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Abstract—In a distributed game we imagine a team Player
engaging a team Opponent in a distributed fashion. Such games
and their strategies have been formalised within event struc-
tures. However there are limitations in founding strategies on
traditional event structures. Sometimes a probabilistic distributed
strategy relies on certain benign races where, intuitively, sev-
eral members of team Player may race each other to make
a common move. Although there are event structures which
support such parallel causes, in which an event is enabled in
several compatible ways, they do not support an operation of
hiding central to the composition of strategies; nor do they
support probability adequately. An extension of traditional event
structures is devised which supports parallel causes and hiding,
as well as the mix of probability and nondeterminism needed to
account for probabilistic distributed strategies. The extension is
located within existing models for concurrency and tested in the
construction of a bicategory of probabilistic distributed strategies
with parallel causes. The bicategory is rich in operations relevant
to probabilistic as well as deterministic parallel programming.

I. PROLEGOMENA

This article addresses a fundamental, potentially widespread
issue of which few are aware. It concerns the accurate mod-
elling of parallel causes in probabilistic distributed strategies;
we are thinking for instance of a strategy in which it is
advantageous to allow two or more members of the same team
to race each other cooperatively, without conflict, to perform
some common move. It fixes the absence of a computational
model which simultaneously handles parallel causes, proba-
bility and an operation of hiding internal events; it provides
such a model, locates it via adjunctions within existing models
and tests it in the construction of a bicategory of probabilistic
distributed strategies supporting parallel causes.

Roughly, there are three reasons why such a model has not
been invented previously:
“no causality:” many models, based on “interleaving” ap-
proaches to concurrency, do not consider causes explicitly so
are blind to the issue of parallel causes;
“no probability:” when not considering probability, in the
presence of nondeterminism, parallel causes can be fudged
and treated as conflicting disjunctive causes;
“no hiding:” for example, in the graphical models of statis-
tics, which do involve parallel causes, one generally avoids
hiding features in order to ensure conditional independencies.

But there are good reasons to want to combine probability
and hiding with parallel causes. Causality is essential in the
local analysis of systems and as we shall see some optimal
strategies are impossible to define without parallel causes.
Hiding is a fundamental mechanism in abstraction, while
dealing with probabilities is a fact of life in computing today.

A great many aspects of computation can be described within
games. It is not surprising that without all three features we
cannot give a fully adequate compositional account of all the
distributed strategies we may wish to consider.

Our development starts with event structures. The choice
is not arbitrary. Event structures occupy a central position in
models for concurrent computation, both “interleaving” and
“causal” [17], and can claim to be the concurrent or causal
analogue of trees; just as a transition system unfolds to a
tree so a Petri net unfolds to an event structure. It is only
by having developed games within event structures that we
came to realise the limitations of existing models. The original
point in developing “concurrent games” in event structures
was to recast game semantics within a broader framework of
concurrent/interactive/distributive computation where it more
properly belongs, and can more rightly claim to be the wide
semantic foundation it aspires to.

For these reasons, while phrased in the language of games
based on event structures, the issues addressed, those of
modelling a distributed system while simultaneously coping
with causality, probability and hiding, are of broad relevance.

II. INTRODUCTION

We consider probabilistic distributed games between two
teams, Player and Opponent. To set the scene, imagine a
simple distributed game in which team Opponent can perform
two moves, called 1 and 2, far apart from each other, and
that team Player can just make one move, 3. Suppose that for
Player to win they must make their move iff Opponent makes
one or more of their moves. Informally Player can win by
assigning two members of their team, one to watch out for
the Opponent move 1 and the other Opponent move 2. When
either watcher sees their respective Opponent move they run
back and make the Player move 3. Opponent could possibly
play both 1 and 2 in which case both watchers would run back
and could make their move together. Provided the watchers are
perfectly reliable this provides a winning strategy for Player.
No matter how Opponent chooses to play or not play their
moves, Player will win; if Opponent is completely inactive the
watchers wait forever but then Player does win, eventually.

We can imagine variations in which the watchers are only
reliable with certain probabilities with a consequent reduc-
tion in the probability of Player winning against Opponent
strategies. In such a probabilistic strategy Player can only
determine probabilities of their moves conditionally on those
of Opponent. Because Player has no say in the probabilities



of Opponent moves beyond those determined by causal de-
pendencies of the strategy we are led to a Limited Markov
Condition, of the kind discussed in [8]:

(LMC) In a situation x in which both a Player
move ⊕ and an Opponent move ⊖ could occur
individually, if the Player move and the Opponent
move are causally independent, then they are prob-
abilistically independent; in a strategy for Player,
Prob(⊕ ∣ x,⊖) = Prob(⊕ ∣ x).

The LMC is borne out in the game of “matching pennies”
where Player and Opponent in isolation, so independent from
each other, each make their choice of head or tails. Note we
do not expect that in all strategies for Player that two causally
independent Player moves are necessarily probabilistically
independent; in fact, looking ahead, because composition of
strategies involves hiding internal moves such a property
would not generally be preserved by composition.

Let us try to describe the informal strategy above in terms
of event structures. In ‘prime’ event structures in which
causally dependency is expressed a partial order, an event
is causally dependent on a unique set of events, viz. those
events below it in the partial order. For this reason within
prime event structures we are forced to split the Player move
into two events one for each watcher making the move, one w1
dependent on Opponent move 1 and the other w2 on Opponent
move 2. The two moves of the two watchers stand for the
same move in the game. Because of this they are in conflict
(or inconsistent) with each other. We end up with the event
structure drawn below:

w1 ⊕ ⊕

⊖

_LLR

⊖

_LLR
w2

The polarities + and − signify moves of Player and Opponent,
respectively. The arrows represent the (immediate) causal
dependencies and the wiggly line conflict. As far as purely
nondeterministic behaviour goes, we have expressed the infor-
mal strategy reasonably well: no matter how Opponent makes
or doesn’t make their moves any maximal play of Player
is assured to win. However consider assigning conditional
probabilities to the watcher moves. Suppose the probability
of w1 conditional on 1 is p1, i.e. Prob(w1 ∣ 1) = Prob(w1,1 ∣
1) = p1 and that similarly for w1 its conditional probability
Prob(w2 ∣ 2) = p2. Given that move w1 of Player and move 2
of Opponent are causally independent, from (LMC) we expect
that w1 is probabilistically independent of move 2, i.e.

Prob(w1 ∣ 1,2) = Prob(w1 ∣ 1) = p1 ;

whether Opponent chooses to make move 2 or not should have
no influence on the watcher of move 1. Similarly,

Prob(w2 ∣ 1,2) = Prob(w2 ∣ 2) = p2 .

But w1 and w2 are in conflict, so mutually exclusive, and can
each occur individually when 1 and 2 have occurred ensuring
that

p1 + p2 ≤ 1

—we haven’t insisted on one or the other occurring, the reason
why we have not written equality. The best Player can do
is assign p1 = p2 = 1/2. Against a counter-strategy with
Opponent playing one of their two moves with probability 1/2
this strategy only wins half the time. We have clearly failed
to express the informal winning strategy accurately!

Present notions of “concurrent strategies,” the most general
of which are presented in [14], are or can be expressed using
prime event structures. If we are to be able to express the
intuitive strategy which wins with certainty we need to develop
distributed probabilistic strategies which allow parallel causes
in which an event can be enabled in distinct but compatible
ways. ‘General’ event structures are one such model [13]. In
the informal strategy described in the previous section both
Opponent moves would individually enable the Player move,
with all events being consistent, illustrated below:

⊕
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⊖

/ 33;

⊖
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But as we shall see general event structures do not support an
appropriate operation of hiding central to the composition of
strategies. Nor is it clear how within general event structures
one could express the variant of the strategy above in which the
two watchers succeed in reporting with different probabilities.

It has been necessary to develop a new model—event struc-
tures with disjunctive causes (edc’s)—which support hiding
and probability adequately, and into which both prime and
general event structures embed. Conceptually, one is forced
to objectify cause in a way that is reminiscent of formal
proof being an objectification of theoremhood. Formally, this
is achieved by extending prime event structures with an
equivalence relation; the equivalence classes are thought of
as ‘disjunctive events’ of which the representatives are ‘prime
causes.’ In this way causes may conflict or not, possess
probabilities, and be correlated or independent. The new
model provides a foundation on which to build a theory
and rich language of probabilistic distributed strategies with
parallel causes. Even without probability, it provides a new
bicategory of deterministic parallel strategies which includes,
for example, a deterministic strategy for computing “parallel
or”—Section VIII-C.

Full proofs can be found in [16]. Appendix A summarises
the simple instances of concepts we borrow from enriched
categories [5] and 2-categories [9].

III. EVENT STRUCTURES

Event structures describe a process, or system, in terms
of its possible event occurrences, their causal dependencies
and consistency. The simplest form, ‘prime’ event structures,
are a concurrent, or distributed, analogue of trees; though in
such an event structure the individual ‘branches’ are no longer
necessarily sequences but have the shape of a partial order of
events.



A. Prime event structures
A (prime) event structure comprises (E,≤,Con), consisting

of a set E of events (really event occurrences) which are
partially ordered by ≤, the causal dependency relation, and a
nonempty consistency relation Con consisting of finite subsets
of E. The relation e′ ≤ e expresses that event e causally
depends on the previous occurrence of event e′. That a finite
subset of events is consistent conveys that its events can
occur together by some stage in the evolution of the process.
Together the relations satisfy several axioms:

[e] =def {e′ ∣ e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆X ∈ Con implies Y ∈ Con, and
X ∈ Con & e ≤ e′ ∈X implies X ∪ {e} ∈ Con.

Given this understanding of an event structure, there is an
accompanying notion of state, or history, those events that
may occur up to some stage in the behaviour of the process
described. A configuration is a, possibly infinite, set of events
x ⊆ E which is

consistent: X ⊆ x and X is finite implies X ∈ Con , and
down-closed: e′ ≤ e ∈ x implies e′ ∈ x.

A configuration inherits a partial order from the ambient event
structure, and represents a possible partial-order history.

Two events e, e′ are considered to be causally independent,
and called concurrent if the set {e, e′} is in Con and neither
event is causally dependent on the other. The relation of
immediate dependency e _ e′ means e and e′ are distinct
with e ≤ e′ and no event in between. Write C∞(E) for the
configurations of E and C(E) for its finite configurations. For
configurations x, y, we use x−⊂y to mean y covers x, i.e. x ⊂ y
with nothing in between, and x

e−Ð⊂ y to mean x∪ {e} = y for
an event e ∉ x. We sometimes use x

e−Ð⊂ , expressing that event
e is enabled at configuration x, when x

e−Ð⊂ y for some y.
It will be very useful to relate event structures by maps. A

map of event structures f ∶ E → E′ is a partial function f
from E to E′ such that the image of a configuration x is a
configuration fx and any event of fx arises as the image of a
unique event of x. Maps compose as partial functions. Write
E for the ensuing category.

A map f ∶ E → E′ reflects causal dependency locally, in the
sense that if e, e′ are events in a configuration x of E for which
f(e′) ≤ f(e) in E′, then e′ ≤ e also in E; the event structure
E inherits causal dependencies from the event structure E′

via the map f . Consequently, a map preserves concurrency:
if two events are concurrent, then their images if defined are
also concurrent. In general a map of event structures need not
preserve causal dependency; when it does and is total we say
it is rigid.

B. General event structures
A general event structure [11], [13] comprises (E,Con,⊢)

where E is a set of event occurrences, the consistency relation
Con is a non-empty collection of finite subsets of E satisfying

X ⊆ Y ∈ Con Ô⇒ X ∈ Con

and the enabling relation ⊢⊆ Con ×E satisfies

Y ∈ Con & Y ⊇X & X ⊢ e Ô⇒ Y ⊢ e .

A configuration is a subset of E which is

consistent: X ⊆fin x Ô⇒ X ∈ Con and
secured:∀e ∈ x∃e1,⋯, en ∈ x. en = e &

∀i ≤ n.{e1,⋯, ei−1} ⊢ ei .

Again we write C∞(E) for the configurations of E and C(E)
for its finite configurations.

The notion of secured has been expressed through the
existence of a securing chain to express an enabling of an
event within a set which is a complete enabling in the sense
that everything in the securing chain is itself enabled by earlier
members of the chain. One can imagine more refined ways
in which to express complete enablings which are rather like
proofs. Later the idea that complete enablings are consistent
partial orders of events in which all events are enabled by
earlier events in the order—“causal realisations”—will play
an important role in generalising general event structures to
structures supporting hiding and parallel causes.

A map f ∶ (E,Con,⊢) → (E′,Con′,⊢′) of general event
structures is a partial function f ∶ E ⇀ E′ such that

X ∈ Con Ô⇒ fX ∈ Con′ &
∀e1, e2 ∈X. f(e1) = f(e2) Ô⇒ e1 = e2 and
X ⊢ e & f(e) is defined Ô⇒ fX ⊢′ f(e) .

Maps compose as partial functions with identity maps being
identity functions. Write G for the category of general event
structures.

We can characterise those families of configurations arising
from a general event structure. A family of configurations
which comprises a family F of sets such that

if X ⊆ F is finitely compatible in F then ⋃X ∈ F ; and
if e ∈ x ∈ F then there exists a securing chain e1,⋯, en = e
in x such that {e1,⋯, ei} ∈ F for all i ≤ n.

The latter condition is equivalent to saying (i) that whenever
e ∈ x ∈ F there is a finite x0 ∈ F such that e ∈ x0 ∈ F and
(ii) that if e, e′ ∈ x and e ≠ e′ then there is y ∈ F with y ⊆ x
s.t. e ∈ y ⇐⇒ e′ ≠ y. The elements of the underlying set ⋃F
are its events. Such a family is stable when for any compatible
non-empty subset X of F its intersection ⋂X is a member
of F . We shall use x ↑ y or X ↑ to signify configurations x
and y or a subset of configurations X are compatible.

A configuration x ∈ F is irreducible iff there is a necessarily
unique e ∈ x such that ∀y ∈ F . e ∈ y ⊆ x implies y = x.
Irreducibles coincide with complete join irreducibles w.r.t. the
order of inclusion. It is tempting to think of irreducibles as
representing minimal complete enablings. But, as sets, irre-
ducibles both (1) lack sufficient structure: in the formulation
we are led to of minimal complete enabling as prime causal
realisations, several prime realisations can have the same
irreducible as their underlying set; and (2) are not general
enough: there are prime realisations whose underlying set is
not an irreducible.



A map between families of configurations from F to G is a
partial function f ∶ ⋃F ⇀ ⋃G between their events such that
for any x ∈ F its image fx ∈ G and

∀e1, e2 ∈ x. f(e1) = f(e2) Ô⇒ e1 = e2 .

Maps between general event structures satisfy this property.
Maps of families compose as partial functions.

The forgetful functor taking a general event structure to its
family of configurations has a left adjoint, which constructs
a canonical general event structure from a family: given A, a
family of configurations with underlying events A, construct
a general event structure (A,Con,⊢) with

X ∈ Con iff X ⊆fin y, for some y ∈ A, and
X ⊢ a iff a ∈ A, X ∈ Con & e ∈ y ⊆ X ∪ {a}, for some
y ∈ A.

The above yields a coreflection of families of configurations
in general event structures. It cuts down to an equivalence
between families of configurations and replete general event
structures. A general event structure (E,Con,⊢) is replete iff

∀e ∈ E∃X ∈ Con. X ⊢ e ,
∀X ∈ Con∃x ∈ C(E). X ⊆ x and
X ⊢ e Ô⇒ ∃x ∈ C(E). e ∈ x & x ⊆X ∪ {e} .

The last condition is equivalent to stipulating that each min-
imal enabling X ⊢ e, where X is a minimal consistent
set enabling e, corresponds to an irreducible configuration
X ∪ {e}.

C. On relating prime and general event structures

Clearly a prime event structure (P,≤,Con) can be identified
with a (replete) general event structure (P,⊢,Con) by taking

X ⊢ p iff X ∈ Con & [p] ⊆X ∪ {p} .

Indeed under this identification there is a full and faithful
embedding of E in G. However (contrary to the claim in [13])
there is no adjoint to this embedding. This leaves open the
issue of providing a canonical way to describe a general event
structure as a prime event structure. This issue has arisen
as a central problem in reversible computation [3] and now
more recently in the present limitation of concurrent strategies
described in the introduction. A corollary of our work will be
that the embedding of prime into general event structures does
have a pseudo right adjoint, got at the slight cost of enriching
prime event structures with equivalence relations.

IV. PROBLEMS WITH GENERAL EVENT STRUCTURES

Why not settle for general event structures as a foundation
for distributed strategies? Because although they allow parallel
causes, they don’t support hiding so composition of strategies;
nor do they support probability generally enough.

A. Probability and parallel causes

We return to the general-event-structure description of the
strategy in the Introduction. To turn this into a probabilistic
strategy for Player we should assign probabilities to config-
urations conditional on Opponent moves. The watcher of 1
is causally independent of Opponent move 2. Given this we
might expect that the probability of the watcher of 1 making
the Player move 3 should be probabilistically independent of
move 2; after all, both moves 3 and 2 can occur concurrently
from configuration {1}. Applying LMC naively would yield

Prob(1,3 ∣ 1) = Prob(1,2,3 ∣ 1,2) .

But similarly, Prob(2,3 ∣ 2) = Prob(1,2,3 ∣ 1,2), which
forces Prob(1,3 ∣ 1) = Prob(2,3 ∣ 2), i.e. that the conditional
probabilities of the two watchers succeeding are the same!
In blurring the distinct ways in which move 3 can be caused
we have obscured causal independence which has led us to
identify possibly distinct probabilities.

B. Hiding

With one exception, all the operations used in building
strategies and, in particular, the bicategory of concurrent
strategies [10] extend to general event structures. The one
exception, that of hiding, is crucial in ensuring composition
of strategies yields a bicategory.

Consider a general event structure with events a, b, c, d and
e; enabling (1) b, c ⊢ e and (2) d ⊢ e, with all events other than
e being enabled by the empty set; and consistency in which
all subsets are consistent unless they contain the events a and
b —the events a and b are in conflict.

Any configuration will satisfy the assertion

(a ∧ e) Ô⇒ d

because if e has occurred it has to have been enabled by (1)
or (2) and if a has occurred its conflict with b has prevented
the enabling (1), so e can only have occurred via enabling (2).

Now imagine the event b is hidden, so allowed to occur
invisibly in the background. The configurations after hiding
are those obtained by hiding (i.e. removing) the invisible
event b from the configurations of the original event structure.
The assertion above will still hold of the configurations after
hiding. There isn’t a general event structure with events a, c, d
and e, and configurations those which result when we hide
(remove) b from the configurations of the original event
structure. One way to see this is to observe that amongst the
configurations after hiding we have

{c}−⊂{c, e} and {c}−⊂{a, c}

where both {c, e} and {a, c} have upper bound {a, c, d, e},
and yet {a, c, e} is not a configuration after hiding as it fails
to satisfy the assertion. (In configurations of a general event
structure if x−⊂y and x−⊂z and y and z are bounded above,
then y ∪ z is a configuration.) Precisely the same problem can
arise in the composition (with hiding) of strategies based on
general event structures (unless they are deterministic [16]).



To obtain a bicategory of strategies with disjunctive causes
we need to support hiding. We need to look for structures
more general than general event structures. The example above
gives a clue: the inconsistency should be one of inconsistency
between (minimal complete) enablings rather than events.

V. ADDING DISJUNCTIVE CAUSES

To cope with disjunctive causes and hiding we must go
beyond general event structures. We introduce structures in
which we objectify cause; a minimal complete enabling is no
longer an instance of a relation but a structure that realises
that instance (cf. a judgement of theorem-hood in contrast to
a proof). This is in order to express inconsistency between
minimal complete enablings, inexpressible as inconsistencies
on events, that can arise when hiding.

Fortunately we can do this while staying close to prime
event structures. The twist is to regard “disjunctive events”
as comprising subsets of events of a prime event structure,
the events of which are now to be thought of as representing
“prime causes” standing for minimal complete enablings.
Technically, we do this by extending prime event structures
with an equivalence relation on events.

In detail, an event structure with equivalence (an ese) is a
structure

(P,≤,Con,≡)

where (P,≤,Con) satisfies the axioms of a (prime) event
structure and ≡ is an equivalence relation on P .

An ese dissociates the two roles of enabling and atomic
action conflated in the events of a prime event structures.
The intention is that the events p of P , or really their
corresponding down-closures [p], describe minimal complete
enablings, prime causes, while the ≡-equivalence classes of
P represent disjunctive events: p is a prime cause of the
disjunctive event {p}≡. Notice there may be several prime
causes of the same event and that these may be parallel causes
in the sense that they are consistent with each other and not
related in the order ≤.

A configuration of the ese is a configuration of (P,≤,Con)
and we shall use the notation of earlier on event structures
C∞(P ) and C(P ) for its configurations, respectively finite
configurations. We say a configuration is unambiguous if it has
no two distinct elements which are ≡-equivalent, We modify
the relation of concurrency a little and say p1, p2 ∈ P are
concurrent and write p1co p2 iff [p1]∪[p2] is an unambiguous
configuration of P and neither p1 ≤ p2 nor p2 ≤ p1.

When the equivalence relation ≡ of an ese is the identity
we essentially have a prime event structure. This view is
reinforced in our choice of maps. A map from ese (P,≡P )
to (Q,≡Q) is a partial function f ∶ P ⇀ Q which preserves
≡, i.e. if p1 ≡P p2 then either both f(p1) and f(p2) are
undefined or both defined with f(p1) ≡Q f(p2)), such that
for all x ∈ C(P )

(i) the direct image fx ∈ C(Q), and
(ii) ∀p1, p2 ∈ x. f(p1) ≡Q f(p2) Ô⇒ p1 ≡P p2 .

Maps compose as partial functions with the usual identities.

Such maps preserve the concurrency relation. They are only
assured to reflect causal dependency locally w.r.t. unambigu-
ous configurations.

We regard two maps f1, f2 ∶ P → Q as equivalent, and write
f1 ≡ f2, iff they are equi-defined and yield equivalent results,
i.e.

if f1(p) is defined then so is f2(p) and f1(p) ≡Q f2(p),
and

if f2(p) is defined then so is f1(p) and f1(p) ≡Q f2(p).
Composition respects ≡: if f1, f2 ∶ P → Q with f1 ≡ f2 and

g1, g2 ∶ Q → R with g1 ≡ g2, then g1f1 ≡ g2f2. Write E≡ for
the category of ese’s; it is enriched in the category of sets with
equivalence relations—see Appendix A.

Ese’s support a hiding operation. Let (P,≤,ConP ,≡) be an
ese. Let V ⊆ P be a ≡-closed subset of ‘visible’ events. Define
the projection of P on V , to be P ↓V =def (V,≤V ,ConV ,≡V ),
where v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and X ∈ ConV iff X ∈
Con & X ⊆ V and v ≡V v′ iff v ≡ v′ & v, v′ ∈ V .

Hiding is associated with a factorisation of partial maps. Let

f ∶ (P,≤P ,ConP ,≡P ) → (Q,≤Q,ConQ,≡Q)

be a partial map between two ese’s. Let

V =def {e ∈ E ∣ f(e) is defined} .

Then f factors into the composition

P
f0 // P ↓V f1 // Q

of f0, a partial map of ese’s taking p ∈ P to itself if p ∈ V
and undefined otherwise, and f1, a total map of ese’s acting
like f on V . We call f1 the defined part of the partial
map f . Because ≡-equivalent maps share the same domain
of definition, ≡-equivalent maps will determine the same
projection and ≡-equivalent defined parts. The factorisation is
characterised to within isomorphism by the following universal

characterisation: for any factorisation P
g0 // P1

g1 // Q
where g0 is partial and g1 is total there is a (necessarily total)
unique map h ∶ P ↓V → P1 such that

P
f0 //

g0 %%

P ↓V

h��

f1 // Q

P1

g1

99

commutes.
The category E≡ of ese’s supports hiding in the sense above.

We next show how replete general event structures embed in
ese’s.

VI. A PSEUDO ADJUNCTION

The (pseudo) functor from G to E≡ is quite subtle but arises
as a right adjoint to a more obvious functor from E≡ to G.

Given an ese (P,≤,Con,≡) we can construct a (replete)
general event structure ges(P ) =def (E,ConE ,⊢) by taking
E = P≡, the equivalence classes under ≡;
X ∈ ConE iff ∃Y ∈ Con. X = Y≡; and
X ⊢ e iff X ∈ Con & e ∈ E &

∃p ∈ P. e = {p}≡ & [p]≡ ⊆X ∪ {e}.



The construction extends to a functor ges ∶ E≡ → G as maps
between ese’s preserve ≡; the functor takes a map f ∶ P → Q
of ese’s to the map ges(f) ∶ ges(P ) → ges(Q) obtained as the
partial function induced on equivalence classes. Less obvious
is that there is a (pseudo) right adjoint to ges . Its construction
relies on extremal causal realisations which provide us with
an appropriate notion of minimal complete enabling of events
in a general event structure.

A. Causal realisations

Let A be a family of configurations with underlying set A.
A (causal) realisation of A comprises a partial order

(E,≤) ,

its carrier, such that the set {e′ ∈ E ∣ e′ ≤ e} is finite for all
events e ∈ E, together with a function ρ ∶ E → A for which
the image ρx ∈ A when x is a down-closed subset of E.

A map between realisations (E,≤), ρ and (E′,≤′), ρ′ is a
partial surjective function f ∶ E ⇀ E′ which preserves down-
closed subsets and satisfies ρ(e) = ρ′(f(e)) when f(e) is
defined. It is convenient to write such a map as ρ ⪰f ρ′.
Occasionally we shall write ρ ⪰ ρ′, or the converse ρ′ ⪯ ρ,
to mean there is a map of realisations from ρ to ρ′.

Such a map factors into a “projection” followed by a total
map

ρ ⪰f11 ρ0 ⪰f22 ρ′

where ρ0 stands for the realisation (E0,≤0), ρ0 where

E0 = {r ∈ R ∣ f(r) is defined} ,

the domain of definition of f , with ≤0 the restriction of ≤,
and f1 is the inverse relation to the inclusion E0 ⊆ E, and
f2 is the total function f2 ∶ E0 → E′. We are using ⪰1 and
⪰2 to signify the two kinds of maps. Notice that ⪰1-maps are
reverse inclusions. Notice too that ⪰2-maps are exactly the
total maps of realisations. Total maps ρ ⪰f2 ρ′ are precisely
those functions f from the carrier of ρ to the carrier of ρ′

which preserve down-closed subsets and satisfy ρ = ρ′f .
We shall say a realisation ρ is extremal when ρ ⪰f2 ρ′ implies

f is an isomorphism, for any realisation ρ′.
In the special case where A is the family of configurations

of a prime event structure, it is easy to show that an extremal
realisation ρ forms a bijection with a configuration of the event
structure and that the order on the carrier coincides with causal
dependency there.

The construction is more interesting when A is the family
of configurations of a general event structure. In general,
there is at most one map between extremal realisations. Hence
extremal realisations of A under ⪯ form a preorder. The order
of extremal realisations has as elements isomorphism classes
of extremal realisations ordered according to the existence of
a map between representatives of isomorphism classes. As we
shall see, the order of extremal realisations forms a prime-
algebraic domain [7] with complete primes represented by
those extremal realisations which have a top element—a direct
corollary of Proposition VI.4 in the next section. (We say

a realisation has a top element when its carrier contains an
element which dominates all other elements in the carrier.)

We provide examples illustrating the nature of extremal
realisations. In the examples it is convenient to describe
families of configurations by general event structures, taking
advantage of the economic representation they provide.

Example VI.1. This and the following example shows that
extremal realisations with a top do not correspond to irre-
ducible configurations. Below, on the right we show a general
event structure with irreducible configuration {a, b, c, d}. On
the left we show two extremals with tops d1 and d2 which
both have the same irreducible configuration {a, b, c, d} as
their image. The lettering indicates the functions associated
with the realisations, e.g. events d1 and d2 in the partial orders
map to d in the general event structure.

d1 d2 d
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b
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Example VI.2. On the other hand there are extremal realisa-
tions with top of which the image is not an irreducible con-
figuration. Below the extremal with top on the left describes a
situation where d is enabled by b and c is enabled by a. It has
image the configuration {a, b, c, d} which is not irreducible,
being the union of the two configurations {a} and {b, c, d}.

d d

c

_LLR

c

AND
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a
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b
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a
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b

sUU^

	__h

Example VI.3. It is also possible to have extremal realisations
in which an event depends on an event of the family having
been enabled in two distinct ways, as in the following extremal
realisation with top, on the left.

f f

AND

d

MAAJ

e

qTT]

d

E<<G

e
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c1
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c2
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c
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The extremal describes the event f being enabled by d and e
where they are in turn enabled by different ways of enabling
c. (Such phenomena will be disallowed in edc’s.)

B. A right adjoint to ges

The right adjoint er ∶ G → E≡ is defined on objects as
follows. Let A be a general event structure. Define er(A) =
(P ,ConP ,≤P ,≡P) where



● P consists of a choice from within each isomorphism
class of those extremals p ofC∞(A) with a top element—
we write topA(p) for the image of the top element in A;

● Causal dependency ≤P is ⪯ on P ;
● X ∈ ConP iff X ⊆fin P and topA[X ] ∈ C∞(A) —the set

[X] is the ≤P -downwards closure of X;
● p1 ≡P p2 iff p1, p2 ∈ P and topA(p1 ) = topA(p2 ).

Proposition VI.4. The configurations of P , ordered by in-
clusion, are order-isomorphic to the order of extremal real-
isations of C∞(A): an extremal realisation ρ corresponds,
up to isomorphism, to the configuration {p ∈ P ∣ p ⪯ ρ} of P ;
conversely, a configuration x of P corresponds to an extremal
realisation topA ∶ x → A with carrier (x,⪯), the restriction of
the order of P to x.

From the above proposition we see that the events of er(A)
correspond to completely-prime extremal realisations [7].
Henceforth we shall use the term ‘prime extremal’ instead
of the clumsier ‘extremal with top element.’

The component of the counit of the adjunction at A is
given by the function topA which determines a map topA ∶
ges(er(A)) → A of general event structures.

Theorem VI.5. Let A ∈ G. For all f ∶ ges(Q) → A in G, there
is a map h ∶ Q → er(A) in E≡ such that f = topA ○ ges(h)
i.e. so the diagram

A ges(er(A))topAoo

ges(Q)
f

dd

ges(h)

OO

commutes. Moreover, if h′ ∶ Q → er(A) is a map in E≡ such
that f = topA ○ ges(h ′), then h′ ≡ h.

The theorem does not quite exhibit a standard adjunc-
tion, because the usual cofreeness condition specifying an
adjunction is weakened to only having uniqueness up to ≡.
However the condition it describes does specify an exceedingly
simple case of pseudo adjunction between 2-categories—a set
together with an equivalence relation is a very simple example
of a category (see Appendix A). As a consequence, whereas
with the usual cofreeness condition allows us to extend the
right adjoint to arrows, so obtaining a functor, in this case
following that same line will only yield a pseudo functor er as
right adjoint: thus extended, er will only necessarily preserve
composition and identities up to ≡.

The pseudo adjunction from E≡ to G cuts down to a
reflection (i.e. the counit is a natural isomorphism) when
we restrict to the subcategory of G where all general event
structures are replete. Its right adjoint provides a pseudo
functor embedding replete general event structures (and so
families of configurations) in ese’s.

Example VI.6. On the right we show a general event structure

and on its left the ese which it gives rise to under er :

d1 d2 d
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VII. EDC’S

Our major motivation in developing and exploring ese’s was
in order to extend strategies with parallel causes while main-
taining the central operation of hiding. What about the other
operation key to the composition of strategies, viz. pullback?

It is well-known to be hard to construct limits such as
pullback within prime event structures, so that we often rely
on first carrying out the constructions in stable families. It is
sensible to seek an analogous way to construct pullbacks or
pseudo pullbacks in E≡.

A. Equivalence families

In fact, the pseudo adjunction from E≡ to G factors through
a more basic pseudo adjunction to families of configurations
which also bear an equivalence relation on their underlying
sets. An equivalence-family (ef) is a family of configurationsA
with an equivalence relation ≡A on its underlying set ⋃A. We
can identify a family of configurations A with the ef (A,=),
taking the equivalence to be simply equality on the underlying
set. A map f ∶ (A,≡A) → (B,≡B) between ef’s is a partial
function f ∶ A ⇀ B between their underlying sets which
preserves ≡ so that

x ∈ A ⇒ fx ∈ B & ∀a1, a2 ∈ x. f(a1) ≡B f(a2) ⇒ a1 ≡A a2 .

Composition is composition of partial functions. We regard
two maps

f1, f2 ∶ (A,≡A) → (B,≡B)

as equivalent, and write f1 ≡ f2, iff they are equidefined
and yield equivalent results. Composition respects ≡. This
yields a category of equivalence families Fam≡ enriched in
the category of sets with equivalence relations.

Clearly we can regard an ese (P,≡P ) as an ef (C∞(P ),≡P )
and a function which is a map of ese’s as a map between the
associated ef’s, and this operation forms a functor. The functor
has a pseudo right adjoint built from causal realisations in a
very similar manner to er . The configurations of a general
event structure form an ef with the identity relation as its
equivalence. This operation is functorial and has a left adjoint
which collapses an ef to a general event structure in a similar
way to ges; the adjunction is enriched in equivalence relations.
In summary, the pseudo adjunction

E≡
ges

⊺ 44 G
er

ss

factors into a pseudo adjunction followed by an adjunction

E≡ ⊺ 22 Fam≡
ss

⊺ 33 G .rr



Fam≡ has pullbacks and pseudo pullbacks which are easy
to construct. For example, let f ∶ A → C and g ∶ B → C be
total maps of ef’s. Assume A and B have underlying sets A
and B. Define D =def {(a, b) ∈ A ×B ∣ f(a) ≡C g(b)} with
projections π1 and π2 to the left and right components. On
D, take d ≡D d′ iff π1(d) ≡A π1(d′) and π2(d) ≡B π2(d′).
Define a family of configurations of the pseudo pullback to
consist of x ∈ D iff x ⊆D such that π1x ∈ A & π2x ∈ B , and

∀d ∈ x∃d1,⋯, dn ∈ x. dn = d &

∀i ≤ n. π1{d1,⋯, di} ∈ A & π2{d1,⋯, di} ∈ B .
The ef D with maps π1 and π2 is the pseudo pullback of f
and g. It would coincide with pullback if ≡C were the identity.

But unfortunately (pseudo) pullbacks in Fam≡ don’t pro-
vide us with (pseudo) pullbacks in E≡ because the right
adjoint is only a pseudo functor; in general it will only
carry pseudo pullbacks to bipullbacks. While E≡ does have
bipullbacks (in which commutations and uniqueness are only
up to the equivalence ≡ on maps) it doesn’t always have
pseudo pullbacks or pullbacks—Appendix B. Whereas pseudo
pullbacks and pullbacks are characterised up to isomorphism,
bipullbacks are only characterised up to a weaker equivalence,
that induced on objects by the equivalence on maps.While
we could develop strategies with parallel causes in the broad
context of ese’s in general, doing so would mean that the
composition of strategies that ensued was not defined up
to isomorphism. This in turn would weaken our intended
definition and characterisation of such strategies as those maps
into games which are stable under composition with copycat.

B. Edc’s defined

Fortunately there is a subcategory of E≡ which supports
hiding, pullbacks and pseudo pullbacks. Define EDC to be the
subcategory of E≡ with objects ese’s satisfying

p1, p2 ≤ p & p1 ≡ p2 Ô⇒ p1 = p2 .

We call such objects event structures with disjunctive causes
(edc’s). In an edc an event can’t causally depend on two
distinct prime causes of a common disjunctive event, and so
rules out realisations such as that illustrated in Example VI.3.
In general, within E≡ we lose the local injectivity property
that we’re used to seeing for maps of event structures; the
maps of event structures are injective from configurations,
when defined. However for EDC we recover local injectivity
w.r.t. prime configurations: if f ∶ P → Q is a map in EDC, then

p1, p2 ≤P p & f(p1) = f(p2) Ô⇒ p1 = p2 .

The factorisation property associated with hiding in E≡ is
inherited by EDC.

As regards (pseudo) pullbacks, we are fortunate in that the
complicated pseudo adjunction between ese’s and ef’s restricts
to a much simpler adjunction, in fact a coreflection, between
edc’s and stable ef’s. In an equivalence family (A,≡A) say a
configuration x ∈ A is unambiguous iff

∀a1, a2 ∈ x. a1 ≡A a2 Ô⇒ a1 = a2 .

An equivalence family (A,≡A), with underlying set of events
A, is stable iff it satisfies

∀x, y, z ∈ A. x, y ⊆ z & z is unambiguous ⇒ x ∩ y ∈ A and
∀a ∈ A,x ∈ A. a ∈ x ⇒ ∃z ∈ A. z is unambiguous &a ∈ z ⊆ x .

In effect a stable equivalence family contains a stable sub-
family of unambiguous configurations out of which all other
configurations are obtainable as unions. Local to any unam-
biguous configuration x there is a partial order on its events
≤x: each a ∈ x determines a prime configuration

[a]x =def ⋂{y ∈ A ∣ a ∈ y ⊆ x} ,

the minimum set of events on which a depends within x;
taking a ≤x b iff [a]x ⊆ [b]x defines causal dependency
between a, b ∈ x. Write SFam≡ for the subcategory of stable
ef’s.

(Pseudo) pullbacks in stable ef’s are obtained from those
in ef’s simply by restricting to those configurations which are
unions of unambiguous configurations.

The configurations of an edc with its equivalence are easily
seen to form a stable ef providing a full and faithful embedding
of EDC in SFam≡. The embedding has a right adjoint Pr. It is
built out of prime extremals but we can take advantage of the
fact that in a stable ef unambiguous prime extremals have the
simple form of prime configurations. From a stable ef(A,≡A)
we produce an edc Pr(A,≡A) =def (P,Con,≤,≡) in which P
comprises the prime configurations with

[a]x ≡ [a′]x′ iff a ≡A a′ ,
Z ∈ Con iff Z ⊆ P & ⋃Z ∈ F and,
p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .

The adjunction is enriched in the sense that its natural bijection
preserves and reflects the equivalence on maps:

EDC ⊺ 22 SFam≡

Pr
rr

We can now obtain a (pseudo) pullback in edc’s by first
forming the (pseudo) pullback of the stable ef’s obtained as
their configurations and then taking its image under the right
adjoint Pr. We now have the constructions we need to support
strategies based on edc’s.

C. Coreflective subcategories of edc’s

EDC is a coreflective subcategory of E≡; the right adjoint
simply cuts down to those events satisfying the edc property.
In turn EDC has a coreflective subcategory E0

≡ comprising those
edc’s which satisfy

{p1, p2} ∈ Con & p1 ≡ p2 Ô⇒ p1 = p2 .

Consequently its maps are traditional maps of event structures
which preserve the equivalence. We derive adjunctions

E0
≡ ⊺ 33 EDC ⊺ 33ss E≡

ges

⊺ 33
ss G .

er
ss



Note the last is only a pseudo adjunction. Consequently we
obtain a pseudo adjunction from E0

≡ , the a category of prime
event structures with equivalence relations and general event
structures—this makes good the promise of Section III-C.
Inspecting the composite of the last two adjunctions, we also
obtain the sense in which replete general event structures
embed via a reflection in edc’s.

There is an obvious ‘inclusion’ functor from the category
of prime event structures E to the category EDC; it extends an
event structure with the identity equivalence. Regarding EDC
as a plain category, so dropping the enrichment by equivalence
relations, the ‘inclusion’ functor

E ↪ EDC

has a right adjoint, viz. the forgetful functor which given an
edc P = (P,≤,Con,≡) produces an event structure P0 = (P,≤
,Con′) by dropping the equivalence ≡ and modifying the
consistency relation to

X ∈ Con′ iff X ⊆ P &X ∈ Con & p1 /≡ p2, for all p1, p2 ∈X .

The configurations of P0 are the unambiguous configurations
of P . The adjunction is a coreflection because the inclusion
functor is full. Of course it is not the case that the adjunction is
enriched: the natural bijection of the adjunction cannot respect
the equivalence on maps; it cannot compose with the pseudo
adjunction from EDC to G to yield a pseudo adjunction from
E to G.

Despite this the adjunction from E to EDC has many useful
properties. Of importance for us is that the functor forgetting
equivalence will preserve all limits and especially pullbacks.
It is helpful in relating composition of edc-strategies to the
composition of strategies based on prime event structures
in [10]. In composing strategies in edc’s we shall only be
involved with pullbacks of maps f ∶ A→ C and g ∶ B → C of
edc’s. (When C is essentially an event structure, i.e. an edc in
which the equivalence is the identity relation, the construction
of such pullbacks coincides with that of pseudo pullbacks.)
While this does not entail that composition of strategies
is preserved by the forgetful functor—because the forgetful
functor does not commute with hiding—it will give us a
strong relationship, expressed as a map, between composition
of the two kinds of strategies (based on edc’s and based on
prime event structures) after and before applying the forgetful
functor. This has been extremely useful in some proofs, in
importing results about concurrent strategies from [10].

VIII. STRATEGIES BASED ON EDC’S

We develop strategies in edc’s in a similar way to that of
strategies in [10], viz. as certain maps stable under composition
with copycat.

An edc with polarity comprises (P,≡,pol), an edc (P,≡) in
which each element p ∈ P carries a polarity pol(p) which is +
or −, according as it represents a move of Player or Opponent,
and where the equivalence relation ≡ respects polarity.

A map of edc’s with polarity is a map of the underlying
edc’s which preserves polarity when defined. The adjunctions

of the previous section are undisturbed by the addition of
polarity.

There are two fundamentally important operations on two-
party games. One is that of forming the dual game in which the
moves of Player and Opponent are reversed. On an edc with
polarity A this amounts to reversing the polarities of events to
produce the dual A⊥; all other relations including equivalence
remain the same. The other operation is a simple parallel
composition of games, achieved on edc’s with polarity A
and B by simply juxtaposing them, ensuring a finite subset
of events is consistent if its overlaps with the two games
are individually consistent, to form A∥B; its equivalence
is inherited from those of A and B; its configurations x
correspond to pairs of configurations x1 of A and x2 of B.

A game is represented by an edc with polarity. A pre-
strategy in edc’s, or an edc pre-strategy, in a game A is a
total map σ ∶ S → A of edc’s. A pre-strategy from a game
A to a game B is a pre-strategy in the game A⊥∥B. We
shall shortly refine the notion of pre-strategy to strategy. By
a strategy in a game we will mean a strategy for Player. A
strategy for Opponent, or a counter-strategy, in a game A will
be identified with a strategy in A⊥. A map f ∶ σ⇒ σ′ of edc
pre-strategies σ ∶ S → A and σ′ ∶ S′ → A is a map f ∶ S → S′

of edc’s with polarity such that σ = σ′f ; in the standard way
this determines isomorphisms of edc pre-strategies, important
for us in a moment.

A. Copycat

An important example of a strategy is the copycat strategy
for a game A. This is a strategy in the game A⊥∥A which, fol-
lowing the spirit of a copycat, has Player moves copy the cor-
responding Opponent moves in the other component. In more
detail, the copycat strategy comprises ccA ∶ CCA → A⊥∥A
where CCA is obtained by adding extra causal dependencies to
A⊥∥A so that any Player move in either component causally
depends on its copy, an Opponent move, in the other [10].
This generates a partial order of causal dependency. The
equivalence of CCA is that of A⊥∥A. A finite set is taken
to be consistent if its down-closure w.r.t. the order generated
is consistent in A⊥∥A; the map ccA is the identity function
on events. We illustrate the construction on the simple game
comprising a Player move causally dependent on a single
Opponent move:

⊖ � ,,2⊕
A⊥ CCA A

⊕

_LLR

⊖
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B. Composing edc pre-strategies

In composing two edc pre-strategies one σ in A⊥∥B and
another τ in B⊥∥C one firstly instantiates the Opponent moves
in component B by Player moves in B⊥ and vice versa,
and then secondly hides the resulting internal moves over B.
The first step is achieved efficiently via pullback. Temporar-
ily ignoring polarities, the pullback in edc’s “synchronises”
matching moves of S and T over the game B. But we require



a strategy over the game A⊥∥C and the pullback T ⊛ S has
internal moves over the game B. We achieve this via the
projection of T ⊛ S to its moves over A and C. We make
use of the partial map from A∥B∥C to A∥C which acts as
the identity function on A and C and is undefined on B. The
composite partial map

A ∥ T
A∥τ

''
T ⊛ S

π2 88

π1 &&

A ∥ B ∥ C // A ∥ C

S ∥ C σ∥C
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has defined part, yielding the composition

τ⊙σ ∶ T⊙S → A⊥∥C

once we reinstate polarities. The composition of edc strategies
τ⊙σ is a form of synchronised composition of processes
followed by the hiding of internal moves, a view promulgated
by Abramsky within traditional game semantics of programs.

C. Edc strategies

The article [10] characterises through the properties of
“innocence” and “receptivity” those pre-strategies based on
event structures which are stable under composition with the
copycat strategy; the characterisation becomes the definition
of concurrent strategy.1 We imitate [10] and provide necessary
and sufficient conditions for a pre-strategy in edc’s to be stable
up to isomorphism under composition with copycat. Fortu-
nately we can inherit a great deal from the proof of [10] via
the coreflection of event structures in edc’s of Section VII-C.

Say an edc pre-strategy σ ∶ S → A is an edc strategy iff
(i) the image σ0 ∶ S0 → A0 of σ (under the right adjoint
to the inclusion of event structures in edc’s) is a strategy of
concurrent games, as in [10]; and in addition
(ii) s1 ≡S s2 ⇐⇒ σ(s1) ≡A σ(s2), for all s1, s2 ∈ S; with

(iii) x
s−Ð⊂ z & x

s′−Ð⊂ z′ & s −ve & σz ↑ σz′ Ô⇒ z ↑ z′.

Theorem VIII.1. Let σ ∶ S → A be an edc pre-strategy. Then,
σ ≅ ccA⊙σ iff σ is an edc strategy as above.

We obtain a bicategory in which the objects are games,
the arrows σ ∶ A + //B are edc strategies σ from A to
B and 2-cells are total maps of pre-strategies with vertical
composition their usual composition. Horizontal composition
is given by composition ⊙, which extends to a functor on
2-cells via the universality of pullback and the factorisation
property of hiding. An edc strategy σ ∶ A + //B corresponds
to its dual σ⊥ ∶ B⊥ + //A⊥, yielding (a bicategorical variant of)
compact-closure though this can weaken to ∗-autonomy with
the addition of extra structure such as winning conditions or
pay-off. The story is undisturbed if we restrict to rigid 2-cells

1A total map of event structures with polarity σ ∶ S → A is receptive if
when σx

a−Ð⊂ with a −ve there is a unique s such that x
s−Ð⊂ and σ(s) = a.

It is innocent if s _ s′ with s +ve or s′ −ve implies σ(s) _ σ(s′).

which preserve causal dependency, or restricting further to 2-
cells which are rigid embeddings which gives the machinery
to define strategies recursively.

An edc strategy σ ∶ S → A is deterministic if S is
deterministic as an edc with polarity, i.e. in C(S),

x
s−Ð⊂ z & x

s′−Ð⊂ z′ & pol(s) = + ⇒ z ↑ z′ .

Copycat strategies ccA are deterministic iff the game A is

race-free: if x
a−Ð⊂ z and x

a′−Ð⊂ z′ with a and a′ of opposing
polarities, then z ↑ z′, in C(A). We obtain a sub-bicategory
of deterministic edc strategies between race-free games
analogous to that of [10]. But now there are deterministic
strategies with parallel causes, including the strategy sketched
informally in the Introduction in which Player makes a move
iff Opponent makes one or more of their moves:

⊕ ≡ ⊕

⊖

_LLR

⊖

_LLR
σÐ→ ⊕

⊖ ⊖

Along the same lines there is now a deterministic strategy for
computing “parallel or.”

IX. PROBABILISTIC EDC STRATEGIES

A. Probabilistic event structures

A probabilistic event structure essentially comprises an
event structure together with a continuous valuation on the
Scott-open sets of its domain of configurations.2 The contin-
uous valuation assigns a probability to each open set and can
then be extended to a probability measure on the Borel sets [4].
However open sets are several levels removed from the events
of an event structure, and an equivalent but more workable
definition is obtained by considering the probabilities of sub-
basic open sets, generated by single finite configurations;
for each finite configuration x this specifies Prob(x) the
probability of obtaining events x, so as result a configuration
which extends the finite configuration x. Such valuations on
configuration determine the continuous valuations from which
they arise, and can be characterised through the device of
“drop functions” which measure the drop in probability across
certain generalised intervals. The characterisation yields a
workable general definition of probabilistic event structure as
event structures with configuration-valuations, viz. functions
from finite configurations to the unit interval for which the
drop functions are always nonnegative [14].

In detail, a probabilistic event structure comprises an event
structure E with a configuration-valuation, a function v from
the finite configurations of E to the unit interval which is

(normalized) v(∅) = 1 and has

2A Scott-open subset of configurations is upwards-closed w.r.t. inclusion
and such that if it contains the union of a directed subset S of configurations
then it contains an element of S. A continuous valuation is a function w
from the Scott-open subsets of C∞(E) to [0,1] which is ((normalized)
w(C∞(E)) = 1; (strict) w(∅) = 0; (monotone) U ⊆ V Ô⇒ w(U) ≤
w(V ); (modular) w(U ∪V )+w(U ∩V ) = w(U)+w(V ); and (continuous)
w(⋃i∈I Ui) = supi∈Iw(Ui), for directed unions.



(non−ve drop) dv[y;x1,⋯, xn] ≥ 0 when y ⊆ x1,⋯, xn
for finite configurations y, x1,⋯, xn of E,

where the “drop” across the generalized interval starting at y
and ending at one of the x1,⋯, xn is given by

dv[y;x1,⋯, xn] =def v(y) −∑
I

(−1)∣I ∣+1v(⋃
i∈I

xi)

—the index I ranges over nonempty I ⊆ {1,⋯, n} such
that the union ⋃i∈I xi is a configuration. The “drop”
dv[y;x1,⋯, xn] gives the probability of the result being a
configuration which includes the configuration y and does not
include any of the configurations x1,⋯, xn.

If x ⊆ y in C(E), then Prob(y ∣ x) = v(y)/v(x); this is the
probability that the resulting configuration includes the events
y conditional on it including the events x.

B. Probability with an Opponent

This prepares the ground for a general definition of dis-
tributed probabilistic strategies, based on edc’s. Firstly though,
we should restrict to race-free games, in particular because
without copycat being deterministic there would be no prob-
abilistic identity strategies. A probabilistic edc strategy in a
game A, is an edc strategy σ ∶ S → A in which we endow S
with probability, while taking account of the fact that in the
strategy Player can’t be aware of the probabilities assigned
by Opponent. We do this through extending the definition of
configuration-valuation via an axiom (lmc) which implies the
Limited Markov Condition, LMC, of the Introduction.

Precisely, a configuration-valuation is now a function v,
from finite configurations of S to the unit interval, which is

(normalized) v(∅) = 1, satisfies
(lmc) v(x) = v(y) when x ⊆− y for finite configurations
x, y of S, and the
(+ve drop condition) dv[y;x1,⋯, xn] ≥ 0 when y ⊆+
x1,⋯, xn for finite configurations of S.

When x ⊆+ y in C(S), we can still express Prob(y ∣ x),
the conditional probability of Player making the moves y ∖ x
given x, as v(y)/v(x). In fact all such conditional probabilities
determine v via normalisation and lmc. As A is race-free
it follows S is also race-free. Hence if x is a finite config-
uration at which x

⊕−Ð⊂ and x
⊖−Ð⊂ then x ∪ {⊕,⊖} is also

a configuration, and both moves are ⊕,⊖ are causally inde-
pendent (or concurrent). From lmc we obtain LMC directly:
Prob(⊕ ∣ x) = Prob(x,⊕ ∣ x) = v(x ∪ {⊕})/v(x) = v(x ∪
{⊕,⊖})/v(x∪ {⊖}) = Prob(x,⊕,⊖ ∣ x,⊖) = Prob(⊕ ∣ x,⊖) .
A dual form of LMC will hold of a counterstrategy, a strategy
for Opponent; the LMCs for Player and Opponent will together
ensure the probabilistic independence of Player and Opponent
moves from a common configuration.

A probabilistic edc strategy in race-free game A comprises
an edc strategy σ ∶ S → A with a configuration-valuation v
for S. A probabilistic edc strategy between race-free games
A to B is a probabilistic edc strategy in A⊥∥B. Note that the
configuration-valuation of an edc doesn’t necessarily respect

the equivalence of the edc; different prime causes of a com-
mon disjunctive event may well be associated with different
probabilities.

Example IX.1. Recall the game of the Introduction. In the
edc strategy w1 ⊕ ≡ ⊕

⊖

_LLR

⊖

_LLR
w2 of Section VIII-C individual

success of the two watchers may be associated with probabil-
ities p1 ∈ [0,1] and p2 ∈ [0,1], respectively, and their joint
success with q ∈ [0,1] provided they form a configuration
valuation v. In other words, v(x) = p1 if x contains w1
and not w2; v(x) = p2 if x contains w2 and not w1; and
v(x) = q if x contains both w1 and w2; v(x) = 1 otherwise;
and p1+p2−q ≤ 1, in order to satisfy the +-drop condition. To
enliven this a little we might imagine the two watchers have a
drinking problem and the correlation depends on whether they
are sharing from a common bottle; if they had their own bottles
we might imagine the drunken unreliability of one independent
of that of the other, so q = p1.p2. ◻

We extend the usual composition of edc strategies to
probabilistic edc strategies. Assume probabilistic edc strate-
gies σ ∶ S → A⊥∥B, with configuration-valuation vS , and
τ ∶ T → B⊥∥C with vT . Their composition is defined to be
τ⊙σ ∶ T⊙S → A⊥∥C with a configuration-valuation v given
by

v(x) = vS(πS1 x).vT (πT2 x)
for x a finite configuration of T⊙S. The configuration πS1 x is
the component in C(S) of the projection π1x ∈ C(S∥C) from
the pullback defined in Section VIII-B; similarly πT2 x is the T -
component of π2x. The proof that v is indeed a configuration-
valuation is quite subtle and relies heavily on properties of
“drop” functions. Parallel composition σ∥τ is a special case.

C. A bicategory of probabilistic edc strategies

We obtain a bicategory of probabilistic edc strategies in
which objects are race-free games. Maps are probabilistic edc
strategies. Identities are given by copycat strategies, which
for race-free games are deterministic, so permit configuration-
valuations which are constantly 1. Generally, a probabilistic
edc strategy is deterministic if its configuration-valuation as-
signs 1 to all finite configurations; its underlying edc strategy
is then necessarily deterministic too.

The 2-cells of the bicategory require consideration. Whereas
we can always “push forward” a probability measure from the
domain to the codomain of a measurable function this is not
true generally for configuration-valuations involving Opponent
moves. However:

Theorem IX.2. Let f ∶ σ⇒ σ′ be a rigid 2-cell between edc
strategies σ ∶ S → A and σ′ ∶ S′ → A. Let v be a configuration-
valuation on S. Defining, for y ∈ C(S′),

(fv)(y) =def sup
X

∑
∅≠Z⊆X&Z↑

(−1)∣Z∣+1v(⋃Z)

as X ranges over finite subsets of {x ∈ C(S) ∣ y = fx}, yields
a configuration-valuation fv of S′ —the push-forward of v.



A 2-cell from σ, v to σ′, v′ is a 2-cell f ∶ σ ⇒ σ′ of edc
strategies in which f ∶ S → S′ is rigid and the push-forward fv
satisfies (fv)(x′) ≤ v′(x′) , for all configurations x′ ∈ C(S′).
The situation restricts to 2-cells which are rigid embeddings
preserving the value of the configuration-valuations, giving us
the technology to define probabilistic strategies recursively.

X. CONSTRUCTIONS ON PROBABILISTIC EDC STRATEGIES

With edc’s we have made good our promise of an exten-
sion to traditional event structures which supports parallel
causes and hiding, as well as the mix of probability and
nondeterminism needed to account for probabilistic distributed
strategies. The bicategory of now-probabilistic edc strategies
remains compact-closed and supports a metalanguage, a mix
of dataflow and higher-order process algebra, detailed in [2].

As is to be expected, with the addition of probability there
is an additional construction of probabilistic sum: if σi ∶ A are
probabilistic edc strategies in a game A for i ∈ I , assumed
countable, with pi, i ∈ I , a sub-probability distribution, we
can form Σi∈Ipiσi ∶ A. There is a form of synchronised
composition σ1 ∧ σ2 ∶ A of two probabilistic edc strategies
σ1 and σ2 in a common game A obtained as their pullback.

There are also new constructions hinging on parallel causes:
1) Duplication and contraction: Duplication of arguments

is essential if we are to support the recursive definition of
strategies. We duplicate arguments through an edc strategy
δA ∶ A + //A∥A. Intuitively it behaves like the copycat strategy
but where a Player move in the left component may be caused
in parallel by either of its corresponding Opponent moves from
the two components on the right. We show δA when A consists
of a single Player move ⊕ and, respectively, a single Opponent
move ⊖:

A = ⊕, ⊕
⊖

. 33;

� ##+⊕

A = ⊖, ⊕

≡

⊖�llr

⊕ ⊖�llr

The general definition is in Appendix C. In general, dupli-
cation δA is deterministic iff A⊥ is deterministic as an edc
with polarity. Then δA extends directly to a probabilistic
edc strategy and is a comonoid. This depends crucially on
parallel causes. By duality we obtain a contraction strategy
γA ∶ A∥A + //A which is deterministic iff A is deterministic.

2) Disjunction: Provided game A is deterministic, a form
of disjunction σ1∨σ2 ∶ A of two probabilistic edc strategies σ1 ∶
A and σ2 ∶ A is obtained as γA⊙(σ1∥σ2), the composition of
the strategy σ1∥σ2 with the deterministic contraction strategy
γA ∶ A∥A + //A. Such a disjunction of strategies can introduce
parallel causes: for example, the two parallel watchers of
Example IX.1, in the case where they are independent (so
q = p1p2), is obtained as a disjunction of two strategies, one
for each of the individual watchers.

3) Recursion: Once we have duplication strategies we can
treat recursion using standard machinery of rigid embeddings
based on inclusions [12]; recall that 2-cells, the maps between
probabilistic strategies, include rigid embeddings. Given an
expression t(x) ∶ A∥B⊥ with a variable x in A and parameters
in B, the recursive definition µx ∶A. t ∶ A∥B⊥ denotes the least

fixed point amongst probabilistic strategies X in B⊥∥A of the
continuous operation F (X) = t⊙(idB∥X)⊙δB . The definition
requires B⊥ is deterministic so that duplication δB , associated
with the copying of parameters, is a probabilistic strategy.

4) Dataflow: If we restrict to games in which all moves
are those of Player we obtain a framework for probabilistic
dataflow. Through allowing parallel causes, its deterministic
strategies σ ∶ A + //B will yield (non-injectively) all Scott-
continuous functions from C∞(A) to C∞(B), not just the
stable functions, as is the case for concurrent strategies [10].

5) New deterministic strategies: In restricting to the sub-
bicategory of deterministic edc strategies we essentially ignore
all probabilistic information. Nevertheless deterministic strate-
gies with parallel causes have their uses, most obviously in the
game semantics of languages with “parallel or.”

Edc’s significantly broaden our ways to describe proba-
bilistic games and strategies in a compositional fashion. Con-
structions on strategies induce constructions on distributions.
Although fragments can support probabilistic sampling and
conditioning, the main features of probabilistic programming,
it is not clear how conditioning can extend to more general
probabilistic edc strategies, to support the machine-learning of
strategies. The games here can be easily extended to games
with imperfect information and pay-off as in [14]; then they
include the widely-used Blackwell games [6].
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APPENDIX

A. EQUIVALENCE-ENRICHED CATEGORIES

Here we explain in more detail what we mean when we
say “enriched in the category of of sets with equivalence
relations” and employ terms such as “enriched adjunction,”
“pseudo adjunction” and “pseudo pullback.”

Equiv is the category of equivalence relations. Its objects
are (A,≡A) comprising a set A on which there is an equiv-
alence relation ≡A. Its maps f ∶ (A,≡A) → (B,≡B) are total
functions f ∶ A→ B which preserve equivalence.

We shall use some basic notions from enriched category
theory [5]. We shall be concerned with categories enriched in
Equiv, called Equiv-enriched categories, in which the hom-
sets possess the structure of equivalence relations, respected
by composition. This is the sense in which we say categories
are enriched in (the category of) equivalence relations. We
similarly borrow the concept of an Equiv-enriched functor be-
tween Equiv-enriched categories which preserve equivalence
in acting on homsets. An Equiv-enriched adjunction is a usual
adjunction in which the natural bijection preserves and reflects
equivalence.

Because an object in Equiv can be regarded as a (very
simple) category, we can regard Equiv-enriched categories
as a (very simple) 2-categories to which notions from 2-
categories apply [9].

A pseudo functor between Equiv-enriched categories is like
a functor but the usual laws only need hold up to equivalence.
A pseudo adjunction (or biadjunction) between 2-categories
permits a weakening of the usual natural isomorphism between
homsets, now also categories, to a natural equivalence of
categories. In the special case of a pseudo adjunction be-
tween Equiv-enriched categories the equivalence of homset
categories amounts to a pair of ≡-preserving functions whose
compositions are ≡-equivalent to the identity function. With
traditional adjunctions by specifying the action of one adjoint
solely on objects we determine it as a functor; with pseudo
adjunctions we can only determine it as a pseudo functor—
in general a pseudo adjunction relates two pseudo functors.
Pseudo adjunctions compose in the expected way. An Equiv-
enriched adjunction is a special case of a 2-adjunction between
2-categories and a very special case of pseudo adjunction. In
this article there are many cases in which we compose an
Equiv-enriched adjunction with a pseudo adjunction to obtain
a new pseudo adjunction.

Similarly we can specialise the notions pseudo pullbacks
and bipullbacks from 2-categories to Equiv-enriched cate-
gories. Let f ∶ A → C and g ∶ B → C be two maps in an
Equiv-enriched category. A pseudo pullback of f and g is
an object D and maps p ∶ D → A and q ∶ D → B such
that f ○ p ≡ g ○ q which satisfy the further property that for
any D′ and maps p′ ∶ D′ → A and q′ ∶ D′ → B such that
f ○ p′ ≡ g ○ q′, there is a unique map h ∶ D′ → D such that
p′ = p ○ h and q′ = q ○ h. There is an obvious weakening of
pseudo pullbacks to the situation in which the uniqueness is

replaced by uniqueness up to ≡ and the equalities by ≡—these
are simple special cases of bilimits called bipullbacks.

Right adjoints in a 2-adjunction preserve pseudo pullbacks
whereas right adjoints in a pseudo adjunction are only assured
to preserve bipullbacks.

B. ON (PSEUDO) PULLBACKS OF ESE’S

We show that the enriched category of ese’s E≡ does not
always have pullbacks and pseudo pullbacks of maps f ∶ A→
C and g ∶ B → C, the reason why we use the subcategory EDC,
which does, as a foundation on which to develop strategies
with parallel causes. It suffices to exhibit the lack of pullbacks
when C is an (ese of an) event structure as then pullbacks and
pseudo pullbacks coincide. Take C to be

C a

b

c

d e

with A and B being respectively

A a1 a2

b1 b2

c1

_LLR

: 88B

c2

_LLR

�\\f

d

_LLR

e

_LLR

a

b

_LLR

c

d e

B

with the obvious maps f ∶ A → C and g ∶ B → C (given by
the lettering). In fact, A and B are edc’s.

The pullback in edc’s EDC does exist and is given by

P a1 a2

b1

_LLR

b2

_LLR

c1

_LLR

c2

_LLR

d

_LLR

e

_LLR

with the obvious projection maps. However this is not a



pullback in E≡. Consider the ese

D a1

b1 b2

�[[e

c1

: 88B

_LLR

c2

_LLR

d

_LLR

e

_LLR

with the obvious total maps to A and B; they form a
commuting square with f and g. This cannot factor through
P : event b2 has to be mapped to b2 in P , but then a1 cannot
be mapped to a1 (it wouldn’t yield a map) nor to a2 (it would
violate commutation required of a pullback).

There is a bipullback got by applying the pseudo functor
er to the pullback in ef’s:

a1 a2′ a1′ a2

b1

�[[f _LLR

b2

_LLR ; 88C

c1

_LLR

LAAI

c2

_LLR

rUU]

d

_LLR

e

_LLR

But this is not a pullback because in the ese E below the
required mediating map is not unique in that a1 can go to
either a1 or a1′:

E a1

b1

_LLR

b2

�[[e

c1
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c2
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d

_LLR

e

_LLR

In fact, there is no pullback of f and g. To show this we
use an additional ese:

F a1

b1

_LLR

b2

c1

_LLR

c2

_LLR

d
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e
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Suppose Q with projection maps to A and B were a
pullback of f and g in E≡. Consider the three ese’s D, E

and F with their obvious maps to A and B; in each case
they form a commuting square with f and g. There are three
unique maps hD ∶ D → Q, hE ∶ E → Q, and hF ∶ F → Q
such that the corresponding pullback diagrams commute. We
remark that there are also obvious maps kD ∶ E → D and
kF ∶ E → F (given by the lettering) which commute with the
maps to the components A and B. By uniqueness, we have
hD ○ kD = hE = hF ○ kF , so we have hD(a1) = hF (a1).
From the definition of the maps, the event hD(a1) = hF (a1)
has at most one ≤-predecessor in Q which is sent to b in C
(as D only has one). Because of the projection to B, it has
at least one (as B has one). So the event hD(a1) = hF (a1)
has exactly one predecessor which is sent to b. From the
definition of maps, this event is hD(b2) which equals hF (b1).
But hD(b2) cannot equal hF (b1) as they go to two different
events of A —a contradiction. Hence there can be no pullback
of f and g in E≡. (By adding intermediary events, we would
encounter essentially the same example in the composition,
before hiding, of strategies if they were to be developed
within the broader category of ese’s.)

C. THE EDC DUPLICATION STRATEGY

We present the general definition of the edc duplication
strategy δA ∶ A + //A∥A for a race-free game A.

For each triple (x, y1, y2), where x ∈ C(A⊥) and y1, y2 ∈
C(A), which is balanced, i.e.

∀a ∈ y1 ∪ y2. polA(a) = + Ô⇒ a ∈ x and
∀a ∈ x. polA⊥(a) = + Ô⇒ a ∈ y1 or a ∈ y2 ,

and choice function χ ∶ x+ → {1,2} , from the positive events
of x denoted by x+, such that χ(a) = 1 Ô⇒ a ∈ y1 and
χ(a) = 2 Ô⇒ a ∈ y2, the order q(x, y1, y2;χ) is defined to
have underlying set {0} × x ∪ {1} × y1 ∪ {2} × y2 with order
generated by that inherited from A⊥∥A∥A together with

{((0, a), (1, a)) ∣ a ∈ y1 & polA(a) = +} ∪
{((0, a), (2, a)) ∣ a ∈ y2 & polA(a) = +} ∪
{((χ(a), a), (0, a)) ∣ a ∈ x & polA⊥(a) = +} .

Now we can define δA ∶ DA → A⊥∥A∥A. The edc DA

comprises (DA,≤,Con,≡,pol) with
events DA consisting of all d = q(x, y1, y2;χ), for
balanced (x, y1, y2) and choice function χ, which have a
top element δA(d);
causal dependency d ≤ d′ iff there is a rigid inclusion
map from d into d′ (regarded as event structures);
consistency X ∈ Con iff X ⊆fin DA and the image of its
≤-down-closure, δA[X], is consistent in A⊥∥A∥A;
equivalence d ≡ d′ iff δA(d) ≡ δA(d′), i.e. they have
equivalent top elements in A⊥∥A∥A; and
with the polarity of events DA inherited from the polarity
of their top elements, i.e. pol(d) = polA(δA(d)) for d ∈
DA.

We obtain an edc strategy δA ∶ A + //A∥A in which
δA ∶ DA → A⊥∥A∥A sends a prime to its top element. The
edc strategy δA forms a comonoid with counit � ∶ A + //∅.



The duplication strategy δA is deterministic iff no Oppo-
nent moves in A are in immediate conflict, i.e. if x

a1−Ð⊂
and x

a2−Ð⊂ in C(A) and polA(a1) = polA(a2) = − then
x ∪ {a1, a2} ∈ C(A). Given that A is race-free, δA is
deterministic iff A⊥ is deterministic as an edc with polarity—
a condition we call deterministic for Opponent. Under the
condition that A⊥ is deterministic, as δA is a deterministic
edc strategy it extends directly to a probabilistic edc strategy
with configuration-valuation having constant value 1. Then the
probabilstic edc strategy δA forms a comonoid with counit
� ∶ A + //∅.


