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Abstract—Herbrand’s theorem, widely regarded as a corner-
stone of proof theory, exposes some of the constructive content
of classical logic. In its simplest form, it reduces the validity
of a first-order purely existential formula to that of a finite
disjunction. More generally, it gives a reduction of first-order
validity to propositional validity, by understanding the structure
of the assignment of first-order terms to existential quantifiers,
and the causal dependency between quantifiers.

In this paper, we show that Herbrand’s theorem in its general
form can be elegantly stated as a theorem in the framework of
concurrent games. The causal structure of concurrent strategies,
paired with annotations by first-order terms, is used to specify
the dependency between quantifiers. Furthermore concurrent
strategies can be composed, yielding a compositional proof of
Herbrand’s theorem, simply by interpreting classical sequent
proofs in a well-chosen denotational model.

I. INTRODUCTION

“What more do we know when we have proved a theorem
by restricted means than if we merely know it is true?”

Kreisel’s question is the driving force for much modern Proof
Theory. This paper is concerned with Herbrand’s Theorem,
perhaps the earliest result in this direction. It is a simple
consequence of completeness and compactness. So it is an
example of information being extracted from the bare fact
of provability. Usually by contrast one thinks in terms of
extracting information from the proofs themselves, typically -
as in Kohlenbach’s proof mining - via some form of functional
interpretation. This has the advantage that information is
extracted compositionally in the spirit of functional program-
ming. Specifically information for ⊢ A and ⊢ A → B can
be composed to give information for ⊢ B; or in terms of the
sequent calculus we can interpret the cut rule.

It seems to be folklore that there is a problem for Herbrand’s
Theorem. That is made precise in Kohlenbach [16] which
shows that one cannot hope directly to use collections of
Herbrand terms for ⊢ A and ⊢ A→ B to give a collection for
⊢ B. That leaves the possibility of making some richer data
compositional; and that possibility is realised indirectly in Ger-
hardy and Kohlenbach [10] with data provided by Shoenfield’s
version [25] of Gödel’s Dialectica Interpretation [13]. Now
functional interpretations make no pretence to be faithful to the
structure of proofs as encapsulated in systems like the sequent
calculus and it is compelling to seek some compositional
form of Herbrand’s Theorem arising directly from proofs. We
present such a version in this paper: it is based on concurrent
strategies in games as for example in [23], [4]. We stress

that the essential point is the composition of strategies. Were
we interested only in cut-free sequent calculus our strategies
would essentially be Miller’s expansion trees [21] enriched
with explicit acyclicity witnesses.

Beyond the term information, our strategies aim to repre-
sent transparently the causal dependency between quantifiers
implicitly carried by sequent proofs, avoiding the excess
sequentialization caused by a negative translation. As a con-
sequence, some phenomena known from the proof theory of
classical logic reflect in our model: our interpretation does not
preserve cut elimination (lest the model collapse to a boolean
algebra [12]) – although we will see that cut elimination is
preserved in a sense for first-order MLL [11]. Likewise, just as
classical proofs can lead to arbitrary large cut-free proofs [8],
our interpretation may yield infinite winning strategies, from
which finite sub-strategies can nonetheless always be extracted.
This reflects the fact that symmetric proof systems for classical
logic are in general weakly, rather than strongly, normalizing.

Related work: The literature is rich in related work.
Generalizations of Miller’s expansion trees supporting cuts
include Heijltjes’ proof forests [14], McKinley’s Herbrand
nets [19], and Hetzl and Weller’s more recent expansion
trees with cuts [15]. In all three cases, a generalization of
expansion trees allowing cuts is given along with a weakly
normalizing cut reduction procedure. Intuitions from games
are often mentioned, but the methods used are syntactic.

On the game-theoretic front, our model is closely related
to Laurent’s model for the first-order λµ-calculus [17], from
which we differ by treating a symmetric proof system with
an involutive negation, avoiding sequentiality. Also related is
Mimram’s categorical construction of a games model for a
linear first-order logic without propositional connectives [22].

Outline: In Section II we recall Herbrand’s theorem, and
introduce the game-theoretic language leading to our compo-
sitional reformulation of the theorem. The rest of the paper
describes the interpretation of proofs as strategies: in Section
III we give the interpretation of propositional MLL, in Section
IV we deal with quantifiers, and finally, in Section V, we add
contraction and weakening and complete the interpretation.

II. FROM HERBRAND TO WINNING Σ-STRATEGIES

A signature is a pair Σ = (Σf ,Σp), with Σf a countable
set of function symbols (f,g,h, etc. range over function
symbols), and Σp a countable set of predicate symbols
(P,Q, etc. range over predicate symbols). There is an arity



function ar ∶ Σf ⊎Σp → N where ⊎ is the usual set-theoretic
union, where the argument sets are disjoint. For a relative gain
in simplicity in some arguments and examples, we assume that
Σ has at least one constant symbol, i.e. a function symbol of
arity 0. We use a,b, c, . . . to range over constant symbols.

If V is a set of variable names, we write TmΣ(V) for the
set of first-order terms on Σ with free variables in V . We use
variables t, s, u, v, . . . to range over terms. Atomic formulas
have the form P(t1, . . . , tn) or ¬P(t1, . . . , tn), where P is a
n-ary predicate symbol and the tis are terms. Formulas are
also closed under quantifiers, and the connectives ∨ and ∧.
Negation is not considered a logical connective: the negation
ϕ⊥ of ϕ is obtained by De Morgan rules. We write FormΣ(V)
for the set of first-order formulas on Σ with free variables
in V , and use ϕ,ψ, . . . to range over them. We also write
QFΣ(V) for the set of quantifier-free formulas. Finally, we
write fv(ϕ) or fv(t) for the set of free variables in a formula
ϕ or a term t. Formulas are considered up to α-conversion
and assumed to satisfy Barendregt’s convention.

A. Herbrand’s theorem

Intuitionistic logic has the witness property: if ∃xϕ holds
intuitionistically, then there is a single term t such that ϕ(t)
holds. While this fails in classical logic, Herbrand’s theorem,
in its most popular form, gives a weakened classical version:

Theorem II.1. Let T be a theory finitely axiomatized by
universal formulas. Consider a formula of the form ψ =
∃x1 . . .∃xnϕ(x1, . . . , xn) where ϕ ∈ QFΣ. Then, T ⊧ ψ iff
there are closed terms (ti,j)1≤i≤p,1≤j≤n such that

T ⊧
p

⋁
i=1

ϕ(ti,1, . . . , ti,n)

The single witness is replaced with a finite disjunction.

Example II.2. Consider the formula ψ = ∃x¬P(x) ∨ P(f(x))
(where f ∈ Σf ). A valid Herbrand disjunction for ψ is

(¬P(c) ∨ P(f(c))) ∨ (¬P(f(c)) ∨ P(f(f(c))))

where c is some constant symbol.

Such a disjunction result can also be given for general
formulas. A common way to do so is by reduction to the
above: a formula ϕ is converted to prenex normal form and
universally quantified variables are replaced with new function
symbols added to Σ, in a process called Herbrandization (dual
to Skolemization). For instance, the drinker’s formula:

∃x∀y¬P(x) ∨ P(y) (DF)

yields by Herbrandization the formula ψ of Example II.2.
But Herbrand’s original theorem did not use Herbrandiza-

tion, although it held for general formulas. We recall here
Buss’ formulation [3], which is different from Herbrand’s but
similar in spirit. Its definition requires some machinery.

Definition II.3. A ∨-expansion of ϕ is obtained by replacing a
subformula ψ of ϕ with ψ∨ψ, where the outermost connective

∃x∀y¬P(x) ∨ P(y)
x∶=c x∶=y

∀y¬P(c) ∨ P(y)
y

∀z¬P(y) ∨ P(z)
z

¬P(c) ∨ P(y) ¬P(y) ∨ P(z)

∃c
_���

∃y
_���

∀y

; 88C

∀z

Fig. 1. An expansion tree and winning Σ-strategy for DF

of ψ is an existential quantifier. A hereditary ∨-expansion of
ϕ is a formula obtained by a finite number of ∨-expansions.

The general version of Herbrand’s theorem is stated in terms
of prenex normal forms of hereditary ∨-expansions.

Definition II.4. Let ϕ be in prenex normal form. W.l.o.g., ϕ
has the following form, with ψ quantifier-free:

∀x1 . . . xn1∃y1∀xn1+1 . . . xn2∃y2 . . .∃yp∀xnp+1 . . . xnp+1ψ(xi, yj)

with 0 ≤ n1 ≤ n2 ≤ ⋅ ⋅ ⋅ ≠ np+1. A witness for ϕ is given by
terms ti ∈ TmΣ({x1, . . . , xni}) such that ⊧ ψ(xi, tj).

A Herbrand proof of ϕ is a witness for a prenexification of
a hereditary ∨-expansion of ϕ; which by definition of witness
yields a propositional tautology. Herbrand’s theorem states:

Theorem II.5. For any ϕ, ⊧ ϕ iff ϕ has a Herbrand proof.

For DF, the prenexified hereditary ∨-expansion

∃x1∀y1∃x2∀y2(¬P(x1) ∨ P(y1)) ∨ (¬P(x2) ∨ P(y2))

along with the witness x1 ∶= c, x2 ∶= y1 form a Herbrand proof.

B. Trees, nets and games for Herbrand’s theorem

Herbrand proofs decant the propositional content of a proof,
focusing on quantifiers. But their definition is rather indirect;
they are very removed from the original formula and are not
easily composed. Miller proposes [21] to represent them more
geometrically as expansion trees.

Expansion trees can be introduced through a game-theoretic
metaphor, reminiscent of Coquand’s game semantics for clas-
sical arithmetic [7]. Two players, ∃loı̈se and ∀bélard, ar-
gue about the validity of a formula. On a formula ∀xϕ,
∀bélard provides a fresh variable x and we keep playing on
ϕ. On a formula ∃xϕ, ∃loı̈se provides a term t, possibly
containing variables previously introduced by ∀bélard. ∃loı̈se,
though, has a special power: at any time she can backtrack
to a previous existential position, and propose a new term.
Figure 1 (left) shows an expansion tree for DF. It may be
read from top to bottom, and from left to right: ∃loı̈se plays
c, then ∀bélard introduces x, then ∃loı̈se backtracks (we jump
to the right branch) and plays x, and ∀bélard introduces y. It
is a win for ∃loı̈se: the disjunction of the leaves is a tautology.

However, the metaphor has limits: the order between two
branches of an expansion tree is not part of the structure,
but implicit in the term annotations. In this paper, our chosen
representations for proofs (called Σ-strategies) will make this
causality explicit as a partial order: we also show in Figure 1
the expansion tree represented as Σ-strategy.
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Fig. 2. A partially ordered winning Σ-strategy

This causal order (imposed by terms) is not always sequen-
tial: we display in Figure 2 what will be a winning Σ-strategy
on formula (∀x1∃y1P(x1, y1))∨(∀x2∃y2¬P(y2, f(x2, y2))) –
it is, again, more informative than the corresponding expansion
tree where the crossed dependencies would only be implicit.

Although not explicit, these dependencies play an important
role in expansion trees. Certainly the tree below should not be
valid as the formula it plays on is invalid.

∃x1∀y1P(x1, y1) ∨ ∃x2∀y2¬P(y2, x2)

∃x1∀y1P(x1, y1)
x1∶=y2

∃x2∀y2¬P(y2, x2)
x2∶=y1

∀y1P(y2, y1)
y1

∀y2¬P(y2, y1)
y2

P(y2, y1) ¬P(y2, y1)

And indeed, the full definition of expansion trees involves an
acyclicity correctness criterion that forbids this tree – likewise,
it will be impossible to write it as a Σ-strategy as the fact that
Σ-strategies are explicitly partially ordered enforces acyclicity.

C. Expansion trees as winning Σ-strategies

We now give our formulation of expansion trees as Σ-
strategies. Although our definitions look superficially very
different from Miller’s, the only fundamental difference is the
explicit display of the dependency between quantifiers.

Σ-strategies will be certain partial orders, with elements
either “∀ events” or “∃ events”. Events will carry terms, in a
way that respects causal dependency. They will play on games
representing the formulas. The first component of a game is its
arena, that specifies the causal ordering between quantifiers.

Definition II.6. An arena is A = (∣A∣,≤A,polA) where ∣A∣ is
a set of events, ≤A is a partial order that is forest-shaped: (1)
if a1 ≤A a and a2 ≤A a, then either a1 ≤A a2 or a2 ≤A a1,
and (2) for all a ∈ ∣A∣, the branch [a]A = {a′ ∈ A ∣ a′ ≤A a}
is finite. Finally, polA ∶ ∣A∣ → {∀,∃} is a polarity function
which expresses if a move belongs to ∃loı̈se or ∀bélard.

A configuration of an arena (or any partial order) is a down-
closed set of events. We write C∞(A) for the set of configu-
rations of A, and C (A) for the set of finite configurations.

The arena only describes the moves available to both
players; it says nothing about terms or winning. Similarly to
expansion trees where only ∃loı̈se can replicate her moves
(“backtrack”, although the terminology is imperfect when
strategies are not sequential), our arenas will at first be biased
towards ∃loı̈se: each ∃ move exists in as many copies as
she might desire, whereas ∀ events are a priori not copied.
Figure 3 shows the ∃-biased arena JDF K∃ for DF. The order is
drawn from top to bottom, i.e. events at the top are minimal.
Although only ∃loı̈se can replicate her moves, the universal

∃1 . . . ∃n . . .

∀1 ∀n

Fig. 3. The arena JDF K∃

quantifier is also copied as it depends on the existential
quantifier.

Strategies on arena A will be certain augmentations of pre-
fixes of A. They carry causal dependency between quantifiers
induced by term annotations, but not the terms themselves.

We introduce the notation _, already used implicitly in
Figures 1 and 2. For A any partial order and a1, a2 ∈ ∣A∣, we
write a1 _A a2 (or a1 _ a2 if A is clear from the context) if
a1 <A a2 with no other event in between, i.e. for any a ∈ ∣A∣
such that a1 ≤A a ≤A a2, then a1 = a or a2 = a. We call _
immediate causal dependency in line with event structures
where the partial order is that of causal dependency.

Definition II.7. A strategy σ on arena A, written σ ∶ A, is a
partial order (∣σ∣,≤σ) with ∣σ∣ ⊆ ∣A∣, such that for all a ∈ ∣σ∣,
[a]σ is finite (an elementary event structure); subject to:
(1) Arena-respecting. We have C∞(σ) ⊆ C∞(A),
(2) Receptivity. If x ∈ C (σ) such that x∪{a∀} ∈ C (A), then

a ∈ ∣σ∣ as well (a∀ means that polA(a) = ∀).
(3) Courtesy. If a1 _σ a2, then either a1 _A a2, or

polA(a1) = ∀ and pol(a2) = ∃.

This is a simplification of Rideau and Winskel’s concurrent
strategies [23] permitted by the purely deterministic setting;
also equivalent [23] to Melliès and Mimram’s earlier receptive
ingenuous strategies [20] – though the direct handle on the
causal order in the definition above is convenient for our
purposes. Receptivity means that ∃loı̈se cannot refuse to
acknowledge a move by ∀bélard, and courtesy that the only
new causal constraints that she can enforce with respect to
the game is that some existential quantifiers depend on some
universal quantifiers. Ignoring terms, Figure 1 (on the right)
displays a strategy on the arena of Figure 3 – in Figure 1 we
also display via dotted lines the immediate dependency of the
arena.

We can now add terms, and define Σ-strategies.

Definition II.8. A Σ-strategy on arena A is a strategy σ ∶ A,
with a labelling function λσ ∶ ∣σ∣ → TmΣ(∣σ∣), such that:

∀a∀ ∈ ∣σ∣, λσ(a) = a
∀a∃ ∈ ∣σ∣, λσ(a) ∈ TmΣ([a]∀σ)

where [a]∀σ = {a′ ∈ ∣σ∣ ∣ a′ ≤σ a & polA(a′) = ∀}.

Rather than having ∀ moves introduce fresh variables, we
find it convenient to consider them as variables themselves.

∃c1
_���

∃∀1
2_���

∀1
∀1

2 55=

∀2
∀2

Hence, the ∃ moves are annotated by terms
having as free variables the ∀ moves in their
causal history. For instance the diagram at the
right of Figure 1 is meant formally to denote the one on the
right (where superscripts are the terms given by λ). In the
sequel we omit the (redundant) annotation of ∀bélard’s events.



Σ-strategies are more general than expansion trees (besides
the fact that they are not assumed finite): they have an explicit
causal ordering, which may be more constraining than that
given by the terms. A Σ-strategy σ ∶ A is minimal iff whenever
a1 _σ a2 such that a1 /∈ fv(λσ(a2)), then a1 _A a2 as well.
In a minimal Σ-strategy σ ∶ A, the ordering ≤σ is actually
redundant and can be uniquely recovered from λσ and ≤A.

Now, we adjoin winning conditions to arenas and define
winning Σ-strategies. As in expansion trees or Herbrand
proofs, these amount to the substitution of the expansion of
the original formula being a tautology.

Definition II.9. A game A is an arena A together with
winning conditions, given as a function:

WA ∶ (x ∈ C∞(A)) → QF∞Σ (x)

where QF∞Σ (x) is the set of infinitary quantifier-free formulas
– obtained from QFΣ(x) by adding infinitary connectives
⋁i∈I ϕi and ⋀i∈I ϕi, where I is some countable set.

For a game interpreting ϕ, the winning condition associates
configurations of the arena JϕK with (essentially) the proposi-
tional part of matching hereditary ∨-expansions. For instance:

WJDF K∃({∃3,∀3,∃6,∀6}) = (¬P(∃3) ∨ P(∀3))∨
(¬P(∃6) ∨ P(∀6))

WJDF K∃({∃3,∀3,∃6}) = (¬P(∃3) ∨ P(∀3)) ∨ ⊺
recalling that the arena for DF appears in Figure 3. The ⊺ (the
true formula) on the second line is due to ∀bélard not having
played ∀6 yet, yielding victory to ∃loı̈se on that copy. The
winning conditions yield syntactic, uninterpreted formulas: we
keep the second formula as-is although it is equivalent to ⊺.

Finally, we can define winning strategies.

Definition II.10. If σ ∶ A is a Σ-strategy and x ∈ C∞(σ), we
say that x is tautological in σ if the formula

WA(x)[λσ]

corresponding to the substitution of WA(x) ∈ QF∞Σ (x) by
λσ ∶ x→ TmΣ(x), is a (possibly infinite) tautology.

A Σ-strategy σ ∶ A is winning if any x ∈ C∞(σ) that is
∃-maximal (i.e. x ∈ C∞(σ) such that for all a ∈ ∣σ∣ with
x ∪ {a} ∈ C∞(σ), polA(a) = ∀) is tautological. A Σ-strategy
σ ∶ A is top-winning if ∣σ∣ ∈ C∞(σ) is tautological.

D. Constructions on games and Herbrand’s theorem

To complete our statement of Herbrand’s theorem, it re-
mains to define the interpretation of formulas as games.

a) Arenas: First, we define some operations on arenas.
We write ∅ for the empty arena, with no events. If A is an
arena, we write A⊥ for the dual arena, with the same events
and causality but the polarity reversed, i.e. polA⊥(a) = ∀ iff
polA(a) = ∃. We review some other important constructions.

Definition II.11. The simple parallel composition A1 ∥ A2

of A1 and A2 has as events the tagged disjoint union {1} ×
∣A1∣⊎{2}×∣A2∣, causal order given by (i, a) ≤A1∥A2

(j, a′) iff
i = j and a ≤Ai a

′. Polarity is polA1∥A2
((i, a)) = polAi

(a).

Configurations x ∈ C∞(A ∥ B) have the form {1} × xA ∪
{2} × xB with xA ∈ C∞(A) and xB ∈ C∞(B), which we
write x = xA ∥ xB . Binary simple parallel composition has a
general counterpart ∥i∈I Ai with I at most countable, defined
likewise. We will use the uniform countably infinite simple
parallel composition ∥ω A with ω parallel copies of A.

Another important arena construction is prefixing.

Definition II.12. For α ∈ {∀,∃} and A an arena, the prefixed
arena α.A has events {(1, α)}∪{2}×∣A∣ and causality (i, a) ≤
(j, a′) iff i = j = 2 and a ≤A a′, or (i, a) = (1, α); meaning
that (1, α) is the unique minimal event in α.A. Its polarity is
polα.A((1, α)) = α and polα.A((2, a)) = polA(a).

Configurations x ∈ C∞(α.A) are either empty, or of the
form {(1, α)} ∪ {2} × xA with xA ∈ C∞(A), written α.xA.

b) Winning: To give the inductive interpretation of for-
mulas we have to consider formulas that are not closed, i.e.
with free variables. For V a finite set, a V-game is defined as a
gameA in Definition II.9, except that we have, for x ∈C∞(A),

WA(x) ∈ QF∞Σ⊎V(x) .

We now define all our constructions, on V-games rather
than on games. The duality operation on arenas (−)⊥ extends
to V-games, simply by negating the winning conditions: for
all x ∈ C∞(A), WA⊥(x) = WA(x)⊥. The ∥ of arenas gives
rise to two constructions on V-games:

Definition II.13. Let A and B be V-games. We define two
V-games on arena A ∥ B, differing by the winning condition:

WA⊗B(xA ∥ xB) = WA(xA) ∧WB(xB)
WA`B(xA ∥ xB) = WA(xA) ∨WB(xB)

Note the implicit renaming so that WA(xA),WB(xB) are
in QF∞Σ⊎V(xA ∥ xB) rather than QF∞Σ⊎V(xA),QF∞Σ⊎V(xB)
respectively – here and in the sequel, we will keep such
renamings implicit when we believe it helps readability.

Note that A and B are De Morgan duals, i.e. (A ⊗ B)⊥ =
A⊥ ` B⊥. The reader may wonder why these operations are
written ⊗ and ` rather than ∧ and ∨. This is because, as we
will see, these operations by themselves behave more like the
connectives of linear logic [11] than those of classical logic;
for each V the ⊗ and ` will form the basis of a ∗-autonomous
structure and hence a model of multiplicative linear logic.

To recover classical logic, we will add replication to the
interpretation of formulas.

Definition II.14. Let A be a V-game. We define two new V-
games !A and ?A with arena ∥ω A, and winning conditions:

W!A(∥i∈ω xi) = ⋀i∈ωWA(xi)
W?A(∥i∈ω xi) = ⋁i∈ωWA(xi)

Although W!A(x) (resp. W?A(x)) is, syntactically, an
infinite conjunction (resp. disjunction), we always implicitly
simplify it to a finite one when x visits finitely many copies
(as we then have infinitely many occurrences of WA(∅)).

Next we show how V-games support quantifiers.



J⊺K∃V = 1 JP(t1, . . . , tn)K∃V = P(t1, . . . , tn)
J�K∃V = � J¬P(t1, . . . , tn)K∃V = ¬P(t1, . . . , tn)

J∃xϕK∃V = ?∃x.JϕKV⊎{x} Jϕ1 ∨ ϕ2K∃V = Jϕ1K∃V ` Jϕ2K∃V
J∀xϕK∃V = ∀x.JϕKV⊎{x} Jϕ1 ∧ ϕ2K∃V = Jϕ1K∃V ⊗ Jϕ2K∃V

Fig. 4. ∃-biased interpretation of formulas

Definition II.15. For A a (V ⊎{x})-game, the V-game ∀x.A
and its dual ∃x.A have arenas ∀.A and ∃.A respectively, and:

W∀x.A(∅) = ⊺ W∀x.A(∀.xA) = WA(xA)[∀/x]
W∃x.A(∅) = � W∃x.A(∃.xA) = WA(xA)[∃/x]
Finally, we regard an atomic formula ϕ (i.e. P(t1, . . . , tn)

or ¬P(t1, . . . , tn) with ti ∈ TmΣ(V)) as a V-game on arena
∅, with Wϕ(∅) = ϕ. We write 1 and � for the unit V-games
on arena ∅ with winning conditions respectively ⊺ and �.

Putting all of these together, we give in Figure 4 the
general definition of the ∃-biased interpretation of a formula
ϕ ∈ FormΣ(V) as a V-game. Note the difference between the
case of existential and universal formulas, reflecting the bias
towards ∃loı̈se in the interpretation. The reader can check that
this is indeed compatible with the examples given previously.

We can now state our formulation of Herbrand’s theorem.

Theorem II.16. For any closed formula ϕ, we have ⊧ ϕ iff
there exists a finite, top-winning Σ-strategy σ ∶ JϕK∃.

Although it takes some effort to set up, this is an elegant
way of stating Herbrand’s theorem, putting the emphasis on
the causality between quantifiers. But, besides the game-
theoretic language, there is nothing fundamentally new or
surprising about this statement. Indeed for now Σ-strategies
are static objects, nothing more than alternative bureaucracy-
free representations of cut-free proofs. In particular, expansion
trees are the minimal top-winning Σ-strategies σ ∶ JϕK∃.

E. Compositional Herbrand’s theorem

Unlike expansion trees, strategies can be composed.
Whereas Theorem II.16 above could be deduced via the
connection with expansion trees, that proof would intrinsically
rely on the admissibility of cut in the sequent calculus. Instead,
we will give an alternative proof of Herbrand theorem where
the strategy is obtained truly compositionally from any sequent
proof, without first eliminating cuts. In other words, we want
expansion trees to come naturally from the interpretation of
the classical sequent calculus in a semantic model.

To compose Σ-strategies, we have to restore the symmetry
between ∃loı̈se and ∀bélard in the interpretation of formulas.
The non-biased interpretation JϕKV of ϕ ∈ FormΣ(V) is
defined as for JϕK∃V , except for universal formulas, where
instead we set J∀xϕKV = !∀x.JϕKV⊎{x}. This symmetry means
that we lose finiteness, since now ∃loı̈se must be reactive to
the infinite number of copies potentially opened by ∀bélard.

But we can now state:

Theorem II.17. For ϕ closed, the following are equivalent:
(1) ⊧ ϕ,

(2) There exists a finite, top-winning Σ-strategy σ ∶ JϕK∃,
(3) There exists a winning Σ-strategy σ ∶ JϕK.

We insist that in (3), σ need not be finite. Item (3) is our
compositional statement of Herbrand’s theorem: these winning
strategies will be those computed by our denotational model.
The model’s construction will show that indeed (1) implies
(3), since any proof will yield by interpretation a winning Σ-
strategy. But before we go on to that, let us end the discussion
here by showing that (3) implies (2), and (2) implies (1).

1) (2) implies (1): We say that a game A is a prefix of
B if ∣A∣ ⊆ ∣B∣, and all the structure coincides on ∣A∣. From
any finite, top-winning Σ-strategy σ ∶ JϕK∃, we construct a
Herbrand proof (as in Theorem II.5). The ∨-expansion follows
∃loı̈se’s duplications, the prenexification is any linear ordering
of ∣σ∣ respecting ≤σ , and the witness is given by λσ .

First, we relate the interpretation of a formula with that of
its ∨-expansions. The linear interpretation J−K`V is defined as
for J−K∃V except for the case of existential quantifiers:

J∃xϕK`V = ∃x.JϕK`V

So that both quantifiers are interpreted linearly. Now:

Lemma II.18. For any closed formula ϕ and x ∈ C (JϕK∃),
there is a hereditary ∨-expansion ϕ′ of ϕ and x′ ∈ C (Jϕ′K`)
order-isomorphic to x (for the order induced by the arena);
such that WJϕK∃(x) and WJϕ′K`(x′) are logically equivalent.

Proof. The part of JϕK∃ explored by x (following ∃loı̈se’s
moves played multiple times) directly informs the syntax tree
of a ∨-expansion ϕ′ of ϕ, with an embedding (an injective for-
est morphism) Jϕ′K` ↪ JϕK∃ whose image includes x. Through
this embedding x induces x′ ∈ C (Jϕ′K`); and WJϕK∃(x) and
WJϕ′K`(x′) are the same up to associativity of ∨.

In particular, for σ ∶ JϕK∃ finite and top-winning, we
have ∣σ∣ ∈ C (JϕK∃), so we get a hereditary ∨-expansion
ϕ′ of ϕ such that (keeping the renaming silent) σ ∶ Jϕ′K`

is top-winning. By construction, events of Jϕ′K` are exactly
occurrences of quantifiers in ϕ′. From σ we wish to extract a
total order on these, leading to a prenexification. But unlike
in Herbrand proofs, σ may refuse to play some existential
quantifiers. So we need to complete it:

Lemma II.19. Any finite top-winning σ ∶ JϕK` can be extended
to a top-winning σ′ ∶ JϕK` such that ∣σ′∣ = ∣JϕK`∣.
Proof. A minimal unreached ∃ move can be added to σ with
the same dependency as in JϕK`. The term annotation does
not matter; e.g. one can use any constant symbol c. Then, we
close under receptivity by similarly adding available ∀ moves.
We obtain a Σ-strategy σ′, top-winning as WJϕK`(σ′)[λσ′] is
obtained from WJϕK`(σ)[λσ] by replacing � subformulas by
something else, preserving its tautological status. As JϕK` is
finite, iterating this yields the required Σ-strategy.

This gives a finite top-winning σ′ ∶ Jϕ′K` such that ∣σ′∣ =
∣Jϕ′K`∣, i.e. a partial order on the quantifiers of the hereditary
∨-expansion ϕ′ of ϕ, and λσ′ gives a witness. Taking any



linear order extending ≤σ′ yields a prenexification of ϕ′, and
λσ′ completes the data required of a Herbrand proof.

2) (3) implies (2): Take any winning σ ∶ JϕK. First we will
restrict it to JϕK∃ by ignoring ∀bélard’s replications; yielding
σ∃ ∶ JϕK∃ which however is not necessarily finite. However,
we will see that it has a finite top-winning sub-strategy.

Notice that JϕK∃ embeds (subject to renaming) as a prefix
of JϕK. Keeping the renaming silent, we have:

Lemma II.20. For any winning σ ∶ JϕK, setting

∣σ∃∣ = {a ∈ ∣σ∣ ∣ [a]σ ⊆ ∣JϕK∃∣}

and inheriting the order, polarity and labelling from σ, we
obtain σ∃ ∶ JϕK∃ a winning Σ-strategy.

Proof. Most conditions are straightforward. To show σ∃ ∶ JϕK∃

winning, we use that for any ∃-maximal x ∈C∞(σ∃), we have
x ∈ C∞(σ) ∃-maximal as well; indeed this follows from JϕK∃

being itself ∃-maximal in JϕK.

However, the extracted σ∃ may still not be finite! And
indeed it will not always be: there are classical proofs for
which our interpretation yields infinite strategies, even after
removing ∀bélard’s replications (see Appendix A). This re-
flects the usual issues one has in getting strong normalization
in a proof system for classical logic [8] without enforcing too
much sequentiality as with a negative translation.

Despite this, the compactness theorem for propositional
logic entails that we can always extract a finite top-winning
sub-strategy. For σ ∶ JϕK∃ any Σ-strategy, we write C ∀(σ) for
the set of ∀-maximal configurations of σ, i.e. they can only be
extended in σ by ∃loı̈se moves – inheriting all structure from σ
they correspond to its sub-strategies, as they are automatically
receptive. The proof relies on:

Lemma II.21. Let X be a directed set of ∀-maximal con-
figurations. Then, WJϕK∃(⋃X) is logically equivalent to
⋁x∈XWJϕK∃(x).

Proof. By induction on ϕ, using simple logical equivalences
and that if x1 ⊆ x2 are ∀-maximal configurations, then
WJϕK∃(x1) implies WJϕK∃(x2).

We complete the proof. For σ ∶ JϕK∃ winning, by the lemma
above the (potentially infinite) disjunction of finite formulas

⋁
x∈C∀(σ)

WJϕK∃(x)[λσ]

is a tautology. By the compactness theorem there is a finite
X = {x1, . . . , xn} ⊆ C ∀(σ) such that ⋁x∈XWJϕK∃(x)[λσ]
is a tautology – w.l.o.g. X is directed as C ∀(σ) is closed
under union. By Lemma II.21 again, WJϕK∃(⋃X)[λσ] is a
tautology. So, restricting σ to events ⋃X gives a top-winning
finite sub-strategy of σ.

Although the argument above is non-constructive, the ex-
traction of a finite sub-strategy can still be performed in an
effective way: Σ-strategies and operations on them can be
effectively presented, and the finite top-winning sub-strategy
can be effectively obtained by Markov’s principle.

V-MLL
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⊢V ϕ⊥, ϕ
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⊢V Γ, ϕ ⊢V ϕ⊥,∆
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Fig. 5. Rules for the sequent calculus LK

3) (1) implies (3): This is the key part of our theorem, our
main contribution, and the subject of the rest of the paper. It
will be proved compositionally, by interpreting proofs from a
sequent proof system for first-order classical logic.

Our source sequent calculus is presented in Figure 5. It is a
fairly standard one-sided sequent calculus, with rules presented
in the multiplicative style; the only notable variation is in how
we deal with free variables. We opt for sequents that carry
explicitly a set V of free variables, that may appear freely in
the formulas. Then the introduction rule for ∀ introduces a
fresh variable, whereas the introduction rule for ∃ provides a
term whose free variables must be in V .

What mathematical structure is required to interpret this
sequent calculus? Focusing on the first group of rules and
omitting the V annotations, we get the rules of Multiplicative
Linear Logic (MLL). Propositional MLL can be interpreted
in a ∗-autonomous category [2]. Accordingly we will first
construct in Section III a ∗-autonomous category Games of
games and winning Σ-strategies. In Section IV, still ignoring
contraction and weakening, we construct the structure required
for the interpretation of quantifiers. For each set of variables
V we construct a ⋆-autonomous category V-Games, with a
fibred structure to link the V-Games together for distinct Vs
and suitable structure to deal with quantifiers, obtaining a
model of first-order MLL. Finally in Section V we complete
the interpretation by adding the exponential modalities from
linear logic to the interpretation of quantifiers, and get from
that an interpretation of contraction and weakening.

III. A ∗-AUTONOMOUS CATEGORY

The starting point of our discussion will be the following
folklore theorem of cut elimination for MLL.



Theorem III.1. There is a set of reduction rules on MLL
sequent proofs, written ↝MLL, such that for any proof π of a
sequent ⊢ Γ, there is a cut-free π′ of Γ such that π ↝∗

MLL π
′.

The reduction ↝MLL comprises so-called logical reduction
steps, reducing a cut on a formula ϕ/ϕ⊥, between two proofs
starting with the introduction rule for the main connective
of ϕ/ϕ⊥; and structural reduction steps, which consist in
performing commutations between rules so as to reach the
logical steps. We assume in the sequel that the reader has
some familiarity with this process.

In this section we aim to give an interpretation of MLL
proofs, which should be invariant under cut-elimination. Cate-
gorical logic tells us that doing that is essentially the same as
producing a ∗-autonomous category – although we opt here
for its reformulation by Cockett and Seely as a symmetric
linearly distributive category with negation [6].

Definition III.2. A symmetric linearly distributive category
is a category C with two symmetric monoidal structures (⊗,1)
and (`,�) which distribute: there is a natural transformation

δA,B,C ∶ A⊗ (B `C) C→(A⊗B)`C

the linear distribution, subject to coherence conditions [6].
A symmetric linearly distributive category with negation

also has a function (−)⊥ on objects and families of maps:

ηA ∶ 1 C→A⊥ `A εA ∶ A⊗A⊥ C→�

such that the canonical composition A → A ⊗ (A⊥ ` A) →
(A⊗A⊥)`A→ A, and its dual A⊥ → A⊥, are identities.

Note also the degenerate case of a compact closed cat-
egory, which is a symmetric linearly distributive category
where the monoidal structures (⊗,1) and (`,�) coincide.

Abusing terminology, we will refer in the future to symmet-
ric linearly distributive categories with negation by the shorter
∗-autonomous categories. This should not create any confu-
sion in the light of their equivalence [6]. If C a ∗-autonomous
category comes with a choice of JP(t1, . . . , tn)K (an object of
C) for all closed atomic formulas, then this interpretation can
be extended to all closed quantifier-free formulas following
Figure 4. For all such ϕ, we have Jϕ⊥K = JϕK⊥.

For the sake of completeness, we review the (standard)
interpretation of MLL proofs in C. A proof π of a MLL sequent
⊢ ϕ1, . . . , ϕn is interpreted as a morphism

JπK ∶ 1 C→ Jϕ1K` ⋅ ⋅ ⋅` JϕnK

as indicated in Figure 6 (where we omit the semantic brackets
on formulas, the unlabeled arrows make use of canonical
structural morphisms, and some structural isomorphisms are
left silent). This shows soundness w.r.t. provability: if ϕ is
provable, then 1 →C JϕK is inhabited. But the canonical
interpretation of MLL into a ∗-autonomous category gives us
more: the interpretation is invariant under cut reduction.

Theorem III.3. If π ↝MLL π
′ are proofs of ⊢ Γ, JπK = Jπ′K.

Hence a proof has the same denotation as its cut-free form
obtained by Theorem III.1. In the rest of this section we
construct a concrete ∗-autonomous category of games and
winning Σ-strategies; supporting by the reasoning above the
interpretation of MLL. This will be done in three stages:
first, we will focus on defining composition of Σ-strategies
(without winning). Then, we will show that this defines a
compact closed category, and finally we will add winning
conditions, separating the monoidal product ∥ of the compact
closed structure into two monoidal products ⊗ and `.

A. Composition of Σ-strategies

We construct a category ArenasΣ having arenas as objects,
and as morphisms from A to B the Σ-strategies σ ∶ A⊥ ∥ B,
also written σ ∶ A ArΣ

+ //B. The composition of σ ∶ A ArΣ
+ //B

and τ ∶ B ArΣ
+ //C will be computed in two stages: first, the

interaction τ ⊛σ is obtained as the most general partial-order-
with-terms satisfying the constraints given by both σ and τ
– Figure 7 displays such an interaction. Then, we will obtain
the composition τ ⊙ σ by hiding events in B. In the example
of Figure 7 we get the single annotated event ∃f(g(c),h(c))5 .

First we give a few definitions and notations on terms and
substitutions. If V1,V2 are finite sets, a substitution γ ∶ V1

S→V2

is a function γ ∶ V2 → TmΣ(V1). For t ∈ TmΣ(V2), we write
t[γ] ∈ TmΣ(V1) for the substitution operation. Substitutions
form a category S, which is cartesian: the empty set ∅ is
terminal, and the product of V1 and V2 is their disjoint union
V1 + V2. From γ ∶ V1

S→V2 and γ′ ∶ V ′1
S→V2, we say that γ

subsumes γ′, written γ′ ≼ γ, if there is α ∶ V ′1
S→V2 s.t. γ○α = γ′

– giving a preorder on substitutions with codomain V2.
1) Interaction: Consider first a closed interaction of σ ∶ A

and τ ∶ A⊥. As they disagree on the polarities on A we drop
them – τ ⊛σ will be a neutral Σ-strategy on a neutral arena:

Definition III.4. A neutral arena is an arena, without polar-
ities. Neutral strategies on A, still written σ ∶ A, are defined
as in Definition II.7 without conditions (2), (3). Neutral Σ-
strategies additionally have λσ ∶ (s ∈ ∣σ∣) → TmΣ([s]σ).

Forgetting polarities, every Σ-strategy can be silently co-
erced into a neutral one. Given σ and τ , τ ⊛ σ must be a
minimal strengthening of σ and τ , both in terms of causal
structure and term annotations, i.e. a meet for the partial order:

Definition III.5. If σ, τ ∶ A are neutral Σ-strategies, we write
σ ≼ τ iff ∣σ∣ ⊆ ∣τ ∣, C∞(σ) ⊆ C∞(τ), and for all x ∈ C (∣σ∣),
λτ ↾ x subsumes λσ ↾ x (both regarded as substitutions xS→x).

Ignoring terms, any two σ and τ have a meet σ ∧ τ ; indeed
this is then a simplification of the pullback in the category
of event structures [26], exploiting the absence of conflict.
The partial order (∣σ ∧ τ ∣,≤σ∧τ) has for events all common
moves of σ and τ for which there is a consistent causal history
compatible with both ≤σ and ≤τ , and for ≤σ∧τ the minimal
causal order compatible with both.

However, taking terms into account, two neutral Σ-strategies
may not necessarily have a meet for ≼ (see Appendix B).
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Fig. 6. Interpretation of MLL in a ∗-autonomous category
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Hence, we focus on the meets occurring from compositions of
Σ-strategies. For σ ∶ A andτ ∶ A⊥ dual Σ-strategies we will see
that the meet does exists. However this is not sufficient since
for composable σ ∶ A⊥ ∥ B and τ ∶ B⊥ ∥ C, the games are not
purely dual: we need to “pad out” σ and τ and compute instead
the meet (σ ∥ C⊥)∧(A ∥ τ), where the parallel composition of
Definition II.11 is extended with terms in the obvious way, and
we set λA(a) = a for all a ∈ ∣A∣. Now σ ∥ C⊥ ∶ A⊥ ∥ B ∥ C⊥
and A ∥ τ ∶ A ∥ B⊥ ∥ C are dual, albeit only pre-Σ-strategies.

Lemma III.6. If A is an arena, σ ∶ A is a pre-Σ-strategy
if σ ∶ A is a strategy, λσ(a) = a for all a∀ ∈ ∣σ∣, and λσ is
idempotent: for all a ∈ ∣σ∣, λσ(a)[λσ] = λσ(a).

Any σ ∶ A and τ ∶ A⊥ pre-Σ-strategies have a meet σ ∧ τ .

Proof. We start with the causal meet σ ∧ τ mentioned above.
Then λσ∧τ is the most general unifier of λσ ↾ ∣σ ∧ τ ∣ and
λτ ↾ ∣σ ∧ τ ∣, obtained by well-founded induction on ≤σ∧τ :

λσ∧τ(a) = { λσ(a)[λσ∧τ ↾ [a)] if a ∈ A∃

λτ(a)[λσ∧τ ↾ [a)] if a ∈ A∀

where [a) = {a′ ∈ A ∣ a′ <σ∧τ a}. It follows that this is indeed
the m.g.u. – in particular, we exploit that from idempotence,
if a∃ ∈ ∣σ∣ then either λσ(a) ∈ TmΣ([a)σ) or λσ(a) = a.

From Σ-strategies σ ∶ A⊥ ∥ B and τ ∶ B⊥ ∥ C we define
τ ⊛ σ = (σ ∥ C⊥) ∧ (A ∥ τ) ∶ A ∥ B ∥ C. We observe that
variables appearing in λτ⊛σ cannot be events in B – in fact
they must be negative in A⊥ ∥ C. So we can define

τ ⊙ σ = (τ ⊛ σ) ∩ (A ∥ C)

the restriction of τ ⊛ σ to A ∥ C, with the same causal order
and term annotation. The causal structure (∣τ ⊙ σ∣,≤τ⊙σ) is
receptive and courteous as an instance of the constructions
in [4], and the terms satisfy our conditions. Therefore τ ⊙ σ ∶
A⊥ ∥ C is a Σ-strategy, the composition of σ and τ .

Because interaction is defined as a meet for ≼, it follows
that it is compatible with it, i.e. if σ ≼ σ′, then τ ⊛σ ≼ τ ⊛σ′.
This is preserved by projection, and hence τ ⊙ σ ≼ τ ⊙ σ′ as
well. We will use later on this compatibility of composition
with ≼, and the fact that ≼ is more constrained on Σ-strategies:

Lemma III.7. If σ,σ′ ∶ A are Σ-strategies, then if σ ≼ σ′, it
automatically holds that λσ(s) = λσ′(s), for all s ∈ ∣σ∣.

This follows from the definition of ≼, and the constraints
on term labelling for Σ-strategies.

To get a category, we also define the copycat strategy.

Definition III.8. For an arena A, the copycat Σ-strategy ccA ∶
A⊥ ∥ A has events ∣ ccA∣ = A⊥ ∥ A. Writing (i, a) = (3 − i, a),
its partial order ≤ ccA

is the transitive closure of

≤A⊥∥A ∪{(c, c) ∣ c∀ ∈ ∣A⊥ ∥ A∣}

and its labelling function is λ ccA
(c∀) = c, λ ccA

(c∃) = c.
We have now given all the data of the category ArenasΣ.

Proposition III.9. There is a poset-enriched category
ArenasΣ with objects arenas, and Σ-strategies as morphisms.

The proof of associativity of composition and neutrality of
copycat are elaborations on the construction of the bicategory
in [4], and are omitted for lack of space.

B. Compact closed structure

We show that ArenasΣ is compact closed. The tensor prod-
uct of arenas A and B is A ∥ B. For Σ-strategies σ1 ∶ A⊥1 ∥ B1

and σ2 ∶ A⊥2 ∥ B2, we have σ1 ∥ σ2 ∶ (A⊥1 ∥ B1) ∥ (A⊥2 ∥ B2),
which is isomorphic to (A1 ∥ A2)⊥ ∥ (B1 ∥ B2) – overloading
notation, we keep σ1 ∥ σ2 for the renaming:

σ1 ∥ σ2 ∶ (A1 ∥ A2)⊥ ∥ (B1 ∥ B2)

When writing σ1 ∥ σ2, the context should always make clear
which parallel operation we are referring to. We get:

Proposition III.10. Simple parallel composition extends to an
enriched functor ∥ ∶ ArenasΣ ×ArenasΣ → ArenasΣ.

For the compact closed structure, we elaborate the renaming
operation used above. We write f ∶ A ≅ B for an isomorphism
of arenas, preserving and reflecting all structure.



Definition III.11. For f ∶ A ≅ B and σ ∶ A a Σ-strategy, the
renaming f∗(σ) ∶ B has components ∣f∗(σ)∣ = f ∣σ∣, ≤f∗(σ)=
{(f a1, f a2) ∣ a1 ≤σ a2} and λf∗(σ)(f a) = λσ(a)[f].

In particular, if f ∶ A ≅ B, then its lifting is f = (A⊥ ∥
f)∗( ccA) ∶ A⊥ ∥ B. Lifting gives us an easy way to define
the structural morphisms for the symmetric monoidal closed
structure of ArenasΣ. For instance, we have an iso αA,B,C ∶
(A ∥ B) ∥ C ≅ A ∥ (B ∥ C), which by lifting gives us:

αA,B,C ∶ (A ∥ B) ∥ C ArΣ
+ //A ∥ (B ∥ C)

The other structural morphisms arise similarly. In order to
prove coherence and naturality, we observe:

Lemma III.12. Let f ∶ A ≅ A′, g ∶ B ≅ B′, h ∶ C ≅ C ′, and
σ ∶ A⊥ ∥ B, τ ∶ B⊥ ∥ C. Then,

(f⊥ ∥ h)∗(τ ⊙ σ) = (g⊥ ∥ h)∗(τ) ⊙ (f⊥ ∥ g)∗(σ)

Indeed, the interaction-as-meet easily transfers through iso-
morphisms so the equality above holds for interactions, and
hence for composition. From that and neutrality of copycat for
composition we immediately deduce the lifting lemma:

Lemma III.13. For σ ∶ A⊥ ∥ B a Σ-strategy and f ∶ B ≅ C,

f ⊙ σ = (A⊥ ∥ f)∗(σ) ∶ A⊥ ∥ C .

As a corollary we get coherence for the structural mor-
phisms (following from those on isomorphisms), and natu-
rality. For all A we get by the obvious renaming from ccA:

ηA ∶ ∅ ArΣ
+ //A⊥ ∥ A εA ∶ A ∥ A⊥ ArΣ

+ //∅

checking the law for compact closed categories is a variation
of the idempotence of copycat. Overall we have:

Proposition III.14. ArenasΣ is a poset-enriched compact
closed category.

C. A linearly distributive category with negation

Finally, we reinstate winning conditions. We first note:

Proposition III.15. There is a (poset-enriched) category
GamesΣ with objects the games (Definition II.9) on Σ, and
morphisms Σ-strategies σ ∶ A⊥ ` B, also written σ ∶ AGaΣ

+ //B.

That copycat is winning boils down to the excluded middle.
That τ ⊙ σ ∶ A⊥ ` C is winning if σ ∶ A⊥ ` B and τ ∶ B⊥ ` C
are, is as in [5]: for x ∈ C (τ⊙σ) ∃-maximal we find a witness
y ∈ C (τ⊛σ) (i.e. y∩(A ∥ C) = x) s.t. y∩(A ∥ B) ∈ σ, y∩(B ∥
C) ∈ τ are ∃-maximal; the property follows by transitivity of
implication. The equations follow from ArenasΣ. Likewise:

Proposition III.16. The functor ∥ ∶ ArenasΣ × ArenasΣ →
ArenasΣ splits into ⊗,` ∶ GamesΣ ×GamesΣ → GamesΣ.

It suffices to check winning, which is straightforward.
For the rest of the structure of a linearly distributive category

with negation, we only need to check that the structural mor-
phisms from ArenasΣ satisfy the required winning conditions.
As they are obtained from lifting, we give conditions for a

CUT

∀I

π1

⊢V⊎{x} Γ, ϕ

⊢V Γ,∀x. ϕ
∃I

π2

⊢V ϕ⊥[t/x],∆
⊢V ∃x. ϕ⊥,∆

⊢V Γ,∆

↝∀/∃ CUT

π1[t/x]
⊢V Γ, ϕ[t/x]

π2

⊢V ϕ⊥[t/x],∆
⊢V Γ,∆

CUT

π1

⊢V Γ, ψ
∀I

π2

⊢V⊎{x} ψ⊥,∆, ϕ
⊢V ψ⊥,∆,∀x. ϕ

⊢V Γ,∆,∀x. ϕ
↝CUT/∀

CUT

π1

⊢V⊎{x} Γ, ψ

π2

⊢V⊎{x} ψ⊥,∆, ϕ

∀I
⊢V⊎{x} Γ,∆, ϕ

⊢V Γ,∆,∀x. ϕ

CUT

π1

⊢V Γ, ψ
∃I

π2

⊢V ψ⊥,∆, ϕ[t/x]
⊢V ψ⊥,∆,∃x. ϕ

⊢V Γ,∆,∃x. ϕ
↝CUT/∃

CUT

π1

⊢V Γ, ψ

π2

⊢V ψ⊥,∆, ϕ[t/x]

∃I
⊢V Γ,∆, ϕ[t/x]
⊢V Γ,∆,∃x. ϕ

Fig. 8. Additional cut elimination rules for MLL1

lifted map to give a winning Σ-strategy. For A,B games,
a win-iso f ∶ A → B is an iso f ∶ A ≅ B such that
(WA(x))⊥ ∨WB(f x) is a tautology, for all x ∈ C∞(A).

Lemma III.17. If f ∶ A → B is a win-iso, then f ∶ A⊥ ` B is
a winning Σ-strategy.

This easily entails that all structural morphisms (including
linear distributivity) are winning. Finally ηA ∶ 1

GaΣ
+ //A⊥ ` A

and εA ∶ A ⊗A⊥GaΣ
+ //� are winning, which concludes:

Proposition III.18. GamesΣ is a poset-enriched ∗-
autonomous category.

IV. A MODEL OF FIRST-ORDER MLL

We move on to MLL1, i.e. the MLL rules (taking into ac-
count the annotation with V) plus the two rules for quantifiers.
Before developing the interpretation of these, let us discuss
cut elimination for them. The new cut reduction rules are
displayed in Figure 8. There are only three of them: one for the
unique new logical cut reduction rule (∀/∃), and two which
explain the propagation of cuts past introduction rules for ∀
and ∃. Writing π ↝MLL1 π

′ for the reduction obtained with
these new rules together with those for MLL, we have:

Proposition IV.1. Let π be any MLL1 proof of ⊢V Γ. Then,
there exists a cut-free proof π′ of ⊢V Γ such that π ↝∗

MLL1
π′.

The first rule of Figure 8 requires the introduction of
substitution as an operation on proofs. In general, given a proof
π of ⊢V2 Γ and substitution γ ∶ V1 → V2 we obtain π[γ] a
proof of ⊢V1 Γ[γ] by propagating γ through π, performing
the substitution on formulas and terms. A degenerate case of
this is the substitution of a proof π of ⊢V Γ by the weakening
substitution wV,x ∶ V ⊎ {x} → V , obtaining π1[wV,x], a proof
of ⊢V⊎x Γ. As this actually leaves the formulas and terms
unchanged we leave it implicit in the cut reduction rules – it
is used for instance implicitly in the commutation CUT/∀.

Substitution is key in the cut reduction of quantifiers.
However it is best studied independently of quantifiers, in a
model of V-MLL. This is the topic of the next subsection, prior
to the interpretation of the introduction rules for quantifiers.



A. A fibred model of V-MLL

1) Categorical structure: Following categorical logic [18],
[24], V-MLL together with substitution is modeled in:

Definition IV.2. Let ∗-Aut be the category of ∗-autonomous
categories and functors preserving the structure on the nose.
A strict S-indexed ∗-autonomous category is a functor:

T ∶ Sop → ∗-Aut

Usually (e.g. hyperdoctrines [24]), similar definitions are
more general: ∗-autonomous functors only preserve the struc-
ture up to coherent isomorphism, and the category of substitu-
tions S is an abstract cartesian category. We opt here for this
simpler definition to focus on our concrete interpretation.

Writing Vn = {x1, . . . , xn}, we say that T supports Σ if for
every predicate symbol P of arity n there is is JPKVn a chosen
object of T (Vn). For t1, . . . , tn ∈ TmΣ(V) we can then set

JP(t1, . . . , tn)K = T ([t1/x1, . . . , tn/xn])(JPKVn) ,

an object of T (V), also written JPKVn[t1/x1, . . . , tn/xn].
For any finite V , this lets us interpret V-MLL in T (V)

by following Section III. But besides interpreting V-MLL in
isolation, this structure also models the action of substitutions.
Indeed, the functorial action of T on γ ∶ V1 → V2 induces sub-
stitution operations, which to any object A of T (V2) associate
A[γ] in T (V1), and which to any morphism σ ∶ A T (V2)→ B

associates σ[γ] ∶ A[γ] T (V1)→ B[γ]. This matches syntactic
substitution, as T (γ) preserves the ∗-autonomous structure.

2) Concrete structure: For any finite set V , the fibre T (V)
is the ∗-autonomous category GamesΣ⊎V built in Section III,
on the extended signature Σ ⊎ V .

We comment on this definition of T (V). Its objects are
games on the signature Σ⊎V , i.e. the V-games of Section II-D.
Morphisms between V-games A and B are winning (Σ ⊎ V)-
strategies on A⊥ ` B regarded as a game on signature Σ ⊎ V
– also called winning Σ-strategies on the V-game A⊥ ` B.

We introduce the functorial action of T . For A a V2-game
and γ ∶ V1 → V2 a substitution, the game T (γ)(A) = A[γ] is
defined as having arena A, and, for x ∈ C∞(A):

WA[γ](x) = WA(x)[γ] ∈ QF∞Σ⊎V1
(x)

Likewise, given A and B two V-games and σ ∶ A⊥ ` B a
winning strategy, we set σ[γ] to have the same components
as σ, but with the term annotations substituted with γ:

λσ[γ](s) = λ(s)[γ] ∈ TmΣ⊎V1(x)

It is a simple verification to prove:

Proposition IV.3. For any substitution γ ∶ V1 → V2, T (γ) ∶
T (V2) → T (V1) is a strict ∗-autonomous functor.

B. Quantifiers

To complete the interpretation of MLL1, we give the inter-
pretation of ∀I and ∃I. Recall that for now, we use the linear
interpretation J−K` of formulas from Section II-E.

Besides preserving the ∗-autonomous structure, substitution
also propagates through quantifiers, from which we have:

Lemma IV.4. Let ϕ ∈ FormΣ(V2) and γ ∶ V1 → V2 a
substitution, then Jϕ[γ]K`V1

= JϕK`V2
[γ].

This fact will be used implicitly from now on.
First of all, we note that the definition of quantifiers on

games of Definition II.15 extends to functors:

∀V,x,∃V,x ∶ T (V ⊎ {x}) → T (V)

where from σ ∶ A⊥ ` B, ∀V,x(σ) ∶ (∀x.A)⊥ ` ∀x.B plays
copycat on the initial ∀, then proceeds as σ (and similarly
for ∃V,x(σ)). Following Lawvere [18], one would expect
adjunctions ∃V,x ⊣ T (wV,x) ⊣ ∀V,x. We will, however, not
quite get this here (we present this failure later as the non-
preservation of ↝CUT/∀). We now interpret ∀I and ∃I.

1) Interpretation of ∃I: For any arena A and term t ∈
TmΣ(V), we first define the (Σ ⊎ V)-strategy below.

Definition IV.5. The (Σ⊎V)-strategy ∃tA ∶ A⊥ ∥ ∃.A is (∣A⊥ ∥
∃.A∣,≤∃t

A
, λ∃t

A
) where ≤∃t

A
includes ≤ ccA

, plus dependencies

{((2,∃), (2, a)) ∣ a ∈ A}⊎{((2,∃), (1, a)) ∣ ∃a∀0 ∈ A. a0 ≤A a}

and term assignment that of ccA plus λ∃t
A
((2,∃)) = t.

In other words, ∃tA plays the existential quantifier annotated
with t, then proceeds as copycat on A. We have:

Proposition IV.6. Let A be a V-game, and t ∈ TmΣ(V). Then,

∃tA ∶ A[t/x]V-GaΣ
+ // ∃x.A

Indeed, any ∃-maximal xA ∥ ∃.xA ∈ C∞(∃tA) corresponds
to a tautology WA[t/x](xA)⊥ ∨WA(xA)[t/x]. We interpret ∃I
by post-composing with ∃tA (as in Figure 10 without the last
step). This validates ↝CUT/∃, by associativity of composition.

2) Interpretation of ∀I: We define the following operation.

Definition IV.7. Let σ be a (Σ⊎V⊎{x})-strategy on an arena
A⊥ ∥ B. The (Σ⊎V)-strategy ∀I xA,B(σ) ∶ A⊥ ∥ ∀.B has events
∣σ∣ ⊎ {(2,∀)}, and dependency ≤σ , plus:

{((2,∀), s) ∣ s ∈ ∀.B ∨ ∃s′ ≤σ s. x ∈ fv(λσ(s′))}

with, finally, λ∀I x
A,B

(σ)((2,∀)) = (2,∀) and λ∀I x
A,B

(σ)(s) =
λσ(s)[(2,∀)/x] for s ∈ ∣σ∣.

In other words we add ∀ as a new minimal event, which
we set as a dependency for all ∃loı̈se moves with annotation
comprising x. Finally, we rename x to ∀ in those annotations.
We have the following proposition.

Proposition IV.8. If σ is winning on a (V ⊎ {x})-game
A[wV,x]`B, ∀I xA,B(σ) is winning on the V-game A`∀x.B.

Indeed, if ∀bélard does not play (2,∀) we get a tautology,
otherwise the remaining configuration is one of σ and yields a
tautology. This gives an interpretation for ∀I , which completes
the interpretation of MLL1. Just like↝CUT/∃, it validates↝∀/∃.
However, it fails ↝CUT/∀. This stems from the fact that the
minimal Σ-strategies are not stable under composition.



Example IV.9. Consider the Σ-strategies σ ∶ ∀1.1
ArΣ
+ //∀2.∀3.1

and τ ∶ ∀2.∀3.1
ArΣ
+ //∀4.1 depicted below.

∀1.1 ∣σ // ∀2.∀3.1 ∀2.∀3.1 ∣τ // ∀4.1

∀2_���
∀4

)qqx∀3
*qqx

∃∀4

2_���
∃∀3

1 ∃c3

Although both Σ-strategies are minimal, their composition
τ ⊙ σ is ∀4 _ ∃c1 and therefore not minimal.

In the example above, τ is some ∀I x∀2.∀3.1,1(τ
′) for τ ′

playing ∃x2 _ ∃c3. But τ ′ ⊙ σ has for only move ∃c1, so the
dependency ∀4 _ ∃c1 present in ∀I x∀2.∀3.1,1(τ

′) ⊙ σ is not
there in ∀I x∀1.1,1(τ

′ ⊙ σ), as would be required for ↝CUT/∀.
The interpretation of cut-free proofs yield minimal Σ-

strategies, whereas compositions interpreting cuts may create
non-minimal causal dependencies as the dependency flows
through the syntax tree of the cut formula. Hence, cut re-
duction has the effect of weakening the causal structure of the
interpretation. This can be captured by:

Lemma IV.10. Let σ ∶ A ArΣ
+ //B be a Σ-strategy and τ ∶

B
ArΣ
+ //C a (Σ ⊎ {x})-strategy. Then,

∀I xA,C(τ ⊙ σ) ≼ ∀I xB,C(τ) ⊙ σ

Recall that by Lemma III.7, the two Σ-strategies have
the same term annotations on their common events. In fact,
∀I xA,C(τ ⊙ σ) and ∀I xB,C(τ) ⊙ σ also have the same events –
they correspond to the same expansion tree, only the acyclicity
witness differs. But a variant of ≼ with ∣σ1∣ = ∣σ2∣ would fail to
be a congruence: relaxing causality of σ in τ ⊙σ may unlock
new events in a composition, previously part of causal loops.

As ≼ is preserved by all operations on Σ-strategies, we
deduce the main theorem of this section.

Theorem IV.11. If π ↝MLL1 π
′, then Jπ′K ≼ JπK.

We conjecture that this can be strengthened to JπK and
Jπ′K having the same events, by showing that compositions
occuring in the interpretation of MLL1 proofs are deadlock-
free and do not create any causal cycle; then, the equivalence
relation “having the same expansion tree”, i.e. the same data
apart from causal dependency, would be preserved under com-
position, and we would have a ∗-autonomous hyperdoctrine of
Σ-strategies up to it. However, as these good properties would
not hold in the presence of contraction and weakening, we
leave this out as beyond the scope of the present paper.

V. CONTRACTION AND WEAKENING

We reinstate ! and ? in the interpretation of quantifiers, i.e.
J∀x. ϕKV = !∀x. JϕKV⊎{x} and J∃xϕKV = ?∃x JϕKV⊎x.

Unlike for MLL1, now we only aim to associate to any
proof a Σ-winning strategy on the appropriate game, with no
preservation of cut elimination. We need to provide interpre-
tations for contraction and weakening, but also to revisit the

!∀x.1 ∣Ga // !∀x.1⊗ !∀x.1
(i,∀)

%oou
(j,∀)

%oou(2i,∃) (2j + 1,∃)

?∃x.1 ∣Ga// ?∃x.1⊗?∃x.1
(i,∀)

� ''. � ))/(i,∃) (i,∃)

Fig. 9. Two examples of contraction

interpretation of the introduction rules for quantifiers, as now
the interpretation of formulas has changed.

The interpretation of weakening is easy. For any game A,
any Σ-strategy σ ∶ A + // 1 is winning; for definiteness, we
use the minimal eA ∶ A + // 1, only closed under receptivity.
Contraction is much more subtle. To illustrate the difficulty,
we present in Figure 9 two simple instances of the contraction
Σ-strategy (term annotations are omitted). The first looks like
the usual contraction strategy in the presence of copy indices
(see e.g. AJM games [1]). It can be used to interpret the
contraction rule on existential formulas, where it has the effect
of taking the union of the different witnesses proposed. But
in LK, one can also use contraction on a universal formula,
which will appeal to a strategy like the second. Any witness
proposed by ∀bélard will then have to be propagated to both
branches to ensure that we are winning.

In order to define this contraction Σ-strategy along with the
right tools to revisit the introduction rules for quantifiers, we
will first study some properties of the exponential modalities.

1) The modalities ! and ?: Recall ! and ? from Defini-
tion II.14, both based on arena ∥ω A. First, we examine their
functorial action. Let σ ∶ A ArΣ

+ //B. Then, ∥ωσ ∶ ∥ω(A⊥ ∥ B)
which is isomorphic to (∥ωA)⊥ ∥ (∥ωB); by abuse of notation
(implicitly using the iso) we write ∥ω σ ∶∥ωA ArΣ

+ // ∥ωB.

Lemma V.1. Let σ ∶ AGaΣ
+ //B. Then, we have

!σ =∥ω σ ∶ !AGaΣ
+ // !B ?σ =∥ω σ ∶ ?AGaΣ

+ // ?B

Besides, Figure 11 shows win-isos whose liftings are used
in the interpretation. We also have a winning !A + //A (though
not obtained by lifting) playing copycat between A and the
0th copy on the left hand side, and closed under receptivity.

2) Perennialisation: Rather than defining directly the con-
traction JϕKV + // JϕKV ⊗ JϕKV , we will build

coϕ ∶ JϕKV
GaΣ⊎V

+ // !JϕKV

for every ϕ ∈ FormΣ(V). If ϕ is quantifier-free, the empty Σ-
strategy coϕ ∶ JϕKV + // !JϕKV is winning as ∧ is idempotent.
For a universal formula, we use a particular case of !A + // !!A

co∀x. ϕ ∶ !∀x. JϕKV + // !!∀x. JϕKV

from Figure 11. We get coϕ∧ψ and coϕ∨ψ by induction and
composition with !A⊗ !B + // !(A⊗B), !A` !B + // !(A`B).

The only case left is existential quantification; it is also the
most subtle, as it is analogous to the contraction of existential
formulas presented on the right hand side of Figure 9.

Lemma V.2. For any (V ⊎ {x})-game A, there is a winning

µA,x ∶ ∃x. !A
V-Games

+ // !∃x.A .



u

w
v

C

π

⊢V Γ, ϕ,ϕ

⊢V Γ, ϕ

}

�
~ = Γ⊥

JπK
T (V)→ ϕ` ϕ

δ⊥
ϕ⊥

T (V)→ ϕ

u

w
v
∀I

π

⊢V⊎{x} Γ, ϕ

⊢V Γ,∀x. ϕ

}

�
~ = Γ⊥

coΓ⊥

T (V)→ !Γ⊥
!(∀I (JπK))
T (V)→ !∀x. ϕ

u

w
v
∀I

π

⊢V Γ, ϕ[t/x]
⊢V Γ,∃x. ϕ

}

�
~ = Γ⊥

JπK
T (V)→ ϕ[t/x]

∃t
ϕ

T (V)→ ∃x.ϕ T (V)→ ?∃x.ϕ

Fig. 10. Interpretation of the remaining rules of LK

!A → !!A !A → !A⊗ !A ?!A → !?A
(⟨i, j⟩, a) ↦ (i, (j, a)) (2i, a) ↦ (1, (i, a)) (i, (j, a)) ↦ (j, (i, a))

!A⊗ !B → !(A⊗B) (2i + 1, a) ↦ (2, (i, a)) !A` !B → !(A` B)
(j, (i, a)) ↦ (i, (j, a)) (j, (i, a)) ↦ (i, (j, a))

Fig. 11. Some win-isos with exponentials

Proof. After the unique minimal ∀ move (on the left hand
side), the strategy simultaneously plays all the (i,∃) (on the
right hand side) with annotation ∀; then proceeds as cc !A.

Using that, we can define co?∃x. JϕKx as the composition

?∃x. JϕK
?∃V,xcoJϕK

+ // ?∃x. !JϕK
?µJϕK,x

+ // ?!∃x. JϕK + // !?∃x. JϕK .

Summing up, we have proved:

Proposition V.3. For any ϕ ∈ FormΣ(V), there is a winning

coJϕKV ∶ JϕKV
V-Games

+ // !JϕKV .

3) Completing the interpretation: Using Proposition V.3
along with the basic Σ-strategies defined above, we build
δJϕKV ∶ JϕKV + // JϕKV ⊗ JϕKV for every ϕ ∈ FormΣ(V). Using
it we give in Figure 10 the final clauses of the interpretation
of LK (omitting W, which is by post-composition with eA),
completing Figure 6 – again, for readability we omit the se-
mantic brackets on formulas and silently use the isomorphism
between winning Σ-strategies from 1 to Γ `A and from Γ⊥

to A (due to the ∗-autonomous structure of each fibre). This
concludes the interpretation, and the proof of Theorem II.17.

VI. CONCLUSION

For LK there is no hope of preserving unrestricted cut reduc-
tion without collapsing the model to a boolean algebra [12].
There are non-degenerate categorical models for classical logic
with an involutive negation, e.g. Führman and Pym’s classical
categories [9] where cut reduction is only preserved in a lax
sense; but our model does not preserve cut reduction even in
this weaker sense. Besides non-preservation of cut elimination,
the interpretation is infinitary: from the example in [8] of
a LK proof with arbitrarily large cut-free forms, one can
construct a proof of some ∃x. ϕ with ϕ quantifier-free (i.e.,
no ∀bélard moves at all) yielding an infinite Σ-strategy.

Both phenomena are due to our commitment to preserve the
symmetry and involutive negation of classical logic – they do
not appear in e.g. Laurent’s games model for the first-order
λµ-calculus. It is a fascinating open question whether one can
find a non-degenerate finitary interpretation which avoids the
sequentiality resulting from the negative translation.
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APPENDIX

A. The interpretation is infinitary

In this appendix, we construct an LK proof of the formula
∃x.⊺ whose interpretation is infinite, despite the fact that there
is no move by ∀bélard in the game. Besides showing that
the interpretation is infinitary, we also take advantage of the
presentation of the example to detail as much as reasonable
the interpretation, so that the interested reader can see it at
play in a non-trivial case.

Our starting point is the following proof:

$1 =

AX
⊢ ϕ,ϕ⊥

AX
⊢ ϕ,ϕ⊥

∧I
⊢ ϕ ∧ ϕ,ϕ⊥, ϕ⊥

C
⊢ ϕ ∧ ϕ,ϕ⊥

AX
⊢ ϕ,ϕ⊥

AX
⊢ ϕ,ϕ⊥

∧I
⊢ ϕ,ϕ,ϕ⊥ ∧ ϕ⊥

C
⊢ ϕ,ϕ⊥ ∧ ϕ⊥

CUT
⊢ ϕ ∧ ϕ,ϕ⊥ ∧ ϕ⊥

This proof is referred to in [8] as a structural dilemma.
There are two ways to push the CUT beyond contraction, as
the two proofs interact, and try to duplicate one another. This
is often used as an example of a proof where unrestricted
cut reduction does not necessarily terminate; and which has
infinitely large cut-free forms.

In order to construct a proof with an infinite interpretation,
we will start with this proof, with ϕ = ∀x.� ∨ ∃y.⊺, which to
shorten notations we will just write as ∀ ∨ ∃.

1) Interpretation of $1: We detail the interpretation of $1.
We start from the axioms on the left branch:

r
AX

⊢ ϕ,ϕ⊥
z
=

(∀ ∨ ∃) , (∃ ∧ ∀)
∀i

� ''.
∀j

'ppw∃∀j

j ∃∀i

i

The indices i, j are the copy indices for the ! and ? arising
from the interpretation of formulas, and we only display the
term annotations for ∃loı̈se’s moves. The Σ-strategy above is
the copycat Σ-strategy as defined in Definition III.8.

Interpreting the introduction rule for ∧ simply has the effect
of tensoring two copies of copycat together, obtaining:

tAX
⊢ ϕ,ϕ⊥

AX
⊢ ϕ,ϕ⊥

∧I
⊢ ϕ ∧ ϕ,ϕ⊥, ϕ⊥

|

=

(∀ ∨ ∃) ∧ (∀ ∨ ∃) , (∃ ∧ ∀) , (∃ ∧ ∀)
∀i

� **0

∀j
� **0

∀k
#nnt

∀l
#nnt∃∀k

k ∃∀l

l ∃∀i

i ∃∀j

j

i.e. again copycat, in accordance with the functoriality of ⊗.
Now, to interpret contraction, we need to compose with

δ⊥∀∨∃ ∶ (∃ ∧ ∀) ∨ (∃ ∧ ∀) + //∃ ∧ ∀, where

δ∀∨∃ ∶ (!∀` ?∃) + // (!∀` ?∃) ⊗ (!∀` ?∃)

is the contraction on ϕ. Note that this time, make explicit the
exponential modalities. Recall also that this strategy is derived

from co∀∨∃ ∶ (!∀`?∃) + // !(!∀`?∃), which we display below.
To display it best we deviate from the representation below
by showing exactly the correspondence between copy indices
and occurrences of ! and ?, and we omit the terms, which
are trivial and always correspond with the unique predecessor
for ∃loı̈se’s events. We display the Σ-strategy separating two
sub-configurations for clarity; the full Σ-strategy is obtained
by taking their union.

! ∀ ` ? ∃ ∣ // ! (! ∀ ` ? ∃)
(i,

$nnu
(j, ∀) )

(⟨i, j⟩, ∃)

(i, ∀)
� ''.


 !!*

� ��%

(0, (i, ∃))
(1, (i, ∃))

(n, (i, ∃))

We do not detail the construction of this Σ-strategy, but
it is easy to get from the definitions. This Σ-strategy co∀∨∃
obviously performs an infinitary duplication, however it does
not show by itself that the interpretation is infinitary, as co∀∨∃
is just an auxiliary device in the definition of the interpretation,
rather than itself the interpretation of a proof.

To get contraction on ϕ from co∀∨∃, we compose it with
the derelicted version of contraction on !ϕ:

!(!∀`?∃) + // !(!∀`?∃)⊗ !(!∀`?∃) + // (!∀`?∃)⊗(!∀`?∃)

which we display here:

! (! ∀` ? ∃) ∣ // (!∀` ? ∃)⊗ (! ∀` ? ∃)
(i,

0tt|
∀ )

(0, (i,∃) )

((i,
$nnu

∀) )
(1, (i,∃) )

(0, (j, ∀))
� ""*( (j,∃))

(1, (j, ∀))
� ))0( (j,∃))

(i + 2, (j,∀))

where the final case is just closure under receptivity. Perform-
ing the composition, we get the contraction Σ-strategy δ∀∨∃:



(! ∀` ? ∃) ∣ // (! ∀` ? ∃) ⊗ (! ∀` ? ∃)
(i,

.ss{
∀ )

(⟨0, i⟩,∃ )

(i,
$nnu

∀ )
(⟨1, i⟩,∃ )

( (i,∀))
� ##+ � ))0( (i,∃)) ( (i,∃))

With that in place, we can finally obtain by composition
(where we adopt again the simplified annotation for copy
indices, since in this games ! and ? are again always attached
to quantifiers – we still omit the trivial term annotations):

u

ww
v

AX
⊢ ϕ,ϕ⊥

AX
⊢ ϕ,ϕ⊥

∧I
⊢ ϕ ∧ ϕ,ϕ⊥, ϕ⊥

C
⊢ ϕ ∧ ϕ,ϕ⊥

}

��
~ =

(∀ ∨ ∃) ∧ (∀ ∨ ∃) , (∃ ∧ ∀)
∀i

� **1∃⟨0,i⟩

∀j
� ))/∃⟨1,j⟩

∀k
"mmt $nnu∃k ∃k

The second branch of $1 is symmetric, so we do not make it
explicit. Now, we interpret the CUT rule and the composition
yields J$1K below (again, we omit term annotations which
coincide with the unique predecessor for ∃loı̈se’s moves).

(∀ ∨ ∃) ∧ (∀ ∨ ∃) , (∃ ∧ ∀) ∧ (∃ ∧ ∀)
∀i

� **0 � ++1∃⟨0,i⟩ ∃⟨0,i⟩

∀j
� ((/ � **0∃⟨1,j⟩ ∃⟨1,j⟩

∀k
#nnt &oov∃⟨0,k⟩ ∃⟨0,k⟩

∀l
!mms #nnt∃⟨1,k⟩ ∃⟨1,k⟩

It is interesting to note that although $1 has arbitrarily large
cut-free forms, the corresponding strategy only plays finitely
many ∃loı̈se moves for every ∀bélard move. However, we are
on the right path to finding a truly infinitary Σ-strategy.

2) An infinitary proof: The next step is to set (with s some
unary function symbol):

$2 =

AX
⊢x ⊺[s(x)/y],�

∃I
⊢x ∃y.⊺,�

∀I
⊢ ∃y.⊺,∀x.�

W
⊢ ∀x.�,∃y.⊺,∀x.�,∃x.⊺

∨I
⊢ (∀x.� ∨ ∃y.⊺) ∨ (∀x.� ∨ ∃x.⊺)

Leaving to the reader the details of the interpretation, we
have by design that J$2K is:

(∀ ∨ ∃) ∨ (∀ ∨ ∃)
∀i ∀j

*qqx∃s(∀j)
⟨j,0⟩

We now use these to compute the interpretation of:

$3 =
$1

⊢ ϕ ∧ ϕ,ϕ⊥ ∧ ϕ⊥
$2

⊢ (∀ ∨ ∃) ∨ (∀ ∨ ∃)
CUT ⊢ ϕ ∧ ϕ

The associated composition reveals J$3K to be:

(∀ ∨ ∃) ∧ (∀ ∨ ∃)
∀i

� ((/ � ++1∃s(∀i)
⟨0,⟨⟨0,i⟩,0⟩⟩ ∃s(∀i)

⟨0,⟨⟨0,i⟩,0⟩⟩

∀j
'ppw � ''.∃s(∀j)

⟨0,⟨⟨1,j⟩,0⟩⟩ ∃s(∀j)
⟨0,⟨⟨1,j⟩,0⟩⟩

We are almost there. It suffices now to note that $3 provides
a proof of

(∃x.⊺ Ô⇒ ∃x.⊺) ∧ (∃x.⊺ Ô⇒ ∃x.⊺)

These two implications can be composed by cutting $3

against the proof $4 or (∃ ⇒ ∃) ∧ (∃ ⇒ ∃) ⇒ (∃ ⇒ ∃)
performing the composition:

$4 =

AX
⊢ ∀,∃

AX
⊢ ∀,∃

∧I
⊢ ∀,∃ ∧ ∀,∃

AX
⊢ ∀,∃

∧I
⊢ ∀,∃ ∧ ∀,∃ ∧ ∀,∃

EX
⊢ ∃ ∧ ∀,∃ ∧ ∀,∃,∀

∨I
⊢ (∃ ∧ ∀) ∨ (∃ ∧ ∀),∃ ∨ ∀

with interpretation:

(∃ ∧ ∀) ∨ (∃ ∧ ∀) , ∃ ∨ ∀
∀i

� $$,
∀j

� $$,
∀k

"mmt∃k ∃i ∃j
Write $5 for the proof of ∃x.⊺∨∀y.� obtained by cutting

$3 and $4 in the obvious way. The interpretation of $5 is the



composition of J$3K and J$4K, which triggers the feedback
loop causing the infiniteness phenomenon. We display below
the corresponding interaction. For the “synchronised” part
of formulas, we will use 0 for components resulting from
matching dual quantifiers, and ∥ for components resulting
for matching dual propositional connectives. We write ○ for
synchronized events (i.e. of neutral polarity), and omit copy
indices, which get very unwieldy. For readability, we also
annotate the immediate causal links with the sub-proof that
they originate from, i.e. $3 or $4.

(0 ∥ 0) ∥ (0 ∥ 0) , ∃ ∨ ∀
∀

$4!mms○∀
$3 � &&- $3

� **1○s(∀)
$4 � ''.

○s(∀)
$4 � ''.○s(∀)

$3(ppw $3 � ''.
∃s(∀)

○s(s(∀))
$4 � ''.

○s(s(∀))
$4 � ''.○s(s(∀))

$3(ppw $3 � ''.
∃s(s(∀))

○s3(∀)
$4 � ''.

○s3(∀)
$4 � &&-○s3(∀)

$3&oov $3 � ((/
∃s3(∀))

. . . . . . . . .

Therefore, after hiding, ∃loı̈se responds to an initial
∀bélard move ∀ by playing simultaneously all ∃sn(∀), for
n ≥ 1. Finally, cutting $5 against a proof of ∃x.⊺ playing
a constant symbol 0, we get a proof $6 of ⊢ ∃x.⊺ whose
interpretation plays simultaneously all ∃sn(0) for n ≥ 1.

B. Neutral Σ-strategies have no meet

We noted in Section III-A1 that although neutral strategies
(without taking terms into account) always had a meet (this
is, in essence, the pullback construction in the category of
event structures), neutral Σ-strategies in general do not have
all meets.

Indeed, consider the following example:

Example B.1. If A has two incomparable a1 and a2, then the
neutral Σ-strategies aa1

1 _ aa1

2 and aa1

1 ac2 have no meet.

Let us assume it has a meet q = (∣q∣,≤q, λq). First, let us
find out what its events would be. Since it is a lower bound,
we have C (q) ⊆ C (aa1

1 _ aa1

2 ) and C (q) ⊆ C (aa1

1 ac2).
But we also note that:

ac1 _ ac2 ≼ aa1

1 _ aa1

2 ac1 _ ac2 ≼ aa1

1 ac2

So ac1 _ ac2 must be below the meet, whose events must
therefore include a1 and a2. Hence, we have ∣q∣ = {a1, a2}.

Let us now examine the labelling. Because q ≼ aa1

1 ac2, we
must have λq(a2) = c. But then because q ≼ aa1

1 _ aa1

2 , we
must have λq(a1) = λq(a2) = c as well.

But then, we observe that aa1

1 ≼ aa1

1 _ aa1

2 and aa1

1 ≼
aa1

1 ac2, so we should have aa1

1 ≼ q as well if q is to be
the meet. But that not the case, since c does not subsume the
variable a1. Therefore, aa1

1 _ aa1

2 and aa1

1 ac2 have no meet.


