result 
of substituting IT for all free occurrences of the variable x in A, and similarly A[T I Pl 
for the result of substituting a term denoting a property for the second order variable 
P-we assume changes are made in the naming of bound variables to avoid the binding 
of free variables in the substituted terms. 
Take -,A to abbreviate the assertion A -4 if, for an assertion A. Take A t--t B to 
abbreviate A -4 B A B -4 A. 
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Let r = {Ao,···, An} be a finite set of assertions. We use ~r to abbreviate their 
conjunction Ao 1\ ••• 1\ An and wr to abbreviate their disjunction Ao V •.. V An. We 
identify ~0 with tt and W0 with if. 
We use "Ix: Q. A to abbreviate \Ix. Qx -+ A and 3x : Q. A to abbreviate 3x. Qx 1\ A. 
If A is a finite set we use A in the logic to abbreviate the term {x : W >'EA x = A}. 

L.3 Semantics of the assertion language 

We take the set of points to be II, and static configurations to have sorts a subset 
of these. A point name 0: is thus associated with a corresponding point. 

Semantics of strength expressions 

Define [ ~ from closed strength expressions to subsets of pairs of static configu
rations and strengths by the following induction, with the understanding that static 
configurations 0 have the form 0 = (S, V, I, -+-). 

[s~ = {(o,s) 10 E Sta} 

[So:~ = ((o,s) 10: E sort(o) & So: = s} 

[eo·ed = {(o,so·sI) I (0, so) E [eo~ & (o,st) E [ed} 
[eo + e1~ = {(o,so + st) I (0, so) E [eo~ & (o,st) E [ed} 

Semantics of circuit assertions 

We firstly define the semantics of point relations, with the understanding that static 
configurations 0 have the form 0 = (S, V,I,-+-). Define [I from closed point relations 
to the subsets of static configurations which satisfy them by 

[Ho:I = {o I 0: E sort(o) & H ~ V o:} 
[Lo:~ = {o I 0: E sort(o) & L ~ Vo:} 

[ho:~ = {o I 0: E sort(o) & H ~ Io:} 

[lo:~ = {o I 0: E sort(o) & L ~ Io:} 

[0: =,8~ = {o I 0: = ,8 E sort(o)} 

[0: -+- ,8~ = {o I 0:,,8 E sort(o) & 0: -+- ,8} 

[Eo:~ = {o I 0: E sort(o)}. 

Now we define the semantics of strength relations: 

[Ee~ = {o I 3s. (o,s) E [en 
[eo ~ ed = {o I 3S0 ,Sl. (o,so) E [eo~ & (o,st) E [ell & So ~ sd 

[eo = ed = {o I 3S0 ,Sl. (o,so) E [ed & (o,st) E [ed & So = sd 
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Now we have defined the semantics of point and strength relations, we extend the 
semantics to all closed assertions by the following induction on the length of assertions: 

[1t~ = Sta 

[ff] = 0 
[A 1\ B] = [A] n [B] 
KA V B] = [A] U [B] 
[A ~ B] = (Sta \ [A]) U [B] 
px.A~ = {a 1 3a E sort(a). a E [A[a/x]]} 
[\ix.A] = {a 1 \ia E sort(a). a E [A[a/x]]} 
[{x : A}a~ = [Ea & A[a/x]~ 

[3P.A] = {a I 3A ~ sort(a). a E [A[A/ PI]} 
[\iP.A] = {a 1 \iA ~ sort(a). a E [A[A/ PI]}, 

[AA] = {a 1 afA 1* afA E [A]}. 

We have already seen how to define the denotations of circuit terms in section 4. 

LA Satisfaction, validity and entailment 

For a closed circuit assertion A we write 

a 1= A iff a E [A], 

and say a satisfies A. 

Let A be an assertion with free variables Xo, . .. ,Po, . ... Define 

i= A iff 0- 1= A[ao/xo, ... ,Ao/Po, ... ] for all a E Sta 

for any substitution with ao, ... E 11 and Ao, ... ~ 11. When 1= A we say A is valid. 

More generally, letting r be a set of assertions and A an assertion, define r 1= A 
iff for every substitution iJ of the free variables in r and A every static configuration 
which satisfies each assertion B[iJj, for Bin r, also satisfies A[iJ]. 
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L.S Proof rules for circuit assertions 

The proof rules follow a natural deduction style [Prj, with extra axioms special to 
static configurations and circuits. 

Structural rules 

(refl) f f- A if A E f (tran) 

Propositional logic 

(Al) 

(VI) 

( ~ I) 

(tt) 

ff-A ff-B 
ff-AAB 

ff-A ff-B 
ff-AvB ff-AvB 

f, A f- B 
ff-A~B 

f f- tt 

First-order rules 

(sub) 

(VI) 

(31) 

f ~ ~[:/x] (x 1. FV(f)) 

f f- Ex ~ A (x 1. FV(f)) 
f f- Vx. A 

f f- Et A A[t/x] 
f f- 3x. A 

f f- A ~,A f- B 
f,~ f-B 

, 
(AE) 

(VE) 

( ~ E) 

(ff) 

('liE) 

(3E) 

ff-AAB ff-AAB 
ff-A ff-B 

ff-AvB f,Af-C f,B f-C 
ff-C 

ff-A~B ff-A 
ff-B 

f,.Af-ff 
ff-A 

f f- Vx. A 
f f- Et ~ A[t/x] 

f f- 3x. A f, Ex A A f- B (x 1. FV(f, B)) 
ff-B 

Rules for second-order quantifiers and abstraction 

(sub2) ff-A ( 
f f- A[T / P] P 1. FV(r)) 

('112 I) f ~ ~:. A (P 1. FV(r)) ('112 E) r f- 'liP. A 
r f- A[T / P] 

(3 2I) r f- A[T/PI (32E) r f- 3P'/f- ~,A f- B (P 1. FV(f, B)) 
f f- 3P. A 

(ab I) f f- Ey A A[yLx] (ab E) f f- {x : A}y 
f f- {x: A}y r f- Ey A A[y/xl 

(strict) f f- Px ~ Ex 

Remark. A word on the second-order logic: The idea is that in a particular static 
configuration a, {x : A} denotes the set of points in sort(a) which satisfy A. So un
like first-order terms for points or strengths, set abstractions are always defined, and 
the second-order rules do not need to invoke an existence predicate. Although set 
abstractions only appear within assertions in the form {x : A}1f, their use enable a 
simpler account of the rules for second-order quantifiers-e.g. try writing the (3 2 J) rule 
without! 
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Proof rules for point relations 

We assume that point names are in 1-1 correspondence with points, so we have the 
following basic axioms. 

f- a = (J iff 1= a = (J (i. e. a and (J are the same point name). 

f- -,a = (J iff 1= -,a = (J (i.e. a and (J are different point names). 

The following axioms are essentially a reformulation of the axioms for static configura
tions which we have seen earlier. 

( refl) 

(eq) 

(str) 

f- Ex t--+ X = x 

f- x = Y 1\ A[x/z] -+ A[Y/z] 

f- Hx -+ Ex 

f- Lx -+ Ex 

f- hx -+ Ex 

f- lx -+ Ex 

f- x + y -+ Ex 1\ Ey 

f- Ex -+ x + x 

f-x+yl\y+z-+x+z 

f- x + y -+ Sx 2: Sy 

f- x + Y 1\ Sx = Sy -+ Y + x 

f- x + Y 1\ W kEKSy = k -+ Sx = Sy 

f- Sx = 0 t--+ -,Hx 1\ -,Lx 

f- hx -+ H x /\ I x -+ Lx 

f- Hx 1\ x + Y -+ Hy 

f- Lx 1\ x + Y -+ Ly 

f- hx 1\ x + Y -+ hy 

f- Lx 1\ x + Y -+ ly 

Proof rules for strength relations 

f- s :::; S' if 1= s :::; S' 

f- s = S' if 1= s = S' 

f- So . S1 = s if f= So . S1 = s 

f- So + s 1 = s if f= So + s 1 = S 

f- Ee t--+ e = e 

f- e = e' -+ e' = e 

f- -,s :::; S' if f= -,s :::; S' 

f- -,s = S' if f= -,s = S' 

f- -'So . S1 = s if 1= -'So • S1 = s 

f- -'So + S1 = s if f= -'So + S1 = S 
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I- e = e' /\ e' = e" ---- e = e" 

I- Ex ---- W SESSx = s 

I- E(Sx) ---- Ex 

I- E(eo . ed <--+ Eeo /\ Eel 

I- E(eo + ed <--+ Eeo /\ Eel 

I- eo S el ---- Eeo /\ Eel 

I- eo = e~ /\ e 1 = e~ ---- eo . e 1 = e~ . e~ 
I- " " eo = eo /\ el = e l ---- eo + el = eo + e 1 

I- eo = e~ /\ e 1 = e~ /\ eo S e 1 ---- e~ S e~ 

L.6 Rules for restriction preconditions 

Let 
G == 'tIx. ,Ax ---- [Hx ---- hx V (3y : A. Hy /\ Y + x)]/\ 

[Lx ---- lx V (3y : A. Ly /\ Y + x)] 

Introduction rules for ~): 

I-A A 
I- A A ,G I- A 

Distribution rules for A(): 

G I- II.(Sx = s) <--+ (Sx = s /\ Ax) 
G I- A (Hx) <--+ (Hx /\ Ax) 
G I- A (hx) <--+ (hx 1\ Ax) 
G I- A (x + y) <--+ (x + Y 1\ Ax 1\ Ay) 
G I- A (Ex) <--+ Ax 
G I- A It <--+ It 
G I- A (A /\ B) <--+ ( II.A 1\ A B) 
G I- 11.( A ____ B) <--+ ( II.A ____ II.B) 
G I- A ('tIx.A) <--+ ('tIx : A. II.A) 
G I- A ({x : A}y) <--+ ({x: A A}y 1\ Ay) 
G I- A ('tiP. A) <--+ 'tiP. II.A 

G I- A (Lx) <--+ (Lx 1\ Ax) 
G I- A (Lx) <--+ (Lx 1\ Ax) 
G I- 11.( X = y) <--+ (x = Y 1\ Ax 1\ Ay) 

G I- A if <--+ if 
G I- A (A V B) <--+ ( II.A V A B) 

G I- A (3x.A) <--+ (3x : A. II.A) 
G I- A (Px) <--+ (Px 1\ Ax) 
G I- A (3P.A) <--+ 3P. II.A 



409 

L.7 Product circuit-assertions 

Product circuit-assertions are defined inductively to have the form 

A x B I • A I E7r I 7ro = 7rl 

tt I If I Do /\ Dl I Do V Dl I Do -+ Dl I 3x.D IVx.D I 
{x: D}7r I 3P.D IVP.D 

where A, B are circuit-assertions and D, Do, Dl are product assertions. 

L.8 Semantics of product assertions: 

[A x B~ = [A~ x [B~ 

[ ·A~ = {(a,p) I a. p 1* a. p E [An 
[Ea~ = ((a,p) I a E sort(a) U sort(p)} 

[a =,8~ = {(a,p) I a =,8 E sort(a) U sort(p)} 

[{x : D}a~ = [Ea /\ D[alx]] 

[3P.D~ = ((a,p) I 3A ~ sort(a) usort(p). (a,p) E [D[AIP]]} 

[VP.D~ = {(a,p) IVA ~ sort(a) Up. (a,p) E [D[AI Pin 

The semantics for the remaining clauses follow those for circuit assertions. The proof 
rules for product assertions include those for for second order logic, with the under
standing that terms T substituted in the second order quantifier rules are first-order 
set abstractions, i.e. of the form {x : A} with A first-order. We include, in addition, 
the following. 

Proof rules for product assertions: 

(x f-) 

(xE) 

(x =) 
(eq) 

(x tt) 
(x If) 
(x /\) 

(x v) 

A f- A' B f- B' 

A x B f- A' X B' 

f- Ex <--+ ([Ex x ttl V Itt x Ex]) 

f- x = y <--+ ([x = y x ttl V Itt x x = y]) 

f- x = Y /\ C[x/z]-+ C[ylz] 

f- tt <--+ Itt x ttl 
f- If <--+ ([If x tt i V [tt x ff]) 

f- ([A x B] /\ [A' X B']) <--+ ([A /\ A'] x [B /\ B'l) 
f- [(A V A') x B] <--+ ([A x B] V [A' x B]) 
f- [A x (B V B')] <--+ ([A x B] V [A X B']) 

f- ,[A x B] <--+ ([,A x ttl V Itt x ,Bl) 
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L.9. Rules for composition precondition 

Let 
D == "Ix. ([Ex x ttl A [tt x Ex]) --+ 

Introduction rules for 

Distribution rules for ~): 

([Hx x tt]- [tt x Hx] A 

[Lx x ttl - [tt x Lx] A 

WsES[Sx = s X Sx = s]) 

(d -S) D f- -(Sx = s) - ([Sx = s.x ttl V [tt x Sx = s]) 
(d -H) D f- - (H x) - ([ H x x tt] V [tt x H x]) 

(d -L) D f- - (Lx) - ([Lx x ttl V [tt x Lx]) 

(d -h) D f- -(hx) - (:3y. ([hy x ttl V [tt x hy]) A -y -+ x) 

(d -I) D f- -(lx) - (:3y. ([ty x ttl V [tt x ty]) A -y -+ x) 

(d--+) Df--(x-+y)-

[VP. -Px A 

("Iv, w. -Pv A ([v -+ w x ttl V [tt x v -+ w]) --+ -Pw) --+ -Py] 

(d -=) D f- -(x = y) - ([x = y x ttl V [tt X X = y]) 
(d -E) D f- -(Ex) - Ex 

(d -tt) D f- -tt - tt 
(d -ff) D f- -ff - ff 

(d - A) D f- - (A A B) - ( -A A e B) 
(dev) Df-e(AVB)_(eAVeB) 

(d e--+) D f- -(A --+ B) - (-A --+ eB) 

(d -V) D f- -(Vx.A) -"Ix. eA 

(d - :3) D f- - (:3x.A) - :3x. eA 

(d eab) D f- e({x: A}y) _ {x: e A}y 

(d -'12 ) D f- -(VP.A) - VP. eA 

(d e :3 2 ) D f- e (:3P.A) _ :3P. -A 
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L.I0. Elimination rules for circuit terms 

C I- A A 

clAI-A 

Co x CI I- • A 
Co • CI I- A 

The elimination rules for the basic components obtained directly from their semantics in 
4.2, with equations such as I a = H being understood as abbreviating assertions in the 
logic, in this case hx;\ ,Lx. For example, the elimination rule for a resistance resg(a,,8) 
takes the form: 

resg (a,,8) I-Ea /\ E,8/\ (Vx. x = a V x =,B) /\ 
Vx. (,hx /\ ,Lx) /\ 

Sa·g:S S,8 /\ S,8'g :S Sa /\ 

(Sa·g = S,8 +--+ a-+- ,8) 1\ (S,8·g = Sa +--+ ,8 -+- an 
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