
Event Structures, Stable Families

and Concurrent Games

Glynn Winskel
gw104@cl.cam.ac.uk

©2011- 2017 Glynn Winskel

February 2017

2

Preface

These notes introduce a theory of two-party games still under development.
A lot can be said for a general theory to unify all manner of games found in
the literature. But this has not been the main motivation. That has been the
development of a generalized domain theory, to lift the methodology of domain
theory and denotational semantics to address the highly interactive nature of
computation we find today.

There are several arguments why the next generation of domain theory
should be an intensional theory, one which pays careful attention to the ways
in which output is computed from input. One is that if the theory is to be
able to reason about operational concerns it had better address them, albeit
abstractly. Another is that sometimes the demands of compositionality force
denotations to be more intensional than one would at first expect; this occurs
for example with nondeterministic dataflow—see the Introduction. These notes
take seriously the idea that intensional aspects be described by strategies, and,
to fit computational needs adequately, try to understand the concept of strategy
very broadly.

This idea comes from game semantics where the domains and continuous
functions of traditional domain theory and denotational semantics are replaced
by games and strategies. Strategies supercede functions because they give a
much better account of interaction extended in time. (Functions, if you like,
have too clean a separation of interaction into input and output.) In traditional
denotational semantics a program phrase or process term denotes a continuous
function, whereas in game semantics a program phrase or process term denotes
a strategy.

However, traditional game semantics is not always general enough, for in-
stance in accounting for nondeterministic or concurrent computation. Rather
than extending traditional game semantics with various bells and whistles, these
notes attempt to carve out a general theory of games within a general model
of nondeterministic, concurrent computation. The model chosen is the partial-
order model of event structures, and for technical reasons, its enlargement to
stable families. Event structures have the advantage of occupying a central po-
sition within models for concurrency, and the development here should suggest
analogous developments for other ‘partial-order’ models such as Mazurkiewicz
trace languages, Petri nets and asynchronous transition systems, and even ‘in-
terleaving’ models based on transition systems or sequences.

In their present state, these notes are inadequate in several ways. First,
they don’t account for games with back-tracking, games where play can revisit
previous positions. While a little odd from the point of view of everyday games,
this feature is very important in game semantics, for instance in order to re-
evaluate the argument to a function.1 Second, the notes don’t have enough
examples. Third, the notes say too little on the uses of games and strategies in

1The theory has been extended to allow back-tracking and copying via event structures
with symmetry, which support a rich variety of pseudo (co)monads to achieve this—see the
paper on “Games with Symmetry” with Castellan and Clairambault on my homepage.

3

semantics, types, logic and verification. I hope to some extent to make up for
these inadequacies in the lectures. What I claim the notes do do, is begin to
unify a variety of approaches and provide canonical general constructions and
results, which leave the student better placed to structure and analyse critically
the often arcane world of games and strategies in the literature.

Such was the preface to the first version of these notes for a lecture course
at Aarhus University in the late summer of 2011. The subject of concurrent
games has grown since that first version of these notes. The notes ended up
being my partial summary of research within the ERC-funded ECSYM project
(“Events, Causality and Symmetry”) concentrating on the situation as I saw
it and a way to consolidate my understanding at the time. They were very
helpful in inducting postdocs and students working on ECSYM. Subsequently
progress on the notes has often been outstripped by work done with my ECSYM
colleagues. A consequence of their development is that the notes follow the line
of discovery rather than what is possibly the most natural conceptual line. Latest
developments are presented in papers on my Computer Lab home page.

4

Contents

1 Introduction 11
1.1 Motivation . 11

1.1.1 What is a process? . 11
1.1.2 From models for concurrency 12
1.1.3 From semantics . 13
1.1.4 From logic . 16

2 Event structures 17
2.1 Event structures . 17
2.2 Maps of event structures . 20

2.2.1 Partial-total factorisation 21
2.3 Rigid maps . 23

2.3.1 Rigid image . 24
2.3.2 Rigid embeddings and inclusions 24
2.3.3 Rigid families . 25

2.4 Products of event structures . 25

3 Stable families 27
3.1 Stable families . 27

3.1.1 Stable families and event structures 29
3.2 Completed stable families . 33
3.3 Process constructions . 34

3.3.1 Products . 34
3.3.2 Restriction . 39
3.3.3 Synchronized compositions 39
3.3.4 Pullbacks . 40
3.3.5 Projection . 42
3.3.6 Recursion . 42

4 Games and strategies 43
4.1 Event structures with polarities . 43
4.2 Operations . 43

4.2.1 Dual . 43
4.2.2 Simple parallel composition 43

5

6 CONTENTS

4.3 Pre-strategies . 44
4.3.1 Concurrent copy-cat . 45
4.3.2 Composing pre-strategies . 46
4.3.3 Composition via pullback 48
4.3.4 Duality . 49

4.4 Strategies . 49
4.4.1 Necessity of receptivity and innocence 50
4.4.2 Sufficiency of receptivity and innocence 53

4.5 Concurrent strategies . 59
4.5.1 Alternative characterizations 60

4.6 Rigid-image strategies . 68

5 Deterministic strategies 73
5.1 Definition . 73
5.2 The bicategory of deterministic strategies 74
5.3 A category of deterministic strategies 78

6 Games people play 81
6.1 Categories for games . 81
6.2 Related work—early results . 82

6.2.1 Stable spans, profunctors and stable functions 82
6.2.2 Ingenuous strategies . 82
6.2.3 Closure operators . 82
6.2.4 Simple games . 82

7 Strategies as profunctors 83
7.1 The Scott order in games . 83
7.2 Strategies as presheaves . 87
7.3 Strategies as profunctors . 89
7.4 Composition of strategies and profunctors 90
7.5 Games as factorization systems . 94

8 A language for strategies 97
8.0.1 Affine maps . 97

8.1 A metalanguage for strategies . 98
8.1.1 Types . 98
8.1.2 Configuration expressions 98
8.1.3 Terms for strategies . 99

8.2 Semantics . 106
8.2.1 Hom-set terms . 106
8.2.2 Duplication . 108

9 From maps to strategies 111
9.1 Maps as strategies—a general construction 111
9.2 Affine-stable maps . 112
9.3 Affine-stable maps as strategies . 116

CONTENTS 7

9.4 A functor: affine-stable maps to strategies 124

9.5 An adjunction . 128

9.6 A special adjunction . 132

10 Winning ways 135

10.1 Winning strategies . 135

10.2 Operations . 139

10.2.1 Dual . 139

10.2.2 Parallel composition . 139

10.2.3 Tensor . 140

10.2.4 Function space . 140

10.3 The bicategory of winning strategies 140

10.4 Total strategies . 143

10.5 On determined games . 144

10.6 Determinacy for well-founded games 148

10.6.1 Preliminaries . 148

10.7 Determinacy proof . 151

10.8 Satisfaction in the predicate calculus 158

11 Borel determinacy 165

11.1 Introduction . 165

11.2 Tree games and Gale-Stewart games 165

11.2.1 Tree games . 165

11.2.2 Gale-Stewart games . 166

11.2.3 Determinacy of tree games 167

11.3 Race-freeness and bounded-concurrency 169

11.4 Determinacy of concurrent games 173

11.4.1 The tree game of a concurrent game 173

11.4.2 Borel determinacy of concurrent games 175

12 Games with imperfect information 185

12.1 Motivation . 185

12.2 Games with imperfect information 186

12.2.1 The bicategory of Λ-games 187

12.3 Dialectica games . 188

12.4 Hintikka’s IF logic . 189

13 Linear strategies 191

13.1 Rigid strategies . 191

13.1.1 The bicategory of rigid strategies 192

13.2 Nondeterministic linear strategies 193

13.3 Deterministic linear strategies . 195

13.4 Linear strategies as pairs of relations 196

8 CONTENTS

14 Strategies with neutral events 197

14.1 Deadlocks . 197

14.2 Strategies with neutral moves . 198

14.2.1 As synchronized composition 203

14.3 2-cells for partial strategies . 203

14.4 May and must tests . 204

14.5 Strategies with stopping configurations—the race-free case 206

14.6 May and Must behaviour characterised 212

14.6.1 Preliminaries, traces of a strategy 212

14.6.2 Characterisation of the may preorder 214

14.6.3 Characterisation of the must preorder 215

14.6.4 Sum decomposition . 217

14.7 A language for partial strategies . 218

14.8 Operational semantics—an early attempt 219

14.9 Transition semantics . 220

14.9.1 Duality . 223

14.10Derivations and events . 223

15 Probabilistic strategies 225

15.1 Probabilistic event structures . 225

15.1.1 Preliminaries . 226

15.1.2 The definition . 228

15.1.3 The characterisation . 229

15.2 Probability with an Opponent . 235

15.3 2-cells, a bicategory . 243

15.3.1 A category of probabilistic rigid-image strategies 251

15.4 Probabilistic processes—an early version 253

15.5 The metalanguage on probabilistic strategies 257

15.5.1 Payoff . 261

15.5.2 A simple value-theorem . 262

15.6 Probabilistic vs. nondeterministic semantics 264

16 Quantum games 267

16.1 Simple quantum event structures 267

16.2 From quantum to probabilistic . 269

16.3 An extension . 273

16.3.1 A notion of distributed quantum tests 274

16.3.2 Measurement with values 275

16.4 Probabilistic quantum experiments 276

16.5 More general quantum event structures 279

16.6 Quantum strategies . 280

16.7 A bicategory of quantum games . 282

CONTENTS 9

17 Event structures with disjunctive causes 283

17.1 Motivation . 283

17.2 Disjunctive causes and general event structures 283

17.3 General event structures and families 284

17.4 The problem . 287

17.5 Adding disjunctive causes to prime event structures 288

17.6 Equivalence families . 290

17.7 Realisations . 291

17.8 Extremal realisations . 292

17.9 An adjunction from ES≡ to Fam≡ 299

17.10An adjunction from Fam≡ to GES 302

17.11An adjunction from ES≡ to GES . 303

17.12Coreflective subcategories of ES≡ 305

17.13A non-enriched coreflection . 307

17.14ES1
≡ and SFam≡—a coreflection . 308

17.15Constructions . 309

17.16Summary . 312

17.17General event structures as edc’s 313

17.18Deterministic general event structures 315

17.19Strategies with general event structures 318

18 Edc strategies 323

18.1 Edc pre-strategies . 323

18.1.1 Constructions on edc’s and stable equivalence-families . . 324

18.2 Composing edc pre-strategies . 324

18.3 An alternative definition of composition 325

18.4 Edc strategies . 327

18.4.1 Necessity . 328

18.4.2 Sufficiency . 332

18.5 A bicategory of edc strategies . 337

18.6 A language for edc strategies . 338

19 Probabilistic edc strategies 339

19.1 Probability with an Opponent . 339

19.2 A bicategory of probabilistic edc strategies 344

19.3 A language of probabilistic edc strategies 345

20 Revisions/Extensions to edc-strategies 347

20.1 Edc-rigid maps . 347

20.2 Games as edc’s . 348

20.3 Push-forward across edc-rigid 2-cells 350

10 CONTENTS

21 Disjunctive causes via symmetry 357
21.1 Games with symmetry . 357
21.2 A pseudo monad . 358
21.3 Edc strategies as strategies . 359
21.4 Composition . 361

22 Probabilistic programming 369
22.1 Stable spans . 369
22.2 Probability . 372
22.3 . 372

A Exercises 1

B Projects 7

Chapter 1

Introduction

Games and strategies are everywhere, in logic, philosophy, computer science,
economics, in leisure and in life.

Slogan: Processes are nondeterministic concurrent strategies.

1.1 Motivation

We summarise some reasons for developing a theory of nondeterministic con-
current games and strategies.

1.1.1 What is a process?

In the earliest days of computer science it became accepted that a computation
was essentially an (effective) partial function f ∶ N → N between the natural
numbers. This view underpins the Church-Turing thesis on the universality of
computability.

As computer science matured it demanded increasingly sophisticated mathe-
matical representations of processes. The pioneering work of Strachey and Scott
in the denotational semantics of programs assumed a view of a process still as a
function f ∶D →D′, but now acting in a continuous fashion between datatypes
represented as special topological spaces, ‘domains’ D and D′; reflecting the
fact that computers can act on complicated, conceptually-infinite objects, but
only by virtue of their finite approximations.

In the 1960’s, around the time that Strachey started the programme of de-
notational semantics, Petri advocated his radical view of a process, expressed
in terms of its events and their effect on local states—a model which addressed
directly the potentially distributed nature of computation, but which, in com-
mon with many other current models, ignored the distinction between data and
process implicit in regarding a process as a function. Here it seems that an
adequate notion of process requires a marriage of Petri’s view of a process and

11

12 CHAPTER 1. INTRODUCTION

the vision of Scott and Strachey. An early hint in this direction came in answer
to the following question.

What is the information order in domains? There are essentially two answers
in the literature, the ‘topological,’ the most well-known from Scott’s work, and
the ‘temporal,’ arising from the work of Berry:

● Topological: the basic units of information are propositions describing fi-
nite properties; more information corresponds to more propositions being true.
Functions are ordered pointwise.

● Temporal: the basic units of information are events; more information corre-
sponds to more events having occurred over time. Functions are restricted to
‘stable’ functions and ordered by the intensional ‘stable order,’ in which com-
mon output has to be produced for the same minimal input. Berry’s specialized
domains ‘dI-domains’ are represented by event structures.

In truth, Berry developed ‘stable domain theory’ by a careful study of how to
obtain a suitable category of domains with stable rather than all continuous
functions. He arrived at the axioms for his ‘dI-domains’ because he wanted
function spaces (so a cartesian-closed category). The realization that dI-domains
were precisely those domains which could be represented by event structures,
came a little later.

1.1.2 From models for concurrency

Causal models are alternatively described as: causal-dependence models; in-
dependence models; non-interleaving models; true-concurrency models; and
partial-order models. They include Petri nets, event structures, Mazurkiewicz
trace languages, transition systems with independence, multiset rewriting, and
many more. The models share the central feature that they represent processes
in terms of the events they can perform, and that they make explicit the causal
dependency and conflicts between events.

Causal models have arisen, and have sometimes been rediscovered as the
natural model, in many diverse and often unexpected areas of application:
Security protocols: for example, forms of event structure, strand spaces, sup-
port reasoning about secrecy and authentication through causal relations and
the freshness of names;
Systems biology: ideas from Petri nets and event structures are used in taming
the state-explosion in the stochastic simulation of biochemical processes and in
the analysis of biochemical pathways;
Hardware: in the design and analysis of asynchronous circuits;
Types and proof: event structures appear as representations of propositions as
types, and of proofs;
Nondeterministic dataflow: where numerous researchers have used or rediscov-
ered causal models in providing a compositional semantics to nondeterministic
dataflow;
Network diagnostics: in the patching together local of fault diagnoses of com-

1.1. MOTIVATION 13

munication networks;
Logic of programs: in concurrent separation logic where artificialities in Brookes’
pioneering soundness proof are obviated through a Petri-net model;
Partial order model checking: following the seminal work of McMillan the un-
folding of Petri nets (described below) is exploited in recent automated analysis
of systems;
Distributed computation: event structures appear both classically,e.g. in early
work of Lamport, and recently in the Bayesian analysis of trust and modelling
multicore memory.

To illustrate the close relationship between Petri nets and the ‘partial-order
models’ of occurrence nets and event structures, we sketch how a (1-safe) Petri
net can be unfolded first to a net of occurrences and from there to an event
structure [1]. The unfolding construction is analogous to the well-known method
of unfolding a transition system to a tree, and is central to several analysis tools
in the applications above. In the figure, the net on top has loops. The net below
it is its occurrence-net unfolding. It consists of all the occurrences of conditions
and events of the original net, and is infinite because of the original repetitive
behaviour. The occurrences keep track of what enabled them. The simplest
form of event structure, the one we shall consider here, arises by abstracting
away the conditions in the occurrence net and capturing their role in relations
of causal dependency and conflict on event occurrences.

The relations between the different forms of causal models are well under-
stood [2]. Despite this and their often very successful, specialized applications,
causal models lack a comprehensive theory which would support their systematic
use in giving semantics to a broad range of programming and process languages,
in particular we lack an expressive form of ‘domain theory’ for causal models
with rich higher-order type constructions needed by mathematical semantics.

1.1.3 From semantics

Denotational semantics and domain theory of Scott and Strachey set the stan-
dard for semantics of computation. The theory provided a global mathematical
setting for sequential computation, and thereby placed programming languages
in connection with each other; connected with the mathematical worlds of alge-
bra, topology and logic; and inspired programming languages, type disciplines
and methods of reasoning. Despite the many striking successes it has become
very clear that many aspects of computation do not fit within the traditional
framework of denotational semantics and domain theory. In particular, classical
domain theory has not scaled up to the more intricate models used in interac-
tive/distributed computation. Nor has it been as operationally informative as
one could hope.

While, as Kahn was early to show, deterministic dataflow is a shining appli-
cation of simple domain theory, nondeterministic dataflow is beyond its scope.
The compositional semantics of nondeterministic dataflow needs a form of gen-
eralized relation which specifies the ways input-output pairs are realized.A com-
pelling example comes from the early work of Brock and Ackerman who were

14 CHAPTER 1. INTRODUCTION

�' $�

6� � �6g g
g g
c cZZ} ���

��� ZZ}

6

6

�
��
�*

Q
QQk

g
gg

g g
ZZ} ��� 6

6

Q
QQk

6 6

�
��

�
��>

PP
PP

PPi

g
gg

g g
ZZ} ��� 6

6

Q
QQk

6 6

�
��

�
��>

PP
PP

PPi g
gg

g g
ZZ} ��� 6

6

Q
QQk

6 6

�
��

�
��>

PP
PP

PPi

PP
PP

PPi

�
��

�
��
���

���
��:

XXXy ��� �����
�1

PPPi ��� ������1

A Petri net and its occurrence-net unfolding

1.1. MOTIVATION 15

the first to emphasize the difficulties in giving a compositional semantics to non-
deterministic dataflow, though our example is based on simplifications in the
later work of Rabinovich and Trakhtenbrot, and Russell.

Nondeterministic dataflow—Brock-Ackerman anomaly

�
�-�

-
-

FAiC[Ai] =

There are two simple nondeterministic processes A1 and A2, which have the
same input-output relation, and yet behave differently in the common feedback
context C[−], illustrated above. The context consists of a fork process F (a
process that copies every input to two outputs), through which the output of
the automata Ai is fed back to the input channel, as shown in the figure. Process
A1 has a choice between two behaviours: either it outputs a token and stops, or
it outputs a token, waits for a token on input and then outputs another token.
Process A2 has a similar nondeterministic behaviour: Either it outputs a token
and stops, or it waits for an input token, then outputs two tokens. For both
automata, the input-output relation relates empty input to the eventual output
of one token, and non-empty input to one or two output tokens. But C[A1]
can output two tokens, whereas C[A2] can only output a single token. Notice
that A1 has two ways to realize the output of a single token from empty input,
while A2 only has one. It is this extra way, not caught in a simple input-output
relation, that gives A1 the richer behaviour in the feedback context.

Over the years there have been many solutions to giving a compositional
semantics to nondeterministic dataflow. But they all hinge on some form of
generalized relation, to distinguish the different ways in which output is pro-
duced from input. A compositional semantics can be given using stable spans
of event structures, an extension of Berry’s stable functions to include nonde-
terminism [3]—see Section 6.2.1.

How are we to extend the methodology of denotational semantics to the
much broader forms of computational processes we need to design, understand
and analyze today? How are we to maintain clean algebraic structure and
abstraction alongside the operational nature of computation?

Game semantics advanced the idea of replacing the traditional continuous
functions of domain theory and denotational semantics by strategies. The rea-
son for doing this was to obtain a representation of interaction in computation
that was more faithful to operational reality. It is not always convenient or
mathematically tractable to assume that the environment interacts with a com-
putation in the form of an input argument. It is built into the view of a process
as a strategy that the environment can direct the course of evolution of a pro-
cess throughout its duration. Game semantics has had many dramatic successes.
But it has developed from simple well-understood games, based on alternating
sequences of player and opponent moves, to sometimes arcane extensions and

16 CHAPTER 1. INTRODUCTION

generalizations designed to fit the demands of a succession of additional pro-
gramming or process features. It is perhaps time to stand back and see how
games fit within a very general model of computation, to understand better
what current features of games in computer science are simply artefacts of the
particular history of their development.

1.1.4 From logic

An informal understanding of games and strategies goes back at least as far as
the ancient Greeks where truth was sought through debate using the dialectic
method; a contention being true if there was an argument for it that could
survive all counter-arguments. Formalizing this idea, logicians such as Lorenzen
and Blass investigated the meaning of a logical assertion through strategies
in a game built up from the assertion. These ideas were reinforced in game
semantics which can provide semantics to proofs as well as programs. The
study of the mathematics and computational nature of proof continues. There
are several strands of motivation for games in logic. Along with automata games
constitute one of the tools of logic and algorithmics; often a logical or algorithmic
question can be reduced to the question of whether a particular game has a
winning/optimal strategy or counterstrategy. Games are used in verification
and, for example, the central equivalence of bisimulation on processes has a
reading in terms of strategies.

Chapter 2

Event structures

Event structures are a fundamental model of concurrent computation and, along
with their extension to stable families, provide a mathematical foundation for
the course.

2.1 Event structures

Event structures are a model of computational processes. They represent a
process, or system, as a set of event occurrences with relations to express how
events causally depend on others, or exclude other events from occurring. In
one of their simpler forms they consist of a set of events on which there is
a consistency relation expressing when events can occur together in a history
and a partial order of causal dependency—writing e′ ≤ e if the occurrence of e
depends on the previous occurrence of e′.

An event structure comprises (E,≤,Con), consisting of a set E, of events
which are partially ordered by ≤, the causal dependency relation, and a nonempty
consistency relation Con consisting of finite subsets of E, which satisfy

{e′ ∣ e′ ≤ e} is finite for all e ∈ E,

{e} ∈ Con for all e ∈ E,

Y ⊆X ∈ Con Ô⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈X Ô⇒ X ∪ {e} ∈ Con.

The events are to be thought of as event occurrences without significant dura-
tion; in any history an event is to appear at most once. We say that events e,
e′ are concurrent, and write e co e′ if {e, e′} ∈ Con & e /≤ e′ & e′ /≤ e. Concurrent
events can occur together, independently of each other. The relation of imme-
diate dependency e _ e′ means e and e′ are distinct with e ≤ e′ and no event in
between. Clearly ≤ is the reflexive transitive closure of _.

An event structure represents a process. A configuration is the set of all
events which may have occurred by some stage, or history, in the evolution of

17

18 CHAPTER 2. EVENT STRUCTURES

the process. According to our understanding of the consistency relation and
causal dependency relations a configuration should be consistent and such that
if an event appears in a configuration then so do all the events on which it
causally depends.

The configurations of an event structure E consist of those subsets x ⊆ E
which are

Consistent: ∀X ⊆ x. X is finite⇒X ∈ Con, and

Down-closed: ∀e, e′. e′ ≤ e ∈ x Ô⇒ e′ ∈ x.

We shall largely work with finite configurations, written C(E). Write C∞(E)
for the set of finite and infinite configurations of the event structure E.

The configurations of an event structure are ordered by inclusion, where
x ⊆ x′, i.e. x is a sub-configuration of x′, means that x is a sub-history of x′.
Note that an individual configuration inherits an order of causal dependency on
its events from the event structure so that the history of a process is captured
through a partial order of events. The finite configurations correspond to those
events which have occurred by some finite stage in the evolution of the process,
and so describe the possible (finite) states of the process.

For X ⊆ E we write [X] for {e ∈ E ∣ ∃e′ ∈X. e ≤ e′}, the down-closure of X.
The axioms on the consistency relation ensure that the down-closure of any finite
set in the consistency relation s a finite configuration, and that any event appears
in a configuration: given X ∈ Con its down-closure {e′ ∈ E ∣ ∃e ∈X. e′ ≤ e} is a
finite configuration; in particular, for an event e, the set [e] =def {e′ ∈ E ∣ e′ ≤ e}
is a configuration describing the whole causal history of the event e. We shall
sometimes write [e) =def {e′ ∈ E ∣ e′ < e}.

When the consistency relation is determined by the pairwise consistency of
events we can replace it by a binary relation or, as is more usual, by a comple-
mentary binary conflict relation on events (written as # or ⌣).

Remark on the use of “cause.” In an event structure (E,≤,Con) the rela-
tion e′ ≤ e means that the occurrence of e depends on the previous occurrence
of the event e′; if the event e has occurred then the event e′ must have occurred
previously. In informal speech cause is also used in the forward-looking sense of
one thing arising because of another. Often when used in this way the history
of events is understood or presupposed. According to the history around my
life, the meeting of my parents caused my birth. But the history might have
been very different: in an alternative world the meeting of my parents might
not have led to my birth. More formally, w.r.t. a configuration x in which an
event e occurs while it seems sensible to talk about the events [e) causing e, it
is so only by virtue of the understood configuration x.

We also encounter events which in a history may have been caused in more
than one way. There are generalisations of the current event structures which
do this—see Chapter 17, on “disjunctive causes.” But for now we will work with
the simple definition above in which an event, or really an event occurrence, e is

2.1. EVENT STRUCTURES 19

causally dependent on a unique set of events [e). Much of the mathematics we
develop around these simpler forms of event structures (sometimes called prime
event structures in the literature) will be reusable when we come to consider
events with several causes. Roughly the simpler event structures will suffice in
considering nondeterministic strategies. Where their limitations will first show
up is in our treatment of probabilistic strategies.

Example 2.1. The diagram below illustrates an event structure representing
streams of 0s and 1s:

000 001 010 011 110 111

00

�\\f _LLR_LLR

01

_LLR : 88B

⋮ 11

: 88B_LLR

0

�\\f _LLR

1

: 88B

Above we have indicated conflict (or inconsistency) between events by . The
event structure representing pairs of 0/1-streams and a/b-streams is represented
by the juxtaposition of two event structures:

000 001 010 011 110 111

00

�\\f _LLR_LLR

01

_LLR : 88B

⋮ 11

: 88B_LLR

0

�\\f _LLR

1

: 88B

aaa aab aba abb bba bbb

aa

�\\g _LLR_LLR

ab

_LLR : 88B

⋮ bb

: 88B_LLR

a

�\\g _LLR

b

: 88B

Exercise 2.2. Draw the event structure of the occurrence net unfolding in the
introduction. ◻

20 CHAPTER 2. EVENT STRUCTURES

2.2 Maps of event structures

Let E and E′ be event structures. A (partial) map of event structures f ∶ E → E′

is a partial function on events f ∶ E ⇀ E′ such that for all x ∈ C∞(E) its direct
image fx ∈ C∞(E′) and

if e1, e2 ∈ x and f(e1) = f(e2) (with both defined), then e1 = e2.

(Those maps defined is unaffected if we replace possibly infinite configurations
C∞(E) by finite configurations C(E) above; this is because any configuration is
the union of finite configurations and direct image preserves such unions.) The
map expresses how the occurrence of an event e in E induces the coincident
occurrence of the event f(e) in E′ whenever it is defined. The map f respects
the instantaneous nature of events: two distinct event occurrences which are
consistent with each other cannot both coincide with the occurrence of a com-
mon event in the image. Partial maps of event structures compose as partial
functions, with identity maps given by identity functions.

Proposition 2.3. Let f ∶ E → E′ be a map of event structures. Then,

(i) f locally reflects causal dependency: whenever e, e′ ∈ x, a configuration of E,
and f(e) and f(e′) are both defined with f(e′) ≤ f(e), then e′ ≤ e;

(ii) f preserves the concurrency relation, when defined: if e co e′ in E and f(e)
and f(e′) are both defined then f(e) co f(e′).

Proof. (i) Let x ∈ C∞(E), e, e′ ∈ E with f(e′) ≤ f(e) (both being defined). The
map f ∶ E → E′ must send the configuration [e] to the configuration f[e]. As
f[e] is down-closed there must be e′′ ∈ [e] such that f(e′′) = f(e′). But because
f is locally injective on x and both e′, e′′ ∈ x we see that e′ = e′′ so e′ ∈ [e],
i.e. e′ ≤ e. Consequently the map f locally reflects causal dependency: when-
ever e, e′ ∈ x, a configuration of E, and f(e) and f(e′) are both defined with
f(e′) ≤ f(e), then e′ ≤ e.

(ii) Suppose e co e′ in E and f(e) and f(e′) are both defined. Then {e, e′} ∈
ConE . Hence their down-closure [e, e′] ∈ C(E). It follows that f[e, e′] ∈ C(E′)
making {f(e), f(e′)} ∈ ConE′ with f(e) and f(e′) incomparable w.r.t. ≤E′ by
(i); this ensures f(e) co f(e′).

We will say the map is total if the function f is total. Notice that for a total
map f the condition on maps now says it is locally injective, in the sense that
w.r.t. any configuration x of the domain the restriction of f to a function from x
is injective; the restriction of f to a function from x to fx is thus bijective. Say
a total map of event structures is rigid when it preserves causal dependency.

Proposition 2.4. Let f ∶ E → E′ be a total map of event structures. Then, for
e1, e2 ∈ E,

e1 _ e2 Ô⇒ f(e1) co f(e2) or f(e1) _ f(e2) .

2.2. MAPS OF EVENT STRUCTURES 21

Proof. Assume e1 _ e2 and not f(e1) co f(e2). Then as {f(e1), f(e2)} ∈ Con,
we have f(e1) ≤ f(e2) or f(e2) ≤ f(e1). As f reflects causal dependency locally
w.r.t. the configuration [e2], the dependency f(e2) ≤ f(e1) would entail the
e2 ≤ e1, contradicting e1 _ e2. Hence f(e1) ≤ f(e2). As a consequence,

f(e1) _ ⋯ _ f(e2)

for some chain of immediate causal dependencies in E′. As f is total and reflects
causal dependency locally w.r.t. the configuration [e2], we obtain a chain

e1 _ ⋯ _ e2

in E of equal length. However, e1 _ e2 so the chain must be of length one,
ensuring f(e1) _ f(e2).

Definition 2.5. Write E for the category of event structures with (partial)
maps. Write Et and Er for the categories of event structures with total, respec-
tively rigid, maps.

Exercise 2.6. Show a map f ∶ A⇀ B of E is mono if the function C(A)→ C(B)
taking configuration x to its direct image fx is injective. [Recall a map f ∶ A→ B
is mono iff for all maps g, h ∶ C → A if fg = fh then g = h.] Show the converse
does not hold, that it is possible for a map to be mono but not injective on
configurations. ◻

Proposition 2.7. Let E and E′ be event structures. Suppose

θx ∶ x ≅ θxx, indexed by x ∈ C(E),

is a family of bijections such that whenever θy ∶ y ≅ θyy is in the family then its
restriction θz ∶ z ≅ θzz is also in the family, whenever z ∈ C(E) and z ⊆ y. Then,
θ =def ⋃x∈C(E) θx is the unique total map of event structures from E to E′ such
that θ x = θxx for all x ∈ C(E).

Proof. The conditions ensure that θ =def ⋃x∈C(A) θx is a function θ ∶ A→ B such
that the image of any finite configuration x of A under θ is a configuration of
B and local injectivity holds. ◻

2.2.1 Partial-total factorisation

Let (E,≤,Con) be an event structure. Let V ⊆ E be a subset of ‘visible’ events.
Define the projection of E on V to be E↓V =def (V,≤V ,ConV), where v ≤V
v′ iff v ≤ v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ Con & X ⊆ V .

Consider a partial map of event structures f ∶ E → E′. Let

V =def {e ∈ E ∣ f(e) is defined} .

Then f clearly factors into the composition

E
f0 // E↓V

f1 // E′

22 CHAPTER 2. EVENT STRUCTURES

of f0, a partial map of event structures taking e ∈ E to itself if e ∈ V and
undefined otherwise, and f1, a total map of event structures acting like f on V .
We call this the partial-total factorisation of f . We call f1 the defined part of
the partial map f . We say a map f ∶ E → E′ is a projection if its defined part
is an isomorphism. Observe that f1x = f[x]E for any x ∈ C(E↓V).

The partial-total factorisation is characterised to within isomorphism by the
following universal property: for any factorisation

f ∶ E
g0 // E1

g1 // E′

where g0 is partial and g1 is total there is a (necessarily total) unique map
h ∶ E↓V → E1 such that

E
f0 //

g0 !!

E↓V

h

��

f1 // E′

E1

g1

==

commutes.

Proposition 2.8. (i) A map f ∶ E → E′ is a projection iff E′ ≅ E↓V where V
is the subset of E at which f is defined.
(ii) Consider a pair consisting of a partial map f0 ∶ E → E0 and a total map
f1 ∶ E0 → E′. It forms a partial-total factorization of f = f1f0 in the sense of
the universal property above iff f0 is a projection.
(iii) A map f ∶ E → E′ is a projection iff f is partial injective, i.e. if f(e1) =
f(e2) (both sides being defined) then e1 = e2, and surjective on configurations,
i.e. for all y ∈ C(E′) there is x ∈ C(E) s.t. fx = y.

Proof. (i) Directly from the definition of projection.
(ii) It is easy to show that the partial-total factorisation f ∶ E → E↓V → E′

satisfies the universal property. Consequently, via universality, a pair f0, f1

satisfies the universal property iff E0 ≅ E↓V where V is the domain of definition
of f , i.e. by (i), iff f0 is a projection.
(iii) “Only if:” Obvious. “If:” As f is surjective on configurations it is surjective
on events. Consequently f determines a bijection between the subset f−1E′

and E′. As f is surjective on configurations it reflects consistency; as a map it
automatically preserves consistency. Were f not to preserve causal dependency,
there would be e0 ≤ e1 in E with f(e0) /≤ f(e1) in E′; but then f could not map
onto the configuration [f(e1)] of E′. As a partial-injective map, f automatically
reflects causal dependency. It follows that f preserves and reflects consistency
and causal dependency, ensuring E′ ≅ E↓(f−1E′) as required.

Proposition 2.9. Let f ∶ S → A and p ∶ A → B be partial maps of event
structures. Let f0 ∶ S0 → A be the defined part of f . Then, the defined part of
pf0 is the defined part of pf .

Proof. Directly from the definition of ‘defined part’ of a partial map of event
structures.

2.3. RIGID MAPS 23

2.3 Rigid maps

Recall a map f is rigid iff it is total and f preserves causal dependency, i.e., if
e′ ≤ e in E then f(e′) ≤ f(e) in E′.

Proposition 2.10. A total map f ∶ E → E′ of event structures is rigid iff for
all x ∈ C(E) and y ∈ C(E′)

y ⊆ fx Ô⇒ ∃z ∈ C(E). z ⊆ x and fz = y .

The configuration z is necessarily unique by the local injectivity of f . (The
class of maps would be unaffected if we allow all configurations in the definition
above.)

Proof. “Only if”: Total maps locally reflect causal dependency. So, if f preserves
causal dependency, then for any configuration x of E, the bijection f ∶ x → fx
preserves and reflects causal dependency. Hence for any subconfiguration y
of fx, the bijection restricts to a bijection f ∶ z → y with z a down-closed
subset of x. But then z must be a configuration of E. “If”: Let e ∈ E. Then
[f(e)] ⊆ f[e]. Hence there is a subconfiguration z of [e] such that fz = [f(e)].
By local injectivity, e ∈ z, so z = [e]. Hence f[e] = [f(e)]. It follows that if
e′ ≤ e then f(e′) ≤ f(e).

A rigid map of event structures preserves the causal dependency relation
“rigidly,” so that the causal dependency relation on the image fx is a copy of
that on a configuration x of E—in this sense f is a local isomorphism. This is not
so for general maps where x may be augmented with extra causal dependency
over that on fx.

Proposition 2.11. The inclusion functor Er ↪ Et has a right adjoint. The
category Et is isomorphic to the Kleisli category of the monad for the adjunction.

Proof. The right adjoint’s action on objects is given as follows. Let B be an
event structure. For x ∈ C(B), an augmentation of x is a partial order (x,α)
where ∀b, b′ ∈ x. b ≤B b′ Ô⇒ bα b′. We can regard such augmentations as
elementary event structures in which all subsets of events are consistent. Order
all augmentations by taking (x,α) ⊑ (x′, α′) iff x ⊆ x′ and the inclusion i ∶ x ↪
x′ is a rigid map i ∶ (x,α) → (x′, α′). Augmentations under ⊑ form a prime
algebraic domain; the complete primes are precisely the augmentations with a
top element. Define aug(B) to be its associated event structure.

There is an obvious total map of event structures εB ∶ aug(B) → B taking
a complete prime to the event which is its top element. It can be checked that
post-composition by εB yields a bijection

εB ○ ∶ Er(A,aug(B)) ≅ E(A,B) .

Hence aug extends to a right adjoint to the inclusion Er ↪ Et.

24 CHAPTER 2. EVENT STRUCTURES

Write aug also for the monad induced by the adjunction and Kl(aug) for
its Kleisli category. Under the bijection of the adjunction

Kl(aug)(A,B) =def Er(A,aug(B)) ≅ E(A,B) .

The categoriesKl(aug) and E share the same objects, and so are isomorphic.

2.3.1 Rigid image

Rigid maps f ∶ A → B have a useful image given by restricting the causal
dependency of B to the set of events in the image of A under f and taking a
finite set of events to be consistent if they are the image of a consistent set in
A. More generally, a total map f ∶ A→ B has a rigid image given by the image
of its corresponding Kleisli map, the rigid map f ∶ A → aug(B). A total map
f ∶ A→ B has a rigid image comprising a factorisation f = f1f0 where f0 is rigid
epi and f1 is a total map,

A

f

f0 // // B0

f1

��
B ,

with the following universal property: for any factorisation of f = f ′1f
′
0 where f ′0

is rigid epi, there is a unique map h such that the diagram

A

f0

$$ $$

f

f ′0 // // B′

f ′1
��

h // B0

f1~~
B

commutes; the map h is necessarily also rigid and epi. If we don’t specify further
we shall take the rigid image of a total map f ∶ A → B to be a substructure of
aug(B). (By a substructure of B we mean an event structure B0 with events
included in those of B so that the inclusion is a rigid map.)

2.3.2 Rigid embeddings and inclusions

Special forms of rigid maps appeared as rigid embeddings in Kahn and Plotkin’s
work on concrete domains [?]. Their extension to event structures can be used
in defining event structures recursively.

A total map f ∶ E → E′ is a rigid embedding iff it is rigid and an injective
function on events for which the inverse relation fop is a (partial) map of event
structures fop ∶ E′ → E. (There are several alternative equivalent definitions.)

Rigid embeddings include as a special case those in which the function f
is an inclusion. These give the well-known approximation order ⊴ on event

2.4. PRODUCTS OF EVENT STRUCTURES 25

structures:

(E′,≤′,Con′) ⊴ (E,≤,Con) ⇐⇒ E′ ⊆ E &

∀e′ ∈ E′. [e′]′ = [e′] &

∀X ′ ⊆ E′. X ′ ∈ Con′ ⇐⇒ X ∈ Con .

The order ⊴ forms a ‘large cpo,’ with bottom the empty event structure, and
is useful when defining event structures recursively [4, 5, 2]. With some care in
defining the precise constructions on event structures they can be ensured to be
continuous w.r.t. ⊴; for this it suffices to check that they are ⊴-monotonic and
continuous on event sets. Further details can be found in [4, 5].

2.3.3 Rigid families

It is occasionally useful to build an event structure out of a non-empty family
Q of finite partial orders. We can do so provided the family is rigid.

For Q to be a rigid family we require that its is closed under rigid inclusions,
or equivalently, that any down-closed subset of any element q, with order the
restriction of that of q, is itself an element of Q. (In this case rigid inclusions
coincide with rigid embeddings.)

From a rigid family Q we construct an event structure as follows. Its events
are those partial orders in Q with a top element. Its causal dependency is given
by rigid inclusion. We say a finite subset of partial orders with top is consistent
iff all its members are rigidly included in a common member of Q.

2.4 Products of event structures

The category of event structures has products, which essentially allow arbitrary
synchronizations between their components. For example, here is an illustration
of the product of two event structures a _ b and c, the later comprising just a
single event named c:

b (b,∗) (b,∗) (b, c)

× =

a

_LLR

c (a,∗)

_LLR 6 66@

(a, c)

_LLR

(∗, c)

The original event b has split into three events, one a synchronization with c,
another b occurring unsynchronized after an unsynchronized a, and the third b
occurring unsynchronized after a synchronizes with c. The splittings correspond
to the different histories of the event.

It can be awkward to describe operations such as products, pullbacks and
synchronized parallel compositions directly on the simple event structures here,

26 CHAPTER 2. EVENT STRUCTURES

essentially because an event determines its whole causal history. One closely
related and more versatile, though perhaps less intuitive and familiar, model is
that of stable families. Stable families will play an important technical role in
establishing and reasoning about constructions on event structures.

Chapter 3

Stable families

Stable families support a form of disjunctive causes in which an event may be
enabled in several different but incompatible ways. Stable families, their basic
properties and relations to event structures are developed.1

3.1 Stable families

The notion of stable family extends that of finite configurations of an event
structure to allow an event can occur in several incompatible ways.

Notation 3.1. Let F be a family of subsets. Let X ⊆ F . We write X ↑ for
∃y ∈ F . ∀x ∈ X.x ⊆ y and say X is compatible. When x, y ∈ F we write x ↑ y
for {x, y} ↑.

A stable family comprises F , a nonempty family of finite subsets, satisfying:
Completeness: ∀Z ⊆ F . Z ↑ Ô⇒ ⋃Z ∈ F ;
Stability: ∀Z ⊆ F . Z /= ∅ & Z ↑ Ô⇒ ⋂Z ∈ F ;
Coincidence-freeness: For all x ∈ F , e, e′ ∈ x with e /= e′,

∃y ∈ F . y ⊆ x & (e ∈ y ⇐⇒ e′ ∉ y) .

We call the elements of ⋃F of a stable family F its events.
An alternative characterisation of stable families:

Proposition 3.2. A stable family comprises F , a family of finite subsets, sat-
isfying:
Completeness: ∅ ∈ F & ∀x, y ∈ F . x ↑ y Ô⇒ x ∪ y ∈ F ;

Stability: ∀x, y ∈ F . x ↑ y Ô⇒ x ∩ y ∈ F ;
Coincidence-freeness: For all x ∈ F , e, e′ ∈ x with e /= e′,

∃y ∈ F . y ⊆ x & (e ∈ y ⇐⇒ e′ ∉ y) .
1A useful reference for stable families is the report “Event structure semantics for

CCS and related languages,” a full version of the ICALP’82 article, available from
www.cl.cam.ac.uk/∼gw104, though its terminology can differ from that here.

27

28 CHAPTER 3. STABLE FAMILIES

Proof. Simple inductions show that the reformulations of “Completeness” and
“Stability” are equivalent to their original formulations.

Proposition 3.3. The family of finite configurations of an event structure
forms a stable family.

On the other hand stable families are more general than finite configurations
of an event structure, as the following example shows.

Example 3.4. Let F be the stable family, with events E = {0,1,2},

{0,2} {0,1} {1,2}

{0}
⊂ ⊂

{1}

⊂⊂

∅

⊂⊂

or equivalently

{0,2} {0,1} {1,2}

{0}

?� -

{1}

?�Q1

∅

, �R2

where −Ð⊂ is the covering relation representing an occurrence of one event.
The events 0 and 1 are concurrent, neither depends on the occurrence or non-
occurrence of the other to occur. The event 2 can occur in two incompatible
ways, either through event 0 having occurred or event 1 having occurred. This
possibility can make stable families more flexible to work with than event struc-
tures.

A (partial) map of stable families f ∶ F → G is a partial function f from the
events of F to the events of G such that for all x ∈ F ,

fx ∈ G & (∀e1, e2 ∈ x. f(e1) = f(e2) Ô⇒ e1 = e2) .

Maps of stable families compose as partial functions, with identity maps given
by identity functions. We call a map f ∶ F → G of stable families total when it
is total as a function; the f restricts to a bijection x ≅ fx for all x ∈ F .

Definition 3.5. Let F be a stable family. We use x−⊂y to mean y covers x in

F , i.e. x ⊂ y in F with nothing in between, and x
e

−Ð⊂ y to mean x ∪ {e} = y

for x, y ∈ F and event e ∉ x. We sometimes use x
e

−Ð⊂ , expressing that event e is

enabled at configuration x, when x
e

−Ð⊂ y for some y.

3.1. STABLE FAMILIES 29

Exercise 3.6. Let F be a nonempty family of finite sets satisfying the Com-
pleteness axiom in the definition of stable families. Show F is coincidence-free
iff

∀x, y ∈ F . x ⊊ y Ô⇒ ∃x1 ∈ F , e1. x
e1
−Ð⊂x1 ⊆ y .

[Hint: For ‘only if’ use induction on the size of y ∖ x.] ◻

3.1.1 Stable families and event structures

Finite configurations of an event structure form a stable family. Conversely, a
stable family determines an event structure:

Proposition 3.7. Let x be a configuration of a stable family F . For e, e′ ∈ x
define

e′ ≤x e iff ∀y ∈ F . y ⊆ x & e ∈ y Ô⇒ e′ ∈ y.

When e ∈ x define the prime configuration

[e]x =⋂{y ∈ F ∣ y ⊆ x & e ∈ y} .

Then ≤x is a partial order and [e]x is a configuration such that

[e]x = {e′ ∈ x ∣ e′ ≤x e}.

Moreover the configurations y ⊆ x are exactly the down-closed subsets of ≤x.

Exercise 3.8. Prove Proposition 3.7. ◻

Lemma 3.9. Let F be a stable family. Then,

[e]x ⊆ z ⇐⇒ [e]x = [e]z

whenever e ∈ x and z in F .

Proof. “⇒” From e ∈ [e]x ⊆ z we get [e]z ⊆ [e]x. Hence e ∈ [e]z ⊆ x ensuring
the converse inclusion [e]x ⊆ [e]z, so [e]x = [e]z. “⇐” Trivial.

Proposition 3.10. Let F be a stable family. Then, Pr(F) =def (P,Con,≤) is
an event structure where:

P = {[e]x ∣ e ∈ x & x ∈ F} ,

Z ∈ Con iff Z ⊆ P & ⋃Z ∈ F and,

p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .

There is an order isomorphism

θ ∶ (C(Pr(F)),⊆) ≅ (F ,⊆)

where θ(y) = ⋃ y for y ∈ C(Pr(F)); its mutual inverse is ϕ where ϕ(x) =
{[e]x ∣ e ∈ x} for x ∈ F .

30 CHAPTER 3. STABLE FAMILIES

Proof. It is easy to check that Pr(F) is an event structure. Clearly, both θ and
ϕ preserve ⊆.

Firstly, θϕ(x) = ⋃{[e]x ∣ e ∈ x} = x, for all x ∈ F , by an obvious argument.

Secondly, ϕθ(y) = {[e]⋃y ∣ e ∈ ⋃ y}, for y ∈ C(Pr(F)). To show rhs = y we
use Lemma 3.9 repeatedly:

[e]x ⊆ z ⇐⇒ [e]x = [e]z ,

whenever e ∈ x and z in F .
From e ∈ [e]x ⊆ z we get [e]z ⊆ [e]x. Hence e ∈ [e]z ⊆ x ensuring the converse
inclusion [e]x ⊆ [e]z, so [e]x = [e]z.

“y ⊆ rhs”: [e]x ∈ y⇒ [e]x ⊆ ⋃ y⇒ [e]x = [e]⋃y ∈ rhs.

“rhs ⊆ y: Assume p ∈ rhs. Then p = [e]⋃y with e ∈ ⋃ y. We have e ∈ [e′]x ∈ y
for some e′, x with e′ ∈ x. So [e]x ⊆ [e′]x ∈ y ensuring [e]x ∈ y. As [e]x ⊆ ⋃ y we
obtain p = [e]⋃y = [e]x, so p ∈ y.

Remark The above proposition ensures that the partial orders comprising sta-
ble families ordered by inclusion and the orders of configurations of event struc-
tures are the same to within isomorphism; both coincide with the orders of finite
elements of “prime algebraic domains” in which every finite, or isolated, element
dominates only finitely many elements.

The operation Pr is right adjoint to the “inclusion” functor, taking an event
structure E to the stable family C(E). The unit of the adjunction at an event
structure E is a map E → Pr(C(E)) which takes an event e to the prime
configuration [e] =def {e′ ∈ E ∣ e′ ≤ e}. The counit at a stable family F is a map
topF ∶ C(Pr(F)) → F which takes a prime configuration [e]x to e; this is well-
defined as a function by coincidence-freeness (see the proof of Theorem 3.11.

Theorem 3.11. There is a map topF ∶ Pr(F)→ F given by topF([e]x) = e for
e ∈ x ∈ F . In fact, Pr(F), topF is cofree over F i.e. for any map g ∶ C(E′)→ F
of stable families with E′ a prime event structure, there is a unique map f ∶
E′ → Pr(F) such that g = topF f .

Proof. By Proposition 3.10, Pr(F) is a prime event structure. We require that
topF ∶ C(Pr(F)) → F above is a map. Firstly we need top is well-defined as
a function top ∶ P → E where P = {[e]x ∣ e ∈ x ∈ F}. Suppose [e]x = [e′]y
for e ∈ x and x ∈ F and e′ ∈ y and y ∈ F . Then by the coincidence-freeness
of F we have e = e′, giving top well-defined as a (total) function. From the
definition, if z is a configuration of Pr(F) then z = {[e]x ∣ e ∈ x} for some x ∈ F ;
thus top(z) = ⋃ z = x ∈ F . Let z be a configuration of Pr(F) so p, p′ ∈ z and
top(p) = top(p′) = e say. Then p = p′ = [e]⋃ z. Thus top is a map of stable
families.

We show Pr(F), topF is cofree over F . Let g ∶ C(E′)→ F be a map of stable
families where E′ is a prime event structure E′ = (E′,Con′,≤′). We require a

3.1. STABLE FAMILIES 31

unique map f ∶ E′ → Pr(F) s.t. the following diagram commutes:

F C(Pr(F))
topoo

C(E′)

g

cc

f

OO

Define f ∶ E′ → P by

f(e′) = {
[g(e′)]g[e′] if g(e′) is defined,
undefined otherwise.

Above [e′] is the downwards closure of e′ in E′. Let x ∈ C(E′). Then

fx = {[g(e′)]g[e′] ∣ e
′ ∈ x & g(e′) is defined}

= {[e]gx ∣ e ∈ gx}

where we have observed that [g(e′)]g[e′] ⊆ gx when e′ ∈ x, so [g(e′)]g[e′] =
[g(e′)]gx. Hence fx is a configuration of Pr(F). If e, e′ ∈ x and f(e) = f(e′)
(both defined) then g(e) = g(e′) (both defined) so e = e′, as g is a map. Thus f
is a map. Clearly topf = g so f makes the diagram commute.

Let f ′ ∶ E′ → Pr(F) be a map such that the diagram commutes i.e. topf = g .
We require f ′ = f . Let e′ ∈ E′. Firstly note if g(e′) is defined then because top is
a total function we must have f ′(e) defined which agrees with f . So suppose that
g(e) defined. Then f ′(e) is a prime configuration of F s.t. top(f ′(e)) = g(e).
Now top is just union so using the assumed commutation we get

f ′(e) ⊆⋃ f ′[e] = topf ′[e] = g[e]

As f ′(e) is a prime configuration in g[e] and top(f ′(e)) = g(e) we have f ′(e) =
[g(e)]g[e], i.e. f ′(e) = f(e).

Consequently f is the unique map making the diagram commute.

Theorem 3.11 gives a bijection between maps g ∶ C(E)→ F of stable families
and maps f ∶ E → Pr(F) of event structures where E is an event structure and
F is a stable family. The bijection is natural in E. As is well-known there is a
unique extension of Pr to a functor so that the bijection is also natural in F .
Once extended in this way we obtain the natural bijection of an adjunction.

Corollary 3.12. The functor C() from the category of event structures to the
category of stable families has a right adjoint the functor which acts as Pr on
stable families and as follows on a map f ∶ A → B of stable families: the map
Pr(f) ∶ Pr(A) → Pr(B) takes [a]x, an event of Pr(A), where a ∈ x ∈ A, to the
event [f(a)]fxof Pr(B) if f(a) is defined, and to undefined otherwise.

The unit of the adjunction at an event structure E is the isomorphism E ≅
Pr(C(E)) taking e to [e]. The counit at a stable family F is given by topF ∶
C(Pr(F))→ F .

32 CHAPTER 3. STABLE FAMILIES

Proof. Let f ∶ A → B be a map of stable families. We must first be sure that
Pr(f) is well-defined as a partial function. Suppose [a]x = [a′]y for a ∈ x ∈ A
and b ∈ y ∈ B. We require Pr(f)([a]x) = Pr(f)([a′]y) when either is defined.
Firstly, a = a′ by the coincidence-freeness of A. Suppose f(a) is defined. Then,

[f(a)]fx ⊆ f[a]x = f[a]y ⊆ fy .

Hence by Lemma 3.9, [f(a)]fx = [f(a)]fy, i.e. Pr(f)([a]x) = Pr(f)([a′]y).
We should check that Pr(f) is a map of event structures. By Proposi-

tion 3.10, a configuration y of Pr(A) has the form {[a]x ∣ a ∈ x} for some x ∈ A.
Under Pr(f) it is sent to

{[f(a)]fx ∣ a ∈ x & f(a) is defined} = {[b]fx ∣ b ∈ fx} ,

a configuration of Pr(B). Moreover, if [a]x, [a
′]x′ ∈ y and Pr(f)([a]x) = Pr(f)([a′]x′),

then [f(a)]fx = [f(a′)]fx′ . But now f(a) = f(a′) as B is coincidence-free and
a, a′ ∈ ⋃ y ∈ A which implies a = a′. As [a]x, [a]x′ ⊆ ⋃ y from Lemma 3.9 we
deduce [a]x = [a]⋃y = [a]x′ , as required.

The map Pr(f) clearly makes the diagram

B C(Pr(B))
topBoo

A

f

OO

C(Pr(A))
topAoo

Pr(f)

OO

commute Hence, Pr(f) gives the unique extension of Pr to a functor which makes
the bijection (between maps g ∶ C(E) → F of stable families and maps f ∶ E →
Pr(F) of event structures) given by the cofreeness property of Theorem 3.11
natural, so forming an adjunction.

It is easily checked that the putative unit and counit maps do indeed corre-
spond to the identities on C(E) and Pr(F), respectively, as required for their
to be unit and counit.

Remark. The fact that the unit is an isomorphism and the fact that the left
adjoint is full and faithful are in fact equivalent and say that the adjunction is in
a coreflection. Later it will play a role in obtaining products of event structures
from those of stable families.

Definition 3.13. Let F be a stable family. W.r.t. x ∈ F , write [e)x =def

{e′ ∈ E ∣ e′ ≤x e & e′ /= e}. The relation of immediate dependence of event struc-
tures generalizes: with respect to x ∈ F , the relation e _x e

′ means e ≤x e
′

with e /= e′ and no event in between. For e, e′ ∈ x ∈ F we write e cox e
′ when

neither e ≤x e
′ nor e′ ≤x e. Note the relations ≤x, _x and cox, ‘local’ to a

configuration x, coincide with the ‘global’ versions ≤, _ and co when the stable
family comprises the finite configurations of an event structure.

3.2. COMPLETED STABLE FAMILIES 33

We shall use the following property of maps repeatedly, both for stable fam-
ilies and the special case of event structures. It says that their maps locally
reflect causal dependency.

Proposition 3.14. Let f ∶ F → G be a map of stable families. Let e, e′ ∈ x,
a configuration of F . If f(e) and f(e′) are defined and f(e) ≤fx f(e

′) then
e ≤x e

′.

Proof. Let e, e′ ∈ x ∈ F . Suppose f(e) and f(e′) are defined and f(e) ≤fx f(e
′).

Suppose y is a subconfiguration of x, i.e. y ∈ F and y ⊆ x, which contains e′.
Then clearly fy is a subconfiguration of fx which contains f(e′). We have
f(e) ∈ fy as f(e) ≤fx f(e

′). Hence there is e” ∈ y such that f(e”) = f(e). But
now e, e” ∈ x with f(e) = f(e”), so e = e”. We deduce e ∈ y. The argument was
for an arbitrary y, so e ≤x e

′ as required.

The next two propositions relate immediate causal dependency between
events to the covering relation between configurations.

Proposition 3.15. Let F be a stable family. Let e, e′ ∈ x ∈ F .

∃y, y1 ∈F . y, y1 ⊆ x & y
e

−Ð⊂ y1
e′

−Ð⊂ ⇐⇒ e _x e
′ or e cox e

′ , (i)

and e _x e
′ ⇐⇒ ∃y, y1 ∈ F . y, y1 ⊆ x & y

e
−Ð⊂ y1

e′

−Ð⊂ & ¬ e cox e
′ (ii)

⇐⇒ ∃y, y1 ∈ F . y, y1 ⊆ x & y
e

−Ð⊂ y1
e′

−Ð⊂ & ¬ y
e′

−Ð⊂ . (iii)

The proposition simplifies in the special case of event structures:

Proposition 3.16. Let E be an event structure. Let e, e′ ∈ E.

∃y, y1 ∈ C
∞(E). y

e
−Ð⊂ y1

e′

−Ð⊂ ⇐⇒ e _ e′ or e co e′ ,

and e _ e′ ⇐⇒ ∃y, y1 ∈ C
∞(E). y

e
−Ð⊂ y1

e′

−Ð⊂ & ¬ e co e′ ,

⇐⇒ ∃y, y1 ∈ C
∞(E). y

e
−Ð⊂ y1

e′

−Ð⊂ & ¬ y
e′

−Ð⊂ .

3.2 Completed stable families

We can extend a stable family to include infinite configurations, by constructing
its “ideal completion.”

Definition 3.17. Let F be a stable family. Define F∞, a completed stable
family, to comprise all ⋃ I where I ⊆ F is an ideal (i.e., I is a nonempty subset
of F closed downwards w.r.t. ⊆ in F and such that if x, y ∈ I then x ∪ y ∈ I).

Exercise 3.18. For an event structure E, show C∞(E) = C(E)∞. ◻

Exercise 3.19. Let F be a stable family. Show F∞ satisfies:

34 CHAPTER 3. STABLE FAMILIES

Completeness: ∀Z ⊆ F∞.(∀X ⊆fin Z. X ↑) Ô⇒ ⋃Z ∈ F∞ ;
Stability: ∀Z ⊆ F∞. Z /= ∅ & Z ↑ Ô⇒ ⋂Z ∈ F∞;
Coincidence-freeness: For all x ∈ F∞, e, e′ ∈ x with e /= e′,

∃y ∈ F∞. y ⊆ x & (e ∈ y ⇐⇒ e′ ∉ y) ;

Finiteness: For all x ∈ F∞,

∀e ∈ x∃y ∈ F . e ∈ y & y ⊆ x & y is finite .

Show that F consists of precisely the finite sets in F∞. ◻

Remark Above the conditions of Finiteness and Coincidence-freeness together
can be replaced by the equivalent condition
Secured: if e ∈ x ∈ F then there exists a securing chain e1,⋯, en = e in x
s.t. {e1,⋯, ei} ∈ F for all i ≤ n.

3.3 Process constructions

3.3.1 Products

Let A and B be stable families with events A and B, respectively. Their
product, the stable family A × B, has events comprising pairs in A ×∗ B =def

{(a,∗) ∣ a ∈ A} ∪ {(a, b) ∣ a ∈ A & b ∈ B} ∪ {(∗, b) ∣ b ∈ B}, the product of sets
with partial functions, with (partial) projections π1 and π2—treating ∗ as
‘undefined’—with configurations

x ∈ A × B iff

x is a finite subset of A ×∗ B such that

(a) π1x ∈ A & π2x ∈ B,

(b) ∀e, e′ ∈ x. π1(e) = π1(e
′) or π2(e) = π2(e

′)⇒ e = e′ ,&

(c) ∀e, e′ ∈ x. e /= e′ ⇒ ∃y ⊆ x. π1y ∈ A & π2y ∈ B & (e ∈ y ⇐⇒ e′ ∉ y) .

Note how (a) and (b) express that the projections are maps while (c) says
the structure A × B is coincidence-free.

In checking that A×B, π1, π2 is a product in the category of stable families
we shall use the following lemma showing that the direct image under a partial
function preserves intersections when the function is locally injective.

Lemma 3.20. Let θ ∶ E0 ⇀ E1 be a partial function between sets E0 and E1.
Let X ⊆ P(E0). Then if

∀e, e′ ∈⋃X . θ(e) = θ(e′) Ô⇒ e = e′

then θ⋂X = ⋂ θX.

3.3. PROCESS CONSTRUCTIONS 35

Proof. Suppose θ(e) = θ(e′) (both defined) implies e = e′ for every e, e′ ∈ ⋃x.
Clearly θ is monotonic w.r.t. ⊆ so θ⋂X ⊆ ⋂ θX. Take e ∈ ⋂ θX and x ∈ X.
For some e′ ∈ x we have θ(e′) = e. Take y ∈ X. Then for some ey ∈ y we have
θ(ey) = e. However ey, e ∈ ⋃X and θ(ey) = θ(e

′). Thus by hypothesis ey = e
′.

Therefore e′ ∈ ⋂X so e ∈ θ⋂X. This establishes the converse inclusion; so
θ⋂X = ⋂ θX, as required.

Theorem 3.21. For stable families A and B the construction A×B with projec-
tions π1 and π2 described above is the product in the category of stable families.

Proof. Suppose x ⊆ A × B and e, e′ ∈ x. We shall say “y is a separating set for
e, e′ in x” when y ⊆ x and π1(y) ∈ A and π2(y) ∈ B and e ∈ y ⇐⇒ e′ ∉ y.

We first check F =def A × B is a stable family.
Complete. Suppose X ⊆ F and X ↑. We require ⋃X satisfies (a)-(c) in the
definition of product.

(a) Clearly πi⋃X = ⋃πiX. As X is compatible in F so are π1X in A and
π2X ∈ B. Thus π1(⋃X) ∈ A and π2(⋃X) ∈ B.

(b) By the compatibility of X, if e, e′ ∈ ⋃X and πi(e) = πi(e
′), both being

defined, for i = 1 or 2, then e = e′.

(c) Suppose e, e′ ∈ ⋃X and e ≠ e′. Then ∃x, y ∈ X . e ∈ x & e′ ∈ y. If either
e ∉ y or e′ ∉ x we have respectively either y or x is a separating set for e, e′

in ⋃X. Otherwise e, e′ ∈ x or e, e′ ∈ y. Then as both x and y satisfy (c)
we obtain the required separating set.

Stable. Suppose ∅ ≠X ⊆ F and X ↑. We require X satisfies (a)-(c).

(a) By lemma 3.20, πi⋂X = ⋂πiX. But ⋂π1X ∈ A, as π1X is a compatible
set in A, and similarly ⋂π2X ∈ B, so we have π1(⋂X) ∈ A and π2(⋂X) ∈
B.

(b) As any x ∈X satisfies (b) and ⋂X ⊆ x certainly ⋂X satisfies (b).

(c) Suppose e, e′ ∈ ⋂X and e ≠ e′. Choose x ∈ X. Because x ∈ F there is a
separating set y for e, e′ in x. Take v = y ∩ ⋂X. Clearly y,⋂X ⊆ x so
because A and B are stable, by lemma 3.20*** π1v = π1y ∩ π1⋂X) ∈ A
and π2v = π2y∩π2⋂X ∈ B. This makes v a separating set for e, e′ in ⋂X.

Coincidence-free. Suppose e, e′ ∈ x ∈ F and e ≠ e′. As x satisfies (c) there is a
separating set y for e, e′ in x. We further require y ∈ F . Clearly y satisfies (a),
(b). To Show y satisfies (c), assume ε, ε′ ∈ y and ε ≠ ε′. Take a separating set v
for ε, ε′ in x. Take u = v ∩ y. Then, just as in the proof of stability, part (c), we
get u is a separating set for ε, ε′ in x.

Thus we have shown A × B is a stable family. It remains to show that
with projections π1, π2 it forms the product in the category of stable families.
First note π1 and π2 are maps by (a), (b) in the construction of the product .

36 CHAPTER 3. STABLE FAMILIES

Suppose there are maps f1 ∶ F → A and f2 ∶ F → B are maps of stable families.
We require a unique map h such that the following diagram commutes:

A × B
π2

##

π1

||
A B

F

f2

;;

f1

bb h

OO

Take h so that

h(e) = {
(f1(e), f2(e)) if f1(e) is defined or f2(e) is defined
undefined otherwise

In a pair (f1(e), f2(e)) we shall identify undefined with ∗.
Obviously πi ○ h = fi in the category of sets with partial functiosn, for i = 1,2
so provided h is a map of stable families it is unique so the diagram commutes.
To show h is a map we need:

∀x ∈ F . hx ∈ F (I)

∀x ∈ F∀e, e′ ∈ x . h(e) = h(e′) Ô⇒ e = e′ (II)

We prove (II) first:
Suppose e, e′ ∈ x ∈ F . Then if h(e) = h(e′) then fi(e) = fi(e

′), both being
defined, for either i = 1 or i = 2. As each fi is a map e = e′, as required to
prove (II).

Now we prove (I). Let x ∈ F . We need hx satisfies (a)-(c) in the construction
of the product. Both (a) and (b) follow from the commutations πi ○h = fi using
the map properties of f1 and fa2. To prove (c), suppose e, e′ ∈ hx and e ≠ e′.
Then e = h(ε) and e′ = h(ε′) for some ε, ε′ ∈ x. We must have ε ≠ ε′. Thus as F
is coincidence-free we have some y ∈ F such that y ⊆ x and ε ∈ y ⇐⇒ ε′ ∉ y. As
we know h satisfies (II) above it follows that one and only one of e, e′ is in hy.
The commutations πi ○ h = fi give π1hy ∈ A and π2hy ∈ B . Thus hy separates
e, e′ in x.

Thus finally we have shown A×B with projections π1, π2 is a product in the
category of stable families.

Proposition 3.22. Let x ∈ A × B, a product of stable families with projections
π1 and π2. Then, for all y ⊆ x,

y ∈ A × B ⇐⇒ π1y ∈ A & π2y ∈ B .

Proof. Straightforwardly from the definition of A × B.

Right adjoints preserve products. Hence if A×B, π1, π2 is a product of stable
families then Pr(A) × Pr(B), Pr(π1), Pr(π2) is a product of event structures.

3.3. PROCESS CONSTRUCTIONS 37

Consequently we obtain a product of event structures A and B by first regarding
them as stable families C(A) and C(B), forming their product

C(A) × C(B), π1, π2

and then constructing the event structure

A ×B =def Pr(C(A) × C(B))

with projections the composite maps

Π1 ∶ A ×B
Pr(π1)// Pr(C(A)) ≅ A and Π2 ∶ A ×B

Pr(π2)// Pr(C(B)) ≅ B

—the isomorphisms are inverses to those of the unit of the adjunction. The
projections can be simplified:

Proposition 3.23. Let A and B be event structures.

A ×B =def Pr(C(A) × C(B))

and its projections as Π1 =def π1top ∶ A×B → A and Π2 =def π2top ∶ A×B → B.

Proof. For example,

Π1 ∶ A ×B
Pr(π1)// Pr(C(A)) ≅ A

takes an event [e]x ∈ A × B via Pr(π1) to [π1(e)]π1x if π1(e) is defined, by
Corollary 3.12, whence to π1(e) under the isomorphism, i.e. to π1○top([e]x).

Exercise 3.24. Let A be the event structure consisting of two distinct events
a1 ≤ a2 and B the event structure with a single event b. Following the method
above describe the product of event structures A ×B. ◻

Later we shall use the following properties of _ in a product of stable families
or event structures.

Lemma 3.25. Let x ∈ A×B, a product of stable families with projections π1, π2.
Let e, e′ ∈ x. If e _x e

′, then
either

(i) π1(e) and π1(e
′) are both defined with π1(e) _π1x π1(e

′) in A and
if π2(e), π2(e

′) are defined then π2(e) _π2x π2(e
′) or π2(e) coπ2x π2(e

′) in B,
or

(ii) π2(e) and π2(e
′) are both defined with π2(e) _π2x π2(e

′) in B and
if π1(e), π1(e

′) are defined then π1(e) _π1x π1(e
′) or π1(e) coπ1x π1(e

′) in A.

Proof. By Proposition 3.15(iii), e _x e
′ iff (I) y

e
−Ð⊂ y1

e′

−Ð⊂ and (II) ¬ y
e′

−Ð⊂ , for
subconfigurations y, y1 of x. From (I),

(a) if π1(e), π1(e
′) are defined then π1y

π1(e)
−Ð⊂ π1y1

π1(e
′
)

−Ð⊂

38 CHAPTER 3. STABLE FAMILIES

and

(b) if π2(e), π2(e
′) are defined then π2y

π2(e)
−Ð⊂ π2y2

π2(e
′
)

−Ð⊂ .

Suppose both (π1(e
′) defined ⇒ π1y

π1e
′

−Ð⊂) and (π2(e
′) defined ⇒ π2y

π2e
′

−Ð⊂).
Then y ∪ {e′} ⊆ x with π1(y ∪ {e′}) ∈ A and π2(y ∪ {e′}) ∈ B. So, by Proposi-

tion 3.22, y∪{e′} ∈ A×B—contradicting (II). Hence, either ¬π1y
π1e

′

−Ð⊂ , with π1e
′

defined, or ¬π2y
π2e

′

−Ð⊂ , with π2e
′ defined.

Assume the case ¬π1y
π1e

′

−Ð⊂ , with π1e
′ defined. Supposing π1(e) is unde-

fined, from (I) we obtain the contradictory π1y = π1y1
π1e

′

−Ð⊂ . Hence, in this

case, both π1e and π1e
′ are defined with π1y

π1(e)
−Ð⊂ π1y1

π1(e
′
)

−Ð⊂ and ¬π1y
π1e

′

−Ð⊂ . So
π1(e) _π1x π1(e

′) in A, by Proposition 3.15(iii). Meanwhile from (b), this time
by Proposition 3.15(i), if π2(e), π2(e

′) are defined then π2(e) _π2x π2(e
′) or

π2(e) coπ2x π2(e
′) in B. Hence (i), above.

Similarly, the case ¬π2y
π2e

′

−Ð⊂ , with π2e
′ defined, yields (ii).

Corollary 3.26. Let A×B, Π1, Π2 be a product of event structures. If p _ p′

in A ×B, then
either

(i) Π1(p) and Π1(p
′) are both defined with Π1(p) _ Π1(p

′) in A and
if Π2(p), Π2(p

′) are defined then Π2(p) _ Π2(p
′) or Π2(p) co Π2(p

′) in B,
or

(ii) Π2(p) and Π2(p
′) are both defined with Π2(p) _ Π2(p

′) in B and
if Π1(p), Π1(p

′) are defined then Π1(p) _ Π1(p
′) or Π1(p) co Π1(p

′) in A.

Proof. Directly by Lemma 3.25, because p _ p′ in A × B implies top(p) _p′

top(p′) in C(A) × C(B).

The converse to Lemma 3.25, above, is false. A more explicit, case-by-case,
form of the above Lemma 3.25 is helpful:

Lemma 3.27. Suppose e _x e
′ in a product of stable families A × B, π1, π2.

(i) If e = (a,∗) then e′ = (a′, b) or e′ = (a′,∗) with a _π1x a
′ in A.

(ii) If e′ = (a′,∗) then e = (a, b) or e = (a,∗) with a _π1x a
′ in A.

(iii) If e = (a, b) and e′ = (a′, b′) then a _π1x a′ in A or b _π2x b′ in B.
Furthermore both (a _π1x a

′ or a coπ1x a
′) and (b _π2x b

′ or b coπ2x b
′).

The obvious analogues of (i) and (ii) hold for e = (∗, b) and e′ = (∗, b′).

Proof. A restatement of Lemma 3.25, writing a = π1(e), b = π2(e), a
′ = π1(e

′)
and b = π2(e

′) when these results of projections are defined.

Exercise 3.28. Let z ∈ A × B, the product of stable families. For any chain

(a,∗) _z e1 _z ⋯ _z em = (∗, b)

show there is ei = (ai, bi) for some events ai of A and bi of B.

3.3. PROCESS CONSTRUCTIONS 39

Corollary 3.29. Let f ∶ A → A′ and g ∶ B → B′ be rigid maps of event struc-
tures. Then the map ⟨f, g⟩ ∶ A ×B → A′ ×B′ is rigid.

Proof. Write Π1,Π2 and Π′
1,Π

′
2 for the projections of A×B and A′ ×B′ respec-

tively. It is easy to check that the totality of f and g above implies ⟨f, g⟩ is total.
To show that their rigidity implies ⟨f, g⟩ is rigid we use Corollary 3.26 above. As-
suming p _ p′ in A×B the corollary implies Π1(p) _ Π1(p

′) or Π2(p) _ Π2(p
′).

From the rigidity of f and g, we obtain fΠ1(p) _ fΠ1(p
′) or gΠ2(p) _ gΠ2(p

′).
But Π′

1⟨f, g⟩(p
′) = fΠ1(p

′) and Π′
2⟨f, g⟩(p

′) = fΠ2(p
′) whence as ⟨f, g⟩ is a map

so reflects causal dependency locally we deduce ⟨f, g⟩(p) ≤ ⟨f, g⟩(p′) (or in fact
⟨f, g⟩(p) _ ⟨f, g⟩(p′)), showing ⟨f, g⟩ is rigid.

3.3.2 Restriction

The restriction of F to a subset of events R is the stable family F ↾ R =def

{x ∈ F ∣ x ⊆ R} . Defining E ↾ R, the restriction of an event structure E to a
subset of events R, to have events E′ = {e ∈ E ∣ [e] ⊆ R} with causal dependency
and consistency induced by E, we obtain C(E ↾R) = C(E) ↾R .

Proposition 3.30. Let F be a stable family and R a subset of its events. Then,
Pr(F ↾R) = Pr(F)↾top−1R .

We remark that we can regard restriction as arising as an equaliser. E.g. for
an event structure E and a subset R of events, the inclusion map E ↾R ↪ E is
the equaliser of the two maps idE , the identity map on E, and r ∶ E → E, which
acts as identity on events with down-closure in R and is undefined elsewhere.

3.3.3 Synchronized compositions

Synchronized parallel compositions are obtained as restrictions of products to
those events which are allowed to synchronize or occur asynchronously. For
example, the synchronized composition of Milner’s CCS on stable families A and
B (with labelled events) is defined as A×B ↾R where R comprises events which
are pairs (a,∗), (∗, b) and (a, b), where in the latter case the events a of A and b
of B carry complementary labels. Similarly, synchronized compositions of event
structures A and B are obtained as restrictions A×B ↾R. By Proposition 3.30,
we can equivalently form a synchronized composition of event structures by
forming the synchronized composition of their stable families of configurations,
and then obtaining the resulting event structure—this has the advantage of
eliminating superfluous events earlier.

Products of stable families within the subcategory of total maps can be
obtained by restricting the product (w.r.t. partial maps). Construct

A ×t B = A × B ↾A ×B

where we restrict to the cartesian product of the sets of events of A and B,
called A and B respectively; projection maps are obtained from the projection
functions from the cartesian product. Products of stable families within the
subcategory of total maps have a particularly simple characterisation:

40 CHAPTER 3. STABLE FAMILIES

Proposition 3.31. Finite configurations of a product A ×t B of stable families
with total maps are secured bijections θ ∶ x ≅ y between configurations x ∈ A and
y ∈ B, such that the transitive relation generated on θ by taking (a, b) ≤ (a′, b′)
if a ≤x a

′ or b ≤y b
′ is a partial order.

Proof. Let z ∈ A ×t B. By Proposition3.14 the projections π1 and π2 locally
reflect causal dependency. Hence the partial order ≤z satisfies: (a, b) ≤z (a′, b′)
if a ≤x a or b ≤y b

′, for all (a, b), (a′, b′) ∈ z. Thus the transitive relation on z
generated by taking (a, b) ≤ (a′, b′) if a ≤x a

′ or b ≤y b
′ is certainly a partial order;

failure of antisymmetry for the relation generated would imply its failure for ≤z,
a contradiction. To see that ≤z is precisely the transitive relation generated in
this way, let θ be the elementary event structure comprising events the set z
with causal dependency the least transitive relation ≤ for which (a, b) ≤ (a′, b′)
if a ≤x a

′ or b ≤y b
′. Let Θ be its stable family of configurations with r1 ∶ Θ→ A

and r2 ∶ Θ→ B the obvious projection maps. By the universal properties of the
product A ×t B, π1, π2 there is a unique map h ∶ Θ → A ×t B s.t. r1 = π1h and
r2 = π2h. As a function on the underlying sets of events h ∶ θ → z acts as the
identity on events and reflects causal dependency. Hence ≤z⊆≤p. It follows that
≤z and ≤p coincide, so that ≤z is a secured bijection.

Conversely, suppose θ is a secured bijection between x ∈ A and y ∈ B with
generated partial order ≤. Regard θ,≤ as an elementary event structure with
stable family of configurations Θ. From the way ≤ is generated, there are pro-
jection maps r1 ∶ Θ→ A and r2 ∶ Θ→ B. Hence by universality, there is a unique
map h ∶ Θ → A ×t B s.t. r1 = π1h and r2 = π2h. But then h must act as the
identity function, ensuring θ ∈ A ×t B.

3.3.4 Pullbacks

The construction of pullbacks can be viewed as a special case of synchronized
composition. Once we have products of event structures pullbacks are obtained
by restricting products to the appropriate equalizing set. Pullbacks of event
structures can also be constructed via pullbacks of stable families, in a similar
manner to the way we have constructed products of event structures. We obtain
pullbacks of stable families as restrictions of products. Suppose f1 ∶ F1 → G and
f2 ∶ F2 → G are maps of stable families. Let E1, E2 and C be the sets of events
of F1, F2 and G, respectively. The set P =def {(e1, e2) ∣ f(e1) = f(e2)} with
projections π1, π2 to the left and right, forms the pullback, in the category of
sets, of the functions f1 ∶ E1 → C, f2 ∶ E2 → C. We obtain the pullback in
stable families of f1, f2 as the stable family P, consisting of those subsets of P
which are also configurations of the product F1 × F2—its associated maps are
the projections π1, π2 from the events of P. When f1 and f2 are total maps we
obtain the pullback in the subcategory of stable families with total maps.

As a corollary of Proposition 3.31 we obtain a simple characterization of
pullbacks of total maps within stable families:

Lemma 3.32. Let P, π1, π2 form a pullback of total maps f ∶ A → C and g ∶
B → C in the category of stable families. Configurations of P are precisely

3.3. PROCESS CONSTRUCTIONS 41

those composite bijections θ ∶ x ≅ fx = gy ≅ y between configurations x ∈ A and
y ∈ B s.t. fx = gy for which the transitive relation generated on θ by taking
(a, b) ≤ (a′, b′) if a ≤x a

′ or b ≤y b
′ is a partial order.

For future reference we give the detailed construction of pullbacks of to-
tal maps in stable families. Let f ∶ A → C and g ∶ B → C be total maps
of stable families. Assume A and B have underlying sets A and B. Define
D =def {(a, b) ∈ A ×B ∣ f(a) = g(b)} with projections π1 and π2 to the left and
right components. Define a family of configurations of the pullback to consist of

x ∈ D iff

x is a finite subset of D such that π1x ∈ A & π2x ∈ B,

∀e, e′ ∈ x. e /= e′ ⇒ ∃y ⊆ x. π1y ∈ A & π2y ∈ B & (e ∈ y ⇐⇒ e′ ∉ y) .

The extra local injectivity property we needed in the definition of product is not
necessary here; it follows from the definition of D and that f and g are locally
injective.

We obtain the pullback of event structures by first forming the pullback in
stable families of their families of configurations and then applying Pr.

As a corollary of Lemma 3.32 we obtain a useful way to understand config-
urations of the pullback of total maps on event structures.

Proposition 3.33. When f ∶ A → C and g ∶ B → C are total, maps of event
structures, in their pullback P,Π1,Π2

P
Π1

~~

Π2

A

f

B

g~~
C .

the finite configurations of P correspond to composite bijections

θ ∶ x ≅ fx = gy ≅ y

between finite configurations x of A and y of B such that fx = gy, for which the
transitive relation generated on θ by (a, b) ≤ (a′, b′) if a ≤A a

′ or b ≤B b′ forms
a partial order.

As a consequence the pullback of rigid maps, respectively rigid epi maps,
across total maps are rigid, respectively rigid epi.

Proposition 3.34. Let P,Π1,Π2 be a pullback of total maps f ∶ A → C and
g ∶ B → C in the category of event structures. If f is rigid so is Π2. If f is rigid
and epi so is Π2.

Proof. Use Proposition 3.33 to construct the appropriate configurations of the
pullback of event structures; the rigidity of f ensures their existence.

42 CHAPTER 3. STABLE FAMILIES

3.3.5 Projection

As we have seen, event structures support a simple form of hiding associated
with the partial-total factorisation of a partial map. Let (E,≤,Con) be an event
structure. Let V ⊆ E be a subset of ‘visible’ events. Define the projection of E
on V , to be E↓V =def (V,≤V ,ConV), where v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and
X ∈ ConV iff X ∈ Con & X ⊆ V .

Proposition 3.35. Let f ∶ E → E′ be a total map of event structures. Let
V ⊆ E and V ′ ⊆ E′ be such that

∀e ∈ E. e ∈ V ⇐⇒ f(e) ∈ V ′ .

Then f restricts to a total map f ↾ V ∶ E ↓ V → E′ ↓ V ′. Moreover, if f is rigid
then so is f ↾ V .

3.3.6 Recursion

Both stable families and event structures support recursive definitions via the
‘large cpo’ based on the substructure relation ⊴ [4, 5]. For two stable families
F and G with events F and G respectively,

F ⊴ G iff F ⊆ G & ∀x ⊆fin F. x ∈ F ⇐⇒ x ∈ G .

Chapter 4

Games and strategies

Very general nondeterministic concurrent games and strategies are presented.
The intention is to formalize distributed games in which both Player (or a
team of players) and Opponent (or a team of opponents) can interact in highly
distributed fashion, without, for instance, enforcing that their moves alter-
nate. Strategies, those nondeterministic plays which compose well with copy-cat
strategies, are characterized.1

4.1 Event structures with polarities

We shall represent both a game and a strategy in a game as an event structure
with polarity, comprising an event structure together with a polarity function
pol ∶ E → {+,−} ascribing a polarity + or − to its events E. The events corre-
spond to (occurrences of) moves. The two polarities +/− express the dichotomy:
Player/Opponent; Process/Environment; Prover/Disprover; or Ally/Enemy. Maps
of event structures with polarity are maps of event structures which preserve po-
larity.

4.2 Operations

4.2.1 Dual

The dual, E⊥, of an event structure with polarity E comprises a copy of the
event structure E but with a reversal of polarities. It obviously extends to a
functor. Write e ∈ E⊥ for the event complementary to e ∈ E and vice versa.

4.2.2 Simple parallel composition

This operation simply juxtaposes two event structures with polarity. Let (A,≤A
,ConA,polA) and (B,≤B ,ConB ,polB) be event structures with polarity. The

1This key chapter is the result of joint work with Silvain Rideau [6].

43

44 CHAPTER 4. GAMES AND STRATEGIES

events of A∥B are ({1}×A)∪({2}×B), their polarities unchanged, with: the only
relations of causal dependency given by (1, a) ≤ (1, a′) iff a ≤A a′ and (2, b) ≤
(2, b′) iff b ≤B b′; a subset of events C is consistent in A∥B iff {a ∣ (1, a) ∈ C} ∈
ConA and {b ∣ (2, b) ∈ C} ∈ ConB . The operation extends to a functor—put the
two maps in parallel. The empty event structure with polarity ∅ is the unit
w.r.t. ∥.

4.3 Pre-strategies

Let A be an event structure with polarity, thought of as a game; its events
stand for the possible occurrences of moves of Player and Opponent and its
causal dependency and consistency relations the constraints imposed by the
game. A pre-strategy in A is a total map σ ∶ S → A from an event structure with
polarity S. A pre-strategy represents a nondeterministic play of the game—all
its moves are moves allowed by the game and obey the constraints of the game;
the concept will later be refined to that of strategy (and winning strategy in
Section 10.1).

A map from a pre-strategy σ ∶ S → A to a pre-strategy σ′ ∶ S′ → A is a map
f ∶ S → S′ such that

S

σ
��

f // S′

σ′

��
A

commutes. Accordingly, we regard two pre-strategies σ ∶ S → A and σ′ ∶ S′ → A
as essentially the same when they are isomorphic, and write σ ≅ σ′, i.e. when
there is an isomorphism of event structures θ ∶ S ≅ S′ such that

S

σ
��

≅
θ

S′

σ′

��
A

commutes.
Let A and B be event structures with polarity. Following Joyal [7], a pre-

strategy from A to B is a pre-strategy in A⊥∥B, so a total map σ ∶ S → A⊥∥B.
It thus determines a span

S

σ1

~~

σ2

A⊥ B ,

of event structures with polarity where σ1, σ2 are partial maps. In fact, a pre-
strategy from A to B corresponds to such spans where for all s ∈ S either, but

4.3. PRE-STRATEGIES 45

not both, σ1(s) or σ2(s) is defined. Two pre-strategies σ and τ from A to B
are isomorphic, σ ≅ τ , when their spans are isomorphic, i.e.

S

σ1

��

≅

��
σ2

��

T

τ1~~ τ2 ��
A⊥ B

commutes. We write σ ∶ A + //B to express that σ is a pre-strategy from A to B.
Note a pre-strategy in a game A coincides with a pre-strategy from the empty
game σ ∶ ∅ + //A.

4.3.1 Concurrent copy-cat

Identities on games are given by copy-cat strategies—strategies for Player based
on copying the latest moves made by Opponent.

Let A be an event structure with polarity. The copy-cat strategy from A
to A is an instance of a pre-strategy, so a total map ccA ∶ CCA → A⊥∥A. It
describes a concurrent, or distributed, strategy based on the idea that Player
moves, of +ve polarity, always copy previous corresponding moves of Opponent,
of −ve polarity.

For c ∈ A⊥∥A we use c to mean the corresponding copy of c, of opposite
polarity, in the alternative component, i.e.

(1, a) = (2, a) and (2, a) = (1, a) .

Proposition 4.1. Let A be an event structure with polarity. There is an event
structure with polarity CCA having the same events and polarity as A⊥∥A but
with causal dependency ≤CCA given as the transitive closure of the relation

≤A⊥∥A ∪ {(c, c) ∣ c ∈ A⊥∥A & polA⊥∥A(c) = +}

and finite subsets of CCA consistent if their down-closure w.r.t. ≤CCA are con-
sistent in A⊥∥A. Moreover,
(i) c _ c′ in CCA iff

c _ c′ in A⊥∥A or polA⊥∥A(c
′) = + & c = c′ ;

(ii) x ∈ C(CCA) iff

x ∈ C(A⊥∥A) & ∀c ∈ x. polA⊥∥A(c) = + Ô⇒ c ∈ x .

Proof. It can first be checked that defining

c ≤CCA c
′ iff (i) c ≤A⊥∥A c

′ or

(ii) ∃c0 ∈ A
⊥∥A. polA⊥∥A(c0) = + &

c ≤A⊥∥A c0 & c0 ≤A⊥∥A c
′ ,

46 CHAPTER 4. GAMES AND STRATEGIES

yields a partial order. Note that

c ≤A⊥∥A d iff c ≤A⊥∥A d ,

used in verifying transitivity and antisymmetry. The relation ≤CCA is clearly
the transitive closure of ≤A⊥∥A together with all extra causal dependencies (c, c)
where polA⊥∥A(c) = +. The remaining properties required for CCA to be an event
structure follow routinely.

(i) From the above characterization of ≤CCA .

(ii) From CCA and A⊥∥A sharing the same consistency relation on sets down-
closed in A⊥∥A and w.r.t. the extra causal dependency adjoined to CCA. ◻

Based on Proposition 4.1, define the copy-cat pre-strategy from A to A to
be the pre-strategy ccA ∶ CCA → A⊥∥A where CCA comprises the event structure
with polarity A⊥∥A together with extra causal dependencies c ≤CCA c for all
events c with polA⊥∥A(c) = +, and ccA is the identity on the set of events
common to both CCA and A⊥∥A.

4.3.2 Composing pre-strategies

Consider two pre-strategies σ ∶ A + //B and τ ∶ B + //C as spans:

S
σ1

~~

σ2

��
A⊥ B

T
τ1

~~

τ2

B⊥ C .

We show how to define their composition τ⊙σ ∶ A + //C. If we ignore polarities
the partial maps of event structures σ2 and τ1 have a common codomain, the
underlying event structure of B and B⊥. The composition τ⊙σ will be con-
structed as a synchronized composition of S and T , in which output events of S
synchronize with input events of T , followed by an operation of hiding ‘internal’
synchronization events. Only those events s from S and t from T for which
σ2(s) = τ1(t) synchronize; note that then s and t must have opposite polarities
as this is so for their images σ2(s) in B and τ1(t) in B⊥. The event result-
ing from the synchronization of s and t has indeterminate polarity and will be
hidden in the composition τ⊙σ.

Formally, we use the construction of synchronized composition and projec-
tion of Section 3.3.3. Via projection we hide all those events with undefined
polarity.

We first define the composition of the families of configurations of S and T
as a synchronized composition of stable families. We form the product of stable
families C(S) × C(T) with projections π1 and π2, and then form a restriction:

C(T)⊛ C(S) =def C(S) × C(T) ↾R

4.3. PRE-STRATEGIES 47

where

R = {(s,∗) ∣ s ∈ S & σ1(s) is defined}∪

{(s, t) ∣ s ∈ S & t ∈ T & σ2(s) = τ1(t) with both defined}∪

{(∗, t) ∣ t ∈ T & τ2(t) is defined} .

The stable family C(T) ⊛ C(S) is the synchronized composition of the stable
families C(S) and C(T) in which synchronizations are between events of S and
T which project, under σ2 and τ1 respectively, to complementary events in B
and B⊥. The stable family C(T)⊛ C(S) represents all the configurations of the
composition of pre-strategies, including internal events arising from synchro-
nizations. We obtain the synchronized composition as an event structure by
forming Pr(C(T)⊛ C(S)), in which events are the primes of C(T)⊛ C(S). This
synchronized composition still has internal events.

To obtain the composition of pre-strategies we hide the internal events due
to synchronizations. The event structure of the composition of pre-strategies is
defined to be

T⊙S =def Pr(C(T)⊛ C(S)) ↓ V ,

the projection onto “visible” events,

V = {p ∈ Pr(C(T)⊛ C(S)) ∣ ∃s ∈ S. top(p) = (s,∗)} ∪

{p ∈ Pr(C(T)⊛ C(S)) ∣ ∃t ∈ T. top(p) = (∗, t)} .

Finally, the composition τ⊙σ is defined by the span

T⊙S
υ1

||

υ2

""
A⊥ C

where υ1 and υ2 are maps of event structures, which on events p of T⊙S act so
υ1(p) = σ1(s) when top(p) = (s,∗) and υ2(p) = τ2(t) when top(p) = (∗, t), and
are undefined elsewhere.

Proposition 4.2. Above, υ1 and υ2 are partial maps of event structures with
polarity, which together define a pre-strategy υ ∶ A + //C. For x ∈ C(T⊙S),

υ1x = σ1π1⋃x and υ2x = τ2π2⋃x .

Proof. Consider the two maps of event structures

u1 ∶Pr(C(T)⊛ C(S))
Π1
Ð→S

σ1
Ð→A⊥ ,

u2 ∶Pr(C(T)⊛ C(S))
Π2
Ð→T

τ2
Ð→C ,

where Π1,Π2 are (restrictions of) projections of the product of event structures.
E.g. for p ∈ Pr(C(T)⊛ C(S)), Π1(p) = s precisely when top(p) = (s,∗), so σ1(s)

48 CHAPTER 4. GAMES AND STRATEGIES

is defined, or when top(p) = (s, t), so σ1(s) is undefined. The partial functions
υ1 and υ2 are restrictions of the two maps u1 and u2 to the projection set V .
But V consists exactly of those events in Pr(C(T) ⊛ C(S)) where u1 or u2 is
defined. It follows that υ1 and υ2 are maps of event structures.

Clearly one and only one of υ1, υ2 are defined on any event in T⊙S so they
form a pre-strategy. Their effect on x ∈ C(T⊙S) follows directly from their
definition. ◻

Proposition 4.3. Let σ ∶ A + //B, τ ∶ B + //C and υ ∶ C + //D be pre-strategies.
The two compositions υ⊙(τ⊙σ) and (υ⊙τ)⊙σ are isomorphic.

Proof. The natural isomorphism S × (T × U) ≅ (S × T) × U , associated with
the product of event structures S,T,U , restricts to the required isomorphism of
spans as the synchronizations involved in successive compositions are disjoint.◻

4.3.3 Composition via pullback

We can alternatively present the composition of pre-strategies via pullbacks.2

For this section assume that the correspondence a ↔ a between the events of
A and its dual A⊥ is the identity, so A and A⊥ share the same events, though
assign opposite polarities to them. Given two pre-strategies σ ∶ S → A⊥∥B and
τ ∶ T → B⊥∥C, ignoring polarities we can consider the maps on the underlying
event structures, viz. σ ∶ S → A∥B and τ ∶ T → B∥C. Viewed this way we can
form the pullback in E (or Et, as the maps along which we are pulling back are
total)

P

yy %%
S∥C

σ∥C $$

A∥T

A∥τzz
A∥B∥C .

There is an obvious partial map of event structures A∥B∥C → A∥C undefined
on B and acting as identity on A and C. The partial map from P to A∥C given

2I’m grateful to Nathan Bowler for the observations of this section.

4.4. STRATEGIES 49

by following the diagram (either way round the pullback square)

P

zz $$
S∥C

σ∥C $$

A∥T

A∥τzz
A∥B∥C

��
A∥C

factors through the projection of P to V , those events at which the partial map
is defined:

P → P ↓ V → A∥C .

The resulting total map υ ∶ P ↓ V → A∥C gives us the composition τ⊙σ ∶ P ↓
V → A⊥∥C once we reinstate polarities.

4.3.4 Duality

A pre-strategy σ ∶ A + //B corresponds to a dual pre-strategy σ⊥ ∶ B⊥ + //A⊥.
This duality arises from the correspondence

S

σ1

~~

σ2

��
A⊥ B

←→ S

σ2

||

σ1

(B⊥)⊥ A⊥ .

It is easy to check that the dual of copy-cat, cc ⊥A, is isomorphic, as a span, to
the copy-cat of the dual, ccA⊥ , for A an event structure with polarity. It is also
straightforward, though more involved, to show that the dual of a composition
of pre-strategies (τ⊙σ)⊥ is isomorphic as a span to the composition σ⊥⊙τ⊥.
Duality, as usual, will save us work.

4.4 Strategies

This section is devoted to the main result of this chapter: that two conditions
on pre-strategies, receptivity and innocence, are necessary and sufficient in order
for copy-cat to behave as identity w.r.t. the composition of pre-strategies. It be-
comes compelling to define a (nondeterministic) concurrent strategy, in general,
as a pre-strategy which is receptive and innocent.

50 CHAPTER 4. GAMES AND STRATEGIES

4.4.1 Necessity of receptivity and innocence

The properties of receptivity and innocence of a pre-strategy, described below,
will play a central role.

Receptivity. Say a pre-strategy σ ∶ S → A is receptive when σx
a

−Ð⊂ & polA(a) =

−⇒ ∃!s ∈ S. x
s

−Ð⊂ & σ(s) = a , for all x ∈ C(S), a ∈ A. Receptivity ensures that
no Opponent move which is possible is disallowed.

Innocence. Say a pre-strategy σ is innocent when it is both +-innocent and
−-innocent:

+-Innocence: If s _ s′ & pol(s) = + then σ(s) _ σ(s′).

−-Innocence: If s _ s′ & pol(s′) = − then σ(s) _ σ(s′).

The definition of a pre-strategy σ ∶ S → A ensures that the moves of Player
and Opponent respect the causal constraints of the game A. Innocence restricts
Player further. Locally, within a configuration, Player may only introduce new
relations of immediate causality of the form ⊟ _ ⊞ . Thus innocence gives Player
the freedom to await Opponent moves before making their move, but prevents
Player having any influence on the moves of Opponent beyond those stipulated
in the game A; more surprisingly, innocence also disallows any immediate causal-
ity of the form ⊞ _ ⊞, purely between Player moves, not already stipulated in
the game A.

Two important consequences of −-innocence:

Lemma 4.4. Let σ ∶ S → A be a pre-strategy. Suppose, for s, s′ ∈ S, that

[s) ↑ [s′) & polS(s) = polS(s
′) = − & σ(s) = σ(s′) .

(i) If σ is −-innocent, then [s) = [s′).
(ii) If σ is receptive and −-innocent, then s = s′.
[x ↑ y expresses the compatibility of x, y ∈ C(S).]

Proof. (i) Assume the property above holds of s, s′ ∈ S. Assume σ is −-innocent.
Suppose s1 _ s. Then by −-innocence, σ(s1) _ σ(s). As σ(s′) = σ(s) and σ is
a map of event structures there is s2 < s′ such that σ(s2) = σ(s1). But s1, s2

both belong to the configuration [s)∪ [s′) so s1 = s2, as σ is a map, and s1 < s
′.

Symmetrically, if s1 _ s′ then s1 < s. It follows that [s) = [s′). (ii) Now both

[s)
s

−Ð⊂ and [s)
s′

−Ð⊂ with σ(s) = σ(s′) where both s, s′ have −ve polarity. If,
further, σ is receptive, s = s′. ◻

Let x and x′ be configurations of an event structure with polarity. Write
x ⊆− x′ to mean x ⊆ x′ and pol(x′∖x) ⊆ {−}, i.e. the configuration x′ extends the
configuration x solely by events of −ve polarity. In the presence of −-innocence,
receptivity strengthens to the following useful strong-receptivity property:

Lemma 4.5. Let σ ∶ S → A be a −-innocent pre-strategy. The pre-strategy σ
is receptive iff whenever σx ⊆− y in C(A) there is a unique x′ ∈ C(S) so that

4.4. STRATEGIES 51

x ⊆ x′ & σx′ = y . Diagrammatically,

x_

σ

��

⊆ x′_

σ

��
σx ⊆

− y .

[It will necessarily be the case that x ⊆− x′.]

Proof. “if”: Clear. “Only if”: Assuming σx ⊆− y we can form a covering chain

σx
a1
−Ð⊂ y1⋯

an
−Ð⊂ yn = y .

By repeated use of receptivity we obtain the existence of x′ where x ⊆ x′ and
σx′ = y. To show the uniqueness of x′ suppose x ⊆ z, z′ and σz = σz′ = y.
Suppose that z /= z′. Then, without loss of generality, suppose there is a ≤S-
minimal s′ ∈ z′ with s′ ∉ z. Then [s′) ⊆ z. Now σ(s′) ∈ y so there is s ∈ z for
which σ(s) = σ(s′). We have [s), [s′) ⊆ z so [s) ↑ [s′). By Lemma 4.4(ii) we
deduce s = s′ so s′ ∈ z, a contradiction. Hence, z = z′. ◻

It is useful to define innocence and receptivity on partial maps of event
structures with polarity.

Definition 4.6. Let f ∶ S → A be a partial map of event structures with
polarity. Say f is receptive when

f(x)
a

−Ð⊂ & polA(a) = − Ô⇒ ∃!s ∈ S. x
s

−Ð⊂ & f(s) = a

for all x ∈ C(S), a ∈ A.
Say f is innocent when it is both +-innocent and −-innocent, i.e.

s _ s′ & pol(s) = + & f(s) is defined Ô⇒

f(s′) is defined & f(s) _ f(s′) ,

s _ s′ & pol(s′) = − & f(s′) is defined Ô⇒

f(s) is defined & f(s) _ f(s′) .

Proposition 4.7. A pre-strategy σ ∶ A + //B is receptive, respectively +/−-
innocent, iff both the partial maps σ1 and σ2 of its span are receptive, respectively
+/−-innocent.

Proposition 4.8. For σ ∶ A + //B a pre-strategy, σ1 is receptive, respectively
+/−-innocent, iff (σ⊥)2 is receptive, respectively +/−-innocent; σ is receptive and
innocent iff σ⊥ is receptive and innocent.

The next lemma will play a major role in importing receptivity and innocence
to compositions of pre-strategies.

Lemma 4.9. For pre-strategies σ ∶ A + //B and τ ∶ B + //C, if σ1 is receptive,
respectively +/−-innocent, then (τ⊙σ)1 is receptive, respectively +/−-innocent.

52 CHAPTER 4. GAMES AND STRATEGIES

Proof. Abbreviate τ⊙σ to υ.
Receptivity: We show the receptivity of υ1 assuming that σ1 is receptive. Let

x ∈ C(T⊙S) such that υ1x
a

−Ð⊂ in C(A⊥) with polA⊥(a) = −. By Proposition 4.2,

σ1π1⋃x
a

−Ð⊂ with π1⋃x ∈ C(S). As σ1 is receptive there is a unique s ∈ S such

that π1⋃x
s

−Ð⊂ in S and σ1(s) = a. It follows that ⋃x
(s,∗)
−Ð⊂ z, for some z, in

C(T) ⊛ C(S). Defining p =def [(s,∗)]z we obtain x
p

−Ð⊂ and υ1(p) = a, with p
the unique such event.
Innocence: Assume that σ1 is innocent. To show the +-innocence of υ1 we first
establish a property of the _-relation in the event structure Pr(C(T) ⊛ C(S)),
the synchronized composition of event structures S and T , before projection to
V :

If e _ e′ in Pr(C(T) ⊛ C(S)) with e ∈ V , pol(e) = + and υ1(e)
defined, then e′ ∈ V and υ1(e

′) is defined.

Assume e _ e′ in Pr(C(T) ⊛ C(S)), e ∈ V , pol(e) = + and υ1(e) is defined.
From the definition of Pr(C(T) ⊛ C(S)), the event e is a prime configuration
of C(T)⊛ C(S) where top(e) must have the form (s,∗), for some event s of S
where σ1(s) is defined. By Lemma 3.27, top(e ′) has the form (s′,∗) or (s′, t)
with s _ s′ in S. Now, as s _ s′ and pol(s) = +, from the +-innocence of
σ1, we obtain σ1(s) _ σ1(s

′) in A⊥∥A. Whence σ1(s
′) is defined ensuring

top(e ′) = (s ′,∗). It follows that e′ ∈ V and υ1(e
′) is defined.

Now suppose e _ e′ in T⊙S. Then either
(i) e _ e′ in Pr(C(T)⊛ C(S)), or
(ii) e _ e1 < e

′ in Pr(C(T)⊛ C(S)) for some ‘invisible’ event e1 ∉ V .
But the above argument shows that case (ii) cannot occur when pol(e) = +

and υ1(e) is defined. It follows that whenever e _ e′ in T⊙S with pol(e) = +
and υ1(e) defined, then υ1(e

′) is defined and υ1(e) _ υ1(e
′), as required.

The argument showing −-innocence of υ1 assuming that of σ1 is similar. ◻

Corollary 4.10. For pre-strategies σ ∶ A + //B and τ ∶ B + //C, if τ2 is re-
ceptive, respectively +/−-innocent, then (τ⊙σ)2 is receptive, respectively +/−-
innocent.

Proof. By duality using Lemma 4.9: if τ2 is receptive, respectively +/−-innocent,
then (τ⊥)1 is receptive, respectively +/−-innocent, and hence (σ⊥⊙τ⊥)1 = ((τ⊙σ)⊥)1 =
(τ⊙σ)2 is receptive, respectively +/−-innocent. ◻

Lemma 4.11. For an event structure with polarity A, the pre-strategy copy-cat
γA ∶ A + //A is receptive and innocent.

Proof. Receptive: Suppose x ∈ C(CCA) such that ccAx
c

−Ð⊂ in C(A⊥∥A) where
polA⊥∥A(c) = −. Now ccAx = x and x′ =def x∪{c} ∈ C(A

⊥∥A). Proposition 4.1(ii)
characterizes those configurations of A⊥∥A which are also configurations of CCA:
the characterization applies to x and to its extension x′ = x∪{c} because of the

4.4. STRATEGIES 53

−ve polarity of c. Hence x′ ∈ C(CCA) and x
c

−Ð⊂x′ in C(CCA), and clearly c is
unique so ccA(c) = c.

−-Innocent: Suppose c _ c′ in CCA and pol(c′) = −. By Proposition 4.1(i),
c _ c′ in A⊥∥A. The argument for +-innocence is similar. ◻

Theorem 4.12. Let σ ∶ A + //B be a pre-strategy from A to B. If σ⊙ ccA ≅ σ
and ccB⊙σ ≅ σ, then σ is receptive and innocent.

Let σ ∶ A + //B and τ ∶ B + //C be pre-strategies which are both receptive and
innocent. Then their composition τ⊙σ ∶ A + //C is receptive and innocent.

Proof. We know the copy-cat pre-strategies ccA and ccB are receptive and
innocent—Lemma 4.11. Assume σ⊙ ccA ≅ σ and ccB⊙σ ≅ σ. By Lemma 4.9,
(σ⊙ ccA)1 is receptive and innocent so σ1 is receptive and innocent. From its
dual, Corollary 4.10, (ccB⊙σ)2 so σ2 is receptive and innocent. Hence σ is
receptive and innocent.

Assume that σ ∶ A + //B and τ ∶ B + //C are receptive and innocent. The fact
that σ is receptive and innocent ensures that (τ⊙σ)1 is receptive and innocent,
that τ is receptive and innocent that (τ⊙σ)2 is too. Combining, we obtain that
τ⊙σ is receptive and innocent. ◻

In other words, if a pre-strategy is to compose well with copy-cat, in the
sense that copy-cat behaves as an identity w.r.t. composition, the pre-strategy
must be receptive and innocent. Copy-cat behaving as identity is a hallmark
of game-based semantics, so any sensible definition of concurrent strategy will
have to ensure receptivity and innocence.

4.4.2 Sufficiency of receptivity and innocence

In fact, as we will now see, not only are the conditions of receptivity and inno-
cence on pre-strategies necessary to ensure that copy-cat acts as identity. They
are also sufficient.

Technically, this section establishes that for a pre-strategy σ ∶ A + //B which
is receptive and innocent both the compositions σ⊙ ccA and ccB⊙σ are isomor-
phic to σ. We shall concentrate on the isomorphism from σ⊙ ccA to σ. The
isomorphism from ccB⊙σ to σ follows by duality.

Recall, from Section 4.3.2, the construction of the pre-strategy σ⊙ ccA as
a total map S⊙CCA → A⊥∥B. The event structure S⊙CCA is built from the
synchronized composition of stable families C(S)⊛ C(CCA), a restriction of the
product of stable families to events

{(c,∗) ∣ c ∈ CCA & ccA1(c) is defined}∪

{(c, s) ∣ c ∈ CCA & s ∈ S & ccA2(c) = σ1(s)}∪

{(∗, s) ∣ s ∈ S & σ2(t) is defined} ∶

54 CHAPTER 4. GAMES AND STRATEGIES

C(S)⊛ C(CCA)

π1

xx
π2

%%
C(CCA)

ccA1zz
ccA2 &&

C(S)

σ1
yy

σ2

""
C(A⊥) C(A) C(A⊥) C(B)

Finally S⊙CCA is obtained from the prime configurations of C(S) ⊛ C(CCA)
whose maximum events are defined under ccA1π1 or σ2π2.

We will first present the putative isomorphism from σ⊙ ccA to σ as a total
map of event structures θ ∶ S⊙CCA → S. The definition of θ depends crucially
on the lemmas below. They involve special configurations of C(S) ⊛ C(CCA),
viz. those of the form ⋃x , where x is a configuration of S⊙CCA.

Lemma 4.13. For x ∈ C(S⊙CCA),

(c, s) ∈⋃x Ô⇒ (c,∗) ∈⋃x .

Proof. The case when pol(c) = + follows directly because then c _ c in CCA so
(c,∗) _⋃x (c, s).
Suppose the lemma fails in the case when pol(c) = −, so there is a ≤⋃x-maximal
(c, s) ∈ ⋃x such that

pol(c) = − & (c,∗) ∉⋃x . (†)

The event (c, s) cannot be maximal in ⋃x as its maximal events take the form
(c′,∗) or (∗, s′). There must be e ∈ ⋃x for which

(c, s) _⋃x e .

Consider the possible forms of e:
Case e = (c′, s′): Then, by Lemma 3.27, either c _ c′ in CCA or s _ s′ in S.
However if s _ s′ then, as pol(s) = + by innocence, σ1(s) _ σ1(s

′) in A⊥, so
ccA2(c) _ ccA2(c

′) in A; but then c _ c′ in CCA. Either way, c _ c′ in CCA.
Suppose pol(c′) = +. Then,

(c, s) _⋃x (c,∗) _⋃x (c′,∗) _⋃x (c′, s′) .

But this contradicts (c, s) _⋃x (c′, s′).
Suppose pol(c′) = −. Because (c, s) is maximal such that (†), (c′,∗) ∈ ⋃x.

But (c,∗) _⋃x (c′,∗) whence (c,∗) ∈ ⋃x, contradicting (†).
Case e = (∗, s′): Now (c, s) _⋃x (∗, s′). By Lemma 3.27, s _ s′ in S with
pol(s) = +. By innocence, σ1(s) _ σ1(s

′) and in particular σ1(s
′) is defined,

which forbids (∗, s′) as an event of C(S)⊛ C(CCA).
Case e = (c′,∗): Now (c, s) _⋃x (c′,∗). By Lemma 3.27, c _ c′ in CCA.
Because (c, s) and (c′,∗) are events of C(S) ⊛ C(CCA) we must have cc 2(c)
and cc 1(c

′) are defined—they are in different components of CCA. By Proposi-
tion 4.1, c′ = c, contradicting (†).

In all cases we obtain a contradiction—hence the lemma. ◻

4.4. STRATEGIES 55

Lemma 4.14. For x ∈ C(S⊙CCA),

σ1π2⋃x ⊆− ccA1π1⋃x .

Proof. As a direct corollary of Lemma 4.13, we obtain:

σ1π2⋃x ⊆ ccA1π1⋃x .

The current lemma will follow provided all events of +ve polarity in ccA1π1⋃x
are in σ1π2⋃x. However, (c, s) _⋃x (c,∗), for some s ∈ S, when pol(c) = +. ◻

Lemma 4.15. For x ∈ C(S⊙CCA),

σπ2⋃x ⊆− σ⊙ ccA x .

Proof.

σπ2⋃x = {1} × σ1π2⋃x ∪ {2} × σ2π2⋃x

⊆− {1} × ccA1π1⋃x ∪ {2} × σ2π2⋃x , by Lemma 4.14

= σ⊙ ccA x , by Proposition 4.2.

◻

Lemma 4.15 is the key to defining a map θ ∶ S⊙CCA → S via the following
map-lifting property of receptive maps:

Lemma 4.16. Let σ ∶ S → C be a total map of event structures with polar-
ity which is receptive and −-innocent. Let p ∶ C(V) → C(S) be a monotonic
function, i.e. such that p(x) ⊆ p(y) whenever x ⊆ y in C(V). Let υ ∶ V → C be
a total map of event structures with polarity such that

∀x ∈ C(V). σp(x) ⊆− υ x .

Then, there is a unique total map of event structures with polarity θ ∶ V → S
such that ∀x ∈ C(V). p(x) ⊆− θ x and υ = σθ ∶

V

θ

��

υ

⊆
−

!!

p

⊆
−

// S

σ

��
C .

[We use a broken arrow to signify that p is not a map of event structures.]

Proof. Let x ∈ C(V). Then σp(x) ⊆− υ x. Define Θ(x) to be the unique
configuration of C(S), determined by the receptivity of σ, such that

p(x)
_

σ

��

⊆
− Θ(x)

_

σ

��
σp(x) ⊆

− υ x .

56 CHAPTER 4. GAMES AND STRATEGIES

Define θx to be the composite bijection

θx ∶ x ≅ υx ≅ Θ(x)

where the bijection x ≅ υx is that determined locally by the total map of event
structures υ, and the bijection υx ≅ Θ(x) is the inverse of the bijection σ↾Θ(x) ∶
Θ(x) ≅ υ x determined locally by the total map σ.

Now, let y ∈ C(V) with x ⊆ y. We claim that θx is the restriction of θy. This
will follow once we have shown that Θ(x) ⊆ Θ(y). Then, treating the inclusions
as inclusion maps, both squares in the diagram below will commute:

θy ∶ y ≅ υ y ≅ Θ(y)

θx ∶ x

⊆

≅ υ x

⊆

≅ Θ(x)

⊆

This will make the composite rectangle commute, i.e. make θx the restriction
of θy.

To show Θ(x) ⊆ Θ(y) we suppose otherwise. Then there is an event s ∈ Θ(x)
of minimum depth w.r.t. ≤S such that s ∉ Θ(y). Note that pol(s) = −, as
otherwise s ∈ p(x) ⊆ p(y) ⊆ Θ(y). As σ(s) ∈ υ x ⊆ υ y there is s′ ∈ Θ(y) such
that σ(s′) = σ(s). From the minimality of s, both [s), [s′) ⊆ Θ(y) ensuring
the compatibility of [s) and [s′). By Lemma 4.4(ii), s = s′ and s ∈ Θ(y)—a
contradiction.

By Proposition 2.7, the family θx, x ∈ C(V), determines the unique total map
θ ∶ V → S such that θ x = Θ(x). By construction, p(x) ⊆− θ x, for all x ∈ C(V),
and υ = σθ. This property in itself ensures that θ x = Θ(x) so determines θ
uniquely. ◻

In Lemma 4.16, instantiate p ∶ C(S⊙CCA) → C(S) to the function p(x) =
π2⋃x for x ∈ C(S⊙CCA), the map σ to the pre-strategy σ ∶ S → A⊥∥B and υ to
the pre-strategy σ⊙γA. By Lemma 4.15, σπ2⋃x ⊆

− σ⊙ ccA x, so the conditions
of Lemma 4.16 are met and we obtain a total map θ ∶ S⊙CCA → S such that
π2⋃x ⊆

− θ x, for all x ∈ C(S⊙CCA), and σθ = σ⊙γA:

S⊙CCA

θ

��

σ⊙γA

⊆
−

%%

p

⊆
−

// S

σ

��
A⊥∥B .

The next lemma is used in showing θ is an isomorphism.

Lemma 4.17. (i) Let z ∈ C(S) ⊛ C(CCA). If e ≤z e
′ and π2(e) and π2(e

′) are
defined, then π2(e) ≤S π2(e

′). (ii) The map π2 is surjective on configurations.

4.4. STRATEGIES 57

Proof. (i) It suffices to show when

e _z e1 _z ⋯ _z en−1 _z e
′

with π2(e) and π2(e
′) defined and all π2(ei), 1 ≤ i ≤ n − 1, undefined, that

π2(e) ≤S π2(e
′).

Case n = 1, so e _z e
′: Use Lemma 3.27. If either e or e′ has the form (∗, s)

then the other event must have the form (∗, s′) or (c′, s′) with s _ s′ in S.
In the remaining case e = (c, s) and e′ = (c′, s′) with either (1) c _ c′ in CCA,
and ccA2(c) _ ccA2(c

′) in A, or (2) s _ s′ in S. If (1), σ1(s) _ σ1(s
′) in

A⊥ where s, s′ ∈ π2z. By Proposition 3.14, s ≤S s
′. In either case (1) or (2),

π2(e) ≤S π2(e
′).

Case n > 1: Each ei has the form (ci,∗), for 1 ≤ i ≤ n−1. By Lemma 3.27, events
e and e′ must have the form (c, s) and (c′, s′) with c _ c1 and cn−1 _ c′ in
CCA. As ccA1(c) and ccA2(c1) are defined, c1 = c and similarly cn−1 = c′. Again
by Lemma 3.27, ci _ ci+1 in CCA for 1 ≤ i ≤ i − 2. Consequently ccA2(c) ≤A
ccA2(c

′). Now, s, s′ ∈ π2z with σ1(s) ≤A⊥ σ1(s
′). By Proposition 3.14, s ≤S s

′,
as required.
(ii) Let y ∈ C(S). Then σ1y ∈ C(A⊥) and by the clear surjectivity of ccA2 on
configurations there exists w ∈ C(CCA) such that ccA2w = σ1y. Now let

z ={(c,∗) ∣ c ∈ w & ccA1(c) is defined}

∪{(c, s) ∣ c ∈ w & s ∈ y & ccA2(c) = σ1(s)}

∪{(∗, s) ∣ s ∈ y & σ2(s) is defined} .

Then, from the definition of the product of stable families—3.3.1, it can be
checked that z ∈ C(S)⊛C(CCA). By construction, π2z = y. Hence π2 is surjective
on configurations. ◻

Theorem 4.18. θ ∶ σ⊙ ccA ≅ σ, an isomorphism of pre-strategies.

Proof. We show θ is an isomorphism of event structures by showing θ is rigid
and both surjective and injective on configurations (Lemma 3.3 of [8]). The rest
is routine.
Rigid: It suffices to show p _ p′ in S⊙CCA implies θ(p) ≤S θ(p

′). Suppose p _ p′

in S⊙CCA with top(p) = e and top(p′) = e ′. Take x ∈ C(S⊙CCA) containing p′

so p too. Then
e _⋃x e1 _⋃x ⋯ _⋃x en−1 _⋃x e

′

where e, e′ ∈ V0 and ei ∉ V0 for 1 ≤ i ≤ n−1. (V0 consists of ‘visible’ events of the
form (c,∗) with ccA1(c) defined, or (∗, s), with σ2(s) defined.)
Case n = 1, so e _⋃x e

′: By Lemma 3.27, either (i) e = (∗, s) and e′ = (∗, s′)
with s _ s′ in S, or (ii) e = (c,∗) and e′ = (c′,∗) with c _ c′ in CCA.
If (i), we observe, via σθ = σ⊙ ccA, that s ∈ π2⋃x ⊆ θx and θ(p) ∈ θx with
σ(θ(p)) = σ(s), so θ(p) = s by the local injectivity of σ. Similarly, θ(p′) = s′, so
θ(p) ≤S θ(p

′).
If (ii), we obtain θ(p), θ(p′) ∈ θx with σ1θ(p) = ccA1(c), σ1θ(p

′) = ccA1(c
′) and

ccA1(c) _ ccA1(c
′) in A⊥. By Proposition 3.14, θ(p) ≤S θ(p

′).

58 CHAPTER 4. GAMES AND STRATEGIES

Case n > 1: Note ei = (ci, si) for 1 ≤ i ≤ n − 1, and that s1 ≤S sn−1 by
Lemma 4.17(i). Consider the case in which e = (c,∗) and e′ = (c′,∗)—the
other cases are similar. By Lemma 3.27, c _ c1 and cn−1 _ c′ in CCA. But
ccA1(c) and ccA2(c1) are defined, so c1 = c, and similarly cn−1 = c′. We re-
mark that θ(p) = s1, by the local injectivity of σ, as both s1 ∈ π2⋃x ⊆ θx and
θ(p) ∈ θx with σ(θ(p)) = σ(s1). Similarly θ(p′) = sn−1 , whence θ(p) ≤S θ(p

′).
Surjective: Let y ∈ C(S). By Lemma 4.17(ii), there is z ∈ C(S) ⊛ C(CCA) such
that π2z = y. Let

z′ = z ∪ {(c,∗) ∣ pol(c) = + & ∃s ∈ S. (c, s) ∈ z} .

It is straightforward to check z′ ∈ C(S)⊛ C(CCA). Now let

z′′ = z′ ∖ {(c,∗) ∣ pol(c) = − & ∀s ∈ S. (c, s) ∉ z′} .

Then z′′ ∈ C(S) ⊛ C(CCA) by the following argument. The set z′′ is certainly
consistent, so it suffices to show

pol(c) = − & (c,∗) ≤z′ e ∈ z
′′ Ô⇒ ∃s ∈ S. (c, s) ∈ z′ ,

for all c ∈ CCA and e ∈ z′′. This we do by induction on the number of events
between (c,∗) and e. Suppose

pol(c) = − & (c,∗) _z′ e1 ≤z′ e ∈ z
′ .

In the case where e1 = (c1, s1), we deduce c _ c1 in CCA and as ccA1(c) is
defined while ccA2(c1) is defined, we must have c1 = c, as required. In the case
where e1 = (c1,∗) and pol(c1) = −, by induction, we obtain (c1, s1) ∈ z

′ for some
s1 ∈ S. Also c _ c1, so c _ c1 in CCA. As z′ is a configuration we must have
(c, s) ≤z′ (c1, s1), for some s ∈ S, so (c, s) ∈ z′. In the case where e1 = (c1,∗)
and pol(c1) = +, we have c _ c1 in CCA. Moreover, (c1, s) ∈ z

′, for some s ∈ S,
as z′ is a configuration and c1 _ c1 in CCA. Again, from the fact that z′ is a
configuration, there must be (c, s) ∈ z′ for some s ∈ S. We have exhausted all
cases and conclude z′′ ∈ C(S)⊛ C(CCA) with θz′′ = π2z = y, as required to show
θ is surjective on configurations.
Injective: Abbreviate σ⊙ ccA to υ. Assume θx = θy, where x, y ∈ C(S⊙CCA).
Via the commutativity υ = σθ, we observe

υx = σθ x = σθ y = υy .

Recall by Proposition 4.2, that υ1x = ccA1π1⋃x = π1⋃x. It follows that

(c,∗) ∈⋃x ⇐⇒ c ∈ υ1x ⇐⇒ c ∈ υ1y ⇐⇒ (c,∗) ∈⋃ y .

Observe
(∗, s) ∈⋃x ⇐⇒ σ2(s) is defined & s ∈ θx ∶

“⇒” by the local injectivity of σ2, as p =def [(∗, s)]⋃x yields θ(p) ∈ θx and
s ∈ π2⋃x ⊆ θx with σ2(θ(p)) = σ2(s), so θ(p) = s; “⇐” as σ2(s) defined and

4.5. CONCURRENT STRATEGIES 59

s ∈ θx entails s = θ(p) for some p ∈ x, necessarily with top(p) = (∗, s). Hence

(∗, s) ∈⋃x ⇐⇒ σ2(s) is defined & s ∈ θx

⇐⇒ σ2(s) is defined & s ∈ θy

⇐⇒ (∗, s) ∈⋃ y .

Assuming (c, s) ∈ ⋃x we now show (c, s) ∈ ⋃ y. (The converse holds by
symmetry.) There is p ∈ x, such that (c, s) ∈ p. If top(p) = (∗, s ′) (also in

⋃ y as it is visible) then as π2 is rigid, s ≤ s′ and we must have (c′, s) ∈ ⋃ y.
Otherwise, top(p) = (d ,∗) and we can suppose (by taking p minimal) that
(c, s) ≤⋃x (d′, s′) _⋃x (d,∗). But then θ(p) = s′ ∈ θx = θy. Also s ≤S s

′, by the
rigidity of π2, and, as we have seen before, d′ = d with d′ −ve. Hence s′ is +ve
and as θy is a −ve extension of π2⋃ y we must have s′ ∈ π2⋃ y. Hence there is
(∗, s′) or (c′′, s′) in ⋃ y, and as s ≤S s

′ there is some (c′, s) ∈ ⋃ y. In both cases,

ccA2(c
′) = σ1(s) = ccA2(c), so c′ = c, and thus (c, s) ∈ ⋃ y.

We conclude ⋃x = ⋃ y, so x = y, as required for injectivity. ◻

4.5 Concurrent strategies

Define a strategy to be a pre-strategy which is receptive and innocent. We obtain
a bicategory, Strat, in which the objects are event structures with polarity—the
games, the arrows from A to B are strategies σ ∶ A + //B and the 2-cells are maps
of pre-strategies. The vertical composition of 2-cells is the usual composition of
maps of spans. Horizontal composition is given by the composition of strategies
⊙ (which extends to a functor on 2-cells via the functoriality of synchronized
composition). The isomorphisms expressing associativity and the identity of
copy-cat are those of Proposition 4.3 and Theorem 4.18 with its dual.

We remark for future use that composition of strategies respects less gen-
eral notions of 2-cell. The horizontal composition of rigid 2-cells is rigid. The
essential ingredients in showing this are that the product and pullback of event
structures preserve rigid maps when regarded as functor (from Corollary 3.29)
and that under appropriate conditions hiding as formalized through projection
preserves rigid maps (Proposition 3.35).

Proposition 4.19. Let σ ∶ S → A be a strategy in A and σ′ ∶ S′ → A a receptive
total map of event structures with polarity. Let f ∶ S → S′ be a total map of
event structures with polarity s.t. σ′f = σ. Then, f is receptive and innocent.
A fortiori if f is 2-cell from strategy σ to strategy σ′ in the bicategory of games
and strategies, then f is receptive and innocent.

Proof. We first show f is receptive. Assume x ∈ C(S) and fx ⊆− x′. Then
σ′fx ⊆− σ′x′, i.e. σx ⊆− σ′x′ in A. Hence as σ is receptive (existence part),
there is z ∈ C(S) such that σz = σ′x′. Now both fx ⊆ fz and fx ⊆ x′ with
σ′fz = σ′x′. From the receptivity of σ′ (uniqueness part) we obtain fz = x′, as
required.

60 CHAPTER 4. GAMES AND STRATEGIES

It remains to show f is innocent. Suppose s′ _ s and pol(s′) = + or pol(s) =
− in S. We require f(s′) _ f(s) in S′. As σ is innocent, σ(s′) _ σ(s) in
A. Being a map σ′ locally reflects causal dependency. So given that f(s′)
and f(s) both belong to the configuration f[s]S and σ′(f(s′)) _ σ′(f(s)) we
obtain f(s′) ≤ f(s). The depenency f(s′) ≤ f(s) must be realised by a chain of
immediate causal dependencies

f(s′) _ ⋯ _ f(s)

in S′. Suppose to obtain a contradiction, that the chain were of length greater
than one. Then, as f is total and reflects causal dependency locally w.r.t. [s],
we would obtain a chain

s′ _ ⋯ _ s

of length greater than one in S—contradicting s′ _ s. Consequently, f(s′) _
f(s), as required.

4.5.1 Alternative characterizations

Via saturation conditions

An alternative description of concurrent strategies exhibits the correspondence
between innocence and earlier “saturation conditions,” reflecting specific inde-
pendence, in [9, 10, 11]:

Proposition 4.20. A strategy in a game A exactly comprises a total map of
event structures with polarityσ ∶ S → A such that

(i) σx
a

−Ð⊂ & polA(a) = −⇒ ∃!s ∈ S. x
s

−Ð⊂ & σ(s) = a , for all x ∈ C(S), a ∈ A;

(ii)(+) If x
e

−Ð⊂x1
e′

−Ð⊂ & polS(e) = + in C(S) and σx
σ(e′)
−Ð⊂ in C(A), then x

e′

−Ð⊂
in C(S); and

(ii)(−) If x
e

−Ð⊂x1
e′

−Ð⊂ & polS(e
′) = − in C(S) and σx

σ(e′)
−Ð⊂ in C(A), then x

e′

−Ð⊂
in C(S).

Proof. Note that if x
e

−Ð⊂x1
e′

−Ð⊂ then either e co e′ or e _ e′. Condition (ii) is
a contrapositive reformulation of innocence. ◻

Via lifting conditions

Let x and x′ be configurations of an event structure with polarity. Write x ⊆+ x′

to mean x ⊆ x′ and pol(x′ ∖ x) ⊆ {+}, i.e. the configuration x′ extends the
configuration x solely by events of +ve polarity. With this notation in place we
can give an attractive characterization of concurrent strategies:

Lemma 4.21. A strategy in a game A comprises a total map of event structures
with polarity σ ∶ S → A such that

4.5. CONCURRENT STRATEGIES 61

(i) whenever y ⊆+ σx in C(A) there is a (necessarily unique) x′ ∈ C(S) so that
x′ ⊆ x & σx′ = y , i.e.

x′_

σ

��

⊆ x_

σ

��
y ⊆

+ σx ,

and
(ii) whenever σx ⊆− y in C(A) there is a unique x′ ∈ C(S) so that x ⊆ x′ & σx′ =
y , i.e.

x_

σ

��

⊆ x′_

σ

��
σx ⊆

− y .

Proof. Let σ ∶ S → A be a total map of event structures with polarity. It is
claimed that σ is a strategy iff (i) and (ii).

“Only if”: Lemma 4.5 directly implies (ii). To establish (i) it suffices to show
the seemingly weaker property (i)′ that

y
a

−Ð⊂σx & pol(a) = + Ô⇒ ∃x′ ∈ C(S). x′−Ð⊂x & σx′ = y

for a ∈ A,x ∈ C(S), y ∈ C(A). Then (i), with y ⊆+ σx, follows by considering a
covering chain y−Ð⊂⋯−Ð⊂σx. (The uniqueness of x is a direct consequence of

σ being a total map of event structures.) To show (i)′, suppose y
a

−Ð⊂σx with a
+ve. Then σ(s) = a for some unique s ∈ x with s +ve. Supposing s were not ≤-
maximal in x, then s _ s′ for some s′ ∈ x. By +-innocence a = σ(s) _ σ(s′) ∈ σx

implying a is not ≤-maximal in σx. This contradicts y
a

−Ð⊂σx. Hence s is ≤-
maximal and x′ =def x ∖ {s} ∈ C(S) with x′−Ð⊂x and σx′ = y.

“If”: Assume σ satisfies (i) and (ii). Clearly σ is receptive by (ii). We establish
innocence via Proposition 4.20.

Suppose x
s

−Ð⊂x1
s′

−Ð⊂x′ and pol(s) = + with σx
σ(s′)
−Ð⊂ y2. Then y2

σ(s)
−Ð⊂σx′ with

pol(σ(s)) = +. From (i) we obtain a unique x2 ∈ C(S) such that x2 ⊆ x′ and

σx2 = y2. As σ is a total map of event structures, we obtain x2
s

−Ð⊂x′ and

subsequently x
s′

−Ð⊂x2, as required by Proposition 4.20(ii)+.

Suppose x
s

−Ð⊂x1
s′

−Ð⊂x′ and pol(s′) = − with σx
σ(s′)
−Ð⊂ y2. The case where

pol(s) = + is covered by the previous argument: we obtain x
s′

−Ð⊂x2, as required
by Proposition 4.20(ii)−. Suppose pol(s) = −. We have

σx
σ(s′)
−Ð⊂ y2

σ(s)
−Ð⊂σx′ .

As σ is already known to be receptive, we obtain

x
e′

−Ð⊂x2
e

−Ð⊂x′′ & σx2 = y2 & σx′′ = σx′ .

62 CHAPTER 4. GAMES AND STRATEGIES

From the uniqueness part of (ii) we deduce x′′ = x′. As σ is a total map of event

structures, e = s and e′ = s′ ensuring x
s′

−Ð⊂ , as required by Proposition 4.20(ii)−.
◻

As its proof makes clear, condition (i) in Lemma 4.21 can be replaced by:
for all a ∈ A,x ∈ C(S), y ∈ C(A),

y
+

−Ð⊂σx Ô⇒ ∃x′ ∈ C(S). x′−Ð⊂x & σx′ = y , i.e.

x′_

σ

��

−Ð⊂ x_

σ

��
y +

−Ð⊂ σx ,

where the relation
+

−Ð⊂ signifies the covering relation induced by an event of
+ve polarity.

The proposition above generalises to the situation in which configurations
may be infinite, but first a lemma extending receptivity to possibly infinite
configurations.

Lemma 4.22. Let σ ∶ S → A be receptive and −-innocent. Then,

σx
a

−Ð⊂ & polA(a) = −⇒ ∃!s ∈ S. x
s

−Ð⊂ & σ(s) = a ,

for all x ∈ C∞(S), a ∈ A.

Proof. Suppose σx
a

−Ð⊂ and polA(a) = −. Then there is x0 ∈ C(S) with x0 ⊆ x

and σx0
a

−Ð⊂ . By receptivity, there is a unique s ∈ S such that x0
s

−Ð⊂ & σ(s) = a.
In fact, x ∪ {s} ∈ C∞(S). Suppose otherwise. Then there is x1 ∈ C(S) with

x0 ⊆ x1 ⊆ x for which x1 ∪ {s} ∉ C(S). But σx1
a

−Ð⊂ so there is a unique s1 ∈ S

such that x1
s1
−Ð⊂ & σ(s1) = a. Both [s) and [s1) are included in x1 so s = s1

by Lemma 4.4—a contradiction. Now that x ∪ {s} ∈ C∞(S) we have x
s

−Ð⊂ and

σ(s) = a. Uniqueness of s follows by Lemma 4.4: if also x
s′

−Ð⊂ and σ(s′) = a
then [s) ↑ [s′).

Corollary 4.23. A strategy in a game A comprises a total map of event struc-
tures with polarity σ ∶ S → A such that
(i) whenever y ⊆+ σx in C∞(A) there is a (necessarily unique) x′ ∈ C∞(S) so
that x′ ⊆ x & σx′ = y , i.e.

x′_

σ

��

⊆ x_

σ

��
y ⊆

+ σx ,

and

4.5. CONCURRENT STRATEGIES 63

(ii) whenever σx ⊆− y in C∞(A) there is a unique x′ ∈ C∞(S) so that x ⊆
x′ & σx′ = y , i.e.

x_

σ

��

⊆ x′_

σ

��
σx ⊆

− y .

Proof. Let σ ∶ S → A be a total map of event structures with polarity. It
is claimed that σ is a strategy iff (i) and (ii). The “If” case is obvious by
Lemma 4.21. “Only if”:
(i) Take x′ =def {s ∈ x ∣ σ(s) ∉ (σx) ∖ y}. Suppose s′ _ s in x. Then

σ(s′) ∈ (σx) ∖ y Ô⇒ σ(s) ∈ (σx) ∖ y

by +-innocence. Hence its contrapositive, viz.

σ(s) ∉ (σx) ∖ y Ô⇒ σ(s′) ∉ (σx) ∖ y ,

so that s ∈ x′ implies s′ ∈ x′. Thus, being down-closed and consistent, x′ ∈ C∞(S)
with σx′ = y from the definition of x′.
(ii) Let x′ ⊇ x be a ⊆-maximal x′ ∈ C∞(S) for which σx′ ⊆ y—this exists by
Zorn’s lemma. Then, σx ⊆− σx′ ⊆− y. Supposing σx′ ⊊− y there is a ∈ A with

polA(a) = − such that σx′
a

−Ð⊂ y1 ⊊− y. But, by Lemma 4.22, there is s ∈ S for

which x′
s

−Ð⊂ and σ(s) = a, contradicting the ⊆-maximality of x′. Hence σx′ = y.
Uniqueness of x′ follows as in the proof of Lemma 4.5. ◻

Via +-moves

A strategy is determined by its +-moves. More precisely, a strategy σ ∶ S → A
determines an additive function d ∶ C(S+) → C(A) given by d(x) = σ[x]S for
x ∈ C(S+) —by an additive function is meant one which preserves unions when
they exist. The event structure S+ is the projection of S to its purely +-ve
moves. Intuitively, d specifies the position in the game at which Player moves
occur. The function d determines the original strategy σ via the universal
property described in the proposition below.

Proposition 4.24. Let σ ∶ S → A be a receptive −-innocent pre-strategy. Define
q ∶ S → S+ to be the partial map of event structures with polarity mapping S to
its projection S+ comprising only the +ve events of S, so q y = y+ for y ∈ C(S).
Define the function d ∶ C(S+) → C(A) to act as d(x) = σ[x]S for x ∈ C(S+).
Then, d(qy) ⊆− σy for all y ∈ C(S), i.e.

S

σ ⊆
−

��

q // S+

d}}
A.

(1)

64 CHAPTER 4. GAMES AND STRATEGIES

[The dotted line indicates that d is not a map of event structures.]
Suppose f ∶ U → A is a total map and g ∶ U → S+ a partial map of event
structures with polarity such that d(gy) ⊆− fy for all y ∈ C(U), i.e.

U

f ⊆
−

��

g // S+

d}}
A.

(2)

Then, there is a unique total map of event structures with polarity θ ∶ U → S
such that f = σθ and g = qθ,

U

f ,,

θ //

g

��
S

σ ⊆
−

��

q
// S+

d}}
A.

(3)

Proof. We first check (1). Letting y ∈ C(S),

d(q y) = d(y+) = σ[y+]S ⊆− y .

Suppose (2). Define p ∶ C(U)→ C(S) by taking

p(z) =def [g z]S .

Clearly p is monotonic and

σp(z) = σ[g z]S = d(gz) ⊆− f z

for all z ∈ C(U). By Lemma 4.16, there is a unique total map of event structures
with polarity θ ∶ U → S such that

f = σθ and ∀z ∈ C(U). p(z) ⊆− θ z .

From the latter, [g z]S ⊆− θz from which g z = (g z)+ = (θ z)+, so g z = qθ z, for
all z ∈ C(U). Hence we have the commuting diagram (3). Noting

∀z ∈ C(U). g z = (θ z)+ ⇐⇒ [g z]S ⊆− θz ,

we see that θ is the unique map making (3) commute.

It follows that a strategy σ is determined up to isomorphism by its ‘position
function’ d specifying at what state of the game Player moves are made. The
position functions d which arise from receptive −-innocent strategies have been
characterised by Alex Katovsky [12]. We now give a (simplified if laborious)
proof of the characterisation of position functions for strategies.

W.r.t. σ ∶ S → A a strategy, define d as in the statement of the above
theorem, viz. dx = σ[x]S when x ∈ C(S+). Let E = S+. Define f ∶ E → A+ to be
the restriction of σ to the events E. Then,

4.5. CONCURRENT STRATEGIES 65

(i) the function d ∶ C(E)→ C(A) preserves unions when they exist;

(ii) the map f ∶ E → A+ is a total map of event structures such that f x = d(x)+

on configurations x ∈ C(E), and

(iii) for all s ∈ E, the event f(s) is the unique +ve event which is ≤A-maximal
in d [s]E . (There may be ≤A-maximal −ve events in d [s]E .)

Apart from (iii), the properties are obvious. We show (iii). Firstly, f(s) is ≤A-
maximal in d [s]S : otherwise as f reflects causal dependency locally we would
contradict that s is maximum in [s]S . Suppose a ∈ d [s]S and a is +ve in A.
Then a = f(s′) for some s′ ≤ s in S. Suppose s′ ≠ s. Then s′ _ s1 ≤ s in S. As
s′ is +ve, by +-innocence, f(s′) = σ(s′) _ σ(s1) ∈ d [s]S in A, so a = f(s′) is
not ≤A-maximal in d [s]S . Hence f(s) is the unique ≤A-maximal, +ve event in
d [s]S .

Let A and E be event structures with polarity, with E a purely +ve. Say a
function d ∶ C(E) → C(A) is a position function iff there is some map of event
structures f ∶ E → A+ such that (i), (ii) and (iii) above; once it exists, the map
f is determined uniquely by (ii).

Such a position function d determines a strategy σ ∶ S → A as follows. (The
proof uses the Scott order ⊑ introduced later in Section 7.1, with techniques
closely related to those of Chapter 9.)

Firstly, the family

F = {x∥y ∣ x ∈ C(E) & y ∈ C(A) & y ⊑A d(x)}

is stable:

Completeness. Let xi∥yi, i ∈ I, be a compatible subset of F . Then yi ⊑A
d(xi), i.e. y−i ⊇ d(xi)

− and y+i ⊆ d(xi)
+, for all i ∈ I. It follows that ⋃i y

−
i ⊇

⋃i d(xi)
− = d(⋃i xi)

− and ⋃i y
+
i ⊆ ⋃i d(xi)

+ = d(⋃i xi)
+, so ⋃i yi ⊑A d(⋃i xi),

giving (⋃i yi∥⋃i xi) ∈ F , as required for completeness.

Stability. Let xi∥yi, i ∈ I, be a non-empty, compatible subset of F . Then
yi ⊑A d(xi), i.e. y−i ⊇ d(xi)

− and y+i ⊆ d(xi)
+, for all i ∈ I. It follows that

⋂i y
−
i ⊇ ⋂i d(xi)

− and ⋂i y
+
i ⊆ ⋂i d(xi)

+, so

⋂
i

yi ⊑A ⋂
i

d(xi) . (1)

As d is monotonic,

d(⋂
i

xi) ⊆⋂
i

d(xi) .

But

d(⋂
i

xi)
+ = f⋂

i

xi =⋂
i

fxi =⋂
i

d(xi)
+

66 CHAPTER 4. GAMES AND STRATEGIES

—as f is a stable function on configurations—so

d(⋂
i

xi) ⊆
−
⋂
i

d(xi) ,

ensuring

⋂
i

d(xi) ⊑A d(⋂
i

xi) .

With (1), we obtain

⋂
i

yi ⊑A d(⋂
i

xi) ,

giving (⋂i yi∥⋂i xi) ∈ F , as required for stability.

Coincidence-free. Consider two distinct events in a configuration x∥y ∈ F , with

y ⊑A d(x). Take a covering chain ∅
e1
−Ð⊂x1⋯

en
−Ð⊂xn = x .

If the two distinct events are e, e′ ∈ x they lie within {e1, . . . , en} and we can
easily separate them by a subconfiguration xi∥y∩d(xi) of x∥y where xi contains
one of e, e′ but not the other.

Suppose the two distinct events are e ∈ x and a ∈ y. Then e = ei for some
i with 1 ≤ i ≤ n. If a ∉ d([ei]) then [ei]∥y ∩ d([ei]) is a subconfiguration of
x∥y which contains e but not a. If a ∈ d([ei]) and a = f(ei) then, as a =
f(ei) is +ve and maximal in d([ei]), we have (d([ei]) ∖ {a}) ⊑A d([ei]) so
[ei]∥(y ∩ (d([ei]) ∖ {a})) a subconfiguration of x∥y which contains contains e
but not a. If a ∈ d([ei)) then [ei)∥y∩d([ei)) is a subconfiguration of x∥y which
contains a but not e. It remains to consider the case a ∉ d([ei)) and a ∈ d([ei])
with a ≠ f(ei); this ensures that a is −ve. Then d([ei)) ⊇− [a]A ⊑A d([ei))
making [ei)∥(y ∩ (d([ei)) ∪ [a]A)) a subconfiguration of x∥y which contains a
but not e.

Finally, consider the case where the two distinct events are a, a′ ∈ y. If both
a, a′ are +ve, then a = f(ei) and a′ = f(ej), for some i, j where w.l.o.g. we may
suppose i < j; then the subconfiguration [ei]∥y ∩ d([ei]) ⊆ x∥y contains a but
not a′. If only one of them, say a is +ve we have a = f(ei), for some least
i, and a′ is −ve. If a′ ∈ d([ei)) then [ei)∥y ∩ d([ei)) is a subconfiguration of
x∥y which contains a′ but not a. Otherwise, a ∉ d([ei)) and a ∈ d([ei]). Then
d([ei)) ∪ [a′]A ⊇− d([ei)) making [ei)∥(y ∩ (d([ei)) ∪ [a]A)) a subconfiguration
of x∥y which contains a′ but not a. Suppose a, a′ are both −ve. If w.l.o.g. we
have a ∈ d(xi) and a′ ∉ d(xi), for some i, then xi∥y∩d(xi) is a subconfiguration
of x∥y which contains a but not a′. Suppose otherwise. Then either (i) there is
a least i for which both a, a′ ∈ d(xi) or (ii) a, a′ ∉ d(x). If (ii), as y ⊑A d(x), both
[a]A ∪ (y ∩d(x)) ⊑A d(x) and [a′]A ∪ (y ∩d(x)) ⊑A d(x) which provides us with
two subconfigurations x∥[a]A∪(y∩d(x)) and x∥[a′]A∪(y∩d(x)) of x∥y, at least
one of which separates a and a′. Suppose (i), that both a, a′ ∈ d(xi) while neither
a nor a′ is in d(xi−1). Then, [a]A ∪ d(xi−1) ⊇

− d(xi−1) and [a′]A ∪ d(xi−1) ⊇
−

d(xi−1) which provide us with subconfigurations xi−1∥[a]A ∪ (y ∩ d(xi−1)) and
xi−1∥[a

′]A ∪ (y ∩ d(xi−1)) of x∥y, at least one of which separates a and a′.
We conclude that F is a stable family.

4.5. CONCURRENT STRATEGIES 67

The map of stable families given by the inclusion F ↪ C(E∥A) induces
a pre-strategy σ1 ∶ Pr(F) → E∥A got by applying Pr —it won’t in general
be a strategy (by Example 9.19 taking d to be the function exampled there).
Projecting σ1 to A we obtain the required strategy σ in A associated with the
position function d:

Pr(F)

σ1

��

��

// S

σ

��

F

��
E∥A // A.

Above, E∥A → A is the partial map projecting to A and the map σ is the
defined part of its post-composition with σ1.

Above we have also indicated how σ1 regarded as a map of stable families
C(Pr(F)) → C(E∥A) is a composition of the counit C(Pr(F)) ≅ F of the ad-
junction between event structures and stable families and the inclusion map
F ↪ C(E∥A). This are helpful in showing that σ is a strategy. By Theo-
rem 7.7(ii), we should show the following:

σz = y & y′ ⊑A y Ô⇒ ∃!z′ ⊑S z. σz
′ = y′ ,

for all z ∈ C(S), y ∈ C(A). (The other properties required by Theorem 7.7 are
obvious.) To this end suppose z ∈ C(S) and y′ ⊑A y = σz. Then [z] short
for [z]Pr(F) is in C(Pr(F)). The image σ1[z] must have the form σ1[z] =
x∥y ∈ C(E∥A). Via the factorisation of σ1 through F we see that x∥y ∈ F , so
y ⊑A d(x). Consider now the configuration y′∥x ∈ C(E∥A). We have y′∥x ∈ F .
because y′ ⊑A y ⊑A d(x), so y′ ⊑A d(x). Clearly y′∥x ⊑ x∥y in F . From the
isomorphism C(Pr(F)) ≅ F we obtain w ⊑ [z] in Pr(F). The projection of w to
a configuration z′ of S is the unique configuration for which z′ ⊑S z and σz′ = y′.
This establishes σ as a strategy.

The events of S+ are built from prime configurations [e]∥d([e]) for e ∈ E,
giving the isomorphism between S+ and E. We show the position function of σ
coincides with the original position function d under this isomorphism. Let d′ be
the position function of σ, by definition, given by d′([s]) = σ[s]S for any s ∈ S+.
Hence, inspecting the above diagram, σ[s]S is the projection of σ1[s]Pr(F) to
A. But s = [e]∥d([e]) for some e ∈ E, so this yields d′([s]) = σ[s]S = d([e]), as
required.

We have shown:

Theorem 4.25. Let A be a game. A strategy σ ∶ S → A determines a position
function d ∶ C(S+) → C(A) given by d(x) = σ[x]S for x ∈ C(S+). Conversely,
any position function d ∶ C(E) → C(A) is so determined by a strategy, unique
up to isomorphism.

68 CHAPTER 4. GAMES AND STRATEGIES

4.6 Rigid-image strategies

It can be useful to replace a strategy by its rigid image in its game. As is to
be expected something can be lost in the process. Precisely what, is related
to notions of equivalence between strategies. For now suffice it to say, that
while ‘may’ behaviour is preserved, ‘must’ behaviour need not be. What is
gained is that we can replace the bicategory of games by a category; a rigid-
image strategy can be identified with its rigid image, a substructure of the
game so we have canonical representatives of isomorphism classes of rigid-image
strategies. Rigid images are important for equivalences on strategies. For several
important behavioural equivalences, a representative of an equivallence class
of strategies can be found in their sharing a common rigid image and some
additional structure (probability or stopping configurations, for instance).

A strategy σ ∶ S → A factors through its rigid image

S
f // S0

σ0 // A

where f is rigid epi (i.e. both rigid and surjective) and σ0 ∶ S0 → A is itself
a strategy. In a rigid-image strategy such as σ0 ∶ S0 → A the rigid image S0

is bounded to be a substructure of aug(A). This provides us with a charac-
terisation of rigid-image strategies. A rigid-image strategy in a game A is an
innocent, receptive substructure S0 of aug(A) in the sense that there is a rigid
inclusion i0 ∶ S0 ↪ aug(A) for which the composition εA ○ i0 is innocent and i0 is
receptive. In other words S0 is a down-closed subset of aug(A) which is closed
under possible Opponent moves and comprises only innocent augmentations of
A.

The following example shows that the composition of the rigid images of two
strategies is not necessarily a rigid image, both for composition of strategies with
and without hiding.

Example 4.26. Let B be the game

⊞

⊟ ⊞ ⊟ .
�llr

Let C be the game consisting of a single Player move ⊞. Let σ ∶ S → B be the
strategy sending S equal to

⊞ ⊞

⊟

_LLR > 99D

⊞ ⊟ .

�[[e

�llr

to B in the obvious way indicated by the layout. Let τ ∶ T → B⊥∥C be the

4.6. RIGID-IMAGE STRATEGIES 69

strategy sending T equal to

⊟
� ,,2⊞

⊞ ⊟
�llr ⊞

�llr

to B⊥∥C, which we can draw as

⊟ ⊞

⊞ ⊟ ⊞ ,
�llr

in the obvious way. Their composition, before hiding, is given by T ⊛ S:

⊞

⊚

. 33;

⊚
� ,,2⊞

⊚

_LLR > 99D

⊚
�llr ⊚ .

�llr

Both σ and τ are rigid-image strategies yet there composition both before and
after hiding is not. Before hiding the two Player moves in T⊛S over the common
move in C go to a common image. After hiding T⊙S looks like

⊞

⊞

with both moves going to the common sole move in C; while distinct they clearly
go to a common event in the rigid image. ◻

So the compositions, with and without hiding, τ0⊙σ0 and τ0 ⊛ σ0 of the
rigid images of two strategies σ and τ is not necessarily a rigid-image strategies,
we are forced to take the rigid image of the result. However once we do, the
operation of forming the rigid image of a strategy respects composition, both
with and without hiding: letting σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be strategies,
(τ⊙σ)0 = (τ0⊙σ0)0 and (τ ⊛ σ)0 = (τ0 ⊛ σ0)0.

Proposition 4.27. Let f ∶ A → B and g ∶ B → C be maps of event structures.
Assume that f is rigid and epi. Then, the rigid image of g equals the rigid image
of g ○ f .

Proof. Write the rigid image of g as Im(g) and the rigid image of gf as Im(gf).
From the universal property associated with the rigid image of gf there is a

70 CHAPTER 4. GAMES AND STRATEGIES

unique (necessarily rigid epi) map h ∶ Im(g)→ Im(gf) such that

A

((((

f // // B
g0 // // Im(g)

h

��

g1 // C

Im(gf)

<<

commutes. Write l =def hg0. Then l is rigid epi being the composition of such.
From the universal property associated with the rigid image of g there is a
unique (necessarily rigid epi) map k ∶ Im(gf)→ Im(g) such that

B

l "" ""

g0 // // Im(g)
g1 // C

Im(gf)

<<

k

OO

commutes. By uniqueness of the universal property of the rigid-image of g we
obtain kh = idIm(g). By uniqueness of the universal property of the rigid-image
of gf we obtain hk = idIm(gf). Hence the rigid images are isomorphic. Because
they are chosen to be substructures of aug(C) they are equal.

Corollary 4.28. If two strategies are connected by a 2-cell which is rigid epi,
then they share the same rigid image..

Lemma 4.29. Let σ ∶ S
f // S0

σ0 // A⊥∥B and τ ∶ T
g // T0

τ0 // B⊥∥C

be the rigid image factorisations of strategies σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C.
Then,

(i) (τ0 ⊛ σ0)0 = (τ ⊛ σ)0 and (ii) (τ0⊙σ0)0 = (τ⊙σ)0 .

Proof. (i) Consider the following compound pullback square in which all the
squares are pullbacks—we are ignoring polarites.

T ⊛ S
g⊛S

xx

T⊛f

&&
g⊛f

��

T0 ⊛ S

{{ T0⊛f &&

T ⊛ S0

g⊛S0xx $$
S∥C

f∥C ##

T0 ⊛ S0

yy &&��

A∥T

A∥g{{
S0∥C

σ0∥C %%

(T0 ⊛ S0)0

(τ0⊛σ0)0

��

A∥T0

A∥τ0yy
A∥B∥C

4.6. RIGID-IMAGE STRATEGIES 71

In the diagram we have inserted the rigid-image factorisation of the map T0 ⊛
S0 → A∥B∥C. Notice that in the uppermost square all the maps are rigid epi
being the pullbacks of such maps. Consequently g⊛f is rigid epi. Now applying
Corollary 4.28 we deduce that the rigid image of the map T ⊛ S coincides with
that of T0 ⊛ S0 in A∥B∥C and is therefore (T0 ⊛ S0)0. This ensures that

(τ0 ⊛ σ0)0 = (τ ⊛ σ)0 .

(ii) We can also deduce
(τ0⊙σ0)0 = (τ⊙σ)0 .

Recall we obtain τ⊙σ as the defined part of the partial map

T ⊛ S
τ⊛σ // A∥B∥C // A∥C

and similarly τ0⊙σ0 as the defined part of the partial map

T0 ⊛ S0
τ0⊛σ0 // A∥B∥C // A∥C

—in both cases the map A∥B∥C → A∥C is that eliding B. From the diagram
in (i) we see

τ ⊛ σ = (τ0 ⊛ σ0) ○ (g ⊛ f) .

In the commuting diagram

T ⊛ S

��

g⊛f // T0 ⊛ S0

��
T⊙S

τ⊙σ $$

g⊙f // T0⊙S0

τ0⊙σ0

��
A∥C

we have filled in the total map g⊙f given by the universal property of partial-
total factorisation. As in (i) above g⊛f is rigid epi. It follows that the map g⊙f
is also rigid epi: the map g⊙f preserves causal dependency because g⊛f does; it

is epi because the composite map T ⊛ S
g⊛f // T0 ⊛ S0

// T0⊙S0 is epi—the
latter projection map is epi. Now by Corollary 4.28 we deduce that τ0⊙σ0 and
τ⊙σ share the same rigid image in A∥C. Consequently (τ0⊙σ0)0 = (τ⊙σ)0.

Let Strat0 be the order-enriched category of rigid-image strategies defined
as follows. Its objects are games. Its maps are rigid-image strategies. Its 2-cells
are rigid 2-cells between strategies which are necessarily rigid inclusions as they
are between rigid images. Under composition composable strategies σ and τ are
taken to (τ⊙σ)0. The associativity law and identity laws for composition are
verfied using Lemma 4.29; recall that in a copycat strategy ccA ∶ CCA → A⊥∥A

72 CHAPTER 4. GAMES AND STRATEGIES

the underlying function of the map ccA acts as the identity on events; this
ensures that copycat strategies are rigid-image.

The operation of taking the rigid image of a strategy yields a functor from
Stratr, the bicategory of strategies with with rigid 2-cells, to Strat0. From
the results above composition is preserved. A rigid 2-cell f ∶ σ ⇒ τ is sent to a
rigid inclusion between their rigid images: by taking its image, any rigid 2-cell
between strategies factors into a 2-cell which is a rigid epi, followed by 2-cells
which is a rigid inclusion; strategies connected by a rigid epi share the same
rigid image, while rigid inclusions are preserved in taking the rigid image.

A concrete, relatively elementary, presentation of rigid-image strategies and
probabilistic rigid-image strategies is given in [?].

Chapter 5

Deterministic strategies

This chapter concentrates on the important special case of deterministic con-
current strategies and their properties. They are shown to coincide with Melliès
and Mimram’s receptive ingenuous strategies.

5.1 Definition

We say an event structure with polarityS is deterministic iff

∀X ⊆fin S. Neg[X] ∈ ConS Ô⇒ X ∈ ConS ,

where Neg[X] =def {s′ ∈ S ∣ pol(s′) = − & ∃s ∈X. s′ ≤ s}. In other words, S is
deterministic iff any finite set of moves is consistent when it causally depends
only on a consistent set of opponent moves. Say a strategy σ ∶ S → A is
deterministic if S is deterministic.

Lemma 5.1. An event structure with polarityS is deterministic iff

∀s, s′ ∈ S,x ∈ C(S). x
s

−Ð⊂ & x
s′

−Ð⊂ & pol(s) = + Ô⇒ x ∪ {s, s′} ∈ C(S) .

Proof. “Only if”: Assume S is deterministic, x
s

−Ð⊂ , x
s′

−Ð⊂ and pol(s) = +. Take
X =def x∪ {s, s′}. Then Neg[X] ⊆ x∪ {s} so Neg[X] ∈ ConS . As S is determin-
istic, X ∈ ConS and being down-closed X = x ∪ {s, s′} ∈ C(S).
“If”: Assume S satisfies the property stated above in the proposition. Let
X ⊆fin S with Neg[X] ∈ ConS . Then the down-closure [Neg[X]] ∈ C(S). Clearly
[Neg[X]] ⊆ [X] where all events in [X] ∖ [Neg[X]] are necessarily +ve. Sup-
pose, to obtain a contradiction, that X ∉ ConS . Then there is a maximal
z ∈ C(S) such that

[Neg[X]] ⊆ z ⊆ [X]

and some e ∈ [X] ∖ z, necessarily +ve, for which [e) ⊆ z. Take a covering chain

[e)
s1
−Ð⊂ z1

s2
−Ð⊂⋯

sk
−Ð⊂ zk = z .

73

74 CHAPTER 5. DETERMINISTIC STRATEGIES

As [e)
e

−Ð⊂ [e] with e +ve, by repeated use of the property of the lemma—

illustrated below—we obtain z
e

−Ð⊂ z′ in C(S) with [Neg[X]] ⊆ z′ ⊆ [X] , which
contradicts the maximality of z.

[e] −Ð⊂
s1

z′1 −Ð⊂
s2

⋯ −Ð⊂
sk

z′k = z′

[e)

−
Ð
⊂

e

−Ð⊂
s1

z1

−
Ð
⊂

e

−Ð⊂
s2

⋯

⋯

−Ð⊂
sk

zk

−
Ð
⊂

e

= z

So, above, an event structure with polarity can fail to be deterministic in
two ways, either with pol(s) = pol(s′) = + or with pol(s) = + & pol(s′) = −. In
general for an event structure with polarity A the copy-cat strategy can fail to
be deterministic in either way, illustrated in the examples below.

Example 5.2. (i) Take A to consist of two +ve events and one −ve event, with
any two but not all three events consistent. The construction of CCA is pictured:

⊟ _ ⊞

A⊥ ⊟ _ ⊞ A

⊞ ^ ⊟

Here ccA is not deterministic: take x to be the set of all three −ve events in
CCA and s, s′ to be the two +ve events in the A component.
(ii) Take A to consist of two events, one +ve and one −ve event, inconsistent
with each other. The construction CCA:

A⊥ ⊟ _ ⊞ A

⊞ ^ ⊟

To see CCA is not deterministic, take x to be the singleton set consisting e.g. of
the −ve event on the left and s, s′ to be the +ve and −ve events on the right.

5.2 The bicategory of deterministic strategies

We first characterize those games for which copy-cat is deterministic; they only
allow immediate conflict between events of the same polarity; there can be no
races between Player and Opponent moves.

Lemma 5.3. Let A be an event structure with polarity. The copy-cat strategy
ccA is deterministic iff A satisfies

∀x ∈ C(A). x
a

−Ð⊂ & x
a′

−Ð⊂ & pol(a) = + & pol(a′) = − Ô⇒ x ∪ {a, a′} ∈ C(A) .
(race-free)

Proof. “Only if”: Suppose x ∈ C(A) with x
a

−Ð⊂ and x
a′

−Ð⊂ where pol(a) = + and
pol(a′) = −. Construct y =def {(1, b) ∣ b ∈ x} ∪ {(1, a)} ∪ {(2, b) ∣ b ∈ x}. Then

5.2. THE BICATEGORY OF DETERMINISTIC STRATEGIES 75

y ∈ C(CCA) with y
(2,a)
−Ð⊂ and y

(2,a′)
−Ð⊂ , by Proposition 4.1(ii). Assuming CCA is

deterministic, we obtain y ∪ {(2, a), (2, a′)} ∈ C(CCA), so y ∪ {(2, a), (2, a′)} ∈
C(A⊥∥A). This entails x ∪ {a, a′} ∈ C(A), as required to show (race-free).
“If”: Assume A satisfies (race-free). It suffices to show for X ⊆fin CCA, with
X down-closed, that Neg[X] ∈ ConCCA implies X ∈ ConCCA . Recall for Z down-
closed, Z ∈ ConCCA iff Z ∈ ConA⊥∥A.

Let X ⊆fin CCA with X down-closed. Assume Neg[X] ∈ ConCCA . Observe

(i) {c ∣ c ∈X & pol(c) = −} ⊆ Neg[X] and

(ii) {c ∣ c ∈X & pol(c) = +} ⊆ Neg[X] as by Proposition 4.1, X being down-
closed must contain c if it contains c with pol(c) = +.

Consider X2 =def {a ∣ (2, a) ∈X}. Then X2 is a finite down-closed subset of A.
From (i),

X−
2 =def {a ∈X2 ∣ pol(a) = −} ∈ ConA .

From (ii),
X+

2 =def {a ∈X2 ∣ pol(a) = +} ∈ ConA .

We show (race-free) implies X2 ∈ ConA.
Define z− =def [X−

2] and z+ =def [X+
2]. Being down-closures of consistent

sets, z−, z+ ∈ C(A). We show z− ↑ z+ in C(A). First note z− ∩ z+ ∈ C(A). If
a ∈ z− ∖ z− ∩ z+ then pol(a) = −; otherwise, if pol(a) = + then a ∈ z+ a well as
a ∈ z− making a ∈ z− ∩ z+, a contradiction. Similarly, if a ∈ z+ ∖ z− ∩ z+ then
pol(a) = +. We can form covering chains

z− ∩ z+
p1

−Ð⊂x1

p2

−Ð⊂⋯
pk
−Ð⊂xk = z

− and z− ∩ z+
n1
−Ð⊂ y1

n2
−Ð⊂⋯

nl
−Ð⊂ yl = z

+

where each pi is +ve and each nj is −ve.
Consequently, by repeated use of (race-free), we obtain xk ∪ yl ∈ C(A),

i.e. z+ ∪ z− ∈ C(A), as is illustrated below. But X2 ⊆ z+ ∪ z−, so X2 ∈ ConA.
A similar argument shows X1 =def {a ∈ A⊥ ∣ (1, a) ∈X} ∈ ConA⊥ . It follows that
X ∈ ConA⊥∥A, so X ∈ ConCCA as required.

yl −Ð⊂
p1

x1 ∪ yl −Ð⊂
p2

x2 ∪ yl −Ð⊂
p3

⋯ −Ð⊂
pk

xk ∪ yl

⋮

−
Ð
⊂nl

⋮

−
Ð
⊂nl

⋮ ⋯

−
Ð
⊂nl

⋯ ⋯ ⋮

−
Ð
⊂nl

y1

−
Ð
⊂n2

−Ð⊂
p1

x1 ∪ y1

−
Ð
⊂n2

−Ð⊂
p2

x2 ∪ y1 −Ð⊂
p3

−
Ð
⊂n2

⋯ −Ð⊂
pk

xk ∪ y1

−
Ð
⊂n2

z− ∩ z+

−
Ð
⊂n1

−Ð⊂
p1

x1

−
Ð
⊂n1

−Ð⊂
p2

x2 −Ð⊂
p3

−
Ð
⊂n1

⋯ −Ð⊂
pk

xk

−
Ð
⊂n1

76 CHAPTER 5. DETERMINISTIC STRATEGIES

Exercise 5.4. Provide a direct proof of Lemma 5.3, i.e. show directly from the

property of configurations x of copy-cat that x
c

−Ð⊂ and x
c′

−Ð⊂ , with c having +ve
polarity in copy-cat, implies x∪ {c, c′} is a configuration of copy-cat. (Consider
different cases of c, c′, which component game the belong to and the polarity of
c′.) ◻

Proposition 5.5. Let A be an event structure with polarity. Then, A is
race-free iff

∀x,x1, x2 ∈ C(A). x ⊆+ x1 & x ⊆− x2 Ô⇒ x1 ∪ x2 ∈ C(A) .

Proof. “If” is obvious. “Only if”: by repeated use of (race-free) as in the
proof of Lemma 5.3.

Proposition 5.6. Let A be an event structure with polarity. Then, A is
race-free iff for all X, a ≤-down-closed finite subset of the A,

X ∈ Con ⇐⇒ X− ∈ Con & X+ ∈ Con .

Proof. “only if”: Suppose x
s

−Ð⊂ y & x
s′

−Ð⊂ y′ & polS(s) = −& polS(s
′) = +. Then,

taking X = x ∪ {s, s′} we obtain x ∪ {s, s′} a configuration, as required for A to
be race-free. “if”: from the X− ∈ Con and X+ ∈ Con we obtain

[X+] ⊇+ [X+] ∩ [X−] ⊆− [X−] ,

whereupon, if A is race-free, from Proposition 5.5 above, we obtain X = [X+]∪
[X−] a configuration, so in Con.

Via the next lemma, when games satisfy (race-free) we can simplify the
condition for a strategy to be deterministic.

Lemma 5.7. Let σ ∶ S → A be a strategy. Suppose x
s

−Ð⊂ y & x
s′

−Ð⊂ y′ & polS(s) =
−. . Then, σy ↑ σy′ in C(A) Ô⇒ y ↑ y′ in C(S) . A fortiori, if A satisfies
(race-free) then so does S.

Proof. Assume σy ↑ σy′ in C(A), so σy′
σ(s)
−Ð⊂σy∪σy′ in C(A). As σ(s) is −ve, by

receptivity, there is a unique s′′ ∈ S, necessarily −ve, such that σ(s′′) = σ(s) and

y′
s′′

−Ð⊂x ∪ {s′, s′′} in C(S). In particular, x ∪ {s′, s′′} ∈ C(S). By −-innocence,

we cannot have s′ _ s′′, so x ∪ {s′′} ∈ C(S). But now x
s

−Ð⊂ and x
s′′

−Ð⊂ with
σ(s) = σ(s′′) and both s, s′′ −ve and hence s′′ = s by the uniqueness part of
receptivity. We conclude that x ∪ {s′, s} ∈ C(S) so y ↑ y′.

Corollary 5.8. Assume A satisfies (race-free) of Lemma 5.3. A strategy
σ ∶ S → A is deterministic iff it is weakly-deterministic, i.e. for all +ve events
s, s′ ∈ S and configurations x ∈ C(S),

x
s

−Ð⊂ & x
s′

−Ð⊂ Ô⇒ x ∪ {s, s′} ∈ C(S) .

5.2. THE BICATEGORY OF DETERMINISTIC STRATEGIES 77

Proof. “Only if”: clear. “If”: Let x
s

−Ð⊂ and x
s′

−Ð⊂ where polS(s) = +. For S
to be deterministic we require x∪ {s, s′} ∈ C(S). The above assumption ensures

this when polS(s
′) = +. Otherwise polS(s

′) = − with σx
σ(s)
−Ð⊂ and σx

σ(s′)
−Ð⊂ . As A

satisfies (race-free), σx ∪ σ(s), σ(s′) ∈ C(A). Now by Lemma 5.7, x ∪ {s, s′} ∈
C(S).

Lemma 5.9. The composition τ⊙σ of deterministic strategies σ and τ is de-
terministic.

Proof. Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be deterministic strategies. The
composition T⊙S is constructed as Pr(C(T)⊛ C(S)) ↓ V , a synchronized com-
position of event structures S and T projected to visible events e ∈ V where
top(e) has the form (s,∗) or (∗, t).

We first note a fact about the effect of internal, or “invisible,” events not in
V on configurations of C(T)⊛ C(S). If

z
(s,t)
−Ð⊂w & z

(s′,t′)
−Ð⊂ w′ & w � w′ (1)

within C(T)⊛ C(S), then either

π1z
s

−Ð⊂π1w & π1z
s′

−Ð⊂π1w
′ & π1w � π1w

′ , (2)

within C(S), or

π2z
t

−Ð⊂π2w & π2z
t′

−Ð⊂π2w
′ & π2w � π2w

′ , (3)

within C(T). Assume (1). If t = t′ then σ(s) = τ(t) = τ(t′) = σ(s′) and we obtain
(2) as σ is a map of event structures. Similarly if s = s′ then (3). Supposing
s /= s′ and t /= t′ then if both (2) and (3) failed we could construct a configuration
z′ =def z ∪ {(s, t), (s′, t)} of C(T) ⊛ C(S), contradicting (1); it is easy to check
that z′ is a configuration of the product C(S) × C(T) and its events are clearly
within the restriction used in defining the synchronized composition.

We now show the impossibility of (2) and (3), and so (1). Assume (2) (case
(3) is similar). One of s or s′ being +ve would contradict S being deterministic.
Suppose otherwise, that both s and s′ are −ve. Then, because σ is a strategy,
by Lemma 5.7, we have

σ2π1w � σ2π1w
′

in C(B). Also, then both t and t′ are +ve ensuring π2w ↑ π2w
′ in C(T), as T is

deterministic. This entails

τ1π2w ↑ τ1π2w
′

in C(B⊥). But σ2π1w and τ1π2w, respectively σ2π1w
′ and τ1π2w

′, are the same
configurations on the common event structure underlying B and B⊥, of which
we have obtained contradictory statements of compatibility.

78 CHAPTER 5. DETERMINISTIC STRATEGIES

As (1) is impossible, it follows that

z
(s,t)
−Ð⊂w & z

(s′,t′)
−Ð⊂ w′ Ô⇒ w ↑ w′ (4)

within C(T)⊛ C(S).

Finally, we can show that τ⊙σ is deterministic. Suppose x
p

−Ð⊂ y and x
p′

−Ð⊂ y′

in C(T⊙S) with pol(p) = +. Then,

⋃x
e1
−Ð⊂ z1

e2
−Ð⊂⋯

ek
−Ð⊂ zk =⋃ y and ⋃x

e′1
−Ð⊂ z′1

e′2
−Ð⊂⋯

e′l
−Ð⊂ z′l =⋃ y′

in C(T) ⊛ C(S), where ek = top(p) and e′l = top(p′), and the events ei and e′j
otherwise have the form ei = (si, ti), when 1 ≤ i < k, and e′j = (s′j , t

′
j), when

1 ≤ j < l. By repeated use of (4) we obtain zk−1 ↑ z
′
l−1. (The argument is like

that ending the proof of Lemma 5.3, though with the minor difference that now

we may have ei = e
′
j .) We obtain w =def zk−1 ∪ z

′
l−1 ∈ C(T) ⊛ C(S) with w

ek
−Ð⊂

and w
e′l
−Ð⊂ and pol(ek) = +.

Now, w ∪ {ek, e
′
l} ∈ C(T)⊛ C(S) provided w ∪ {ek, e

′
l} ∈ C(S)× C(T). Inspect

the definition of configurations of the product of stable families in Section 3.3.1.
If ek and e′l have the form (s,∗) and (s′,∗) respectively, then determinacy of S
ensures that the projection π1w ∪ {s, s′} ∈ C(S) whence w ∪ {ek, e

′
l} meets the

conditions needed to be in C(S)× C(T). Similarly, w ∪ {ek, e
′
l} ∈ C(S)× C(T) if

ek and e′l have the form (∗, t) and (∗, t′). Otherwise one of ek and e′l has the
form (s,∗) and the other (∗, t). In this case again an inspection of the definition
of configurations of the product yields w ∪ {ek, e

′
l} ∈ C(S) × C(T). Forming the

set of primes of w ∪ {ek, e
′
l} in V we obtain x ∪ {p, p′} ∈ C(T⊙S).

This establishes that T⊙S is deterministic.

We thus obtain a sub-bicategory DGames of Strat; its objects satisfy
(race-free) of Lemma 5.3 and its maps are deterministic strategies.

5.3 A category of deterministic strategies

In fact, DGames is equivalent to an order-enriched category via the follow-
ing lemma. It says weakly-deterministic strategies in a game A are essentially
certain subfamilies of configurations C(A), for which we give a characterization
in the case of deterministic strategies. Recall, from Corollary 5.8, a weakly-
deterministic strategy σ ∶ S → A is a a strategy in which for all +ve events
s, s′ ∈ S and configurations x ∈ C(S),

x
s

−Ð⊂ & x
s′

−Ð⊂ Ô⇒ x ∪ {s, s′} ∈ C(S) .

Lemma 5.10. Let σ ∶ S → A be a weakly-deterministic strategy. Then,

σy ⊆ σx Ô⇒ y ⊆ x

5.3. A CATEGORY OF DETERMINISTIC STRATEGIES 79

for all x, y ∈ C(S). In particular, a weakly-deterministic strategy σ is injective
on configurations, i.e., σx = σy implies x = y, for all x, y ∈ C(S) (so is mono as
a map of event structures).

Proof. Let σ ∶ S → A be a weakly-deterministic strategy. We show
x ⊇ z−⊂y & σy ⊆ σx Ô⇒ y ⊆ x ,

for x, y, z ∈ C(S), by induction on ∣x ∖ z∣.

Suppose x ⊇ z
e

−Ð⊂ y and σy ⊆ σx. There are x1 and event e1 ∈ S such that

z
e1
−Ð⊂x1 ⊆ x. If σ(e1) = σ(e) then e1 and e have the same polarity; if −ve, e1 = e

by receptivity; if +ve, e1 = e because σ is weakly-deterministic, using its local
injectivity. Either way y ⊆ x. Suppose σ(e1) /= σ(e). We show in all cases
y ∪ {e1} ⊆ x, so y ⊆ x.

Case pol(e1) = pol(e) = +: As σ is weakly-deterministic, e1 and e are concurrent

giving x1
e

−Ð⊂ y ∪ {e1}. By induction we obtain y ∪ {e1} ⊆ x.

Case pol(e) = − or pol(e1) = −: From Lemma 5.7, we deduce that e1 and e are

concurrent yielding x1
e

−Ð⊂ y ∪ {e1}, and by induction y ∪ {e1} ⊆ x.

Another, simpler induction on ∣y ∖ z∣ now yields
x ⊇ z ⊆ y & σy ⊆ σx Ô⇒ y ⊆ x ,

for x, y, z ∈ C(S), from which the result follows (taking z to be, for instance, ∅
or x ∩ y). Injectivity of σ as a function on configurations is now obvious.

A deterministic strategy σ ∶ S → A determines, as the image of the configu-
rations C(S), a subfamily F =def σC(S) of configurations of C(A), satisfying:

reachability: ∅ ∈ F and if x ∈ F there is a covering chain ∅
a1
−Ð⊂x1

a2
−Ð⊂⋯

ak
−Ð⊂xk = x

within F ;

determinacy: If x
a

−Ð⊂ and x
a′

−Ð⊂ in F with polA(a) = +, then x ∪ {a, a′} ∈ F ;

receptivity: If x ∈ F and x
a

−Ð⊂ in C(A) and polA(a) = −, then x ∪ {a} ∈ F ;

+-innocence: If x
a

−Ð⊂x1
a′

−Ð⊂ & polA(a) = + in F and x
a′

−Ð⊂ in C(A), then x
a′

−Ð⊂
in F (here receptivity implies −-innocence);

cube: In F , x1

b

� p

e � �y1

b

� o
x

a

. �

b

� p

y
e � �z

x2

a

. �

e
� �y2

a

/ �

implies x1

e � �y1

b

� p
x

e � �

a

. �

b

� p

w

a

. �

b

� p

z

x2 e
� �y2

a

. �

Theorem 5.11. A subfamily F ⊆ C(A) satisfies the axioms above iff there is a
deterministic strategy σ ∶ S → A such that F = σC(S), the image of C(S) under
σ.

Proof. (Sketch) It is routine to check that F , the image σC(S) of a deterministic
strategy, satisfies the axioms. Conversely, suppose a subfamily F ⊆ C(A) satisfies
the axioms. We show F is a stable family. First note that from the axioms of

80 CHAPTER 5. DETERMINISTIC STRATEGIES

determinacy and receptivity we can deduce:

if x
a

−Ð⊂ and x
a′

−Ð⊂ in F with x ∪ {a, a′} ∈ C(A), then x ∪ {a, a′} ∈ F .

By repeated use of this property, using their reachability, if x, y ∈ F and x ↑ y
in C(A) then x ∪ y ∈ F ; the proof also yields a covering chain from x to x ∪ y
and from y to x ∪ y. (In particular, if x ⊆ y in F , then there is a covering chain
from x to y —a fact we shall use shortly.) Thus, if x ↑ y in F then x∪y ∈ F . As
also ∅ ∈ F , we obtain Completeness, required of a stable family. Coincidence-
freeness is a direct consequence of reachability. Repeated use of the cube axiom
yields

Cube: In F , x1

⊆

e � �y1

⊆

x1 ∩ x2

⊆

⊆

x1 ∪ x2
e � �y1 ∪ y2

x2

⊆

e
� �y2

⊆

implies

x1 ∩ x2
e � � .

We use Cube to show stability. Assume v ↑ w in F . Let z ∈ F be maximal such
that z ⊆ v,w. We show z = v ∩w. Suppose not. Then, forming covering chains
in F ,

z
c1
−Ð⊂ v1

c2
−Ð⊂⋯

ck
−Ð⊂ vk = v and z

d1
−Ð⊂w1

d2
−Ð⊂⋯

dl
−Ð⊂wl = w ,

there are ci and dj such that ci = dj , where we may assume ci is the earliest
event to be repeated as some dj . Write e =def ci = dj . Now, vi−1 ∩ wj−1 = z.
Also, being bounded above vi−1∪wj−1 ∈ F and vi∪wj ∈ F . We have an instance

of Cube: take x1 = vi−1, x2 = wj−1, y1 = vi and y2 = wj . Hence z
e

−Ð⊂ and
z ∪ {e} ⊆ x, y—contradicting the maximality of z. Therefore z = v ∩ w, as
required for stability.

Now we can form an event structure S =def Pr(F). The inclusion F ⊆ C(A)
induces a total map σ ∶ S → A for which F = σC(S). Note that −-innocence (viz.

if x
a

−Ð⊂x1
a′

−Ð⊂ & polA(a
′) = − in F and x

a′

−Ð⊂ in C(A), then x
a′

−Ð⊂ in F) is a direct
consequence of receptivity. That S is deterministic follows from determinacy,
that σ is a strategy from the axioms of receptivity and +-innocence.

We can thus identify deterministic strategies from A to B with subfamilies
of C(A⊥∥B) satisfying the axioms above. Through this identification we obtain
an order-enriched category of deterministic strategies (presented as subfamilies)
equivalent to DGames; the order-enrichment is via the inclusion of subfamilies.
As the proof of Theorem 5.11 above makes clear, in the characterization of those
subfamilies F corresponding to deterministic families, the cube axiom can be
replaced by

stability: if v ↑ w in F , then v ∩w ∈ F .

Chapter 6

Games people play

We briefly and incompletely examine special cases of nondeterministic concur-
rent games in the literature.

6.1 Categories for games

We remark that event structures with polarity appear to provide a rich environ-
ment in which to explore structural properties of games and strategies. There
are adjunctions

PAr � � //

��

⊺ PFr � � //⊺
oo

��

PEr � � //⊺
oo

PEt
oo

PA#
r �
� //⊺

?�

OO
⊢

PF#
r

oo ?�

OO
⊢

relating PEt, the category of event structures with polarity with total maps,
to subcategories PEr, with rigid maps, PFr of forest-like (or filiform) event
structures with rigid maps, and PAr, its full subcategory where polarities al-
ternate along a branch; in PF#

r and PA#
r distinct branches are inconsistent.

We shall mainly be considering games in PEt. Lamarche games and those of
sequential algorithms belong to PAr [13]. Conway games inhabit PF#

r , in fact
a coreflective subcategory of PEt as the inclusion is now full; Conway’s ‘sum’ is
obtained by applying the right adjoint to the ∥-composition of Conway games
in PEt. Further refinements are possible. The ‘simple games’ of [14, 15] belong
to PAr

−#, the coreflective subcategory of PA#
r comprising “polarized” games,

starting with moves of Opponent. The ‘tensor’ of simple games is recovered
by applying the right adjoint of PAr

−# ↪ PEt to their ∥-composition in PEt.
Generally, the right adjoints, got by composition, from PEt to the other cate-
gories fail to conserve immediate causal dependency. Such facts led Melliès et
al. to the insight that uses of pointers in game semantics can be an artifact of
working with models of games which do not take account of the independence
of moves [16, 11].

81

82 CHAPTER 6. GAMES PEOPLE PLAY

6.2 Related work—early results

6.2.1 Stable spans, profunctors and stable functions

The sub-bicategory of Strat where the events of games are purely +ve is equiv-
alent to the bicategory of stable spans [8]. In this case, strategies correspond to
stable spans:

S
σ1

~~

σ2

��
A⊥ B

←→ S+

σ−1

~~

σ+2

!!
A B ,

where S+ is the projection of S to its +ve events; σ+2 is the restriction of σ2 to
S+, necessarily a rigid map by innocence; σ−2 is a demand map taking x ∈ C(S+)
to σ−1 (x) = σ1[x] ; here [x] is the down-closure of x in S. Composition of stable
spans coincides with composition of their associated profunctors—see [17, 18, 3].
If we further restrict strategies to be deterministic (and, strictly, event structures
to be countable) we obtain a bicategory equivalent to Berry’s dI-domains and
stable functions [3].

6.2.2 Ingenuous strategies

Via Theorem 5.11, deterministic concurrent strategies coincide with the receptive
ingenuous strategies of Melliès and Mimram [11].

6.2.3 Closure operators

In [19], deterministic strategies are presented as closure operators. A determin-
istic strategy σ ∶ S → A determines a closure operator ϕ on possibly infinite
configurations C∞(S): for x ∈ C∞(S),

ϕ(x) = x ∪ {s ∈ S ∣ pol(s) = + & Neg[{s}] ⊆ x} .

Clearly ϕ preserves intersections of configurations and is continuous. The closure
operator ϕ on C∞(S) induces a partial closure operator ϕp on C∞(A). This in
turn determines a closure operator ϕ⊺p on C∞(A)⊺, where configurations are
extended with a top ⊺, cf. [19]: take y ∈ C∞(A)⊺ to the least, fixed point of ϕp
above y, if such exists, and ⊺ otherwise.

6.2.4 Simple games

“Simple games” [14, 15] arise when we restrict Strat to objects and deterministic
strategies in PAr

−#, described in Section 6.1. Conway games are tree-like, but
where only strategies need alternate and begin with opponent moves.

Chapter 7

Strategies as profunctors

This chapter relates strategies to profunctors, a generalization of relations from
sets to categories, and composition on strategies to composition of profunctors.
Profunctors themselves provide a rich framework in which to generalize domain
theory in a way that is arguably closer to that initiated by Dana Scott than
game semantics [20, 21]. Early connections are made with bistructures.

7.1 The Scott order in games

Let A be an event structure with polarity. The ⊆-order on its configurations
is obtained as compositions of two more fundamental orders (⊆+ ∪ ⊆−)+. For
x, y ∈ C∞(A),

x ⊆− y iff x ⊆ y & polA(y ∖ x) ⊆ {−} , and

x ⊆+ y iff x ⊆ y & polA(y ∖ x) ⊆ {+} .

We use ⊇− as the converse order to ⊆−. Define a new order, the Scott order,
between configurations x, y ∈ C∞(A), by

x ⊑A y ⇐⇒ ∃z ∈ C∞(A). x ⊇− z ⊆+ y .

As we now verify, when such a z exists it is necessarily x ∩ y. We shall see ⊑A
is a partial order, so together with ⊇− and ⊆+ we obtain a factorisation system.

Proposition 7.1. Let A be an event structure with polarity.
(i) If x ⊇− z ⊆+ y in C∞(A), then z = x ∩ y.
(ii) If x ⊆+ w ⊇− y in C∞(A), then x ⊇− x ∩ y ⊆+ y in C∞(A).
(iii) (C∞(A),⊑A) is a partial order.

Proof. (i) Assume x ⊇− z ⊆+ y in C∞(A). Then, x ∩ y ∈ C∞(A) and z ⊆ x ∩ y. In
particular, z ⊆ x ∩ y ⊆ x with z ⊆− x which implies

z ⊆− x ∩ y . (1)

83

84 CHAPTER 7. STRATEGIES AS PROFUNCTORS

Similarly, via z ⊆+ y, we obtain

z ⊆+ x ∩ y . (2)

Together (1) and (2) imply z = x ∩ y.

(ii) Assume x ⊆+ w ⊇− y in C∞(A). Clearly x ⊇ x ∩ y. Suppose a ∈ x and
polA(a) = +. Then a ∈ w, and because only −ve events are lost from w in w ⊇− y
we obtain a ∈ y, so a ∈ x ∩ y. It follows that x ⊇− x ∩ y, as required. Similarly,
x ∩ y ⊆+ y. Summed up diagrammatically:

⋅ ⊇
− ⋅ ⋅ ⊇

− ⋅

⋅

⊆
+

Ô⇒ ⋅ ⊇
−

⊆
+

⋅

⊆
+

(iii) Clearly ⊑ is reflexive. Supposing x ⊑ y, i.e. x ⊇− z ⊆+ y in C∞(A) we see
that x ⊆+ y and y ⊆− x. Hence if x ⊑ y and y ⊑ x in C∞(A) then x and y have
the same +ve and −ve events and so are equal. Transitivity follows from (ii):

z z

y ⊇
− ⋅

⊆
+

entails y ⊇
− ⋅

⊆
+

x ⊇
− ⋅

⊆
+

x ⊇
− ⋅ ⊇

−

⊆
+

⋅

⊆
+

An alternative proof of part (iii) of the proposition above, that ⊑A is a partial
order, follows directly from the following proposition. (When x is a subset of
events of an event structure with polarity, we use x− and x+ for its subset of
events of the indicated polarity.)

Proposition 7.2. Let A be an event structure with polarity. For x, y ∈ C∞(A),

x ⊑A y ⇐⇒ y− ⊆ x− & x+ ⊆ y+ , or equivalently,

x ⊑A y ⇐⇒ y− ⊆ x & x+ ⊆ y

Proof. We have
x ⊑A y ⇐⇒ x ⊇− x ∩ y ⊆+ y .

But
x ⊇− x ∩ y ⇐⇒ x+ ⊆ y+

—argue contrapositively—and similarly

x ∩ y ⊆+ y ⇐⇒ y− ⊆ x− ,

whence the result.

7.1. THE SCOTT ORDER IN GAMES 85

Proposition 7.3. (C∞(A),⊑A) is a complete partial order: any ω-chain

x0 ⊑A x1 ⊑A ⋯ ⊑A xn ⊑A ⋯

has a least upper bound

⊔
n∈ω

xn = (⋂
n∈ω

xn)
− ∪ (⋃

n∈ω

xn)
+ .

Proof. Consider an ω-chain

x0 ⊑A x1 ⊑A ⋯ ⊑A xn ⊑A ⋯ .

From the definition of ⊑A we deduce

x−0 ⊇ x−1 ⊇ ⋯ ⊇ x−n ⊇ ⋯ and x+0 ⊆ x+1 ⊆ ⋯ ⊆ x+n ⊆ ⋯ .

We first check that ⊔n∈ω xn =def (⋂n∈ω xn)
−∪(⋃n∈ω xn)

+ is a configuration of A.
Firstly, it is consistent: let X ⊆fin ⊔n∈ω xn; then X− ⊆ ⋂n∈ω xn so X− ⊆ xn for
all n ∈ ω, and X+ ⊆ ⋃n∈ω xn so, being finite, X+ ⊆ xm for some m ∈ ω; whence
X ⊆ xm ensuring X ∈ ConA. Secondly, it is down-closed, so a configuration.
Suppose a′ ≤A a ∈ ⊔n∈ω xn. If a is −ve, then a ∈ ⋂n∈ω xn so a ∈ xn whence a′ ∈ xn,
for all n ∈ ω; it follows that whatever the polarity of a′, we have a′ ∈ ⊔n∈ω xn.
If a is +ve, then a ∈ ⋃n∈ω xn so a ∈ xn for all n ≥m, for some m ∈ ω. As a′ ≤A a
we have a′ ∈ xn for all n ≥m. If a′ is +ve, clearly a′ ∈ (⋃n∈ω xn)

+ ⊆ ⊔n∈ω xn. If
a′ is −ve, we also have a′ ∈ an for all n ≤m, ensuring a′ ∈ (⋂n∈ω xn)

− ⊆ ⊔n∈ω xn.
Firstly, ⊔n∈ω xn is an upper bound: xm ⊑A ⊔n∈ω xn, for any m ∈ ω. Consider

the configuration
xm ∩ ⊔

n∈ω

xn = (⋂
n∈ω

xn)
− ∪ x+m ,

where the equality follows from the definition of ⊔n∈ω xn. Clearly

xm ⊇− (⋂
n∈ω

xn)
− ∪ x+m and (⋂

n∈ω

xn)
− ∪ x+m ⊆+ (⋂

n∈ω

xn)
− ∪ (⋃

n∈ω

xn)
+ = ⊔

n∈ω

xn ,

from which xm ⊑A ⊔n∈ω xn.
To show ⊔n∈ω xn is a least upper bound, suppose for y ∈ C∞(A) that xn ⊑A y

for all n ∈ ω, i.e.,
xn ⊇

− xn ∩ y ⊆
+ y ,

for all n ∈ ω. Then,

⋃
n∈ω

xn ⊇
−
⋃
n∈ω

xn ∩ y ,

so
(⋃
n∈ω

xn)
+ = (⋃

n∈ω

xn ∩ y)
+ .

Hence

⊔
n∈ω

xn = (⋃
n∈ω

xn)
+ ∪ (⋂

n∈ω

xn)
− ⊇− (⋃

n∈ω

xn ∩ y)
+ ∪ (⋂

n∈ω

xn ∩ y)
− = ⊔

n∈ω

xn ∩ y .

86 CHAPTER 7. STRATEGIES AS PROFUNCTORS

Also,

⋂
n∈ω

xn ∩ y ⊆
+ y ,

so
(⋂
n∈ω

xn ∩ y)
− = y− ,

which yields

⊔
n∈ω

xn ∩ y = (⋃
n∈ω

xn ∩ y)
+ ∪ (⋂

n∈ω

xn ∩ y)
− ⊆+ y .

We have obtained

⊔
n∈ω

xn ⊇
−
⊔
n∈ω

xn ∩ y ⊆+ y ,

i.e., ⊔n∈ω xn ⊑A y, as required.

The Scott order is bounded-complete:

Proposition 7.4. Assume that A is race-free. Let X ⊆ C∞(A) such that X ↑,
i.e. X has an upper bound in C∞(A), then X has a least upper bound

⊔X = (⋂X)− ∪ (⋃X)+

w.r.t. the Scott order ⊑A.

Proof. Once we understand X+ as {x+ ∣ x ∈X} and X− as {x− ∣ x ∈X}, we ob-
serve that (⋂X)− = ⋂(X−) and (⋃X)− = ⋃(X−), so we can drop the brackets.

Assume ∀x ∈ X. x ⊑A z where z ∈ C∞(A). We show ⋂X− ∪⋃X+ ∈ C∞(A).
By Proposition 7.2, it is then the lub as claimed. From the assumption and
Proposition 7.2,

(i) x− ⊇ z− and (ii) x+ ⊆ z+

for all x ∈X. It follows directly from (i) that

[z−] ⊆ [⋂X−] . 1

It also follows from (ii) that

[z−] ⊆+ [⋃X+] . 2

To see this, note by (ii) that any −ve event in x+ is in z; so this also applies to

⋃X+ = ⋃{x+ ∣ x ∈X},i.e. any −ve event in ⋃X+ is in z.
Consider the maximal w ∈ C∞(A) such that

[z−] ⊆ w ⊆ [⋂X−]

with
w ⊆+ w ∪ [⋃X+] ∈ C∞(A) .

Such a w exists by Zorn’s lemma; the properties hold of [z−] and of the union
of any chain of configurations satisfying the properties will be a configuration
satisfying the properties.

7.2. STRATEGIES AS PRESHEAVES 87

Suppose w ≠ [⋂X−]. Then

w
a

−Ð⊂w′ ⊆ [⋂X−]

for some a ∈ A and w′ = w ∪ {a} ∈ C∞(A). If a is −ve,

w′ ∪ [⋂X−] ∈ C∞(A) ,

as A is race-free. This contradicts the maximality of w. But if a is +ve, we
must have a ∈ ⋃X+ so

w′ ⊆ w′ ∪ [⋃X+] = w ∪ [⋃X+] ∈ C∞(A) ,

which again contradicts the maximality of w. We conclude that w = [⋂X−] and
that

[⋂X−] ∪ [⋃X+] ∈ C∞(A) ,

as required.

The assumption that A is race-free is necessary. Consider A to consist of
one Opponent event ⊟ and two Player moves ⊞1 and ⊞2 with trivial causal
dependency and consistency so any two events are consistent while the three
are not. Both {⊟,⊞1} ⊑ {⊞1,⊞2} and {⊟,⊞2} ⊑ {⊞1,⊞2}. However, the tentative
lub in this case would be {⊟,⊞1,⊞2} which is not a configuration.

It is tempting to think that when A is race-free and countable the Scott order
(C∞(A),⊑A) forms a Scott domain (though a Scott domain without necessarily
a bottom element). For this we would need (C∞(A),⊑A) to be ω-algebraic.
This is not the case. Consider A comprising ω parallel copies ⊞n _ ⊟n. Let x
be the configuration consisting of all its events. If y ⊑A x then y = x. To see
this observe that y ⊑A x implies y− ⊇ x− which by the downclosure of y implies
y = x. If (C∞(A),⊑A) were to be algebraic x would be the directed union of
isolated (finite) elements ⊑A-below it; this could only be so were x isolated.
Similarly any downclosed subset of x would be isolated, However there would
then be uncountatbly many isolated elements of (C∞(A),⊑A), contradicting
ω-algebraicity.

We conclude this section with a neat alternative construction of the copycat
strategy on a game A.

Proposition 7.5. Let

F = {x∥y ∈ C(A⊥∥A) ∣ y ⊑A x} .

Then, F is a stable family for which Pr(F) ≅ CCA.

7.2 Strategies as presheaves

Let A be an event structure with polarity. We shall show how strategies in A
correspond to certain fibrations, so presheaves, over the order (C(A),⊑A). We
concentrate on discrete fibrations over partial orders.

88 CHAPTER 7. STRATEGIES AS PROFUNCTORS

Definition 7.6. A discrete fibration over a partial order (Y,⊑Y) is a partial
order (X,⊑X) and an order-preserving function f ∶X → Y such that

∀x ∈X,y′ ∈ Y. y′ ⊑Y f(x) Ô⇒ ∃!x′ ⊑X x. f(x′) = y′ .

Via the Scott order we can recast strategies σ ∶ S → A as those discrete
fibrations F ∶ (C(S),⊑S) → (C(A),⊑A) which preserve ∅, ⊇− and ⊆+ in the
sense that F (∅) = ∅ while x ⊇− y implies F (x) ⊇− F (y), and x ⊆+ y implies
F (x) ⊆+ F (y), for x, y ∈ C(S):

Theorem 7.7. (i) Let σ ∶ S → A be a strategy in game A. The map σ“ taking a
finite configuration x ∈ C(S) to σx ∈ C(A) is a discrete fibration from (C(S),⊑S)
to (C(A),⊑A) which preserves ∅, ⊇− and ⊆+.
(ii) Suppose F ∶ (C(S),⊑S) → (C(A),⊑A) is a discrete fibration which preserves
∅, ⊇− and ⊆+. There is a unique strategy σ ∶ S → A such that F = σ“.

Proof. (i) That σ“ forms a discrete fibration is a direct corollary of Lemma 4.21.
As a map of event structures with polarity, σ“ automatically preserves ∅, ⊇−

and ⊆+. (ii) Assume F is a discrete fibration preserving ∅, ⊇− and ⊆+. First
observe a consequence, that if x ⊆+ x′ in C(S) and F (x) ⊆+ y′′ ⊆ F (x′) in C(A),
then there is a unique x′′ ∈ C(S) such that x ⊆+ x′′ ⊆ x′ and F (x′′) = y′′. (An

analogous observation holds with + replaced by −.) Suppose now x
+

−Ð⊂x′ in

C(S)—where we write x
+

−Ð⊂x′ to abbreviate x
s

−Ð⊂x′ for some +ve s ∈ S. As F

preserves ⊆+, F (x) ⊆+ F (x′). The observation implies F (x)
+

−Ð⊂F (x′) in C(A).

Similarly, x
−

−Ð⊂x′ implies F (x)
−

−Ð⊂F (x′).

Define the relation ≈ between prime intervals [x,x′], where x−⊂x′, as the least
equivalence relation such that [x,x′] ≈ [y, y′] if x−⊂y and x′−⊂y′ with y ≠ x′. For

configurations of an event structure, [x,x′] ≈ [y, y′] iff x
e

−Ð⊂x′ and y
e

−Ð⊂ y′ for
some common event e. As F preserves coverings it preserves ≈. Consequently
we obtain a well-defined function σ ∶ S → A by taking s to a if an instance

x
s

−Ð⊂x′ is sent to F (x)
a

−Ð⊂F (x′). Clearly σ preserves polarities.

By induction on the length of covering chains ∅
s1
−Ð⊂x1

s2
−Ð⊂⋯

sn
−Ð⊂xn = x and

the fact that F preserves ∅ and coverings, ∅ = F (∅)
σ(s1)
−Ð⊂ F (x1)

σ(s2)
−Ð⊂⋯

σ(sn)
−Ð⊂ F (xn) =

F (x) with σx = F (x) ∈ C(A). Moreover we cannot have σ(si) = σ(sj) for
distinct i, j without contradicting F preserving coverings. This establishes
σ ∶ S → A as a total map of event structures with polarity. The assumed prop-
erties of F directly ensure that σ satisfies the two conditions of Lemma 4.21
required of strategy.

As discrete fibrations correspond to presheaves, Theorem 7.7 entails that
strategies σ ∶ S → A correspond to (certain) presheaves over (C(A),⊑A)—
the presheaf for σ is a functor (C(A),⊑A)

op → Set sending y to the fibre
{x ∈ C(S) ∣ σx = y}.

7.3. STRATEGIES AS PROFUNCTORS 89

7.3 Strategies as profunctors

A strategy
σ ∶ A + //B

determines a discrete fibration over

(C(A⊥∥B),⊑A⊥∥B) .

But
(C(A⊥∥B),⊑A⊥∥B) ≅ (C(A⊥),⊑A⊥) × (C(B),⊑B) (1)

≅ (C(A),⊑A)
op × (C(B),⊑B) . (2)

The first step (1) relies on the correspondence

x↔ ({a ∣ (1, a) ∈ x}, {b ∣ (2, b) ∈ x})

between a configuration of A⊥∥B and a pair, with left component a configuration
of A⊥ and right component a configuration of B. In the last step (2) we are
using the correspondence between configurations of A⊥ and A induced by the
correspondence a↔ a between their events: a configuration x of A⊥ corresponds
to a configuration x =def {a ∣ a ∈ x} of A. Because A⊥ reverses the roles of +
and − in A, the order x ⊑A⊥ y in C(A⊥),

y

x

⊑

⊇
− x ∩ y ,

⊆
+

corresponds to the order y ⊑A x, i.e. x ⊑op
A y, in C(A),

y

x

⊑

⊇
+ x ∩ y .

⊆
−

It follows that a strategy

σ ∶ S → A⊥∥B

determines a discrete fibration

σ“ ∶ (C(S),⊑S)→ (C(A),⊑A)
op × (C(B),⊑B)

where
σ“(x) = (σ1x, σ2x) ,

for x ∈ C(S). The fibration can be vewed as a presheaf over (C(A),⊑A)
op ×

(C(B),⊑B)—it assigns the set

{x ∈ C(S) ∣ σ1x = v & σ2x = z}

90 CHAPTER 7. STRATEGIES AS PROFUNCTORS

to the pair (v, z) ∈ C(A)op × C(B). One way to define a profunctor from
(C(A),⊑A) to (C(B),⊑B) is as a discrete fibration over (C(A),⊑A)

op × (C(B),⊑B).
Hence the strategy σ determines a profunctor1

σ“ ∶ (C(A),⊑A) + // (C(B),⊑B) .

7.4 Composition of strategies and profunctors

The operation from strategies σ to profunctors σ“ preserves identities:

Lemma 7.8. Let A be an event structure with polarity. For x ∈ C∞(A⊥∥A),

x ∈ C∞(CCA) iff x2 ⊑A x1 ,

where x1 = {a ∈ A⊥ ∣ (1, a) ∈ x} and x2 = {a ∈ A ∣ (2, a) ∈ x}.

Proof. Let x ∈ C∞(A⊥∥A). From the dependency within copy-cat of the +ve
events a ∈ A on corresponding −ve events a ∈ A⊥, and vice versa, as expressed
in Proposition 4.1, we deduce: x ∈ C∞(CCA) iff

(i) x+1 ⊇ x+2 and (ii) x−1 ⊆ x−2 ,

where z+ = {a ∈ z ∣ polA(a) = +} and z− = {a ∈ z ∣ polA(a) = −} for z ∈ C∞(A).
****THIS REPEATS PROP7.2**** It remains to argue that (i) and (ii) iff

x2 ⊇− x1 ∩ x2 ⊆+ x1. “Only if”: Assume (i) and (ii). Clearly, x1 ∩ x2 ⊆ x1.
Suppose a ∈ x1 with polA(a) = −. By (ii), a ∈ x2. Consequently, x1 ∩ x2 ⊆+ x1.
Similarly, (i) entails x2 ⊇− x1 ∩ x2. “If”: To show (i), let a ∈ x+2 . Then as
x2 ⊇

− x1 ∩ x2 ensures only −ve events are lost in moving from x2 to x1 ∩ x2, we
see a ∈ x1 ∩ x2, so a ∈ x+1 . The proof of (ii) is similar.

Corollary 7.9. Let A be an event structure with polarity. The profunctor ccA“
of the copy-cat strategy ccA is an identity profunctor on (C(A),⊑A).

Proof. The profunctor ccA“ ∶ (C(A),⊑A) + // (C(A),⊑A) sends x ∈ C(CCA) to
(x1, x2) ∈ (C(A),⊑A)

op × (C(A),⊑A) precisely when x2 ⊑A x1. It is thus an
identity on (C(A),⊑A).

We now relate the composition of strategies to the standard composition of
profunctors. Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be strategies, so σ ∶ A + //B
and τ ∶ B + //C. Abbreviating, for instance, (C(A),⊑A) to C(A), strategies
σ and τ give rise to profunctors σ“ ∶ C(A) + //C(B) and τ“ ∶ C(B) + //C(C).
Their composition is the profunctor τ“ ○ σ“ ∶ C(A) + //C(C) built as a discrete

1Most often a profunctor from (C(A),⊑A) to (C(B),⊑B) is defined as a functor
(C(A),⊑A) × (C(B),⊑B)

op → Set, i.e., as a presheaf over (C(A),⊑A)
op × (C(B),⊑B), and as

such corresponds to a discrete fibration.

7.4. COMPOSITION OF STRATEGIES AND PROFUNCTORS 91

fibration from the discrete fibrations σ“ ∶ C(S)→ C(A)op×C(B) and τ“ ∶ C(T)→
C(B)op × C(C).

First, we define the set of matching pairs,

M =def {(x, y) ∈ C(S) × C(T) ∣ σ2x = τ1y} ,

on which we define ∼ as the least equivalence relation for which

(x, y) ∼ (x′, y′) if x ⊑S x
′ & y′ ⊑T y &

σ1x = σ1x
′ & τ2y

′ = τ2y .

Define an order on equivalence classes M/ ∼ by:

m ⊑m′ iff m = {(x, y)}∼ & m′ = {(x′, y′)}∼ &

x ⊑S x
′ & y ⊑T y

′ &

σ2x = σ2x
′ & τ1y = τ1y

′ ,

for some matching pairs (x, y), (x′, y′)—so then σ2x = σ2x
′ = τ1y = τ1y′.

Exercise 7.10. Show that ⊑ above is transitive, so a partial order on M/ ∼.
Verify that τ“ ○ σ“ is a discrete fibration. ◻

Lemma 7.11. On matching pairs, define

(x, y) ∼1 (x′, y′) iff ∃s ∈ S, t ∈ T. x
s

−Ð⊂x′ & y
t

−Ð⊂ y′ & σ2(s) = τ1(t) .

The smallest equivalence relation including ∼1 coincides with the relation ∼.

Proof. From their definitions, ∼1 is included in ∼. To prove the converse, it
suffices to show that matching pairs (x, y), (x′, y′) satisfying

x ⊑S x
′ & y′ ⊑T y &

σ1x = σ1x
′ & τ2y

′ = τ2y ,

—the clause used in the definition ∼ —are in the equivalence relation generated
by ∼1. Take a covering chain

x−⊏Sx1−⊏S⋯xm−⊏Sx
′

in (C(S),⊑S). Here −⊏S is the covering relation w.r.t. the order ⊑s, so x−⊏Sx1

means x,x1 are distinct and x ⊑S x1 with nothing strictly in between. Via the
map σ we obtain

σ2x−⊏Bσ2x1−⊏B⋯σ2xm−⊏Bσ2x
′

in C(B) where σ2x = τ1y and σ2x
′ = τ1y′. Via the discrete fibration τ“ we obtain

a covering chain in the reverse direction,

y⊐−T y1⊐−T⋯ym⊐−T y
′

in (C(T),⊑T), where each each (xi, yi), for 1 ≤ i ≤ m, is a matching pair.
Moreover, (xi, yi) ∼1 (xi+1, yi+1) at each i with 1 ≤ i ≤ m. Hence (x, y) and
(x′, y′) are in the equivalence relation generated by ∼1.

92 CHAPTER 7. STRATEGIES AS PROFUNCTORS

The profunctor composition τ“ ○ σ“ is given as the discrete fibration

τ“ ○ σ“ ∶ M/ ∼ → C(A)op × C(C)

acting so

{(x, y)}∼ ↦ (σ1x, τ2y) .

It is not the case that (τ⊙σ)“ and τ“ ○ σ“ coincide up to isomorphism.
The profunctor composition τ“ ○ σ“ will generally contain extra equivalence
classes {(x, y)}∼ for matching pairs (x, y) which are “unreachable.” Although
σ2x = z = τ1y automatically for a matching pair (x, y), the configurations x and
y may impose incompatible causal dependencies on their interface z so never be
realized as a configuration in the synchronized composition C(T) ⊛ C(S), used
in building the composition of strategies τ⊙σ.

Example 7.12. Let A and C both be the empty event structure ∅. Let B
be the event structure consisting of the two concurrent events b1, assumed −ve,
and b2, assumed +ve in B . Let the strategy σ ∶ ∅ + //B comprise the event
structure s1 _ s2 with s1 −ve and s2 +ve, σ(s1) = b1 and σ(s2) = b2. In B⊥ the
polarities are reversed so there is a strategy τ ∶ B + //∅ comprising the event
structure t2 _ t1 with t2 −ve and t1 +ve yet with τ(t1) = b1 and τ(t2) = b2.
The equivalence class {(x, y)}∼, where x = {s1, s2} and y = {t1, t2}, would be
present in the profunctor composition τ“ ○σ“ whereas τ⊙σ would be the empty
strategy and accordingly the profunctor (τ⊙σ)“ only has a single element, ∅.

Definition 7.13. For (x, y) a matching pair, define

x ⋅ y =def{(s,∗) ∣ s ∈ x & σ1(s) is defined}∪

{(∗, t) ∣ t ∈ y & τ2(t) is defined}∪

{(s, t) ∣ s ∈ x & t ∈ y & σ2(s) = τ1(t)}

Say (x, y) is reachable if x ⋅ y ∈ C(T)⊛ C(S), and unreachable otherwise.
For z ∈ C(T)⊛ C(S) say a visible prime of z is a prime of the form [(s,∗)]z,

for (s,∗) ∈ z, or [(∗, t)]z, for (∗, t) ∈ z.

Lemma 7.14. (i) If (x, y) is a reachable matching pair and (x, y) ∼ (x′, y′),
then (x′, y′) is a reachable matching pair;
(ii) For reachable matching pairs (x, y), (x′, y′), (x, y) ∼ (x′, y′) iff x ⋅ y and
x′ ⋅ y′ have the same visible primes.

Proof. We use the characterization of ∼ in terms of the single-step relation ∼1

given in Lemma 7.11.
(i) Suppose (x, y) ∼1 (x′, y′) or (x′, y′) ∼1 (x, y). By inspection of the construc-
tion of the product of stable families in Section 3.3.1, if x ⋅ y ∈ C(T)⊛C(S) then
x′ ⋅ y′ ∈ C(T)⊛ C(S).

7.4. COMPOSITION OF STRATEGIES AND PROFUNCTORS 93

(ii) “If”: Suppose x ⋅ y and x′ ⋅ y′ have the same visible primes, forming the
set Q. Then z =def ⋃Q ∈ C(T) ⊛ C(S), being the union of a compatible set of
configurations in C(T)⊛ C(S). Moreover, z ⊆ x ⋅ y, x′ ⋅ y′. Take a covering chain

z
e1
−Ð⊂⋯zi

ei
−Ð⊂ zi+1

en
−Ð⊂ x ⋅ y

in C(T) ⊛ C(S). Each (π1zi, π2zi) is a matching pair, from the definition of

C(T)⊛C(S). Necessarily, ei = (si, ti) for some si ∈ S, ti ∈ T , with σ2(si) = τ1(ti),
again by the definition of C(T)⊛ C(S). Thus

(π1zi, π2zi) ∼1 (π1zi+1, π2zi+1) .

Hence (π1z, π2z) ∼ (x, y), and similarly (π1z, π2z) ∼ (x′, y′), so (x, y) ∼ (x′, y′).

“Only if”: It suffices to observe that if (x, y) ∼1 (x′, y′), then x ⋅ y and x′ ⋅ y′

have the same visible primes. But if (x, y) ∼1 (x′, y′) then x ⋅ y
(s,t)
−Ð⊂ x′ ⋅ y′, for

some s ∈ S, t ∈ T , and no visible prime in x′ ⋅ y′ contains (s, t).

Lemma 7.15. Let σ ∶ A + //B and τ ∶ B + //C be strategies. Defining

ϕσ,τ ∶ C(T⊙S)→M/ ∼ by ϕσ,τ(z) = {(Π1z,Π2z)}∼ ,

where Π1z = π1⋃ z and Π2z = π2⋃ z, yields an injective, order-preserving func-
tion from (C(T⊙S),⊑T⊙S) to (M/ ∼,⊑)—its range is precisely the equivalence
classes {(x, y)}∼ for reachable matching pairs (x, y). The diagram

(C(T⊙S),⊑T⊙S)

(τ⊙σ)“

��

ϕσ,τ // (M/ ∼, ⊑)

τ“○σ“uu
(C(A),⊑A)

op × (C(C),⊑C)

commutes.

Proof. For z ∈ C(T⊙S), we obtain that ϕσ,τ(z) = (Π1z,Π2z) = (π1⋃ z, π2⋃ z)
is a matching pair, from the definition of C(T)⊛ C(S); it is clearly reachable as
π1⋃ z ⋅ π2⋃ z = ⋃ z ∈ C(T)⊛ C(S). For any reachable matching pair (x, y) let z
be the set of visible primes of x ⋅ y. Then, z ∈ C(T⊙S) and, by Lemma 7.14(ii),
(Π1z,Π2z) ∼ (x, y) so ϕσ,τ(z) = {(x, y)}∼. Injectivity of ϕσ,τ follows directly
from Lemma 7.14(ii).

To show that ϕσ,τ is order-preserving it suffices to show if z−⊏z′ in (C(T⊙S),⊑)
then ϕσ,τ(z) ⊑ ϕσ,τ(z

′) in (M/ ∼,⊑). (The covering relation −⊏ is the same as

that used in the proof of Lemma 7.11.) If z−⊏z′ then either z
p

−Ð⊂ z′, with p +ve,

or z′
p

−Ð⊂ z, with p −ve, for p a visible prime of C(T)⊛ C(S), i.e. with top(p) of
the form (s,∗) or (∗, t). We concentrate on the case where p is +ve (the proof
when p is −ve is similar). In the case where p is +ve,

Π1z ⋅Π2z =⋃ z ⊆⋃ z′ = Π1z
′ ⋅Π2z

′

94 CHAPTER 7. STRATEGIES AS PROFUNCTORS

in C(T)⊛ C(S) and there is a covering chain

⋃ z = w0

(s1,t1
−Ð⊂ w1⋯

(sn,tn)
−Ð⊂ wn

top(p)
−Ð⊂ ⋃ z′

in C(T)⊛ C(S). Each wi, for 0 ≤ i ≤m, is associated with a reachable matching
pair (π1wi, π2wi) where π1wi ⋅π2wi = wi. Also (π1wi, π2wi) ∼1 (π1wi+1, π2wi+1),
for 0 ≤ i <m. Hence (Π1z,Π2z) ∼ (π1wn, π2wn), by Lemma 7.11(ii). If top(p) =

(s,∗) then π1wn
s

−Ð⊂Π1z
′, with s +ve, and π2wn = Π2z

′. If top(p) = (∗, t) then

π1wn = Π1z
′ and π2wn

t
−Ð⊂Π2z

′, with t +ve. In either case π1wn ⊑S Π1z
′ and

π2wn ⊑T Π2z
′ with σ2π1wn = σ2Π1z

′ and τ1π2wn = τ1Π2z
′. Hence, from the

definition of ⊑ on M/ ∼,

ϕσ,τ(z) = {(Π1z,Π2z)}∼ = {(π1wn, π2wn)}∼ ⊑ {(Π1z
′,Π2z

′)}∼ = ϕσ,τ(z
′) .

It remains to show commutativity of the diagram. Let z ∈ C(T⊙S). Then,

(τ“ ○ σ“)(ϕσ,τ(z)) = (τ“ ○ σ“)({(Π1z,Π2z)}∼) = (σ1Π1z, τ2Π2z) = (τ⊙σ)“(z) ,

via the definition of τ⊙σ—as required.

Because (−)“ does not preserve composition up to isomorphism but only
up to the transformation ϕ of Lemma 7.15, (−)“ forms a lax functor from the
bicategory of strategies to that of profunctors.

7.5 Games as factorization systems

The results of Section 7.1 show an event structure with polarity determines a
factorization system; the ‘left’ maps are given by ⊇− and the ‘right’ maps by
⊆+. More specifically they form an instance of a rooted factorization system
(X,→L,→R,0) where maps f ∶ x →L x

′ are the ‘left’ maps and g ∶ x →R x′ the
‘right’ maps of a factorization system on a small category X, with distinguished
object 0, such that any object x of X is reachable by a chain of maps:

0←L ⋅→R ⋯←L ⋅→R x ;

and two ‘confluence’ conditions hold:

x1 →R x & x2 →R x Ô⇒ ∃x0. x0 →R x1 & x0 →R x2 , and its dual

x→L x1 & x→L x2 Ô⇒ ∃x0. x1 →L x0 & x2 →R x0 .

Think of objects of X as configurations, the R-maps as standing for (compound)
Player moves and L-maps for the reverse, or undoing, of (compound) Opponent
moves in a game.

The characterization of strategy, Lemma 4.21, exhibits a strategy as a dis-
crete fibration w.r.t. ⊑ whose functor preserves ⊇− and ⊆+. This generalizes.
Define a strategy in a rooted factorization system to be a functor from another

7.5. GAMES AS FACTORIZATION SYSTEMS 95

rooted factorization system preserving L-maps, R-maps, 0 and forming a dis-
crete fibration. To obtain strategies between rooted factorization systems we
again follow the methodology of Joyal [7], and take a strategy from X to Y to
be a strategy in the dual of X in parallel composition with Y. Now the dual op-
eration becomes the opposite construction on a factorization system, reversing
the roles and directions of the ‘left’ and ‘right’ maps. The parallel composition
of factorization systems is given by their product. Composition of strategies is
given essentially as that of profunctors, but restricting to reachable elements.
The confluence conditions are used here.

I thought at first that this work meant that bistructures, a way to present
Berry’s bidomains as factorization systems [22], inherited a reading as games.
But unfortunately configurations of bistructures don’t satisfy the second con-
fluence condition above.

96 CHAPTER 7. STRATEGIES AS PROFUNCTORS

Chapter 8

A language for strategies

8.0.1 Affine maps

Notation 8.1. Let A be an event structure with polarity. Let x ∈ C∞(A).
Write A/x for the event structure with polarity which remains after playing x.
Precisely,

We extend the notation to configurations regarding them as elementary event
structures. If y ∈ C∞(A) with x ⊆ y then by y/x we mean the configuration
y∖x ∈ C∞(A/x). In the case of a singleton configuration {a} of A—when a is an
initial event of A—we’ll often write A/a and x/a instead of A/{a} and x/{a}.

An affine map of event structures f from A to B comprises a pair (f0, f1)
where f0 ∈ C(B) and f1 is a map of event structures f1 ∶ A→ B/f0. It determines
a function from C(A) to C(B) given by

fx = f0 ∪ f1x

for x ∈ C(A). The allied f0 and f1 can be recovered from the action of f on
configurations: f0 = f∅ and f1 is that unique map of event structures f1 ∶
A → B/f∅ which on configurations x ∈ C(A) returns fx/f∅. It is simplest
to describe the composition gf of affine maps f = (f0, f1) from A to B and
g = (g0, g1) from B to C in terms of its action on configurations: the composition
takes a configuration x ∈ C(A) to g(f x). Alternatively, the composition gf can
be described as comprising (g0 ∪ g1f0, h) where h is that unique map of event
structures h ∶ A→ C/(g0 ∪ g1f0) which sends x ∈ C(A) to g1(f0 ∪ f1x)/g1f0.

An affine map f ∶ A→a B of event structures with polarity is an affine map
f = (f0, f1) between the underlying event structures of which the allied map
f1 ∶ A→ B/f∅ of event structures preserves polarities.

97

98 CHAPTER 8. A LANGUAGE FOR STRATEGIES

8.1 A metalanguage for strategies

8.1.1 Types

Types are event structures with polarity A,B,C,⋯ understood as games. We
have type operations corresponding to the operations on games of forming the
dual A⊥, simple parallel composition A∥B, sum Σi∈IAi and, although largely
ignored for the moment, recursively-defined types.

One way to relate types is through the affine maps between them. There
will be operations for shifting between types related by affine maps (described
by configuration expressions). These will enable us e.g. to pullback or ‘relabel’
a strategy across an affine map.

A type environment is a finite partial function from variables to types, for
convenience written typically as Γ ≡ x1 ∶ A1,⋯, xm ∶ Am, in which the (configura-
tion) variables x1,⋯, xm are distinct. It denotes a (simple) parallel composition
∥xiAi in which the set of events comprises the disjoint union ⋃1≤i≤m {xi}×Ai. In
describing the semantics we shall sometimes write Γ for the parallel composition
it denotes.

8.1.2 Configuration expressions

Configuration expressions denote finite configurations of event structures. A
typing judgement for a configuration expression p in a type environment Γ

Γ ⊢ p ∶ B

denotes an affine map of event structures with polarity from Γ to B.
In particular, the judgement

Γ, x ∶ A ⊢ x ∶ A

denotes the partial map of event structures projecting to the single component
A. The special case

x ∶ A ⊢ x ∶ A

denotes the identity map.
We shall allow configuration expressions to be built from affine maps f =

(fo, f1) ∶ A→a B in
Γ, x ∶ A ⊢ fx ∶ B

and its equivalent
Γ, x ∶ A ⊢ f0 ∪ f1x ∶ B .

In particular, f1 may be completely undefined, allowing configuration ex-
pressions to be built from constant configurations, as e.g. in the judgement for
the empty configuration

Γ ⊢ ∅ ∶ A

or a singleton configuration
Γ ⊢ {a} ∶ A

8.1. A METALANGUAGE FOR STRATEGIES 99

when a is an initial event of A. In particular, the expression {a}∪x′ associated
with the judgement

Γ, x′ ∶ A/a ⊢ {a} ∪ x′ ∶ A,

where a is an initial event of A, is used later in the transition semantics.
For a sum Σi∈IAi there are configuration-expressions jp where j ∈ J and p

is a configuration-expression of type Aj :

Γ ⊢ p ∶ Aj

Γ ⊢ jp ∶ Σi∈IAi
j ∈ I

In the rule for simple parallel composition we exploit the fact that con-
figurations of simple parallel compositions are simple parallel compositions of
configurations of the components:

Γ ⊢ p ∶ A ∆ ⊢ q ∶ B

Γ,∆ ⊢ (p, q) ∶ A∥B

(We shall sometimes write p∥q for (p, q).)
Configurations of B⊥ can be taken to be the same as configurations of B, so

another sound rule is
Γ ⊢ p ∶ B

Γ⊥ ⊢ p ∶ B⊥

where Γ⊥ is x1 ∶ A
⊥
1,⋯, xm ∶ A⊥m.

8.1.3 Terms for strategies

A language for both strategies is presented. Its terms denoting strategies are
associated with typing judgements:

x1 ∶ A1,⋯, xm ∶ Am ⊢ t ⊣ y1 ∶ B1,⋯, yn ∶ Bn ,

where all the variables are distinct, interpreted as a strategy from the game
x1 ∶ A1,⋯, xm ∶ Am denotes to the game y1 ∶ B1,⋯, yn ∶ Bn denotes.

We can think of the term t as a box with input and output wires for the
typed variables:

-

--

-A1

Am

B1

Bn
⋮⋮

The duality of input and output is caught by the rules:

Γ, x ∶ A ⊢ t ⊣∆

Γ ⊢ t ⊣ x ∶ A⊥,∆

Γ ⊢ t ⊣ x ∶ A,∆

Γ, x ∶ A⊥ ⊢ t ⊣∆

Composition of strategies is described in the rule

Γ ⊢ t ⊣∆ ∆ ⊢ u ⊣ H

Γ ⊢ ∃∆. [t ∥ u] ⊣ H

100 CHAPTER 8. A LANGUAGE FOR STRATEGIES

which, in the picture of partial strategies as boxes, joins the input wires of
one partial strategy to output wires of the other. The composition denotes the
usual composition of strategies, in the case of strategies, and that described
above, composition without hiding, in the case of partial strategies. Note that
the simple parallel composition of strategies arises as a special case when ∆ is
empty. Via the alternative derivation

H⊥ ⊢ u ⊣∆⊥ ∆⊥ ⊢ t ⊣ Γ⊥

H⊥ ⊢ ∃∆⊥. [u ∥ t] ⊣ Γ⊥

Γ ⊢ ∃∆⊥. [u ∥ t] ⊣ H ,

we see an equivalent way to express the composition of strategies.

We can form the nondeterministic sum of strategies of the same type:

Γ ⊢ ti ⊣∆ i ∈ I

Γ ⊢ []i∈I ti ⊣∆

We shall use � for the empty nondeterministic sum, when the rule above spe-
cialises to

Γ ⊢ � ⊣∆ .

The term � denotes the minimum strategy in the game Γ⊥∥∆—it essentially
comprises the initial segment of the game Γ⊥∥∆ consisting of all the initial −ve
events of A.

We can also form the pullback of two strategies of the same type:

Γ ⊢ t1 ⊣∆ Γ ⊢ t2 ⊣∆

Γ ⊢ t1 ∧ t2 ⊣∆

In the case where t1 and t2 denote the respective strategies σ1 ∶ S1 → Γ⊥∥∆ and
σ1 ∶ S1 → Γ⊥∥∆ the strategy t1 ∧ t2 denotes the pullback

S1 ∧ S2

{{ ##
σ1∧σ2

��

S1

σ1 ##

S2

σ2{{
Γ⊥∥∆ .

Proposition 15.41 shows that pullbacks of strategies against maps of event struc-
tures are pullbacks.

Write ∅∆ for the environment assigning the empty configuration ∅ to all
configuration variables in a type environment ∆. If ∆ ⊢ p ∶ C, write p[∅∆]
for the configuration expression resulting from the substitution of ∅ for each
variable in a configuration expression p. Later, we shall often write p[∅] for

8.1. A METALANGUAGE FOR STRATEGIES 101

the substitution of the empty configuration ∅ for all configuration variables
appearing in p. The hom-set rule

Γ ⊢ p′ ∶ C ∆ ⊢ p ∶ C

Γ ⊢ p ⊑C p
′ ⊣∆

p[∅∆] ⊑C p
′[∅Γ]

introduces a term standing for the hom-set (C(C),⊑C)(p, p′). It relies on con-
figuration expressions p, p′ and their typings. If ∆ ⊢ p ∶ C denotes the affine
map g = (g0, g1) and Γ ⊢ p′ ∶ C the affine map f = (f0, f1), the side condition of
the rule ensures that g0 ⊑C f0. Copy-cat is seen as a special case of the hom-set
rule:

x ∶ A ⊢ y ⊑A x ⊣ y ∶ A

W.r.t. affine maps f = (f0, f1) ∶ A→a C and g = (g0, g1) ∶ B →a C, the judgement

x ∶ A ⊢ gy ⊑C fx ⊣ y ∶ B

is equivalent to the judgement

x ∶ A ⊢ ∃z ∶ C. [gy ⊑C z ∥ z ⊑C fx] ⊣ y ∶ B

in the sense that the strategies they describe are isomorphic.
The Scott order ⊑C⊥ in C⊥, the dual of a game C, is the opposite of the Scott

order ⊑C of C. Correspondingly,

Γ ⊢ p ⊑C p
′ ⊣∆

Γ ⊢ p′ ⊑C⊥ p ⊣∆
and

Γ ⊢ p′ ⊑C⊥ p ⊣∆

Γ ⊢ p ⊑C p
′ ⊣∆

.

In showing equivalences between strategies one needs basic facts about the
Scott order. For example, assuming z ⊆ x, y in C(A), we have

y ⊑A x iff y/z ⊑A/z x/z .

The precise definition of the strategy which the hom-set rule yields is given
in the next section.

Example 8.2. The denotation of

x ∶ A ⊢ ∅ ⊑A ∅ ⊣ y ∶ B

is the strategy in the game A⊥∥B given by the identity map idA⊥∥B ∶ A⊥∥B →
A⊥∥B. The denotation of

⊢ y ⊑A ∅ ⊣ y ∶ A

is �A, the minimum strategy in the game A comprising just the initial −ve events
of A.

The judgement
x ∶ Aj ⊢ y ⊑Σi∈IAi jx ⊣ y ∶ Σi∈IAi

102 CHAPTER 8. A LANGUAGE FOR STRATEGIES

denotes the injection strategy—its application to a strategy in Aj fills out the
strategy according to the demands of receptivity to a strategy in Σi∈IAi. Its
converse

x ∶ Σi∈IAi ⊢ jy ⊑Σi∈IAi x ⊣ y ∶ Aj

applied to a strategy of Σi∈IAi projects, or restricts, the strategy to a strategy
in Aj .

Assume ⊢ t ⊣ y ∶ B. When f ∶ A → B is a map of event structures with
polarity, the composition

⊢ ∃y ∶ B. [t ∥ fx ⊑B y] ⊣ x ∶ A

denotes the pullback f∗σ of the strategy σ denoted by t across the map f ∶ A→
B.

In the case where a map of event structures with polarity f ∶ A → B is
innocent, the composition

⊢ ∃x ∶ A. [y ⊑B fx ∥ t] ⊣ y ∶ B

denotes the ‘relabelling’ f!σ of the strategy σ denoted by t. (Check!) ◻

Via the hom-set rule we obtain

x ∶ A,y ∶ B ⊢ z ⊑A∥B (x, y) ⊣ z ∶ A∥B ,

which joins two inputs to a common output. A great deal is achieved through
basic manipulation of the input and output “wiring” afforded by the hom-set
rules and input-output duality. For instance, the following achieves the effect
of lambda abstraction:

Γ, x ∶ A ⊢ t ⊣ y ∶ B
Γ ⊢ t ⊣ x ∶ A⊥, y ∶ B

x ∶ A⊥, y ∶ B ⊢ (x, y) ∶ A⊥∥B z ∶ A⊥∥B ⊢ z ∶ A⊥∥B

x ∶ A⊥, y ∶ B ⊢ z ⊑A⊥∥B (x, y) ⊣ z ∶ A⊥∥B

Γ ⊢ ∃x ∶ A⊥, y ∶ B. [t ∥ z ⊑A⊥∥B (x, y))] ⊣ z ∶ A⊥∥B

A trace, or feedback, operation is another effect of such “wiring’.’ Given a
strategy Γ, x ∶ A ⊢ t ⊣ y ∶ A,∆, we can derive

x ∶ A⊥ ⊢ y ⊑A⊥ x ⊣ y ∶ A
⊥

x ∶ A⊥ ⊢ x ⊑A y ⊣ y ∶ A
⊥

⊢ x ⊑A y ⊣ x ∶ A,y ∶ A
⊥

Γ, x ∶ A ⊢ t ⊣ y ∶ A,∆
x ∶ A,y ∶ A⊥ ⊢ t ⊣ Γ⊥,∆

⊢ ∃x ∶ A,y ∶ A⊥. [x ⊑A y ∥ t] ⊣ Γ⊥,∆

Γ ⊢ ∃x ∶ A,y ∶ A⊥. [x ⊑A y ∥ t] ⊣∆

which denotes the trace of t. Its effect is to adjoin a feedback loop from y ∶ A to
x ∶ A. If t is represented by the diagram

-

--

-Γ

A

∆

A

8.1. A METALANGUAGE FOR STRATEGIES 103

then the diagram

-�
 	�
- -Γ ∆

represents its trace. The final judgement of the derivation may also be written

Γ ⊢ ∃x ∶ A⊥, y ∶ A. [t ∥ x ⊑A y] ⊣∆

standing for the post-composition of

Γ,∆ ⊢ t ⊣ x ∶ A⊥, y ∶ A

with the term
x ∶ A⊥, y ∶ A ⊢ x ⊑A y ⊣

denoting the copy-cat strategy ccA⊥ . The composition introduces causal links
from the +ve events of y ∶ A to the −ve events of x ∶ A, and from the +ve events
of x ∶ A to the −ve events of y ∶ A—these are the usual links of copy-cat ccA⊥ as
seen from the left of the turnstyle.
Projection of a strategy σ ∶ S → A∥B to a strategy σ ∶ SB → B is achieved
mathematically via the partial-total factorisation

S

σ

��

// SB

σB

��
A∥B // B

w.r.t. the partial map of event structures A∥B → B which is undefined on A
and the identity on B.

Proposition 8.3. Let σ ∶ S → A∥B be a strategy. Let pB ∶ A∥B → B be the
(partial) map acting as identity on B and undefined on A. Define σB ∶ SB → B
to be the defined part of pB ○ f . Then, σB ∶ SB → B is a strategy.

Proof. For a direct proof, receptivity and innocence of σB follow fairly directly
from the corresponding properties of σ.

(Of course, the analogous result holds for the other projection σA ∶ SA → A.
It is not the case that σA ∶ SA → A and σB ∶ SB → B being strategies entails σ
is a strategy.)

In the metalanguage, projection of a strategy ⊢ t ⊣ x ∶ A,y ∶ B is achieved
via the strategy

x ∶ A ⊢ ∅ ⊑∅ ∅ ⊣

which projects the A game to the empty game ∅, within the term

⊢ ∃x ∶ A.[t ∥ ∅ ⊑∅ ∅] ⊣ y ∶ B .

104 CHAPTER 8. A LANGUAGE FOR STRATEGIES

Duplication terms

Γ ⊢ p ∶ C ∆1 ⊢ q1 ∶ C ∆2 ⊢ q2 ∶ C

Γ ⊢ δC(p, q1, q2) ⊣∆1,∆2

p[∅Γ], q1[∅∆1], q2[∅∆2] is balanced ,

where what it means for a triple of configurations p[∅Γ], q1[∅∆1], q2[∅∆2] to be
balanced is defined in Section 8.2.2. (The meaning of a triple of configurations
x, y1, y2 of C being balanced is almost y1 ∪ y2 ⊑C x but can’t be this in general
as y1 ∪ y2 need not itself be a configuration of C.) The term for the duplication
strategy is, in particular,

x ∶ A ⊢ δA(x, y1, y2) ⊣ y1 ∶ A,y2 ∶ A.

Their semantics rests on the strategy δA ∶ A + //A∥A defined in Section 8.2.2.
The operation δA forms a comonoid with counit � ∶ A + //∅.

Sum types and definition by cases. Recall that for a sum Σi∈IAi there are
configuration-expressions jp where j ∈ J and p is a configuration-expression of
type Aj :

Γ ⊢ p ∶ Aj

Γ ⊢ jp ∶ Σi∈IAi
j ∈ I

In particular, there is the configuration-expression

x ∶ Aj

Γ ⊢ jx ∶ Σi∈IAi
.

Clearly j∅ = ∅ ⊑Σi∈IAi ∅. Accordingly, the judgement

x ∶ Σi∈IAi ⊢ jy ⊑Σi∈IAi x ⊣ y ∶ Aj

denotes the strategy which projects to the jth component. Assume, for all j ∈ I,
that

Γ, x ∶ Aj ⊢ tj ⊣∆ .

Then,
Γ, z ∶ Σi∈IAi ⊢ ∃x ∶ Aj .[jx ⊑Σi∈IAi z∥tj] ⊣∆

lifts tj from a strategy with domain the component Aj to a strategy with domain
the sum Σi∈IAi. A case expression

Γ, z ∶ Σi∈IAi ⊢ casej∈I jx ⊑Σi∈IAi z. tj ⊣∆ .

is obtained as an abbreviation of the sum of strategies,

Γ, z ∶ Σi∈IAi ⊢ []
j∈I

∃x ∶ Aj .[jx ⊑Σi∈IAi z∥tj] ⊣∆ .

We can obtain an equivalent cases expression by an alternative route. Let ()j
be the map of event structures with polarity Σi∈IAi → Aj which projects onto

8.1. A METALANGUAGE FOR STRATEGIES 105

the jth component from the sum; it is undefined outside the jth component and
acts as identity on the events of Aj . Then because

jx ⊑Σi∈IAi z iff x ⊑Aj zj , for all z ∈ C(Σi∈IAi), x ∈ C(Aj) ,

the two judgements

z ∶ Σi∈IAi ⊢ jx ⊑Σi∈IAi z ⊣ x ∶ Aj and x ∶ Σi∈IAi ⊢ x ⊑Aj zj ⊣ y ∶ Aj

denote the same strategy. Accordingly, we can alternatively write down the case
statement above as

Γ, z ∶ Σi∈IAi ⊢ casej∈I x ⊑Aj zj . tj ⊣∆ ,

an abbreviation of the sum of strategies,

Γ, z ∶ Σi∈IAi ⊢ []
j∈I

∃x ∶ Aj .[(x ⊑Aj zj)∥tj] ⊣∆ .

Recursive definitions can be achieved from trace with the help of duplication
terms, based on a strategy δA from a game A to A∥A, roughly, got by joining
two copy-cat strategies together:

t

Γ
A

δA

Provided the body t of the recursion respects δA, the diagram above unfolds in
the way expected of recursion, to:

δΓ
Γ

t

t

δA

A

For those strategies which respect δ, i.e.

δA⊙σ ≅ (σ∥σ)⊙δΓ∥A ,

and in particular for strategies which are homomorphisms between δ-comonoids,
the recursive definition does unfold in the way expected. This follows as a
general fact from the properties of a trace monoidal category.

In fact, recursive definitions can made more generally, without the use of
trace, by exploiting old techniques for defining event structures recursively. The
substructure order ⊴ on event structures forms a “large complete partial order,”
continuous operations on which possess least fixed points — see [4, 5]. Given

106 CHAPTER 8. A LANGUAGE FOR STRATEGIES

x ∶ A,Γ ⊢ t ⊣ y ∶ A, the term Γ ⊢ µx ∶ A. t ⊣ y ∶ A denotes the ⊴-least fixed
point amongst strategies X ∶ Γ + //A of the ⊴-continuous operation F (X) =
t⊙(idΓ∥X)⊙δΓ; here σ ⊴ σ′ between two strategies σ ∶ S → Γ⊥∥A and σ′ ∶ S′ →
Γ⊥∥A signifies S ⊴ S′ and that the associated inclusion map i ∶ S → S′ makes
σ = σ′i. ****

Given x ∶ A,Γ ⊢ t ⊣ y ∶ A,

t

Γ

A

A

the term Γ ⊢ µx ∶A. t ⊣ y ∶ A denotes the ⊴-least fixed point amongst strategies
X ∶ Γ + //A of F (X) = t⊙(idΓ∥X)⊙δΓ:

δΓ
Γ

X

t
A

8.2 Semantics

8.2.1 Hom-set terms

The definition of the strategy which

Γ ⊢ p ⊑C p
′ ⊣∆

denotes is quite involved. We first simplify notation. W.l.o.g. assume ∆ ⊢ p ∶ C
and Γ ⊢ p′ ∶ C —using duality we can always rearrange the environment to
achieve this. Write A for the denotation of the environment Γ and B for the
denotation of ∆. Let ∆ ⊢ p ∶ C and Γ ⊢ p′ ∶ C denote respectively the affine
maps g = (g0, g1) ∶ B →a C and f = (f0, f1) ∶ A →a C. Note, from the typing
of p ⊑C p′ we have that g0 ⊑C f0. We build the strategy out of a rigid family
Q with elements as follows. First, define a pre-element to be a finite preorder
comprising a set

{1} × x ∪ {2} × y ,

for which
x ∈ C(A⊥) & y ∈ C(B) & gy ⊑c fx ,

with order that induced by ≤A⊥ on x, ≤B on y, with additional causal depen-
dencies

(1, a) ≤ (2, b) if f1(a) = g1(b) & b is +ve

8.2. SEMANTICS 107

and
(2, b) ≤ (1, a) if f1(a) = g1(b) & b is −ve .

As elements of the rigid family Q we take those pre-elements for which the order
≤ is a partial order (i.e. is antisymmetric). The elements of Q are closed under
rigid inclusions, so Q forms a rigid family—see Lemma 8.4 below. We now take
S =def Pr(Q); the events of S (those elements of Q with a top event) map to
their top events in A⊥∥B from where they inherit polarities. This map can be
checked to be a strategy: innocence follows directly from the construction, while
receptivity follows from the constraint that gy ⊑c fx.

It is quite easy to choose an example where antisymmetry fails in a pre-
element, in other words, in which the preorder is not a partial order—see Ex-
ample 8.5 below. However, when either p or p′ is just a variable no nontrivial
causal loops are introduced and all pre-elements are elements. More generally, if
one of p or p′ is associated with a partial rigid map (i.e. a map which preserves
causal dependency when defined), then no nontrivial causal loops are introduced
and all pre-elements are elements.

Lemma 8.4. Q above is a rigid family.

Proof. For Q to be a rigid family we require that its is closed under rigid inclu-
sions, or equivalently, that any down-closed subset of any element q, with order
the restriction of that of q, is itself an element of Q.

Let q =def ({1} × x ∪ {2} × y,≤) be an element of Q, as constructed above.
Suppose z is a ≤-down-closed subset of q. Let z1 =def {a ∣ (1, a) ∈ z} ⊆ x and
z2 =def {b ∣ (2, b) ∈ z} ⊆ y. We first show

gz2 ⊑C fz1 ,

i.e. that gz2 ⊇
− gz2 ∩ fz1 ⊆

+ fz1.
Suppose, to obtain a contradiction, that it is not the case that gz2 ∩ fz1 ⊆

+

fz1. Then, there is some −ve event c ∈ fz1 with c ∉ gz2 (†). It immediately
follows that c ∉ g0. As c ∈ fz1, there are now two cases to consider according as
c ∈ f0 or not. However, if c ∈ f0 because c is −ve and g0 ⊑C f0 we would obtain
c ∈ g0—a contradiction. Hence c ∉ f0, and there is a ∈ z1 with c = f1(a), and so
+ve a ∈ z1. As we have gy ⊑C fx,

gy ∩ fx ⊆+ fx .

From this fact we see that because c ∈ fx is −ve we must have c ∈ gy. So as
c ∉ g0, we have c = g1(b) for some −ve b ∈ y. From the construction of q, we
have b ≤ a in q. Hence b ∈ z2, as z is down-closed. But now c = g1(b) ∈ gz2,
contradicting (†) above.

Similarly, to obtain a contradiction, suppose that it is not the case that
gz2 ⊇− gz2 ∩ fz1. Then, there is some +ve c ∈ gz2 with c ∉ fz1 (‡). We
immediately see c ∉ f0. As c is +ve and g0 ⊑C f0, if c ∈ g0 then c ∈ f0—a
contradiction. Therefore, as c ∈ gz2, there is +ve b ∈ z2 with c = g1(b). As we
have gy ⊑C fx,

gy ⊇− gy ∩ fx .

108 CHAPTER 8. A LANGUAGE FOR STRATEGIES

Because c ∈ gy is +ve we must have c ∈ fx. So c = f1(a) for some a ∈ x. From
the construction of q, we have a ≤ b. As z is down-closed, a ∈ z1. But now
c = f1(a) ∈ fz1, contradicting (‡) above.

To conclude, we now have gz2 ⊑C fz1, from which, according to the con-
struction above, we obtain a pre-element qz = (z,≤z). From the construction,
the order ≤z is included in ≤, so in particular a partial order, ensuring qz is an
element of Q. We require that qz be rigidly included in q, for which we need
that ≤z is the restriction of ≤ to z. Any ordering e ≤ e′ between events e, e′ ∈ z
results from a chain of causal links in A or B or through the additional links of
the construction above. Because z is a down-closed subset of q by the nature of
the construction the same chain will be present in qz. It follows that ≤z is the
restriction of ≤ to z. Hence Q is closed under rigid inclusions.

Example 8.5. Let A comprise a1 = ⊟ _ ⊞ = a2. Let B comprise b1 = ⊞ _
⊟ = b2. Let C comprise the two concurrent events c1 = ⊟ and c2 = ⊞. Let
f ∶ A → C send a1 to c1 and a2 to c2. Let g ∶ B → C send b1 to c2 and b2 to
c1. Taking x = {a1, a2} and y = {b1, b2} we have fx = gy, so certainly gy ⊑C fx.
According to the construction of Q above, there is a pre-element comprising the
set {1} × x ∪ {2} × y with preorder in which a1 ≤ a2 (from ≤A⊥), a2 ≤ b1 (as
f(a2) = g(b1)) , b1 ≤ b2 (from ≤B) and b2 ≤ a1 (as g(b2) = f(a1)). The preorder
clearly contains a loop so this pre-element is not an element of the constructed
rigid family. ◻

8.2.2 Duplication

The definition of δA ∶ A + //A∥A is via rigid families. For each triple

(x, y1, y2)

where x ∈ C(A⊥), y1 ∈ C(A) and y2 ∈ C(A) which is balanced, i.e.

∀a ∈ y1. polA(a) = + Ô⇒ a ∈ x ,

∀a ∈ y2. polA(a) = + Ô⇒ a ∈ x and

∀a ∈ x. polA⊥(a) = + Ô⇒ a ∈ y1 or a ∈ y2 ,

and choice function
χ ∶ x+ → {1,2} ,

such that
χ(a) = 1 Ô⇒ a ∈ y1 and χ(a) = 2 Ô⇒ a ∈ y2 ,

the order q(x, y1, y2;χ) is defined to have underlying set

{0} × x ∪ {1} × y1 ∪ {2} × y2

with order generated by that inherited from A⊥∥A∥A together with

{((0, a), (1, a)) ∣ a ∈ y1} ∪ {((0, a), (2, a)) ∣ a ∈ y2}∪

{((χ(a), a), (0, a)) ∣ a ∈ x & polA⊥(a) = +} .

8.2. SEMANTICS 109

The rigid family Q consists of all such q(x, y1, y2;χ) for balanced (x, y1, y2) and
choice functions χ. From Q we obtain the event structure Pr(Q) in which events
are prime orders, with a top element; events of Pr(Q) inherit the polarity of
their top elements to obtain an event structure with polarity. We define the
strategy δA ∶ A + //A∥A to be the map

Pr(Q)→ A⊥∥A∥A

sending a prime to its top element. Of course, we had better check that Q is
a rigid family, in particular that each q(x, y1, y2;χ) is a partial order, and that
δA is indeed a strategy.

Lemma 8.6. The family Q is rigid. The function δA taking an event of Pr(Q)
to its top element is a strategy Pr(Q)→ A⊥∥A∥A.

Proof. That Q is closed under rigid inclusions follows straightforwardly; rigid
inclusions ensure that choice functions restrict appropriately.

Consider now the semantics of a term

Γ ⊢ δC(p, q1, q2) ⊣∆ .

W.l.o.g. we may assume that the environment is arranged so ∆ ≡ ∆1,∆2 with
judgements Γ ⊢ p ∶ C, ∆1 ⊢ q1 ∶ C and ∆2 ⊢ q2 ∶ C. To simplify notation assume
the latter judgements for configuration expressions denote the respective affine
maps f = (f0, f1) ∶ A →a C, g1 = (g0

1 , g1
1) ∶ B1 → C and g2 = (g0

2 , g2
1) ∶ B2 → C.

From the typing of δC(p, q1, q2) we have that (f0, g0
1 , g

0
2) forms a balanced triple

in C. We build the strategy out of a rigid family Q with elements as follows.
We construct pre-elements from x ∈ C(A⊥), y1 ∈ C(B1) and y2 ∈ C(B2) where
(fx, g1y1, g2y2) is a balanced triple in C with a choice function χ. There are
three kinds of elements of x:

x− = {a ∈ x ∣ polA⊥(a) = −} ,

x+0 = {a ∈ x ∣ polA⊥(a) = + & f1(a) ∈ g0
χ(f1(a))} and

x+1 = {a ∈ x ∣ polA⊥(a) = + & f1(a) ∈ g1
χ(f1(a))yχ(f1(a))}

We define a typical pre-element to be a finite preorder on the set

{0} × (x− ∪ x+1 ∪ {(χ(f1(a)), a) ∣ a ∈ x+0}) ∪ {1} × y1 ∪ {2} × y2 ,

with order that induced by that of the game A⊥∥B1∥B2—each event of the set
is clearly associated with a unique event of the game—with additional causal
dependencies

(0, a) ≤ (1, b) if f1(a) = g1
1(b) & b is +ve in B1,

(0, a) ≤ (2, b) if f1(a) = g1
2(b) & b is +ve in B2,

and

(χ(f1(a)), b) ≤ (0, a) if a ∈ x+1 & f1(a) = g1
χ(f1(a))(b) , for b a −ve in Bχ(f1(a)) .

110 CHAPTER 8. A LANGUAGE FOR STRATEGIES

As elements of the rigid family Q we take those pre-elements for which the
order ≤ is a partial order (i.e. is antisymmetric). Once Q is checked to be a
rigid family—see Lemma 8.7 below—we can take S =def Pr(Q); the events of
S map to the events in the game A⊥∥B1∥B2 associated with their top events,
from where they inherit polarities. This map defines the strategy denoting the
original duplication term.

Lemma 8.7. The family Q is rigid. The function taking events of Pr(Q) to
their top elements defines a strategy from A to B1∥B2.

Proof. For Q to be a rigid family we require that any down-closed subset of any
element q, with order the restriction of that of q, is itself an element of Q.

Let q =def ({0}×x∪{1}×y1 ∪{2}×y2,≤) be an element of Q, as constructed
above. Suppose z is a ≤-down-closed subset of q. Let z0 =def {a ∣ (0, a) ∈ z} ⊆ x,
z1 =def {b ∣ (1, b) ∈ z} ⊆ y1 and z2 =def {b ∣ (2, b) ∈ z} ⊆ y2. We first show

(fz0, g1z1, g2z2)

is balanced. ⋯

See Example 9.14 for an alternative derivation of the duplication strategy
using the general results of the next chapter.

Chapter 9

From maps to strategies

The metalanguage of the last chapter supported terms

x ∶ A ⊢ y ⊑B fx ⊣ y ∶ B (1)

and x ∶ A ⊢ gy ⊑A x ⊣ y ∶ B (2)

w.r.t. affine maps f ∶ A → B and g ∶ B → A between event structures with
polarity s.t. ∅ ⊑B f∅ and g∅ ⊑A ∅. In this chapter we considerably broaden
those maps between event structures with polarity which lift to strategies. The
most general maps we consider, the affine-stable maps, include the affine maps
of the last chapter as well as Berry’s stable maps, though they are considerably
broader because they take account of polarity.

They are useful both for defining strategies—affine-stable maps support def-
initions like (1), and their dual (2) —but also for “changes of base” in which we
shift between strategies over different games related by an affine-stable map. In
the slightly more restricted case of additive-stable maps such a change of base is
accompanied by an adjunction. As a consequence, we obtain a lax functor from
deterministic strategies to the stable-domain model of GoI.

9.1 Maps as strategies—a general construction

W.r.t. affine maps f ∶ A → B and g ∶ B → A between event structures with
polarity s.t. ∅ ⊑B f∅ and g∅ ⊑A ∅ (so necessarily ∅ ⊆+ f(∅) and ∅ ⊆− g(∅)),
we can give an alternative more direct construction of the special cases

x ∶ A ⊢ y ⊑B fx ⊣ y ∶ B and

x ∶ A ⊢ gy ⊑A x ⊣ y ∶ B .

The constructions based on infinitary stable families extend that of Proposi-
tion 7.5. (In an infinitary stable family the configurations need not be finite
sets and, to compensate, a finiteness axiom holds, saying every element in a
configuration is in a finite subconfiguration.)

111

112 CHAPTER 9. FROM MAPS TO STRATEGIES

Proposition 9.1. Let A and B be event structures with polarity. W.r.t. affine
maps f ∶ A→ B s.t. ∅ ⊑B f∅ and g ∶ B → A s.t. g∅ ⊑A ∅, define

F1 = {x∥y ∈ C∞(A⊥∥B) ∣ y ⊑B fx} and

F2 = {x∥y ∈ C∞(A⊥∥B) ∣ gy ⊑A x} .

Then, F1 and F2 are infinitary stable families for which top ∶ Pr(Fi) → A⊥∥B,
i = 1,2, are isomorphic to the denotations of hom-set terms above. (The events
e of Pr(F) inherit their polarities from those of top(e).)

These facts follow from a general construction for a more general class of
maps.

9.2 Affine-stable maps

Definition 9.2. An affine-stable map between event structures with polarity,
from A to B, is a function f ∶ (C∞(A),⊆)→ (C∞(B),⊆) which is

• polarity-respecting: for x, y ∈ C∞(A),

x ⊆− y Ô⇒ f(x) ⊆− f(y) and x ⊆+ y Ô⇒ f(x) ⊆+ f(y)

— ⊆-monotonicity follows, i.e., x ⊆ y Ô⇒ f(x) ⊆ f(y) for all x, y ∈
C∞(A);

• +-continuous: for x ∈ C∞(A),

b ∈ f(x) & polB(b) = + Ô⇒ ∃x0 ∈ C(A). x0 ⊆ x & b ∈ f(x0) ;

• −-image finite: for all finite configurations x ∈ C(A) the set f(x)− is finite;

• affine: for all compatible families {xi ∣ i ∈ I} in C∞(A),

(affinity) ⋃
i∈I

f(xi) ⊆
+ f(⋃

i∈I

xi)

—when I is empty this amounts to ∅ ⊆+ f(∅);

• and stable: for all nonempty compatible families {xi ∣ i ∈ I} in C∞(A),

(stability) f(⋂
i∈I

xi) ⊆
−
⋂
i∈I

f(xi) .

Note that as an affine-stable function is ⊆-monotonic, the ⊆+ of affinity may
be replaced by ⊑B while the ⊆− of stability may be replaced by the converse
relation ⊒B .

Proposition 9.3. Affine-stable maps form a category AS: objects are event
structures with polarity; arrows f ∶ A → B are affine-stable maps from A to
B between event structures with polarity; composition is the usual function-
composition of affine-stable maps with identities the identity functions.

9.2. AFFINE-STABLE MAPS 113

Proposition 9.4. An affine-stable function f from A to B is ⊆-continuous,
i.e. f(⋃S) = ⋃ fS, for any directed subset S ⊆ C∞(A).

Proof. As remarked f is ⊆-monotonic. A directed subset is compatible, with
upper bound ⋃S. Hence, by affinity, ⋃ fS ⊆+ f(⋃S). However any +ve event
in f(⋃S) is necessarily in ⋃ fS by +-continuity. Hence ⋃ fS = f(⋃S).

Note that an affine-stable function is monotonic w.r.t. the Scott order ⊑ but
we do not have a continuity property analogous to that above w.r.t. ⊑.

We can simplify the “stability” condition: it’s sufficient to consider binary
intersections. First a general lemma concerning unions of directed families and
intersections; we prove it in a little greater generality than we strictly need. For
this dependent type notation is handy. For a set X and a family of sets Sx,
indexed by x ∈X, we write

∑
x∈X

Sx =def {(x, s) ∣ s ∈ Sx} ;

∏
x∈X

Sx =def {k ∶X → ⋃
x∈X

Sx ∣ ∀x ∈X. k(x) ∈ Sx} .

Below in the proof of Lemma 9.6, we use the lemma in a simpler form, when
Sx = S for all x ∈X; then ∏x∈X Sx is the set of all functions k ∶X → S.

Lemma 9.5. Let X be a nonempty family of sets, i.e. a nonempty set of sets.
For each x ∈ X, let Sx be a directed family of sets, i.e. a nonempty family for
which whenever s1, s2 ∈ Sx there is s3 ∈ Sx with s1, s2 ⊆ s3. Let h ∶ ∑x∈X Sx →
Set be monotonic w.r.t. inclusion in each Sx, i.e. for any x ∈X, if s ⊆ s′ in Sx,
then h(x, s) ⊆ h(x, s′). Then,

⋂
x∈X

⋃
s∈Sx

h(x, s) = ⋃
k∈∏x∈X Sx

⋂
x∈X

h(x, k(x))

and {⋂x∈X h(x, k(x)) ∣ k ∈∏x∈X Sx} is a directed family.

Proof. The equality is a standard distributivity property of sets (relying on the
axiom of choice). Clearly then {⋂x∈X h(x, k(x)) ∣ k ∈∏x∈X Sx} is nonempty.
To see it is directed, consider two of its elements, say ⋂x∈X h(x, k1(x)) and

⋂x∈X h(x, k2(x)) where k1, k2 ∈∏x∈X Sx. As each Sx is directed, via the axiom
of choice, there is k3 ∈ ∏x∈X Sx such that k1(x), k2(x) ⊆ k3(x) for any x ∈ X.
This ensures

⋂
x∈X

h(x, k1(x)) , ⋂
x∈X

h(x, k2(x)) ⊆ ⋂
x∈X

h(x, k3(x)) ,

and the claim that {⋂x∈X h(x, k(x)) ∣ k ∈∏x∈X Sx} is directed.

Lemma 9.6. In Definition 9.2, of an affine-stable function f from A to B, the
stable condition follows from a seemingly weaker condition of “finite stability,”
viz. for all x, y ∈ C∞(A),

x ↑ y Ô⇒ f(x ∩ y) ⊆− f(x) ∩ f(y) .

114 CHAPTER 9. FROM MAPS TO STRATEGIES

Proof. Let X be a nonempty compatible family of configurations in C∞(A).
Note, by a straightforward induction, the weaker axiom above implies

f(⋂
x∈X

x) ⊆− ⋂
x∈X

f(x)

when X is finite. Suppose that the family contains a finite configuration y0.
Then

⋂
x∈X

x = ⋂
x∈X

(y0 ∩ x)

which is the intersection of the finitely many configurations in {y0 ∩ x ∣ x ∈X}.
Hence in this case too

f(⋂
x∈X

x) = f(⋂
x∈X

(y0 ∩ x)) ⊆
−
⋂
x∈X

f(y0 ∩ x) ⊆
−
⋂
x∈X

f(y0) ∩ f(x) = ⋂
x∈X

f(x) .

In the general case choose some y ∈ X. Then, y is the directed union of its
finite subconfigurations S = {y0 ∈ C(A) ∣ y0 ⊆ y}, i.e.

y = ⋃
y0∈S

y0 .

Then

⋂
x∈X

x = ⋂
x∈X

(y ∩ x) = ⋂
x∈X

((⋃
y0∈S

y0) ∩ x) = ⋂
x∈X

⋃
y0∈S

(y0 ∩ x) = ⋃
k∶X→S

⋂
x∈X

(k(x) ∩ x) ,

where the last step relies on Lemma 9.5, which also ensures that the set the

{⋂
x∈X

(k(x) ∩ x) ∣ k ∶X → S}

is directed.
Now

f(⋂
x∈X

x) = f(⋃
k∶X→S

⋂
x∈X

(k(x) ∩ x))

= ⋃
k∶X→S

f(⋂
x∈X

(k(x) ∩ x)) , by continuity, Proposition 9.4,

⊆− ⋃
k∶X→S

⋂
x∈X

f(k(x) ∩ x) , by stability w.r.t. finite intersections,

= ⋂
x∈X

⋃
y0∈S

f(y0 ∩ x) , by Lemma 9.5,

= ⋂
x∈X

f(⋃
y0∈S

y0 ∩ x) , by continuity,

= ⋂
x∈X

f((⋃
y0∈S

y0) ∩ x) , by distributivity,

= ⋂
x∈X

f(y ∩ x)

⊆− ⋂
x∈X

f(y) ∩ f(x) , by finite stability,

= ⋂
x∈X

f(x) , as y ∈X.

9.2. AFFINE-STABLE MAPS 115

Hence f(⋂x∈X x) ⊆
− ⋂x∈X f(x), as required. To verify the stability condition of

Definition 9.2 it suffices to verify finite stability.

Let f be an affine-stable function from A to B. If we were to assume A
race-free it would follow from y ⊑A x that x↑y in C∞(A), then, by the stability
of f that f(x∩y) ⊆− f(x)∩f(y). However, even without race-freeness of A and
their compatibility, we can show the stronger property f(x ∩ y) = f(x) ∩ f(y)
once y ⊑A x. This follows from the factorisation properties of the Scott order,
and is a result which will be useful later.

Proposition 9.7. Let f be an affine-stable function from A to B. Suppose
y ⊑A x in C∞(A). Then,

f(x ∩ y) = f(x) ∩ f(y) .

Proof. As f is affine stable it preserves ⊇− and ⊆+ so the Scott order and its
associated factorisation system. Suppose y ⊑A x. Then,

y ⊇− (x ∩ y) ⊆+ x

in C∞(A). It follows that

f(y) ⊇− f(x ∩ y) ⊆+ f(x) ,

i.e. f(y) ⊑B f(x), in C∞(B). But this implies f(x ∩ y) = f(x) ∩ f(y) by the
uniqueness of the factorisation—Proposition 7.1(i).

Affine-stable maps include Gérard Berry’s stable maps,

f ∶ C∞(A)→ C∞(B)

when A and B comprise purely +ve events. Recall these are functions from
C∞(A) to C∞(B) which are Scott continuous and such that

x ↑ y in C∞(A) Ô⇒ f(x ∩ y) = f(x) ∩ f(y) .

Scott continuity follows from +-continuity and Berry’s stability from the stable
condition; Jean-Yves Girard’s linear maps coincide with the subcase in which
the affine axiom is an equality. (Berry’s di-domains on which stable maps were
defined were restricted to have a countable basis of finite elements; countability
plays no role here.)

Proposition 9.8. When games A and B are purely positive, affine-stable maps
from A to B coincide with stable functions between their domains of configura-
tions; thus providing a full and faithful embedding of stable functions between
dI-domains in affine-stable maps.

Affine maps, f = (f0, f1) ∶ A →a B of event structures with polarity, as
earlier in this chapter, form another example provided ∅ ⊆+ f0: an affine map
f ∶ A→a B automatically respects polarity, is +-continuous, −-image finite and
stable; it satisfies “affinity” too but for different reasons according to whether
the compatible family of configurations involved is empty or not.

116 CHAPTER 9. FROM MAPS TO STRATEGIES

9.3 Affine-stable maps as strategies

Lemma 9.9. Let B be an event structure with polarity. Let yi ⊑B y′i, for all
i ∈ I. Then, (with I nonempty),

⋂
i∈I

yi ⊑B ⋂
i∈I

y′i .

When both {yi ∣ i ∈ I} and {y′i ∣ i ∈ I} are compatible in C∞(B),

⋃
i∈I

yi ⊑B ⋃
i∈I

y′i .

Proof. For example, it is easy to see both (⋃i∈I yi)
− ⊇ (⋃i∈I y

′
i)
− and (⋃i∈I yi)

+ ⊆
(⋃i∈I y

′
i)
+ from the corresponding facts for each yi ⊑B y

′
i.

Theorem 9.10. Let f ∶ C∞(A)→ C∞(B) be an affine-stable map between event
structures with polarity A and B. Then

F =def {x∥y ∈ C∞(A⊥∥B) ∣ y ⊑B f(x)}

is an infinitary stable family. The map top ∶ Pr(F) → A⊥∥B is a strategy f! ∶
A + //B. The strategy f! is deterministic if A and B are race-free and f reflects
−-compatibility, i.e. x ⊆− x1 and x ⊆− x2 in C∞(A) and fx1 ∪ fx2 ∈ C∞(B)
implies x1 ∪ x2 ∈ C

∞(A).

Proof. We first show F is a stable family.
Completeness: Let {xi∥yi ∣ i ∈ I} be a finitely compatible subset in F . From
the compatibility, it follows that ⋃i∈I xi and ⋃i∈I yi are configurations. By
assumption yi ⊑B f(xi), for all i ∈ I, so

⋃
i∈I

yi ⊑B ⋃
i∈I

f(xi) ⊆
+ f(⋃

i∈I

xi) ,

by Lemma 9.9 and affinity. As the relation ⊆+ is included in ⊑B , by the latter’s
transitivity we obtain

⋃
i∈I

yi ⊑B f(⋃
i∈I

xi) ,

so

⋃
i∈I

(xi∥yi) = (⋃
i∈I

xi∥⋃
i∈I

yi) ∈ F .

Stability: Let {xi∥yi ∣ i ∈ I} be a nonempty compatible subset in F . By as-
sumption yi ⊑B f(xi), for all i ∈ I, so

⋂
i∈I

yi ⊑B ⋂
i∈I

f(xi) ⊇
− f(⋂

i∈I

xi) ,

by Lemma 9.9 and stability of f —it follows from the assumptions that {xi ∣ i ∈ I}
is a nonempty compatible family in C∞(A), as is required to apply the stability
of f . As ⊇− is included in ⊑B , we deduce

⋂
i∈I

(xi∥yi) = (⋂
i∈I

xi∥⋂
i∈I

yi) ∈ F .

9.3. AFFINE-STABLE MAPS AS STRATEGIES 117

Finiteness: If x∥y in the family F , then x ∈ C∞(A) and y ∈ C∞(B) with y ⊑B
f(x). An element in x∥y is either (1, a) where a ∈ x or (2, b) where b ∈ y. We
analyse these two cases.
Case a ∈ x. Observe the set f([a])− is finite by −-image finiteness. It follows
that [f([a])−] ∈ C(B) is a finite configuration of B for which

[f([a])−] ⊆+ f[a] , so [f([a])−] ⊑B f[a] .

As also y ⊑B f(x) we have

y ∩ [f([a])−] ⊑B f(x) ∩ f[a] = f[a] ,

whence
[a]∥(y ∩ [f([a])−]) ∈ F

creating a finite subconfiguration of x∥y containing (1, a).
Case b ∈ y. We prove a stronger result than is strictly needed for this part of the
proof, in preparation for the proof of coincidence-freeness later. Letting b ∈ y,
take

x0 =def ⋂{x′ ∈ C∞(A) ∣ [b]+ ⊆ f(x′) & x′ ⊆ x} .

By the stability of f ,

f(x0) ⊆
−
⋂{f(x′) ∣ x′ ∈ C∞(A) & [b]+ ⊆ f(x′) & x′ ⊆ x} .

Thus
[b]+ ⊆ f(x0) ,

and x0 is the minimum subconfiguration of x for which [b]+ ⊆ f(x0). By +-
continuity, x0 is a finite configuration. Also

[f(x0)
−] ⊆+ f(x0)

where the configuration [f(x0)
−] is also finite by −-image finiteness. We observe

that all the ≤-maximal events in x0 are +ve: supposing otherwise, there is a
≤-maximal −ve event in x0 so a configuration x′0 ⊊− x0; then, as f preserves
polarity, [b]+ ⊆ f(x0) ⊆

− f(x′0) so [b]+ ⊆ f(x′0), contradicting the minimality of
x0. Whatever the polarity of b we obtain

[f(x0)
−] ∪ [b] ⊇− [f(x0)

−] ∪ [[b]+] ⊆+ f(x0) ,

so
[f(x0)

−] ∪ [b] ⊑B f(x0) .

We now show that b ∉ [f(x0)
−] by cases on the polarity of b.

Suppose polb(b) = +. In this case [b] = [[b]+] and x0 is the minimum sub-
configuration of x such that b ∈ f(x0). If x0 = ∅, by affinity, in the case of
the empty family, we have ∅ ⊆+ f(∅) which ensures [f(x0)

−] is empty, so does
not contain b. Otherwise, the ≤-maximal events in x0 are +ve and there is
a subconfiguration x′0 ⊊+ x0. As f respects polarity, f(x′0) ⊆+ f(x0). Hence

118 CHAPTER 9. FROM MAPS TO STRATEGIES

f(x0)
− ⊆ f(x′0) so [f(x0)

−] ⊆+ f(x′0). From the minimality of x0, we must have
b ∉ f(x′0), so we also have b ∉ [f(x0)

−], as required.
Suppose polB(b) = −. We show b ∉ f(x0), from which b ∉ [f(x0)

−] follows
directly. Suppose otherwise that b ∈ f(x0). If x0 is empty, we have ∅ ⊆+ f(∅) =
f(x0), contradicting the polarity of b. When x0 is nonempty, as the ≤-maximal
events in x0 are +ve, we must have a strictly smaller subconfiguration x′0 ⊊

+ x0.
But then as f respects polarity f(x′0) ⊆

+ f(x0). As b is −ve, b ∈ f(x′0) making
[b]+ ⊆ f(x′0),which contradicts the minimality of x0. This shows b ∉ f(x0), as
required to obtain b ∉ [f(x0)

−].
To complete the proof of the finiteness property, observe that, by Lemma 9.9,

y ⊑B f(x) with [f(x0)
−] ∪ [b] ⊑B f(x0) entail

y ∩ ([f(x0)
−] ∪ [b]) ⊑B f(x) ∩ f(x0) = f(x0) .

It follows that
x0∥(y ∩ ([f(x0)

−] ∪ [b])) ∈ F ,

so yielding a finite subconfiguration of x∥y containing (2, b). We note for later
that x0 is the minimum subconfiguration of x for which [b]+ ⊆ f(x0) and from
this it follows that

b ∉ [f(x0)
−] with [f(x0)

−] ∪ [b] ⊑B f(x0) .

Coincidence-free: Let x∥y ∈ F . Consider two distinct events in x∥y. There are
three cases: they belong to the same component x; they belong to the same
component y; or they belong to different components.

If they both belong to the same x-component, from the argument above they
are (1, a1) and (1, a2) and belong to the respective subconfigurations

[a1]∥(y ∩ [f([a1])
−]) and [a2]∥(y ∩ [f([a2])

−])

of x∥y. If a1 and a2 are distinct, one of the subconfigurations must separate
them in the sense of containing one but not the other.

Assume they both belong to the same y-component, one being (2, b1) and
the other (2, b2), with b1, b2 ∈ y. From the proof of the finiteness part above,
they belong to respective subconfigurations of x∥y of the form

x1∥(y ∩ ([f(x1)
−] ∪ [b1])) and x2∥(y ∩ ([f(x2)

−] ∪ [b2]))

where x1 is the minimum subconfiguration of x for which [b1]
+ ⊆ f(x1) and

x2 is the minimum subconfiguration of x for which [b2]
+ ⊆ f(x2). Recall from

earlier that

b1 ∉ [f(x1)
−] with [f(x1)

−] ∪ [b1] ⊑B f(x1) and

b2 ∉ [f(x2)
−] with [f(x2)

−] ∪ [b2] ⊑B f(x2) .

Imagine the two subconfigurations of x∥y above do not separate (2, b1) and
(2, b2), i.e.

(2, b2) ∈ x1∥(y ∩ ([f(x1)
−] ∪ [b1])) and

(2, b1) ∈ x2∥(y ∩ ([f(x2)
−] ∪ [b2])) .

9.3. AFFINE-STABLE MAPS AS STRATEGIES 119

Then
b2 ∈ [f(x1)

−] ∪ [b1] ⊑B f(x1) and

b1 ∈ [f(x2)
−] ∪ [b2] ⊑B f(x2) .

By the properties of ⊑B , we see that [b2]
+ ⊆ f(x1) and [b1]

+ ⊆ f(x2). From the
minimality properties of x1 and x2 we deduce that x1 = x2. Writing x0 =def x1 =
x2 and recalling b1, b2 ∉ [f(x0)

−] we obtain b1 ∈ [b2] and b2 ∈ [b1], so b1 = b2.
Hence distinct (2, b1) and (2, b2) are separated by the chosen subconfigurations
of x∥y.

Assume the two distinct events in x∥y belong to different components, one
being (1, a), with a ∈ x, and the other (2, b), with b ∈ y. If b ∉ f([a]) then one
argues, as frequently above, that f([a]) ⊑B f([a]) together with y ⊑B f(x) gives
y ∩ f([a]) ⊑B f([a]) yielding [a]∥(y ∩ f([a])) a subconfiguration of x∥y, which
moreover contains (1, a) but not (2, b). Thus suppose b ∈ f([a]). If b ∈ f([a))
then [a)∥(y∩f([a))) is a subconfiguration of x∥y which contains (2, b) but not

(1, a). The remaining case is when b ∈ f([a]) and b ∉ f([a)). Then [a)
a

−Ð⊂ [a]
and b ∈ f([a]) ∖ f([a)).

If polA(a) = + then, as f respects polarity,

f([a)) ⊆+ f([a]), so f([a)) ⊑B f([a]) .

By the now familiar argument, this yields [a]∥(y ∩ f[a)) a subconfiguration of
x∥y containing (1, a) but not (2, b).

Similarly, if polA(a) = − then

f([a)) ⊆− f([a]), so f([a]) ⊑B f([a)) ,

yielding a subconfiguration [a)∥(y ∩ f[a]) of x∥y which contains (2, b) but not
(1, a).

This completes the proof of coincidence-freeness.

We check the map top ∶ Pr(F)→ A⊥∥B is a strategy. Observe that

x′ ⊒A x & x∥y ∈ F & y ⊒B y
′ Ô⇒ x′∥y′ ∈ F

as the l.h.s. clearly entails

y′ ⊑B y ⊑B f(x) ⊑B f(x
′) ,

so the r.h.s.. In particular, when x∥y ∈ F and (x′∥y′) ∈ C∞(A⊥∥B),
if (x∥y) ⊆− (x′∥y′), then (x′∥y′) ∈ F ; and
if (x′∥y′) ⊆+ (x∥y), then (x′∥y′) ∈ F .

Thus the composite map

C∞(Pr(F))→ F ↪ C∞(A⊥∥B)

of stable families, where the first map is top and the second is an inclusion, satis-
fies the “lifting” conditions of Corollary 4.23 ensuring that top ∶ Pr(F)→ A⊥∥B

120 CHAPTER 9. FROM MAPS TO STRATEGIES

is a strategy.

Assume now that A and B are race-free and that f reflects −-compatibility.
As A⊥∥B is now also race-free, to show f! a deterministic strategy it suffices to
show that any two +ve event increments of a configuration in F are compatible
in F , i.e. if x∥y−⊂+x1∥y1 and x∥y−⊂+x2∥y2 in F , then (x1 ∪ x2)∥(y1 ∪ y2) ∈ F .
Consider cases.

If the increments are y
b1
−Ð⊂ y1 and y

b2
−Ð⊂ y2, then b1 and b2 are +ve in B. Because

each yi ⊑B f(x), i.e. yi ⊇
− z ⊆+ f(x) where z = y ∩ f(x), we see both b1 ∈ f(x)

and b2 ∈ f(x). Hence z ∪ {b1, b2} ∈ C∞(B). Because B is race-free we obtain
y1 ∪ y2 ∈ C

∞(B). Checking y1 ∪ y2 ⊑B f(x), ensures x∥(y1 ∪ y2) ∈ F .

If the increments are x
a1
−Ð⊂x1 and x

a2
−Ð⊂x2 then a1 and a2 are −ve in A with

y ⊑B f(x1) and y ⊑B f(x2). It follows that each f(xi) ∖ f(x) consists of solely
−ve events in B and so are included in y. This ensures the compatibility of f(x1)
and f(x2). That (x1 ∪ x2)∥y ∈ F now follows from f reflecting −-compatibility
and its affinity.

The final case is when the increments are, w.l.o.g. x
a1
−Ð⊂x1 and y

b2
−Ð⊂ y2, when a1

is −ve in A and b2 +ve in B. Then y ⊑B f(x1) and y2 ⊑B f(x), so y2 ⊑B f(x1),
making x1∥y2 ∈ F .

Example 9.11. Consider f ∶ A → B the map of event structures with polar-
ity which sends the two conflicting Opponents events of A to the single Opponent
event of B. The resulting strategy f! ∶ A + //B is nondeterministic. ◻

Example 9.12. In [23], a more restricted form of lifting is used in the “lifting
lemma.” Let f ∶ A → B be a map of event structures with polarity which
is receptive and innocent. In loc. cit. its “lifting” to the strategy f ∶ A + //B
is taken to be the composite map f = (A⊥∥f) ○ ccA ∶ CCA → A⊥∥B. Making
essential use of the assumed properties of f we can show that f ≅ f!. To see this
note that the configurations of CCA form the stable family

F = {x∥x′ ∈ C∞(A⊥∥A) ∣ x′ ⊑A x} .

Compare this with the stable family

F! = {x∥y ∈ C∞(A⊥∥B) ∣ y ⊑B fx} .

The function θ ∶ F → F! such that x∥x′ ↦ x∥fx′ is an order isomorphism
w.r.t. inclusion. To see this, use the fact that if x ↦ fx and y ⊑B fx in C∞(B)
then there is a unique x′ ⊑A x in C∞(A) such that fx′ = y. The isomorphism of
the stable families implies the isomorphism f ≅ f!. ◻

Example 9.13. We often build a strategy in a game B from a configuration
x ∈ C∞(B). Informally, we take the elementary event structure with polarity
got by restricting the causal dependency on B to x but then closed up under
accessible Opponent moves to ensure receptivity. More precisely, we can define
a strategy S ↪ B with configurations of C∞(S) the family

{y ∈ C∞(B) ∣ ∃x0 ∈ C
∞(B). x0 ⊆ x & y ⊇− x0}

9.3. AFFINE-STABLE MAPS AS STRATEGIES 121

—the event structure S is then recovered via the prime configurations of the
family. The strategy generated in this way is deterministic if B is race-free.

This construction is only achieved as a lift of an affine-stable map in a very
special case, when ∅ ⊆+ x. Then, letting f ∶ C∞(∅) → C∞(B) take the empty
configuration to x, the function f is affine-stable—that it is affine depends on
∅ ⊆+ x. The strategy f! ∶ ∅ + //B can be identified with the strategy in B built
as top ∶ Pr({y ∈ C∞(B) ∣ y ⊑B x}) → B ; the strategy is deterministic if B is
race-free. ◻

Example 9.14. The duplication strategy revisited. Let A be an event structure
with polarity. Consider the function dA ∶ x ↦ x∥x from C∞(A) to C∞(A∥A).
It is easily checked to be affine-stable. Hence there is a strategy δA = dA! ∶
A + //A∥A. (The strategy δA is not natural in A; nor could it be as ∥ is not a
product.) ◻

Example 9.15. Conditional strategy. We obtain a conditional strategy from
a conditional function. Let B be the event structure with polarity comprising
two Player moves t and f in conflict with each other. Define the conditional
function

cond ∶ C∞(B∥A∥A)→ C∞(A) ,

as expected by

cond(x∥y∥z) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∅ if x = ∅ ,

y if t ∈ x ,

z if f ∈ x .

Above we have written the input configuration in C∞(B∥A∥A) as x∥y∥z with
x ∈ C∞(B), y ∈ C∞(A), z ∈ C∞(A). The associated strategy

cond! ∶ B∥A∥A + //A

is got as Pr(F) from the stable family

F =def {(x∥y∥z)∥w ∈ C∞((B∥A∥A)⊥∥A) ∣ w ⊑ cond(x∥y∥z)} .

From the definition of cond,

F ={(x∥y∥z)∥w ∣ w ⊑ ∅}∪

{(x∥y∥z)∥w ∣ w ⊑ y & t ∈ x}∪

{(x∥y∥z)∥w ∣ w ⊑ z & f ∈ x} .

Note F contains both ({t}∥∅∥∅)∥∅ and ({f}∥∅∥∅∥)∅ so within configurations
of F the booleans t and f don’t causally depend on any events. Also w ⊑ ∅ is
equivalent to w ⊇− ∅. Hence for any configuration (x∥y∥z)∥w ∈ F , if w∩A+ ≠ ∅
then either t ∈ x or f ∈ x. For this reason any +ve event of y causally depends
on t ∈ x, and similarly any +ve event of z causally depends on f ∈ x.

The construction introduces extra causal dependencies in the strategy, viz. de-
pendencies of output on the booleans t and f , which are only implicit in the
original function. In this sense affine-stable functions provide a way for us to
program causal dependencies. ◻

122 CHAPTER 9. FROM MAPS TO STRATEGIES

Example 9.16. A case construction. This refines the case construction associ-
ated with the sum of games, given earlier in Section 8.1.3, to cases which depend
on the value of the initial move. Imagine a game of the form Σi∈I ⊞i .Ai in which
the initial moves are all by Player and in conflict with each other. We describe
the meaning of a case expression

Γ,w ∶ Σi∈I ⊞i .Ai ⊢ casej∈Ix ⊑ w/ ⊞j . tj ⊣∆

built from strategies
Γ, x ∶ Aj ⊢ tj ⊣∆ ,

using the partial maps of event structures with polarity

(/⊞j) ∶ Σi∈I ⊞i .Ai → Aj .

The map (/⊞j) is undefined on all events but for those of Aj where it acts as
identity. Upon occurrence of a Player move ⊞j , the case expression resumes as
the strategy tj from Aj .

First, for j ∈ I, form the composite strategies given by expressions

Γ,w ∶ Σi∈I ⊞i .Ai ⊢ ∃x ∶ Aj .[x ⊑ w/ ⊞j ∥tj] ⊣∆ ,

before obtaining the case expression above as an abbreviation for

Γ,w ∶ Σi∈I ⊞i .Ai ⊢ []
j∈I

∃x ∶ Aj .[x ⊑ w/ ⊞j ∥tj] ⊣∆ .

◻

Example 9.17. Detector events. Let A be a game. Let X ∈ ConA with X ⊆ A+.
Let ⊞ be a single “detector” event, of +ve polarity. Let

dX ∶ C∞(A)→ C∞(⊞)

be the function such that

dX(x) =

⎧⎪⎪
⎨
⎪⎪⎩

⊞ if X ⊆ x ,

∅ otherwise.

It is easy to check that dX is affine-stable. Hence there is a strategy

dX ! ∶ A + // ⊞ .

Let us examine dX ! a little more carefully. The stable family from which it is
built is

FX = {x∥⊞ ∈ C∞(A⊥∥⊞) ∣ z ⊑ dX(x)} .

From the definition of dX we obtain

FX = {x∥∅ ∣ x ∈ C∞(A⊥)} ∪ {x∥{⊞} ∣ x ∈ C∞(A⊥) & X ⊆ x} .

9.3. AFFINE-STABLE MAPS AS STRATEGIES 123

Hence the (single) prime configuration in FX containing ⊞ is [X] ∪ {⊞}. Con-
sequently the strategy simply adjoins extra causal dependencies a _ ⊞ from
a ∈ X. The strategy detects the presence of X. In a similar way, one can ex-
tend detectors to detect the occurrence of one of a family ⟨Xi⟩i∈I of Xi ∈ ConA
provided

Xi ∪Xj ∈ ConA Ô⇒ i = j

for i, j ∈ I. ◻

Example 9.18. Blockers. Let A be a game and Y ⊆ A−. Let

hY ∶ C∞(A)→ C∞(⊟)

be the function which acts so

hY (x) =

⎧⎪⎪
⎨
⎪⎪⎩

⊟ if x ∩ Y ≠ ∅ ,

∅ otherwise.

It can be checked that hY is a map of event structures so affine-stable. The
stable family from which the strategy hY ! derives is

GY ={x∥z ∈ C∞(A⊥∥⊟) ∣ z ⊑ hY (x)}

={x∥z ∈ C∞(A⊥∥⊟) ∣ z ⊇− hY (x)}

={x∥z ∈ C∞(A⊥∥⊟) ∣ x ∩ Y ≠ ∅ Ô⇒ z = {⊟}}

={x∥z ∈ C∞(A⊥∥⊟) ∣ ∀a ∈ Y. a ∈ x Ô⇒ z = {⊟}} .

Consequently, the strategy hY ! obtained via Pr(GY) adjoins causal dependencies
⊟ _ a from ⊟ to each event a ∈ Y . The absence of ⊟ blocks the occurrence of
each event of Y . ◻

Example 9.19. That affine-stable maps respect polarities is essential for the
proof of Theorem 9.10 above to go through. Let f be map from the configura-
tions of A, comprising a single +ve event a, to B comprising b1 = ⊟ _ ⊞ = b2
which takes the empty configuration to the empty configuration and {a} to
{b1, b2}. Accordingly, F = {x∥y ∣ y ⊑B f(x)} is the family comprising the set

{∅∥∅, ∅∥{b1}, {a}∥{b1}, {a}∥{b1, b2}}

which notably does not contain {a}∥∅. Consequently, the pre-strategy σ ∶
A + //B obtained via Pr from the inclusion F ↪ C(A⊥∥B) fails receptivity and
−-innocence by introducing a causal dependency b1 _ a. ◻

The dual to Theorem 9.10 follows as a corollary:

Corollary 9.20. Let g ∶ C∞(A) → C∞(B) be such that g ∶ C∞(A⊥) → C∞(B⊥)
is affine-stable, then

G =def {y∥x ∈ C∞(B⊥∥A) ∣ g(x) ⊑B y}

is an infinitary stable family. The map top ∶ Pr(G) → B⊥∥A is a strategy g∗ ∶
B + //A. The strategy g∗ is deterministic if A is race-free and g reflects +-
compatibility

124 CHAPTER 9. FROM MAPS TO STRATEGIES

In particular, an affine map f ∶ A → B, with ∅ ⊑B f(∅), is certainly affine-
stable and the construction of f! specialises to give the denotation of

x ∶ A ⊢ y ⊑B fx ⊣ y ∶ B .

An affine map g ∶ B → A, with g∅ ⊑A ∅, yields an affine-stable map, which we
also call g, from B⊥ to A⊥, so a strategy g∗ ∶ A + //B, the denotation of

x ∶ A ⊢ gy ⊑A x ⊣ y ∶ B .

9.4 A functor: affine-stable maps to strategies

Let f ∶ A → B and g ∶ B → C be affine stable maps. As we have seen, they
determine stable families

F ={x∥y ∣ f(x) ⊒B y} and

G ={y∥z ∣ g(y) ⊒C z} ,

respectively. Consider the stable family determined by the composition of func-
tions gf , viz.

{x∥z ∣ gf(x) ⊒C z} .

One can show straightforwardly that

{x∥z ∣ gf(x) ⊒C z} ={x∥z ∣ ∃y ∈ C∞(B). f(x) ⊒B y & g(y) ⊒C z}

{x∥z ∣ ∃y ∈ C∞(B). x∥y ∈ F & y∥z ∈ G}

= G ○F ,

where the last composition is essentially the composition of stable families as
relations: for instance, regarding the stable family F as

{(x, y) ∈ C∞(A) × C∞(B) ∣ f(x) ⊒B y} ,

observing the isomorphism C∞(A) × C∞(B) ≅ C∞(A⊥∥B). We shall show that

Pr(G)⊙Pr(F) ≅ Pr(G ○F) ,

so reducing the composition of strategies of affine-stable maps to relational
composition; by definition, it follows directly that

g!⊙f! ≅ (gf)! .

For functoriality of ()! we also require preservation of identities. However, the
stable family determined by idA ∶ C∞(A)→ C∞(A) is, by definition,

{x∥y ∣ x ⊒A y} = C
∞(CCA) ,

ensuring that idA! ≅ CCA.
The following general proposition and lemma will be useful in showing the

functions associated with the isomorphism Pr(G)⊙Pr(F) ≅ Pr(G ○F) are well-
defined.

9.4. A FUNCTOR: AFFINE-STABLE MAPS TO STRATEGIES 125

Proposition 9.21. Let F be a stable family. Let e ∈ x ∈ F and e′ ∈ x′ ∈ F .
Then,

[e]x = [e′]x′ ⇐⇒ e = e′ & ∃y ∈ F . y ⊆ x,x′ & e ∈ y .

Proof. “⇒”: Prime configurations have a unique top element, ensuring e = e′,
and taking y = [e]x = [e′]x′ we obtain a common subconfiguration of x and x′

containing e. “⇐”: From the rhs, we get e = e′ ∈ y ⊆ x,x′ ensuring [e]x = [e]y =
[e′]x′ .

Lemma 9.22. Let σ ∶ A + //B and τ ∶ B + //C be strategies. Suppose τ1 is
partial rigid (i.e., the component τ1 ∶ T → B preserves causal dependency when
defined). Letting x ∈ C(S), y ∈ C(T),

y ⊛ x is defined iff σ2x = τ1y .

Proof. Write xA = σ1x, xB = σ2x, yB = τ1y and yC = τ2y. Recall y⊛x is defined
to be the bijection

x∥yC ≅ xA∥xB∥xC ≅ xA∥y

induced by σ and τ provided xb = yB , i.e. σ2x = τ1y, and the bijection is
secured—see Proposition 3.31. To simplify notation we can present the bijection
as x∪y in which we identify the two sets x and y at their parts σ−1xB and τ−1yB
via the common image xB = yB .

To obtain a contradiction, suppose that the bijection were not secured, that
there were a causal loop in x ∪ y, i.e. that there were a chain

u1 _ u2 _ ⋯ _ un = u1

of events in x∪y, with n > 1, w.r.t. causal dependency _ which is either _S or
_T . The events of x⊛y and so of the chain are either over A, B or C. As there
are no causal loops in S or T the causal loop must contain events over each of
A, B and C. W.l.o.g., we may assume u1 is over B.

Part of the chain is over C. The whole chain has the form

u1 _ ⋯ _ ui−1 _T ui _T ⋯ _T uj _T uj+1 _ ⋯ _ un = u1

where ui−1 and uj+1 are over B and ui,⋯, uj are all over C. Clearly ui−1 <T uj+1.
As τ1 is partial rigid, we obtain τ(ui−1) <B τ(uj+1). With the identification of
events over B in x and y, we have σ(ui−1) <B σ(uj+1). As σ locally reflects
causal dependency, we see that ui−1 <S uj+1. We now have a causal loop

u1 _ ⋯ _ ui−1 <S uj+1 _ ⋯ _ un = u1

from which the events ui,⋯, uj over C have been excised. Continuing in this
way we can remove all events over C from the causal loop, obtaining a causal
loop in S —a contradiction.

Now to the isomorphism. First, a key observation, expressing that the strat-
egy obtained from an affine-stable map doesn’t disturb the causality of input:

126 CHAPTER 9. FROM MAPS TO STRATEGIES

Proposition 9.23. Let g ∶ B → C be an affine-stable map which determines the
stable family G = {y∥z ∣ g(y) ⊒C z}. Let y∥z ∈ G. Then,

∀b, b′ ∈ y. (1, b′) ≤y∥z (1, b) ⇐⇒ b′ ≤B b .

In the strategy g! = top ∶ Pr(G) → B⊥∥C , the component (g!)1 ∶ Pr(G) → B⊥ is
partial rigid.

Proof. Recall (1, b′) ≤y∥z (1, b) iff every subconfiguration of y∥z in G which
contains (1, b) also contains (1, b′).

Any subconfiguration of y∥z necessarily takes the form y′∥z′ where y′ is a
subconfiguration of y in B and z′ is a subconfiguration of z in C with g(y′) ⊒B z

′.
From b′ ≤B b it therefore follows that (1, b′) ≤y∥z (1, b).

Conversely, given a subconfiguration y′ of y we have y′∥g(y′) ∈ G whence,
via Lemma 9.9, y′∥g(y′) ∩ z′ is a subconfiguration of y∥z in G. From this the
converse implication follows: if (1, b′) ≤y∥z (1, b) then b′ ≤B b.

Thus (1, b′) ≤y∥z (1, b) iff b′ ≤B b, for all b, b′ ∈ y. That (g!)1 is partial rigid
is a direct consequence.

Lemma 9.24. Let f ∶ A → B and g ∶ B → C be affine stable maps which
determine stable families F = {x∥y ∣ f(x) ⊒B y} and G = {y∥z ∣ g(y) ⊒C z},
respectively. Then, Pr(G)⊙Pr(F) ≅ Pr(G ○F).

Proof. Recall, Pr(G)⊙Pr(F) is obtained as Pr(G ⊛ F) followed by hiding the
synchronisations over B. First consider G ⊛F .

A finite configuration of G⊛F , built as a pullback of stable families, has the
form x∥y∥z where x∥y ∈ F and y∥z ∈ G and the causal dependencies from F
and G do not jointly introduce any causal loops. However, from the observation
of Proposition 9.23 and Lemma 9.22 above, it follows that there are no causal
loops for such particular stable families.

It follows that for all x∥y ∈ F and y∥z ∈ G we have x∥y∥z is a configuration
of G⊛F . Thus we have a simple characterisation of the the stable family G⊛F :

G ⊛F = {x∥y∥z ∈ C∞(A⊥∥B∥C) ∣ x∥y ∈ F & y∥z ∈ G} .

It remains to consider the effect of hiding the synchronisations over B and
show

Pr(G)⊙Pr(F) ≅ Pr(G ○F) ,

where

G ○F = {x∥z ∈ C∞(A⊥∥C) ∣ ∃y ∈ C∞(B). x∥y ∈ F & y∥z ∈ G} .

(As we saw in the discussion preceding this lemma, this is the stable family
obtained from the composition gf .) To this end we define

θ ∶ Pr(G)⊙Pr(F)→ Pr(G ○F)

and its putative mutual inverse

ϕ ∶ Pr(G ○F)→ Pr(G)⊙Pr(F) .

9.4. A FUNCTOR: AFFINE-STABLE MAPS TO STRATEGIES 127

For simplicity of notation, to avoid indices, throughout this proof assume that
the events A, B and C are pairwise disjoint and identify x∥y∥z with x ∪ y ∪ z.

The events of Pr(G)⊙Pr(F) have the form [a]x∥y∥z, where a ∈ x, or [c]x∥y∥z,
where c ∈ z, and x∥y∥z ∈ G ⊛F . The events of Pr(G ○F) have the form [a]x∥z,
where a ∈ x, or [c]x∥z, where c ∈ z, and x∥z ∈ G ○F . Define

θ([d]x∥y∥z) = [d]x∥z and ϕ([d]x∥z) = [d]x∥f(x)∥z ,

on typical events [d]x∥y∥z ∈ Pr(G ○F) and [d]x∥z ∈ Pr(G ○F). We should check
θ and ϕ are well-defined functions. This is by straightforward applications
of Proposition 9.21. In showing that θ is well-defined we use that x∥y∥z is
a configuration of G ⊛ F directly implies x∥z is a configuration of G ○ F . In
showing ϕ is well-defined we need that x∥z ∈ G ○ F implies x∥f(x)∥z ∈ G ⊛ F .
Assuming x∥z ∈ G ○F , we have x∥y ∈ F and y∥z ∈ G for some y ∈ C∞(B). Then
f(x) ⊒B y and g(y) ⊒C z. Thus gf(x) ⊒C g(y) ⊒C z whence g(f(x)) ⊒C z
ensuring f(x)∥z ∈ G. Clearly x∥f(x) ∈ F , so x∥f(x)∥z ∈ G ⊛F , as needed.

We show θ and ϕ are mutual inverses. It is easy to see that θϕ([d]x∥z) =
[d]x∥z. By definition, ϕθ([d]x∥y∥z) = [d]x∥f(x)∥z, where x∥y∥z ∈ G ⊛F and d is
an event of x or z. We require

[d]x∥y∥z = [d]x∥f(x)∥z .

To this end we show x∥(y ∩ f(x))∥z ∈ G ⊛F ; once this is shown we have

[d]x∥y∥z = [d]x∥(y∩f(x))∥z = [d]x∥f(x)∥z

—using twice the general fact that [e]v = [e]w when e is an event of compatible
configurations v and w of a stable family. To show x∥(y ∩ f(x))∥z ∈ G ⊛F we
require

x∥(y ∩ f(x)) ∈ F and (y ∩ f(x))∥zG .

Using Lemma 9.9, from f(x) ⊒B y with f(x) ⊒B f(x) we obtain f(x) ⊒B
(y ∩ f(x)); so x∥(y ∩ f(x)) ∈ F . Using Proposition 9.7, from f(x) ⊒B y we
get g(f(x) ∩ y) = g(f(x)) ∩ g(y). But g(f(x)) ⊒C z and g(y) ⊒C z ensuring
g(f(x))∩g(y) ⊒C z, via Lemma 9.9. Hence g(f(x)∩y) ⊒C z and (y∩f(x))∥z ∈ G,
as required. This establishes a bijection between the events of Pr(G)⊙Pr(F)
and those of Pr(G ○F).

For an isomorphism, we require the bijection respects causal dependency and
consistency. The matching of a configuration x∥z in G ○F with a configuration
x∥f(x)∥z in G ⊛F clearly respects inclusion. This implies

d′ ≤x∥z d ⇐⇒ d′ ≤x∥f(x)∥z d ,

for d, d′ in x ∈ C∞(A) or z ∈ C∞(C). This entails that the bijection on events
given by θ and ϕ respects causal dependency.

Via the matching of configurations, both θ and its inverse ϕ may be shown
to preserve consistency. This establishes the isomorphism of the lemma.

Corollary 9.25. The operation ()! is a (pseudo) functor from the category of
affine-stable maps to concurrent strategies.

128 CHAPTER 9. FROM MAPS TO STRATEGIES

9.5 An adjunction

In general, an affine-stable map f from A⊥ to B⊥ yields a strategy f! ∶ A
⊥

+ //B⊥,
so by duality a strategy f∗ ∶ B + //A. An affine-stable map f from A to B is
not generally also an affine-stable map from A⊥ to B⊥. The following definition
of additive-stable map f from A to B bluntens affine-stability to ensure f is
also a additive-stable map from A⊥ to B⊥; and hence is associated with both a
strategy

f! ∶ A + //B

and a converse strategy
f∗ ∶ B + //A.

The usual maps of event structures with polarity are additive-stable so the
constructions specialise to give the denotations of

x ∶ A ⊢ y ⊑B fx ⊣ y ∶ B and

y ∶ B ⊢ fx ⊑B y ⊣ x ∶ A,

respectively, when f is a map of event structures with polarity—the map f may
be partial.

Definition 9.26. A additive-stable map between event structures with polarity,
from A to B, is a function f ∶ (C∞(A),⊆)→ (C∞(B),⊆) which is

• polarity-respecting: for x, y ∈ C∞(A),

x ⊆− y Ô⇒ f(x) ⊆− f(y) and x ⊆+ y Ô⇒ f(x) ⊆+ f(y) ;

• image finite: if x ∈ C(A) then f(x) ∈ C(B);

• additive: for all compatible families {xi ∣ i ∈ I} in C∞(A),

⋃
i∈I

f(xi) = f(⋃
i∈I

xi) ;

• and for all nonempty compatible families {xi ∣ i ∈ I} in C∞(A),

f(⋂
i∈I

xi) =⋂
i∈I

f(xi) .

Additive-stable maps are closely related to Girard’s linear maps between
qualitative domains, though they differ in the extra generality of event structures
over qualitative domains, in taking account of polarity, and enforcing image
finiteness. Because the definition of additive-stable is indifferent to a switch of
polarities:

Proposition 9.27. An additive-stable function f from A to B is an additive-
stable function f from A⊥ to B⊥ and vice versa.

9.5. AN ADJUNCTION 129

Given an additive-stable function f from A to B we obtain a strategy
f! ∶ A + //B and, via f from A⊥ to B⊥, a strategy f∗ ∶ B + //A. We show
they form an adjunction. First a Proposition—it will be important for the defi-
nition of the unit and counit of the adjunction. The proposition follows directly
from Lemma 9.24, obtaining the composition of strategies from maps from the
relational composition of their stable families.

Proposition 9.28. Let f be an additive-stable function from A to B between
event structures with polarity. Define

F! =def{x∥y ∈ C
∞(A⊥∥B) ∣ fx ⊒B y} ,

F ∗ =def{y∥x ∈ C
∞(B⊥∥A) ∣ y ⊒B fx} .

Define f! ∶ Pr(F!)
top // A⊥∥B and f∗ ∶ Pr(F ∗)

top // B⊥∥A . Then the com-

position of strategies f∗⊙f! is isomorphic to

Pr(F ∗ ○ F!)
top // A⊥∥A

and f!⊙f
∗ to

Pr(F! ○ F
∗)

top // B⊥∥B ,

based on the relational composition of the stable families.

Theorem 9.29. Let f be an additive-stable function from A to B between event
structures with polarity. In the bicategory of strategies the strategies f! and f∗

form an adjunction f! ⊣ f
∗.

Proof. It is easiest to carry out the arguments by considering the associated
constructions on stable families. We obtain the compositions f∗⊙f! and f!⊙f

∗

from “relational” compositions of the stable families

F! =def {x∥y ∈ C∞(A⊥∥B) ∣ fx ⊒B y}

for f! and

F ∗ =def {y∥x ∈ C∞(B⊥∥A) ∣ y ⊒B fx}

for f∗.
By Proposition 9.28, the composition f∗⊙f! is the event structure Pr(F ∗○F!)

derived from the stable family

F ∗ ○ F! = {x∥x′ ∈ C∞(A⊥∥A) ∣ fx ⊒B fx
′}

—obtained as the relational composition of the stable families F! and F ∗. Recall,
from Proposition 7.5, that the stable family of ccA is

CA =def {x∥x′ ∈ C∞(A⊥∥A) ∣ x ⊒A x
′} .

130 CHAPTER 9. FROM MAPS TO STRATEGIES

Define the unit η ∶ ccA ⇒ f∗⊙f! to be the map Pr(I) of event structures with
polarity got from the inclusion of stable families

I ∶ CA ↪ F ∗ ○ F! ;

clearly, x∥x′ ∈ CA, i.e. x ⊒A x
′, implies fx ⊒B fx

′, so x∥x′ ∈ F ∗ ○ F!.
By Proposition 9.28, the composition f!⊙f

∗ is the event structure Pr(F!○F
∗)

got from the stable family

F! ○ F
∗ = {y∥y′ ∈ C∞(B⊥∥B) ∣ ∃x ∈ C∞(A). y ⊒B fx & fx ⊒B y

′}

—obtained as the relational composition of the stable families F ∗ and F!. The
counit ε ∶ f!⊙f

∗ ⇒ ccB is the the map Pr(J) got from the inclusion of stable
families

J ∶ F! ○ F
∗ ↪ CB ;

clearly, y∥y′ ∈ F! ○ F
∗, i.e. y ⊒B fx and fx ⊒B y

′, implies y ⊒B y
′, so y∥y′ ∈ CB .

To obtain an adjunction f! ⊣ f
∗ we require (i) (f∗ ε)(ηf∗) = idf∗ , i.e. the

composition of the 2-cells

B
⇑ ε
+
ccB

##
+
f∗
// A

⇑η
+
ccA

<<+
f!

// B +
f∗
// A

is the identity 2-cell idf∗ ∶ f
∗ ⇒ f∗; and (ii) (εf!)(f!η) = idf!

, i.e. the composi-
tion of the 2-cells

A
⇑η
+
ccA

<<+
f!

// B
⇑ ε
+
ccB

##
+
f∗
// A +

f!

// B

is the identity 2-cell idf!
∶ f! ⇒ f!.

We establish (i) and (ii) by considering the companion diagrams for stable
families—the diagrams (i) and (ii) are got by applying Pr to the diagrams for
stable families. Consider the diagram for (i). It takes the form

C∞(B)

⊆

+
CB

((
+
F ∗

// C∞(A)

⊆

+
CA

66
+
F!

// C∞(B) +
F ∗

// C∞(A) ,

yielding the inclusion CA ○F
∗ ⊆ F ∗ ○CB . We check this is the identity inclusion,

from which (i) follows, by showing the converse inclusion F ∗ ○ CB ⊆ CA ○ F ∗.
Suppose y∥x ∈ F ∗ ○CB , i.e.

y ⊒B y
′ & y′ ⊒B fx ,

9.5. AN ADJUNCTION 131

for some y′ ∈ C∞(B). Then,

y ⊒B fx & x ⊒A x ,

so y∥x ∈ CA ○ F
∗.

The diagram for (ii) takes the form

C∞(A)

⊆
+
CA

66
+
F!

// C∞(B)

⊆

+
CB

((
+
F ∗

// C∞(A) +
F!

// C∞(B) ,

yielding the inclusion F! ○CA ⊆ CB ○F!. To show (ii), we check that the converse
inclusion CB ○ F! ⊆ F! ○CA also holds. Suppose x∥y ∈ CB⊙F!, i.e.

fx ⊒B y
′ & y′ ⊒ y ,

for some y′ ∈ C∞(B). Then,

x ⊒A x & fx ⊒B y ,

so x∥y ∈ F! ○CA.

The adjunction in the bicategory of concurrent strategies Strat above yields
a traditional adjunction:

Corollary 9.30. Let f be an additive-stable function from game A to game B.
Let StratA be the comma category of strategies in game A, and StratB that in
B. Then there are functors f!⊙() ∶ StratA → StratB and f∗⊙() ∶ StratB →
StratA with f!⊙() left adjoint to f∗⊙().

We remark on a direct way to construct the interaction f!⊛σ w.r.t. an affine-
stable map from C∞(A) to C∞(B) and a strategy σ in A. The construction uses
the lifting to a strategy f(σ)! in S ⊥ ∥B of the composite map f(σ). A direct
description of f!⊙() ∶ StratA → StratB then arises by hiding S.

Proposition 9.31. Let σ ∶ S → A be a strategy in the game A. Let f be
an affine-stable function from game A to game B. The composite function
f(σ) ∶ x ↦ f(σx) is affine-stable from C∞(S) to C∞(B). It lifts to a strategy
f(σ)! from S to B, and is accordingly a strategy in the game S⊥∥B.

The interaction f! ⊛ σ is isomorphic to (σ∥B) ○ f(σ)!. The composition
f!⊙σ is isomorphic to the projection of f(σ)! to B.

Proof. Let σ ∶ S → A be a strategy in the game A. The strategy σ induces,
via direct image, an affine-stable function from C∞(S) to C∞(A). Hence the
function f(σ) ∶ x↦ f(σx) is affine-stable from C∞(S) to C∞(B). Theorem 9.10
immediately implies that

F = {x∥y ∣ x ∈ C∞(S) & y ∈ C∞(B) & y ⊑B f(σx)} .

132 CHAPTER 9. FROM MAPS TO STRATEGIES

is a stable family for which

f(σ)! = top ∶ Pr(F)→ S⊥∥B

is a strategy from S to B. The composition

(σ∥B) ○ f(σ)! ∶ Pr(F)→ A⊥∥B

produces a total map. (It needn’t be a strategy from A to B as σ needn’t be
receptive or linear from S⊥ to A⊥.) We claim that through the simple change of
making the events of A neutral we obtain the partial strategy f! ⊛ σ, i.e. that

f! ⊛ σ ≅ (σ∥B) ○ f(σ)! ∶ Pr(F)→ A0∥B .

Its projection to events over B, got as the defined part after post-composition
with A0∥B ⇀ B, will then be f!⊙σ. It is easy to see that this coincides with the
defined part of the composite

Pr(F)
f(σ)!
Ð→ S⊥∥B ⇀ B ,

in which by projecting to B we hide the events of S.
We check the claim. Finite configurations of the interaction f! ⊛ σ have the

form
(z∥y)⊛ x

with x ∈ C(S), y ∈ C(B) and z ∈ C(A) s.t. y ⊑B f(z), inducing a secured bijection

x∥y ≅ σx∥y = z∥y .

However this is clearly the case for all x ∈ C(S), y ∈ C(B) s.t. y ⊑B f(σx). Such
secured bijections are in 1-1 correspondence with the finite configurations of F
above. The correspondence clearly respects inclusion, ensuring the claim.

9.6 A special adjunction

A special case relates deterministic strategies to Geometry of Interaction.
Given any game A there is a map of event structures with polarity

fA ∶ A→ A+∥A− ,

where A+ is the projection of A to its +ve events and A− is the projection to
its −ve events: the map fA acts as the identity function on events; it sends a
configurations x ∈ C∞(A) to fAx = x

+∥x−. It determines the stable families

FA! ={x∥y ∈ C
∞(A⊥∥(A+∥A−)) ∣ y ⊑A+∥A− x+∥x−} ,

FA
∗ ={x∥y ∈ C∞((A+∥A−)⊥∥A) ∣ x+∥x− ⊑A+∥A− y} ,

and through them the adjunction fA! ⊢ fA
∗ where fA! ∶ Pr(FA!)→ A⊥∥(A+∥A−)

and fA
∗ ∶ Pr(FA

∗)→ (A+∥A−)⊥∥A.

9.6. A SPECIAL ADJUNCTION 133

On inspecting

y ⊑A+∥A− x+∥x− ,

where x ∈ C∞(A) and y = y+∥y− ∈ C∞(A+∥A−), we see that it expresses

y− ⊇ x− & y+ ⊆ x+ .

So

FA! = {x∥y ∈ C∞(A⊥∥(A+∥A−)) ∣ y− ⊇ x− & y+ ⊆ x+} .

Similarly,

FA
∗ = {x∥y ∈ C∞((A+∥A−)⊥∥A) ∣ x− ⊇ y− & x+ ⊆ y+} .

Proposition 9.32. Suppose a game A is race-free. Then both fA! and fA
∗ are

deterministic strategies.

Proof. AssumeA is race-free. Certainly so isA+∥A−. As f reflects −-compatibility,
by Theorem 9.10 and the formulation of race-freeness in Proposition 5.6, we ob-
tain that fA! is deterministic. Dually, as f also reflects +-compatibility, so
regarded as a function from A⊥ to B⊥ reflects −-compatibility, we obtain fA

∗ is
deterministic too.

Let σ ∶ A + //B be a strategy between race-free games A and B. Defining

goi(σ) = fB !⊙σ⊙fA
∗

we obtain a strategy

goi(σ) ∶ A+∥A−
+ //B+∥B− .

Then, the strategy goi(σ) corresponds to a stable span from A+∥B− to A−∥B+.
Also, if σ is deterministic then so is goi(σ), when goi(σ) corresponds to a stable
function from A+∥B− to A−∥B+, so to a GoI map.

The operation goi forms a lax functor. Let σ ∶ A + //B and τ ∶ B + //C.
Then, in general there is a nontrivial 2-cell goi(τ⊙σ)⇒ goi(τ)⊙goi(σ) :

goi(τ)⊙goi(σ) = (fC !⊙ τ ⊙fB
∗)⊙(fB !⊙σ⊙fA

∗)

= fC !⊙ τ ⊙(fB
∗⊙fB !)⊙σ⊙fA

∗

⇐ fC !⊙ τ ⊙ ccB ⊙σ⊙fA
∗ , from the 2-cell ηB ∶ ccB ⇒ fB

∗⊙fB ! ,

= fC !⊙ τ ⊙σ⊙fA
∗

= goi(τ⊙σ) .

We can explain goi in terms of its action on strategies in an individual
game A. Let σ ∶ S → A be a strategy in the game A. As a special case of
Proposition 9.31, the family

F = {x∥y ∣ x ∈ C∞(S) & y ∈ C∞(A+∥A−) & y− ⊇ (σx)− & y+ ⊆ (σx)+}

134 CHAPTER 9. FROM MAPS TO STRATEGIES

is stable with fA! ⊛ σ isomorphic to (σ∥(A+∥A−)) ○ top ∶ Pr(F) → A0∥A+∥A−.
When σ ∶ S → A is deterministic, the family

F0 = {y ∈ C∞(A+∥A−) ∣ ∃x ∈ C∞(S). y− ⊇ (σx)− & y+ ⊆ (σx)+}

is stable with goi(σ) = fA!⊙σ isomorphic to top ∶ Pr(F0)→ A+∥A−.
When A is replaced by A⊥∥B, so σ is a strategy σ ∶ A + //B, this construction

agrees to within isomorphism with the definition above of goi(σ) as fB !⊙σ⊙fA
∗.

Chapter 10

Winning ways

What does it mean to win a nondeterministic concurrent game and what is
a winning strategy? This chapter extends the work on games and strategies
to games with winning conditions and winning strategies. Without winning
conditions Player and Opponent can elect to not make any moves. For example,
there is always a minimum strategy in a game in which Player makes no moves
whatsoever. Winning conditions in a game provide an incentive with respect to
which Player or Opponent can be encouraged to make moves in order to avoid
losing and win.

10.1 Winning strategies

A game with winning conditions comprises G = (A,W) where A is an event
structure with polarity and W ⊆ C∞(A) consists of the winning configurations
for Player. We define the losing conditions to be L =def C

∞(A) ∖W . Clearly a
game with winning conditions is determined once we specify either its winning
or losing conditions, and we can define such a game by specifying its losing
conditions.

A strategy in G is a strategy in A. A strategy in G is regarded as winning if it
always prescribes Player moves to end up in a winning configuration, no matter
what the activity or inactivity of Opponent. Formally, a strategy σ ∶ S → A in G
is winning (for Player) if σx ∈W for all +-maximal configurations x ∈ C∞(S)—

a configuration x is +-maximal if whenever x
s

−Ð⊂ then the event s has −ve
polarity. Any achievable position z ∈ C∞(S) of the game can be extended to
a +-maximal, so winning, configuration (via Zorn’s Lemma). So a strategy
prescribes Player moves to reach a winning configuration whatever state of play
is achieved following the strategy. Note that for a game A, if winning conditions
W = C∞(A), i.e. every configuration is winning, then any strategy in A is a
winning strategy.

In the special case of a deterministic strategy σ ∶ S → A in G it is winning iff
σϕ(x) ∈W for all x ∈ C∞(S), where ϕ is the closure operator ϕ ∶ C∞(S)→ C∞(S)

135

136 CHAPTER 10. WINNING WAYS

determined by σ or, equivalently, the images under σ of fixed points of ϕ lie
outside L. Recall from Section 6.2.3 that a deterministic strategy σ ∶ S → A
determines a closure operator ϕ on C∞(S): for x ∈ C∞(S),

ϕ(x) = x ∪ {s ∈ S ∣ pol(s) = + & Neg[{s}] ⊆ x} .

Clearly, we can equivalently say a strategy σ ∶ S → A in G is winning if it
always prescribes Player moves to avoid ending up in a losing configuration, no
matter what the activity or inactivity of Opponent; a strategy σ ∶ S → A in G
is winning if σx ∉ L for all +-maximal configurations x ∈ C∞(S)

Informally, we can also understand a strategy as winning for Player if when
played against any counter-strategy of Opponent, the final result is a win for
Player. Suppose σ ∶ S → A is a strategy in a game (A,W). A counter-strategy
is strategy of Opponent, so a strategy τ ∶ T → A⊥ in the dual game. We
can view σ as a strategy σ ∶ ∅ + //A and τ as a strategy τ ∶ A + //∅. Their
composition τ⊙σ ∶ ∅ + //∅ is not in itself so informative. Rather it is the status
of the configurations in C∞(A) their full interaction induces which decides which
of Player or Opponent wins. For the following definition of the results of an
interaction, we need only assume that σ ∶ S → A and τ ∶ T → A⊥ are pre-
strategies. Ignoring polarities, we have total maps of event structures σ ∶ S → A
and τ ∶ T → A. Form their pullback,

P
Π1

~~

Π2

S

σ

T

τ
~~

A,

to obtain the event structure P resulting from the interaction of σ and τ . (Note
P ≅ Pr(C(T)⊛C(S)), in the terms of Chapter 4, by the remarks of Section 4.3.3.)
Because σ or τ may be nondeterministic there can be more than one maximal
configuration z in C∞(P). A maximal configuration z in C∞(P) images to a
configuration σΠ1z = τΠ2z in C∞(A). Define the set of results of the interaction
of σ and τ to be

⟨σ, τ⟩ =def {σΠ1z ∣ z is maximal in C∞(P)} .

We shall show the strategy σ is a winning for Player iff all the results of the inter-
action ⟨σ, τ⟩ lie within the winning configurations W , for any counter-strategy
τ ∶ T → A⊥ of Opponent.

It will be convenient later to have proved facts about +-maximality in the
broader context of the composition of receptive pre-strategies.

Convention 10.1. Refer to the construction of the composition of pre-strategies
σ ∶ S → A⊥∥B and τ ∶ B⊥∥C in Chapter 4 We shall say a configuration x of ei-

ther C∞(S), C∞(T) or (C(T) ⊛ C(S))∞ is +-maximal if whenever x
e

−Ð⊂ then

10.1. WINNING STRATEGIES 137

the event e has −ve polarity. In the case of (C(T) ⊛ C(S))∞ an event of −ve
polarity is deemed to be one of the form (s,∗), with s −ve in S, or (∗, t), with t
−ve in T . We shall say a configuration z of C∞(Pr(C(T)⊛C(S))) is +-maximal

if whenever z
p

−Ð⊂ then top(p) has −ve polarity.

Lemma 10.2. Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be receptive pre-strategies.
Then,

z ∈ (C(T)⊛ C(S))∞ is +-maximal iff

π1z ∈ C
∞(S) is +-maximal & π2z ∈ C

∞(T) is +-maximal.

Proof. Let z ∈ (C(T) ⊛ C(S))∞. “Only if”: Assume z is +-maximal. Sup-

pose, for instance, π1z is not +-maximal. Then, π1z
s

−Ð⊂ for some +ve event
s ∈ S. Consider the two cases. Case σ1(s) is defined: Form the configuration
z ∪ {(s,∗)} ∈ (C(T)⊛ C(S))∞, to contradict the +-maximality of z. Case σ2(s)

is defined: As s is +-ve by the receptivity of τ there is t ∈ T such that π2z
t

−Ð⊂
and τ1(t) = σ2(s). Form the configuration z ∪ {(s, t)} ∈ (C(T) ⊛ C(S))∞, to
contradict the +-maximality of z. The argument showing π2z is +-maximal is
similar.

“If”: Assume both π1z and π2z are +-maximal. Suppose z were not +-maximal.
Then, either

• z
(s,∗)
−Ð⊂ or z

(s,t)
−Ð⊂ with s a +ve event of S, or

• z
(∗,t)
−Ð⊂ or z

(s,t)
−Ð⊂ with t a +ve event of T .

But then either π1z
s

−Ð⊂ , contradicting the +-maximality of π1z, or π2z
t

−Ð⊂ ,
contradicting the +-maximality of π2z.

Corollary 10.3. Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be receptive pre-
strategies. Then,

x ∈ C∞(Pr(C(T)⊛ C(S))) is +-maximal iff

Π1x ∈ C
∞(S) is +-maximal & Π2x ∈ C

∞(T) is +-maximal.

Proof. From Lemma 10.2, noting the order isomorphism C∞(Pr(C(T)⊛C(S))) ≅
(C(T)⊛ C(S))∞ given by x↦ ⋃x and that Π1x = π1⋃x, Π2x = π2⋃x.

Remark. In fact the proof of Lemma 10.2 above only relies on the existence
part of receptivity.

Lemma 10.4. Let σ ∶ S → A be a strategy in a game (A,W). The strategy σ is
winning for Player iff ⟨σ, τ⟩ ⊆W for all (deterministic) strategies τ ∶ T → A⊥.

138 CHAPTER 10. WINNING WAYS

Proof. “Only if”: Suppose σ is winning, i.e. σx ∈ W for all +-maximal x ∈
C∞(S). Let τ ∶ T → A⊥ be a strategy. By Corollary 10.3,

x ∈ C∞(Pr(C(T)⊛ C(S))) is +-maximal

iff

Π1x ∈ C
∞(S) is +-maximal & Π2x ∈ C

∞(T) is +-maximal.

Letting x be maximal in C∞(Pr(C(T)⊛C(S))) it is certainly +-maximal, whence
Π1x is +-maximal in C∞(S). It follows that σΠ1x ∈W as σ is winning. Hence
⟨σ, τ⟩ ⊆W .

“If”: Assume ⟨σ, τ⟩ ⊆W for all strategies τ ∶ T → A⊥. Suppose x is +-maximal
in C∞(S). Define T to be the event structure given as the restriction

T =def A
⊥ ↾ (σx ∪ {a ∈ A⊥ ∣ polA⊥(a) = −}) .

Let τ ∶ T → A⊥ be the (rigid) inclusion map T ↪ A⊥. The pre-strategy τ
can be checked to be receptive and innocent, so a strategy. (In fact, τ is a
deterministic strategy as all its +ve events lie within the configuration σx.)
One way to describe a pullback of τ along σ is as the “inverse image” P =def

S ↾ {s ∈ S ∣ σ(s) ∈ T}:

POo

��

σ↾P

��
S

σ
��

TO o

τ
��

A

From the definition of T and P we see x ∈ C∞(P); and moreover that x is
maximal in C∞(P) as x is +-maximal in C∞(S). Hence σx ∈ ⟨σ, τ⟩ ensuring
σx ∈W , as required.

The proof is unaffected if we restrict to rigid deterministic counter-strategies
τ ∶ T → A⊥.

The proof is also unaffected if we generalise to receptive pre-strategies τ ∶
T → A⊥, a generality that can be useful in showing σ is not winning.

Lemma 10.5. Let σ ∶ S → A be a strategy in a game (A,W). The strategy σ
is winning for Player iff ⟨σ, τ⟩ ⊆W for all receptive pre-strategies τ ∶ T → A⊥.

Corollary 10.6. There are the following five equivalent ways to say that a
strategy σ ∶ S → A is winning in (A,W)—we write L for the losing configurations
C∞(A) ∖W :

1. σx ∈ W for all +-maximal configurations x ∈ C∞(S), i.e. the strategy
prescribes Player moves to reach a winning configuration, no matter what
the activity or inactivity of Opponent;

10.2. OPERATIONS 139

2. σx ∉ L for all +-maximal configurations x ∈ C∞(S), i.e. the strategy
prescribes Player moves to avoid ending up in a losing configuration, no
matter what the activity or inactivity of Opponent;

3. ⟨σ, τ⟩ ⊆ W for all strategies τ ∶ T → A⊥, i.e. all plays against counter-
strategies of the Opponent result in a win for Player;

4. ⟨σ, τ⟩ ⊆W for all deterministic strategies τ ∶ T → A⊥, i.e. all plays against
deterministic counter-strategies of the Opponent result in a win for Player;

5. ⟨σ, τ⟩ ⊆W for all receptive pre-strategies τ ∶ T → A⊥, i.e. all plays against
any receptive pre-strategy of the Opponent result in a win for Player

Not all games with winning conditions have winning strategies. Consider
the game A consisting of one player move ⊞ and one opponent move ⊟ incon-
sistent with each other, with {{⊞}} as its winning conditions. This game has
no winning strategy; any strategy σ ∶ S → A, being receptive, will have an event
s ∈ S with σ(s) = ⊟, and so the losing {s} as a +-maximal configuration.

10.2 Operations

10.2.1 Dual

There is an obvious dual of a game with winning conditions G = (A,WG):

G⊥ = (A⊥,WG⊥)

where, for x ∈ C∞(A),
x ∈WG⊥ iff x ∉WG .

We are using the notation a↔ a, giving the correspondence between events of A
and A⊥, extended to their configurations: x =def {a ∣ a ∈ x}, for x ∈ C∞(A). As
usual the dual reverses the roles of Player and Opponent and correspondingly
the roles of winning and losing conditions.

10.2.2 Parallel composition

The parallel composition of two games with winning conditions G = (A,WG),
H = (B,WH) is

G∥H =def (A∥B, WG∥C
∞(B) ∪ C∞(A)∥WH)

where X∥Y = {{1} × x ∪ {2} × y ∣ x ∈X & y ∈ Y } when X and Y are subsets of
configurations. In other words, for x ∈ C∞(A∥B),

x ∈WG∥H iff x1 ∈WG or x2 ∈WH ,

where x1 = {a ∣ (1, a) ∈ x} and x2 = {b ∣ (2, b) ∈ x}. To win in G∥H is to win in
either game. Its losing conditions are LA∥LB—to lose is to lose in both games

140 CHAPTER 10. WINNING WAYS

G and H.1 The unit of ∥ is (∅,∅). In order to disambiguate the various forms
of parallel composition, we shall sometimes use the linear-logic notation G`H
for the parallel composition G∥H of games with winning strategies.

10.2.3 Tensor

Defining G⊗H =def (G⊥∥H⊥)⊥ we obtain a game where to win is to win in both
games G and H—so to lose is to lose in either game. More explicitly,

(A,WA)⊗ (B,WB) =def (A∥B, WA∥WB) .

The unit of ⊗ is (∅,{∅}).

10.2.4 Function space

With G⊸H =def G
⊥∥H a win in G⊸H is a win in H conditional on a win in

G.

Proposition 10.7. Let G = (A,WG) and H = (B,WH) be games with winning
conditions. Write WG⊸H for the winning conditions of G ⊸ H, so G ⊸ H =
(A⊥∥B,WG⊸H). For x ∈ C∞(A⊥∥B),

x ∈WG⊸H iff x1 ∈WG Ô⇒ x2 ∈WH .

Proof. Letting x ∈ C∞(A⊥∥B),

x ∈WG⊸H iff x ∈WG⊥∥H

iff x1 ∈WG⊥ or x2 ∈WH

iff x1 ∉WG or x2 ∈WH

iff x1 ∈WG Ô⇒ x2 ∈WH .

10.3 The bicategory of winning strategies

We can again follow Joyal and define strategies between games now with winning
conditions: a (winning) strategy from G, a game with winning conditions, to
another H is a (winning) strategy in G ⊸ H = G⊥∥H. We compose strategies
as before. We first show that the composition of winning strategies is winning.

Lemma 10.8. Let σ be a winning strategy in G⊥∥H and τ be a winning strategy
in H⊥∥K. Their composition τ⊙σ is a winning strategy in G⊥∥K.

1I’m grateful to Nathan Bowler, Pierre Clairambault and Julian Gutierrez for guidance in
the definition of parallel composition of games with winning conditions.

10.3. THE BICATEGORY OF WINNING STRATEGIES 141

Proof. Let G = (A,WG), H = (B,WH) and K = (C,WK).
Suppose x ∈ C∞(T⊙S) is +-maximal. Then ⋃x ∈ (C(T)⊛C(S))∞. By Zorn’s

Lemma we can extend ⋃x to a maximal configuration z ⊇ ⋃x in (C(T)⊛C(S))∞

with the property that all events of z∖⋃x are synchronizations of the form (s, t)
for s ∈ S and t ∈ T . Then, z will be +-maximal in (C(T)⊛ C(S))∞ with

σ1π1z = σ1π1⋃x & τ2π2z = τ2π2⋃x . (1)

By Lemma 10.2,

π1z is +-maximal in S & π2z is +-maximal in T .

As σ and τ are winning,

σπ1z ∈WG⊥∥H & τπ2z ∈WH⊥∥K .

Now σπ1z ∈WG⊥∥H expreses that

σ1π1z ∈WG Ô⇒ σ2π1z ∈WH (2)

and τπ2z ∈WH⊥∥K that

τ1π2z ∈WH Ô⇒ τ2π2z ∈WK , (3)

by Proposition 10.7. But σ2π1z = τ1π2z, so (2) and (3) yield

σ1π1z ∈WG Ô⇒ τ2π2z ∈WK .

By (1)

σ1π1⋃x ∈WG Ô⇒ τ2π2⋃x ∈WK ,

i.e.by Proposition 4.2,

υ1x ∈WG Ô⇒ υ2x ∈WK

in the span of the composition τ⊙σ. Hence x ∈WG⊥∥K , as required.

For a general game with winning conditions (A,W) the copy-cat strategy
need not be winning, as shown in the following example.

Example 10.9. Let A consist of two events, one +ve event ⊞ and one −ve event
⊟, inconsistent with each other. Take as winning conditions the set W = {{⊞}}.
The event structure CCA:

A⊥ ⊟ _ ⊞ A

⊞ ^ ⊟

To see CCA is not winning consider the configuration x consisting of the two
−ve events in CCA. Then x is +-maximal as any +ve event is inconsistent with
x. However, x1 ∈ W while x2 ∉ W , failing the winning condition of (A,W) ⊸
(A,W).

142 CHAPTER 10. WINNING WAYS

Recall from Chapter 7, that each event structure with polarityA possesses a
Scott order on its configurations C∞(A):

x′ ⊑ x iff x′ ⊇− x ∩ x′ ⊆+ x .

Hence a necessary and sufficient for copy-cat to be winning w.r.t. a game
(A,W):

∀x,x′ ∈ C∞(A). if x′ ⊑ x & x∥x′ is +-maximal in C∞(CCA)

then x ∈W Ô⇒ x′ ∈W .
(Cwins)

Proposition 10.10. Let (A,W) be a game with winning conditions. The copy-
cat strategy ccA ∶ CCA → A⊥∥A is winning iff (A,W) satisfies (Cwins).

Proof. (Cwins) expresses precisely that copy-cat is winning.

A robust sufficient condition on an event structure with polarityA which
ensures that copy-cat is a winning strategy for all choices of winning conditions
is the property

∀x ∈ C(A). x
a

−Ð⊂ & x
a′

−Ð⊂ & pol(a) = + & pol(a′) = − Ô⇒ x ∪ {a, a′} ∈ C(A) .
(race-free)

This property, which says immediate conflict respects polarity, is seen earlier in
Lemma 5.3 (characteriziing those A for which copy-cat is deterministic).

Lemma 10.11. Assume A is race-free. If x′ ⊑ x in C∞(A) and x∥x′ is +-
maximal in C∞(CCA), then x = x′.

Proof. Assume A is race-free and x′ ⊑ x and x∥x′ is +-maximal in C∞(CCA).
Then x ⊇+ x ∩ x′ ⊆− x′. There are covering chains associated with purely +ve
and −ve events from x ∩ x′ to x and x′, respectively:

x ∩ x′
+

−Ð⊂x1 ⋯
+

−Ð⊂ x ,

x ∩ x′
−

−Ð⊂x′1 ⋯
−

−Ð⊂ x′ .

If one of the covering chains is of zero length, i.e. x ⊇+ x′ or x ⊆− x′, then so
must the other be—otherwise we contradict the maximality assumption. On
the other hand, if both are nonempty, by repeated use of (race-free) we again
contradict the maximality assumption, e.g.

x′1 −Ð⊂
+

x1 ∪ x
′
1 −Ð⊂

+
⋯ −Ð⊂

+
x ∪ x′1

x ∩ x′

−
Ð
⊂

−

−Ð⊂
+

x1

−
Ð
⊂

−

−Ð⊂
+

⋯ −Ð⊂
+

x

−
Ð
⊂

−

so x′ ⊑ x∪x′1 and (x∥x′)
+

−Ð⊂ (x ∪ x′1∥x
′), showing how a repeated use of (race-free)

contradicts the +-maximality of x∥x′. We conclude x = x ∩ x′ = x′

10.4. TOTAL STRATEGIES 143

Proposition 10.12. Let A be an event structure with polarity. Copy-cat is a
winning strategy for all games (A,W) with winning conditions W iff A satis-
fies (race-free).

Proof. “If”: Assume (race-free). Suppose x∥x′ is a +-maximal configuration
in C∞(CCA). Then, by Lemma 10.11, x = x′. Let W ⊆ C∞(A). Certainly
x ∈W Ô⇒ x′ ∈W , as required to fulfil (Cwins).

“Only if”: Suppose A failed (race-free), i.e. x
a

−Ð⊂x1 & x
a′

−Ð⊂x2 with x1 � x2

and polA(a) = + and pol(a′) = − within the finite configurations of A. The set
x1∥x2 =def {1} × x1 ∪ {2} × x2 is certainly a finite configuration of A⊥∥A and is
easily checked to also be a configuration of CCA. Define winning conditions by

W = {x ∈ C∞(A) ∣ a ∈ x} .

Let z ∈ C∞(CCA) be a +-maximal extension of x1∥x2 (the maximal extension
exists by Zorn’s Lemma). Take z1 = {a ∣ (1, a) ∈ z} and z2 = {a ∣ (2, a) ∈ z}.
Then z1 ⊇ x1 and z2 ⊇ x2. As a ∈ z1 we obtain z1 ∈W , whereas z2 ∉W because
z2 extends x2 which is inconsistent with a. Hence copy-cat is not winning in
(A,W)⊥∥(A,W).

We can now refine the bicategory of strategies Strat to the bicategory
WGames with objects games with winning conditionsG,H,⋯ satisfying (Cwins)
and arrows winning strategiesG + //H; 2-cells, their vertical and horizontal com-
position is as before. Its restriction to deterministic strategies yields a bicategory
WDGames equivalent to a simpler order-enriched category.

10.4 Total strategies

As an application of winning conditions we apply them to pick out a subcategory
of “total strategies,” informally strategies in which Player can always answer a
move of Opponent.2

We restrict attention to ‘simple games’ (games and strategies are alternating
and begin with opponent moves—see Section 6.2.4). Here a strategy is total if
all its finite maximal sequences are even, so ending in a +ve move, i.e. a move
of Player. In general, the composition of total strategies need not be total—see
the Exercise below. However, as we will see, we can pick out a subcategory of
’simple games’ with suitable winning conditions. Within this full subcategory
of games with winning conditions winning strategies will be total and moreover
compose.

Exercise 10.13. Exhibit two total strategies whose composition is not total. ◻

As objects of the subcategory we choose simple games with winning strate-
gies,

(A,WA)

2This section is inspired by [24], though differs in several respects.

144 CHAPTER 10. WINNING WAYS

where A is a simple game and WA is a subset of possibly infinite sequences
s1s2⋯ satisfying

WA ∩ Finite(A) = Even(A) (Tot)

i.e. the finite sequences in WA are precisely those of even length. Note that
winning strategies in such a game will be total. (Below we use ‘sequence’ to
mean allowable finite or infinite sequences of the appropriate simple game.)

The function space (A,WA) ⊸ (B,WB), given as (A,WA)
⊥∥(B,WB), has

winning conditions W such that

s ∈W iff s ↾A ∈WA Ô⇒ s ↾B ∈WB .

Lemma 10.14. For s a sequence of A⊥∥B, s is even iff s ↾A is odd or s ↾B is
even.

Proof. By parity, considering the final move of the sequence.

“Only if”: Assume s is even, i.e. its final event is +ve. If s ends in B, s↾B ends
in + so is even. If s ends in A, s ↾A ends in − so is odd.

“If”: Assume s ↾A is odd or s ↾B is even. Suppose, to obtain a contradiction,
that s is not even, i.e. s is odd so ends in −. If s ends in B, s ↾B ends in − so
is odd and consequently s ↾A even (as the length of s is the sum of the lengths
of s ↾A and s ↾B). Similarly, if s ends in A, s ↾A ends in + so s ↾A is even and
s↾B is odd. Either case contradicts the initial assumption. Hence s is even.

It follows that W , the winning conditions of the function space, satisfies
(Tot): Let s be a finite sequence of a strategy in A⊥∥B. Then,

s ∈W iff s ↾A ∈WA Ô⇒ s ↾B ∈WB

iff s ↾A ∉WA or s ↾B ∈WB

iff s ↾A is odd or s ↾B is even

iff s is even.

All maps in the subcategory (which are winning strategies in its function
spaces (A,WA) ⊸ (B,WB)) compose (because winning strategies do) and are
total (because winning conditions of its function spaces satisfy (Tot)).

10.5 On determined games

A game with winning conditions G is said to be determined when either Player
or Opponent has a winning strategy, i.e. either there is a winning strategy in
G or in G⊥.3 Not all games are determined. Neither the game G consisting of
one player move ⊞ and one opponent move ⊟ inconsistent with each other, with
{{⊞}} as winning conditions, nor the game G⊥ have a winning strategy.

3This section is based on work with Julian Gutierrez.

10.5. ON DETERMINED GAMES 145

Notation 10.15. Let σ ∶ S → A be a strategy. We say y ∈ C∞(A) is σ-reachable
iff y = σx for some x ∈ C∞(S). Let y′ ⊆ y in C∞(A). Say y′ is −-maximal in

y iff y
−

−Ð⊂ y′′ implies y′′ /⊆ y. Similarly, say y′ is +-maximal in y iff y
+

−Ð⊂ y′′

implies y′′ /⊆ y.

Lemma 10.16. Let (A,W) be a game with winning conditions. Let y ∈ C∞(A).
Suppose

∀y′ ∈ C∞(A).

y′ ⊆ y & y′ is −-maximal in y & not +-maximal in y

Ô⇒

{y′′ ∈ C(A) ∣ y′ ⊆+ y′′ & (y′′ ∖ y′) ∩ y = ∅} ∩W = ∅ .

Then y is σ-reachable in all winning strategies σ.

Proof. Assume the property above of y ∈ C∞(A). Suppose, to obtain a contra-
diction, that y is not σ-reachable in a winning strategy σ ∶ S → A.

Let x′ ∈ C∞(A) be ⊆-maximal such that σx′ ⊆ y (this uses Zorn’s lemma).
By the receptivity of σ, the configuration σx′ is −-maximal in y. By suppo-

sition, σx′ ⊊ y, so we must therefore have σx′
+

−Ð⊂ y0 ⊆ y in C∞(A), i.e. σx′ is
not +-maximal in y. From the property assumed of y we deduce both

σx′ ∉W & (∀y′′ ∈W. σx′ ⊆+ y′′ Ô⇒ (y′′ ∖ σx′) ∩ y /= ∅) .

As σ is winning, there is +-maximal extension x′ ⊆+ x′′ in C∞(S) such that
σx′′ ∈W . Hence

(σx′′ ∖ σx′) ∩ y /= ∅ .

Taking a ≤A-minimal event a1, necessarily +ve, in the above set we obtain

σx′
a1
−Ð⊂ y1 ⊆

+ σx′′ .

By Corollary 4.23, y1 = σx1 for some x1 ∈ C
∞(S) with x′

+
−Ð⊂x1 ⊆ x

′′. But this
contradicts the choice of x′ as ⊆-maximal such that σx′ ⊆ y. Hence the original
assumption that y is not σ-reachable must be false.

Recall the property (race-free) of an event structure with polarityA, first
seen in Lemma 5.3, though here rephrased a little:

∀y, y1, y2 ∈ C(A). y
−

−Ð⊂ y1 & y
+

−Ð⊂ y2 Ô⇒ y1 ↑ y2 . (race-free)

Corollary 10.17. If A, an event structure with polarity, fails to satisfy (race-free),
then there are winning conditions W , for which the game (A,W) is not deter-
mined.

Proof. Suppose (race-free) failed, that y
−

−Ð⊂ y1 and y
+

−Ð⊂ y2 and y1 � y2 in
C(A). Assign configurations C∞(A) to winning conditions W or its complement
as follows:

146 CHAPTER 10. WINNING WAYS

(i) for y′′ with y1 ⊆
+ y′′, assign y′′ ∉W ;

(ii) for y′′ with y2 ⊆
− y′′, assign y′′ ∈W ;

(iii) for y′′ with y′ ⊆+ y′′ and (y′′ ∖ y′)∩ y = ∅, for some sub-configuration y′ of
y with y′ −-maximal and not +-maximal in y, assign y′′ ∉W ;

(iv) for y′′ with y′ ⊆− y′′ and (y′′ ∖ y′)∩ y = ∅, for some sub-configuration y′ of
y with y′ +-maximal and not −-maximal in y, assign y′′ ∈W ;

(v) assign arbitrarily in all other cases.

We should check the assignment is well-defined, that we do not assign a config-
uration both to W and its complement.

Clearly the first two cases (i) and (ii) are disjoint as y1 � y2.
The two cases (iii) and (iv) are also disjoint. Suppose otherwise, that both

(iii) and (iv) hold for y′′, viz.

y′1 ⊆
+ y′′ & (y′′ ∖ y′1) ∩ y = ∅ &

y′1 is −-maximal & not +-maximal in y , and

y′2 ⊆
− y′′ & (y′′ ∖ y′2) ∩ y = ∅ &

y′2 is +-maximal & not −-maximal in y .

As
y′1 ⊆

+ y′′ ⊇− y′2

we deduce y′2
−
⊆ y′1, i.e. all the −ve events of y′2 are in y′1. Now let a ∈ y′2

+
. Then

a ∈ y as y′2 ⊆ y. Therefore a ∉ y′′ ∖ y′1, by assumption. But a ∈ y′′ as y′2 ⊆− y′′,
so a ∈ y′1. We conclude y′2 ⊆ y′1. A similar dual argument shows y′1 ⊆ y′2. Thus
y′1 = y

′
2. But this implies that y′1 is both −-maximal and not −maximal in y —a

contradiction.
Suppose both the conditions (i) and (iv) are met by y′′. From (vi), as y′ is

+-maximal & not −-maximal in y,

y′
a

−Ð⊂ y0 ⊆ y ,

for some event a with polA(a) = − and y0 ∈ C
∞(A). From (i), y ⊆ y′′, so

y′
a

−Ð⊂ y0 ⊆ y
′′ .

Therefore
a ∈ y′′ ∖ y′ & a ∈ y ,

which contradicts (iv). Similarly the cases (ii) and (iii) are disjoint.
We conclude that the assignment of winning conditions is well-defined.
Then y is reachable for both winning strategies in (A,W) and winning strate-

gies in (A,W)⊥. Suppose σ is a winning strategy σ in (A,W). By (iii) and
Lemma 10.16, y is σ-reachable. From receptivity y1 is σ-reachable, say y1 = σx1

for some x1 ∈ C(S). There is a +-maximal extension x′1 of x1 in C∞(S). By (i),
σx′1 cannot be a winning configuration. Hence there can be no winning strategy
in (A,W). In a dual fashion, there can be no winning strategy in (A,W)⊥.

10.5. ON DETERMINED GAMES 147

It is tempting to believe that a nondeterministic winning strategy always
has a winning (weakly-)deterministic sub-strategy. However, this is not so, as
the following examples show.

Example 10.18. A winning strategy need not have a winning deterministic
sub-strategy. Consider the game (A,W) where A consists of two inconsistent
events ⊟ and ⊞, of the indicated polarity, and W = {{⊟},{⊞}}. Consider the
strategy σ in A given by the identity map idA ∶ a → A. Then σ is a nonde-
terministic winning strategy—all +-maximal configurations in A are winning.
However any sub-strategy must include ⊟ by receptivity and cannot include ⊞ if
it is to be deterministic, wherepon it has ∅ as a +-maximal configuration which
is not winning.

Example 10.19. Observe that the strategy σ of Example 10.18 is already
weakly-deterministic—cf. Corollary 5.8. A winning strategy need not have a
winning weakly-deterministic sub-strategy. Consider the game (A,W) where A
consists of two −ve events 1,2 and one +ve event 3 all consistent with each other
and

W = {∅,{1,3},{2,3},{1,2,3}}.

Let S be the event structure

⊞ ⊞

⊟

_LLR

⊟

_LLR

and σ ∶ S → A the only possible total map of event structures with polarity:

⊞ ⊞ ⊞

⊟

_LLR

⊟

_LLR

σ // ⊟ ⊟

Then σ is a winning strategy for which there is no weakly-deterministic sub-
strategy.

The following example shows that for games where configurations can have
infinitely many events, race-freeness is not sufficient to ensure determinacy. It
also shows that the existence of a winning receptive pre-strategy does not imply
that there is a winning strategy.

Example 10.20. Consider the infinite game A comprising the event structure
with polarity

⊟ ⊞
� ,,2
⊞

� ,,2
⊞

� ,,2
⋯

� ,,2
⊞

� ,,2
⋯

where Player wins iff
(i) Player plays all ⊞ moves and Opponent does nothing, or
(ii) Player plays finitely many ⊞ moves and Opponent plays ⊟ .

148 CHAPTER 10. WINNING WAYS

In this case there is a winning pre-strategy for Player. Informally, this is to con-
tinue playing moves until Opponent moves, then stop. Formally, it is described
by the event structure with polarityS

⊞
� ,,2

� ��%

⊞
� ,,2

� ��%

⊞ ⋯ ⊞
� ,,2

� ��%

⊞
� ,,2

� ��&

⋯

⊟ ⊟ ⊟ ⋯ ⊟ ⊟ ⋯

with pre-strategy the unique total map to A. The pre-strategy is receptive
and winning in the sense that its +-maximal configurations image to winning
configurations in A. It follows that there is no winning strategy for Opponent:
if σ is a winning receptive pre-strategy then ⟨σ, τ⟩ will be a subset of winning
configurations, exactly as in the proof of Lemma 10.4, so must result in a loss
for τ , which cannot be winning. Nor is there a winning strategy for Player.
Suppose σ ∶ S → A was a winning strategy for Player; for σ to win against the
empty strategy there must be x ∈ S such that σx comprises all +ve events of
A. But now, using receptivity and −-innocence, there must be s ∈ S such that
σ(s) = ⊟ with x ∪ {s} ∈ C∞(S) losing and +-maximal—a contradiction. ◻

10.6 Determinacy for well-founded games

Definition 10.21. A game A is well-founded if every configuration in C∞(A)
is finite.

It is shown that any well-founded concurrent game satisfying (race-free) is
determined.

10.6.1 Preliminaries

Proposition 10.22. Let Q be a non-empty family of finite partial orders closed
under rigid inclusions, i.e. if q ∈ Q and q′ ↪ q is a rigid inclusion (regarded as
a map of event structures) then q′ ∈ Q. The family Q determines an event
structure (P,≤,Con) as follows:

• the events P are the prime partial orders in Q, i.e. those finite partial
orders in Q with a top element;

• the causal dependency relation p′ ≤ p holds precisely when there is a rigid
inclusion from p′ ↪ p;

• a finite subset X ⊆ P is consistent, X ∈ Con, iff there is q ∈ Q and rigid
inclusions p↪ q for all p ∈X.

If x ∈ C(P) then ⋃x, the union of the partial orders in x, is in Q. The function
x↦ ⋃x is an order-isomorphism from C(P), ordered by inclusion, to Q, ordered
by rigid inclusions.

10.6. DETERMINACY FOR WELL-FOUNDED GAMES 149

Call a non-empty family of finite partial orders closed under rigid inclusions
a rigid family. Observe:

Proposition 10.23. Any stable family F determines a rigid family: its config-
urations x possess a partial order ≤x such that whenever x ⊆ y in F there is a
rigid inclusion (x,≤x)↪ (y,≤y) between the corresponding partial orders.

Notation 10.24. We shall use Pr(Q) for the construction described in Propo-
sition 10.22. The construction extends that on stable families with the same
name.

Lemma 10.25. Let σ ∶ S → A be a strategy. Letting x, y ∈ C(S),

x+ ⊆ y+ & σx ⊆ σy Ô⇒ x ⊆ y .

Proof. The proof relies on Lemma 4.21, characterising strategies. We first prove
two special cases of the lemma.
Special case σx ⊆− σy. By assumption x+ ⊆ y+. Supposing s ∈ y+ ∖ x+, via
the injectivity of σ on y, we obtain σy ∖ σx contains σ(s) a +ve event—a
contradiction. Hence x+ = y+.

From Lemma 4.21(ii), as σx ⊆− σy, we obtain (a unique) x′ ∈ C(S) such that
x ⊆ x′ and σx′ = σy:

x_

σ

��

⊆ x′_

σ

��
σx ⊆

− σy .

Now [x+] ⊆− x, from which

[x+]
_

σ

��

⊆ x_

σ

��
σ[x+] ⊆

− σx .

Combining the two diagrams:

[x+]
_

σ

��

⊆ x′_

σ

��
σ[x+] ⊆

− σy .

As [y+] ⊆− y,

[y+]
_

σ

��

⊆ y_

σ

��
σ[y+] ⊆

− σy .

150 CHAPTER 10. WINNING WAYS

where, by Lemma 4.21(ii), y is the unique such configuration of S. But y+ = x+

so this same property is shared by x′. Hence x′ = y and x ⊆ y.
Thus

x+ ⊆ y+ & σx ⊆− σy Ô⇒ x ⊆ y . (1)

Note that, in particular,

x+ = y+ & σx = σy Ô⇒ x = y . (2)

Special case σx ⊆+ σy. By Lemma 4.21(i), there is (a unique) y1 ∈ C(S) with
y1 ⊆ y such that σy1 = σx:

y1_
σ

��

⊆ y_
σ

��
σx ⊆

+ σy ,

Now x+, y+1 ⊆ y and σ x+ = (σx)+ = σ y+1 . So by the local injectivity of σ we
obtain x+ = y+1 . By (2) above, x = y1, whence x ⊆ y. Thus

x+ ⊆ y+ & σx ⊆+ σy Ô⇒ x ⊆ y . (3)

Any inclusion σx ⊆ σy can be built as a composition of inclusions ⊆− and ⊆+,
so the lemma follows from the special cases (1) and (3).

Lemma 10.26. Let σ ∶ S → A be a strategy for which no +ve event of S appears
as a −ve event in A. Defining

Fσ =def {x+ ∪ (σx)− ∣ x ∈ C(S)}

yields a stable family for which

ασ(s) =

⎧⎪⎪
⎨
⎪⎪⎩

s if s is +ve,

σ(s) if s is −ve.

is a map of stable families ασ ∶ C(S)→ Fσ which induces an order-isomorphism

(C(S),⊆) ≅ (Fσ,⊆)

taking x ∈ C(S) to ασ x = x
+ ∪ (σx)−. Defining

fσ(e) =

⎧⎪⎪
⎨
⎪⎪⎩

σ(e) if e is +ve,

e if e is −ve

on events e of Fσ yields a map of stable families fσ ∶ Fσ → C(A) such that

C(S)
ασ //

σ
##

Fσ

fσ

��
C(A)

commutes.

10.7. DETERMINACY PROOF 151

Proof. A configuration x ∈ C(S) has direct image

ασx = x
+ ∪ (σx)−

under the function ασ. Direct image under ασ is clearly surjective and preserves
inclusions, and by Lemma 10.25 yields an order-isomorphism (C(S),⊆) ≅ (Fσ,⊆
): if ασx ⊆ ασy, for x, y ∈ C(S), then x+ ⊆ y+ and (σx)− ⊆ (σy)− by the
disjointness of S+ and A, whence σx ⊆ σy so x ⊆ y.

It is now routine to check that Fσ is a stable family and ασ is a map of
stable families. For instance to show the stability property required of Fσ,
assume ασx,ασy ⊆ ασz. Then x, y ⊆ z so σ x ∩ y = (σx) ∩ (σy) as σ is a map of
event structures, and consequently (σ x ∩ y)− = (σx)− ∩ (σy)−. Now reason

(ασx) ∩ (ασy) =(x
+ ∪ (σx)−) ∩ (y+ ∪ (σy)−)

=(x+ ∩ y+) ∪ ((σx)− ∩ (σy)−)

—by distributivity with the disjointness of S+ and A ,

=(x ∩ y)+ ∪ (σ x ∩ y)−

=(ασ x ∩ y) ∈ Fσ .

From the definitions of ασ and fσ it is clear that fσασ(s) = σ(s) for all events
of S. Any configuration of Fσ is sent under fσ to a configuration in C(A) in a
locally injective fashion, making fσ a map of stable families; this follows from
the matching properties of σ.

When we “glue” strategies together it can be helpful to assume that all the
initial −ve moves of the strategies are exactly the same:

Lemma 10.27. Let σ ∶ S → A be a strategy. Then σ ≅ σ′, a strategy σ′ ∶ S′ → A
for which

∀s′ ∈ S′. polS′[s
′]S′ = {−} Ô⇒ s′ = [σ(s′)]A .

Proof. Without loss of generality we may assume no +ve event of S appears as
a −ve event in A. Take fσ ∶ Fσ → C(A) given by Lemma 10.27 and construct σ′

as the composite map

Pr(Fσ)
Pr(σ)// Pr(C(A)) ≅

top
A

—recall top takes a prime [a]A to a, where a ∈ A.

10.7 Determinacy proof

Definition 10.28. Let A be an event structure with polarity. Let W ⊆ C∞(A).
Let y ∈ C∞(A). Define A/y to be the event structure with polarity comprising
events

{a ∈ A ∖ y ∣ y ∪ [a]A ∈ C∞(A)} ,

152 CHAPTER 10. WINNING WAYS

also called A/y, with consistency relation

X ∈ ConA/y iff X ⊆fin A/y & y ∪ [X]A ∈ C∞(A) ,

and causal dependency the restriction of that on A. Define W /y ⊆ C∞(A/y) by

z ∈W /y iff z ∈ C∞(A/y) & y ∪ z ∈W .

Finally, define (A,W)/y =def (A/y,W /y).

Proposition 10.29. Let A be an event structure with polarity and y ∈ C∞(A).
Then,

z ∈ C∞(A/y) iff z ⊆ A/y & y ∪ z ∈ C∞(A) .

Assume A is a well-founded event structure with polarity with winning con-
ditions W ⊆ C(A). Assume the property (race-free) of A:

∀y, y1, y2 ∈ C(A). y
−

−Ð⊂ y1 & y
+

−Ð⊂ y2 Ô⇒ y1 ↑ y2 . (race-free)

Observe that by repeated use of (race-free), if x, y ∈ C(A) with x ∩ y ⊆+ x and
x ∩ y ⊆− y, then x ∪ y ∈ C(A).

We show that the game (A,W) is determined. Assuming Player has no
winning strategy we build a winning (counter) strategy for Opponent based on
the following lemma.

Lemma 10.30. Assume game A is well-founded and satisfies (race-free). Let
W ⊆ C(A). Assume (A,W) has no winning strategy (for Player). Then,

∀x ∈ C(A). ∅ ⊆+ x & x ∈W

Ô⇒

∃y ∈ C(A). x ⊆− y & y ∉W & (A,W)/y has no winning strategy.

Proof. Suppose otherwise, that under the assumption that (A,W) has no win-
ning strategy, there is some x ∈ C(A) such that

∅ ⊆+ x & x ∈W

&

∀y ∈ C(A). x ⊆− y & y ∉W Ô⇒ (A,W)/y has a winning strategy.

We shall establish a contradiction by constructing a winning strategy for Player.

For each y ∈ C(A) with x ⊆− y and y ∉W , choose a winning strategy

σy ∶ Sy → A/y .

By Lemma 10.27, we can replace σy by a stable family Fy with all −ve events
in A and a map of stable families fy ∶ Fy → C(A). It is easy to arrange that,

10.7. DETERMINACY PROOF 153

within the collection of all such stable families, Fy1 and Fy2 are disjoint on +ve
events whenever y1 and y2 are distinct. We build a putative stable family as

F =def {y ∈ C(A) ∣ polA(y ∖ x) ⊆ {−}} ∪

{y ∪ v ∣ y ∈ C(A) & polA(y ∖ x) ⊆ {−} & x ∪ y ∉W &

v ∈ Fx∪y & + ∈ pol v & y ∪ fx∪yv ∈ C(A)} .

[Note, in the second set-component, that x∪y is a configuration by (race-free).]
We assign events of F the same polarities they have in A and the families Fy.

We check that F is indeed a stable family.
Clearly ∅ ∈ F . Assuming z1, z2 ⊆ z in F , we require z1 ∪ z2, z1 ∩ z2 ∈ F .
It is easily seen that if both z1 and z2 belong to the first set-component, so

do their union and intersection. Suppose otherwise, without loss of generality,
that z2 belongs to the second set-component. Then, necessarily, z is in the
second set-component of F and has the form z = y ∪ v described there.

Consider the case where z1 = y1 ∪ v1 and z2 = y2 ∪ v2, both belonging to the
second set-component of F . Then

x ∪ y1 = x ∪ y2 = x ∪ y ,

from the assumption that families Fy are disjoint on +ve events for distinct y,
and

v1, v2 ⊆ v in Fx∪y .

It follows that x ∪ (y1 ∪ y2) = x ∪ y ∉ W and v1 ∪ v2 ∈ Fx∪y = Fx∪(y1∪y2). As
z1, zz ⊆ z,

(y1 ∪ fx∪yv1), (y2 ∪ fx∪yv2) ⊆ (y ∪ fx∪yv)

so

(y1 ∪ y2) ∪ fx∪y(v1 ∪ v2) = (y1 ∪ fx∪yv1) ∪ (y2 ∪ fx∪yv2) ∈ C(A) .

This ensures z1 ∪ z2 = (y1 ∪ y2) ∪ (v1 ∪ v2) ∈ F . Similarly, x ∪ (y1 ∩ y2) =
(x ∪ y1) ∩ (x ∪ y2) = x ∪ y ∉W and v1 ∩ v2 ∈ Fx∪y = Fx∪(y1∩y2). Checking

(y1 ∩ y2) ∪ fx∪y(v1 ∩ v2) = (y1 ∪ fx∪yv1) ∩ (y2 ∪ fx∪yv2) ∈ C(A)

ensures z1 ∩ z2 = (y1 ∩ y2) ∪ (v1 ∩ v2) ∈ F .
Consider the case where z1 ∈ C(A) belongs to the first and z2 = y2 ∪ v2 to

the second set-component of F . As z1 ⊆ y ∪ v it has the form z1 = y1 ∪ v1 where
y1 ∈ C(A) with y1 ⊆ y and v1 ∈ Fx∪y with v1 ⊆ v; all the events of v1 = z1∖(x∪y)
have −ve polarity which ensures v1 ∈ Fx∪y by the receptivity of σy. Because v2

and v have +ve events in common,

x ∪ y2 = x ∪ y ,

while clearly

v1, v2 ⊆ v in Fx∪y .

154 CHAPTER 10. WINNING WAYS

We deduce x ∪ (y1 ∪ y2) = x ∪ y ∉W and v1 ∪ v2 ∈ Fx∪y = Fx∪(y1∪y2) whence
z1∪z2 = (y1∪y2)∪(v1∪v2) ∈ F after an easy check that (y1∪y2)∪fx∪y(v1∪v2) ∈
C(A). We have y2 ∪ fx∪yv2 ∈ C(A). But fx∪y is constant on −ve events so

z1 ∩ z2 = z1 ∩ (y2 ∪ v2) = z1 ∩ (y2 ∪ fx∪yv2) ∈ C(A) ,

and z1 ∩ z2 belongs to the first set-component of F .
A routine check establishes that F is coincidence-free, and uses that each

family Fy is coincidence-free when considering configurations of the second set-
component.

Having established that F is a stable family, we define a total map of stable
families

f ∶ F → C(A)

by taking

f(e) =

⎧⎪⎪
⎨
⎪⎪⎩

e if e ∈ x or e is −ve,

fy(e) if e is a +ve event of Fy.

Defining σ to be the composite map of stable families

C(Pr(F))
top // F

f // C(A)

we also obtain a map of event structures

σ ∶ Pr(F)→ A

as the embedding of event structures in stable families is full and faithful. As-
cribe to events p of Pr(F) the same polarities as events top(p) of F . Clearly
σ preserves polarities as f does, so σ is a total map of event structures with
polarity. In fact, σ is a winning strategy for (A,W).

To show receptivity of σ it suffices to show for all z ∈ F that fz
−

−Ð⊂ y′ in

C(A) implies z
z

−Ð⊂
′

with σz′ = z for some unique z′ ∈ F . If z belongs to the
first set-component of F this is obvious—take z′ = y′. Otherwise z belongs to
the second set-component, and takes the form y ∪ v, when receptivity follows
from the receptivity of σx∪y. No extra causal dependencies, over those of A,
are introduced into y in the first set-component of F . Considering y ∪ v in the
second set-component of F , the only extra causal dependencies introduced in
y ∪ v, above those inherited from its image y ∪ fx∪yv in A, are from v in Fx∪y
and those making a +ve event of v in y ∪ v depend on −ve events y ∖ x. For
these reasons σ is also innocent, and a strategy in A.

To show σ is a winning strategy for (A,W) it suffices to show that fz ∈W
for every +-maximal configuration z ∈ F . Let z be a +-maximal configuration
of F .

Suppose that z belongs to the first set-component of F and, to obtain a
contradiction, that fz ∉W . Then z = fz ∈ C(A) and pol z ∖ x ⊆ {−}. By axiom
(race-free), x ↑ y, so x ⊆ z from the +-maximality of z. As x ⊆− z and z ∉W

10.7. DETERMINACY PROOF 155

the strategy σz is winning in (A,W)/z. Because z is +-maximal in F we must
have ∅ is +-maximal in Fz. It follows that ∅ ∈W /z, i.e. z ∈W—a contradiction.

Suppose that z belongs to the second set-component of F , so that z has
the form y ∪ v with y ∈ C(A) and v ∈ Fx∪y. By (race-free), x ⊆ y, as z is +-
maximal in F . Hence v ∈ Fy and is necessarily +-maximal in Fy, again from the
+-maximality of z. As σy is winning, fyv ∈W /y. Therefore fz = y ∪ fyv ∈W .

Finally, we have constructed a winning strategy σ in (A,W)—the contra-
diction required to establish the lemma.

Remark. In the proof above we could instead build the strategy for Player, on
which the proof by contradiction depends, out of a rigid family of finite partial
orders. Recall that stable families, including configurations of event structures,
are rigid families w.r.t. the order induced on configurations; finite configurations
x determine finite partial orders (x,≤x), which we call q(x) in the construction
below. Define

Q =def {q(y) ∣ y ∈ C(A) & polA(y ∖ x) ⊆ {−}} ∪

{q(y); q(v) ∣ y ∈ C(A) & polA(y ∖ x) ⊆ {−} & x ∪ y ∉W &

v ∈ Fx∪y & + ∈ pol v & y ∪ fx∪yv ∈ C(A)}

where above q(y); q(v) is the least partial order on y ∪ v in which events inherit
causal dependencies from q(v), from their images in q(y∪fx∪yv) and in addition
have the causal dependencies y− × v+. The family Q can be shown to be closed
under rigid inclusions, and so a rigid family. ◻

Theorem 10.31. Assume game A is well-founded, satisfies (race-free) and
has winning conditions W ⊆ C(A). If (A,W) has no winning strategy for Player,
then there is a winning (counter) strategy for Opponent.

Proof. Assume (A,W) has no winning strategy for Player.
We build a winning counter-strategy for Opponent out of a rigid family of

partial orders, themselves constructed from ‘alternating sequences’ of configu-
rations of A.

Define an alternating sequence to be a sequence

x1, y1, x2, y2,⋯, xi, yi,⋯, xk, yk, xk+1

of length k + 1 ≥ 1 of configurations of A such that

∅ ⊆+ x1 ⊆
− y1 ⊆

+ x2 ⊆
− y2 ⊆

− ⋯ ⊆+ xi ⊆
− yi ⊆

+ ⋯ ⊆+ xk ⊆
− yk ⊆

+ xk+1

with

xi ∈W & yi ∉W & (A,W)/yi has no winning strategy,

when 1 ≤ i ≤ k. It is important that xk+1, which may be ∅, need not be in W .
In particular, we allow the alternating singleton sequence x1 comprising a single
configuration of A with ∅ ⊆+ x1 without necessarily having x1 ∈W .

156 CHAPTER 10. WINNING WAYS

For each alternating sequence x1, y1,⋯, xk, yk, xk+1 define the partial order
Q(x1, y1,⋯, xk, yk, xk+1) to comprise the partial order on xk+1 inherited from A
together with additional causal dependencies given by the pairs in

x+i × (yi ∖ xi) , where 1 ≤ i ≤ k.

We define Q to be the rigid family comprising the set of all partial orders got
from alternating sequences, closed under rigid inclusions.

Form the event structure Pr(Q) as described in Proposition 10.22. Assign
the same polarity to an event in Pr(Q) as its top event in A. Recall from
Proposition 10.22 the order-isomorphism C(Pr(Q)) ≅ Q given by x ↦ ⋃x for
x ∈ C(Pr(Q)). The map

τ ∶ Pr(Q)→ A

taking p ∈ Pr(Q) to its top event is a total map of event structures with polarity.
Writing T ∶ Q → C(A) for the function taking q ∈ Q to its set of underlying
events, τx = T (⋃x) for all x ∈ C(Pr(Q)), i.e. the diagram

C(Pr(Q))

τ
%%

≅ Q

T

��
C(A)

commutes. We shall reason about order-properties of τ via the function T .
We claim that τ is a winning counter-strategy, in other words a winning

strategy for Opponent, in which the roles of + and − are reversed.
Because the construction of the partial orders in Q only introduces extra

causal dependencies of −ve events on +ve events, τ is innocent (remember the
reversal of polarities). To check receptivity of τ it suffices to show that for q ∈ Q

assuming T (q)
a

−Ð⊂ z′ in C(A), where polA(a) = +, there is a unique q′ ∈ Q such
that q−Ð⊂ q′ and T (q′) = z′. Any such extension q′ must comprise the partial
order q extended by the event a. As a is +ve the events on which it immediately
depends in q′ will coincide with those on which a immediately depends in z′,
guaranteeing the uniqueness of q′. It remains to show the existence of q′.

By assumption, q rigidly embeds in Q(x1, y1,⋯, xk, yk, xk+1) for some alter-
nating sequence x1, y1,⋯, xk, yk, xk+1. In the case where q consists of purely
+ve events, take q′ =def Q(z′). Otherwise, consider the largest i for which
T (q) ∩ (yi ∖ xi) ≠ ∅. Then,

polA T (q) ∖ yi ⊆ {+} . (1)

From the construction of Q(x1, y1,⋯, xk, yk, xk+1) and the rigidity of the inclu-
sion of q in Q(x1, y1,⋯, xk, yk, xk+1) we obtain

x+i ⊆ T (q) . (2)

From (2), T (q) ⊆− T (q) ∪ yi and, by assumption, T (q)
a

−Ð⊂ z′ with polA(a) = +.
Using (race-free), their union remains in C(A), and we can define

x′ =def T (q) ∪ yi ∪ {a} ∈ C(A) .

10.7. DETERMINACY PROOF 157

Note that

x1, y1,⋯, xi, yi, x
′

is an alternating sequence because yi ⊆
+ x′ by (1) and it is built from an al-

ternating sequence x1, y1,⋯, xk, yk, xk+1. Restricting Q(x1, y1,⋯, xi, yi, x
′) to

events z we obtain a partial order q′ for which q−Ð⊂ q′ in Q and T (q′) = z.
We now show that τ is winning for Opponent. For this it suffices to show

that if q ∈ Q is −-maximal then T (q) ∉ W . Assume q ∈ Q is −-maximal in Q.
Necessarily q embeds rigidly in Q(x1, y1,⋯, xk, yk, xk+1) for some alternating
sequence x1, y1,⋯, xk, yk, xk+1.

In the case where q consists of purely +ve events

∅ ⊆+ T (q) in C(A) .

Suppose T (q) ∈W . By Lemma 10.30, for some y ∈ C(A),

T (q) ⊆− y & y ∉W .

But then there is a strict extension q ↪ Q(T (q), y,∅) of q by −ve events in Q,
and q is not −-maximal—a contradiction.

In the case where q has −ve events, we may take the largest i for which
T (q) ∩ (yi ∖ xi) ≠ ∅. As earlier,

(1) polA T (q) ∖ yi ⊆ {+} & (2) x+i ⊆ T (q) .

As q is −-maximal, yi ⊆ T (q), whence by (1),

yi ⊆
+ T (q) .

Suppose, to obtain a contradiction, that T (q) ∈ W . The game (A,W)/yi has
no winning strategy. By Lemma 10.30, given

∅ ⊆+ x =def T (q) ∖ yi

in C((A,W)/yi) there is y ∈ C((A,W)/yi) with

x ⊆− y & y ∉W /yi .

Let x′i+1 =def T (q) and y′i+1 =def yi ∪ y ∉W . Then,

x1, y1,⋯, xi, yi, x
′
i+1, y

′
i+1,∅

is an alternating sequence which strictly extends q by −ve events, contradicting
its −-maximality.

We conclude that τ is a winning strategy for Opponent.

Corollary 10.32. If a well-founded game A satisfies (race-free) then (A,W)
is determined for any winning conditions W .

158 CHAPTER 10. WINNING WAYS

10.8 Satisfaction in the predicate calculus

The syntax for predicate calculus: formulae are given by

ϕ,ψ,⋯ ∶∶= R(x1,⋯, xk) ∣ ϕ ∧ ψ ∣ ϕ ∨ ψ ∣ ¬ϕ ∣ ∃x. ϕ ∣ ∀x. ϕ

where R ranges over basic relation symbols of a fixed arity and x,x1, x2,⋯, xk
over variables.

A model M for the predicate calculus comprises a non-empty universe of
values VM and an interpretation for each of the relation symbols as a relation
of appropriate arity on VM . Following Tarski we can then define by structural
induction the truth of a formula of predicate logic w.r.t. an assignment of values
in VM to the variables of the formula. We write

ρ ⊧M ϕ

iff formula ϕ is true in M w.r.t. environment ρ; we take an environment to be
a function from variables to values.

W.r.t. a model M and an environment ρ, we can denote a formula ϕ by
JϕKMρ, a concurrent game with winning conditions, so that ρ ⊧M ϕ iff the game
JϕKMρ has a winning strategy.

The denotation as a game is defined by structural induction:

JR(x1,⋯, xk)KMρ =
⎧⎪⎪
⎨
⎪⎪⎩

(∅,{∅}) if ρ ⊧M R(x1,⋯, xk) ,

(∅,∅) otherwise.

Jϕ ∧ ψKMρ = JϕKMρ⊗ JψKMρ
Jϕ ∨ ψKMρ = JϕKMρ` JψKMρ
J¬ϕKMρ = (JϕKMρ)⊥

J∃x. ϕKMρ = ⊕
v∈VM

JϕKMρ[v/x]

J∀x. ϕKMρ = ⊖
v∈VM

JϕKMρ[v/x] .

We use ρ[v/x] to mean the environment ρ updated to assign value v to variable
x. The game (∅,{∅}) the unit w.r.t. ⊗ is the game used to denote true and the
game (∅,{∅}) the unit w.r.t. ` to denote false. Denotations of conjunctions and
disjunctions are denoted by the operations of ⊗ and ` on games, while negations
denote dual games. Universal and existential quantifiers denote prefixed sums
of games, operations which we now describe.

The prefixed game ⊞.(A,W) comprises the event structure with polarity ⊞.A
in which all the events of A are made to causally depend on a fresh +ve event ⊞.
Its winning conditions are those configurations x ∈ C∞(⊞.A) of the form {⊞}∪y
for some y ∈W . The game ⊕v∈V (Av,Wv) has underlying event structure with
polarity the sum (=coproduct) ∑v∈V ⊞.Av with a configuration winning iff it
is the image of a winning configuration in a component under the injection to
the sum. Note in particular that the empty configuration of ⊕v∈V Gv is not

10.8. SATISFACTION IN THE PREDICATE CALCULUS 159

winning—Player must make a move in order to win. The game ⊖v∈V Gv is
defined dually, as (⊕v∈V G

⊥
v)
⊥. In this game the empty configuration is win-

ning but Opponent gets to make the first move. More explicitly, the prefixed
game ⊟.(A,W) comprises the event structure with polarity ⊟.A in which all the
events of A are made to causally depend on the previous occurrence of an op-
ponent event ⊟, with winning configurations either the empty configuration or
of the form {⊟} ∪ y where y ∈W . Writing Gv = (Av,Wv), the underlying event
structure of ⊖v∈V Gv is the sum ∑v∈V ⊟.Av with a configuration winning iff it
is empty or the image under injection of a winning configuration in a prefixed
component.

It is easy to check by structural induction that:

Proposition 10.33. For any formula ϕ the game JϕKMρ is well-founded and
race-free (i.e. satisfies Axiom (race-free)), so a determined game by the result
of the last section.

The following facts are useful for building strategies.

Proposition 10.34.

(i) If σ ∶ S → A is a strategy in A and τ ∶ T → B is a strategy in B, then
σ∥τ ∶ S∥T → A∥B is a strategy in A∥B.

(ii) If σ ∶ S → T is a strategy in T and τ ∶ T → B is a strategy in B, then
their composition as maps of event structures with polarity τσ ∶ S → B is
a strategy in B.

Proof. It is easy to check that the properties of receptivity and innocence are
preserved by parallel composition and composition of maps.

There are ‘projection’ strategies from a tensor product of games to its com-
ponents:

Proposition 10.35. Let G = (A,WG) and H = (B,WH) be race-free games
with winning conditions. The map of event structures with polarity

idA⊥∥ ccB ∶ A⊥∥CCB → A⊥∥B⊥∥B

is a winning strategy pH ∶ G⊗H + //H. The map of event structures with polarity

idB⊥∥ ccA ∶ B⊥∥CCA → B⊥∥A⊥∥A ≅ A⊥∥B⊥∥A

is a winning strategy pG ∶ G⊗H + //G.

Proof. By Proposition 10.34, as idA⊥ is a strategy in A⊥ and γB is a strategy in
B⊥∥B the map pH = idA⊥∥ ccB is certainly a strategy in A⊥∥B⊥∥B.

We need to check that pH is a winning strategy in G⊗H ⊸H. Consider x,
a +-maximal configuration of A⊥∥CCB . As B is race-free, the copy-cat strategy
γB is winning in H ⊸H. Consequently if x images to a winning configuration in
G⊗H on the left of G⊗H ⊸H it will image to a winning configuration in H on

160 CHAPTER 10. WINNING WAYS

the right of G⊗H ⊸H. (Recall a winning configuration of G⊗H is essentially
the union of a winning configuration in G together with a winning configuration
in H.) Consequently, x images to a winning configuration in G⊗H ⊸H, as is
required for pH to be a winning strategy.

The strategy pG is defined analogously but for the isomorphism B⊥∥A⊥∥A ≅
A⊥∥B⊥∥A which does not disturb its winning nature.

The following lemma is used to build and deconstruct strategies in prefixed
sums of games. The lemma concerns the more basic prefixed sums of event
structures. These are built as coproducts ∑i∈I ●.Bi of event structures ●.Bi in
which an event ● is prefixed to Bi, making all the events in Bi causally depend
on ●.

Lemma 10.36. Suppose f ∶ A → ∑i∈I ●.Bi is a total map of event structures,
with codomain a prefixed sum. Then, A is isomorphic to an prefixed sum, A ≅

∑j∈J ●.Aj, and there is a function r ∶ J → I and total maps of event structures
fj ∶ Aj → Br(j) for which

∑j∈J ●.Aj ≅

[●.fj]j∈J

��

A

f{{
∑i∈I ●.Bi

commutes.

Proof. Let J be the subset of events of A whose images are prefix events ● in

∑i∈I ●.Bi. As f is a map of event structures any distinct pairs of events in J
are inconsistent. Moreover, every event of A is ≤A-above a necessarily unique
event in J . It follows that the events of J are ≤A-minimal with A ≅ ∑j∈J ●.Aj ;
the event structure Aj is A/{j}, that part of the event structure strictly above
the event j. Each event j ∈ J is sent to a unique prefix event f(j) in ∑i∈I ●.Bi.
Thus f determines a function r ∶ J → I and maps fj ∶ Aj → Br(i) for all j ∈ J .
By construction the map f is reassembled, up to isomorphism, as the unique
mediating map [●.fj]j∈J for which

●.Aj

●.fj

��

inAj // ∑j∈J ●.Aj ≅

[●.fj]j∈J

��

A

f{{
●.Br(j)

inBr(j)

// ∑i∈I ●.Bi

commutes for all j ∈ J .

Lemma 10.37. Let G,H,Gv, where v ∈ V , be race-free games with winning
conditions. Then,

(i) G ⊗H has a winning strategy iff G has a winning strategy and H has a
winning strategy.

10.8. SATISFACTION IN THE PREDICATE CALCULUS 161

(ii) ⊕v∈V Gv has a winning strategy iff Gv has a winning strategy for some
v ∈ V .

(iii) ⊖v∈V Gv has a winning strategy iff Gv has a winning strategy for all v ∈ V .

If in addition G and H are determined,

(iv) G ` H has a winning strategy iff G has a winning strategy or H has a
winning strategy.

Proof. Throughout write Gv = (Av,Wv), where v ∈ V .

(i) ‘Only if ’: If G⊗H has a winning strategy σ ∶ (∅,{∅}) + //G⊗H, then the
compositions pG⊙σ and pH⊙σ provide winning strategies in G and H, respec-
tively. ‘If ’: If G = (A,WG) and H = (B,WH) have winning strategies given as
maps of event structures with polarity σ ∶ S → A and τ ∶ T → B then the map
σ∥τ ∶ S∥T → A∥B is a winning strategy in G⊗H.

(ii) ‘Only if ’: Suppose σ ∶ S → ∑v∈V ⊞.Av is a winning strategy in ⊕v∈V Gv.
As ∅ is not winning in the game, S must be nonempty. By Lemma 10.36, S
decomposes into a prefixed sum necessarily nonempty and of the form ∑j∈J ⊞.Sj
with maps, now necessarily total maps of event structures with polarity, σj ∶
Sj → Av(j). Because σ is winning any such map will be a winning strategy in
Gv(j). ‘If ’: Suppose σv ∶ Sv → Av is a winning strategy in Gv. Prefixing we
obtain ⊞.σv ∶ ⊞.Sv → ⊞.Av, a winning strategy in ⊞.Gv. Composing with the
winning ‘injection’ strategy Inv ∶ ⊞.Gv + // ∑v∈V ⊞.Gv defined below we obtain a
winning strategy in ⊕v∈V Gv. The injection strategy is built from the injection
map of event structures with polarity

inv ∶ ⊞.Av → ∑
v∈V

⊞.Av .

as the composite map

Inv ∶ CC⊞.Av

cc⊞.Av // (⊞.Av)⊥∥ ⊞ .Av
id
(⊞.Av)⊥

∥ inv// (⊞.Av)⊥∥∑v∈V ⊞.Av .

Proposition 10.34 is used to show Inv is a strategy. It can be seen that inv is
both receptive and innocent so a strategy in ∑v∈V ⊞.Av. The map id(⊞.Av)⊥ is a
strategy. Hence id(⊞.Av)⊥∥ inv is a strategy. As the composition of two strategy
maps, Inv is a strategy in (⊞.Av)

⊥∥∑v∈V ⊞.Av. It is a winning strategy because,
as is easily seen from the explicit composite form of Inv, the image under Inv
of a +-maximal configuration in CC⊞.Av is winning.

(iii) ‘Only if ’: Defining Pv =def In⊥v, where Inv ∶ ⊞.G
⊥
v + // ⊕v∈V G

⊥
v is an instance

of an injection strategy defined above, we obtain by duality a winning strategy

Pv ∶ ⊖
v∈V

Gv + // ⊟ .Gv ,

162 CHAPTER 10. WINNING WAYS

for any v ∈ V . Let v ∈ V . By composition with Pv a winning strategy in

⊖v∈V Gv yields a winning strategy in the component ⊟.Gv. By Lemma 10.36
in a strategy σ ∶ S → ⊟.Av the event structure S decomposes into a prefixed
sum, where the prefixing events are necessarily all −ve. As σ is receptive the
sum must be a unary prefixed sum of the form ⊟.S′. Lemma 10.36 provides a
map σ′ ∶ S′ → Av. From σ being winning the map σ′ will be a winning strategy
in Gv. ‘If ’: Suppose σv ∶ Sv → Av is a winning strategy in Gv, for all v ∈ V .
Prefixing we obtain winning strategies ⊟.σv ∶ ⊟.Sv → ⊟.Av in ⊟.Gv. Forming the
sum ∑v∈V ⊟.σv ∶ ∑v∈V ⊟.Sv → ⊟.σv ∶ ∑v∈V ⊟.Av we obtain a strategy winning in

⊖v∈V Gv.

(iv) Now suppose G and H are determined. ‘If ’: The dual winning strategies
p⊥G⊥ ∶ G + //G ` H and p⊥H⊥ ∶ H + //G ` H compose with a winning strategy
(∅,{∅}) + //G, or respectively a winning strategy (∅,{∅}) + //H, to yield a
winning strategy (∅,{∅}) + //G`H. ‘Only if ’: Suppose G`H has a winning
strategy. Then G⊥ ⊗H⊥ = (G`H)⊥ has no winning strategy. Hence by (i), G⊥

has no winning strategy or H⊥ has no winning strategy. From determinacy, G
has a winning strategy or H has a winning strategy.

Theorem 10.38. For all predicate-calculus formulae ϕ and environments ρ,
ρ ⊧M ϕ iff the game JϕKMρ has a winning strategy.

Proof. By Proposition 10.33 the games JϕKMρ obtained from formulae ϕ are
race-free and determined. The proof is by structural induction on ϕ.

The base case where ϕ is R(x1,⋯, xk) is obvious; the game (∅,{∅}) has as
(unique) winning strategy the map ∅→ ∅, while (∅,∅) has no winning strategy.

For the case ϕ ∧ ψ, reason

ρ ⊧M ϕ ∧ ψ ⇐⇒ ρ ⊧M ϕ & ρ ⊧M ψ

⇐⇒ JϕKMρ has a winning strategy & JψKMρ has a winning strategy, by induction,

⇐⇒ JϕKMρ⊗ JψKMρ has a winning strategy, by Lemma 10.37(i),

⇐⇒ Jϕ ∧ ψKMρ has a winning strategy.

In the case ϕ ∨ ψ,

ρ ⊧M ϕ ∨ ψ ⇐⇒ ρ ⊧M ϕ or ρ ⊧M ψ

⇐⇒ JϕKMρ has a winning strategy or JψKMρ has a winning strategy, by induction,

⇐⇒ JϕKMρ` JψKMρ has a winning strategy, by Lemma 10.37(iv),

⇐⇒ Jϕ ∧ ψKMρ has a winning strategy.

In the case ¬ϕ,

ρ ⊧M ¬ϕ ⇐⇒ ρ /⊧M ϕ

⇐⇒ JϕKMρ has no winning strategy, by induction,

⇐⇒ (JϕKMρ)⊥ has a winning strategy, by determinacy.

10.8. SATISFACTION IN THE PREDICATE CALCULUS 163

In the case ∃x. ϕ,

ρ ⊧M ∃x.ϕ ⇐⇒ ρ[v/x] ⊧M ϕ for some v ∈ V

⇐⇒ JϕKMρ[v/x] has a winning strategy, for some v ∈ V , by induction,

⇐⇒ ⊕
v∈V

JϕKMρ[v/x] has a winning strategy, by Lemma 10.37(ii),

⇐⇒ J∃x.ϕKMρ has a winning strategy.

In the case ∀x. ϕ,

ρ ⊧M ∀x.ϕ ⇐⇒ ρ[v/x] ⊧M ϕ for all v ∈ V

⇐⇒ JϕKMρ[v/x] has a winning strategy, for all v ∈ V , by induction,

⇐⇒ ⊖
v∈V

JϕKMρ[v/x] has a winning strategy, by Lemma 10.37(iii),

⇐⇒ J∀x.ϕKMρ has a winning strategy.

164 CHAPTER 10. WINNING WAYS

Chapter 11

Borel determinacy

11.1 Introduction

We show the determinacy of concurrent games with Borel sets as winning con-
ditions, provided they are race-free and bounded-concurrent. Both restrictions
are necessary. The proof of determinacy of concurrent games proceeds via a
reduction to the determinacy of tree games, and the determinacy of these in
turn reduces to the determinacy of traditional Gale-Stewart games.

11.2 Tree games and Gale-Stewart games

We introduce tree games as a special case of concurrent games, traditional Gale-
Stewart games as a variant, and show how to reduce the determinacy of tree
games to that of Gale-Stewart games. Via Martin’s theorem for the determinacy
of Gale-Stewart games with Borel winning conditions we show that tree games
with Borel winning conditions are determined.

11.2.1 Tree games

Definition 11.1. Say E, an event structure with polarity, is tree-like iff it is
race-free, has empty concurrency relation (so ≤E forms a forest) and is such that
polarities alternate along branches, i.e. if e _ e′ then polE(e) ≠ polE(e′).

A tree game is (E,W), a concurrent game with winning conditions, in which
E is tree-like.

Proposition 11.2. Let E be a tree-like event structure with polarity. Then, its
configurations C(E) form a tree w.r.t. ⊆. Its root is the empty configuration ∅.
Its (maximal) branches may be finite or infinite; finite sub-branches correspond
to finite configurations of E; infinite branches correspond to infinite configu-

rations of E. Its arcs, associated with x
e

−Ð⊂x′, are in 1-1 correspondence with

events e ∈ E. The events e associated with initial arcs ∅
e

−Ð⊂x all share the same

165

166 CHAPTER 11. BOREL DETERMINACY

polarity. Along a branch

∅
e1
−Ð⊂x1

e2
−Ð⊂x2

e3
−Ð⊂⋯

ei
−Ð⊂xi

ei+1
−Ð⊂⋯

the polarities of the events e1, e2, . . . , ei, . . . alternate.

Proposition 11.2 gives the precise sense in which ‘arc,’ ‘sub-branch’ and
‘branch’ are synonyms for ‘events,’ ‘configurations’ and ‘maximal configurations’
when an event structure is tree-like. Notice that for a non-empty tree-like event
structure with polarity, all the events that can occur initially share the same
polarity.

Definition 11.3. We say a a non-empty tree game (E,W) has polarity + or
− according as its initial events are +ve or −ve. It is convenient to adopt the
convention that the empty game (∅,∅) has polarity +, and the empty game
(∅,{∅}) has polarity −.

Observe that:

Proposition 11.4. Let f ∶ S → A be a total map of event structures with
polarity, where A is tree-like. Then, S is also tree-like and the map f is innocent.
The map f is a strategy iff it is receptive.

Proof. As f preserves the concurrency relation, being a map of event structures,
S must be tree-like. Innocence of f now follows so that only its receptivity is
required for it to be a strategy.

11.2.2 Gale-Stewart games

For the sake of uniformity we shall present Gale-Stewart games as a slight variant
of tree games, a variant in which all maximal configurations of the tree game
are infinite, and where Player and Opponent must play to a maximal, infinite
configuration.

Definition 11.5. A Gale-Stewart game (G,V) comprises

• a tree-like event structure G for which all maximal configurations are
infinite, and

• a subset V of infinite configurations—the winning configurations.

A winning strategy in a Gale-Stewart game (G,V) is a deterministic strategy
σ ∶ S → G such that σx ∈ V for all maximal configurations x of S.

This is not how a Gale-Stewart game and, particularly, a winning strategy in
a Gale-Stewart game are traditionally defined. However, because the strategy
σ is deterministic it is injective as a map on configurations, so corresponds to
the subfamily of configurations T = {σx ∣ x ∈ C∞(S)} of C∞(G). The family T
forms a subtree of the tree of configurations of G. Its properties, detailed below,
reconcile our definition with the traditional one.

11.2. TREE GAMES AND GALE-STEWART GAMES 167

Proposition 11.6. A winning strategy in a Gale-Stewart game (G,V) corre-
sponds to a non-empty subset T ⊆ C∞(G) such that

(i) ∀x, y ∈ C∞(G). y ⊆ x ∈ T Ô⇒ y ∈ T ,

(ii) ∀x, y ∈ C(G). x ∈ T & x
−

−Ð⊂ y Ô⇒ y ∈ T ,

(iii) ∀x, y1, y2 ∈ T . x
+

−Ð⊂ y1 & x
+

−Ð⊂ y2 Ô⇒ y1 = y2 , and

(iv) all ⊆-maximal members of T are infinite and in V .

Proof. Given σ, a winning strategy in the Gale-Stewart game we define T as
above. Then, (i) follows because σ is a map of event structures and G is tree-
like; (ii) and (iii) follow from σ being receptive and deterministic; (iv) is a
consequence of all winning configurations being infinite. Conversely, given T a
subfamily of C∞(G) satisfying (i)-(iv) it is a relatively routine matter to con-
struct a tree-like event structure S and map σ ∶ S → G which is a winning
strategy in (G,V).

A Gale-Stewart game (G,V) has a dual game (G,V)∗ =def (G⊥, V ∗), where
V ∗ is the set of all maximal configurations in C∞(G) not in V . A winning
strategy for Opponent in (G,V) is a winning strategy (for Player) in the dual
game (G,V)∗.

For any event structure A there is a topology on C∞(A) given by the Scott
open subsets. The ⊆-maximal configurations in C∞(A) inherit a sub-topology
from that on C∞(A). The Borel subsets of a topological space are those subsets
of configurations in the sigma-algebra generated by the Scott open subsets.
Donald Martin proved in his celebrated theorem [25] that Gale-Stewart games
(G,V) are determined, i.e. there is a either a winning strategy for Player or
a winning strategy for Opponent, when V is a Borel subset of the maximal
configurations of C∞(A).

11.2.3 Determinacy of tree games

We show the determinacy of tree games with Borel winning conditions through
a reduction of the determinacy of tree games to the determinacy of Gale-Stewart
games.

Let (E,W) be a tree game. We construct a Gale-Stewart game GS(E,W) =
(G,V) and a partial map proj ∶ G→ E. The events of G are built as sequences of
events in E together with two new symbols δ− and δ+ decreed to have polarity −
and +, respectively; the symbols δ− and δ+ represent delay moves by Opponent
and Player, respectively.

Precisely, an event of G is a non-empty finite sequence

[e1,⋯, ek]

of symbols from E ∪ {δ−, δ+} where: e1 has the same polarity as (E,W); po-
larities alternate along the sequence; and for all subsequences [e1,⋯, ei], with

168 CHAPTER 11. BOREL DETERMINACY

i ≤ k,
{e1,⋯, ei} ∩E ∈ C(E) .

The immediate causal dependency relation of G is given by

[e1,⋯, ek] ≤G [e1,⋯, ek, ek+1]

and consistency by compatibility w.r.t. ≤G. Events [e1,⋯, ek] of G have the
same polarity as their last entry ek. It is easy to see that G is tree-like, and
that the only maximal configurations are infinite (because of the possibility of
delay moves).

The map proj ∶ G → E takes an event [e1,⋯, ek] of G to ek if ek ∈ E,
and is undefined otherwise. The winning set V consists of all those infinite
configurations x of G for which proj x ∈W .

We have constructed a Gale-Stewart game GS(E,W) = (G,V). The con-
struction respects the duality on games.

Lemma 11.7. Letting (E,W) be a tree game,

GS((E,W)⊥) = (GS(E,W))∗ .

Proof. Directly from the definition of the operation GS.

Suppose σ ∶ S → G is a winning strategy for (G,V). The composite

S
σ // G

proj // E (F1)

is a partial map of event structures with polarity. Letting D ⊆ S be the subset
of events on which proj ○ σ is defined, the map proj ○ σ factors as

S // S ↓D
σ0 // E (F2)

where: the first partial map acts like the identity on events in D and is undefined
otherwise—it sends a configuration x ∈ C∞(S) to x ∩D ∈ C∞(S ↓D); and σ0

is the total map that acts like σ on D. We shall show that σ0 is a (possibly
nondeterministic) winning strategy for (E,W).

Lemma 11.8. The map σ0 is a winning strategy for (E,W).

Proof. Write S0 =def S ↓D. By Proposition 11.4, for σ0 ∶ S0 → E to be a strategy
we only require its receptivity. From the construction of G and proj ,

proj x−⊂ y in C(E) Ô⇒ ∃!x′ ∈ C(G). x−⊂x′ & proj x′ = y .

This together with the receptivity of σ entails the receptivity of σ0.
To show σ0 is winning, suppose z is a +-maximal configuration of S0; we

require σ0z ∈ W . We will show this by exhibiting an infinite configuration
x ∈ C∞(S) such that x ∩ D = z. Then, according to the factorisation (F2),
x ↦ z ↦ σ0z, so we will have σ0z = proj σx. The configuration x being infinite

11.3. RACE-FREENESS AND BOUNDED-CONCURRENCY 169

will ensure σx ∈ V because σ is winning in the Gale-Stewart game (G,V). By
definition, σx ∈ V implies proj σx ∈W , so σ0z ∈W .

It remains to exhibit an infinite configuration x ∈ C∞(S) such that x∩D = z.
When z is infinite this is readily achieved by defining x =def [z]S ∈ C∞(S).
Suppose z is finite. Define x0 =def [z]S ∈ C(S), ensuring x0 ∩ D = z. We
inductively build an infinite chain

x0
s1
−Ð⊂x1

s2
−Ð⊂⋯

sn
−Ð⊂xn

sn+1
−Ð⊂⋯

in C(S) where all the events sn are ‘delay’ moves not in D. Then xn ∩D = z for
all n ∈ ω. By the definition of a winning strategies in Gale-Stewart games, no xn
can be ⊆-maximal in C(S). For each Opponent move sn choose to delay—as we
may do by the receptivity of σ. For each Player move sn we have no choice as
only a delay move is possible—otherwise we would contradict the +-maximality
assumed of z. Taking x =def ⋃n xn produces an infinite configuration x ∈ C∞(S)
such that x ∩D = z, as required.

Corollary 11.9. Let H be a tree game. If the Gale-Stewart game GS(H) has
a winning strategy, then H has a winning strategy.

Theorem 11.10. Tree games with Borel winning conditions are determined.

Proof. Assume (E,W) is a tree game where W is a Borel set. Construct
GS(E,W) = (G,V) as above. The function proj , acting as x↦ proj x on config-
urations, is easily seen to be a Scott-continuous function from C∞(G)→ C∞(E).
It restricts to a continuous function from the subspace of maximal configurations
in C∞(G). Hence V , as the inverse image of W under this restricted function, is
a Borel subset. By Martin’s Borel-determinacy theorem [25], the game (G,V)
is determined, so has either a winning strategy for Player or a winning strategy
for Opponent.

Suppose first that GS(E,W) has a winning strategy (for Player). By Corol-
lary 11.9 we obtain a winning strategy for (E,W). Suppose, on the other
hand, that GS(E,W) has a winning strategy for Opponent, i.e. there is a win-
ning strategy in the dual game GS(E,W)∗. By Lemma 11.7, GS((E,W)⊥) =
GS(E,W)∗ has a winning strategy. By Corollary 11.9, (E,W)⊥ has a winning
strategy, i.e. there is a winning strategy for Opponent in (E,W).

11.3 Race-freeness and bounded-concurrency

Not all games are determined; We have seen the necessity of race-freeness for
the determinacy of well-founded games. However, a determinacy theorem holds
for well-founded games (games where all configurations are finite) which are
(race − free)

x
a

−Ð⊂ & x
a′

−Ð⊂ & pol(a) ≠ pol(a′) Ô⇒ x ∪ {a, a′} ∈ C(A) . (Race − free)

However race-freeness is not sufficient to ensure determinacy when the game is
not well-founded, as is illustrated in the following example.

170 CHAPTER 11. BOREL DETERMINACY

Example 11.11. Let A be the event structure with polarity consisting of one
positive event ⊕ which is concurrent with an infinite chain of alternating negative
and positive events, i.e. for each i we have both ⊕ co ⊕i and ⊕ co ⊖i, i ∈ N,

A = ⊕ ⊖1
� ,,2⊕1

� ,,2⊖2
� ,,2⊕2

� ,,2⋯

and Borel winning conditions (for Player) given by

W = {∅,{⊖1,⊕1}, ...,{⊖1,⊕1, ...,⊖i,⊕i}, ...,A}.

So, Player wins if (i) no event is played, or (ii) the event ⊕ is not played and the
play is finite and finishes in some ⊕i, or (iii) all of the events in A are played.
Otherwise, Opponent wins.

Player does not have a winning strategy because Opponent has an infinite
family of spoiler strategies, not all be dominated by a single strategy of Player.
The inclusion maps τ∞ ∶ T∞ → A⊥ and τi ∶ Ti → A⊥, i ∈ N, are strategies for
Opponent where T ⊥∞ =def A and T ⊥i =def A ∖ {e′ ∈ A ∣ ⊖i ≤ e

′}, for i ∈ N.
Any strategy for Player that plays ⊕ is dominated by some strategy τi for

Opponent; likewise, any strategy for Player that does not play ⊕ and plays
only finitely many positive events ⊕i is also dominated by some strategy τi for
Opponent. Moreover, a strategy for Player that does not play ⊕ and plays all
of the events ⊕i in A is dominated by τ∞. So, Player does not have a winning
strategy in this game. Similarly, Opponent does not have a winning strategy
in A because Player has two strategies that cannot be both dominated by any
strategy for Opponent. Let σ⊕ ∶ S⊕ → A and σ⊕ ∶ S⊕ → A be strategies for
Player such that S⊕ =def A ∖ {⊕} and S⊕ =def A.

On the one hand, any strategy for Opponent that plays only finitely many
(possibly zero) negative events ⊖i is dominated by σ⊕; on the other, any strategy
for Opponent that plays all of the negative events ⊖i in A is dominated by σ⊕.
Thus neither player has a winning strategy in this game! ◻

In the above example, to win Player should only make the move ⊕ when Op-
ponent has played an infinite number of moves. We can banish such difficulties
by insisting that in a game no event is concurrent with infinitely many events
of the opposite polarity. This property is called bounded-concurrency:

∀y ∈ C∞(A). ∀e ∈ y. {e′ ∈ y ∣ e co e′ & pol(e) ≠ pol(e′)} is finite.
(Bounded − concurrent)

Bounded concurrency is in fact a necessary structural condition for determinacy
with respect to Borel winning conditions.

Notation 11.12. For a concurrent game A with configurations y, y′, write

max+(y
′, y) iff y′ is ⊕-maximal in y, i.e. y′

e
−Ð⊂ & pol(e) = + Ô⇒ e /∈ y; in

a dual way, we write max+(y
′, y) iff y′ is not ⊕-maximal in y. We use max−

analogously when pol(e) = −.

We show that if a countable, race-free A is not bounded-concurrent, then
there is Borel W so that the game (A,W) is not determined. Since A is not

11.3. RACE-FREENESS AND BOUNDED-CONCURRENCY 171

bounded-concurrent, there is y ∈ C∞(A) and e ∈ y such that e is concurrent with
infinitely many events of opposite polarity in y. W.l.o.g. assume that pol(e) = +,
that y ∖ {e} is a configuration and that y = [e] ∪ [{a ∈ y ∣ polA(a) = −}]. The
following rules determine whether y′ ∈ C∞(A) is in W or L:

1. y′ ⊇ yÔ⇒ y′ ∈W ;

2. y′ ⊂ y & e ∈ y′ Ô⇒ y′ ∈ L;

3. y′ ⊂ y & e /∈ y′ & max+(y
′, y ∖ {e}) & max−(y

′, y ∖ {e})Ô⇒ y′ ∈W ;

4. y′ ⊂ y & e /∈ y′ & max+(y
′, y ∖ {e}) or max−(y

′, y ∖ {e})Ô⇒ y′ ∈ L;

5. y′ ⊉ y & (y′ ∩ y) ⊂− y′ Ô⇒ y′ ∈W ;

6. y′ ⊉ y & (y′ ∩ y) ⊂+ y′ Ô⇒ y′ ∈ L;

7. otherwise assign y′ (arbitrarily) to W .

No y′ is assigned as winning for both Player and Opponent: the implications’
antecedents are all pair-wise mutually exclusive.1 The countability of A is im-
portant in showing that W is Borel.

Lemma 11.13. Let A be a countable race-free game. If A is not bounded-
concurrent, then there is Borel W ⊆ C∞(A) such that the game (A,W) is not
determined.

Proof. The set W is Borel because it is defined by clauses such as y′ ⊂ y which
have extensions, in this case {y′ ∈ C∞(A) ∣ y′ ⊂ y}, which are Borel sets by virtue
of the countability of A. For instance, a clause such as e ∈ y′ has extension

{y′ ∈ C∞(A) ∣ e ∈ y′} = [̂e] ,

a basic open set. In general, for x ∈ C(A), we use x̂ to denote the basic open
set {x′ ∈ C∞(A) ∣ x ⊆ x′}. The clause y′ ⊇ y, equivalent to ∀a ∈ y. a ∈ y′, has
extension

{y′ ∈ C∞(A) ∣ y′ ⊇ y} = ⋂
a∈y

[̂a] ;

because A is assumed countable so is y and the intersection is an intersection
of countably many open sets. To see that {y′ ∈ C∞(A) ∣ y′ ⊂ y} is Borel is a bit
more complicated. Observe that

{y′ ∈ C∞(A) ∣ y′ ⊂ y} = ⋂
a∉y

(C∞(A) ∖ [̂a]) ∩ ⋃
a∈y

(C∞(A) ∖ [̂a]) ;

the big intersection is the extension of y′ ⊆ y and the big union that of ∃a ∈ y. a ∉
y′—because A is assumed countable the intersection and union are countable.

We first show:

1The winning conditions W in Example 11.11 are instance of this scheme.

172 CHAPTER 11. BOREL DETERMINACY

(i) If σ is a winning strategy for Player then y is σ-reachable, i.e. σ ∶ S → A,
there is x ∈ C∞(S) s.t. σx = y.
(ii) If τ is a winning strategy for Opponent then y is τ -reachable.
Write ye =def y ∖ {e}.

(i) This part uses rules (2), (4) and (6). Suppose σ ∶ S → A is a winning
strategy for Player. There is a ⊆-maximal configuration of S s.t. σx0 ⊆ y (via
Zorn’s lemma). By receptivity, σx0 is −-maximal in y. As σ is winning, there
is a +-maximal x ∈ C∞(S) with x0 ⊆

+ x and σx ∈W (Zorn).
If σx ⊇ y then necessarily σx ⊇+ y and by a general property of strategies

we obtain y is σ-reachable. For completeness we include the argument. Take
x′ =def {s ∈ x ∣ σ(s) ∉ (σx) ∖ y}. Suppose s′ _ s in x. Then

σ(s′) ∈ (σx) ∖ y Ô⇒ σ(s) ∈ (σx) ∖ y

by +-innocence. Hence its contrapositive, viz.

σ(s) ∉ (σx) ∖ y Ô⇒ σ(s′) ∉ (σx) ∖ y ,

so that s ∈ x′ implies s′ ∈ x′. Thus, being down-closed and consistent, x′ ∈
C∞(S), with σx′ = y from the definition of x′.

The remaining case σx /⊇ y is impossible. Suppose x0 ≠ x, so x0 ⊂ x. Then
we also have (σx) ∩ y ⊂+ σx, using the ⊆-maximality of x0. By (6), σx ∈ L—a
contradiction. Suppose, on the other hand, that x0 = x. If e ∈ σx, by (2) we
obtain the contradiction σx ∈ L. If e ∉ σx, by (4) we obtain the contradiction
σx ∈ L; recall σx = σx0 is −-maximal in y so in ye when e ∉ σx.

(ii) This part uses rules (1), (3) and (5). Suppose τ ∶ T → A⊥ is a winning
strategy for Opponent. It is sufficient to show ye is τ -reachable as then y will
also be τ -reachable by receptivity. Assume to obtain a contradiction that ye is
not τ -reachable. Then there is a ⊆-maximal x0 ∈ C

∞(T) s.t. τx0 ⊆ y (via Zorn’s
lemma). By assumption, τx0 ⊂ y. By receptivity, τx0 is +-maximal in ye and
necessarily τx0 is not −-maximal in ye. By (3), τx0 ∈W . As τ is winning, there
is a −-maximal x ∈ C∞(T) with x0 ⊆− x and τx ∈ L (Zorn); from the latter
x0 ⊂ x. We claim that by (1)&(5), τx ⊆ ye, contradicting the ⊆-maximality of
x0. To show the claim, suppose to obtain a contradiction that τx /⊆ ye. Then
τx /⊆ y, as e is +ve , so (τx)∩ y ⊂− τx. By (1), τx /⊇ y. Now by (5), τx ∈W , the
required contradiction.

To conclude the proof we show there is no winning strategy for either player.
If σ is a winning strategy for Player then by (i) there is x ∈ C∞(S) s.t. σx = y;

in particular there is se ∈ x s.t. σ(se) = e. Define the inclusion map τ0 ∶ A
⊥ ↾

(σ[se]S ∪ {a ∈ A⊥ ∣ polA(a) = +} ↪ A⊥. Then τ0 s a strategy for Opponent for
which there is y′ ∈ ⟨σ, τ0⟩ with e ∈ y′ and where y′ only contains finitely many
−-events. Either y′ ⊂ y whence y′ ∈ L by (2), or y′ /⊂ y whereupon (y′ ∩ y) ⊂+ y′

so y′ ∈ L by (6). Hence as τ0 is a strategy for Opponent not dominated by σ
the latter cannot be a winning strategy for Player.

11.4. DETERMINACY OF CONCURRENT GAMES 173

If τ is a winning strategy for Opponent then y is τ -reachable. Define the
inclusion map σ0 ∶ A ↾ (y ∪ {a ∈ A ∣ polA(a) = −}↪ A. Then σ0 is a strategy for
Player for which there is y′ ∈ ⟨σ0, τ⟩ with y′ ⊇ y. By (1) y′ ∈ W , so σ0 is not
dominated by τ , which cannot be a winning strategy for Opponent.

11.4 Determinacy of concurrent games

We now construct a tree game TG(A,W) from a concurrent game (A,W). We
can think of the events of TG(A,W) as corresponding to (non-empty) rounds
of −ve or +ve events in the original concurrent game (A,W). When (A,W) is
race-free and bounded-concurrent, a winning strategy for TG(A,W) will induce
a winning strategy for (A,W). In this way we reduce determinacy of concurrent
games to determinacy of tree games.

11.4.1 The tree game of a concurrent game

From a concurrent game (A,W) we construct a tree game

TG(A,W) = (TA,TW) .

The construction of TA depends on whether ∅ ∈W .
In the case where ∅ ∈ W , define an alternating sequence of (A,W) to be a

sequence

∅ ⊂− x1 ⊂
+ x2 ⊂

− ⋯ ⊂+ x2i ⊂
− x2i+1 ⊂

+ x2i+2 ⊂
− ⋯

of configurations in C∞(A)—the sequence need not be maximal. Define the −ve
events of TG(W,A) to be

[∅, x1, x2, . . . , x2k−2, x2k−1] ,

finite alternating sequences of the form

∅ ⊂− x1 ⊂
+ x2 ⊂

− ⋯ ⊂+ x2k−2 ⊂
− x2k−1 ,

and the +ve events to be

[∅, x1, x2, . . . , x2k−1, x2k] ,

finite alternating sequences

∅ ⊂− x1 ⊂
+ x2 ⊂

− ⋯ ⊂− x2k−1 ⊂
+ x2k ,

where k ≥ 1. The causal dependency relation on TA is given by the relation of
initial sub-sequence, with a finite subset of events being consistent iff the events
are all initial sub-sequences of a common alternating sequence.

It is easy to see that a configuration of TA corresponds to an alternating
sequence, the −ve events of TA matching arcs x2k−2 ⊂

− x2k−1 and the +ve events

174 CHAPTER 11. BOREL DETERMINACY

arcs x2k−1 ⊂
+ x2k. As such, we say a configuration y ∈ C∞(TA) is winning, and

in TW , iff y corresponds to an alternating sequence

∅ ⋯ ⊂+ xi ⊂
− xi+1 ⊂

+ ⋯

for which ⋃i xi ∈W .

In the case where ∅ ∉W , we define an alternating sequence of (A,W) as a
sequence

∅ ⊂+ x1 ⊂
− x2 ⊂

+ ⋯ ⊂− x2i ⊂
+ x2i+1 ⊂

− x2i+2 ⊂
+ ⋯

of configurations in C∞(A). In this case, the −ve events of TG(W,A) are finite
alternating sequences ending in x2k, while the +ve events end in x2k−1, for k ≥ 1.
The remaining parts of the definition proceed analogously.

We have constructed a tree game TG(A,W) from a concurrent game (A,W).
The construction respects the duality on games.

Lemma 11.14. Let (A,W) be a concurrent game.

TG((A,W)⊥) = (TG(A,W))⊥ .

Proof. From the construction TG, because alternating sequences

∅ ⋯ ⊂+ xi ⊂
− xi+1 ⊂

+ ⋯

in C∞(A) correspond to alternating sequences

∅ ⋯ ⊂− xi ⊂
+ xi+1 ⊂

− ⋯

in C∞(A⊥).

Proposition 11.15. Suppose (A,W) is a bounded-concurrent game. Maximal
alternating sequences have one of two forms,

(i) finite:

∅ ⋯ ⊂+ xi ⊂
− xi+1 ⊂

+ ⋯xk ,

where xi is finite for all 0 < i < k (where possibly xk is infinite), or

(iii) infinite:

∅ ⋯ ⊂+ xi ⊂
− xi+1 ⊂

+ ⋯ ,

where each xi is finite.

Proof. Otherwise, taking the first infinite xi, within configuration xi+1 there
would be an event of xi+1 ∖ xi concurrent with infinitely many events of xi of
opposite polarity—contradicting the bounded-concurrency of A.

11.4. DETERMINACY OF CONCURRENT GAMES 175

11.4.2 Borel determinacy of concurrent games

Now assume that the concurrent game (A,W) is race-free and bounded-concurrent.
Suppose that str ∶ T → TA is a (winning) strategy in the tree game TG(A,W).
Note that T is necessarily tree-like. We construct σ0 ∶ S → A, a (winning)
strategy in the original concurrent game (A,W). We construct S indirectly,
from a prime-algebraic domain Q, built as follows. For technical reasons, in the
construction of Q it is convenient to assume—as can easily be arranged—that

A ∩ (A × T) = ∅ .

Via str a sub-branch
t⃗ = (t1,⋯, ti,⋯)

of T determines a tagged alternating sequence

∅ ⋯
ti−1

⊂− xi−1

ti

⊂+ xi
ti+1

⊂− ⋯

where str(ti) = [∅, . . . , xi−1, xi]. (Informally, the arc ti is associated with a
round extending xi−1 to xi in the original concurrent game.)

Define q(t⃗) to be the partial order comprising events

⋃{(xi ∖ xi−1) ∣ ti is a −ve arc of t⃗} ∪

⋃{(xi ∖ xi−1) × {ti} ∣ ti is a +ve arc of t⃗}

—so a copy of the events ⋃i xi but with +ve events tagged by the +ve arc of
T at which they occur2—with order a copy of that ⋃i xi inherits from A with
additional causal dependencies pairs from

x−i−1 × ((xi ∖ xi−1) × {ti})

—making the +ve events occur after the −ve events which precede them in the
alternating sequence.

Define the partial order Q as follows. Its elements are partial orders q, not
necessarily finite, for which there is a rigid inclusion

q ↪ q(t1, t2,⋯, ti,⋯) ,

for some sub-branch (t1, t2,⋯, ti,⋯) of T . The order on Q is that of rigid
inclusion. Define the function σ ∶ Q→ C∞(A) by taking

σq = {a ∈ A ∣ a is −ve & a ∈ q} ∪ {a ∈ A ∣ ∃t ∈ T. a is +ve & (a, t) ∈ q}

for q ∈ Q. We should check that σq is indeed a configuration of A. Clearly,
σq(t⃗) = ⋃i∈I xi where

∅ ⋯
ti−1

⊂− xi−1

ti

⊂+ xi
ti+1

⊂− ⋯

is the tagged alternating sequence determined by t⃗ =def (t1,⋯, ti,⋯). Any q for
which there is a rigid inclusion q ↪ q(t⃗) will be sent to a sub-configuration of

⋃i xi.

2It is so that the two components remain disjoint under tagging that we make the technical
assumption above.

176 CHAPTER 11. BOREL DETERMINACY

Proposition 11.16. Let (t1,⋯, ti,⋯) be a sub-branch of T , so corresponding
to a configuration {t1,⋯, ti,⋯} ∈ C∞(T). Then,

str{t1,⋯, ti,⋯} ∈ TW ⇐⇒ σq(t1,⋯, ti,⋯) ∈W .

Proof. Let t⃗ =def (t1,⋯, ti,⋯). We have str(ti) = [∅, . . . , xi−1, xi] for some

∅ ⋯ ⊂− xi−1 ⊂
+ xi ⊂

− ⋯ ,

an alternating sequence of (A,W). Directly from the definitions of TW , q(t⃗)
and σ,

str{t⃗} ∈ TW ⇐⇒ ⋃
i

xi ∈W

⇐⇒ σq(t⃗) ∈W .

We shall make use of the following proposition.

Proposition 11.17. For all q, q′ ∈ Q, whenever there is an inclusion of the
events of q in the events of q′ there is a rigid inclusion q ↪ q′.

Proof. To see this, suppose the events of q are included in the events of q′. To
establish the rigid inclusion q ↪ q′ we require that, for all a ∈ q, b ∈ q′,

b _q a ⇐⇒ b _q′ a . (†)

However, in the construction of q(t1, t2,⋯, ti,⋯) the only immediate dependen-
cies introduced beyond those of A are those of the form b _ (a′, t), of tagged
+ve events on −ve rounds specified earlier in the branch on which the +ve arc t
occurs. This property is inherited by q and q′ in Q. Thus in checking (†) we can
restrict attention to the case where b is −ve and a is +ve and of the form (a′, t)
for some a′ ∈ A and arc t of T . The arc t determines a sub-branch t1,⋯, tk = t
of T and a corresponding tagged alternating sequence

∅ ⋯
tk−1

⊂− xk−1

tk

⊂+ xk .

So in this case,

b _q a ⇐⇒ b is ≤A-maximal in x−k−1 & a′ is ≤A-maximal in xk ∖ xk−1

⇐⇒ b _q′ a ,

which ensures (†), and the proposition.

Notation 11.18. Proposition 11.17, justifies us in writing ⊆ for the order of Q.
We shall also write q ⊆− q′ when all the events in q′ above those of q are −ve,
and similarly q ⊆+ q′ when all the events in q′ above those of q are +ve. ◻

The following lemma is crucial and depends critically on (A,W) being race-
free and bounded-concurrent.

11.4. DETERMINACY OF CONCURRENT GAMES 177

Lemma 11.19. The order (Q,⊆) is a prime algebraic domain in which the
primes are precisely those (necessarily finite) partial orders with a maximum.

Proof. Any compatible finite subset X of Q has a least upper bound: if all
the members of X include rigidly in a common q then taking the union of
their images in q, with order inherited from q, provides their least upper bound.
ProvidedQ has least upper bounds of directed subsets it will then be consistently
complete with the additional property that every q ∈ Q is the least upper bound
of the primes below it—this will make Q a prime algebraic domain.

To establish prime algebraicity it remains to show that Q has least upper
bounds of directed sets.

Let S be a directed subset of Q. The +ve events of orders q ∈ S are tagged
by +ve arcs of T . Because S is directed the +ve tags which appear throughout
all q ∈ S must determine a common sub-branch of T , viz.

t⃗ =def (t1, t2,⋯, ti,⋯) .

Every +ve arc of the sub-branch appears in some q ∈ S and all −ve arcs are
present only by virtue of preceding a +ve arc. The sub-branch t⃗ may be

(1) infinite and necessarily a full branch of T , if the elements of S together
mention infinitely many tags;

(2) finite with q(t⃗) infinite, and necessarily finishing with a +ve arc;

(3) finite and non-empty with q(t⃗) finite, and necessarily finishing with a +ve
arc; or

(4) empty with t⃗ = ().

(1) Consider the case where t⃗ forms an infinite branch of T . We shall argue that
for all q ∈ S, there is a rigid inclusion

q ↪ q(t⃗) .

Then, forming the partial order ⋃S comprising the union of the events of all
q ∈ S with order the restriction of that on q(t⃗) we obtain a rigid inclusion

⋃S ↪ q(t⃗) ,

so a least upper bound of S in Q.
Let q ∈ S. By Proposition 11.17, to establish the rigid inclusion q ↪ q(t⃗) it

suffices to show the events of q are included in those of q(t⃗). From the nature
of the sub-branch determined by S, we must have that all the +ve events of q
are included in those of q(t⃗)—all +ve events of q are tagged by a +ve arc of t⃗.
Suppose, to obtain a contradiction, that there is some −ve event a of q not in
q(t⃗). For every +ve arc ti in t⃗ there is qi ∈ S with a +ve tagged event (ai, ti).
Let

I ⊆fin {i ∣ ti is a +ve arc of t⃗} .

178 CHAPTER 11. BOREL DETERMINACY

As S is directed, there is an upper bound in S of

{q} ∪ {qi ∣ i ∈ I} .

It follows that
{a} ∪ {ai ∣ i ∈ I} ∈ ConA ,

Hence, forming the down-closure in A of {a} ∪ {ai ∣ ti is a +ve arc in t⃗}, we
obtain

[{a} ∪ {ai ∣ ti is a +ve arc in t⃗}] ∈ C∞(A) .

Moreover it is a configuration which violates the assumption of bounded-concurrency—
the −ve event a is concurrent with infinitely many of the +ve events ai. From
this contradiction we deduce that the events of q are included in the events of
q(t⃗).

(2) Consider the case where t⃗ is a finite branch (t1,⋯, tk), where necessarily tk
is a +ve arc, and where q(t⃗) is infinite. By bounded-concurrency, all q(t1,⋯, ti),
for 0 ≤ i < k, are finite with only q(t⃗) = q(t1,⋯, tk) infinite.

Let q ∈ S. By Proposition 11.17, we can show there is a rigid inclusion

q ↪ q(t⃗)

by showing all the events of q are in q(t⃗). Again, all the +ve events of q are in
q(t⃗). Suppose, to obtain a contradiction, that b ∈ q with b ∉ q(t⃗), so b has to
be −ve. There is a member of S with an event tagged by tk. Thus, using the
directedness of S, there has to be q1 ∈ S with q ⊆ q1 and where q1 has an event
tagged by tk. Because of the extra dependencies introduced in the construction
of q(t⃗), all the −ve events of q(t⃗) are included in q1. Note in addition that

[q+1] ⊆ q(t⃗)

because all the +ve events of q1 are in q(t⃗). We deduce

[q+1] ⊆
+ q(t⃗) . (i)

Also,
[q+1] ⊂

− q1 , (ii)

where the inclusion has to be strict because b ∈ q1 ∖ q(t⃗). Consider the images
of (i) and (ii) in C∞(A):

σ[q+1] ⊆
+ σq(t⃗) and σ[q+1] ⊂

− σq1 .

As A is race-free, we obtain the configuration x =def σq(t⃗) ∪ σq1 ∈ C∞(A) and
the strict inclusion

σq(t⃗) ⊂− x ,

making x a configuration which contains the −ve event b concurrent with in-
finitely many +ve events—the images of those tagged by tk. But this contradicts
the bounded-concurrency of A. Hence all the events of q are in q(t⃗).

11.4. DETERMINACY OF CONCURRENT GAMES 179

As in case (1) we obtain a rigid inclusion

⋃S ↪ q(t⃗) ,

and a least upper bound of S in Q.

(3) The case where t⃗ is a non-empty finite branch (t1,⋯, tk) and q(t⃗) is finite.
Again, tk is necessarily a +ve arc. As S is directed, the set of events ⋃q∈S σq
is a configuration in C∞(A). Again, all the +ve events of any q ∈ S are in q(t⃗),
from which it follows that as sets,

(⋃
q∈S

σq)+ ⊆ σq(t⃗) .

Hence, the down-closure

[(⋃
q∈S

σq)+]A ⊆ σq(t⃗) in C∞(A) . (iii)

There is q1 ∈ S with an event tagged by tk. Because of the extra dependencies
introduced in the construction of q(t⃗), all the −ve events of q(t⃗) are included in
q1. Consequently, all the −ve events of σq(t⃗) are included in ⋃q∈S σq. From this
and (iii) we deduce

[(⋃
q∈S

σq)+] ⊆+ σq(t⃗) in C∞(A) . (iv)

Also, straightforwardly,

[(⋃
q∈S

σq)+] ⊆− ⋃
q∈S

σq in C∞(A) . (v)

From (iv) and (v), because A is race-free, we obtain the configuration

y =def (σq(t⃗) ∪ ⋃
q∈S

σq) ∈ C∞(A)

for which

σq(t⃗) ⊆− y ∈ C∞(A) .

But by receptivity of the original strategy str ∶ T → TA, there is a unique
extension of the branch t⃗ = (t1,⋯, tk) to (t1,⋯, tk, tk+1) in T such that

σq(t1,⋯, tk, tk+1) = y .

W.r.t. this extension, forming the partial order ⋃S comprising the union of the
events of all q ∈ S with order the restriction of that on q(t1,⋯, tk, tk+1), we
obtain a rigid inclusion

⋃S ↪ q(t1,⋯, tk, tk+1) ,

180 CHAPTER 11. BOREL DETERMINACY

so a least upper bound of S in Q.

(4) Finally, consider the case where t⃗ = (). Then all q ∈ S consist purely of −ve
events. As S is directed, ⋃q∈S σq ∈ C

∞(A). If ⋃q∈S σq = ∅ we have ⋃S = q().
Assume ⋃q∈S σq is non-empty.

Suppose first that ∅ ∈W . We can form the alternating sequence

∅ ⊂− ⋃
q∈S

σq .

By the receptivity of str ∶ T → TA there is a unique 1-arc branch (t1) of T with

⋃q∈S σq = σq(t1). Then ⋃S = q(t1).
Now suppose ∅ ∉ W . In this case all alternating sequences must begin

∅ ⊂+ x1⋯ and consequently all initial arcs of T must be +ve. We are assuming

⋃q∈S σq is non-empty so contains some non-empty q. There must therefore be
a rigid inclusion q ↪ q(u⃗) for some non-empty sub-branch u⃗ = (u1,⋯). Via str
the sub-branch u⃗ determines the alternating sequence ∅ ⊂+ x1 ⊂− ⋯. Noting
∅ ⊂− ⋃q∈S σq, because A is race-free there is x1 ∪ ⋃q∈S σq ∈ C

∞(A). Form the
alternating sequence

∅ ⊂+ x1 ⊂
− x1 ∪ ⋃

q∈S

σq .

From the receptivity of str there is a sub-branch (u1, u
′
2) such that x1∪⋃q∈S σq =

σq(u1, u
′
2). We obtain ⋃S ↪ q(u1, u

′
2).

Definition 11.20. Define S to be the event structure with polarity, with events
the primes of Q; causal dependency the restriction of the order on Q; with a
finite subset of events consistent if they include rigidly in a common element
of Q. The polarity of event of S is the polarity in A of its top element (recall
the event is a prime in Q). Define σ0 ∶ S → A to be the function which takes a
prime with top element an untagged event a ∈ A to a and top element a tagged
event (a, t) to a.

Lemma 11.21. The function which takes q ∈ Q to the set of primes below q
in Q gives an order isomorphism Q ≅ C∞(S). The function σ0 ∶ S → A is a
strategy for which

Q

σ

��

≅ C∞(S)

σ0zz
C∞(A)

commutes.

Proof. The isomorphism Q ≅ C∞(S) is established in [1]. The diagram is easily
seen to commute. Via the order isomorphism Q ≅ C∞(S) we can carry out the
argument that σ0 is a strategy in terms of Q and σ. Innocence follows because
the only additional causal dependencies introduced in q(t⃗) are of +ve events on
−ve events. To show receptivity, suppose q ∈ Q is finite and σq ⊂− y in C(A).

11.4. DETERMINACY OF CONCURRENT GAMES 181

There is a rigid inclusion q ↪ q(t⃗) for some t⃗ = (t1,⋯, ti,⋯) , a sub-branch of T .
Let

∅ ⋯
ti−1

⊂− xi−1

ti

⊂+ xi
ti+1

⊂− ⋯

be the tagged sequence determined by t⃗.
First consider when (σq)+ ≠ ∅. Suppose xk is the earliest configuration at

which (σq)+ ⊆ xk. Then, tk has to be +ve and

q+ ∩ ((xk ∖ xk−1) × {tk}) ≠ ∅ .

The latter entails
x−k ⊆ σq

because of the extra causal dependencies introduced in the definition of q(t⃗). It
follows that

(σq) ∩ xk ⊆
+ xk .

Moreover, as (σq)+ ⊆ xk, we deduce

(σq) ∩ xk ⊆
− σq ⊆− y .

By race-freeness, xk ∪ y ∈ C(A) with

xk ⊆
− xk ∪ y in C(A) .

In fact xk ⊂
− xk ∪ y as x−k ⊆ σq ⊂

− y. Now

∅ ⋯ ⊂+ xk ⊂
− xk ∪ y

is seen to form an alternating sequence, so a sub-branch of TA. From the
receptivity of str there is a unique sub-branch t1, . . . , tk, t

′
k+1 of T which has

this alternating sequence as image. Take q′ to be the down-closure of y in
q(t1, . . . , tk, t

′
k+1). This gives the unique q′ such that q ⊆ q′ and σq′ = y.

Now consider when (σq)+ = ∅. Then ∅ ⊆− σq ⊂− y.
In the case where ∅ ∈W we may form the alternating sequence

∅ ⊂− y .

The receptivity of str ensures there is a unique 1-arc branch (u1) of T such that
σq(u1) = y.

In the case where ∅ ∉W we also have ∅ ∉ TW . In this case all alternating
sequences must begin ∅ ⊂+ x1⋯ and consequently all initial arcs of T must be
+ve. Also, the empty configuration (or branch) of T cannot be +-maximal
because its image under str is the empty configuration (or branch) of TW —
impossible because str is a winning strategy. Thus there must be v1, an initial,
necessarily +ve arc of T . Via str the sub-branch (v1) yields the alternating
sequence ∅ ⊂+ x1, say. As A is race-free we obtain x1 ∪ y ∈ C∞(A) and the
alternating sequence

∅ ⊂+ x1 ⊂
− x1 ∪ y .

182 CHAPTER 11. BOREL DETERMINACY

From the receptivity of str there is a unique sub-branch (v1, v2) of T for which
σq(v1, v2) = x1 ∪ y. Take q′ to be the down-closure of y in q(v1, v2). This
furnishes the unique q′ such that q ⊆ q′ and σq′ = y.

We have shown the receptivity of σ, as required.

Theorem 11.22. Suppose that str ∶ T → TA is a winning strategy in the tree
game TG(A,W). Then σ0 ∶ S → A is a winning strategy in (A,W).

Proof. For σ0 to be winning we require that σ0x ∈ W for any +-maximal x ∈
C∞(S). Via the order isomorphism Q ≅ C∞(S) we can carry out the proof in Q
rather than C∞(S). For any q which is +-maximal in Q (i.e. whenever q ⊆+ q′

in Q then q = q′) we require that σq ∈W .
Let q be +-maximal in Q. We will show that q = q(u⃗) for some +-maximal

branch u⃗ of T . Certainly there is a rigid inclusion q ↪ q(t⃗) for some sub-branch
t⃗ = (t1,⋯, ti,⋯) of T . Let

∅ ⋯
ti−1

⊂− xi−1

ti

⊂+ xi
ti+1

⊂− ⋯

be the tagged sequence determined by t⃗.
Consider the case in which the set q+ is infinite. There are two possibilities.

Suppose first that
q+ ∩ ((xi ∖ xi−1) × {ti}) ≠ ∅ .

for infinitely many +ve ti. Because of the extra causal dependencies introduced
in the definition of q(t⃗), the set of −ve events q(t⃗)− is included in q. Hence
q ⊆+ q(t⃗). But q is +-maximal, so q = q(t⃗). The second possibility is that
(σq)+ ⊆ xk for some necessarily terminal configuration in the tagged alternating
sequence, which now has to be of the form

∅ ⋯
ti−1

⊂− xi−1

ti

⊂+ xi
ti+1

⊂− ⋯ ⊂+ xk .

Because of the causal dependencies in q(t⃗), the set q(t⃗)− is included in q. Hence
q ⊆+ q(t⃗), so q = q(t⃗) because q is +-maximal.

Now consider the case where the set q+ is finite. Then the set (σq)+, also
finite, must be included in some xk of the tagged alternating sequence, which
we may assume is the earliest. Then tk must be +ve. If σq ⊆ q(t1,⋯, tk), then
the set q(t1,⋯, tk)

− is included in q—again because of the causal dependencies
there; and again q ⊆+ q(t1,⋯, tk) so q = q(t1,⋯, tk) because q is +-maximal.
Otherwise, xk ⊂

− xk ∪ (σq) and we can extend the alternating sequence to

∅ ⋯ ⊂+ xk ⊂
− xk ∪ (σq) .

From the receptivity of str there is a sub-branch t1, . . . , tk, t
′
k+1 of T which

has this alternating sequence as image. Now q ⊆+ q(t1, . . . , tk, t
′
k+1) so q =

q(t1, . . . , tk, t
′
k+1) from the +-maximality of q.

Thus any q ∈ Q which is +-maximal has the form q = q(u⃗) for some sub-
branch u⃗ of T . Any extension of u⃗ by a +-ve arc would yield a +-ve extension

11.4. DETERMINACY OF CONCURRENT GAMES 183

of q(u⃗), contradicting the +-maximality of q. Therefore u⃗ is +-maximal, so its
image str{u⃗} is in TW , as str is a winning strategy in (TG(A,W), TW). But,
by Proposition 11.16,

str{u⃗} ∈ TW ⇐⇒ σq(u⃗) ∈W .

Hence, σq ∈W , as required.

Corollary 11.23. Let (A,W) be a race-free, bounded-concurrent game. If the
tree game TG(A,W) has a winning strategy, then (A,W) has a winning strat-
egy.

Theorem 11.24. Any race-free, concurrent-bounded game (A,W), in which W
is a Borel subset of C∞(A), is determined.

Proof. Assuming (A,W) is race-free, concurrent-bounded and W is Borel, we
obtain a tree game TG(A,W) = (TA,TW) in which TW is also Borel. To
see that TW is Borel, recall that a configuration y of TA corresponds to an
alternating sequence

∅ ⋯ ⊂+ xi ⊂
− xi+1 ⊂

+ ⋯ ,

so determines f(y) =def ⋃i xi ∈ C
∞(A). This yields a Scott-continuous function

f ∶ C∞(TA) → C∞(A). The set TW is the inverse image f−1W , so Borel. As
the tree game TG(A,W) is determined—Theorem 11.10—we obtain a winning
strategy for Player or a winning strategy for Opponent in the tree game.

Suppose first that TG(A,W) has a winning strategy (for Player). By Corol-
lary 11.23 we obtain a winning strategy for (A,W). Suppose, on the other
hand, that TG(A,W) has a winning strategy for Opponent, i.e. there is a win-
ning strategy in the dual game (TG(A,W))⊥. By Lemma 11.14, TG((A,W)⊥) =
TG(A,W)⊥ has a winning strategy. By Corollary 11.23, (A,W)⊥ has a winning
strategy, i.e. there is a winning strategy for Opponent in (A,W).

184 CHAPTER 11. BOREL DETERMINACY

Chapter 12

Games with imperfect
information

12.1 Motivation

Consider the game “rock, scissors, paper” in which the two participants Player
and Opponent independently sign one of r (“rock”), s (“scissors”) or p (“pa-
per”). The participant with the dominant sign w.r.t. the relation

r beats s, s beats p and p beats r

wins. It seems sensible to represent this game by RSP , the event structure with
polarity

r1 ⊞ ⊟ r2

s1⊞ ⊞p1 s2 ⊟ ⊟p2

comprising the three mutually inconsistent possible signings of Player in parallel
with the three mutually inconsistent signings of Opponent. In the absence of
neutral configurations, a reasonable choice is to take the losing configurations
(for Player) to be

{s1, r2}, {p1, s2}, {r1, p2}

and all other configurations as winning for Player. In this case there is a winning
strategy for Player, viz. await the move of Opponent and then beat it with a
dominant move. Explicitly, the winning strategy σ ∶ S → RSP is given as the

185

186 CHAPTER 12. GAMES WITH IMPERFECT INFORMATION

obvious map from S, the following event structure with polarity:

r1 ⊞

s1⊞ ⊞p1 ⊟ s2

�ggn

p2 ⊟

�ggn

⊟ r2

�ggn

But this strategy cheats. In “rock, scissors, paper” participants are intended to
make their moves independently. The problem with the game RSP as it stands
is that it is a game of perfect information in the sense that all moves are visible to
both participants. This permits the winning strategy above with its unwanted
dependencies on moves which should be unseen by Player. To adequately model
“rock, scissors, paper” requires a game of imperfect information where some
moves are masked, or inaccessible, and strategies with dependencies on unseen
moves are ruled out.

12.2 Games with imperfect information

We extend concurrent games to games with imperfect information. To do so in
way that respects the operations of the bicategory of games we suppose a fixed
preorder of levels (Λ,⪯). The levels are to be thought of as levels of access, or
permission. Moves in games and strategies are to respect levels: moves will be
assigned levels in such a way that a move is only permitted to causally depend
on moves at equal or lower levels; it is as if from a level only moves of equal or
lower level can be seen.

An Λ-game (G, l) comprises a game G = (A,W,L) with winning/losing con-
ditions together with a level function l ∶ A→ Λ such that

a ≤A a
′ Ô⇒ l(a) ⪯ l(a′)

for all a, a′ ∈ A. A Λ-strategy in the Λ-game (G, l) is a strategy σ ∶ S → A for
which

s ≤S s
′ Ô⇒ lσ(s) ⪯ lσ(s′)

for all s, s′ ∈ S.
For example, for “rock, scissors, paper” we can take Λ to be the discrete

preorder consisting of levels 1 and 2 unrelated to each other under ⪯. To make
RSP into a suitable Λ-game the level function l takes +ve events in RSP to
level 1 and −ve events to level 2. The strategy above, where Player awaits
the move of Opponent then beats it with a dominant move, is now disallowed
because it is not a Λ-strategy—it introduces causal dependencies which do not
respect levels. If instead we took Λ to be the unique preorder on a single level
the Λ-strategies would coincide with all the strategies.

12.2. GAMES WITH IMPERFECT INFORMATION 187

12.2.1 The bicategory of Λ-games

The introduction of levels meshes smoothly with the bicategorical structure on
games.

For a Λ-game (G, lG), define its dual (G, lG)⊥ to be (G⊥, lG⊥) where lG⊥(a) =
lG(a), for a an event of G.

For Λ-games (G, lG) and (H, lH), define their parallel composition (G, lG)∥(H, lH)
to be (G∥H, lG∥H) where lG∥H((1, a)) = lG(a), for a an event ofG, and lG∥H((2, b)) =
lH(b), for b an event of H.

A strategy between Λ-games from (G, lG) to (H, lH) is a strategy in (G, lG)⊥∥(H, lH).

Proposition 12.1.
(i) Let (G, lG) be a Λ-game where G satisfies (Cwins). The copy-cat strategy
on G is a Λ-strategy.
(ii) The composition of Λ-strategies is a Λ-strategy.

Proof. (i) The additional causal links introduced in the construction of the copy-
cat strategy are between complementary events in G⊥ and G, at the same level
in Λ, and so respect ⪯.

(ii) Let (G, lG), (H, lH) and (K, lK) be Λ-games. Let σ ∶ G + //H and τ ∶
H + //K be Λ-strategies. We show their composition τ⊙σ is a Λ-strategy.

It suffices to show p _ p′ in T⊙S implies lG⊥∥Kτ⊙σ(p) ⪯ lG⊥∥Kτ⊙σ(p
′).

Suppose p _ p′ in T⊙S with top(p) = e and top(p′) = e ′. Take x ∈ C(T⊙S)
containing p′ so p too. Then,

e _⋃x e1 _⋃x ⋯ _⋃x en−1 _⋃x e
′

where e, e′ ∈ V0 and ei ∉ V0 for 1 ≤ i ≤ n − 1. (V0 consists of ‘visible’ events
of the stable family, those of the form (s,∗) with σ1(s) defined, or (∗, t), with
τ2(t) defined.) The events ei have the form (si, ti) where σ2(si) = τ1(ti), for
1 ≤ i ≤ n − 1.

Any individual link in the chain above has one of the forms:

(s, t) _⋃x (s′, t′) , (s,∗) _⋃x (s′, t′) ,

(∗, t) _⋃x (s′, t′) , (s, t) _⋃x (s′,∗) , or (s, t) _⋃x (∗, t′) .

By Lemma 3.27, for any link either s _S s′ or t _T t′. As σ and τ are Λ-
strategies, this entails

lG⊥∥Hσ(s) ⪯ lG⊥∥Hσ(s
′) or lH⊥∥Kτ(t) ⪯ lH⊥∥Kτ(t

′)

for any link. Consequently ⪯ is respected across the chain and lG⊥∥Kτ⊙σ(p) ⪯
lG⊥∥Kτ⊙σ(p

′), as required.

W.r.t. a particular choice of access levels (Λ,⪯) we obtain a bicategory
WGamesΛ. Its objects are Λ-games (G, l) where G satisfies (Cwins) with ar-
rows the Λ-strategies and 2-cells maps of spans. It restricts to a sub-bicategory
of deterministic Λ-strategies, which as before is equivalent to an order-enriched
category.

188 CHAPTER 12. GAMES WITH IMPERFECT INFORMATION

12.3 Dialectica games

Let the access levels be Λ comprising p ≺ n.
A dialectica game is a Λ-game A with winning conditions, with λ ∶ A → Λ

s.t. λ(⊞) = p and λ(⊟) = n, for which there are no causal dependencies of mixed
polarity. In other words, it comprises a purely +ve game Ap and a purely −ve
game An in parallel, so

• Ap∥An

• with winning conditions a subset of C∞(Ap∥An) ≅ C
∞(Ap) × C

∞(An), so
corresponding to A ⊆ C∞(Ap) × C

∞(An),

• and access levels so all moves of Ap have access level p, with p ≺ n, the
access level of all moves of An .

A deterministic winning strategy corresponds to a configuration x ∈ C∞(Ap)
s.t. ∀y ∈ C∞(An). A(x, y); to have a winning strategy in the dialectica game A
means

∃x ∈ C∞(Ap)∀y ∈ C
∞(An). A(x, y) .

It might be helpful to think of the access levels p and n as representing two
rooms separated by a one-way mirror allowing anyone in room n to see through
to room p. In a dialectica game, Player is in room p and Opponent in room n;
whereas Opponent can see the moves of Player, the moves of Player are made
blindly, in that they cannot see Opponent’s moves.

A deterministic winning strategy σ ∶ A + //B between dialectica games A
and B corresponds exactly to a pair of stable functions f ∶ C∞(Ap) → C

∞(Bp)
and g ∶ C∞(Ap) × C

∞(Bn)→ C
∞(An) for which

∀x ∈ C∞(Ap)∀y ∈ C
∞(Bn). A(x, g(x, y)) Ô⇒ B(fx, y) ,

where A and B are the respective winning conditions. This means that de
Paiva’s dialectica category based on the ccc of Berry’s stable functions embeds
fully and faithfully in the sub-bicategory of concurrent strategies comprising
deterministic winning strategies between dialectica games.

This is seen by considering the nature of deterministic strategies from a
dialectica game A to a dialectica game B. The access order on the events

(Ap∥An)
⊥∥(Bp∥Bn)

of A⊥∥B can be drawn as

A−
p

⋏

B+
p

⋏

A+
n B−

n ,

where the polarities are also indicated. Because a strategy can only adjoin
immediate causal dependencies from Opponent to Player moves, the access levels
restrict deterministic strategies to a pair of functions as described.

12.4. HINTIKKA’S IF LOGIC 189

12.4 Hintikka’s IF logic

We present a variant of Hintikka’s Independence-Friendly (IF) logic and propose
a semantics in terms of concurrent games with imperfect information. Assume
a preorder (Λ,⪯). The syntax for IF logic is essentially that of the predicate
calculus, but with levels in Λ associated with quantifiers: formulae are given by

ϕ,ψ,⋯ ∶∶= R(x1,⋯, xk) ∣ ϕ ∧ ψ ∣ ϕ ∨ ψ ∣ ¬ϕ ∣ ∃λx. ϕ ∣ ∀λx. ϕ

where λ ∈ Λ, R ranges over basic relation symbols of a fixed arity and x,x1, x2,⋯
over variables.

Assume M , a non-empty universe of values VM and an interpretation for
each of the relation symbols as a relation of appropriate arity on VM ; so M is a
model for the predicate calculus in which the quantifier levels are stripped away.
Again, an environment ρ is a function from variables to values; again, ρ[v/x]
means the environment ρ updated to value v at variable x. W.r.t. a model M
and an environment ρ, we denote each closed formula ϕ of IF logic by a Λ-
game, following very closely the definitions in Section 10.8. The differences are
the assignment of levels to events and that the order on Λ has to be respected
by the (modified) prefixed sums which quantified formulae denote.

The prefixed game ⊞λ.(A,W, l) comprises the event structure with polar-
ity ⊞.A in which all the events of a ∈ A where λ ⪯ l(a) are made to causally
depend on a fresh +ve event ⊞, itself assigned level λ. Its winning conditions
are those configurations x ∈ C∞(⊞.A) of the form {⊞} ∪ y for some y ∈W . The
game ⊕λ

v∈V (Av,Wv, lv) has underlying event structure with polarity the sum

∑v∈V ⊞
λ.Av , maintains the same levels as its components, with a configuration

winning iff it is the image of a winning configuration in a component under the
injection to the sum. The game ⊖λ

v∈V Gv is defined dually, as (⊕λ
v∈V G

⊥
v)
⊥. In

this game the empty configuration is winning but Opponent gets to make the
first move.

True denotes the Λ-game the unit w.r.t. ⊗ and false denotes he unit w.r.t. `.
Denotations of conjunctions and disjunctions are given by the operations of ⊗
and ` on Λ-games, while negations denote dual games. W.r.t. an environment
ρ, universal and existential quantifiers denote the prefixed sums of games:

J∃λx. ϕKΛ

Mρ =
λ

⊕
v∈VM

JϕKΛ

Mρ[v/x]

J∀λx. ϕKΛ

Mρ =
λ

⊖
v∈VM

JϕKΛ

Mρ[v/x] .

As a definition, an IF formula ϕ is satisfied w.r.t. an environment ρ, written

ρ ⊧Λ
M ϕ ,

iff the Λ-game JϕKΛ

Mρ has a winning strategy.

190 CHAPTER 12. GAMES WITH IMPERFECT INFORMATION

Chapter 13

Linear strategies

It has recently become clear that concurrent strategies support several refine-
ments. For example, define a rigid strategy to be a strategy σ in which both
components σ1 and σ2 preserve causal dependency where defined. Copy-cat
strategies are rigid, and the composition of rigid strategies is rigid, so rigid
strategies form a sub-bicategory of Strat. We can refine rigid strategies fur-
ther to linear strategies, where each +ve output event depends on a maximum
+ve event of input, and dually, a −ve event of input depends on a maximum
−ve event of output. By introducing this extra relevance, of input to output
and output to input, we can recover coproducts and products lacking in Strat.
Though doing so we lose monoidal closure.

13.1 Rigid strategies

Definition 13.1. A partial map of event structures which preserves causal
dependency whenever it is defined, i.e. e′ ≤ e implies f(e′) ≤ f(e) whenever
both f(e′) and f(e) are defined, is called partial rigid.

A strategy σ ∶ S → A in a game A is rigid iff the map σ is rigid. Rigidity
subsumes innocence, so a rigid strategy in A amounts to a rigid map σ ∶ S → A
which is receptive.

A rigid strategy from a game A to a game B is a strategy σ ∶ S → A⊥∥B
where σ1 and σ2 are partial-rigid maps.

Definition 13.2. Let A and B be event structures with polarity. Define A`rB =
Pr(Q) and Q is the rigid family consisting of all partial orders

({1} × x ∪ {2} × y,≤) ,

191

192 CHAPTER 13. LINEAR STRATEGIES

with x ∈ C(A), y ∈ C(B), in which

(1, a) ≤ (1, a′) ⇐⇒ a ≤A a
′ ,

(2, b) ≤ (1, b′) ⇐⇒ b ≤B b
′ ,

(1, a) _ (2, b) Ô⇒ polA(a) = − & polB(b) = + ,

(2, b) _ (1, a) Ô⇒ polA(a) = + & polB(b) = − ;

in other words Q contains augmentations of the partial order induced by A∥B on
{1}×x∪{2}×y which maintain innocence of the inclusion map {1}×x∪{2}×y ↪
A∥B. The total map top ∶ A`r B → A∥B of event structures with polarity takes
a prime to its top element.

Proposition 13.3. A rigid strategy from A to B corresponds to a rigid strategy
in the game A⊥ `r B.

Proof. By specializing to rigid strategies the natural correspondence of the ad-
junction from the category of event structures with rigid maps to that with total
maps [8].

13.1.1 The bicategory of rigid strategies

Proposition 13.4. For any game A, the copy-cat strategy ccA is rigid.

The composition of rigid strategies is rigid.

Lemma 13.5. Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be rigid strategies. Let
z ∈ C(T)⊛ C(S). If (s, t) _z (s′, t′), then s _S s

′ & t _T t
′ .

Proof. By Lemma 3.27(iii), either s _S s
′ or t _T t

′. Suppose the case s _S s
′.

Then σ2(s) _B σ2(s
′) by rigidity, so σ2(s) _B⊥ σ2(s′). Recall from the con-

struction of C(T) ⊛ C(S) that τ1(t) = σ2(s) and τ1(t
′) = σ2(s′). By Proposi-

tion 3.14 (taking x = π2z), we deduce that t <T t
′. However, by Lemma 3.27(iii),

either t _T t
′ or tco t′, whence we must have t _T t

′. The case t _T t
′ similarly

entails s _S s
′.

Lemma 13.6. Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be rigid strategies. Let
z ∈ C(T)⊛ C(S). If e ≤z e

′, then

(i) if π1(e) and π1(e
′) are defined, then π1(e) ≤S π1(e

′), and

(ii) if π2(e) and π2(e
′) are defined, then π2(e) ≤T π2(e

′).

Proof. We show for all _z-chains

e _z e1 _z ⋯ _z em = e′

from e to e′ that (i) and (ii), by induction on the length m.
The basis when m = 1, where e _z e

′, follows by Lemmas 3.27 and 13.5.

13.2. NONDETERMINISTIC LINEAR STRATEGIES 193

Suppose m > 1. We show (i)—the proof of (ii) is analogous. Assume π1(e)
and π1(e

′) are defined, with π1(e) = s and π1(e
′) = s′.

If for some i with 0 < i <m we have π1(ei) = si, for some si ∈ S, then s ≤S si
and si ≤S s

′ from the induction hypothesis. Hence π1(e) = s ≤S s
′ = π1(e

′).
Suppose otherwise, that for all i with 0 < i <m we have π1(ei) undefined so

ei = (∗, ti), for some ti ∈ T . In particular,

e _z (∗, t1) and (∗, tm−1) _z e
′ .

By Lemma 3.27, e and e′ must have the forms e = (s, t) and e′ = (s′, t′) with
t _T t1 and tm−1 _T t′, for some t, t′ ∈ T . From the induction hypothesis
t1 ≤T tm−1, so t ≤T t′. As τ1 is partial rigid, τ1(t) ≤B⊥ τ1(t

′). Hence from

the definition of C(T) ⊛ C(S) we obtain σ2(s) = τ1(t) ≤B τ1(t′) = σ2(s
′). By

Proposition 3.14, we deduce s ≤S s
′, i.e. π1(e) ≤S π1(e

′), as required.

Corollary 13.7. The composition τ⊙σ of rigid strategies σ ∶ S → A⊥∥B and
τ ∶ T → B⊥∥C is rigid.

13.2 Nondeterministic linear strategies

Formally, a (nondeterministic) linear strategy is a strategy

S

σ1

~~

σ2

A⊥ B ,

where σ1 and σ2 are partial rigid maps such that

∀s ∈ S. polS(s) = + & σ2(s) is defined

Ô⇒

∃s0 ∈ S. polS(s0) = − & σ1(s0) is defined & s0 ≤S s &

∀s1 ∈ S. polS(s1) = − & σ1(s1) is defined & s1 ≤S s Ô⇒ s1 ≤S s0

and

∀s ∈ S. polS(s) = + & σ1(s) is defined

Ô⇒

∃s0 ∈ S. polS(s0) = − & σ2(s0) is defined & s0 ≤S s &

∀s1 ∈ S. polS(s1) = − & σ2(s1) is defined & s1 ≤S s Ô⇒ s1 ≤S s0 .

More informally, this says

• every +ve event of S over B depends on a ≤S-maximum −ve event over
A⊥, and symmetrically

194 CHAPTER 13. LINEAR STRATEGIES

• every +ve event of S over A⊥ depends on a ≤S-maximum −ve event over
B.

We now demonstrate that copy-cat strategies are linear and linear strategies
are closed under composition, so that linear strategies form a sub-bicategory
Strat.

Lemma 13.8. For all games A the copy-cat strategy ccA is linear. Let σ ∶
A + //B and τ ∶ B + //C be linear strategies. Then their composition τ⊙σ ∶
A + //C is linear.

Proof. Consider the copy-cat strategy

CCA
ccA1

}}

ccA2

!!
A⊥ A,

defined in Proposition 4.1. Let c ∈ CCA where polCCA(c) = + and ccA2(c) is
defined. From the proof of Proposition 4.1,

c′ ≤CCA c iff (i) c′ ≤A⊥∥A c or

(ii) ∃c0 ∈ A
⊥∥A. polA⊥∥A(c0) = + &

c′ ≤A⊥∥A c0 & c0 ≤A⊥∥A c .

In particular for c′ ∈ CCA with ccA1(c
′) defined,

c′ ≤CCA c iff ∃c0 ∈ A
⊥∥A. polA⊥∥A(c0) = + &

c′ ≤A⊥∥A c0 & c0 ≤A⊥∥A c .

It follows that c′ ≤CCA c. This ensures that c is the ≤CCA -maximum −ve event for
which ccA1(c) is defined and c ≤CCA c. Similarly, if polCCA(c) = + and ccA1(c) is
defined, c is the maximum −ve event for which ccA2(c) is defined and c ≤CCA c.

Suppose

S
σ1

~~

σ2

��
A⊥ B

and T
τ1

~~

τ2

��
B⊥ C

are linear strategies. Recall the construction of their composition from Sec-
tion 4.3.2. Consider any chain of immediate dependencies

(s,∗) _z ⋯ _z (∗, t) ,

where s ∈ S is −ve and t ∈ T is +ve, within a configuration z of C(T)⊛C(S). The
chain must contain an element (sj , tj) where σ2(sj) ∈ B and τ1(tj) ∈ B

⊥ with

σ2(sj) = τ1(tj); otherwise there would have to be a link (si,∗) _z (∗, ti+1),

13.3. DETERMINISTIC LINEAR STRATEGIES 195

which is impossible by Lemma 3.27(i). Consider the earliest stage along the
chain at which such an element appears, say

(s,∗) _z ⋯ _z (sn−1,∗) _z (sn, tn) _z ⋯ _z (∗, t) .

From Lemma 13.6, parts (i) and (ii), respectively,

s ≤S sn and tn ≤T t .

By Lemma 3.27(i), sn−1 _π1z sn where σ1(sn−1) ∈ A⊥ and σ2(sn) ∈ B. As
σ is innocent, we must have polS(sn−1) = − and polS(sn) = +. Consequently,
polT (tn) = −.

Now, exploiting the linearity of τ , let t′ be the maximum −ve event in T
over B⊥ on which t depends. As t′ ≤T t there must be (a unique) s′ ∈ S such
that (s′, t′) ∈ z; this is because π2z ∈ C(T) so is down-closed. Let s′′ be the
maximum −ve event in S over A⊥ on which s′ depends. We will show s ≤S s

′′.
As tn ≤T t and tn is −ve,

tn ≤T t
′ .

From the rigidity of τ ,

τ1(tn) ≤B⊥ τ1(t
′) .

From the definition of C(T)⊛C(S), we know σ2(sn) = τ1(tn) and σ2(s
′) = τ1(t′)

and hence that σ2(sn) ≤B σ2(s
′). Via Proposition 3.14, sn ≤S s

′. Combined
with the established s ≤S sn, this entails s ≤S s

′. From the linearity of σ, as s is
−ve,

s ≤S s
′′ .

Whenever p ≤T⊙S q with p −ve over A⊥, q +ve over C defined, there is
z ∈ C(T) ⊛ C(S) such that p = [(s,∗)]z and q = [(∗, t)]z with (s,∗) _z ⋯ _z

(∗, t), as above. The description of s′′ given above furnishes [(s′′,∗)]z, the
≤T⊙S-maximum −ve event over A⊥ on which [(∗, t)]z depends.

The remaining, symmetric, condition for the linearity of τ⊙σ is proved anal-
ogously.

13.3 Deterministic linear strategies

Deterministic linear strategies are, of course, linear strategies

S

σ1

~~

σ2

A⊥ B ,

where S is deterministic. They determine a sub-bicategory of DGames main-
taining duality.

196 CHAPTER 13. LINEAR STRATEGIES

Proposition 13.9. The full sub-bicategory of deterministic linear strategies in
which objects are games in which all polarities are +ve is equivalent to Girard’s
(order-enriched) category of coherence spaces and linear maps.

Its sub-bicategory Lin of deterministic subcategories DLin has products
and coproducts constructed as follows.

The coproduct A⊕B comprises the parallel composition A∥B with additional
conflict (lack of consistency) between all pairs of +ve events of A and +ve events
of B. In other words

X ∈ ConA⊕B ⇐⇒X ∈ ConA∥B &

X1 ∩A
+ /= ∅ Ô⇒ X2 ∩B

+ = ∅ .

Recall the operationsX1 =def {a ∣ (1, a) ∈X} andX2 =def {b ∣ (2, b) ∈X} project
X to its set of events in A and B respectively.

Dually, the product A&B comprises the parallel composition A∥B with ad-
ditional conflict between all pairs of −ve events of A and −ve events of B. In
other words

X ∈ ConA&B ⇐⇒X ∈ ConA∥B &

X1 ∩A
− /= ∅ Ô⇒ X2 ∩B

− = ∅ .

But Lin and DLin are not monoidal closed!

13.4 Linear strategies as pairs of relations

A linear strategy from σ ∶ A + //B is associated with a pair of dependency
relations, one from A+ to B+ and another from B− to A−.

Deterministic linear strategies can be characterised in terms of Girard’s lin-
ear maps extended to event structures. A G-linear map F ∶ A →G B from and
event structure A to an event structure B is a function

F ∶ C∞(A)→ C∞(B)

which preserves unions and is stable. Such maps can be described as certain
relations between A and B. We will write

aFb ⇐⇒ b ∈ F ([a]) ,

where a ∈ A, b ∈ B.
A deterministic linear strategy σ ∶ A + //B corresponds to a pair of G-linear

maps F+ ∶ A
+ →G B

+ and F− ∶ B
− →G A

− such that

a ≤A a
′ & polA(a) = + & polA(a

′) = − & & a′F+b
′ & bF−a Ô⇒ b ≤B b

′

and

b ≤B b
′ & polA(b) = + & polA(b

′) = − & & aF+b & b′F−a
′ Ô⇒ a ≤A a

′

for all a, a′ ∈ A, b, b′ ∈ B.
To be completed.

Chapter 14

Strategies with neutral
events

NOT UP TO DATE*NEEDS TO CATCH UP WITH MFPS 14 SUB-
MISSION + ****

Neutral events occur through the synchronization of moves of opposing po-
larities in the composition of strategies. Here we consider strategies with neutral
events in order to

1. deal more accurately with deadlocks which can occur in the composition
of strategies, and in particular support ‘may’ and ‘must’ equivalences;

2. provide a structural operational semantics for strategies;

3. give a more accurate treatment of winning strategies, through a true ac-
count of those configurations which may be the end result of a strategy—
these need not be +-maximal.

14.1 Deadlocks

Composition of strategies can introduce deadlock which is presently undetected:

Example 14.1. ***deadlock through imposing incompatible causal dependen-
cies between events in B***

Example 14.2. B = ⊞∥⊞***
strategy σ1 nondeterministically chooses right or left move in B
strategy σ2 chooses just right move in B
strategy τ yields output in C if gets right event of B as input
*** the two strategy compositions τ⊙σ1 and τ⊙σ2 are indistinguishable

If we are to detect the possibility of deadlock we should take some account
of the hidden neutral moves a strategy can perform.

197

198 CHAPTER 14. STRATEGIES WITH NEUTRAL EVENTS

We extend event structures with polarity with neutral events. An event
structure with polarity is an event structure E with a polarity function pol ∶
E → {+,−,0}; events tagged by 0 are neutral events. Neutral events are drawn
as ⊚. Maps are maps of event structures which preserve polarity when defined.

14.2 Strategies with neutral moves

We continue to assume games only possess events of +ve or −ve polarity.

To treat such phenomena explicitly and in order to obtain a transition se-
mantics we extend strategies with neutral events. Extend event structures with
polarity to include a neutral polarity 0; as before, maps preserve polarities when
defined.

Definition 14.3. A partial strategy in a game A (in which all events have +ve
or −ve polarity) comprises a total map σ ∶ S → N∥A of event structures with
polarity (in which S may also have neutral events)

where
(i) N is an event structure consisting solely of neutral events;

(ii) σ is receptive,∀x ∈ C(S). σx
a

−Ð⊂ & polA(a) = − Ô⇒ ∃!s. x
s

−Ð⊂ & σ(s) = a;
(iii) σ is innocent in that it is both +-innocent and −-innocent:
+-innocent: if s _ s′ & pol(s) = + then σ(s) _ σ(s′);
−-innocent: if s _ s′ & pol(s′) = − then σ(s) _ σ(s′).
(Note that s′ in +-innocence and s in −-innocence may be neutral events, so
this generalizes the condition of innocence of before. This definition of innocence
appears in the work of Faggian and Piccolo*****.)

Conditions (i), (ii) and (iii) imply:

(iv) in the partial-total factorization of the composition of S
σ
Ð→N∥A with the

projection N∥A→ A

S

σ

��

// S0

σ0

��
N∥A // A

the defined part σ0 is a strategy, as formerly understood.
(The old definition of partial strategy given in [?] is a little weaker in that it
doesn’t entail +-innocence in its sense extended to neutral events—see Lemma 14.6.)

Note that strategies are those partial strategies in which N is the empty
event structure.

It may seem odd that partial strategies are total as functions. The following
proposition should make the choice of name more understandable. Firstly, as
earlier in Definition 4.6, it is useful to define innocence and receptivity on partial
maps of event structures with polarity including now neutral polarities.

Definition 14.4. Let f ∶ S → A be a partial map of event structures with

14.2. STRATEGIES WITH NEUTRAL MOVES 199

polarity with neutral polarities.. Say f is receptive when

f(x)
a

−Ð⊂ & polA(a) = − Ô⇒ ∃!s ∈ S. x
s

−Ð⊂ & f(s) = a

for all x ∈ C(S), a ∈ A.
Say f is innocent when it is both +-innocent and −-innocent, i.e.

s _ s′ & pol(s) = + & f(s) is defined Ô⇒

f(s′) is defined & f(s) _ f(s′) ,

s _ s′ & pol(s′) = − & f(s′) is defined Ô⇒

f(s) is defined & f(s) _ f(s′) .

Proposition 14.5. Let A be an event structure with polarity in which all events
have +ve or −ve polarity. Let σ ∶ S → A be a (partial) map of event structures
with polarity (in which S may have neutral events) which is receptive and in-
nocent and has domain of definition the non-neutral events of S. Define N to
be the event structure obtained as the projection of S to its neutral events, in
which all events are considered neutral. Then, its defined part σ0 is a strategy
and the function σ′ ∶ S → N∥A which acts as the identity function on neutral
events and as σ on non-neutral events is a partial strategy.

Why have we not taken the partial maps of Proposition 14.5 as our defini-
tion of partial strategies? Because the partial maps of the proposition do not
behave well under pullback, and this would complicate the definition of com-
position and spoil later results such as that the pullback of a partial strategy
is a partial strategy. Very roughly, with our choice of definition we are able to
localise neutral events to the games over which they occur—with the definition
Proposition 14.5 suggests, different forms of undefined would become conflated.

Lemma 14.6. Let A be a game (with no neutral events) and N an event struc-
ture consisting solely of neutral events. Let S be an event structure with polarity,
possibly with neutral events. Let σ ∶ S → N∥A be a total map of event structures
preserving polarities. Then, σ is a partial strategy iff σ is receptive, there is no
incidence of a +ve event immediately preceding a neutral event in S (i.e. no
⊞ _ ⊚) and axiom (iv), viz. in the partial-total factorization of the composition

of S
σ
Ð→N∥A with the projection N∥A→ A

S

σ

��

// S0

σ0

��
N∥A // A

the defined part σ0 is a strategy.

Proof. “If”: Assume σ is receptive, no incidence of ⊞ _ ⊚ in S and that the
defined part σ0 is a strategy. For σ to be a partial strategy we require in addi-
tion that σ is innocent. Suppose s _ s′ in S where s is +ve. By assumption, s′

200 CHAPTER 14. STRATEGIES WITH NEUTRAL EVENTS

cannot be neutral. It follows that s _ s′ in S0 so σ(s) = σ0(s) _ σ0(s
′) = σ(s′)

by the innocence of σ0. Similarly if s _ s′ in S where s′ is −ve and s is not neu-
tral we obtain s _ s′ in S0 so inherit σ(s) _ σ(s′) from the innocence of σ0. It
remains to show the impossibility of s _ s′ in S where s′ is −ve and s is neutral.
Then s would be a ≤-maximal element of [s′) ensuring that x =def [s′) ∖ {s} is

a configuration. We must have σx
σ(s′)
−Ð⊂ in N∥A as σ(s′) cannot causally depend

on σ(s). By the receptivity of σ we get s′′ ≠ s′ such that σ(s′′) = σ(s′); we have
s′′ ≠ s′ as s′′ does not share with s′ its causal dependency on s. But now, letting

x0 =def x∩S0, we obtain a configuration of S0 for which x0
s′

−Ð⊂ and x0
s′′

−Ð⊂ with
σ0(s

′) = σ0(s
′′), contradicting the receptivity of σ0.

“Only if”: Suppose σ is a partial strategy. Certainly σ is receptive and from
its innocence there is no incidence of ⊞ _ ⊚. We require that its defined part

σ0 is receptive and innocent. For receptivity, suppose σ0x0
a

−Ð⊂ with a −ve and

x0 a finite configuration of S0. Taking x =def [x0]S we obtain σx
a

−Ð⊂ . From

the receptivity of σ there is (a unique) s such that x
s

−Ð⊂ with σ(s) = a. But
s ∈ S0, being −ve, with σ0(s) = a. Its uniqueness follows from the uniqueness
part of the receptivity of σ once we remember that from the innocence of σ
no −ve event of S can immediately causally depend on a neutral event; so that

x0
s′

−Ð⊂ in S0 implies [x0]S
s′

−Ð⊂ in S. Because, in addition, no neutral event can
immediately causally depend on a +ve event, whenever s _ s′ in S0 we also
have s _ s′ in S. It follows that σ0 inherits innocence from σ.

Recall we assume that in games all events have +ve or −ve polarity.

Definition 14.7. A partial strategy from a game A to a game B comprises a
total map σ ∶ S → A⊥∥N∥B of event structures with polarity (in which S may
also have neutral events) where
(i) N is an event structure consisting solely of neutral events;

(ii) σ is receptive,∀x ∈ C(S). σx
a

−Ð⊂ & polA(a) = − Ô⇒ ∃!s. x
s

−Ð⊂ & σ(s) = a;
(iii) σ is innocent in that it is both +-innocent and −-innocent:
+-innocent: if s _ s′ & pol(s) = + then σ(s) _ σ(s′);
−-innocent: if s _ s′ & pol(s′) = − then σ(s) _ σ(s′).
(Note again that s′ in +-innocence and s in −-innocence may be neutral events.)

Again, conditions (i), (ii) and (iii) imply:
(iv) in the partial-total factorization of the composition of σ with the projection
A⊥∥N∥B → A⊥∥B,

S

σ

��

// S0

σ0

��
A⊥∥N∥B // A⊥∥B

the defined part σ0 is a strategy. Conversely, just as in Lemma 14.6, receptivity,
no incidence of a +ve event immediately preceding a neutral event in S and
axiom (iv) suffice in establishing σ a partial strategy.

14.2. STRATEGIES WITH NEUTRAL MOVES 201

Note that partial strategies in a game A correspond to partial strategies
from the empty game to A, and that strategies between games in A correspond
to those partial strategies in which the neutral events N are the empty event
structure.

We can compose two partial strategies

σ ∶ S → A⊥∥NS∥B and τ ∶ T → B⊥∥NT∥C

by pullback. Ignoring polarities temporarily, and padding with identity maps,
we obtain τ ⊛ σ via the pullback

T ⊛ S

vv ((
S∥NT∥C

σ∥NT ∥C ((

A∥NS∥T

A∥NS∥τvv
A∥NS∥B∥NT∥C

as the ensuing map

τ ⊛ σ ∶ T ⊛ S → A⊥∥(NS∥B∥NT)∥C

once we reinstate polarities and make the events of B neutral.
That the defined part of τ ⊛σ is a strategy follows once we have shown that

the defined part of the composite

T ⊛ S
τ⊛σ
Ð→ A⊥∥(NS∥B∥NT)∥CÐ→A

⊥∥C

is isomorphic to τ0⊙σ0, the composition of the defined parts of σ and τ . This
relies on the following:

Lemma 14.8. With the notation fixed above, in the diagram

T0 ⊛ S0

ww ''

T ⊛ S

vv ((
S0∥C

σ0∥C

&&

S∥NT∥Coo

σ∥NT ∥C ((

A∥NS∥T

A∥NS∥τvv

// A∥T0

A∥τ0

xx

A∥NS∥B∥NT∥C

p

��
A∥B∥C ,

202 CHAPTER 14. STRATEGIES WITH NEUTRAL EVENTS

let p ∶ A∥NS∥B∥NT∥C → A∥B∥C be the obvious projection, and σ0, τ0 the
defined parts of σ, τ , respectively. Then, the composite map T0 ⊛ S0 → A∥B∥C
is the defined part of the composite map T ⊛ S → A∥B∥C.

Proof. The map d ∶ T ⊛ S → T0 ⊛ S0 is given by the universal property of the
pullback T0⊛S0. By Proposition 2.8, it suffices to show that d is partial injective
on events and surjective on configurations.

Surjective on configurations:

Partial injective:

Lemma 14.9. The composition τ ⊛ σ is a partial strategy.

Proof. From earlier, it suffices to show τ ⊛ σ is receptive, has no immediate
causal dependencies ⊞ _ ⊚ and has defined part a strategy.

Receptivity of τ ⊛σ follows directly from that of σ and τ . That there can be
no incidence of a +ve event immediately causally preceding a neutral event in
T ⊛S relies on Lemma 3.27. W.l.o.g. suppose the +ve event to be over C. Then
either (∗, t) _z (s′, t′) or (∗, t) _z (∗, t′) in C(T) ⊛ C(S) where polT (t) = +

and correspondingly σ2(s
′) = τ1(t′) ∈ B or t′ is neutral; in either case t _T t

′,
contradicting the +-innocence of T .

From Lemma 14.8 it follows immediately that τ0 ⊛ σ0 is the defined part of
the composite

T ⊛ S
τ⊛σ
Ð→ A⊥∥(NS∥B∥NT)∥CÐ→A

⊥∥B∥C .

By definition, τ0⊙σ0 is the defined part of the composite

T0 ⊛ S0
τ0⊛σ0
Ð→ A⊥∥B∥CÐ→A⊥∥C .

By Proposition 2.9, it follows that τ0⊙σ0 is the defined part of

T ⊛ S
τ⊛σ
Ð→ A⊥∥(NS∥B∥NT)∥CÐ→A

⊥∥C ,

ensuring that τ ⊛ σ is a partial strategy.

With partial strategies we no longer generally have that composition with
copy-cat yields the same strategy up to isomorphism—there will generally be
extra neutral events introduced through synchronizations.

Lemma 14.10. A configuration z ∈ C∞(T ⊛ S) is +/0-maximal configuration
iff Π1z is +/0-maximal in C∞(S) and Π2z is +/0-maximal in C∞(T).

Proof. Very similar to the proofs of Lemma 10.2 and Corollary 10.3.

14.3. 2-CELLS FOR PARTIAL STRATEGIES 203

14.2.1 As synchronized composition

A partial strategy σ ∶ S → A⊥∥N∥B from game A to game B determines three
partial maps to the three components A⊥, N and B. As before, we write σ1 ∶
S → A⊥ and σ2 ∶ S → B for left and right components. Write σn ∶ S → N for the
component into neutral events.

Proposition 14.11. Let A, B be event structures with polarity in which no
events are neutral. Let N be an event structure with polarity in which all events
are neutral. Partial strategies σ ∶ S → A⊥∥N∥B are in 1-1 correspondence with
triples of maps σ1 ∶ S → A⊥, σ2 ∶ S → B and σn ∶ S → N s.t. ******

Assume partial strategies σ ∶ S → A⊥∥NS∥B and τ ∶ T → B⊥∥NT∥C. We can
define their composition via a synchronized composition (without hiding). We
only synchronize events of S and T when they are over complementary events
the game B, yielding the synchronized composition

S × T ↾ top−1R

where

R = {(s,∗) ∣ s ∈ S & σ1(s) is defined or polS(s) = 0}∪

{(s, t) ∣ s ∈ S & t ∈ T & σ2(s) = τ1(t) with both defined}∪

{(∗, t) ∣ t ∈ T & τ2(t) is defined or polT (t) = 0} .

Modifying B so all its events are neutral, we obtain a partial strategy

υ ∶ S × T ↾ top−1R → A⊥∥(NS∥B∥NT)∥C

in which
υ1 takes an event p to σ1(s) if top(p) = (s,∗), and is undefined otherwise;
υ2 takes an event p to τ2(s) if top(p) = (∗, t), and is undefined otherwise;

υn takes an event p to an event in a component ofNS∥B∥NT , to σ2(s) = τ1(t)
if top(p) = (s, t), to σn(s) if top(p) = (s,∗) and polS(s) = 0 and to τn(s) if
top(p) = (∗, t) and polT (t) = 0, and is undefined otherwise.

Proposition 14.12. The construction is isomorphic to composition of partial
strategies given earlier via pullbacks.

14.3 2-cells for partial strategies

f ∶ σ⇒ σ′ where σ ∶ S → A⊥∥N∥B and σ′ ∶ S′ → A⊥∥N∥B
***** Given f ∶ σ ⇒ σ′ and g ∶ τ ⇒ τ ′ from universality of pullback obtain

g ⊛ f ∶ τ ⊛ σ⇒ τ ′ ⊛ σ′***

Lemma 14.13. Let f ∶ σ ⇒ σ′ and g ∶ τ ⇒ τ ′ be 2-cells between composable
partial strategies. Then, g⊛f is a 2-cell of partial strategies. It is rigid if f and
g are rigid.

204 CHAPTER 14. STRATEGIES WITH NEUTRAL EVENTS

14.4 May and must tests

NOTATION **** partial operations ysncircx, y⊙x on configurations, ALSO
infinite configs ****EARLIER***

Consider the following three strategies in the game A comprising a single
+ve event. Recall neutral events are drawn as ⊚.

S1

σ1

��

⊞_

��
A ⊞

S2

σ2

��

⊚
� ,,2⊞_

��
A ⊞

⊚

S3

σ3

��

⊚
� ,,2⊞_

��
A ⊞

From the point of view of observing the move over the game A the first two
strategies, σ1 and σ2, differ from the the third, σ3. In a maximal play both σ1

and σ2 will result in the observation of the single move of A. However, in σ3 one
maximal play is that in which the topmost neutral event of S3 has occurred, in
conflict with the only way of observing the single move of A.

We follow [?] in making these ideas precise. For configurations x, y of an
event structure with polarity which may have neutral events write x ⊆p y to
mean x ⊆ y and all events of y ∖ x have polarity + or 0. We write ⊆0 to mean
the inclusion involves only neutral events

Definition 14.14. Let σ be a partial strategy in a gameA. Let τ ∶ T → A⊥∥N∥⊞
be a ‘test’ partial strategy from A to a the game consisting of a single Player
move ⊞. Write ✓ =def (3,⊞).

Say σ may pass τ iff there exists y ⊛ x ∈ C∞(T ⊛ S), where x ∈ C∞(S) and
y ∈ C∞(T), with the image τy containing ✓. (Note that we may w.l.o.g. assume
that the configuration y ⊛ x is finite.)

Say σ must pass τ iff for all y⊛x ∈ C∞(T⊛S), where x ∈ C∞(S) and y ∈ C∞(),
which are ⊆p-maximal the image τy contains ✓.

Say two partial strategies are ‘may’ (‘must’) equivalent iff the tests they may

14.4. MAY AND MUST TESTS 205

(respectively, must) pass are the same.
The definitions extend in the obvious fashion to partial strategies of type

A⊥∥N∥B.

A partial strategy is ‘may’ equivalent, but need not be ‘must’ equivalent,
to the strategy which is its defined part; ‘must’ inequivalence is lost in moving
from partial strategies to strategies.

Example 14.15. This example shows that strategies σ1 and σ2 in a game B
may have the same configurations in B as images and yet not be equivalent
w.r.t. ‘may equivalence.’ The game B takes the form:

B ∶ ⊟

_���

⊞

⊞

The first (nondeterministic) strategy σ1 is:

⊞,

))

⊞ �

ss

S1

σ1

��

⊟

_LLR

� ,,2
_

��

⊞_

��
B ⊟

_���

⊞

⊞

The second (deterministic) strategy is:

⊞,

))

S2

σ2

��

⊟

_LLR

_

��

⊞_

��
B ⊟

_���

⊞

⊞

The test comprises τ ∶ T → B⊥∥C where C is consists of a single ⊞ event.
Observe that B⊥∥C takes the form

B⊥∥C ∶ ⊞

_���

⊟

⊟ ⊞

206 CHAPTER 14. STRATEGIES WITH NEUTRAL EVENTS

with the event of C being the +-event to the right. The test strategy is:

⊟,

((

� ,,2⊞ �

vv

T

τ

��

⊞

_LLR

_

��

⊟_

��

�llr

B⊥∥C ⊞

_���

⊟

⊟ ⊞

Note that σ1C(S1) = σ2C(S2) = C(B). The composition τ⊙σ2 can perform the
event over C—its causal constraints on events over B are consistent with those
of the test. However, the other composition τ⊙σ1 cannot perform the event
over C—its causal constraints on events over B are inconsistent with those of
the test. ◻

14.5 Strategies with stopping configurations—
the race-free case

Partial strategies lack identities w.r.t. composition, so they do not form a bicat-
egory. Fortunately, for ‘may’ and ‘must’ tests it is not necessary to use partial
strategies; it is sufficient to carry with a strategy the extra structure of ‘stopping’
configurations which are to be thought of as images of +/0-maximal configura-
tions in an underlying partial strategy. Composition and copy-cat on strategies
extend to composition and copy-cat on strategies with stopping configurations,
while maintaining a bicategory, in the following way. We tackle the simpler case
in which games are assumed to be race-free. (The extension to games which are
not race-free is outlined in [?].)

Let σ ∶ S → A⊥∥N∥B be a partial strategy between race-free games, from a
game A to a game B. Recall its associated partial-total factorization

S

σ

��

d // S0

σ0

��
A⊥∥NS∥B // A⊥∥B

Its defined part is a strategy σ0. Define the (possibly) stopping configurations
in C∞(S0) to be

Stop(σ) =def {dx ∣ x ∈ C∞(S) is +/0-maximal} .

In other words, the stopping configurations are the images of configurations
which are maximal w.r.t. neutral or Player moves. Note that Stop(σ) will

14.5. STRATEGIESWITH STOPPING CONFIGURATIONS—THE RACE-FREE CASE207

include all the +-maximal configurations of S0: any +-maximal configuration y
of S0 is the image under p of its down-closure [y] in S, and by Zorn’s lemma
this extends (necessarily by neutral events) to a maximal configuration x of S

with image y under d; by maximality, if x
s

−Ð⊂ then s cannot be neutral, nor can
it be +ve as this would violate the +-maximality of y.

Note that if σ is in fact a strategy, i.e. it has no neutral events, then Stop(σ)
is the set consisting of all +-maximal configurations of S. We can identify
strategies between race-free games with strategies with stopping configurations
the +-maximal configurations.

A strategy with stopping configurations in a game A comprises a strategy
S → A together with a subset MS ⊆ C∞(S). As usual, a strategy with stopping
configurations from a game A to game B is a strategy with stopping configura-
tions in the game A⊥∥B.

There is an issue of axioms on stopping configurations. We do not insist
that stopping conigurations include all +-maximal configurations as this prop-
erty will not be preserved in taking the rigid image of a strategy with stopping
configurations. This is because not all infinite configurations in the rigid image
are direct images of a configuration in the original strategy—see Example 14.25.
(See Section 14.6.4 for further discussion of the axioms on stopping configura-
tions.)

The operation St ∶ σ ↦ (σ0,Stop(σ)) above, from partial strategies to strate-
gies with stopping configurations, preserves composition w.r.t. the following def-
inition.

Given two strategies with stopping configurations σ ∶ S → A⊥∥B, MS and
τ ∶ T → B⊥∥C, MT we define their composition by

(τ,MT)⊙(σ,MS) =def (τ⊙σ,MT⊙MS)

where

x ∈MT⊙MS iff ∃z ∈ C∞(T ⊛ S). [x]T⊛S ⊆0 z & Π1z ∈MS & Π2z ∈MT .

Above we write ⊆0 to mean the inclusion only involves neutral events. Recall,
T ⊛ S is the result of composition before hiding neutral synchronizations. In
other words, if we define the stopping configurations of T ⊛ S by

z ∈MT ⊛MS iff z ∈ C∞(T ⊛ S) & Π1z ∈MS & Π2z ∈MT

—sensible because of Lemma 14.10—we have

x ∈MT⊙MS iff ∃z ∈MT ⊛MS . [x]T⊛S ⊆0 z .

We should also extend copy-cat ccA ∶ CCA → A⊥∥A to a strategy with stop-
ping configurations. Assuming A is race-free, we do this by taking

MCCA =def {(x∥x) ∣ x ∈ C(A)}.

Because A is race-free, MCCA comprises all the +-maximal configurations of
CCA. Then, ccA,MCCA is an identity w.r.t. the extended composition.

208 CHAPTER 14. STRATEGIES WITH NEUTRAL EVENTS

Proposition 14.16. When A is race-free, ccA,MCCA is identity w.r.t. compo-
sition.

Proof. ***** By definition,

x ∈MCCB⊙MS iff ∃z ∈ C∞(CCB⊛S). [x]CCB⊛S ⊆0 z & Π1z ∈MS & Π2z ∈MCCB .

Lemma 14.17. Let σ be a partial strategy from A to B and τ a partial strategy
from B to C. Then,

St(τ ⊛ σ) = St(τ)⊙St(σ) .

Proof. It suffices to show the following holds of stopping configurations:

Stop(τ ⊛ σ) = Stop(τ)⊙Stop(σ) .

We can describe the partial-total factorizations associated with the partial
strategies σ ∶ S → A⊥∥NS∥B and τ ∶ T → B⊥∥NT∥C as

S

σ

��

d1 // S0

σ0

��
A⊥∥NS∥B // A⊥∥B

and T

τ

��

d2 // T0

τ0

��
B⊥∥NT∥C // B⊥∥C .

As preparation, in the diagram

S

d1

��

T ⊛ S
Π1oo

d2⊛d1

��

Π2 // T

d2

��
S0 T0 ⊛ S0

Π1

oo
Π2

//

d′

��

T0

T0⊙S0

the two squares commute, and T0⊛S0
d′

Ð→T0⊙S0
τ0⊙σ0
Ð→ A⊥∥C gives the partial-total

factorization associated with the definition of τ0⊙σ0. By Proposition 2.9,

T ⊛ S
d
Ð→T0⊙S0

τ0⊙σ0
Ð→ A⊥∥C

is a partial-total factorization, where we write d =def d
′ ○ (d2 ⊛ d1).

“Stop(τ ⊛ σ) ⊆ Stop(τ)⊙Stop(σ)”: Let x ∈ Stop(τ ⊛ σ). We have x = dw for
some +/0-maximal configuration of T ⊛ S. Then, Π1w is +/0-maximal in S
and Π2w is +/0-maximal in T , by Lemma 14.10. Hence d1Π1w ∈ Stop(σ) and
d2Π2w ∈ Stop(τ). Take z =def (d2 ⊛ d1)w. As

d′z = d′(d2 ⊛ d1)w = dw = x

14.5. STRATEGIESWITH STOPPING CONFIGURATIONS—THE RACE-FREE CASE209

we have [x]T0⊛S0 ⊆
0 z. Moreover, by the commuting squares above,

Π1z = Π1(d2 ⊛ d1)w = d1Π1w ∈ Stop(σ)

and similarly Π2z ∈ Stop(τ). Therefore x ∈ Stop(τ)⊙Stop(σ), as required.

“Stop(τ ⊛ σ) ⊇ Stop(τ)⊙Stop(σ)”: Let x ∈ Stop(τ)⊙Stop(σ). Then,

[x]T⊛S ⊆0 z & Π1z ∈ Stop(S) & Π2z ∈ Stop(T) ,

for some z ∈ C∞(T0 ⊛ S0). Now, Π1z ∈ Stop(S) implies Π1z = d1w1 for some
+/0-maximal w1 ∈ C∞(S), so [Π1z]S ⊆0 w1. Similarly, [Π2z]T ⊆0 w2 for some
+/0-maximal w2 ∈ C

∞(T). Construct

w =def [z]T⊛S ∪ (w1 ∖ [Π1z]S) × {∗} ∪ {∗} × (w2 ∖ [Π2z]T) .

(It’s convenient to use the description of T ⊛ S as a form of synchronized com-
position in Section 14.2.1.) Then, w ∈ C∞(T ⊛ S) and (d2 ⊛ d1)w = z. By
Lemma 14.10, w is +/0-maximal as Π1w = w1 and Π2w = w2 are +/0-maximal.
Noting d′z = x, as it is equivalent to [x]T⊛S ⊆0 z, we deduce

d′(d2 ⊛ d1)w = d′z = x

ensuring x ∈ Stop(τ ⊛ σ), as required.

Definition 14.18. Let σ be a strategy with stopping configurations MS in a
game A. Let τ ∶ T → A⊥∥N∥⊞ be a ‘test’ partial strategy from A to a the
game consisting of a single Player move ⊞. Write St(τ) as (τ0,M0) where
τ0 ∶ T0 → A∥⊞ is the defined part of τ and M0 are its stopping configurations,
obtained as images of the p-maximal configurations of T . Write ✓ =def (2,⊞).

Say (σ,MS) may pass τ iff there exists y ⊛ x ∈ C∞(T0 ⊛ S), where x ∈
C∞(S) and y ∈ C∞(T0), with the image τy containing ✓. (Note again, we may
w.l.o.g. assume that the configurations x and y are finite.)

Say (σ,MS) must pass τ iff for all y ⊛ x ∈ M0 ⊛MS , where x ∈ C∞(S) and
y ∈ C∞(T0), the image τ0y contains ✓.

Say two strategies with stopping configurations are ‘may’ (‘must’) equivalent
iff the tests they may (respectively, must) pass are the same.

Proposition 14.19. With the notation above,
(σ,MS) may pass τ iff there exists y⊙x ∈ C∞(T0⊙S), where x ∈ C∞(S) and

y ∈ C∞(T0), with the image τy containing ✓ —the configurations x, y may be
assumed finite; and

(σ,MS) must pass τ iff for all y⊙x ∈ M0⊙MS, where x ∈ MS and y ∈ M0,
the image τ0 y contains ✓.

Lemma 14.20. Let A be a race-free game. Let σ be a partial strategy in A.
Then,

σ may pass a test τ iff St(σ) may pass τ ;
σ must pass a test τ iff St(σ) must pass τ .

210 CHAPTER 14. STRATEGIES WITH NEUTRAL EVENTS

Proof. Directly from the definitions, for the ‘if’ of the ‘must’ case, using Lemma 14.10.

Example 14.21. It is tempting to think of neutral events as behaving like
the internal “tau” events of CCS [26]. However, in the context of strategies
they behave rather differently. Consider three partial strategies, over a game
comprising of just two concurrent +ve events, say a and b. The partial strategies
have the following event structures in which we have named events by the moves
they correspond to in the game:

S1 a

b

S2 ⊚
� ,,2a

⊚
� ,,2b

S3 ⊚
� ,,2a

b
All three become isomorphic under St so are ‘may’ and ‘must’ equivalent to
each other. ◻

In making strategies with stopping configurations a bicategory we must settle
on an appropriate notion of 2-cell. The following choice of definition seems most
useful.

A 2-cell f ∶ (σ,MS) ⇒ (σ′,MS′) between strategies with stopping configu-
rations is a 2-cell of strategies f ∶ σ ⇒ σ′ such that fMS ⊆ MS′ . With this
choice of 2-cell, strategies with stopping configurations inherit the structure of
a bicategory from strategies; its objects are restricted to race-free games.

The 2-cells between strategies with stopping configurations respect ‘may’
and ‘must’ behaviour in the sense of the following lemma.

Lemma 14.22. Let f ∶ (σ,MS)⇒ (σ′,MS′) be a 2-cell between strategies with
stopping configurations. Then for any test τ ,

(σ,MS) may pass τ implies (σ′,MS′) may pass τ ; and

(σ′,MS′) must pass τ implies (σ,MS) must pass τ .

Moreover, if f is rigid epi and fMS =MS′ , then (σ,MS) and (σ′,MS′) are
both ‘may’ and ‘must’ equivalent.

Proof. In this proof, we shall identify the partial-strategy test τ with its asso-
ciated strategy with stopping configurations St(τ), writing MT for its stopping
configurations.

Let f ∶ (σ,MS)⇒ (σ′,MS′) be a 2-cell. Assume σ ∶ S → A and σ′ ∶ S′ → A.
Let τ ∶ T → A⊥∥⊞.

Suppose (σ,MS) may pass τ . Then there is a (finite) configuration which
we write y ⊛ x of T ⊛ S, built as a pairing of y ∈ C(T) and x ∈ C(S), which
contains ✓. (We are using the term ‘pairing’ so as to remain neutral between
the two equivalent ways of defining configurations of T ⊛S, via pullbacks when
the ‘pairing’ is a secured bijection, or as a synchronised composition.) The
pairing induces a pairing y⊛fx, containing ✓, of y ∈ C(T) and fx ∈ C(S). (The
secured bijection built from y and x induces a secured bijection built from y
and fx; this is because fx has no more causal dependency than x with which
it is in bijection.)

14.5. STRATEGIESWITH STOPPING CONFIGURATIONS—THE RACE-FREE CASE211

Suppose (σ′,MS′) must pass τ . Any y⊛x ∈MT ⊛MS images under τ ⊛f to
y⊛fx ∈MT ⊛MS′ . As (σ′,MS′) must pass τ , the configuration y⊛fx contains
✓, ensuring that y⊛x does too. *** REQUIRES GENERALISATION OF y⊛x
TO INFINITE CONFIGS***

Finally suppose that f is rigid epi and fMS =MS′ . We have just shown that
f preserves the passing of ‘may’ tests and reflects the passing of ‘must’ tests.
Because f is rigid epi it also reflects the passing of ‘may’ tests. Because f is
rigid and fMS =MS′ it preserves the passing of ‘must’ tests: any pairing y⊛fx
in MT ⊛MS′ ensures by the rigidity of f a pairing y⊛x in MT ⊛MS ; as (σ,MS)
must τ we have y ⊛ x contains ✓ ensuring y ⊛ fx does too.

As a corollary of Lemma 14.22, with an appropriate construction of the rigid
image of a strategy with stopping configurations we are assured not to lose any
‘may’ and ‘must’ behaviour.

Definition 14.23. Let (σ,MS) be a strategy with stopping configurations. Let
σ1 be the rigid image of σ with accompany 2-cell f ∶ σ ⇒ σ1 where f is rigid
epi. We define the rigid image of (σ,MS) to be (σ1, fMS).

A rigid-image strategy with stopping configurations is one in which the strat-
egy is rigid-image.

Corollary 14.24. A strategy with stopping configurations is both ‘may’ and
‘must’ equivalent to its rigid image.

Proof. A direct consequence of the last part of Lemma 14.22.

Thus w.r.t. ‘may’ and ‘must’ behaviour we can choose to work in the category
of rigid-image strategies with stopping configurations.

Example 14.25. In forming the rigid image σ1 ∶ S! → A of a strategy σ ∶
S → A, related by rigid epi 2-cell f ∶ σ ⇒ σ1, it is possible to have an infinite
configuration of S1 which is not in the direct image under f of any configuration
of S; in particular it is possible to have a +-maximal configuration of S1 which
is not a direct image of any +-maximal configuration S. For example, let A
comprise an infinite chain of Player events. Take S to be the sum of all finite
subchains. The rigid image of S is A itself which has +-maximal configuration
all the events in the infinite chain, not the image of any configuration of S1.
Thus, in forming the rigid image of strategy with stopping configurations, we
cannot assume that all the +-maximal configurations of the rigid image are
stopping. ◻

As far as ‘may’ and ‘must’ behaviour is concerned it is sensible to regard
two strategies with stopping configurations to be equivalent if they share a com-
mon rigid image. The equivalence transfers to an equivalence between partial
strategies: two partial strategies are equivalent if under St we obtain equvalent
strategies with stopping configurations.

212 CHAPTER 14. STRATEGIES WITH NEUTRAL EVENTS

Example 14.26. Tests based on partial strategies are more discriminating than
tests based on (pure) strategies. Let a game comprise a single Player move.
Consider two strategies with stopping configurations:

σ1, the empty strategy with the empty configuration ∅ as its single stopping
configuration;

σ2, the strategy performing the single Player move ⊞ with stopping config-
urations ∅ and {⊞}.

By Lemma 14.22, we have (σ2,{∅,{⊞}}) must pass τ implies (σ1,{∅}) must
pass τ , for any test τ . (The above would not hold if we had not included ∅ in
the stopping configurations of σ2.)

Using the fact that we need only consider rigid images of tests, a little
argument by cases establishes the converse implication too provided we restrict
just to tests which are strategies. The strategies with stopping configurations
would be must equivalent w.r.t. tests based just on strategies.

However with tests based on partial strategies we can distinguish them.
Consider the test τ comprising three events, one of them neutral, with only
nontrivial causal dependency ⊟ _ ⊚ and ⊚ in conflict with the ‘tick’ event ⊞.
Then, it is not the case that (σ2,{∅,{⊞}}) must pass τ —the occurrence of the
neutral event blocks success in a maximal execution—while (σ1,{∅}) must pass
τ . ◻

We can interpret the metalanguage directly in terms of strategies with stop-
ping configurations in such a way that the denotation of a term as a strategy
with stopping configurations is the image under St of its denotation as a partial
strategy. To achieve this, we specify the stopping configurations of both the
sum and pullback of strategies.

For the sum of strategies []i∈I σi with stopping configurations σi, a configu-
ration of the sum is stopping iff it is the image of a stopping configuration under
the injection from a component.

Consider strategies σ ∶ S → A and τ ∶ T → A with stopping configurations
MS and MT respectively. Let their pullback be denoted by σ ∧ τ ∶ P → A with
projection morphisms π1 ∶ P → S and π2 ∶ P → T . A configuration of P is
defined to be stopping iff there exist x1, x2 such that π1x ⊆+ x1 and π2x ⊆+ x2

and x1 ∈MS and x2 ∈MT , and furthermore there exists a partition x+ = Y1 ∪Y2

satisfying xi∩Yi = ∅. The set of stopping configurations of P coincides with the
stopping configurations obtained via St from the pullback of partial strategies.

The treatment of winning strategies of Chapter 10 generalises straightfor-
wardly, with the role of +-maximal configurations replaced by that of stopping
configurations.

14.6 May and Must behaviour characterised

14.6.1 Preliminaries, traces of a strategy

Let S be an event structure. A possibly infinite sequence

s1, s2,⋯, sn,⋯

14.6. MAY AND MUST BEHAVIOUR CHARACTERISED 213

in S constitutes a serialisation of a configuration x ∈ C∞(S) if x = {s1, s2,⋯, sn,⋯}
and {s1,⋯, si} ∈ C(S) for all i at which the sequence is defined. We will often
identify such a countable enumeration of a set with its associated total order.
Note that in this way we can regard a serialisation as an elementary event struc-
ture in which causal dependency takes the form of a total order; a serialisation of
a configuration is associated with a map to S whose image is the configuration.

Let σ ∶ S → A be a strategy in a game A. A trace in σ is a possibly infinite
sequence

α = (σ(s1), σ(s2),⋯, σ(sn),⋯)

of events in A obtained from a serialisation

s1, s2,⋯, sn,⋯

of a configuration x ∈ C∞(S). Clearly α is a serialisation of σx ∈ C∞(A). From
the local injectivity of σ, the configuration x will be finite/infinite according as
the trace is finite/infinite. We say that α is a trace of the configuration x in σ,
or that x has trace α in σ.

Proposition 14.27. Let σ ∶ S → A be a W.r.t. a strategy.
(i) Any countable configuration of S has a trace.
(ii) Let x ∈ C∞(S) and α be an enumeration

a1, a2,⋯, an,⋯

of σx. Then, α is a trace of x in σ iff for all s, s′ ∈ x if s _ s′ then σ(s) precedes
σ(s′) in the enumeration α.

Proof. (i) Let x be a countable configuration of S w.r.t. the strategy σ ∶ S → A.
This follows because there is a serialisation x = {s1, s2,⋯, sn,⋯}, in which
{s1,⋯, si} is down-closed in S at all i in the enumeration. To see this, from its
countability we may assume a countable enumeration of x, which need not be a
serialisation. Define s1 ∈ x to be the earliest event of the enumeration for which
[s1) = ∅ in S; such an s1 is ensured to exist by the well-foundedness of causal
dependency provided x ≠ ∅. Inductively, define sn to be the earliest event of
the enumeration which is in x∖ {s1,⋯, sn−1} and for which [sn) ⊆ {s1,⋯, sn−1};
again the well-foundedness of causal dependency ensures such an sn exists pro-
vided x∖{s1,⋯, sn−1} ≠ ∅. It is elementary to check this provides a serialisation
of x.

(ii) “Only if”: Directly from the definition of trace of a configuration. “If”:
Via the local bijection between x and σx given by σ we obtain an enumeration

s1, s2,⋯, sn,⋯

of x matching α in that σ(si) = ai. The assumption that s _ s′ implies σ(s)
precedes σ(s′) in the enumeration α, entails {s1,⋯, si} ∈ C(S) for all i. Hence
the enumeration of x is a serialisation making α a trace of x.

214 CHAPTER 14. STRATEGIES WITH NEUTRAL EVENTS

Lemma 14.28. Let σ ∶ S → A be a strategy in a game A. Let x ∈ C∞(S).
Let α be a serialisation of σx which is not a trace of x ∈ C∞(S). Then, there
are s, s′ ∈ x with pol(s) = − and pol(s′) = + and s _S s

′ and (note the order
reversal) σ(s′) ≤α σ(s) in α (regarded as a total order).

Proof. By assumption, any trace of x differs from α. We deduce there is s _ s′

in x with σ(s) /≤ σ(s′) in the total order of α; otherwise we could serialise x
to obtain the trace α —Proposition 14.27(ii). Now, σ(s) /≤A σ(s

′) in A as any
serialisation must respect the order ≤A. Hence, by the innocence of σ, we must
have pol(s) = − and pol(s′) = +. Because α is totally ordered, σ(s′) ≤ σ(s) in
α.

14.6.2 Characterisation of the may preorder

For strategies with stopping configurations (games assumed race-free) we have:

Lemma 14.29. Let (σ1,M1) and (σ2,M2) be strategies with stopping configu-
rations in a common game. Then,

(σ1,M1) may pass τ implies (σ2,M2) may pass τ , for all tests τ ,
iff
all finite traces of σ1 are traces of σ2.

Proof. Assume strategies σ1 ∶ S1 → A and σ2 ∶ S2 → A. “if”: Assume all finite
traces of σ1 are traces of σ2. Suppose (σ1,M1) may pass test τ with event
structure T . Then there is a successful configuration w⊛ x1 ∈ C(T ⊛S1), where
x1 ∈ C(S1) and w ∈ C(T); it is successful in the sense that its image contains the
success event ✓. Take a serialisation of w⊛x1; this induces a serialisation of x1

to yield a trace. Then, by assumption, σ2 has a configuration x2 ∈ C(S2) with
the same trace, so a matching serialisation. Consequently the pairing w ⊛ x2 is
defined with w ⊛ x2 ∈ C(T ⊛ S2); sharing the same image as w ⊛ x1 it is also
successful.

“only if”: We show the contraposition: assuming not all traces of σ1 are traces
of σ2, we produce a test τ for which σ1 may pass τ while it is not the case that
σ2 may pass τ .

Assume a trace α1 of x1 ∈ C(S1) is not a trace of any x2 ∈ C(S2). Note
that the trace α1, and correspondingly x1, must have at least one +ve event as
otherwise, by receptivity, σ2 could match the trace α1. Any trace of x2, with
σ2x2 = σ1x1, differs from α1. By Lemma 14.28, we deduce there are s, s ∈ x2

such that s _2 s
′ with pol(s) = − and pol(s′) = + and σ2(s

′) ≤1 σ2(s) in the
total order α1.

Thus for each x2 ∈ C(S2) with σ2x2 = σ1x1 we can choose θ(x2) = (s, s′) so
that s _2 s

′ in x2 with pol(s) = − and pol(s′) = + and σ2(s
′) ≤1 σ2(s) in α1.

We now describe a test τ ∶ T → A⊥∥⊞ which will discriminate between σ1 and
σ2. Let T ′1 be the elementary event structure comprising events T1 =def σ1x1

saturated with all accessible Opponent moves (note, in A⊥), i.e. events

T ′1 = {a ∈ A ∣ polA⊥([a] ∖ T1) ⊆ {−}}

14.6. MAY AND MUST BEHAVIOUR CHARACTERISED 215

with order that of A⊥ augmented with σ2(s
′) ≤1 σ2(s) for every choice θ(x2) =

(s, s′) where x2 ∈ M2 and σ2x2 = σ1x1; the ensuing relation on T1 is included
in the total order α1 so forms a partial order in which every element has only
finitely many elements below it. (By design, T ′1 “disagrees” with the causal
dependency of each x2 ∈ C(S2) for which σ2x2 = σ1x1.) The polarities of events
of T ′1 are those of its events in A⊥. On T ′1 the map τ takes an event to its same
event in A⊥.

Let T be the event structure with polarity obtained from T ′1 by adjoining
a fresh ‘success’ event ⊞ with additional causal dependency so t1 ≤T ⊞ iff t1 is
−ve; as noted above there has to be at least one +ve event in x1 and thus, by
the reversal of polarity, at least one t1 ∈ T1 of −ve polarity. Then the obvious
map τ ∶ T → A⊥∥⊞ is a strategy, and a suitable test for σ1 and σ2.

We have (i) σ1 may pass τ , while (ii) it is not the case that σ2 may pass τ .
To see (i), remark that the relation of causal dependency on T1 is included

in the the total order of the trace α1 of x1. Hence τ ⊛ σ1 has a successful
configuration (T1 ∪ {⊞})⊛ x1.

To show (ii), consider any finite configuration of τ ⊛ σ2. It has the form
w⊛x2 where w ∈ C(T) and x2 ∈ C(S2). The configuration w⊛x2 is unsuccessful
because ⊞ ∉ w, as we now show. By design, τ and σ2 enforce opposing causal
dependencies on a pair of synchronisations needed for T1 ⊛ x2 to be defined
whenever x2 ∈ C(S2) with σ2x2 = T1. At least two events of opposing polarity
in T1 are excluded from any pairing w ⊛ x2; one must be a −ve event of T1 on
which ⊞ causally depends; hence ⊞ ∉ w.

Clearly the proof above does not rely on stopping configurations or tests
being partial rather than pure strategies; the test used in the proof patently
has no neutral events. The extra discriminating power of tests based on par-
tial strategies, illustrated in Example 14.26, does play an essential role in the
analgous result in the ‘must’ case, to be considered shortly.

14.6.3 Characterisation of the must preorder

Recall an event structure E = (E,≤,Con) is consistent-countable iff there is a
function χ ∶ E → ω from the events such that

{e1, e2} ∈ Con & χ(e1) = χ(e2) Ô⇒ e1 = e2 .

Any configuration x ∈ C∞(E) of a consistent-countable event structure E is
countable and so may be serialised as

x = {e1, e2,⋯, en,⋯}

so that {e1,⋯, en} ∈ C(E) for any finite subsequence. For the must case we
assume that games are consistent-countable. It follows that strategies σ ∶ S → A
in consistent-countable games A have S consistent-countable. W.r.t. such a
strategy σ, we have traces of all configurations.

216 CHAPTER 14. STRATEGIES WITH NEUTRAL EVENTS

Lemma 14.30. Assume game A is consistent-countable. Let (σ1,M1) and
(σ2,M2) be strategies in A with stopping configurations. Then,

(σ2,M2) must pass τ implies (σ1,M1) must pass τ , for all tests τ ,

iff

all traces of stopping configurations M1 are traces of stopping configurations
M2.

Proof. “if”: Assume all traces of stopping configurations M1 are traces of stop-
ping configurations M2. A stopping configuration of τ ⊛σ1 has the form w⊛x1

where w and x1 are stopping configurations of τ and σ1, respectively. A se-
rialisation of w ⊛ x1 into a (possibly infinite) sequence induces a serialisation
of x1 ∈ M1. By assumption, there is x2 ∈ M2 with the same trace in A as x1.
Consequently, w ⊛ x2 is a configuration of τ ⊛ σ2 with the same image in A∥⊞.
Moreover, w ⊛ x2 is a stopping configuration of τ ⊛ σ2. Supposing (σ2,M2)
must pass a test τ , the image of w⊛ x2 contains ✓ whence the image of w⊛ x1

contains ✓ ensuring (σ1,M1) must pass a test τ .

“only if”: We show the contraposition: assuming not all traces of stopping
configurations M1 are traces of stopping configurations M2, we produce a test
τ for which (σ2,M2) must pass τ while it is not the case that (σ1,M1) must
pass τ .

Assume a trace α1 of x1 ∈M1 is not a trace of any x2 ∈M2.

In particular, consider any x2 ∈ M2 with σ2x2 = σ1x1. Then, any trace of
x2 differs from α1. By Lemma 14.28, there are s, s′ ∈ x2 such that s _2 s

′ with
pol(s) = − and pol(s′) = + and σ2(s

′) ≤1 σ2(s) in the total order α1.

Thus for each x2 ∈M2 with σ2x2 = σ1x1 we can choose θ(x2) = (s, s′) so that
s _2 s

′ in x2 with pol(s) = − and pol(s′) = + and σ2(s
′) ≤1 σ2(s) in α1.

We build an event structure with polarity T and a test as partial strategy
τ ∶ T → A⊥∥N∥⊞. We build the events of T as T ′1 ∪N ∪ T2, a union of sets of
events, assumed disjoint, described as follows.

• Let T ′1 be the elementary event structure comprising events T1 =def σ1x1

saturated with all accessible Opponent moves, i.e. events

T ′1 = {a ∈ A ∣ polA⊥([a] ∖ T1) ⊆ {−}}

with order that of A augmented with σ2(s
′) ≤1 σ2(s) for every choice

θ(x2) = (s, s′) where x2 ∈ M2 and σ2x2 = σ1x1; the ensuing relation on
T1 is included in the total order α1 so forms a partial order in which
every element has only finitely many elements below it. (By design, T ′1
“disagrees” with the causal dependency of each x2 ∈M2 for which σ2x2 =
σ1x1.) The polarities of events of T ′1 are those of its events in A⊥. On T ′1
the map τ takes an event to its same event in A⊥.

• N comprises a copy of the set of events of −ve polarity in T1; all the events
of N have neutral polarity; an event of N is sent by τ to its copy.

14.6. MAY AND MUST BEHAVIOUR CHARACTERISED 217

• T2 comprises a copy of the set of events T1; all the events of T2 have +ve
polarity; they are all sent by τ to ✓ =def (3,⊞).

• Causal dependency on T is that of T ′1 augmented with dependencies from
events of T1 of −ve polarity to their corresponding copies in N .

• The consistency relation of T is that minimal relation which ensures that
any two distinct events of T2 are in conflict; a +ve event of T1 conflicts
with its corresponding copy in T2; and a neutral event in N conflicts with
its corresponding copy in T2. More formally,

X ∈ ConT iff X ⊆fin T1 ∪N ∪ T2 & ∣X ∩ T2∣ ≤ 1 &

(∀t1 ∈X ∩ T +1 , t2 ∈X ∩ T2. t1, t2 are not copies of a common event) &

(∀n ∈X ∩N, t2 ∈X ∩ T2. n, t2 are not copies of a common event).

Note that all the events over ✓, which together comprise the set T2, can
occur initially but can become blocked as moves are made in T1. In particular,
the set T1 ∪N is a p-maximal configuration of T with image in A⊥∥N∥⊞ not
containing any event over ✓. On the other hand any p-maximal configuration
of T not including all the events T1 will contain an event over ✓. Hence St(τ)
has an unsuccessful stopping configuration consisting of precisely all the events
of T1—it does not have an event over ✓—while all stopping configurations of
St(τ) which do not contain all the events of T1 are successful—they contain an
event over ✓.

Consequently, (i) it is not the case that (σ1,M1) must τ , while (ii) (σ2,M2)
must τ . To see (i), remark that the relation of causal dependency on T1 is
included in the the total order of the trace α1 of x1. Hence St(τ) ⊛ σ1 has a
stopping configuration T1⊛x1 which is unsuccessful and thus (σ1,M1) fails the
must test τ . To show (ii), consider any stopping configuration of St(τ) ⊛ σ2.
It comprises w ⊛ x2 where w is a stopping configuration of St(τ) and x2 ∈M2,
a stopping configuration of σ2. Now w /⊇ T1, as by design τ and σ2 enforce
opposing causal dependencies on a pair of synchronisations needed for T1 ⊛ x2

to be defined whenever x2 ∈ M2 with σ2x2 = T1. Thus w is successful in that
it contains an event over ✓. Hence (σ2,M2) must pass τ . This completes the
proof.

Remark. By Example 14.26, the result above would not hold if tests were
based solely on pure strategies.

Example 14.31. ***over game ⊟1 _ ⊞1∥⊟2 _ ⊞2 the id strat and one where
make ⊟1 _ (copyof)⊞2 and ⊟2 _ (copyof)⊞1 , stopping configs +-maximal
configs, are ‘must ’equiv ****

14.6.4 Sum decomposition

It is straightforward to decompose an arbitrary strategy σ ∶ S → A into a sum
of deterministic sub-strategies ∑i∈I σi with the same rigid image. Any config-
uration x ∈ C∞(S) determines a deterministic strategy σx: its events are those

218 CHAPTER 14. STRATEGIES WITH NEUTRAL EVENTS

of x together with those Opponent events enabled from x to ensure receptivity,
viz.

x ∪ {s ∈ S ∣ [s]+ ⊆ x}

with causal dependency and consistency inherited from S. It is easy to see that
the obvious map

f ∶ ∑
x∈C(S)

σx → σ

sending an event to its original is rigid epi. This ensures that σ and ∑x∈C(S) σx
have the same rigid image, so are ‘may’ equivalent.

With stopping configurations, we can perform a similar decomposition re-
specting ‘may’ and ‘must’ behaviour. ***INCORRECT Simon: ⊞∥⊟ with {⊟}
stopping and ∅ not stopping doesn’t split into a sum; the stopping strategy
is realised by bare the strategy ⊟ _ ⊚#⊚ _ ⊞. **** Firstly, say a strategy
σ ∶ S → A with stopping configurations M is deterministic iff σ is deterministic
and M consists precisely of the +-maximal configurations of S. Now given an
arbitrary strategy σ ∶ S → A with stopping configurations M for which

(i) ∀x ∈ C(S)∃y ∈M. x ⊆ y and

(ii) ∀y ∈M,x ∈ C∞(S). x ⊆ y & x is +-maximal Ô⇒ x ∈M ,

we can decompose σ,M into a sum of deterministic strategies with stopping
configurations.1 Under the above assumptions, we can decompose σ,M into a
sum of deterministic strategies with stopping configurations, viz.

∑
y∈M

(σy,My) ,

in which each component is a deterministic strategy with stopping configurations

My =def {x ∈ C∞(S) ∣ x ⊆ y & x is +-maximal} .

The obvious map
f ∶ ∑

y∈M

(σy,My)→ (σ,M)

is rigid and epi, by (i). Moreover, because ⋃y∈MMy =M , by construction and
(ii), the map f sends stopping configurations onto M . By Lemma 14.22, the
strategy σ and its decomposition∑y∈M(σy,My) are ‘may’ and ‘must’ equivalent.

14.7 A language for partial strategies

The earlier language of strategies extends to a language for partial strategies,
reading the operations on strategies as the corresponding operations on partial
strategies.

1Example 14.25 shows why we cannot assume all +-maximal configurations are stopping.
That property is not preserved by taking the rigid image. However the axioms above are,
and would seem a reasonable weakening to impose generally on stopping configurations. The
axioms hold for St(σ′) of a partial strategy σ′.

14.8. OPERATIONAL SEMANTICS—AN EARLY ATTEMPT 219

14.8 Operational semantics—an early attempt

Let A be a game with configuration x. Write A/x for the game after x. If
f ∶ A → B is a map between games A and B and x ∈ C∞(A) write f/x ∶ A/x →
B/fx for the restriction of f between subsequent games.

Say a configuration x of a game A is +-pure if pol x ⊆ {+}, −-pure if pol x ⊆
{−} and pure if either. We identify configurations of A∥B with pairs x, y where
x ∈ C∞(A) and y ∈ C∞(B).
Composition

A,B ∶ σ
x,y
Ð→σ′ ∶ A/x,B/y B⊥,C ∶ τ

y,z
Ð→τ ′ ∶ B⊥/y,C/z

A,C ∶ τ ⊛ σ
x,z
Ð→τ ′ ⊛ σ′ ∶ A/x,C/z

Without typing,

σ
x,y
Ð→σ′ τ

y,z
Ð→τ ′

τ ⊛ σ
x,z
Ð→τ ′ ⊛ σ′

Relabelling

A ∶ σ
x
Ð→σ′ ∶ A/x

B ∶ f∗σ
fx
Ð→(f/x)∗σ

′ ∶ B/fx
x ∈ C(A)

Without typing,

σ
x
Ð→σ′

f∗σ
fx
Ð→(f/x)∗σ

′

x ∈ C(A)

Pullback

B ∶ σ
fx
Ð→σ′ ∶ B/fx

A ∶ f∗σ
x
Ð→(f/x)∗σ′ ∶ A/x

x ∈ C(A) is pure

Without typing,

σ
fx
Ð→σ′

f∗σ
x
Ð→(f/x)∗σ′

x ∈ C(A) is pure

Sum of strategies, without typing,

σi
x
Ð→σ′i, i ∈ I

[]i∈I σi
x
Ð→ []i∈I σ

′
i

x ∈ C(A) is −-pure

σj
x
Ð→σj

[]i∈I σi
x
Ð→σ′j

j ∈ I & x ∈ C(A) & + ∈ polx

We assume certain primitive strategies σ0 ∶ A, so as a map σ0 ∶ S → A, for
which we assume a rule

A ∶ σ0
x
Ð→σ′0 ∶ A/x

y ∈ C(S) & σ0y = x

220 CHAPTER 14. STRATEGIES WITH NEUTRAL EVENTS

Proposition 14.32. Derivations in the operational semantics of

A ∶ σ
x
Ð→σ′ ∶ A/x ,

in which σ denotes the map σ ∶ S → A, are in 1-1 correspondence with configu-
rations y ∈ C(S) such that σy = x.

14.9 Transition semantics

A transition semantics is presented for partial strategies. Transitions are asso-
ciated with three kinds of actions: an action o associated with a hidden neutral
action,

Γ ⊢ t

o

��

⊣ ∆

Γ ⊢ t′ ⊣ ∆ ;

an initial event located in the left environment and an initial event located in
the right environment,

Γ, x ∶ A ⊢ t

x∶a ∶x′

��

⊣ ∆

Γ, x′ ∶ A/a ⊢ t′ ⊣ ∆

Γ ⊢ t

y∶ b ∶y′

��

⊣ y ∶ B,∆

Γ ⊢ t′ ⊣ y′ ∶ B/b,∆ .

Notice that a neutral action leaves the types unchanged but may affect the term.
An action x ∶ a ∶ x′ is associated with an initial event ev(x ∶ a ∶ x′) =def x ∶ a
at the x-component of the environment. On its occurrence the component of
the environment x ∶ A is updated to x′ ∶ A/a in which x′, a fresh resumption
variable, stands for the configuration remaining in the remaining game A/a. Say
an action y ∶ b ∶ y′ on the right is +ve/−ve according as b is +ve/−ve. Dually,
say an action x ∶ a ∶ x′ on the left is +ve/−ve according as a is −ve/+ve.

Rules for composition:

Γ ⊢ t

y∶ b ∶y′

��

⊣ y ∶ B,∆

Γ ⊢ t′ ⊣ y′ ∶ B/b,∆

∆⊥, y ∶ B⊥ ⊢ u

y∶ b ∶y′

��

⊣ H

Γ, y′ ∶ B⊥/b ⊢ u′ ⊣ H

Γ ⊢ ∃y ∶ B,∆. [t ∥ u]

o

��

⊣ H

Γ ⊢ ∃y′ ∶ B/b,∆. [t′ ∥ u′] ⊣ H

14.9. TRANSITION SEMANTICS 221

Below we use α for o or an action on the left of the form x ∶ a ∶ x′, and β for o
or an action on the right of the form y ∶ b ∶ y′.

Γ ⊢ t

α

��

⊣ ∆

Γ′ ⊢ t′ ⊣ ∆

Γ ⊢ ∃∆. [t ∥ u]

α

��

⊣ H

Γ′ ⊢ ∃∆. [t′ ∥ u] ⊣ H

∆ ⊢ u

β

��

⊣ H

∆ ⊢ u′ ⊣ H′

Γ ⊢ ∃∆. [t ∥ u]

β

��

⊣ H

Γ ⊢ ∃∆. [t ∥ u′] ⊣ H′

Rules for hom-sets:

Assuming a is an initial event of A for which p[{a}/x][∅] ⊑C p
′[{a}/x][∅],

Γ, x ∶ A ⊢ p ⊑C p
′

x∶a ∶x′

��

⊣ ∆

Γ, x′ ∶ A/a ⊢ p[{a} ∪ x′/x] ⊑C p
′[{a} ∪ x′/x] ⊣ ∆ .

Above, the variable x will in fact only appear in one of p and p′, though because
of duality in forming terms we cannot prima facie be sure which.

Dually, assuming b is an initial event ofB for which p[{b}/y][∅] ⊑C p
′[{b}/y][∅],

Γ ⊢ p ⊑C p
′

y∶ b ∶y′

��

⊣ y ∶ B,∆

Γ ⊢ p[{b} ∪ y′/y] ⊑C p
′[{b} ∪ y′/y] ⊣ y′ ∶ B/b,∆ .

Rules for sum of partial strategies:

Γ ⊢ ti

ε

��

⊣ ∆

Γ′ ⊢ t′i ⊣ ∆′ , i ∈ I

Γ ⊢ []i∈I ti

ε

��

⊣ ∆

Γ′ ⊢ []i∈I t
′
i ⊣ ∆′

ε is −ve

Γ ⊢ tj

o

��

⊣ ∆

Γ′ ⊢ t′j ⊣ ∆′

Γ ⊢ []i∈I ti

o

��

⊣ ∆

Γ′ ⊢ ([]i∈I ti)[t
′
j/j] ⊣ ∆′

j ∈ I

222 CHAPTER 14. STRATEGIES WITH NEUTRAL EVENTS

Γ ⊢ tj

ε

��

⊣ ∆

Γ′ ⊢ t′j ⊣ ∆′

Γ ⊢ []i∈I ti

ε

��

⊣ ∆

Γ′ ⊢ t′j ⊣ ∆′

j ∈ I & ε is +ve

Rules for pullback of partial strategies:

Γ ⊢ t1

z∶ c ∶z′

��

⊣ ∆

Γ′ ⊢ t′1 ⊣ ∆′

Γ ⊢ t2

z∶ c ∶z′

��

⊣ ∆

Γ′ ⊢ t′2 ⊣ ∆′

Γ ⊢ t1 ∧ t2

z∶ c ∶z′

��

⊣ ∆

Γ′ ⊢ t′1 ∧ t2 ⊣ ∆′

Γ ⊢ t1

o

��

⊣ ∆

Γ ⊢ t′1 ⊣ ∆

Γ ⊢ t1 ∧ t2

o

��

⊣ ∆

Γ ⊢ t′1 ∧ t2 ⊣ ∆

Γ ⊢ t2

o

��

⊣ ∆

Γ ⊢ t′2 ⊣ ∆

Γ ⊢ t1 ∧ t2

o

��

⊣ ∆

Γ ⊢ t1 ∧ t
′
2 ⊣ ∆

Rules for δ:
Provided b is an initial −ve event of B,

Γ ⊢ δC(p, q1, q2)

y∶ b ∶y′

��

⊣ y ∶ B,∆

Γ ⊢ δC(p, q1, q2)[{b} ∪ y
′/y] ⊣ y′ ∶ B/b,∆ .

Dually, provided a is an initial +ve event of A,

Γ, x ∶ A ⊢ δC(p, q1, q2)

x∶a ∶x′

��

⊣ ∆

Γ, x′ ∶ A/a ⊢ δC(p, q1, q2)[{a} ∪ x
′/x] ⊣ ∆ .

14.10. DERIVATIONS AND EVENTS 223

In typed judgements of δC(p, q1, q2) a variable can appear free in at most
one of p, q1, q2. Write, for example, y ∈ fv(p) for y is a free variable of p, and
q1(y ∶ b) ∈ p[∅] to mean the image of b under the map q1 denotes is in the
configuration denoted by p[∅].

Provided b is an initial +ve event of B, y ∈ fv(q1) and q1(y ∶ b) ∈ p[∅],

Γ ⊢ δC(p, q1, q2)

y∶ b ∶y′

��

⊣ y ∶ B,∆

Γ ⊢ δC(p, q1, q2)[{b} ∪ y
′/y] ⊣ y′ ∶ B/b,∆ .

Similarly for q2. And dually.
Provided b is an initial +ve event of B, y ∈ fv(p) and p(y ∶ b) ∈ q1[∅],

Γ ⊢ δC(p, q1, q2)

y∶ b ∶y′

��

⊣ y ∶ B,∆

Γ ⊢ δC(p, q1, q2)[{b} ∪ y
′/y] ⊣ y′ ∶ B/b,∆ .

Similarly for q2. And dually.

14.9.1 Duality

Above, as is to be expected from duality, we can derive a transition

Γ, x ∶ A ⊢ t

x∶a ∶x′

��

⊣ ∆

Γ, x′ ∶ A/a ⊢ t′ ⊣ ∆

iff we can derive a transition

Γ ⊢ t

x∶a ∶x′

��

⊣ x ∶ A⊥,∆

Γ ⊢ t′ ⊣ x′ ∶ (A/a)⊥,∆ .

14.10 Derivations and events

Assume certain primitive strategies Γ ⊢ σ0 ⊣ ∆, so as a map, σ0 ∶ S → Γ⊥∥∆,
for which we assume rules,

Γ ⊢ σ0

ε

��

⊣ ∆

Γ′ ⊢ σ′0 ⊣ ∆′

s is initial in S & σ0(s) = ev(ε) .

224 CHAPTER 14. STRATEGIES WITH NEUTRAL EVENTS

Then, derivations in the operational semantics

⋮

Γ ⊢ t

ε

��

⊣ ∆

Γ′ ⊢ t′ ⊣ ∆′ ,

up to α-equivalence, in which t denotes the partial strategy σ ∶ S → Γ⊥∥∆, are
in 1-1 correspondence with initial events s in S such that σ(s) = ev(ε) when
ev(ε) ≠ o or s is neutral when ev(ε) = o.

Chapter 15

Probabilistic strategies

The chapter provides a new definition of probabilistic event structures, extend-
ing existing definitions, and characterised as event structures together with a
continuous valuation on their domain of configurations. Probabilistic event
structures possess a probabilistic measure on their domain of configurations.
This prepares the ground for a very general definition of a probabilistic strate-
gies, which are shown to compose, with probabilistic copy-cat strategies as iden-
tities. The result of the play-off of a probabilistic strategy and counter-strategy
in a game is a probabilistic event structure so that a measurable pay-off function
from the configurations of a game is a random variable, for which the expecta-
tion (the expected pay-off) is obtained as the standard Legesgue integral.

15.1 Probabilistic event structures

A probabilistic event structure comprises an event structure (E,≤,Con) together
with a continuous valuation on its open sets of configurations, i.e. a function w
from the open subsets of configurations C∞(E) to [0,1] which is:

(normalized) w(C∞(E)) = 1 (strict) w(∅) = 0;

(monotone) U ⊆ V Ô⇒ w(U) ≤ w(V);

(modular) w(U ∪ V) +w(U ∩ V) = w(U) +w(V);

(continuous) w(⋃i∈I Ui) = supi∈Iw(Ui) for directed unions ⋃i∈I Ui.

Continuous valuations play a central role in probabilistic powerdomains [27].
Continuous valuations are determined by their restrictions to basic open sets
x̂ =def {y ∈ C∞(E) ∣ x ⊆ y}, for x a finite configuration. The intuition: w(U) is
the probability of the resulting configuration being in the open set U . Indeed,
continuous valuations extend to unique probabilistic measures on the Borel sets.

This description of a probabilistic event structure extends the definitions in
[28]. It turns out to be equivalent to a more workable definition, which relates
more directly to the configurations of E, that we develop now.

225

226 CHAPTER 15. PROBABILISTIC STRATEGIES

15.1.1 Preliminaries

Notation 15.1. Let F be a stable family. Extend F to a lattice F⊺ by adjoining
an extra top element ⊺. Write its order as x ⊑ y and its join and meet operations
as x ∨ y and x ∧ y respectively.

Definition 15.2. Let F be a stable family. Assume a function v ∶ F → R.
Extend v to v⊺ ∶ F⊺ → R by taking v⊺(T) = 0.

W.r.t. v ∶ F → R, for n ∈ ω, define the drop functions d
(n)
v [y;x1,⋯, xn] ∈ R

for y, x1,⋯, xn ∈ F
⊺ with y ⊑ x1,⋯, xn in F⊺ as follows:

d(0)v [y;] =def v
⊺(y)

d(n)v [y;x1,⋯, xn] =def d
(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn] .

Throughout this section assume F is a stable family and v ∶ F → R.

Proposition 15.3. Let n ∈ ω. For y, x1,⋯, xn ∈ F
⊺ with y ⊑ x1,⋯, xn,

d(n)v [y;x1,⋯, xn] = v(y) − ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I

xi) .

For y, x1,⋯, xn ∈ F with y ⊆ x1,⋯, xn,

d(n)v [y;x1,⋯, xn] = v(y) −∑
I

(−1)∣I ∣+1v(⋃
i∈I

xi) ,

where the index I ranges over sets satisfying ∅ ≠ I ⊆ {1,⋯, n} s.t. {xi ∣ i ∈ I}↑.

Proof. We prove the first statement by induction on n. For the basis, when

n = 0, d
(n)
v [y;] = v(y), as required. For the induction step, with n > 0, we reason

d(n)v [y;x1,⋯, xn] =def d
(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn]

= v(y) − ∑
∅≠I⊆{1,⋯,n−1}

(−1)∣I ∣+1v(⋁
i∈I

xi)

− v(xn) + ∑
∅≠J⊆{1,⋯,n−1}

(−1)∣I ∣+1v(⋁
j∈J

xi ∨ xn) ,

making use of the induction hypothesis. Consider subsets K for which ∅ ≠K ⊆
{1,⋯, n}. Either n ∉ K , in which case ∅ ≠ K ⊆ {1,⋯, n − 1}, or n ∈ K, in
which case K = {n} or J =def K ∖ {n} satisfies ∅ ≠ J ⊆ {1,⋯, n − 1}. From this
observation, the sum above amounts to

v(y) − ∑
∅≠K⊆{1,⋯,n}

(−1)∣K∣+1v(⋁
k∈K

xk) ,

as required to maintain the induction hypothesis.
The second expression of the proposition is got by discarding all terms

v(⋁i∈I xi) for which ⋁i∈I xi = ⊺ which leaves the sum unaffected as they con-
tribute 0.

15.1. PROBABILISTIC EVENT STRUCTURES 227

Corollary 15.4. Let n ∈ ω and y, x1,⋯, xn ∈ F⊺ with y ⊑ x1,⋯, xn. For ρ an
n-permutation,

d(n)v [y;xρ(1),⋯, xρ(n)] = d
(n)
v [y;x1,⋯, xn] .

Proof. As by Proposition 15.3, the value of d
(n)
v [y;x1,⋯, xn] is insensitive to

permutations of its arguments.

Proposition 15.5. Assume n ≥ 1 and y, x1,⋯, xn ∈ F⊺ with y ⊑ x1,⋯, xn. If

y = xi for some i with 1 ≤ i ≤ n then d
(n)
v [y;x1,⋯, xn] = 0.

Proof. By Corollary 15.4, it suffices to show d
(n)
v [y;x1,⋯, xn] = 0 when y = xn.

In this case,

d(n)v [y;x1,⋯, xn] =d
(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn]

=d(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [y;x1,⋯, xn−1]

=0 .

Corollary 15.6. Assume n ≥ 1 and y, x1,⋯, xn ∈ F⊺ with y ⊑ x1,⋯, xn. If
xi ⊑ xj for distinct i, j with 1 ≤ i, j ≤ n then

d(n)v [y;x1,⋯, xn] = d
(n−1)
v [y;x1,⋯, xj−1, xj+1,⋯, xn] .

Proof. By Corollary 15.4, it suffices to show

d(n)v [y;x1,⋯, xn−1, xn] = d
(n−1)
v [y;x1,⋯, xn−1]

when xn−1 ⊑ xn. Then,

d(n)v [y;x1,⋯, xn] =d
(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn]

=d(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∨ xn,⋯, xn−2, xn]

=d(n−1)
v [y;x1,⋯, xn−1] − 0 ,

by Proposition 15.5.

Proposition 15.7. Assume n ∈ ω and y, x1,⋯, xn ∈ F⊺ with y ⊑ x1,⋯, xn.

Then, d
(n)
v [y;x1,⋯, xn] = 0 if y = ⊺ and d

(n)
v [y;x1,⋯, xn] = d

(n−1)
v [y;x1,⋯, xi−1, xi+1,⋯, xn]

if xi = ⊺ with 1 ≤ i ≤ n.

Proof. When n = 0, d
(0)
v [⊺;] = v⊺(⊺) = 0. When n ≥ 1, d

(n)
v [⊺;x1,⋯, xn] = 0 by

Proposition 15.5 as e.g. xn = ⊺. For the remaining statement, w.l.og. we may
assume i = n and that xn = ⊺, yielding

d(n)v [y;x1,⋯,⊺] = d
(n−1)
v [y;x1,⋯, xn−1]−d

(n−1)
v [⊺;x1∨⊺,⋯, xn−1∨⊺] = d

(n−1)
v [y;x1,⋯, xn−1] .

228 CHAPTER 15. PROBABILISTIC STRATEGIES

Lemma 15.8. Let n ≥ 1. Let y, x1,⋯, xn, x
′
n ∈ F⊺ with y ⊑ x1,⋯, xn. Assume

xn ⊑ x
′
n. Then,

d(n)v [y;x1,⋯, x
′
n] = d

(n)
v [y;x1,⋯, xn] + d

(n)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn, x

′
n] .

Proof. By definition,

the r.h.s. = d(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn]

+ d(n−1)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn] − d

(n−1)
v [x′n;x1 ∨ x

′
n,⋯, xn−1 ∨ x

′
n]

= d(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [x′n;x1 ∨ x

′
n,⋯, xn−1 ∨ x

′
n]

= d(n)v [y;x1,⋯, xn−1, x
′
n]

= the l.h.s..

15.1.2 The definition

Definition 15.9. Let F be a stable family. A configuration-valuation is function
v ∶ F → [0,1] such that v(∅) = 1 and which satisfies the “drop condition:”

d(n)v [y;x1,⋯, xn] ≥ 0

for all n ≥ 1 and y, x1,⋯, xn ∈ F with y ⊆ x1,⋯, xn.
A probabilistic stable family comprises a stable family F together with a

configuration-valuation v ∶ F → [0,1].
A probabilistic event structure comprises an event structure E together with

a configuration-valuation v ∶ C(E)→ [0,1].

Proposition 15.10. Let v ∶ F → [0,1]. Then, v is a configuration-valuation

iff v⊺(∅) = 1 and d
(n)
v [y;x1,⋯, xn] ≥ 0 for all n ∈ ω and y, x1,⋯, xn ∈ F⊺ with

y ⊑ x1,⋯, xn. If v is a configuration-valuation, then

y ⊑ x Ô⇒ v⊺(y) ≥ v⊺(x) ,

for all x, y ∈ F⊺.

Proof. By Proposition 15.7 and as d
(1)
v [y;x] = v⊺(y) − v⊺(x).

In showing we have a probabilistic event structure or stable family it suffices
to verify the “drop condition” only for covering intervals.

Lemma 15.11. Let F be a stable family and v ∶ F → [0,1].

(i) Let y ⊆ x1,⋯, xn in F . Then, d
(n)
v [y;x1,⋯, xn] is expressible as a sum of

terms

d(k)v [u;w1,⋯,wk]

15.1. PROBABILISTIC EVENT STRUCTURES 229

where y ⊆ u−⊂wi in F and wi ⊆ x1 ∪ ⋯ ∪ xn, for all i with 1 ≤ i ≤ k. [The set
x1 ∪⋯ ∪ xn need not be in F .]

(ii) A fortiori, v is a configuration-valuation iff v(∅) = 1 and

d(n)v [y;x1,⋯, xn] ≥ 0

for all n ≥ 1 and y−⊂x1,⋯, xn in F .

Proof. Define the weight of a term d
(n)
v [y;x1,⋯, xn], where y ⊆ x1,⋯, xn in F ,

to be the product ∣x1 ∖ y∣ ×⋯ × ∣xn ∖ y∣.
Assume y ⊆ x1,⋯, x

′
n in F . By Proposition 15.5, if y equals x′n or some

xi, then d
(n)
v [y;x1,⋯, x

′
n] = 0, so may be deleted as a contribution to a sum.

Otherwise, if y ⊊ xn ⊊ x′n, by Lemma 15.8 we can rewrite d
(n)
v [y;x1,⋯, x

′
n] to

the sum
d(n)v [y;x1,⋯, xn] + d

(n)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn, x

′
n] ,

where we further observe

∣xn ∖ y∣ < ∣x′n ∖ y∣ , ∣x′n ∖ xn∣ < ∣x′n ∖ y∣

and
∣(xi ∪ xn) ∖ xn∣ ≤ ∣xi ∖ y∣ ,

whenever xi∨xn ≠ ⊺. Using Proposition 15.7 we may tidy away any mentions of

⊺. This reduces d
(n)
v [y;x1,⋯, x

′
n] to the sum of at most two terms, each of lesser

weight. For notational simplicity we have concentrated on the nth argument

in d
(n)
v [y;x1,⋯, x

′
n], but by Corollary 15.4 an analogous reduction is possible

w.r.t. any argument.

Repeated use of the reduction, rewrites d
(n)
v [y;x1,⋯, xn] to a sum of terms

of the form
d(k)v [u;w1,⋯,wk]

where k ≤ n and u−⊂w1,⋯,wk ⊆ x1 ∪ ⋯ ∪ xn. This justifies the claims of the
lemma.

15.1.3 The characterisation

Our goal is to prove that probabilistic event structures correspond to event
structures with a continuous valuation. It is clear that a continuous valuation w
on the Scott-open subsets of an event structure E gives rise to a configuration-
valuation v on E: take v(x) =def w(x̂), for x ∈ C(E). We will show that
this construction has an inverse, that a configuration-valuation determines a
continuous valuation.

For this we need a combinatorial lemma:1

1The proof of the combinatorial lemma below is due to the author. It appears with acknowl-
edgement as Lemma 6.App.1 in [29], the PhD thesis of my former student Daniele Varacca,
whom I thank, both for the collaboration and the latex.

230 CHAPTER 15. PROBABILISTIC STRATEGIES

Lemma 15.12. For all finite sets I, J ,

∑
∅≠K⊆I×J

π1(K)=I,π2(K)=J

(−1)∣K∣ = (−1)∣I ∣+∣J ∣−1 .

Proof. Without loss of generality we can take I = {1, . . . , n} and J = {1, . . . ,m}.
Also observe that a subset K ⊆ I × J such that π1(K) = I, π2(K) = J is in fact
a surjective and total relation between the two sets.

n

m

Let
tn,m =def ∑

∅≠K⊆I×J

π1(K)=I,π2(K)=J

(−1)∣K ∣ ;

ton,m =def ∣{∅ ≠K ⊆ I × J ∣ ∣K ∣ odd, π1(K) = I, π2(K) = J}∣ ;

ten,m ∶= ∣{∅ ≠K ⊆ I × J ∣ ∣K ∣ even, π1(K) = I, π2(K) = J}∣ .

Clearly tn,m = ten,m − ton,m. We want to prove that tn,m = (−1)n+m+1. We do
this by induction on n. It is easy to check that this is true for n = 1. In this
case, if m is even then te1,m = 1 and to1,m = 0, so that te1,m − to1,m = (−1)1+m+1.
Similarly if m is odd.

Now assume that for every p, tn,p = (−1)n+p+1 and compute tn+1,m. To
evaluate tn+1,m we count all surjective and total relations K between I and J
together with their“sign.” Consider the pairs in K of the form (n + 1, h) for
h ∈ J . The result of removing them is a a total surjective relation between
{1, . . . , n} and a subset JK of {1, . . . ,m}.

n
●

m s

Consider first the case where JK = {1, . . . ,m}. Consider the contribution of
such K’s to tn+1,m. There are (m

s
) ways of choosing s pairs of the form (n+1, h).

For every such choice there are tn,m (signed) relations. Adding the pairs (n+1, h)
possibly modifies the sign of such relations. All in all the contribution amounts
to

∑
1≤s≤m

(
m

s
)(−1)stn,m .

Suppose now that JK is a proper subset of {1, . . . ,m} leaving out r elements.

n
●

s r

15.1. PROBABILISTIC EVENT STRUCTURES 231

Since K is surjective, all such elements h must be in a pair of the form
(n + 1, h). Moreover there can be s pairs of the form (n + 1, h′) with h′ ∈ JK .
What is the contribution of such K’s to tn,m? There are (m

r
) ways of choosing

the elements that are left out. For every such choice and for every s such that
0 ≤ s ≤ m − r there are (m−r

s
) ways of choosing the h′ ∈ JK . And for every

such choice there are tn,m−r (signed) relations. Adding the pairs (n + 1, h) and
(n+1, h′) possibly modifies the sign of such relations. All in all, for every r such
that 1 ≤ r ≤m − 1, the contribution amounts to

(
m

r
) ∑

1≤s≤m−r

(
m

s
)(−1)s+rtn,m−n .

The (signed) sum of all these contribution will give us tn+1,m. Now we use
the induction hypothesis and we write (−1)n+p+1 for tn,p.

Thus,

tn+1,m = ∑
1≤s≤m

(
m

s
)(−1)stn,m

+ ∑
1≤r≤m−1

(
m

r
) ∑

0≤s≤m−r

(
m − r

s
)(−1)s+rtn,m−r

= ∑
1≤s≤m

(
m

s
)(−1)s+n+m+1

+ ∑
1≤r≤m−1

(
m

r
) ∑

0≤s≤m−r

(
m − r

s
)(−1)s+n+m+1

= (−1)n+m+1 (∑
1≤s≤m

(
m

s
)(−1)s

+ ∑
1≤r≤m−1

(
m

r
) ∑

0≤s≤m−r

(
m − r

s
)(−1)s) .

By the binomial formula, for 1 ≤ r ≤m − 1 we have

0 = (1 − 1)m−r = ∑
0≤s≤m−r

(
m − r

s
)(−1)s .

So we are left with

tn+1,m = (−1)n+m+1 (∑
1≤s≤m

(
m

s
)(−1)s)

= (−1)n+m+1 (∑
0≤s≤m

(
m

s
)(−1)s − (

m

0
)(−1)0)

= (−1)n+m+1 (0 − 1)

= (−1)n+1+m+1 ,

as required.

232 CHAPTER 15. PROBABILISTIC STRATEGIES

Theorem 15.13. A configuration-valuation v on an event structure E extends
to a unique continuous valuation wv on the open sets of C∞(E), so that wv(x̂) =
v(x), for all x ∈ C(E).

Conversely, a continuous valuation w on the open sets of C∞(E) restricts to
a configuration-valuation vw on E, assigning vw(x) = w(x̂), for all x ∈ C(E).

Proof. The proof is inspired by the proofs in the appendix of [28] and the the-
sis [29].

First, a continuous valuation w on the open sets of C∞(E) restricts to a
configuration-valuation v defined as v(x) =def w(x̂) for x ∈ C(E). Note that any
extension of a configuration-valuation to a continuous valuation is bound to be
unique by continuity.

To show the converse we first define a function w from the basic open sets
Bs =def {x̂1 ∪⋯ ∪ x̂n ∣ x1,⋯, xn ∈ C(E)} to [0,1] and show that it is normalised,
strict, monotone and modular. Define

w(x̂1 ∪⋯ ∪ x̂n) =def 1 − d(n)v [∅;x1,⋯, xn]

= ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I

xi)

—this can be shown to be well-defined using Corollaries 15.4 and 15.6.
Clearly, w is normalised in the sense that w(C∞(E)) = w(∅̂) = 1 and strict

in that w(∅) = 1 − v(∅) = 0.
To see that it is monotone, first observe that

w(x̂1 ∪⋯ ∪ x̂n) ≤ w(x̂1 ∪⋯ ∪ x̂n+1)

as

w(x̂1 ∪⋯ ∪ x̂n+1) −w(x̂1 ∪⋯ ∪ x̂n) =d
(n)
v [∅;x1,⋯, xn] − d

(n+1)
v [∅;x1,⋯, xn+1]

=d(n)v [xn+1;x1 ∨ xn+1,⋯, xn ∨ xn+1] ≥ 0 .

By a simple induction (on m),

w(x̂1 ∪⋯ ∪ x̂n) ≤ w(x̂1 ∪⋯ ∪ x̂n ∪ ŷ1 ∪⋯ ∪ ŷm) .

Suppose that x̂1∪⋯∪x̂n ⊆ ŷ1∪⋯∪ŷm. Then ŷ1∪⋯∪ŷm = x̂1∪⋯∪x̂n∪ŷ1∪⋯∪ŷm.
By the above,

w(x̂1 ∪⋯ ∪ x̂n) ≤ w(x̂1 ∪⋯ ∪ x̂n ∪ ŷ1 ∪⋯ ∪ ŷm)

= w(ŷ1 ∪⋯ ∪ ŷm) ,

as required to show w is monotone.
To show modularity we require

w(x̂1 ∪⋯ ∪ x̂n) +w(ŷ1 ∪⋯ ∪ ŷm)

=w(x̂1 ∪⋯ ∪ x̂n ∪ ŷ1 ∪⋯ ∪ ŷm) +w((x̂1 ∪⋯ ∪ x̂n) ∩ (ŷ1 ∪⋯ ∪ ŷm)) .

15.1. PROBABILISTIC EVENT STRUCTURES 233

Note

(x̂1 ∪⋯ ∪ x̂n) ∩ (ŷ1 ∪⋯ ∪ ŷm) = (x̂1 ∩ ŷ1) ∪⋯ ∪ (x̂i ∩ ŷj)⋯∪ (x̂n ∩ ŷm)

= x̂1 ∨ y1 ∪⋯ ∪ x̂i ∨ yj⋯∪ ̂xn ∨ ym .

From the definition of w we require

w(x̂1 ∪⋯ ∪ x̂n ∪ ŷ1 ∪⋯ ∪ ŷm)

= ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I

xi) + ∑
∅≠J⊆{1,⋯,m}

(−1)∣J ∣+1v(⋁
j∈J

yj)

− ∑
∅≠R⊆{1,⋯,n}×{1,⋯,m}

(−1)∣R∣+1v(⋁
(i,j)∈R

xi ∨ yj) . (1)

Consider the definition of w(x̂1∪⋯∪ x̂n∪ ŷ1∪⋯∪ ŷm) as a sum. Its components
are associated with indices which either lie entirely within {1,⋯, n}, entirely
within {1,⋯,m}, or overlap both. Hence

w(x̂1 ∪⋯ ∪ x̂n ∪ ŷ1 ∪⋯ ∪ ŷm)

= ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I

xi) + ∑
∅≠J⊆{1,⋯,m}

(−1)∣J ∣+1v(⋁
j∈J

yj)

+ ∑
∅≠I⊆{1,⋯,n},∅≠J⊆{1,⋯,m}

(−1)∣I ∣+∣J ∣+1v(⋁
i∈I

xi ∨ ⋁
j∈J

yj) . (2)

Comparing (1) and (2), we require

− ∑
∅≠R⊆{1,⋯,n}×{1,⋯,m}

(−1)∣R∣+1v(⋁
(i,j)∈R

xi ∨ yj)

= ∑
∅≠I⊆{1,⋯,n},∅≠J⊆{1,⋯,m}

(−1)∣I ∣+∣J ∣+1v(⋁
i∈I

xi ∨ ⋁
j∈J

yj) . (3)

Observe that

⋁
(i,j)∈R

xi ∨ yj =⋁
i∈I

xi ∨ ⋁
j∈J

yj

when I = R1 =def {i ∈ I ∣ ∃j ∈ J. (i, j) ∈ R} and J = R2 =def {j ∈ J ∣ ∃i ∈ I. (i, j) ∈ R}
for a relation R ⊆ {1,⋯, n}×{1,⋯,m}. With this observation we see that equal-
ity (3) follows from the combinatorial lemma, Lemma 15.12 above. This shows
modularity.

Finally, we can extend w to all open sets by taking an open set U to
supb∈Bs& b⊆Uw(b). The verification that w is indeed a continuous valuation
extending v is now straightforward.

The above theorem also holds (with the same proof) for Scott domains. Now,
by [30], Corollary 4.3:

Theorem 15.14. For a configuration-valuation v on E there is a unique prob-
ability measure µv on the Borel subsets of C∞(E) extending wv.

234 CHAPTER 15. PROBABILISTIC STRATEGIES

Example 15.15. Consider the event structure comprising two concurrent events
e1, e2 with configuration-valuation v for which v(∅) = 1, v({e1}) = 1/3, v({e2}) =
1/2 and v({e1, e2}) = 1/12. This means in particular that there is a probability
of 1/3 of a result within the Scott open set consisting of both the configuration
{e1} and the configuration {e1, e2}. In other words, there is a probability of 1/3
of observing e1 (possibly with or possibly without e2). The induced probability
measure p assigns a probability to any Borel set, in this simple case any sub-
set of configurations, and is determined by its value on single configurations:
p(∅) = 1 − 4/12 − 6/12 + 1/12 = 3/12, p({e1}) = 4/12 − 1/12 = 3/12, p({e2}) =
6/12 − 1/12 = 5/12 and p({e1, e2}) = 1/12. Thus there is a probability of 3/12 of
observing neither e1 nor e2, and a probability of 5/12 of observing just the event

e2 (and not e1). There is a drop d
(0)
v [∅;{e1},{e2}] = 1−4/12−6/12+1/12 = 3/12

corresponding to the probability of remaining at the empty configuration and
not observing any event. Sometimes it’s said that probability “leaks” at the
empty configuration, but it’s more accurate to think of this leak in probability
as associated with a non-zero chance that the initial observation of no events
will not improve.

Example 15.16. Consider the event structure with events N+ with causal de-
pendency n ≤ n + 1, with all finite subsets consistent. It is not hard to check
that all subsets of C∞(N+) are Borel sets. Consider the ensuing probability
distributions w.r.t. the following configuration-valuations:
(i) v0(x) = 1 for all x ∈ C(N+). The resulting probability distribution assigns
probability 1 to the singleton set {N+}, comprising the single infinite configura-
tion N+, and 0 to ∅ and all other singleton sets of configurations.
(ii) v1(∅) = v1({1}) = 1 and v1(x) = 0 for all other x ∈ C(N+). The result-
ing probability distribution assigns probability 0 to ∅ and probability 1 to the
singleton set {1}, and 0 to all other singleton sets of configurations.
(iii) v2(∅) = 1 and v2({1,⋯, n}) = (1/2)n for all n ∈ N+. The resulting proba-
bility distribution assigns probability 1/2 to ∅ and (1/2)n+1 to each singleton
{{1,⋯, n}} and 0 to the singleton set {N+}, comprising the single infinite con-
figuration N+.

When x a finite configuration has v(x) > 0 and µv({x}) = 0 we can under-
stand x as being a transient configuration on the way to a final with probability
v(x). In general, there is a simple expression for the probability of terminating
at a finite configuration.

Proposition 15.17. Let E,v be a probabilistic event structure. For any finite
configuration y ∈ C(E), the singleton set {y} is a Borel subset with probability
measure

µv({y}) = inf{d(n)v [y;x1,⋯, xn] ∣ n ∈ ω & y ⊊ x1,⋯, xn ∈ C(E)} .

Proof. Let y ∈ C(E). Then {y} = ŷ ∖Uy is clearly Borel as Uy =def {x ∈ C∞(E) ∣ y ⊊ x}
is open. Let w be the continuous valuation extending v. Then

w(Uy) = sup{w(x̂1 ∪⋯ ∪ x̂n) ∣ y ⊊ x1,⋯, xn ∈ C(E)}

15.2. PROBABILITY WITH AN OPPONENT 235

as Uy is the directed union ⋃{x̂1 ∪⋯ ∪ x̂n ∣ y ⊊ x1,⋯, xn ∈ C(E)}. Hence

µv({y}) = v(y) −w(Uy) =v(y) − sup{w(x̂1 ∪⋯ ∪ x̂n) ∣ y ⊊ x1,⋯, xn ∈ C(E)}

=inf{v(y) − ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I

xi) ∣ y ⊊ x1,⋯, xn ∈ C(E)}

=inf{d(n)v [y;x1,⋯, xn] ∣ n ∈ ω & y ⊊ x1,⋯, xn ∈ C(E)} .

◻

Example 15.18. It might be thought that probabilistic event structures could
only capture discrete distributions. However consider the event structure rep-
resenting streams of 0’s and 1’s. We saw this earlier in Example 2.1. Its finite
configurations comprise the empty set and downwards-closures [s] of single event
occurrences s given by a finite sequence of 0’s and 1’s. Assign value 1 to the
empty configuration and 1/2n to a sequence s = (s1, s2,⋯, sn). Then all finite
configurations [s] are transient it the sense that the probability of ending up
at precisely the finite stream [s] is zero; all the probabilistic measure is con-
centrated on the maximal configurations, the infinite streams. On the maximal
configurations the probabilistic measure gives a continuous distribution with
zero probability of the result being any particular infinite stream.

Remark. There is perhaps some redundancy in the definition of purely proba-
bilistic event structures, in that there are two different ways to say, for example,
that events e1 and e2 do not occur together at a finite configuration y where

y
e1
−Ð⊂x1 and y

e2
−Ð⊂x2: either through {e1, e2} ∉ Con; or via the configuration-

valuation v through v(x1 ∪ x2) = 0. However, when we mix probability with
nondeterminism, as we do in the next section, we shall make use of both order-
consistency and the valuation.

15.2 Probability with an Opponent

Assume now that the events of the stable family or event structure carry a
polarity, + or −. Imagine the event structure or stable family represents a
strategy for Player. The Player cannot foresee what probabilities Opponent will
ascribe to moves under Opponent’s control. Nor, without information about the
stochastic rates of Player and Opponent can we hope to ascribe probabilities
to play outcomes in the presence of races. For this reason we shall restrict
probabilistic event structures with polarity to those which are race-free.

It will be convenient, more generally, to define a probabilistic stable family in
which some events are distinguished as Opponent events (where the other events
may be Player events or “neutral” events due to synchronizations between Player
and Opponent). Events which are not Opponent events we shall call p-events.
For configurations x, y we shall write x ⊆p y if x ⊆ y and y ∖ x contains no
Opponent events; we write x−⊂py when x−⊂y and x ⊆p y; we continue to write
x ⊆− y if x ⊆ y and y ∖ x comprises solely Opponent events.

236 CHAPTER 15. PROBABILISTIC STRATEGIES

Definition 15.19. We extend the notion of configuration-valuation to the sit-
uation where events carry polarities. Let F be a stable family F together with
a specified subset of its events which are Opponent events. A configuration-
valuation is a function v ∶ F → [0,1] for which v(∅) = 1,

x ⊆− y Ô⇒ v(x) = v(y) (1)

for all x, y ∈ F , and satisfies the “drop condition”

d(n)v [y;x1,⋯, xn] ≥ 0 (2)

for all n ∈ ω and y, x1,⋯, xn ∈ F with y ⊆p x1,⋯, xn.
The notion of probabilistic stable family thus extends to a stable family F to-

gether with a specified subset of Opponent events and a configuration-valuation
v ∶ F → [0,1]. The notion specialises to event structures with a distinguished
subset of Opponent events.

In particular, a probabilistic event structure with polarity comprises E an
event structure with polarity together with a configuration-valuation v ∶ C(E)→
[0,1].

Remark There is an equivalent way of presenting a configuration-valuation
for an event structure with polarity S as a family of conditional probabilities.
Define a familiy of conditional probabilities over S to comprise Prob(x ∣ y),
indexed by y ⊆+ x in C(S), such that

(i) Prob(y ∣ y) = 1 and x ↦ Prob(x ∣ y) satisfies the drop condition for x
s.t. y ⊆+ x in C(S);

(ii) Prob(w ∣ y) = Prob(w ∣ x)Prob(x ∣ y) if y ⊆+ x ⊆+ w in C(S);

(iii) Prob(x ∣ y) = Prob(x′ ∣ y′) if y ⊆+ x, y ⊆− y′ and x ∪ y′ = x′.

Given a configuration-valuation v we define Prob(x ∣ y) = v(x)/v(y) if v(y) ≠ 0
and to be 0 otherwise. Conversely, given a family of conditional probabilities,
as described above, first extend it by taking Prob(x ∣ y) = 1 for y ⊆− x. We then
obtain a configuration-valuation by defining

v(x) =def Prob(x1 ∣ x0)Prob(x2 ∣ x1)⋯Prob(xn ∣ xn−1)

w.r.t. a covering chain

∅ = x0−⊂x1−⊂x2−⊂⋯−⊂xn−1−⊂xn = x ;

by (ii) and (iii) the choice of covering chain does not affect the value assigned to
x. The two operations provide mutual inverses between configuration-valuations
and families of conditional probabilities provided they in addition satisfy

Prob(y ∣ ∅) = 0 & y ⊆+ x Ô⇒ Prob(x ∣ y) = 0 ,

15.2. PROBABILITY WITH AN OPPONENT 237

or, equivalently,

Prob(x1 ∣ y1) = 0 & y1 ⊆
+ x1 ⊆ y ⊆

+ x Ô⇒ Prob(x ∣ y) = 0 .

There is an analogous result for configuration-valuations for a stable family F
together with a specified subset of Opponent events.

As indicated above, the extra generality in the definition of a probabilistic
stable family with polarity is to cater for a situation later in which we shall
ascribe probabilities not only to results of Player moves but also to events aris-
ing as synchronizations between Player and Opponent moves. As earlier, by
Lemma 15.11(i), it suffices to verify the “drop condition” for p-covering inter-
vals.

Definition 15.20. Let A be a race-free event structure with polarity. A proba-
bilistic strategy in A comprises a probabilistic event structure S, v and a strategy
σ ∶ S → A. [By Lemma 5.7, S will also be race-free.]

Let A and B be a race-free event structures with polarity. A probabilistic
strategy from A to B comprises a probabilistic event structure S, v and a strategy
σ ∶ S → A⊥∥B.

We extend the usual composition of strategies to probabilistic strategies.
Assume probabilistic strategies σ ∶ S → A⊥∥B, with configuration-valuation
vS ∶ C(S) → [0,1], and τ ∶ T → B⊥∥C with configuration-valuation vT ∶ C(T) →
[0,1]. We first tentatively define their composition on stable families, taking
v ∶ C(T)⊛ C(S)→ [0,1] to be

v(x) = vS(π1x) × vT (π2x)

for x ∈ C(T)⊛ C(S).

Proposition 15.21. Let v ∶ C(T) ⊛ C(S) → [0,1] be defined as above. Then,
v(∅) = 0. If x ⊆− y in C(T)⊛ C(S) then v(x) = v(y).

Proof. Clearly,
v(∅) = vS(π1∅) × vT (π2∅) = 1 × 1 = 1 .

Assuming x−⊂−y in C(T)⊛C(S), then either x
(s,∗)
−Ð⊂ y, with s a −ve event of S, or

x
(∗,t)
−Ð⊂ y, with t a −ve event of T . Suppose x

(s,∗)
−Ð⊂ y, with s −ve. Then π1x

s
−Ð⊂π1y,

where as s is −ve, vS(π1x) = vS(π1y). In addition, π2x = π2y so certainly
vT (π2x) = vT (π2y). Combined these two facts yield v(x) = v(y). Similarly,

x
(∗,t)
−Ð⊂ y, with t −ve, implies v(x) = v(y). As x ⊆− y is obtained via the reflexive

transitive closure of −⊂− it entails v(x) = v(y), as required.

But of course we need to check that v is indeed a configuration-valuation.
For this it remains to show that v satisfies the “drop condition.” For this we
need only consider covering intervals, by Lemma 15.11(i).

238 CHAPTER 15. PROBABILISTIC STRATEGIES

Lemma 15.22. Let y, x1,⋯, xn ∈ C(T)⊛C(S) with y−⊂px1,⋯, xn. Assume that
π1y−⊂

+π1xi when 1 ≤ i ≤ m and π2y−⊂
+π2xi when m + 1 ≤ i ≤ n. Then in

C(T)⊛ C(S), v,

d(n)v [y;x1,⋯, xn] = d
(m)
vS

[π1y;π1x1,⋯, π1xm] × d(n−m)
vT

[π2y;π2xm+1,⋯, π2xn] .

Proof. Under the assumptions of the lemma, by proposition 15.3,

d(m)
vS

[π1y;π1x1,⋯, π1xm] = vS(π1y) −∑
I1

(−1)∣I1∣+1vS(⋃
i∈I1

π1xi) ,

where I1 ranges over sets satisfying ∅ ≠ I1 ⊆ {1,⋯,m} s.t. {π1xi ∣ i ∈ I1} ↑.
Similarly,

d(n−m)
vT

[π2y;π2xm+1,⋯, π2xn] = vT (π2y) −∑
I2

(−1)∣I2∣+1vT (⋃
i∈I2

π2xi) ,

where I2 ranges over sets satisfying ∅ ≠ I2 ⊆ {m + 1,⋯, n} s.t. {π2xi ∣ i ∈ I2}↑.
Note, by strong receptivity of τ , that when ∅ ≠ I1 ⊆ {1,⋯,m},

{π1xi ∣ i ∈ I1}↑ in C(S) iff {xi ∣ i ∈ I1}↑ in C(T)⊛ C(S)

and, similarly by strong receptivity of σ, when ∅ ≠ I2 ⊆ {m + 1,⋯, n},

{π2xi ∣ i ∈ I2}↑ in C(T) iff {xi ∣ i ∈ I2}↑ in C(T)⊛ C(S) .

Hence

⋃
i∈I1

π1xi = π1 ⋃
i∈I1

xi and ⋃
i∈I2

π2xi = π2 ⋃
i∈I2

xi .

Making these rewrites and taking the product

d(m)
vS

[π1y;π1x1,⋯, π1xm] × d(n−m)
vT

[π2y;π2xm+1,⋯, π2xn] ,

we obtain

vS(π1y) × vT (π2y) −∑
I2

(−1)∣I2∣+1 vS(π1y) × vT (π2 ⋃
i∈I2

xi)

−∑
I1

(−1)∣I1∣+1 vS(π1 ⋃
i∈I1

xi) × vT (π2y)

+ ∑
I1,I2

(−1)∣I1∣+∣I2∣ vS(π1 ⋃
i∈I1

xi) × vT (π2 ⋃
i∈I2

xi) .

But at each index I2,
vS(π1y) = vS(π1 ⋃

i∈I2

xi)

as π1y ⊆
− π1⋃i∈I2 xi. Similarly, at each index I1,

vT (π2y) = vT (π2 ⋃
i∈I1

xi) .

15.2. PROBABILITY WITH AN OPPONENT 239

Hence the product becomes

vS(π1y) × vT (π2y) −∑
I2

(−1)∣I2∣+1 vS(π1 ⋃
i∈I2

xi) × vT (π2 ⋃
i∈I2

xi)

−∑
I1

(−1)∣I1∣+1 vS(π1 ⋃
i∈I1

xi) × vT (π2 ⋃
i∈I1

xi)

+ ∑
I1,I2

(−1)∣I1∣+∣I2∣ vS(π1 ⋃
i∈I1

xi) × vT (π2 ⋃
i∈I2

xi) .

To simplify this further, we observe that

{xi ∣ i ∈ I1}↑ & {xi ∣ i ∈ I2}↑ ⇐⇒ {xi ∣ i ∈ I1 ∪ I2}↑ .

The “⇐” direction is clear. We show “⇒.” Assume {xi ∣ i ∈ I1}↑ and {xi ∣ i ∈ I2}↑.
We obtain {π1xi ∣ i ∈ I1}↑ and {π1xi ∣ i ∈ I2}↑ as the projection map π1 preserves
consistency. Hence ⋃i∈I1 π1xi and ⋃i∈I2 π1xi are configurations of S. Further-
more, by assumption,

π1y ⊆
+
⋃
i∈I1

π1xi and π1y ⊆
−
⋃
i∈I2

π1xi .

As S, a strategy over the race-free game A⊥∥B, is automatically race-free—
Lemma 5.7—we obtain

⋃
i∈I1∪I2

π1xi ∈ C(S)

by Proposition 5.5. Similarly, because T is race-free, we obtain

⋃
i∈I1∪I2

π2xi ∈ C(T) .

Together these entail

⋃
i∈I1∪I2

xi ∈ C(T)⊛ C(S) ,

i.e. {xi ∣ i ∈ I1 ∪ I2}↑, as required. Notice too that

π1 ⋃
i∈I1

xi ⊆
− π1 ⋃

i∈I1∪I2

xi and π2 ⋃
i∈I2

xi ⊆
− π2 ⋃

i∈I1∪I2

xi ,

which ensure

vS(π1 ⋃
i∈I1

xi) = vS(π1 ⋃
i∈I1∪I2

xi) and vT (π2 ⋃
i∈I2

xi) = vT (π2 ⋃
i∈I1∪I2

xi) ,

so that
v(⋃
i∈I1∪I2

xi) = vS(π1 ⋃
i∈I1

xi) × vT (π2 ⋃
i∈I2

xi) .

We can now further simplify the product to

v(y) −∑
I2

(−1)∣I2∣+1 v(⋃
i∈I2

xi)

−∑
I1

(−1)∣I1∣+1 v(⋃
i∈I1

xi)

+ ∑
I1,I2

(−1)∣I1∣+∣I2∣ v(⋃
i∈I1∪I2

xi) .

240 CHAPTER 15. PROBABILISTIC STRATEGIES

Noting that any subset I for which ∅ ≠ I ⊆ {1,⋯, n} either lies entirely within
{1,⋯,m}, entirely within {m + 1,⋯, n}, or properly intersects both, we have
finally reduced the product to

v(y) −∑
I

(−1)∣I ∣+1v(⋃
I

xi) ,

with indices those I which satisfy ∅ ≠ I ⊆ {1,⋯, n} s.t. {xi ∣ i ∈ I}↑, i.e. the

product reduces to d
(n)
v [y;x1⋯, xn] as required.

Corollary 15.23. The assignment (vT ⊛ vS)(x) =def vS(π1x) × vT (π2x) to
x ∈ C(T)⊛C(S) yields a configuration-valuation on the stable family C(T)⊛C(S).

Proof. From Proposition15.21 we have requirement (1); by Lemma 15.11(i) we
need only verify requirement (2), the ‘drop condition,’ for p-covering intervals,
which we can always permute into the form covered by Lemma 19.4—any p-
event of C(T)⊛ C(S) has a +ve component on one and only one side.

Example 15.24. The assumption that games are race-free is needed for Corol-
lary 19.5. Consider the composition of strategies σ ∶ ∅ + //B and τ ∶ B + //∅
where B is the game comprising the two moves ⊞ and ⊟ in conflict with each
other—a game with a race. Suppose σ assigns probability 1 to playing ⊞ and τ
assigns probability 1 to playing ⊟, in the dual game. Then the “drop condition”
required for the corollary fails.

We can now complete the definition of the composition of probabilistic strate-
gies:

Lemma 15.25. Let A, B and C be race-free event structure with polarity. Let
σ ∶ S → A⊥∥B, with configuration-valuation vS ∶ C(S) → [0,1], and τ ∶ T →
B⊥∥C with configuration-valuation vT ∶ C(T) → [0,1] be probabilistic strate-
gies. Assigning (vT⊙vS)(x) =def vS(Π1x) × vT (Π2x) to x ∈ C(T⊙S) yields a
configuration-valuation on T⊙S which with τ⊙σ ∶ T⊙S → A⊥∥C forms a proba-
bilistic strategy from A to C.

Proof. We need to show that the assignment w(x) =def vS(Π1x)×vT (Π2x) to x ∈
C(T⊙S) is a configuration-valuation on T⊙S. We use that v(z) =def vS(π1z) ×
vT (π2z), for z ∈ C(T)⊛ C(S), is a configuration-valuation on C(T)⊛ C(S)

Recalling, for x ∈ C(T⊙S), that ⋃x ∈ C(T) ⊛ C(S) with Π1x = π1⋃x and
Π2x = π2⋃x, we obtain

w(x) =def vS(Π1x) × vT (Π2x) = vS(π1⋃x) × vT (π2⋃x) = v(⋃x) .

Consequently,
w(∅) = v(⋃∅) = v(∅) = 1 .

The function w inherits requirement (1) to be a configuration-valuation from
v because

x
p

−Ð⊂ y with p −ve in T⊙S implies ⋃x
top(p)
−Ð⊂ ⋃ y with top(p) −ve in C(T) ⊛

C(S).

15.2. PROBABILITY WITH AN OPPONENT 241

To see this observe that top(p) either has the form (s,∗) or (∗, t). Suppose
top(p) = (∗, t). Suppose e _⋃y (∗, t). Then, by Lemma 3.27,

either (i) e = (s′, t′) and t′ _T t or (ii) e = (∗, t′) and t′ _T t.

But (i) would violate the −-innocence of τ . Hence (ii) and being ‘visible’ the
prime [e]⋃y ∈ x ensuring e ∈ ⋃x. As all _⋃y-predecessors of (∗, t) are in ⋃x

we obtain ⋃x
(∗,t)
−Ð⊂ ⋃ y. The proof in the case where top(p) = (s,∗) is similar.

Similarly, w inherits requirement (2) from v, as w.r.t. w,

d(n)w [y;x1,⋯, xn] = w(y) −∑
I

(−1)∣I ∣+1w(⋃
i∈I

xi)

= v(⋃ y) −∑
I

(−1)∣I ∣+1v(⋃⋃
i∈I

xi)

= v(⋃ y) −∑
I

(−1)∣I ∣+1v(⋃
i∈I

(⋃xi))

≥ 0 ,

whenever y ⊆+ x1,⋯, xn in C(T⊙S). (Above, the index I ranges over sets satis-
fying ∅ ≠ I ⊆ {1,⋯, n} s.t. {xi ∣ i ∈ I}↑.)

A copy-cat strategy is easily turned into a probabilistic strategy, as is any
deterministic strategy:

Lemma 15.26. Let S be a deterministic event structure with polarity. Defining
vS ∶ C(S) → [0,1] to satisfy vS(x) = 1 for all x ∈ C(S), we obtain a probabilistic
event structure with polarity.

Proof. Clearly

x ⊆− y Ô⇒ vS(x) = vS(y) = 1

for all x, y ∈ C(S). As S is deterministic,

y ⊆+ x & y ⊆+ x′ Ô⇒ x ∪ x′ ∈ C(S) ,

for all y, x, x′ ∈ C(S). For the remaining requirement, a simple induction shows
that for all n ≥ 1,

d(n)v [y;x1,⋯, xn] = 0

whenever y ⊆+ x1,⋯, xn. The basis, when n = 1, is clear as

d(1)v [y;x] = vS(y) − vS(x) = 1 − 1 = 0

when y ⊆+ x. For the induction step, assuming y ⊆+ x1,⋯, xn with n > 1,

d(n)v [y;x1,⋯, xn] = d
(n−1)
v [y;x1,⋯, xn−1]−d

(n−1)
v [xn;x1∪xn,⋯, xn−1∪xn] = 0−0 = 0 ,

from the induction hypothesis.

242 CHAPTER 15. PROBABILISTIC STRATEGIES

Definition 15.27. We say a probabilistic event structure with polarity is de-
terministic when its configuration valuation assigns 1 to every finite configu-
ration (provided it is race-free it will necessarily also be deterministic as an
event structure with polarity—see the proposition immediately below). We say
a probabilistic strategy σ ∶ S → A with configuration-valuation v on C(S) is
deterministic when the probabilistic event structure S, v is deterministic.

Proposition 15.28. If a race-free probabilistic event structure with polarity is
deterministic, as defined above, then the event structure with polarity itself is
deterministic.

Proof. Assume S, v, a race-free probabilistic event structure with polarity, is

deterministic, as defined above. Suppose y
+

−Ð⊂x1 and y
+

−Ð⊂x2. We must have
x1 ↑ x2 as otherwise the drop condition would be violated. This with race-
freeness implies that the event structure with polarity S itself is deterministic
by Lemma 5.1.

Recall that race-freeness of a game A ensures that CCA is deterministic.
Hence as a direct corollary of Lemma 15.26:

Corollary 15.29. Let A be a race-free game. The copy-cat strategy from A to
A comprising ccA ∶ CCA → A⊥∥A with configuration-valuation vCCA ∶ C(CCA) →
[0,1] satisfying vCCA(x) = 1, for all x ∈ C(CCA), forms a probabilistic strategy.

Example 15.30. Let A be the empty game ∅, B be the game consisting of
two concurrent +ve events b1 and b2, and C the game with a single +ve event
c. We illustrate the composition of two probabilistic strategies σ ∶ ∅ + //B and
τ ∶ B + //C.

S

σ

��

⊞_

��

⊞_

��
B b1 b2

T

τ

��

⊟_

��

⊟
� ,,2

_

��

⊞_

��
B⊥∥C b1 b2 c

The strategy σ plays b1 with probability 2/3 and b2 with probability 1/3 (and
plays both with probability 0). The strategy τ does nothing if just b1 is played
and plays the single +ve event c of C with probabilty 1/2 if b2 is played. Their
composition yields the strategy τ⊙σ ∶ ∅ + //C which plays c with probability
1/6, so has a 5/6 chance of doing nothing.

The example illustrates how through probability we can track the presence of
terminal configurations within a set of results despite their not being ⊆-maximal.
The empty configuration is such a terminal configuration; it could be the final
result of the composition as could the configuration {c}. Such terminal but in-
complete results can appear in a composition of strategies through the strategies
being partial, in that one or both strategies do not respond in all cases—the
example above. Such partial strategies can appear as the composition of two
strategies through the occurrence of deadlocks because the two strategies impose
incompatible causal dependencies on moves in game at which they interact. ◻

15.3. 2-CELLS, A BICATEGORY 243

Remark on schedulers Often in compositional treatments of probabilistic
processes one sees a use of “schedulers” to “resolve the nondeterminism” due to
openness to the environment [?]. Here the use of schedulers is replaced by that
of counterstrategy to resolve the nondeterminism. The counterstrategy may
be deterministic (so straightforwardly a deterministic probabilistic strategy), in
which case it resolves the nondeterminism by selecting at most one play for
Opponent.

15.3 2-cells, a bicategory

We have thus extended composition of strategies to composition of probabilistic
strategies. This doesn’t yet yield a bicategory of probabilistic strategies. The
extra structure of configuration-valuations in strategies has to be respected in
our choice of 2-cell. The investigation of a suitable notion of 2-cell is the subject
of the next section.

We first look for an analogue of the well-known result allowing a probability
distribution to be pushed forward across an continuous (or measurable) function.
This is not immediate as the configuration-valuations associated with strategies
take account of Opponent moves so do not correspond to traditional probability
distributions.

Example 15.31. It seems impossible to push forward configuration valuations
across arbitrary 2-cells. For example, consider the game A comprising two
conflicting Opponent move and one Player move:

⊞

⊟1 ⊟2 .

Let one probabilistic strategy comprise

⊞1 ⊞2

⊟1

_LLR

⊟2

_LLR

with obvious map σ, where the left Player move occurs with probability p1 and
the Player move on the right with probability p2 according to a configuration-
valuation v, i.e. v({⊟1,⊞1}) = p1 and v({⊟2,⊞2}) = p2. Take another strategy
to be the identity map A to A. It seems compelling to make the push forward
of v across σ assign p1 to the configuration {⊟1,⊞} and p2 to the configuration
{⊟2,⊞}. What value should the push forward of v assign to the configuration
{⊞}? Because configuration-valuations are invariant under Opponent moves, it
has to be simultaneously p1 and p2 —impossible if p1 ≠ p2.

We shall now show the following theorem showing how to push forward
configuration valuations across maps which are both rigid and receptive; in par-
ticular it will allow us to push forward a configuration valuation across a rigid

244 CHAPTER 15. PROBABILISTIC STRATEGIES

map between strategies.2

Theorem15.34. Let f ∶ S → S′ be a receptive and rigid map between event
structures with polarity. Let v be a configuration-valuation on S. Then, taking

v′(y) =def ∑
x∶fx=y

v(x)

for y ∈ C(S′), defines a configuration-valuation, written fv, on S′. (An empty
sum gives 0 as usual.)

The proof of the theorem proceeds in the following steps, needed to cope
with the fact sums can be infinite while also involving negative terms.

Lemma 15.32. Let f ∶ S → S′ be a receptive and rigid map between event
structures with polarity. Let v be a configuration-valuation on S. Then, taking

v′(y) =def ∑
x∶fx=y

v(x)

we have v′(y) ∈ [0,1], for y ∈ C(S′). Moreover, v′(∅) = 1 and y ⊆− y′ in C(S′)
implies v′(y) = v′(y′).

Proof. We check that for y ∈ C(S′) the assignment v′(y) is in [0,1]. Choose a
covering chain

∅
t1
−Ð⊂ y1

t2
−Ð⊂⋯

tn
−Ð⊂ yn = y

up to y. As f is rigid for each x ∈ C(S) s.t. fx = y there is a corresponding
covering chain

∅
s1
−Ð⊂x1

s2
−Ð⊂⋯

sn
−Ð⊂xn = x

with f(si) = ti for 0 < i ≤ n. Consider the tree with sub-branches all initial
sub-chains of covering chains up to each x s.t. fx = y; the tree has the empty
covering chain as its root and configurations x, where fx = y, as its maximal
nodes. Because f is receptive the tree only branches at its +ve coverings,
associated with different, possibly infinitely many, si which map to a +ve event
ti. The corresponding configurations xi are pairwise incompatible. Although
such configurations xi may form an infinite set, by the drop condition for v,
the values of any finite subset will have sum less than or equal to v(xi−1), a
property which must therefore also hold for the sum of values of all the xi. The
value remains constant across any −ve event. Hence, working up the tree from
the root we obtain that ∑x∶fx=y v(x) ≤ 1.

Clearly, v′(∅) = v(∅) = 1. Suppose y ⊆− y′ in C(S′). From the properties
of f , x s.t. fx = y determines a unique x′ s.t. x ⊆− x′ and fx′ = y′, and vice
versa; in this correspondence v(x) = v(x′), as v is a configuration-valuation.
Consequently, the sums yielding v′(y) and v′(y′) have the same component
values and are the same.

2An alternative, more general proof, for edc strategies, is given later—see Theorem 20.6.

15.3. 2-CELLS, A BICATEGORY 245

For v′ to be a configuration valuation it remains to verify that v′ satisfies
the +ve drop condition. We first show this for a special case:

Lemma 15.33. Let f ∶ S → S′ be a receptive and rigid map between event
structures with polarity. Assume that S has only finitely many +ve events.
Then, v′ as defined above in Lemma 15.32 is a configuration valuation.

Proof. Suppose y
+

−Ð⊂ y1,⋯, yn. We claim that

d
(n)
v′ [y; y1,⋯, yn] = ∑

x∶fx=y

d(n)v [x;X(x)]

so is non-negative, where

X(x) =def {x′ ∣ x−⊂x′ & fx′ ∈ {y1,⋯, yn}} .

The notation d
(n)
v [x;X(x)] is justifiable as the drop function is invariant under

permutation and repetition of arguments. Recall

d
(n)
v′ [y; y1,⋯, yn] =def v

′(y) − ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v′(⋁
i∈I

yi) .

The claim follows because by the rigidity of f any non-zero contribution

(−1)∣I ∣+1v′(⋃
i∈I

yi)

is the sum of contributions

(−1)∣I ∣+1v(⋃
i∈I

xi) ,

a summand of d
(n)
v [x;X(x)], over x s.t. there are xi ∈ X(x) with fxi = yi for

all i ∈ I.

We can now complete the proof of the theorem.

Theorem 15.34. Let f ∶ S → S′ be a receptive and rigid map between event
structures with polarity. Let v be a configuration-valuation on S. Then, taking

v′(y) =def ∑
x∶fx=y

v(x)

for y ∈ C(S′), defines a configuration-valuation, written fv, on S′.

Proof. We use a slight variation on the ⊴ approximation order between event
structures from [4, 2]. We write S0 ⊴ S1 to mean there is a receptive rigid in-
clusion map between event structures with polarity from S0 to S1. Together all

246 CHAPTER 15. PROBABILISTIC STRATEGIES

S0 ⊴ S where S0 has finitely many +-events form a directed subset of approx-
imations to S; their ⊴-least upper bound is S got as their union. Such S0 are
associated with receptive rigid maps f0 ∶ S0 → S′ got as restrictions of f ,

S
f // S′

S0

f0

>>

?�

OO

and configuration-valuations vS0 got as restrictions v.

Let y
+

−Ð⊂ y1,⋯, yn in C(S′). We claim that

dv[y; y1,⋯, yn] = lim
S0⊴S

dS0[y; y1,⋯, yn] (†)

i.e., that dv[y; y1,⋯, yn] is the limit of dS0[y; y1,⋯, yn], the drop functions got
by pushing forward vS0 along f0 to a configuration-valuation for S′—justified
by Lemma 15.33.

Let ε > 0. For each I ⊆ {1,⋯, n} there is large enough SI ⊴ S s.t. for all
⊴-larger S0,

0 ≤ v(⋁
i∈I

yi) − vS0(⋁
i∈I

yi) ≤ ε/2
n .

(When I = ∅ take ⋁i∈I yi = y.) Taking S1 to be ⊴-larger than all SI where
I ⊆ {1,⋯, n}, we get for all S2 with S1 ⊴ S2 that

∣dv[y; y1,⋯, yn] − d
S2[y; y1,⋯, yn]∣ < 2nε/2n = ε .

As ε was arbitrary we deduce (†), ensuring dv[y; y1,⋯, yn] ≥ 0, as required.

Consequently, we can push forward a configuration-valuation across a rigid
2-cell between strategies—recall that 2-cells are automatically receptive. Given
this it is sensible to adopt the following definition of 2-cell between probabilistic
strategies. A 2-cell from a probabilistic strategy v, σ ∶ S → A⊥∥B to a proba-
bilistic strategy v′, σ′ ∶ S′ → A⊥∥B is a rigid map f ∶ S → S′ for which both
σ = σ′f and the push-forward fv ≤ v′, i.e. for any finite configuration of S′ the
value (fv)(x) ≤ v′(fx).

Such 2-cells include receptive rigid embeddings f which preserve the value
assigned by configuration-valuations, so (fv)(x) = v′(fx) when x ∈ C(S); notice
that the push-forward fv will assign value 0 to any configuration not in the
image of f , so not impose any additional constraint on the values v′ takes outside
the image of f . Rigid embeddings, first introduced by Kahn and Plotkin [31]
provide a method for defining strategies recursively. One way to characterize
those maps f ∶ S → S′ of event structures which are rigid embeddings is as
injective functions on events for which the inverse relation fop is a (partial)
map of event structures fop ∶ S′ → S.

In turn, 2-cells based on rigid embeddings include as special case that in
which the function f is an inclusion. Receptive rigid embeddings which are in-
clusions give a (slight variant on a) well-known approximation order ⊴ on event

15.3. 2-CELLS, A BICATEGORY 247

structures. The order ⊴ forms a ‘large cpo’ and is useful when defining event
structures recursively [4, 2]. With some care in choosing the precise construc-
tion of composition it provides an enrichment of probabilistic strategies and an
elementary technique for defining probabilistic strategies recursively. Spelt out,
when v, σ ∶ S → A⊥∥B and v′, σ′ ∶ S′ → A⊥∥B are probabilistic strategies, we
write

(v, σ) ⊴ (v′, σ′)

iff S ⊴ S′, the associate inclusion map i ∶ S ↪ S′ makes σ = σ′i and v(x) = v′(x)
for all x ∈ C(S). There can be many different, though isomorphic, ⊴-minimal
probabilistic strategies, differing only in their choices of initial −-events; to be
receptive they must start with copies of initial −-events of the game. Any chain

(v0, σ0) ⊴ (v1, σ1) ⊴ ⋯ ⊴ (vn, σn) ⊴ ⋯

has a least upper bound got by taking the union of the event structures.
We now show that 2-cells between probabilistic strategies compose horizon-

tally.
First, recall from Section 4.3.2, the concrete way to define composition of

strategies σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C as τ⊙σ ∶ T⊙S → A⊥∥C where

T⊙S = (S × T ↾R) ↓ V

for suitable restricting set R and projecting set V ; from Section 4.3.3 that
T ⊛ S =def (S × T ↾ R) can be characterised as a pullback of total maps. We
observed in Section 4.5 that composition sends two rigid cells f ∶ σ ⇒ σ′ and
g ∶ τ ⇒ τ ′ to a rigid 2-cell g⊙f ∶ τ⊙σ → τ ′⊙σ′.

For probabilistic strategies vS , σ ∶ S → A⊥∥B and vT , τ ∶ T → B⊥∥C we
write vT⊙vS , respectively, vT ⊛ vS for the configuration-valuations on T⊙S and
T ⊛ S in the composition (vT , τ)⊙(vS , σ) and the composition without hiding
(vT , τ)⊛ (vS , σ). Recalling how vT ⊛ vS is defined, we imediately obtain

(vT ⊛ vS((x) = vT (Π2x) × vS(Π1x) ,

for x ∈ C(T ⊛ S), and from how vT⊙vS is defined, that

(vT⊙vS)(y) = (vT ⊛ vS)([y]T⊛S) ,

for y ∈ C(T⊙S).
To show that 2-cells compose functorially we must first attend to how configuration-

valuations are pushed forward by composition on 2-cells.

Lemma 15.35. Let f ∶ σ → σ′ be a rigid 2-cell between strategies σ ∶ S → A⊥∥B
and σ′ ∶ S′ → A⊥∥B. Let g ∶ τ → τ ′ be a rigid 2-cell between strategies τ ∶ T →
B⊥∥C and τ ′ ∶ T ′ → B⊥∥C. Let vS be a configuration-valuation for S and vT a
configuration-valuation for T . Then,

(g⊙f)(vT⊙vS) = (gvT)⊙(fvS)

and
(g ⊛ f)(vT ⊛ vS) = (gvT)⊛ (fvS) .

248 CHAPTER 15. PROBABILISTIC STRATEGIES

Proof. We first consider composition without hiding and lay out the relevant
maps:

S

f

��

T ⊛ S
Π1oo

g⊛f

��

Π2 // T

g

��
S′ T ′ ⊛ S′

Π′

1

oo
Π′

2

// T ′

The push-forward configuration-valuation (g⊛f)(vT ⊛vS) at x′ ∈ C(T ′⊛S′)
has value

((g ⊛ f)(vT ⊛ vS))(x
′) = ∑

x∶g⊛fx=x′
(vT ⊛ vS)(x) .

Because f and g are rigid, configurations x ∈ C(T ⊛ S) such that (g ⊛ f)x = x′

are in 1-1 correspondence with pairs x1 ∈ C(S), x2 ∈ C(T) such that fx1 = Π′
1x

′

and gx2 = Π′
2x

′; the correspondence takes x to the pair Π1x, Π2x. (Clearly, if
(g⊛f)x = x′ then x1 = Π1x satisfies fx1 = Π′

1x
′ and x2 = Π2x satisfies gx2 = Π′

2x
′;

the converse holds because by rigidity the pairing x′ determines between Π′
1x

′

and Π′
2x

′ copies to a pairing between x1 and x2, yielding a configuration x.)
Consequently,

((g ⊛ f)(vT ⊛ vS))(x
′) = ∑

x∶(g⊛f)x=x′
(vT ⊛ vS)(x)

= ∑
x∶(g⊛f)x=x′

vS(Π1x) × vT (Π2x)

= ∑
x1∶fx1=Π′

1x
′

vS(x1) × ∑
x2∶gx2=Π′

2x
′

vT (x2)

= (fvS)(Π
′
1x

′) × (gvT)(Π
′
2x

′)

= ((gvT)⊛ (fvS))(x
′) ,

showing (g ⊛ f)(vT ⊛ vs) = (gvT)⊛ (fvS), as required.
The configuration-valuation vT⊙vS of T⊙S is given by

(vT⊙vS)(y) = (vT ⊛ vS)([y]T⊛S)

for all y ∈ C(T⊙S). The map g⊙f acts on y ∈ C(T⊙S) so

(g⊙f)y = (g ⊛ f)[y]T⊛S .

(For readability, in the following we shall suppress the subscripts specifying the
event structure within which the down-closure is taking place.)

On y′ ∈ C(T ′⊙S′) the push-forward of (vT⊙vS) yields

((g⊙f)(vT⊙vS))(y
′) = ∑

y∶(g⊙f)y=y′
(vT⊙vS)(y) .

However, y ∈ C(T⊙S) such that (g⊙f)y = y′ are in 1-1 correspondence with
x ∈ C(T ⊛ S) such that (g ⊛ f)x = [y′]; the correspondence takes y ∈ C(T⊙S)

15.3. 2-CELLS, A BICATEGORY 249

to [y] ∈∈ C(T ⊛ S). (This is because g ⊛ f is rigid and g⊙f is the restriction of
g ⊛ f to ‘visible’ events.) Hence

((g⊙f)(vT⊙vS))(y
′) = ∑

y∶(g⊙f)y=y′
(vT⊙vS)(y)

= ∑
x∶(g⊛f)x=[y′]

(vT ⊛ vS)(x)

= ((g ⊛ f)(vT ⊛ vS))([y
′])

= ((gvT)⊛ (fvS))([y
′])

= ((gvT)⊙(fvS))(y
′) ,

as required to show (g⊙f)(vT⊙vS) = (gvT)⊙(fvS).

Lemma 15.36. Composition of probabilistic strategies is functorial w.r.t. 2-
cells, and functorial w.r.t. those 2-cells which are rigid embeddings.

Proof. In the absence of probability we have functoriality. We need to check that
the extra constraints on 2-cells between probabilistic strategies are respected by
composition. Let f ∶ (vS , σ) ⇒ (vS′ , σ

′) and g ∶ (vT , τ) ⇒ (vT ′ , τ
′) be 2-cells

between probabilistic strategies. We adopt the convention that for instance σ
has the form σ ∶ S → A⊥∥B with a configuration-valuation vS on S. We need to
check that

((g⊙f)(vT⊙vS))(y
′) ≤ (vT ′⊙vS′)(y

′) ,

for all y′ ∈ C(T ′⊙S′).
We first consider composition without hiding where the relevant map is g⊛f ,

making the following diagram commute:

S

f

��

T ⊛ S
Π1oo

g⊛f

��

Π2 // T

g

��
S′ T ′ ⊛ S′

Π′

1

oo
Π′

2

// T ′

We require that

((g ⊛ f)(vT ⊛ vS))(x
′) ≤ (vT ′ ⊛ vS′)(x

′)

for all configurations x′ of T ′⊛S′. But, by Lemma 15.35, letting x′ ∈ C(T ′⊛S′),
we see

((g ⊛ f)(vT ⊛ vS))(x
′) = ((gvT)⊛ (fvS))(x

′)

= (gvT)(Π2x
′) × (fvS)(Π1x

′)

≤ vT ′(Π2x
′) × vS′(Π1x

′)

= (vT ′ ⊛ vS′)(x
′) .

On y′ ∈ C(T ′⊙S′) we require

((g⊙f)(vT⊙vS))(y
′) ≤ (vT ′⊙vS′)(y

′) .

250 CHAPTER 15. PROBABILISTIC STRATEGIES

However,
((g⊙f)(vT⊙vS))(y

′) = ((gvT)⊙(fvS))(y
′)

= ((gvT)⊛ (fvS))([y
′])

= ((g ⊛ f)(vT ⊛ vS))([y
′])

≤ (vT ′ ⊛ vS′)([y
′])

= (vT ′⊙vS′)(y
′) .

It has been long established that operations of traditional process algebras
preserve rigid embeddings. From [4] we obtain that the operation T ⊛ S is
functorial w.r.t. rigid embeddings. (In fact, in [4] the stronger result is shown
that the operations preserve, and are continuous, w.r.t. ⊴, rigid embedding
which are inclusions.) Projection is not considered there. However, in general if
f ∶ S → S′ is a rigid embedding of event structures and subsets V ⊆ E, V ′ ⊆ E′

satisfy
e ∈ V ⇐⇒ f(e) ∈ V ′ , for all e ∈ E ,

then f ↾V ∶ E ↓ V → E′ ↓ V ′ is a rigid embedding. For this reason T⊙S abtained
from T ⊛ S by projection is also functorial w.r.t. rigid embeddings.

Combining the results of this section:

Theorem 15.37. Race-free games with probabilistic strategies with composi-
tion and copy-cat defined as in Lemma 15.25 and Corollary 15.29 inherit the
structure of a a bicategory from that of games with strategies. 2-cells between
probabilistic strategies are now restricted to rigid maps satisfying the conditions
explained above. The bicategory restricts to one in which the cells are rigid
embeddings.

Important remark There is a more general definition of 2-cell for probabilistic
strategies pointed out by Hugo Paquet, a definition which has the advantage of
being strictly more general in that it does not require the underlying 2-cell on
strategies be rigid. According to this definition, a 2-cell f ∶ σ, v⇒ σ′, v′ between
probabilistic strategies σ ∶ S → A with configuration valuation v and σ ∶ S → A
with configuration valuation v′ is a two cell f ∶ σ⇒ σ′ of strategies for which

v(x) ≤ v′(fx)

for all x ∈ C(S). This definition is strictly more general than the rigid 2-cell
used for most of this section; a rigid 2-cells is one of this more general kind
by the following argument. Suppose f ∶ σ, v ⇒ σ′, v′ is a rigid 2-cell between
probabilistic strategies, i.e. such that the push forward fv is less than or equal
to v′, pointwise, i.e.

(fv)(y) =def ∑
x′∶fx′=y

≤ v′(y)

on y ≤ C(S)′. Then certainly, for x ∈ C(S),

v(x) ≤ ∑
x′∶fx′=fx

= (fv)(fx) ≤ v′(fx) ,

as required of a 2-cell according to the more general definition.

15.3. 2-CELLS, A BICATEGORY 251

15.3.1 A category of probabilistic rigid-image strategies

We extend the results of Section 4.6 on rigid-image strategies to probabilistic
rigid-image strategies. We show here that the order-enriched category Strat0

of rigid-image strategies supports probability to give us an order-enriched cat-
egory of probabilistic rigid-image strategies. A probabilistic rigid-image strat-
egy over a game A comprises a rigid-image strategy σ ∶ S → A together with
a configuration-evaluation v for S. Given probabilistic rigid image strategies
vS , σ ∶ S → A⊥∥B and vT , τ ∶ T → B⊥∥C their composition comprises (τ⊙σ)0 ∶
(T⊙S)0 → A⊥∥C, the rigid image of τ⊙σ, with configuration-valuation (vT⊙vS)0

the push-forward along the map T⊙S → (T⊙S)0 to the rigid image of the con-
figuration valuation vT⊙vS .

Taking rigid images yields a functor from the bicategory of probabilistic
strategies to the order-enriched category of probabilistic rigid-image strategies.
A strategy σ ∶ S → A has a rigid image comprising

S

σ
��

f0 // // S0

σ0

��
A

where f0 is rigid epi and σ0 is a strategy with universal property:

S

f0

##

σ
��

f // // S′

σ′

��

// S0

σ0
~~

A

A probabilistic strategy σ ∶ S → A with configuration-valuation v of S has rigid
image the probabilistic strategy σ0 ∶ S0 → A with configuration-valuation the
push-forward v0 =def f0v. As could be hoped, the determination of the proba-
bilistic rigid-image strategy v0, σ0 from a probabilistic strategy v, σ is functorial.

From Section 4.6, we know that the operation of forming the rigid-image
of a strategy is functorial w.r.t. rigid 2-cells. The key extra fact needed for
this to be functorial for the extension to probabilistic strategies is that the
configuration-valuation assigned to the rigid-image of τ⊙σ equals that assigned
in the composition of rigid-image strategies (τ0⊙σ0)0, which we might write as:

v(τ⊙σ)0
= v(τ0⊙σ0)0

.

We also have
v(τ⊛σ)0

= v(τ0⊛σ0)0
.

We show the former in detail. The argument for the latter is analogous.
Suppose vS , σ ∶ S → A ⊥ ∥B be a probabilistic strategy. Let f ∶ σ⇒ σ0 be the

rigid 2-cell connecting the strategy σ with its rigid image. Let (vS)0 =def fvS be

252 CHAPTER 15. PROBABILISTIC STRATEGIES

its push forward across f , giving us the configuration-valuation associated with
the rigid-image strategy. Suppose vT , τ ∶ T → B ⊥ ∥C. Let g ∶ τ ⇒ τ0 be the rigid
2-cell connecting it with its rigid image; again write (vT)0 for the push-forward
to a configuration-valuation of its rigid image. Write h ∶ τ0⊙σ0 ⇒ (τ0⊙σ0)0 for
the 2-cell from ∶ τ0⊙σ0 to its rigid image. The push-forward of the configuration-
valuation of the composition τ⊙σ to its rigid image is

(vT⊙vS)0 = (h(g⊙f))(vT⊙vS)

= h((g⊙f)(vT⊙vS))

= h(gvT⊙fvS)

= h((vT)0⊙(vS)0)

= ((vT)0⊙(vS)0)0 ,

the composition of the push-forwards in the category of probabilistic rigid-image
strategies. We conclude that the action taking a probabilistic strategy to its
probabilistic rigid-image strategy is functorial.

Is anything lost in moving to probabilistic rigid-image strategies? A negative
answer is provided by the next result if we are considering probabilistic strategies
as characterised by the probabilistic experiments we can perform on them. By
virtue of the following proposition, a probabilistic strategy and its probabilistic
rigid-image will always induce the same probability distribution on the game
whenever they are composed with a probabilistic counterstrategy.

Proposition 15.38. Let f ∶ (σ, v) ⇒ (σ′, v′) be a 2-cell between probabilistic
strategies v, σ ∶ S → A and v′, σ′ ∶ S′ → A for which the push-forward fv = v′.
Let vT , τ ∶ T → A⊥ be a probabilistic counterstrategy. Then

T ⊛ S

τ⊛σ
$$

τ⊛f // T ⊛ S′

τ⊛σ′

��
A

commutes and the push-forward (τ ⊛f)(vT ⊛v) = vT ⊛v
′. Moreover, T ⊛S with

vT ⊛ v and T ⊛ S′ with vT ⊛ v′ are probabilistic event structures determining
continuous valuations w and w′ respectively. The push-forwards of w and w′

across the maps τ ⊛ σ and τ ⊛ σ′ respectively to continuous valuations on the
open sets of C∞(A) are the same.

Proof. The commuting diagram simply expresses that τ ⊛ f ∶ τ ⊛ σ ⇒ τ ⊛ σ′ is
a 2-cell of partial strategies. We have

(τ ⊛ f)(vT ⊛ v) = vT ⊛ (fv) = vT ⊛ v
′ .

None of the events of T ⊛S and T ⊛S′ are those of Opponent (all events are
neutral) ensuring they form probabilistic event structures with configuration-
valuations vT ⊛ v and vT ⊛ v

′, respectively. As such they determine continuous

15.4. PROBABILISTIC PROCESSES—AN EARLY VERSION 253

valuations w and w′ on open sets of configurations C∞(T ⊛S) and C∞(T ⊛S′),
respectively. In this situation the push-forward across the rigid 2-cell τ ⊛ f
agrees with standard push-forward of probability theory: for U an open set of
C∞(T ⊛ S′),

w′(U) = w((τ ⊛ f)−1U) .

The continuous valuations w and w′ push-forward (in the sense of probability
theory) across the obviously-continuous maps of event structures τ⊛σ and τ⊛σ′.
For instance, the push-forward of w is the continuous valuation assigning

w((τ ⊛ σ)−1V)

to an open set V ⊆ C∞(A). The commuting diagram ensures that both push-
forwards to open sets of C∞(A) are the same.

15.4 Probabilistic processes—an early version

As an indication of the expressivity of probabilistic strategies we sketch how they
straightforwardly include a simple language of probabilistic processes, reminis-
cent of a higher-order CCS. For this section only, write σ ∶ A to mean σ is a
probabilistic strategy in game A. Probabilistic strategies are closed under the
following operations.

Composition σ⊙τ ∶ A∥C, if σ ∶ A∥B and τ ∶ B⊥∥C. Hiding is automatic in a
synchronized composition directly based on the composition of strategies.

Simple parallel composition σ∥τ ∶ A∥B, if σ ∶ A and τ ∶ B. Note that simple
parallel composition can be regarded as a special case of synchronized composi-
tion: via the identification of σ∥τ with τ⊙σ, taking σ ∶ A⊥ + //∅ and τ ∶ ∅ + //B,
the operation σ∥τ yields a probabilistic strategy. Supposing σ ∶ S → A and
τ ∶ T → B and S and T have configuration valuations vS and vT , respectively,
then the configuration valuation v for S∥T satisfies v(x) = vS(x1) × vT (x2), for
x ∈ C(S∥T).

Pullback if σ1 ∶ A and σ2 ∶ A we can form their pullback:

S1 ∧ S2

Π1

{{

Π2

##
σ1∧σ2

��

S1

σ1 ##

S2

σ2{{
Γ⊥∥∆ .

If σ1 and σ2 are associated with configuration-valuations v1 and v2 respectively
then we tentatively take the configuration-valuation of the pullback to be v(x) =
v1(Π1x) × v2(Π2x) for x ∈ C(S1 ∧ S2).

254 CHAPTER 15. PROBABILISTIC STRATEGIES

To check that v is indeed a configuration-valuation we embed configurations
of S1 ∧ S2 in those of S1∥S2 as described in the next lemma, so inheriting the
conditions required of v from those of the configuration-valuation of σ1∥σ2.

Lemma 15.39. Define

ψ ∶ C(S1 ∧ S2)→ C(S1∥S2)

by ψ(x) = Π1x∥Π2x for x ∈ C(S1 ∧ S2). Then,

(i) ψ is injective,

(ii) ψ preserves unions, and

(iii) ψ reflects compatibility, and in particular +-compatibility: if x ⊆+ y and
x ⊆+ z in C(S1 ∧ S2) and ψ(y) ∪ψ(z) ∈ C(S1∥S2), then y ∪ z ∈ C(S1 ∧ S2).

Proof. Consider the pullback C(S1) ∧ C(S2), π1, π2 in stable families of σ1

and σ2, regarded as maps between families of configurations. Configurations
C(S1∧S2) are order isomorphic, under inclusion, to configurations C(S1)∧ C(S2).
See the end of Section 3.3.4 for the detailed construction of pullbacks of stable
families. It is thus sufficient to show that ϕ ∶ C(S1) ∧ C(S2) → C(S1∥S2), where
ϕ(x) = π1x∥π2x for x ∈ C(S1) ∧ C(S2), satisfies conditions (i), (ii) and (iii) in
place of ψ. (i) Injectivity follows because configurations in the pullback of stable
families are determined by their projections; the nature of events of the pullback
fixes their synchronisations. (ii) is obvious. (iii) To show ϕ reflects compatibility,
assume x ⊆ y and x ⊆ z in C(S1)∧C(S2) and ϕ(y)∪ϕ(z) ∈ C(S1∥S2). Inspecting
the construction of the pullback C(S1)∧C(S2) it is now easy to check that y∪ z
satisfies the conditions needed to be in C(S1) ∧ C(S2), as required.

Corollary 15.40. Taking v(x) = v1(Π1x) × v2(Π2x) for x ∈ C(S1 ∧ S2) defines
a configuration-valuation of S1 ∧ S2.

Proof. The assignment x ↦ v1(x1) × v2(x2), for x ∈ C(S1∥S2) determines a
configuration-valuation of S1∥S2. The one non-obvious condition required of
v to be a configuration-valuation is the +-drop condition. This follows di-
rectly from the +-drop condition holding in C(S1∥S2) because ψ reflects +-
compatibility.

Input prefixing ∑i∈I ⊟.σi ∶ ∑i∈I ⊟.Ai, if σi ∶ Ai, for i ∈ I, where I is countable.

Output prefixing ∑i∈I pi⊞ .σi ∶ ∑i∈I ⊞.Ai, if σi ∶ Ai, for i ∈ I, where I is countable,
and pi ∈ [0,1] for i ∈ I with ∑i∈I pi ≤ 1. If ∑i∈I pi < 1, there is non-zero proba-
bility of terminating without any action. By design (∑i∈I ⊞.Ai)

⊥ = ∑i∈I ⊟.A
⊥
i .

General probabilistic sum More generally we can define ⊕i∈I piσi ∶ A, for σi ∶ A
and I countable with sub-probability distribution pi, i ∈ I. The operation makes
the +-events of different components conflict and re-weights the configuration-
valuation on the components according to the sub-probability distribution. In

15.4. PROBABILISTIC PROCESSES—AN EARLY VERSION 255

order for the sum to remain receptive, the initial −ve events of the components
over a common event in the game A must be identified.

Relabelling, the composition f∗σ ∶ B, if σ ∶ A and f ∶ A→ B, possibly partial on
+ve events but always defined on −ve events, is receptive and innocent in the
sense of Definition 4.6. Then the composition of maps fσ ∶ S → B is receptive
and innocent. Its defined part, taken to be f∗σ ∶ B, is given by the factorization

S

σ
""

// S ↓D

f∗σ

��
A,

where D is the subset of S at which fσ is defined, is a strategy over B. If the
configuration-valuation on S is v then that on S ↓ D is given by x ↦ v([x]),
for x ∈ C(S ↓ D), where [x] is the down-closure of x in S. The map f∗σ ∶ B
is a strategy because, directly from the definition of innocence of partial maps,
the projection S → S ↓ D reflects immediate causal dependencies from +ve
events and to −ve events. The function x ↦ v([x]), for x ∈ C(S ↓ D), is a
configuration valuation: First, clearly v[∅]) = v(∅) = 0. Second, if x ⊆− y in
C(S ↓ D), then [x] ⊆− [y] in C(S) directly from the −-innocence of f , ensuring
v([x]) = v([y]). Third, the drop condition is inherited from v. Assuming

y
+

−Ð⊂x1,⋯, xn in C(S ↓ D) we obtain [y] ⊆+ [x1],⋯, [xn] in C(S) because f is
only undefined on +ve events. Hence, by the drop condition for v,

v([y]) −∑
I

(−1)∣I ∣+1v(⋃
i∈I

[xi]) ≥ 0 ,

where I ranges over subsets ∅ ≠ I ⊆ {1,⋯, n} s.t. {[xi] ∣ i ∈ I}↑S . But,

{[xi] ∣ i ∈ I}↑S ⇐⇒ {xi ∣ i ∈ I}↑S↓V ,

and down-closure commutes with unions. So

v([y]) −∑
I

(−1)∣I ∣+1v(⋃
i∈I

[xi]) = v([y]) −∑
I

(−1)∣I ∣+1v([⋃
i∈I

xi]) ,

where in the latter expression I ranges over subsets ∅ ≠ I ⊆ {1,⋯, n} s.t. {xi ∣ i ∈ I}↑S↓V .

In particular, the composition fσ ∶ B, if σ ∶ A and f ∶ A → B is itself a
strategy, i.e. total, receptive and innocent.

Pullback f∗σ ∶ A, if σ ∶ B and f ∶ A → B is a map of event structures, possibly
partial, which reflects +-consistency in the sense that

y
+

−Ð⊂x1,⋯, xn & {fxi ∣ 1 ≤ i ≤ n}↑ Ô⇒ {xi ∣ 1 ≤ i ≤ n}↑ .

256 CHAPTER 15. PROBABILISTIC STRATEGIES

The strategy f∗σ is got by the pullback

S′

f∗σ

��

f ′ // S

σ

��
A

f
// B .

Then, the map f ′ also reflects +-consistency. This fact ensures we define a
configuration-valuation vS′ on S′ by taking vS′(x) = vS(f

′x), for x ∈ C(S′). If
σ ∶ S → B is a strategy then so is f∗σ ∶ S′ → A. Pullback along f ∶ A → B
may introduce events and causal links, present in A but not in B. The pullback
operation subsumes the operations of prefixing ⊟.σ and ⊞.σ and we can recover
the previous prefix sums if we also have have sum types—see below.

Sum types If Ai, i ∈ I, is a countable family of games, we can form their sum, the
game ∑i∈I Ai as the sum of event structures. If σ ∶ Aj , for j ∈ I, we can create
the probabilistic strategy j σ ∶ ∑i∈I Ai in which we extend σ with those initial
−ve events needed to maintain receptivity. A probabilistic strategy of sum type
σ ∶ ∑i∈I Ai projects to a probabilistic strategy (σ)j ∶ Aj where j ∈ I.

Abstraction λx ∶ A.σ ∶ A⊸ B. Because probabilistic strategies form a monoidal-
closed bicategory, with tensor A∥B and function space A⊸ B =def A

⊥∥B, they
support an (linear) λ-calculus, which in this context permits process-passing as
in [32].

Recursive types and probabilistic processes can be dealt with along standard
lines [4].

The types as they stand are somewhat inflexible. For example, that maps of
event structures are locally injective would mean that simple labelling of events
as in say CCS could not be directly captured through typing. However, this
can be remedied by introducing monads, but doing this in sufficient generality
would involve the introduction of symmetry.

In the pullback operations we have relied on certain maps being stable un-
der pullback. The following two propositions make good our debt, and use
techniques from open maps [33].

Proposition 15.41. If σ ∶ S → B is a strategy then so is f∗σ ∶ S′ → A.

Proof. Define an étale map (w.r.t. to a path category P) to be like an open map,
but where the lifting is unique. It is straightforward to show that the pullback
of an étale map is étale. In fact, strategies can be regarded as étale maps, from
which the proposition follows. Within the category of event structures with
polarity and partial maps, take the path subcategory P to comprise all finite
elementary event structures with polarity and take a typical map f ∶ p→ q in P
to be a map such that:

15.5. THE METALANGUAGE ON PROBABILISTIC STRATEGIES 257

(i) if e _p e
′ with e −ve and e′ +ve and both f(e) and f(e′) defined, then

f(e) _q f(e
′); and

(ii) all events in q not in the image fp are −ve.

It can be checked that w.r.t. this choice of P the étale maps are precisely those
maps which are strategies. ◻

Proposition 15.42. If f ∶ A→ B reflects +-consistency, then so does f ′ ∶ S′ →
S.

Proof. As +-consistency-reflecting maps are special kinds of open maps, known
to be stable under pullback. An appropriate path category comprises: all fi-
nite event structures with polarity for which there is a subset M of ≤-maximal
+-events s.t. a subset X is consistent iff X ∩M contains at most one event of
M—all finite elementary event structures with polarity are included as M , the
chosen subset of ≤-maximal +-events, may be empty; maps in the path category
are rigid maps of event structures with polarity whose underlying functions are
bijective on events. ◻

15.5 The metalanguage on probabilistic strate-
gies

The metalanguage of games and strategies is largely stable under the addition
of probability. Though for instance we shall need to restrict to race-free games
in order to have identities w.r.t. the composition of probabilistic strategies.

In the language for probabilistic strategies, race-free games A,B,C,⋯ will
play the role of types. There are operations on games of forming the dual
A⊥, simple parallel composition A∥B, sum Σi∈IAi as well as recursively-defined
games —the latter rest on well-established techniques [4] and will be ignored
here. The operation of sum of games is similar to that of simple parallel com-
position but where now moves in different components are made inconsistent;
we restrict its use to those cases in which it results in a game which is race-free.

Terms have typing judgements:

x1 ∶ A1,⋯, xm ∶ Am ⊢ t ⊣ y1 ∶ B1,⋯, yn ∶ Bn ,

where all the variables are distinct, interpreted as a probabilistic strategy from
the game A⃗ = A1∥⋯∥Am to the game B⃗ = B1∥⋯∥Bn. We can think of the term
t as a box with input and output wires for the variables:

-

--

-A1

Am

B1

Bn
⋮⋮

258 CHAPTER 15. PROBABILISTIC STRATEGIES

The idea is that t denotes a probabilistic strategy S → A⃗⊥∥B⃗ with configuration
valuation v. The term t describes witnesses, finite configurations of S, to a
relation between finite configurations x⃗ of A⃗ and y⃗ of B⃗, together with their
probability conditional on the Opponent moves involved.
Duality The duality, that a probabilistic strategy from A to B can equally well
be seen as a probabilistic strategy from B⊥ to A⊥, is caught by the rules:

Γ, x ∶ A ⊢ t ⊣∆

Γ ⊢ t ⊣ x ∶ A⊥,∆

Γ ⊢ t ⊣ x ∶ A,∆

Γ, x ∶ A⊥ ⊢ t ⊣∆

Composition The composition of probabilistic strategies is described in the
rule

Γ ⊢ t ⊣∆ ∆ ⊢ u ⊣ H

Γ ⊢ ∃∆. [t ∥ u] ⊣ H

which, in the picture of strategies as boxes, joins the output wires of one strategy
to input wires of the other.
Probabilistic sum For I countable and a sub-probability distribution pi, i ∈ I,
we can form the probabilistic sum of strategies of the same type:

Γ ⊢ ti ⊣∆ i ∈ I

Γ ⊢ Σi∈Ipiti ⊣∆ .

In the probabilistic sum of strategies, of the same type, the strategies are glued
together on their initial Opponent moves (to maintain receptivity) and only
commit to a component with the occurrence of a Player move, from which
component being determined by the distribution pi, i ∈ I. We use � for the
empty probabilistic sum, when the rule above specialises to

Γ ⊢ � ⊣∆ ,

which denotes the minimum strategy in the game Γ⊥∥∆—it comprises the initial
segment of the game Γ⊥∥∆ consisting of its initial Opponent events.
Conjoining two strategies The pullback of a strategy across a map of event
structures is itself a strategy [34]. We can use the pullback of one strategy
against another to conjoin two probabilistic strategies of the same type:

Γ ⊢ t1 ⊣∆ Γ ⊢ t2 ⊣∆

Γ ⊢ t1 ∧ t2 ⊣∆

Such a strategy acts as the two component strategies agree to act jointly. In
the case where t1 and t2 denote the probabilistic strategies σ1 ∶ S1 → Γ⊥∥∆
with configuration valuation v1 and σ2 ∶ S2 → Γ⊥∥∆ with v2 the strategy t1 ∧ t2
denotes the pullback

S1 ∧ S2π1

yy
π2

%%
σ1∧σ2

��
S1

σ1
$$

S2

σ2
zz

Γ⊥∥∆

15.5. THE METALANGUAGE ON PROBABILISTIC STRATEGIES 259

with configuration valuation x↦ v1(π1x) × v2(π2x) for x ∈ C(S1 ∧ S2).
Copy-cat terms Copy-cat terms are a powerful way to lift maps or relations
expressed in terms of maps to strategies. Along with duplication they introduce
new “causal wiring.” Copy-cat terms have the form

x ∶ A ⊢ gy ⊑C fx ⊣ y ∶ B ,

where f ∶ A→ C and g ∶ B → C are maps of event structures preserving polarity.
(In fact, f and g may even be “affine” maps, which don’t necessarily preserve
empty configurations, provided g∅ ⊑C f∅—see [?].) This denotes a determinis-
tic strategy—so a probabilistic strategy with configuration valuation constantly
one—provided f reflects −-compatibility and g reflects +-compatibility. The
map g reflects +-compatibility if whenever x ⊆+ x1 and x ⊆+ x2 in the configu-
rations of B and fx1 ∪ fx2 is consistent, so a configuration, then so is x1 ∪ x2.
The meaning of f reflecting −-compatibility is defined analogously.

A term for copy-cat arises as a special case,

x ∶ A ⊢ y ⊑A x ⊣ y ∶ A,

as do terms for the jth injection into and jth projection out of a sum Σi∈IAi
w.r.t. its component Aj ,

x ∶ Aj ⊢ y ⊑Σi∈IAi jx ⊣ y ∶ Σi∈IAi

and
x ∶ Σi∈IAi ⊢ jy ⊑Σi∈IAi x ⊣ y ∶ Aj ,

as well as terms which split or join ‘wires’ to or from a game A∥B.
In particular, a map f ∶ A → B of games which reflects −-compatibility lifts

to a deterministic strategy f! ∶ A + //B:

x ∶ A ⊢ y ⊑B fx ⊣ y ∶ B .

A map f ∶ A→ B which reflects +-compatibility lifts to a deterministic strategy
f∗ ∶ B + //A:

y ∶ B ⊢ fx ⊑B y ⊣ x ∶ A.

The construction f∗⊙t denotes the pullback of a strategy t in B across the map
f ∶ A → B. It can introduce extra events and dependencies in the strategy. It
subsumes the operations of prefixing by an initial Player or Opponent move on
games and strategies.
Trace A probabilistic trace, or feedback, operation is another consequence of
such “wiring.” Given a probabilistic strategy Γ, x ∶ A ⊢ t ⊣ y ∶ A,∆ represented
by the diagram

t

Γ ∆

A A

260 CHAPTER 15. PROBABILISTIC STRATEGIES

we obtain
Γ,∆⊥ ⊢ t ⊣ x ∶ A⊥, y ∶ A

which post-composed with the term

x ∶ A⊥, y ∶ A ⊢ x ⊑A y ⊣ ,

denoting the copy-cat strategy ccA⊥ , yields

Γ ⊢ ∃x ∶ A⊥, y ∶ A. [t ∥ x ⊑A y] ⊣∆ ,

representing its trace:

t

Γ ∆

A

The composition introduces causal links from the Player moves of y ∶ A to the
Opponent moves of x ∶ A, and from the Player moves of x ∶ A to the Opponent
moves of y ∶ A—these are the usual links of copy-cat ccA⊥ as seen from the left of
the turnstyle. If we ignore probabilities, this trace coincides with the feedback
operation which has been used in the semantics of nondeterministic dataflow
(where only games comprising solely Player moves are needed) [3].
Duplication Duplications of arguments is essential if we are to support the re-
cursive definition of strategies. We duplicate arguments through a probabilistic
strategy δA ∶ A + //A∥A. Intuitively it behaves like the copy-cat strategy but
where a Player move in the left component may choose to copy from either of
the two components on the right. In general the technical definition is involved,
even without probability—see [?]. The introduction of probability begins to re-
veal a limitation within probabilistic strategies as we have defined them, a point
we will follow up on in the next section. We can see the issue in the second
of two simple examples. The first is that of δA in the case where the game A
consists of a single Player move ⊞. Then, δA is the deterministic strategy

⊞

⊟

1 44=

� ""*⊞

in which the configuration valuation assigns one to all finite configurations —we
have omitted the obvious map to the game A⊥∥A∥A. In the second example, as-
sume A consists of a single Opponent move ⊟. Now δA is no longer deterministic
and takes the form

⊞ ⊟
�llr

⊞ ⊟
�llr

and the strategy is forced to choose probabilistically between reacting to the
upper or lower move of Opponent in order to satisfy the drop condition of its
configuration valuation. Given the symmetry of the situation, in this case any

15.5. THE METALANGUAGE ON PROBABILISTIC STRATEGIES 261

configuration containing a Player move is assigned value a half by the config-
uration valuation associated with δA. (In the definition of the probabilistic
duplication for general A the configuration valuation is distributed uniformly
over the different ways Player can copy Opponent moves.) But this is odd:
in the second example, if the Opponent makes only one move there is a 50%
chance that Player will not react to it! There are mathematical consequences
too. In the absence of probability δA forms a comonoid with counit � ∶ A + //∅.
However, as a probabilistic strategy δA is no longer a comonoid—it fails asso-
ciativity. It is hard to see an alternative definition of a probabilistic duplication
strategy within the limitations of the event structures we have been using. We
shall return to duplication, and a simpler treatment through a broadening of
event structures in the next section.

Recursion Once we have duplication strategies we can treat recursion. Recall
that 2-cells, the maps between probabilistic strategies, include the approxima-
tion order ⊴ between strategies. The order forms a ‘large complete partial order’
with a bottom element the minimum strategy �. Given x ∶ A,Γ ⊢ t ⊣ y ∶ A, the
term Γ ⊢ µx ∶A. t ⊣ y ∶ A denotes the ⊴-least fixed point amongst probabilistic
strategies X ∶ Γ + //A of the ⊴-continuous operation F (X) = t⊙(idΓ∥X)⊙δΓ.
(With one exception, F is built out of operations which it’s been shown can be
be defined concretely in such a way that they are ⊴-continuous; the one excep-
tion which requires separate treatment is the ‘new’ operation of projection, used
to hide synchronisations.) With probability, as δΓ is no longer a comonoid not
all the “usual” laws of recursion will hold, though the unfolding law will hold
by definition.

There are important special cases though, when we can avoid the problems
with duplication, for example, when we restrict all types and type constructions
to games comprising purely Player moves—then duplication strategies are deter-
ministic; we obtain a language for probabilistic dataflow, like nondeterministic
dataflow but with probabilistic choice.

15.5.1 Payoff

Given a probabilistic strategy vS , σ ∶ S → A and counter-strategy vT , τ ∶ T → A⊥

we obtain

P
π1

��

π2

��
S

σ
��

T

τ
��

A

with valuation v(x) = vS(π1x) × vT (π2x), for x ∈ C(P), on the pullback P—a
probabilistic event structure, with probability measure µσ,τ . Define f =def σπ1 =
τπ2. Adding payoff as a Borel measurable function X ∶ C∞(A)→ R the expected

262 CHAPTER 15. PROBABILISTIC STRATEGIES

payoff is obtained as the Lebesgue integral

Eσ,τ(X) =def ∫
x∈C∞(P)

X(f(x)) dµσ,τ(x)

=∫
y∈C∞(A)

X(y) dµσ,τf
−1(y) ,

where we can choose either to integrate over C∞(P) with measure µσ,τ , or over
C∞(A) with measure µσ,τf

−1.

15.5.2 A simple value-theorem

Let A be a game with payoff X. Its dual is the game A⊥ with payoff −X. If A,X
and B,Y are two games with payoff, their parallel composition (A,X)`(B,Y)
is the game with payoff (A∥B,X + Y).

Let A be a game with payoff X. Define

val(A,X) =def sup
σ

inf
τ

Eσ,τ(X)

val(A⊥,−X) =def sup
τ

inf
σ

Eτ,σ(−X) = − inf
τ

sup
σ

Eσ,τ(X) .

The game A,X is said to have a value if

val(A,X) = −val(A⊥,−X) ,

its value then being val(A,X).
The following theorem says that a Nash equilibrium—expressed in properties

(1) and (2)—determines a value for a game with payoff.

Theorem 15.43. Let A be a game with payoff X. Suppose there are a strategy
σ0 and a counterstrategy τ0 s.t.

(1)∀τ, a counterstrategy. Eσ0,τ(X) ≥ Eσ0,τ0(X) and

(2)∀σ, a strategy. Eσ,τ0(X) ≤ Eσ0,τ0(X) .

Then, the game A,X has a value and Eσ0,τ0(X) is the value of the game.

Proof. Letting σ stand for strategies and τ for counterstrategies, we have

val(A) =def sup
σ

inf
τ

Eσ,τ(X)

val(A⊥) =def sup
τ

inf
σ

Eτ,σ(−X) = − inf
τ

sup
σ

Eσ,τ(X) .

We require
val(A) = −val(A⊥) = Eσ0,τ0(X) .

For all strategies σ,

inf
τ
Eσ,τ(X) ≤ Eσ,τ0(X) ≤ Eσ0,τ0(X)

15.5. THE METALANGUAGE ON PROBABILISTIC STRATEGIES 263

by (2). Therefore

sup
σ

inf
τ
Eσ,τ(X) ≤ Eσ0,τ0(X) .

Also

sup
σ

inf
τ
Eσ,τ(X) ≥ inf

τ
Eσ0,τ(X) ≥ Eσ0,τ0(X)

by (1). Hence

sup
σ

inf
τ
Eσ,τ(X) = Eσ0,τ0(X) . (3)

Dually,

sup
σ
Eσ,τ(X) ≥ Eσ0,τ(X) ≥ Eσ0,τ0(X)

by (1). Therefore

inf
τ

sup
σ
Eσ,τ(X) ≥ Eσ0,τ0(X) .

Also,

inf
τ

sup
σ
Eσ,τ(X) ≤ sup

σ
Eσ,τ0(X) ≤ Eσ0,τ0(X)

by (2). Hence

inf
τ

sup
σ
Eσ,τ(X) = Eσ0,τ0(X) . (4)

From (3) and (4) it follows that

val(A) = −val(A⊥) = Eσ0,τ0(X) ,

the value of the game, as required.

For (A,X), a game with payoff with value val(A,X), say a strategy σ0 in A
is optimal iff

val(σ0) =def inf
τ

Eσ0,τ(X) = sup
σ

inf
τ

Eσ,τ(X) = val(A,X) .

As a counterstrategy in (A,X) is simply a strategy in (A⊥,−X), it follows that
a counterstrategy τ0 in (A,X) is optimal iff

val(τ0) = − sup
σ

Eσ,τ0(X) = − inf
τ

sup
σ

Eσ,τ(X) = val(A⊥,−X) .

As a direct consequence of these definitions we obtain a converse to Theo-
rem 15.43:

Proposition 15.44. Suppose (A,X), a game with payoff, has a value. If
(A,X) has optimal strategy σ0 and optimal counterstrategy τ0, then σ0, τ0 form
a Nash equilibrium, i.e. satisfy (1) and (2) of Theorem 15.43.

264 CHAPTER 15. PROBABILISTIC STRATEGIES

Proof. Clearly, from the definitions of val(σ0) and val(τ0),

val(σ0) ≤ Eσ0,τ0(X) and − val(τ0) ≥ Eσ0,τ0(X) .

But, as the game (A,X) has a value,

−val(τ0) = val(σ0) .

So
val(σ0) =def inf

τ
Eσ0,τ(X) ≥ Eσ0,τ0(X)

whence
∀τ. Eσ0,τ(X) ≥ Eσ0,τ0(X) (1)

and
−val(τ0) =def sup

σ
Eσ,τ0(X) ≤ Eσ0,τ0(X)

whence
∀σ. Eσ,τ0(X) ≤ Eσ0,τ0(X) . (2)

15.6 Probabilistic vs. nondeterministic seman-
tics

Causal loops can be introduced through composed strategies imposing incom-
patible causal dependencies over a common game. They receive rather different
interpretations according to our treatments of probability and nondeterminism:
they are detected as probability leaks in the probabilistic semantics but unde-
tected in the usual nondeterministic semantics.

Example 15.45. Let the game B comprise two concurrent moves of opposing
polarities, and C consist of a single Player move. We represent the strategies σ
from the empty game to B and τ from B to C diagrammatically as

⊟
� ,,2⊞

σ

��

⊞

b1⊟ ⊞ b2

⊞ ⊟
�llr � ,,2⊞

τ

��

b1⊞ ⊟ b2 ⊞ c

The strategy σ may nondeterministically play b2 or wait till b1 before doing so.
The strategy τ only plays b1 after b2 and c after b2. Only in the case where
σ plays b2 without awaiting b1 will c occur. The fact that c does not occur
if σ decides to await b1 is lost in the composition. Nor is it detected through

15.6. PROBABILISTIC VS. NONDETERMINISTIC SEMANTICS 265

neutral events or via stopping configurations. The event c must occur in the
sense that any +/0-maximal configuration of τ ⊛ σ will always contain c. If
Player is understood to play maximally this is sensible.

However it would be detected according to our probabilistic semantics. In
σ the ‘drop’ conditions ensures the probabilities of playing the top or bottom
Player events would sum to less than or equal 1. For instance, imagine in σ the
top Player event is played with probability 1/3 and the lower with probability
2/3. Then in the composition event c would occur with probability 2/3.

The probabilistic semantics detects the possibility of causal loops, unde-
tected in the nondeterministic semantics. It shows that the possibility of a
causal loop (that σ and τ put opposing orders on events b1 and b2) is detected
in the probabilistic but not in the nondeterministic semantics. ◻

266 CHAPTER 15. PROBABILISTIC STRATEGIES

Chapter 16

Quantum games

We first explore a definition of quantum event structure in which events are
associated with projection or unitary operators. It is shown how this structure
induces configuration-valuations, and hence probability measures, on compatible
parts of the domain of configurations of the event structure. This elementary
situation is not preserved by the projection operation on event structures, so
we move to a more general definition. We conclude with a brief exploration
of quantum games and strategies. A quantum game is taken to be a quantum
event structure in which events carry polarities and a strategy in a quantum
game as a probabilistic strategy in its event structure.

16.1 Simple quantum event structures

Throughout let H be a Hilbert space over the complex numbers, with countable
basis. For operators A,B on H we write [A,B] =def AB −BA.

Definition 16.1. A (simple) quantum event structure (over H) comprises an
event structure (E,≤,Con) together with an assignment Qe of projection or
unitary operators on H to events e ∈ E such that for all x ∈ C(E), e1, e2 ∈ E for

which x
e1
−Ð⊂x1 and x

e2
−Ð⊂x2,

x1 ↑ x2 Ô⇒ [Qe1 ,Qe2] = 0 ,

i.e. the two events occur concurrently at x implies their associated operators
commute. Say the quantum event structure is strong when

x1 ↑ x2 ⇐⇒ [Qe1 ,Qe2] = 0 ,

i.e. the two events occur concurrently at x iff their associated operators com-
mute.

Definition 16.2. Given a finite configuration, x ∈ C(E), define the operator
Ax to be the composition QenQen−1⋯Qe2Qe1 for some covering chain

∅
e1
−Ð⊂x1

e2
−Ð⊂x2⋯

en
−Ð⊂xn = x

267

268 CHAPTER 16. QUANTUM GAMES

in C(E). This is well-defined as for any two covering chains up to x the sequences
of events are Mazurkiewicz trace equivalent, i.e. obtainable, one from the other,
by successively interchanging concurrent events. In particular A∅ is the identity
operator on H.

Proposition 16.3. In a strong quantum event structure (E,≤,Con) with as-
signment of operators Q the consistency predicate Con is determined in a pair-
wise fashion, i.e. for any finite subset of events X,

X ∈ Con ⇐⇒ ∀e1, e2 ∈X. {e1, e2} ∈ Con .

Writing e1#e2 ⇐⇒ def {e1, e2} ∉ Con,

e1#e2 ⇐⇒ ∃e′1 ≤ e1, e
′
2 ≤ e2. [e1]∪[e2) ∈ Con & [e1)∪[e2] ∈ Con & [Pe1 , Pe2] ≠ 0 .

Proof. Observe that if {e1, e2} ∈ Con with both x
e1
−Ð⊂x1 and x

e2
−Ð⊂x2, then

x1 ↑ x2. To see this argue from {e1, e2} ∈ Con, x
e1
−Ð⊂x1 and x

e2
−Ð⊂x2 that

[e1)∪ [e2)
e1
−Ð⊂ [e1] and [e1)∪ [e2)

e2
−Ð⊂ [e2] where [e1] ↑ [e2] follows directly from

the consistency of {e1, e2}. It follows that [Qe1 ,Qe2] = 0, whence x1 ↑ x2, as
E,Q is a strong quantum event structure. A simple induction on the size of
a finite pairwise-consistent down-closed subset of events X shows it to be a
configuration. As a finite set is consistent iff its down-closure is consistent, the
result follows.

Example 16.4. In the quantum event structure E with assignment of projec-
tion operators Pe to events e, assume the event structure E comprises solely
concurrent events. In other words, no event causally depends on any other and
any two events are concurrent. This is an example of a strong quantum event
structure. Each projection operator Pe commutes with every other Pe′ . There-
fore the eigenvectors of all the projection operators Pe extend to an orthonormal
basis of H. Each projection operator corresponds to that subset of basis vectors
it fixes. Under this correspondence, a composition of projection operators is as-
sociated with the intersection of the sets of fixed basis vectors. In other words,
for any finite configuration x, the operator Ax is the projection operator which
fixes precisely those basis vectors which are fixed by all the Pe, for e ∈ x.

Example 16.5. Consider an event structure consisting of two events e1, e2

incomparable under ≤ with {e,e2} ∉ Con. Only assignments of operators to
e1, e2 for which [Qe1 ,Qe2] ≠ 0 will yield a strong quantum event structure.

Example 16.6. Consider an event structure consisting of two events for which
e1 ≤ e2. Any assignment of projection operators to e1, e2 will yield a strong
quantum event structure.

Example 16.7. Let (M,L, I) be a Mazurkiewicz trace language consisting of
an alphabet L with independence relation I and subset of strings M ⊆ L∗, so
M is closed under prefixes and I-closed in the sense that if sabt ∈ M and aIb

16.2. FROM QUANTUM TO PROBABILISTIC 269

then sbat ∈M . Assume an assignment of projection and unitary operators Qa
to symbols a ∈ Σ such that

a I b Ô⇒ [Qa,Qb] = 0 .

Then, M determines a quantum event structure: as shown in [2], M determines
an event structure with events e associated with the minimal ways a symbol,
say a, appears in a string in M—then the operator assigned to e is Qa. If we
assume that

sa ∈M & sb ∈M & a I b Ô⇒ sab ∈M .

and an assignment of operators Qa to symbols a ∈ Σ such that

a I b ⇐⇒ a ≠ b & [Qa,Qb] = 0 ,

then M determines a strong quantum event structure.

The unitary and projection operators of H form a Mazurkiewicz trace lan-
guage, and in turn a strong quantum event structure.

Definition 16.8. Take as Mazurkiewicz trace language that with alphabet
comprising (names for) all the unitary and projection operators on H with all
strings of such and with independence relation

A I B ⇐⇒ A ≠ B & [A,B] = 0 ,

between operators A and B. The Mazurkiewicz trace language determines a
strong quantum event structure, associated with the Hilbert space H.

16.2 From quantum to probabilistic

Consider a quantum event structure with an initial state given by a density
operator ρ on H. While it does not make sense to attribute a probability
distribution globally, over the whole space of configurations C∞(E), there is
a sensible probability distribution on compatible configurations of the event
structure. Below, by an unnormalized density operator we mean a positive,
self-adjoint operators with trace less than or equal to one.

Theorem 16.9. Let E,Q be a simple quantum event structure with initial
state a density operator ρ. Each configuration x ∈ C(E) is associated with an
unnormalized density operator ρx =def AxρA

†
x and a value in [0,1] given by

v(x) =def Tr(ρx) = Tr(A†
xAxρ). For any w ∈ C∞(E), the function v restricts

to a configuration-valuation vw on finite configurations in the family of config-
urations Fw =def {x ∈ C∞(E) ∣ x ⊆ w}; hence vw extends to a unique probability
measure qw on Fw.

Proof. We show v restricts to a configuration-valuation on Fw. As A∅ = idH,

v(∅) = Tr(ρ) = 1. By Lemma 15.11, we need only to show d
(n)
v [y;x1,⋯, xn] ≥ 0

when y
e1
−Ð⊂x1,⋯, y

en
−Ð⊂xn in Fw.

270 CHAPTER 16. QUANTUM GAMES

First, observe that if for some event ei the operator Qei is unitary, then

d
(n)
v [y;x1,⋯, xn] = 0. W.l.o.g. suppose en is assigned the unitary operator U .

Then, Axn = UAy so

v(xn) = Tr(A†
xnAxnρ) = Tr(A†

yU
†UAyρ) = Tr(A†

yAyρ) = v(y) .

Let ∅ ≠ I ⊆ {1,⋯, n}. Then, either ⋃i∈I xi = ⋃i∈I xi ∪ xn or ⋃i∈I xi
en
−Ð⊂ ⋃i∈I xi ∪

xn. In the either case—in the latter case by an argument similar to that above,

v(⋃
i∈I

xi) = v(⋃
i∈I

xi ∪ xn) .

Consequently,

d(n)v [y;x1,⋯, xn] =d
(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∪ xn,⋯, xn−1 ∪ xn]

=v(y) −∑
I

(−1)∣I ∣+1v(⋃
i∈I

xi) − v(xn) +∑
I

(−1)∣I ∣+1v(⋃
i∈I

xi ∪ xn)

= 0

—above index I is understood to range over sets for which ∅ ≠ I ⊆ {1,⋯, n}.

It remains to consider the case where all events ei are assigned projection
operators Pei . As x1,⋯, xn ⊆ w we must have that all the projection operators
Pe1 ,⋯, Pen commute. (Locally the situation resembles that of Example 16.4.)

As [Pei , Pej] = 0, for 1 ≤ i, j ≤ n, we can assume an orthonormal basis which
extends the sub-basis of eigenvectors of all the projection operators Pei , for 1 ≤
i ≤ n. Let y ⊆ x ⊆ ⋃1≤i≤n xi. Define Px to be the projection operator got as the
composition of all the projection operators Pe for e ∈ x∖ y—this is a projection
operator, well-defined irrespective of the order of composition as the relevant
projection operators commute. Define Bx to be the set of those basis vectors
fixed by the projection operator Px. In particular, Py is the identity operator
and By the set of all basis vectors. When x,x′ ∈ C(E) with y ⊆ x ⊆ ⋃1≤i≤n xi
and y ⊆ x′ ⊆ ⋃1≤i≤n xi,

Bx∪x′ = Bx ∩Bx′ .

Also,

Px∣ψ⟩ = ∑
i∈Bx

⟨i∣ψ⟩ ∣i⟩ ,

so

⟨ψ∣Px∣ψ⟩ = ∑
i∈Bx

⟨i∣ψ⟩⟨ψ∣i⟩ = ∑
i∈Bx

∣⟨i∣ψ⟩∣
2
,

for all ∣ψ⟩ ∈H.

Assume ρ = ∑k pk ∣ψk⟩⟨ψk ∣, where the ψk are normalised and all the pk are

16.2. FROM QUANTUM TO PROBABILISTIC 271

positive with sum ∑k pk = 1. For x with y ⊆ x ⊆ ⋃1≤i≤n xi,

v(x) =Tr(A†
xAxρ)

=Tr(A†
yP

†
xPxAyρ)

=Tr(A†
yPxAy∑

k

pk ∣ψk⟩⟨ψk ∣)

=∑
k

pk Tr(A†
yPxAy ∣ψk⟩⟨ψk ∣)

=∑
k

pk⟨Ayψk ∣Px∣Ayψk⟩

= ∑
i∈Bx

∑
k

pk ∣⟨i∣Ayψk⟩∣
2

= ∑
i∈Bx

ri ,

where we define ri =def ∑k pk ∣⟨i∣Ayψk⟩∣
2
, necessarily a non-negative real for

i ∈ Bx.
We now establish that

d(n)v [y;x1,⋯, xn] = ∑
i∈By∖Bx1

∪⋯∪Bxn

ri ,

for all n ∈ ω, by mathematical induction—it then follows directly that its value
is non-negative.

The base case of the induction, when n = 0, follows as

d(0)v [y;] = v(y) = ∑
i∈By

ri ,

a special case of the result we have just established.
For the induction step, assume n > 0. Observe that

By ∖Bx1 ∪⋯ ∪Bxn−1 = (By ∖Bx1 ∪⋯ ∪Bxn)
⋅∪ (Bxn ∖Bx1∪xn ∪⋯ ∪Bxn−1∪xn) ,

where as signified the outer union is disjoint. Hence,

∑
i∈By∖Bx1

∪⋯∪Bxn−1

ri = ∑
i∈By∖Bx1

∪⋯∪Bxn

ri + ∑
i∈Bxn∖Bx1∪xn

∪⋯∪Bxn−1∪xn

ri ,

By definition,

d(n)v [y;x1,⋯, xn] =def d
(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∪ xn,⋯, xn−1 ∪ xn]

—making use of the fact that we are only forming unions of compatible config-
urations. From the induction hypothesis,

d(n−1)
v [y;x1,⋯, xn−1] = ∑

i∈By∖Bx1
∪⋯∪Bxn−1

ri

and d(n−1)
v [xn;x1 ∪ xn,⋯, xn−1 ∪ xn] = ∑

i∈Bxn∖Bx1∪xn
∪⋯∪Bxn−1∪xn

ri .

272 CHAPTER 16. QUANTUM GAMES

Hence
d(n)v [y;x1,⋯, xn] = ∑

i∈By∖Bx1
∪⋯∪Bxn

ri ,

ensuring d
(n)
v [y;x1,⋯, xn] ≥ 0, as required.

By Theorem 15.14, the configuration-valuation vw extends to a unique prob-
ability measure on Fw.

Interpretation. We can regard w ∈ C∞(E) as a quantum experiment. The
experiment specifies unitary and projection operators to apply and in which
order. The order being partial permits commuting operators to be applied con-
currently, independently of each other. The experiment can end in an element
of Fw with chance given by the probability measure got from the configuration-
valuation vw. To say an experiment ends or results in w′ ∈ Fw means it succeeds
in the confirmation, observation or test associated with w′, but goes no further.

In particular, we may take w to be a maximal configuration, obtaining a
maximal part of the space configurations over which it is sensible to attribute
a probability distribution. Compatible parts of the domain of configurations
of a quantum event structure with an initial state carry an intrinsic probabil-
ity distribution. With the reading of configurations as histories the theorem is
reminiscent of the consistent/decoherent histories view of quantum computa-
tion. Note however that the consistency/decoherence conditions traditional in
that approach have been replaced here, in the case of simple quantum event
structures, by compatibility w.r.t. the inclusion order on configurations, and
that compatibility respects traditional quantum notions of commuting observ-
ables.

Example 16.10. Let E comprise the quantum event structure with two con-
current events e0 and e1 associated with projectors P0 and P1, where neces-
sarily [P0, P1] = 0. Assume an initial state ∣ψ⟩⟨ψ∣. The configuration {e0, e1}
is associated with the following probability distribution. The probability that
e0 succeeds is ∣∣P0∣ψ⟩∣∣

2, that e1 succeeds ∣∣P1∣ψ⟩∣∣
2, and that both succeed is

∣∣P1P0∣ψ⟩∣∣
2.

In the case where P0 and P1 commute because P0P1 = P1P0 = 0, the events e0

and e1 are mutually exclusive. There is probability zero of both events e0 and e1

succeeding, probability ∣∣P0∣ψ⟩∣∣
2 of e0 succeeding, ∣∣P1∣ψ⟩∣∣

2 of e1 succeeding, and
probability 1 − ∣∣P0∣ψ⟩∣∣

2 − ∣∣P1∣ψ⟩∣∣
2 of getting stuck at the empty configuration

where neither event succeeds.
A special case of this is the measurement of a qubit in state ψ, the measure-

ment of 0 where P0 = ∣0⟩⟨0∣, and the measurement of 1 where P1 = ∣1⟩⟨1∣, though
here ∣∣P0∣ψ⟩∣∣

2 + ∣∣P1∣ψ⟩∣∣
2 = 1, as a measurement of the qubit will determine a

result of either 0 or 1.

Example 16.11. The measurement of two qubits with entanglement. *****

Example 16.12. Let E comprise the event structure with three events e1, e2, e3

with trivial causal dependency and consistency relation generated by taking

16.3. AN EXTENSION 273

{e1, e2} ∈ Con and {e2, e3} ∈ Con—so {e1, e3} ∉ Con. To be a quantum event
structure we must have [Qe1 ,Qe2] = 0, [Qe2 ,Qe3] = 0 and, to be strong, that
[Qe1 ,Qe3] ≠ 0. The maximal configurations are {e1, e2} and {e2, e3}. Assume
an initial state ∣ψ⟩⟨ψ∣. The first maximal configuration is associated with a prob-
ability distribution where e1 occurs with probability ∣∣Qe1 ∣ψ⟩∣∣

2 and e2 occurs
with probability ∣∣Qe2 ∣ψ⟩∣∣

2. The second maximal configuration is associated
with a probability distribution where e2 occurs with probability ∣∣Qe2 ∣ψ⟩∣∣

2 and
e3 occurs with probability ∣∣Qe3 ∣ψ⟩∣∣

2.

16.3 An extension

Recall that by an unnormalized density operator we mean a positive, self-adjoint
operators with trace less than or equal to one.

Theorem 16.9shows how a quantum event structure with initial state in-
duces a probabilistic event structure on the sub event structure comprising the
events of a configuration. We can generalise this to sub event structures with
inconsistent events provided immediately conflicting events are associated with
operators whose composition is 0. (Accordingly in the sub event structure if an
event is associated with a unitary operator then it can only be in immediate
conflict with an event associated with the 0 operator.)

First let’s be precise on what we mean by a sub event structure. Let E0 =
(E0,≤0,Con0) and E = (E,≤,Con) be event structures. Write E0 ⊴ E iff E0 is
a down-closed subset of E with

e′ ≤0 e iff e′, e ∈ E0∣& e′ ≤ e, and

X ∈ Con0 iff X ⊆fin E0 & X ∈ Con;

in other words, E0 is a substructure of E. In this case,

x ∈ C∞(E0) iff x ⊆ E0 and x ∈ C∞(E).

Theorem 16.13. Let E,Q be a simple quantum event structure with initial
state a density operator ρ. Each configuration x ∈ C(E) is associated with an
unnormalized density operator ρx =def AxρA

†
x and a value in [0,1] given by

v(x) =def Tr(ρx) = Tr(A†
xAxρ).

Let E0 ⊴ be a sub event structure of E for which

whenever x
e1
−Ð⊂x1 and x

e2
−Ð⊂x2 with x1 � x2 in C∞(E0) then Qe1Qe2 = 0.

Then the restriction v0 of v to the finite configurations of E0 is a configuration-
valuation; hence v0 extends to a unique probability measure on C∞(E0).

Proof. As A∅ = idH, v(∅) = Tr(ρ) = 1. By Lemma 15.11, we need only to show

d
(n)
v [y;x1,⋯, xn] ≥ 0 when y

e1
−Ð⊂x1,⋯, y

en
−Ð⊂xn in C(E0).

To this end construct a finite quantum event structure E1,Q1 as the event
structure with events

y ∪ ⋃
1≤i≤n

xi

274 CHAPTER 16. QUANTUM GAMES

and causal dependency and assigment of operators inherited from E (and E0)
but with all finite subsets of events consistent. Note that any immediate con-
flicts between events ei and ej at y amongst the events e1,⋯, en are replaced by
instances of the concurrency relation ei co ej . For such ‘new’ instances of con-
currency we shall have [QeiQej] = 0 as both compositions QeiQej and QejQei
are 0. Thus E1,Q1 is a quantum event structure. The event structure E1 may
have configurations which are not configurations of E0. However such additional
configurations z will be associated with the operator Az = 0 by the assumption

on E0. Consequently, the value of the drop d
(n)
v [y;x1,⋯, xn] in E0 equals that

of d
(n)
v [y;x1,⋯, xn] in E1. But by Theorem 16.9 the drop in E1 is always non-

negative, yielding the required drop condition for E0.

16.3.1 A notion of distributed quantum tests

We can refine our description of quantum experiments. We base the idea on
confusion-free event structures in which conflict (inconsistency) is localised at
cells.

Let E = (E,≤,Con) be an event structure. Say two events e1, e2 ∈ E are
in immediate conflict at a configuration x ∈ C∞(E) iff both x ∪ {e1}, x ∪ {e2} ∈
C∞(E) and yet their union x∪{e1, e2} is not a configuration. Say E has binary
conflict iff

X ∈ Con ⇐⇒ X ⊆fin E & ∀e1, e2 ∈X. {e1, e2} ∈ Con .

Then, defining the conflict relation by

e1#e2 ⇐⇒ {e1, e2} ∉ Con ,

as set is consistent iff it is conflct-free, i.e. no pairs of events within it are in
conflict. We can further define e1#µe2, the immediate-conflict relation, iff e1

and e2 are in immediate conflict at some configuration.
Say an event structure E is confusion-free iff it has binary conflict, the

relation #µ ∪ idE is an equivalence relation and moreover

e1#µe2 Ô⇒ [e1) = [e2) .

In this case we call the equivalence classes of #µ ∪ idE cells.
It follows that iff an event e in a cell c is enabled at a configuration x, all

the events of c are enabled as well. In this sense conflict is localised at cells.
A finite subset is inconsistent iff it has two events which share distinct events
from a common cell in their causal history. Consequently, a configuration is a
down-closed subset of events in which no two distinct events belong to a com-
mon cell. Confusion-free event structures correspond to deterministic concrete
data structures [?, ?] and are those event structures derived from confusion-free
occurrence nets [?].

A form of distributed quantum test is represented by a quantum event struc-
ture E,Q where E is a confusion-free event structure, Qe ≠ 0 for all events e,

16.3. AN EXTENSION 275

and for any two distinct events e1, e2 of a common cell Qe1Qe2 = 0. This for-
malises the idea of a making local measurements in a distributed fashion where
the outcomes of measurements determine those future measurements to make.
It follows that any event e associated with a unitary operation Qe is the sole
member of its cell. Note the measurements need not be complete in that the
sum of the operators associated with a cell need not be the identity.

Proposition 16.14. In a quantum test E,Q if Qe is unitary, for an event
e ∈ E, then the cell of e is a singleton.

By Theorem 16.13, once provided with an initial state ρ, such a quantum
test forms a probabilistic event structure with configuration-valuation v(x) =def

Tr(AxρA
†
x) on its finite configurations x.

Example 16.15. A single measurement by the following quantum test***

Example 16.16. Quantum teleportation can be represented by the following
quantum test***

16.3.2 Measurement with values

To support measurements yielding values we associate values with configurations
of a quantum event structure E,Q, in the form of a measurable function, V ∶
C∞(E) → R. If the experiment results in x ∈ C∞(E) we obtain V (x) as the
measurement value resulting from the experiment. By Theorem 16.9, assuming
an initial state given by a density operator ρ, we obtain a probability measure
qw on the sub-configurations of w ∈ C∞(E). This is interpreted as giving a
probability distribution on the final results of an experiment w. Accordingly,
w.r.t. an experiment w ∈ C∞(E), the expected value is

Ew(V) =def ∫
x∈Fw

V (x) dqw(x)

—cf. Section 15.5.1.
Traditionally quantum measurement is associated with an Hermitian oper-

ator A on H where the possible values of a measurement are eigenvalues of A.
How is this realized by a quantum event structure? Suppose the Hermitian
operator has spectral decomposition

A =∑
i∈I

λiPi

where orthogonal projection operators Pi are associated with eigenvalue λi. The
projection operators satisfy ∑i∈I Pi = idH and PiPj = 0 if i ≠ j.

Form the quantum event structure with concurrent events ei, for i ∈ I,
and Q(ei) = Pi. Because the projection operators are orthogonal, [Pi, Pj] = 0
when i ≠ j, so we do indeed obtain a (strong) quantum event structure. Let
V ({ei}) = λi, and take arbitrary values on all other configurations. The event
structure has a single, maximum configuration w =def {ei ∣ i ∈ I}. It is the

276 CHAPTER 16. QUANTUM GAMES

experiment w which will correspond to traditional measurement via A. Assume
an initial state ∣ψ⟩⟨ψ∣. As above, the expected value of the experiment w is

Ew(V) = ∫
x∈Fw

V (x) dqw(x) .

It can be checked that the probability ascribed to each of the singleton config-
urations {ei} is ⟨ψ∣Pi∣ψ⟩, and is zero elsewhere. Consequently,

Ew(V) =∑
i∈I

λi⟨ψ∣Pi∣ψ⟩ = ⟨ψ∣A∣ψ⟩

—the well-known expression for the expected value of the measurement A on
pure state ∣ψ⟩.

Example 16.17. The spin state of a spin-1/2 particle is an element of two-
dimensional Hilbert space, H2. Traditionally the Hermitian operator for mea-
suring spin in a particular fixed direction is

∣↑⟩⟨↑∣ − ∣↓⟩⟨↓∣ .

It has eigenvectors ∣↑⟩ (spin up) with eigenvalue +1 and ∣↓⟩ (spin down) with
eigenvalue −1. Accordingly, its quantum event structure comprises the two
concurrent events u associated with projector ∣↑⟩⟨↑∣ and d with projector ∣↓⟩⟨↓∣.
Its configurations are:

{u, d}

{u}

-

{d}

Q1

∅

- Q1

The value associated with the configuration {u} is +1, and that with {d} is
−1. Given an initial pure state ψ = a∣↑⟩+ b∣↓⟩, the probability of the experiment
{u, d} yielding value +1 is ∣a∣2 and that of yielding −1 is ∣b∣2. The probability
that the experiment ends in configurations ∅ or {u, d} is zero. Its expected
value is ∣a∣2− ∣b∣2. This would be the average value resulting from measuring the
spin of a large number of particles initially in pure state ψ. ◻

16.4 Probabilistic quantum experiments

It can be useful, or even necessary, to allow the choice of which quantum mea-
surements to perform to be made probabilistically. For example, experiments
to invalidate the Bell inequalities, to demonstrate the non-locality of quantum
physics, make use of probabilistic quantum experiments.

16.4. PROBABILISTIC QUANTUM EXPERIMENTS 277

Formally, a probability distribution over quantum experiments can be real-
ized by a total map of event structures f ∶ P → E where P, v is a probabilistic
event structure and E,Q is a quantum event structure; the configurations of E
correspond to quantum experiments assigned probabilities through P . Through
the map f we can integrate the probabilistic and quantum features. Via the
map f , the event structure E inherits a configuration valuation, making it itself
a probabilistic event structure; we can see this indirectly by noting that if vo is a
continuous valuation on the open sets of P then vof

−1 is a continuous valuation
on the open sets of E. On the other hand, via f the event structure P becomes
a quantum event structure; an event p ∈ P is interpreted as operation Q(f(p)).
Of course, f can be the identity map, as is so in the example below.

Suppose E,Q is a quantum event structure with initial state ρ and a mea-
surable value function V ∶ C∞(E) → R. Recall, from Section 16.3.2, that the
expected value of a quantum experiment w ∈ C∞(E) is

Ew(V) =def ∫
w′∈Fw

V (x) dqw(w
′) ,

where qw is the probability measure induced on Fw by Q and ρ. The expected
value of a probabilistic quantum experiment f ∶ P → E, where P, v is a proba-
bilistic event structure is

∫
w∈C∞(E)

Ew(V) dµf−1(w) ,

where µ is the probability measure induced on C∞(P) by the configuration-
valuation v.

Example 16.18. Imagine an observer who randomly chooses between measur-
ing spin in a first fixed direction a1 or in a second fixed direction a2. Assume
that the probability of measuring in the a1-direction is p1 and in the a2-direction
is p2, where p1 + p2 = 1. The two directions a1 and a2 correspond to choices of
bases ∣↑a1⟩, ∣↓a1⟩ and ∣↑a2⟩, ∣↓a2⟩ in H2. We describe this scenario as a prob-
abilistic quantum experiment. The quantum event structure has four events,
↑ a1, ↓ a1, ↑ a2, ↓ a2, in which ↑ a1, ↓ a1 are concurrent, as are ↑ a2, ↓ a2; all other
pairs of events are in conflict. The event ↑a1 is associated with measuring spin
up in direction a1 and the event ↓ a1 with measuring spin down in direction
a1. Similarly, events ↑a2 and ↓a2 correspond to measuring spin up and down,
respectively, in direction a2. Correspondingly, we associate events with the
following projection operators:

Q(↑a1) = ∣↑a1⟩⟨↑a1∣ , Q(↓a1) = ∣↓a1⟩⟨↓a1∣ ,

Q(u2) = ∣↑a2⟩⟨↑a2∣ , Q(d2) = ∣↓a2⟩⟨↓a2∣ .

278 CHAPTER 16. QUANTUM GAMES

The configurations of the event structure take the form

⋅
↓a1

o O

⋅
↓a2

� o
⋅ ∅

↑a1

O/

↓a1
oO

↑a2

/�

↓a2
� o

⋅

⋅
↑a1

O/

⋅
↑a2

/�

where we have taken the liberty of inscribing the events just on the covering
intervals. Measurement in the a1-direction corresponds to the configuration
{↑a1, ↓a1}—the configuration to the far left in the diagram—and in the a2-
direction to the configuration {↑a2, ↓a2}—that to the far right. To describe
that the probability of the measurement in the a1-direction is p1 and that in
the a2-direction is p2, we assign a configuration valuation v for which

v({↑a1, ↓a1}) = v({↑a1}) = v({↓a1}) = p1 ,

v({↑a2, ↓a2}) = v({↑a2}) = v({↓a2}) = p2 and v(∅) = 1 .

Such an probabilistic quantum experiment is not very interesting on its own.
But imagine that there are two similar observers A and B measuring the spins
in directions a1, a2 and b1, b2, respectively, of two particles created so that
together they have zero angular momentum, ensuring they have a total spin
of zero in any direction. Then quantum mechanics predicts some remarkable
correlations between the observations of A and B, even at distances where their
individual choices of what directions to perform their measurements could not
possibly be communicated from one observer to another. For example, were both
observers to choose the same direction to measure spin, then if one measured
spin up then other would have to measure spin down even though the observers
were light years apart.

We can describe such scenarios by a probabilistic quantum experiment which
is essentially a simple parallel composition of two versions of the (single-observer)
experiment above. In more detail, make two copies of the single-observer event
structure: that for A, the event structure EA, has events ↑ a1, ↓ a1, ↑ a2, ↓ a2,
while that for B, the event structure EB , has events ↑b1, ↓b1, ↑b2, ↓b2. Assume
they possess configuration valuations vA and vB , respectively, determined by
the probabilistic choices of directions made by A and B. Write QA and QB
for the respective assignments of projection operators to events of EA and EB .
The probabilistic event structure for the two observers together is got as EA∥EB
with configuration valuation v(x) = vA(xA)×vB(xB), for x ∈ C(EA∥EB), where
xA and xB are projections of x to configurations of A and B. In this com-
pound system an event such as e.g. ↑a1 is interpreted as the projection operator
QA(↑ a1) ⊗ idH2 on the Hilbert space H2 ⊗ H2, where the combined state of
the two particles belongs. We can capture the correlation or anti-correlation of
the observers’ measurements for spin through a value function on configurations

16.5. MORE GENERAL QUANTUM EVENT STRUCTURES 279

given by

V ({↑ai, ↑bj}) = V ({↓ai, ↓bj}) = 1 , V ({↑ai, ↓bj}) = V ({↓ai, ↑bj}) = −1 , and

V (x) = 0 otherwise.

For example, assuming an initial state, the correlation between A observing in
direction ai and B in direction bj is Ew(V) where w is the experiment

{↑ai, ↓ai, ↑bj , ↓bj} .

◻

16.5 More general quantum event structures

Definition 16.19. A (general) quantum event structure comprises an event
structure (E,≤,Con) together with a functor Q from the partial-order (C(E),⊆)
(regarded as a category) to the monoid of 1-bounded operators on H (regarded
as a one-object category) which satisfy

idH − ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1Q(y,⋃
i∈I

xi)
†Q(y,⋃

i∈I

xi)

is a positive operator, for all y ⊆ x1,⋯, xn with {x1,⋯, xn}↑.

Proposition 16.20. Assume an assignment Q(x, y) of 1-bounded operators on
H to all covering intervals x−⊂y in C(E), such that

Q(x1, y)Q(x,x1) = Q(x2, y)Q(x,x2)

whenever
y

x1

. �

x2

P0

x

P0 . �

and
idH − ∑

∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1Q(y,⋃
i∈I

xi)
†Q(y,⋃

i∈I

xi)

is a positive operator, whenever y−⊂x1,⋯, xn with {x1,⋯, xn}↑. Then, extending
Q to all intervals x ⊆ y by defining

Q(x, y) =def Q(xn−1, y)Q(xn−2, xn−1)⋯Q(x,x1)

for any covering chain

x−⊂x1−⊂⋯−⊂xn−2−⊂xn−1−⊂y

yields a general quantum event structure E,Q.

280 CHAPTER 16. QUANTUM GAMES

Corollary 16.21. A simple quantum event structure E with assignment e↦ Qe
of unitary or projection operators to events e, determines a general quantum

event structure E,Q for which Q(x, y) = Qe when x
e

−Ð⊂ y.

Theorem 16.22. Let E,Q be a general quantum event structure with initial
state a density operator ρ. Each configuration x ∈ C(E) is associated with an
unnormalized density operator

ρx =def Q(∅, x)ρQ(∅, x)†

and a value in [0,1] given by

v(x) =def Tr(ρx) = Tr(Q(∅, x)†Q(∅, x)ρ) .

For any w ∈ C∞(E), the function v restricts to a configuration-valuation vw on
finite configurations in the family of configurations

Fw =def {x ∈ C∞(E) ∣ x ⊆ w} ;

hence vw extends to a unique probability measure qw on the Borel sets of Fw.

We would like a result showing how to realize a general quantum event
structure from a simple quantum event structure by projection, possibly with
tracing-out.

16.6 Quantum strategies

We define a quantum game to comprise A,pol ,HA,Q where A,pol is a race-
free event structure with polarity and A,Q is a quantum event structure, with
Hilbert space HA. A quantum game with initial state is a quantum game with
ρ a density operator.

A strategy in a quantum game A,pol ,Q comprises a probabilistic strategy in
A, so a strategy σ ∶ S → A together with configuration-valuation v on C(S).

Given a strategy vS , σ ∶ S → A and counter-strategy vT , τ ∶ T → A⊥ in a
quantum game A,Q we obtain a probabilistic event structure P via pull-back,
viz.

P
Π1

��

Π2

��
S

σ
��

T

τ
��

A

with a configuration-valuation v(x) =def vSΠ1(x)×vTΠ2(x) on finite configura-
tions x ∈ C(P). This induces a probabilistic measure µ on the event structure
P . Write f =def σΠ1 = τΠ2. We can interpret f ∶ P → A as the probabilistic

16.6. QUANTUM STRATEGIES 281

quantum experiment which results from the interaction of the strategy σ and
the counter-strategy τ .

Suppose now the quantum game has an initial state ρ. We now investigate
the probability the interaction of σ with τ produces a result in a Borel subset U
of of C∞(A), that the probabilistic experiment the interaction induces succeeds
in U .

First note that P becomes a quantum event structure via the map f to
the quantum event structure A: the assignment of operators is given by the
composition of Q with f . By Theorems 16.9 and 16.22, w.r.t. any x ∈ C∞(P),
we obtain a probability measure qx on Fx =def {x′ ∈ C∞(P) ∣ x′ ⊆ x}. Write fx
for the restriction of f to Fx. The expression

qx(f
−1
x U)

gives the probability of obtaining a result in U conditional on x ∈ C∞(P). I
believe (***but haven’t yet proved***) that the function

x↦ qx(f
−1
x U)

from C∞(P) to [0,1] is measurable, making the function a random variable. If
so, the probability of a result in U ⊆ C∞(A) is given by the Lebesgue integral

∫ qx(f
−1
x U)dµ(x) .

We examine some special cases.
Consider the case where σ and τ are deterministic, with configuration val-

uations assigning one to each finite configuration. Then, P will also be deter-
ministic in the sense that all its finite subsets will be consistent. It will thus
have a single maximal configuration w ∈ C∞(P). The configuration-valuation
v will assign one to each finite configuration of P . In this case the probability
measure on Borel subsets V of C∞(P) is simple to describe:

µ(V) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if w ∈ V ,

0 otherwise,

leading to

∫ qx(f
−1
x U)dµ(x) = qw(f

−1U) .

Consider now the case where Opponent initially offers n ∈ {1,⋯,N} mutually-
inconsistent alternatives to Player and resumes with a deterministic strategy.
Suppose too that initially Player chooses amongst the alternatives probabilis-
tically, choosing option n with probability pn, and then resumes deterministi-
cally. This will result in an event structure P taking the form of a prefixed sum

∑1≤n≤N en.Pn in which all the events of Pn causally depend on event en. In this
situation,

∫ qx(f
−1
x U)dµ(x) = ∑

1≤n≤N

pn . qwn(f
−1
n U) ,

282 CHAPTER 16. QUANTUM GAMES

where wn is the maximal configuration of en.Pn and fn ∶ en.Pn → A is the re-
striction of f , for 1 ≤ n ≤ N .

Example 16.23. Quantum-coin tossing demonstrates the extra power quan-
tum moves can have over classical moves. Initially Player and Opponent are
presented with a quantum coin in the form of a qubit, the two bits being asso-
ciated with heads H or tails T . ***

16.7 A bicategory of quantum games

Quantum games inherit the structure of a bicategory from probabilistic games.
A strategy from a quantum game A to a quantum game B is a strategy in the
quantum game A⊥∥B. For this to make sense we have to extend the definitions
of simple parallel composition and dual to quantum games. Assume A and B
are quantum games. In defining their simple parallel composition A∥B and dual
A⊥ we take:

HA∥B =HA ⊗HB , QA∥B(1, a) = QA ⊗ idHB and QA∥B(2, b) = idHA ⊗QB ;

HA⊥ =HA and QA⊥ = QA .

Although we do obtain a bicategory of quantum games in this way, it is not
likely to be the final story. One possible awkwardness is that we need to supply
initial states, before we can determine the probabilities of quantum experiments.
Perhaps the simple parallel composition of games, A∥B, is not the most appro-
priate for quantum games in that it would appear to exclude moves introducing
entanglement between the two games. A more apt parallel composition might
obtain by basing games directly on Hilbert spaces with parallel composition as
tensor; then quantum games can result, e.g. by Definition 16.8. There is also
the issue of adjoining value functions (cf. Section 16.3.2) to quantum games in a
way that respects their bicategorical structure. Providing a structured account
and analysis of quantum experiments, as in the simple experiment discussed in
Example 16.18, should provide guidelines.

Acknowledgments I originally tried unsuccessfully to build a definition of
quantum event structures around the decoherence/consistency conditions used
in the decoherent/consistent histories approach to quantum theory; the con-
ditions appear to be too sensitive to what one considers to be the initial and
final events of a finite configuration. Both Prakash Panangaden and Samson
Abramsky suggested the alternative of basing compatiblity more directly, and
more traditionally, on the commutation of operators, which led to the definitions
above.

Chapter 17

Event structures with
disjunctive causes

*****introduction1

17.1 Motivation

within distributed strategies

hiding and parallel causes

how to attribute differing probabilities to differing parallel causes

More generally, through a careful analysis of the “ways” in which events
occur, also

solves the problems of how to mix probability with nondeterminism, and
higher-order

provides a compositional way to build up probability spaces **** For “con-
venience” probabilists generally separate the probability space from the space
of values*** would be interesting to learn if this is sometimes used to build up
probability space in a compositional fashion from simpler spaces.

17.2 Disjunctive causes and general event struc-
tures

Probabilistic strategies, as presented previously, do not cope with stochastic
behaviour such as races as in the game

⊟ ⊞ .

1This and the following chapter are based on joint work with Marc de Visme for his M1
report for ENS Paris written while he was on an internship at Cambridge, Spring 2015.

283

284CHAPTER 17. EVENT STRUCTURES WITH DISJUNCTIVE CAUSES

To do such we would expect to have to equip events in the strategy with stochas-
tic rates (which isn’t hard to do if synchronisation events are not hidden). So
this is to be expected. But at present probabilistic strategies do not cope with
benign Player-Player races either! Consider the game

⊞

⊟ ⊟

where Player would like a strategy in which they play a move iff Opponent
plays one of theirs. We might stipulate that Player wins if a play of any ⊟ is
accompanied by the play of ⊞ and vice versa. Intuitively a winning strategy
would be got by assigning watchers (in the team Player) for each ⊟ who on
seeing their ⊟ race to play ⊞. This strategy should win with certainty against
any counter-strategy: no matter how Opponent plays one or both of their moves
at least one of the watchers will report this with the Player move. But we cannot
express this with event structures. The best we can do is a probabilistic strategy

⊞ ⊞

⊟

_LLR

⊟

_LLR

with configuration valuation assigning 1/2 to configurations containing either
Player move and 1 otherwise. Against a counter-strategy with Opponent playing
one of their two moves with probability 1/2 this strategy only wins half the time.
In fact, the strategy together with the counter-strategy form a Nash equilibrium
when a winning configuration for Player is assigned payoff +1 and a loss −1 —
see Section ??. This strategy really is the best we can do presently in that it is
optimal amongst those expressible using the simple (prime) event structures.

If we are to be able to express the intuitively strategy which wins with
certainty we need to develop distributed probabilistic strategies to allow ‘dis-
junctive’ causal dependence as in ‘general event structures’ (E,⊢,Con) which
allow e.g. two distinct compatible causes X ⊢ e and Y ⊢ e. In this specific
strategy both Opponent moves would enable the Player move, with all events
being consistent.

But, as we’ll see, for general event structures there is problem with the
operation of hiding.

17.3 General event structures and families

A general event structure[35, ?] is a structure (E,Con,⊢) where E is a set of
event occurrences, the consistency relation Con is a non-empty collection of
finite subsets of E satisfying

X ⊆ Y ∈ Con Ô⇒ X ∈ Con

and the enabling relation ⊢⊆ Con ×E satisfies

Y ∈ Con & Y ⊇X & X ⊢ e Ô⇒ Y ⊢ e .

17.3. GENERAL EVENT STRUCTURES AND FAMILIES 285

A configuration is a subset of E which is

consistent: X ⊆fin x Ô⇒ X ∈ Con and

secured: ∀e ∈ x∃e1,⋯, en ∈ x. en = e & ∀i ≤ n. {e1,⋯, ei−1} ⊢ ei.

Write C∞(E) for the configurations of E and C(E) for its finite configurations.
The notion of secured has been expressed through the existence of a securing

chain to express an enabling of an event within a set which is a complete enabling
in the sense that everything in the securing chain is itself enabled by earlier
members of the chain. One can imagine more refined ways in which to express
complete enablings which are rather like proofs, perhaps as trees or partial
orders in which events are enabled by those events earlier in the order. Later
the idea that complete enablings are consistent partial orders of events in which
all events are enabled by earlier events in the order will play an important role
in generalising general event structures to structures suitable for supporting
strategies with parallel causes and their attendant constructions.

A map of general event structures f ∶ (E,Con,⊢)→ (E′,Con′,⊢′) is a partial
function f ∶ E ⇀ E′ such that

X ∈ Con Ô⇒ fX ∈ Con′ & ∀e1, e2 ∈X. f(e1) = f(e2) Ô⇒ e1 = e2 and

X ⊢ e & f(e) is defined Ô⇒ fX ⊢′ f(e) .

It follows that the image fx of a configuration x of E is itself a configuration
and moreover that

∀e1, e2 ∈ x. f(e1) = f(e2) Ô⇒ e1 = e2 .

Maps compose as partial functions with identity maps being identity functions.
Write GES for the category of general event structures.

A family of configurations comprises a family F of sets such that

if X ⊆ F is finitely compatible in F then ⋃X ∈ F ; and

if e ∈ x ∈ F then there exists a securing chain e1,⋯, en = e in x s.t. {e1,⋯, ei} ∈
F for all i ≤ n.

The latter condition is equivalent to saying (i) that whenever e ∈ x ∈ F there is
a finite x0 ∈ F s.t. e ∈ x0 ∈ F and (ii) that if e, e′ ∈ x and e ≠ e′ then there is
y ∈ F with y ⊆ x s.t. e ∈ y ⇐⇒ e′ ≠ y. The elements of the underlying set ⋃F
stand for events.

Such a family is stable when for any compatible non-empty subset X of F
its intersection ⋂X is a member of F .

A configuration x ∈ F is irreducible, with top element e iff e ∈ x and ∀y ∈
F . e ∈ y ⊆ x implies y = x. Notice that because the top element of an irreducible
has a securing chain the irreducible is a finite set with a unique top element, e.
Irreducibles coincide with complete join irreducibles w.r.t. the order of inclusion.
There is a maximum configuration �x strictly included in any irreducible x with

286CHAPTER 17. EVENT STRUCTURES WITH DISJUNCTIVE CAUSES

top e; so �x
e

−Ð⊂x. It is tempting to think of irreducibles as representing minimal
complete enablings (as I did for a while). But, as sets, irreducibles both lack
sufficient structure: in the formulation we are led to, several minimal complete
enabling can correspond to the same irreducible; and are not general enough:
in our formulation of minimal complete enabling there are minimal complete
enablings whose underlying set is not an irreducible.

A map between families of configurations from F to G is a partial function
f ∶ ⋃F ⇀ ⋃G between their events such that for any x ∈ F its image fx ∈ G and

∀e1, e2 ∈ x. f(e1) = f(e2) Ô⇒ e1 = e2 .

Maps compose as partial functions with identity maps being identity functions.
We obtain a category SFam of families of configurations.

The forgetful functor from GES to SFam taking a general event structure
to its family of configurations has a left adjoint, which constructs a canonical
general event structure from a family: Let A be a family of configurations with
underlying events A. Construct a general event structure

ges(A) =def (A,Con,⊢)

with

• X ∈ Con iff X ⊆fin y, for some y ∈ A, and

• X ⊢ a iff a ∈ A, X ∈ Con and a ∈ y ⊆X ∪ {a}, for some y ∈ A.

The unit of the adjunction has typical component idA ∶ A → C∞(ges(A))
given as the identity function on events.

Theorem 17.1. Let A ∈ SFam with underlying set A. Then, A = C∞(ges(A)).
Suppose B = (B,ConB ,⊢B) ∈ GES and that g ∶ A → C∞(B) is a map in

Fam≡. Then, g ∶ ges(A)→ B in GES.
The functor from GES to SFam taking a map of general event structures to

the corresponding map of families of configurations has a left adjoint acting as
ges on objects. The unit of the adjunction has typical component idA ∶ A →
C∞(ges(A)) given as the identity function on events A of a family of configu-
rations A.

The above yields a coreflection of families of configurations in general event
structures. It cuts down to an equivalence between families of configurations
and replete event structures. Say a general event structure (E,Con,⊢) is replete
when εE is an isomorphism. A general event structure E is replete iff

∀e ∈ E∃X ∈ Con. X ⊢ e ,

∀X ∈ Con∃x ∈ C(E). X ⊆ x and

X ⊢ e Ô⇒ ∃x ∈ C(E). e ∈ x & x ⊆X ∪ {e} .

The last condition is equivalent to stipulating that each minimal enabling X ⊢
e—whereX is a minimal consistent set enabling e—corresponds to an irreducible
configuration X ∪ {e}.

17.4. THE PROBLEM 287

Sometimes when it’s important to disambiguate general event structures
from those we have studied previously we shall use ‘prime event structures’ for
event structures of the form (E,≤,Con). We can regard such a prime event
structure as a (replete) general event structure (E,Con,⊢) where X ⊢ e iff
X ∈ Con, e ∈ E and [e) ⊆X.

Clearly the partial functions which are maps of prime event structures can
be understood as maps of the associated general event structures. We obtain
a full embedding of prime event structures SE in GES, and indeed in F as the
general event structures in the image are replete. Neither of these is a left ad-
joint (despite what is claimed in [5]). However, later, in Section 17.12, we shall
recover an adjunction from prime to (replete) general event structures at the
slight cost of adding an equivalence relation to prime event structures and their
maps.

Remark Although general event structures do not support hiding, so do not
support strategies fully, their relative simplicity recommends them as a model for
strategies with parallel causes provided they carry unhidden neutral events (so
called partial strategies [?]), which have advantages when it comes to operational
semantics and more discriminating equivalences. This line of research is being
followed up in the PhD work of Tamas Kispeter.

17.4 The problem

With one exception, all the operations we have used in building strategies and, in
particular, the bicategory of strategies extend easily to general event structures.
The one exception, that of hiding, has been crucial in building a bicategory.

We present an argument to show general event structures are not closed
under hiding. The following describes a general event structure.

Events: a, b, c, d and e.

Enabling: (1) b, c ⊢ e and (2) d ⊢ e, with all events other than e being
enabled by the empty set.

Consistency: all subsets are consistent unless they contain the events a
and b; in other words, the events a and b are in conflict.

Any configuration will satisfy the assertion

(a ∧ e) Ô⇒ d

because if e has occurred it has to have been enabled by (1) or (2) and if a has
occurred its conflict with b has prevented the enabling (1), so e can only have
occurred via enabling (2).

Now imagine the event b is hidden, so allowed to occur invisibly in the
background. The “configurations after hiding” are those obtained by hiding

288CHAPTER 17. EVENT STRUCTURES WITH DISJUNCTIVE CAUSES

(i.e. removing) the invisible event b from the configurations of the original event
structure. The assertion above will still hold of the configurations after hiding.

There isn’t a general event structure with events a, c, d and e, and configu-
rations those which result when we hide (or remove) b from the configurations
of the original event structure. One way to see this is to observe that amongst
the configurations after hiding we have

{c}−⊂{c, e} and {c}−⊂{a, c}

where both {c, e} and {a, c} have upper bound {a, c, d, e}, and yet {a, c, e} is
not a configuration after hiding as it fails to satisfy the assertion. (In the
configurations of any general event structure if x−⊂y and x−⊂z and y and z are
bounded above, then y ∪ z is a configuration.)

The first general event structure can be built out of the composition without
hiding of strategies described by general event structures, one from a game A to
a game B and the other from B to C; the second structure, not a general event
structure, arises when hiding the events over the intermediate game B.

To obtain a bicategory of strategies with disjunctive causes we need to sup-
port hiding. We need to look for structures more general than general event
structures. The example above gives a clue: the inconsistency is one of incon-
sistency between (minimal complete) enablings rather than events.

17.5 Adding disjunctive causes to prime event
structures

To cope with disjunctive causes and hiding we must go beyond general event
structures. We introduce structures in which we objectify cause; a minimal
complete causal enabling is no longer an instance of a relation but a structure
that realises that instance (cf. a proof in contrast to an entailment, or judgement
of theorem-hood). This is in order to express inconsistency between minimal
complete enablings, inexpressible as inconsistencies on events, that can arise
when hiding.

Fortunately we can do this while staying close to prime event structures.
The twist is to regard “disjunctive events” as comprising subsets of events of
a prime event structure, the events of which are thought of as representing
“prime causes,” i.e. a particular formalisation of minimal complete enablings.
Technically, we do this by extending prime event structures with an equivalence
relation on its events.

In detail, an event structure with equivalence (an ese) is a structure

(P,≤,ConP ,≡)

where (P,≤,ConP) satisfies the axioms of a (prime) event structure and ≡ is an
equivalence relation on P .

The intention is that the events of P represent prime causes while the ≡-
equivalence classes of P represent disjunctive events: p in P is a prime cause

17.5. ADDING DISJUNCTIVE CAUSES TO PRIME EVENT STRUCTURES289

of the event {p}≡. Notice there may be several prime causes of the same event
and that these may be parallel causes in the sense that they are consistent with
each other and causally independent.

A configuration of the ese is a configuration of (P,≤,ConP) and we shall
use the notation of earlier on event structures C∞(P) and C(P) for its config-
urations, respectively finite configurations. Say a configuration is unambiguous
when it has no two distinct elements which are ≡-equivalent. We modify the
relation of concurrency and say p1, p2 ∈ P are concurrent and write p1co p2 iff
[p1]∪[p2] is an unambiguous configuration of P and neither p1 ≤ p2 nor p2 ≤ p1.

An ese dissociates the two roles of enabling and atomic action conflated in
the events of a prime event structures. The elements of P are to be thought of as
minimal complete enablings and the equivalence classes as actions representing
the occurrence of at least one prime cause.

When the equivalence relation ≡ of an ese is the identity we essentially have
a prime event structure. This view is reinforced in our choice of maps. A map
from (P,≤P ,ConP ,≡P) to (Q,≤Q,ConQ,≡Q) is a partial function f ∶ P ⇀ Q
which preserves ≡, i.e.

if p1 ≡P p2 then either both f(p1) and f(p2) are undefined or both defined
with f(p1) ≡Q f(p2)

s.t. for all x ∈ C(P)

(i) the direct image fx ∈ C(Q), and

(ii) ∀p1, p2 ∈ x. f(p1) ≡Q f(p2) Ô⇒ p1 ≡P p2 .

Maps compose as partial functions with the usual identity.
We sometimes use an alternative description of maps:

Proposition 17.2. A map of ese’s from P to Q is a partial function f ∶ P ⇀ Q
which preserves ≡ s.t.

(i) for all X ∈ ConP the direct image fX ∈ ConQ and
∀p1, p2 ∈X. f(p1) ≡Q f(p2) Ô⇒ p1 ≡P p2 , and

(ii) whenever q ≤Q f(p) there is p′ ≤P p s.t. f(p′) = q .

Such maps preserve the concurrency relation.
We regard two maps f1, f2 ∶ P → Q as equivalent, and write f1 ≡ f2, iff they

are equi-defined and yield equivalent results, i.e.
if f1(p) is defined then so is f2(p) and f1(p) ≡Q f2(p), and
if f2(p) is defined then so is f1(p) and f1(p) ≡Q f2(p).
Composition respects ≡: if f1, f2 ∶ P → Q with f1 ≡ f2 and g1, g2 ∶ Q → R

with g1 ≡ g2, then g1f1 ≡ g2f2. Write ES≡ for the category of ese’s; it is enriched
in the category of sets with equivalence relations (sometimes called setoids).

Ese’s support a hiding operation. Let (P,≤,ConP ,≡) be an ese. Let V ⊆ P
be a ≡-closed subset of ‘visible’ events. Define the projection of P on V , to

290CHAPTER 17. EVENT STRUCTURES WITH DISJUNCTIVE CAUSES

be P ↓V =def (V,≤V ,ConV ,≡V), where v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and X ∈
ConV iff X ∈ Con & X ⊆ V and v ≡V v

′ iff v ≡ v′ & v, v′ ∈ V .
Hiding is associated with a factorisation of partial maps. Let

f ∶ (P,≤P ,ConP ,≡P)→ (Q,≤Q,ConQ,≡Q)

be a partial map between two ese’s. Let

V =def {e ∈ E ∣ f(e) is defined} .

Then f factors into the composition

P
f0 // P ↓V

f1 // Q

of f0, a partial map of ese’s taking p ∈ P to itself if p ∈ V and undefined
otherwise, and f1, a total map of ese’s acting like f on V . We call f1 the
defined part of the partial map f . Because ≡-equivalent maps share the same
domain of definition, ≡-equivalent maps will determine the same projection and
≡-equivalent defined parts. We say a map f ∶ E → E′ is a projection if its
defined part is an isomorphism. The factorisation is characterised to within
isomorphism by the following universal characterisation: for any factorisation

P
g0 // P1

g1 // Q where g0 is partial and g1 is total there is a (necessarily

total) unique map h ∶ P ↓V → P1 such that

P
f0 //

g0 !!

P ↓V

h

��

f1 // Q

P1

g1

==

commutes.

17.6 Equivalence families

We shall relate ese’s to general event structures by an adjunction (strictly, a
form of pseudo adjunction or biadjunction as it shall rely on the enrichment
by equivalence). This will provide a way to embed families of configurations
and so replete general event structures in ese’s. The adjunction will factor
through a more basic adjunction to families of configurations which also bear
an equivalence relation on their underlying sets (we’ll call them equivalence-
families). This latter adjunction provides a full embedding of ese’s in ef’s and is
itself important as it provides a way to do key constructions such as bipullback
within ese’s; just as it can be hard to constructions such as pullback within
event structures, so that we often rely on first carrying out the constructions in
stable families.

A family with equivalence or an equivalence-family (ef) is a family of con-
figurations A with an equivalence relation ≡A on its underlying set A =def ⋃A.

17.7. REALISATIONS 291

We can identify a family of configurations A with the equivalence family (A,=),
taking the equivalence to be simply equality on the underlying set.

Let (A,≡A) and (B,≡B) be ef’s, with respective underlying sets A and B.
A map f ∶ (A,≡A) → (B,≡B) is a partial function f ∶ A ⇀ B which preserves ≡
s.t. x ∈ A Ô⇒ fx ∈ B & ∀a1, a2 ∈ x. f(a1) ≡B f(a2) Ô⇒ a1 ≡A a2 .
Composition is composition of partial functions. We regard two maps

f1, f2 ∶ (A,≡A)→ (B,≡B)

as equivalent, and write f1 ≡ f2, iff they are equidefined and yield equivalent
results. Composition respects ≡. This yields a category of equivalence families
Fam≡; it is enriched in the category of sets with equivalence relations.

Later stable ef’s will come to play an important role. In an equivalence
family (A,≡A) say a configuration x ∈ A is unambiguous iff

∀a1, a2 ∈ x. a1 ≡A a2 Ô⇒ a1 = a2 .

An equivalence family (A,≡A), with underlying set of events A, is stable iff it
satisfies

∀x, y, z ∈ A. x, y ⊆ z & z is unambiguous Ô⇒ x ∩ y ∈ A and

∀a ∈ A,x ∈ A. a ∈ x Ô⇒ ∃z ∈ A. z is unambiguous & a ∈ z ⊆ x .

In effect a stable equivalence family contains a stable subfamily of unambiguous
configurations out of which all other configurations are obtainable as unions.
Local to any unambiguous configuration there is a partial order on its events.

Clearly we can regard an ese (P,≤,Con,≡P) as an ef (C∞(P),≡P) and a
function which is a map of ese’s as a map between the associated ef’s and this
operation is functorial. However, the converse, how to construct an ese from
a family, is much less clear. To do so we follow up on the idea introduced in
Section 17.3 of basing minimal complete enablings on partial orders. A minimal
complete enabling will correspond to an extremal (causal) realisations with top.
realisations and how to obtain extremal realisations, among these the primes
with a top element, will be our topic over the next few sections.

17.7 Realisations

Let A be a family of configurations with underlying set A.

Definition 17.3. A (causal) realisation comprises a partial order

(E,≤) ,

its carrier, such that the set {e′ ∈ E ∣ e′ ≤ e} is finite for all events e ∈ E, together
with a function

ρ ∶ E → A

292CHAPTER 17. EVENT STRUCTURES WITH DISJUNCTIVE CAUSES

s.t. its image ρE ∈ A and

∀e ∈ E. ρ{e′ ∈ E ∣ e′ ≤ e} ∈ A .

(Equivalently, instead of the latter condition, we can say ρ sends down-closed
subsets of its carrier E to configurations of A.)

We say the realisation ρ is injective when ρ is injective as a function.

We define maps between realisations (E,≤), ρ and (E′,≤′), ρ′ as partial sur-
jective functions f ∶ E ⇀ E′ s.t.

∀e ∈ E. f(e) is defined Ô⇒ ρ(e) = ρ′(f(e)) &

f{e0 ∈ E ∣ e0 ≤ e} ⊇ {e′ ∈ E′ ∣ e′ ≤′ f(e)} .

Equivalently we could define such a map as a partial surjective function f ∶ E ⇀
E′ which preserves down-closed subsets and satisfies ρ(e) = ρ′(f(e)) when f(e)
is defined. It is convenient to write such a map as

f ∶ ρ ⪰ ρ′ or ρ ⪰f ρ′ .

Occasionally we shall write ρ ⪰ ρ′, or the converse ρ′ ⪯ ρ, to mean there is a
map of realisations from ρ to ρ′.

Such a map factors into a “projection” followed by a total map, as

ρ ⪰f1

1 ρ0 ⪰
f2

2 ρ′

where ρ0 stands for the realisation (E0,≤0), ρ0 where

E0 = {r ∈ R ∣ f(r) is defined} ,

the domain of definition of f , with ≤0 the restriction of ≤, and f1 is the inverse
relation to the inclusion E0 ⊆ E, and f2 is the total function f2 ∶ E0 → E′.
We are using ⪰1 and ⪰2 to signify the two kinds of maps. Notice that ⪰1-maps
are reverse inclusions. Notice too that ⪰2-maps are exactly the total maps of
realisations. Total maps ρ ⪰f2 ρ

′ are precisely those surjective functions f from
the carrier of ρ to the carrier of ρ′ which preserve down-closed subsets and
satisfy ρ = ρ′f .

We shall say a realisation ρ is extremal when

ρ ⪰f2 ρ
′ Ô⇒ f is an isomorphism

for any realisation ρ′.

17.8 Extremal realisations

Let A be a configuration family with underlying set A. Any realisation in A
can be coarsened to an extremal realisation.

17.8. EXTREMAL REALISATIONS 293

Lemma 17.4. For any realisation ρ there is an extremal realisation ρ′ with
ρ ⪰f2 ρ

′.

Proof. The category of realisations with total maps has colimits of total-order
diagrams. A diagram d from a total order (I,≤) to realisations, comprises a
collection of total maps of realisations di,j ∶ d(i) → d(j) when i ≤ j s.t. di,i is
always the identity map and if i ≤ j and j ≤ k then di,k = dj,k ○di,j . We suppose
each realisation d(i) has carrier (Ei,≤i) with d(i) ∶ Ei → A. We construct the
colimit realisation of the diagram as follows.

The elements of the colimit realisation consist of equivalence classes of ele-
ments of the disjoint union

E =def ⊎
i∈I

Ei

under the equivalence

(i, ei) ∼ (j, ej) ⇐⇒ ∃k ∈ I. i ≤ k & j ≤ k & di,k(ei) = dj,k(ej) .

Consequently we may define a function ρE ∶ E → A by taking ρE({ei}∼) = ρi(ei).
Because every di,j is a surjective function, every equivalence class in E has a
representative in Ei for every i ∈ I. Moreover, for any e ∈ E there is k ∈ I s.t.

{e′ ∈ E ∣ e′ ≤E e} = {{e′k}∼ ∣ e′k ≤k ek} ,

where e = {ek}∼, so is finite. It follows that ρE is a realisation. The maps
fi ∶ ρi ⪰2 ρE , where i ∈ I, given by fi(ei) = {ei}∼ form a colimiting cone.

Suppose ρ is a realisation. Consider all total-order diagrams d from a total
order (I,≤) to realisations starting from ρ with di,j not an isomorphism if i <
j. Amongst them there is a maximal diagram by Zorn’s lemma. From the
maximality of the diagram its colimit is necessarily extremal. In more detail,
construct a colimiting cone fi ∶ d(i) ⪰2 ρE , i ∈ I, with the same notation as above.
By maximality of the diagram some fk must be an isomorphism; otherwise we
could extend the diagram by adding a top element to the total order and sending
it to ρE . If j should satisfy k < j then fj ○ dk,j = fk so f−1

k fj ○ dk,j = idEk . It
would follow that dk,j is injective, as well as surjective, it being a total map
of realisations, and consequently that dk,j is an isomorphism—a contradiction.
Hence k is the maximum element in (I,≤). If the colimit were not extremal we
could again adjoin a new top element above k thus extending the diagram—a
contradiction.

Corollary 17.5. Every countable configuration of a family of configurations
has an injective extremal realisation.

Proof. Let x be a countable configuration of a family of configurations A. By
serialising the countable configuration,

a1 ≤ a2 ≤ ⋯ ≤ an ≤ ⋯

where {e1,⋯, en} ∈ A for all n, we obtain an injective realisation ρ. By Lemma 17.4

we can coarsen ρ to an extremal realisation ρ′ with ρ ⪰f2 ρ
′. As ρ = ρ′f the sur-

jective function f is also injective, so a bijection, ensuring that the extremal
realisation ρ′ is also injective.

294CHAPTER 17. EVENT STRUCTURES WITH DISJUNCTIVE CAUSES

The following lemma and corollary are central.

Lemma 17.6. Assume (R,≤), ρ, (R0,≤0), ρ0 and (R1,≤1), ρ1 are realisations.

(i) Suppose f ∶ ρ ⪰f1

1 ρ0 ⪰
f2

2 ρ1. Then there are maps so that f ∶ ρ ⪰g2

2 ρ′ ⪰g1

1 ρ1,
as shown below:

ρ

f1

��

g2 // ρ′

g1

��
ρ0

f2 // ρ1

(ii) Suppose ρ ⪰f1

1 ρ0 where R0 is not a down-closed subset of R. Then there are
maps so f1 = ρ ⪰

g2

2 ρ′ ⪰g1

1 ρ0 with g2 not an isomorphism:

ρ

f1

��

g2 // ρ′

g1

��
ρ0

Proof. (i) Construct the realisation (R′,≤′), ρ′ as follows. Define

R′ = (R ∖R0) ∪R1

where w.l.o.g. we assume the sets R∖R0 and R1 are disjoint. Define the function
g2 ∶ R → R′ to act as the identity on elements of R ∖R0 and as f2 on elements
of R0. Because f2 reflects the order so does g2, and g2 preserves down-closed
subsets.

When b ∈ R ∖R0, define

a ≤′ b iff ∃a0 ∈ R. a0 ≤ b & g2(a0) = a .

When b ∈ R1, define
a ≤′ b iff a ∈ R1 & a ≤1 b .

Define ρ′ to act as ρ on elements of R ∖ R0 and as ρ1 on elements of R1.
Then ρ = ρ′g2 directly. To see ≤′ is a partial order observe that reflexivity and
antisymmetry follow directly from the corresponding properties of ≤ and ≤1.
Transitivity requires an argument by cases. For example, in the most involved
case, where

c ≤′ a with a ∈ R1 and a ≤′ b with b ∈ R ∖R0

we obtain
c ≤1 a and a0 ≤ b

for some a0 ∈ R0 with f2(a0) = a. As f2 is surjective and reflects the order,

c0 ≤0 a0 and a0 ≤ b

for some c0, ∈ R0 with f2(c0) = c. Consequently, c0 ≤ b with g2(c0) = c, making
c ≤′ b, as required for transitivity.

17.8. EXTREMAL REALISATIONS 295

We should check that ρ′ is a realisation. Let b ∈ R′. If b ∈ R1 then ρ′[b]′ =
ρ1[b]1 ∈ C(A). If b ∈ R ∖ R0 then ρ′[b]′ = ρg2[b] the image under ρ of the
down-closed subset g2[b], so in C(A).

We have already remarked that g2 reflects the order and ρ = ρ′g2 making it
a map of realisations. This concludes the proof of (i).
(ii) This follows from the construction of (R′ ≤′), ρ′ used in (i) but in the special
case where f2 is the identity map. Then R′ = R but ≤′≠≤ as there is e ∈ R0 with
[e]0 ⊊ [e] ensuring that [e]′ = [e]0 ≠ [e].

Corollary 17.7. If ρ is extremal and ρ ⪰f ρ′, then ρ′ is extremal and there is
ρ0 s.t. f ∶ ρ ⪰1 ρ0 ≅ ρ′. Moreover, the carrier R0 of ρ0 is a down-closed subset
of the carrier R of ρ, with order the restriction of that on R.

Proof. Directly from Lemma 17.6. Assume ρ is extremal and ρ ⪰f ρ′. We can
factor f into ρ ⪰f1

1 ρ0 ⪰f2

2 ρ′. From (i), if ρ0 were not extremal nor would ρ
be—a contradiction; hence f2 is an isomorphism. From (ii), the carrier R0 of
ρ0 has to be a down-closed subset of the carrier R of ρ, as otherwise we would
contradict the extremality of ρ.

It follows that if ρ is extremal and ρ ⪰f ρ′ then ρ′ is extremal and the inverse
relation g =def f

−1 is an injective function preserving and reflecting down-closed
subsets, i.e. g[r′] = [g(r′)] for all r′ ∈ R′. In other words:

Corollary 17.8. If ρ is extremal and ρ ⪰f ρ′, then ρ′ is extremal and the
inverse g =def f

−1 is a rigid embedding from the carrier of ρ′ to the carrier of ρ
s.t. ρ′ = ρf .

Lemma 17.9. Let (R,≤), ρ be an extremal realisation. Then

(i) if r′ ≤ r and ρ(r) = ρ(r′) then r = r′;

(ii) if [r) = [r′) and ρ(r) = ρ(r′) then r = r′.

Proof. (i) Suppose r′ ≤ r and ρ(r) = ρ(r′). By Corollary 17.8, we may project
to [r] to obtain an extremal realisation ρ0 ∶ [r] → A. Suppose r and r′ were
unequal. We can define a realisation as the restriction of ρ0 to [r). The function
from [r] to [r) taking r to r′ and otherwise acting as the identity function is
a map of realisations from the realisation ρ0 and clearly not an isomorphism,
showing ρ0 to be non-extremal—a contradiction. Hence r = r′, as required.
(ii) Suppose [r) = [r′) and ρ(r) = ρ(r′). Projecting to [r, r′] we obtain an
extremal realisation. If r and r′ were unequal there would be a non-isomorphism
map to the realisation obtained by projecting to [r], viz. the map from [r, r′]
to [r] sending r′ to r and fixing all other elements.

By modifying condition (i) in the lemma above a little we obtain a charac-
terisation of extremal realisations:

Lemma 17.10. Let (R,≤), ρ be a realisation. Then ρ is extremal iff

296CHAPTER 17. EVENT STRUCTURES WITH DISJUNCTIVE CAUSES

(i) if X ⊆ [r), with X down-closed and r ∈ R, and ρ(X ∪ {r}) ∈ A then
X = [r); and

(ii) if [r) = [r′) and ρ(r) = ρ(r′) then r = r′.

Proof. “Only if”: Assume ρ is extremal. We have already established (ii) in
Lemma 17.9. To show (i), suppose X is down-closed and X ⊆ [r) in R with
ρ(X ∪{r}) ∈ A. By Corollary 17.8, we may project to [r] to obtain an extremal
realisation ρ0 ∶ [r]→ A. Modify the restricted order [r] to one in which r′ ≤ r iff
r′ ∈ X, and is otherwise unchanged. The same underlying function ρ0 remains
a realisation, call it ρ′0, on the modified order. The identity function gives us a
map f ∶ ρ0 ⪰2 ρ

′
0 which is an isomorphism between realisations iff X = [r).

“If”: Assume (i) and (ii). Suppose f ∶ ρ ⪰2 ρ
′, where R′, ρ′ is a realisation. We

show f is injective and order-preserving. As f is presumed to be surjective and
to preserve down-closed subsets we can then conclude it is an isomorphism.

To see f is injective suppose f(r1) = f(r2). W.l.o.g. we may suppose r1 and
r2 are minimal in the sense that

r′1 ≤ r1 & r′2 ≤ r2 & f(r′1) = f(r
′
2) Ô⇒ r′1 = r1 & r′2 = r2 .

Define r′ =def f(r1) = f(r2). Then

[r′] ⊆ f[r1] & [r′] ⊆ f[r2] .

Furthermore, by the minimality of r1, r2,

[r′) ⊆ f[r1) & [r′] ⊆ f[r2) .

It follows that
[r′) ⊆ f[r1) ∩ f[r2) = f([r1) ∩ [r2))

where the equality is again a consequence of the minimality of r1, r2. Taking
X =def [r1) ∩ [r2) we have (fX) ∪ {r′} is down-closed in R′. Therefore

ρ(X ∪ {r1}) = ρ
′f(X ∪ {r1}) = ρ

′(fX ∪ {r′}) ∈ A .

By condition (ii), X = [r1). Similarly, X = [r2), so [r1) = [r2). Obviously
ρ(r1) = ρ

′f(r1) = ρ
′f(r1) = ρ(r2), so we obtain r1 = r2 by (i).

We now check that f preserves the order. Let r ∈ R. Define

X =def [{r1 ≤ r ∣ f(r1) < f(r)}] ,

where the square brackets signify down-closure in R. Then X is down-closed in
R by definition and X ⊆ [r). We have [f(r)] ⊆ f[r] whence

fX = f[r] ∩ [f(r)) = [f(r)) .

Therefore fX ∪ {f(r)} is down-closed in R′, so

ρ(X ∪ {r}) = ρ′f(X ∪ {r}) = ρ′(fX ∪ {f(r)}) ∈ A .

17.8. EXTREMAL REALISATIONS 297

Hence X = [r), by (ii). It follows that

r1 _ r Ô⇒ r1 ∈X

Ô⇒ f(r1) < f(r) in R′ .

As the order on R is the transitive closure of immediate dependency, this in
turn that f preserves the order.

Lemma 17.11. There is at most one map between extremal realisations.

Proof. Let (R,≤), ρ and (R′,≤′), ρ′ be extremal realisations. Let f, f ′ ∶ ρ→ ρ′ be
maps with converse relations g and g′ respectively. We show the two functions g
and g′ are equal, and hence so are their converses f and f ′. Suppose otherwise
that g ≠ g′. Then there is an ≤-minimal r′ ∈ R′ for which g(r′) ≠ g′(r′) and
g[r) = g′[r′). Hence [g(r′)) = [g′(r′)) and ρ(g(r′)) = ρ′(r′) = ρ(g′(r′)). As ρ is
extremal, by Lemma 17.9(ii) we obtain g(r′) = g′(r′)—a contradiction.

Hence extremal realisations of A under ⪯ form a preorder. The order of ex-
tremal realisations has as elements isomorphism classes of extremal realisations
ordered according to the existence of a map between representatives of isomor-
phism classes. Alternatively, we could take a choice of representative from each
isomorphism class and order these according to whether there is a map from one
to the other. We say a realisation has a top element when its carrier contains an
element which dominates all other elements in the carrier. In fact, the following
is a direct corollary of Proposition 17.17 in the next section.

Proposition 17.12. The order of extremal realisations of a family of configu-
rations A forms a prime-algebraic domain [1] with complete primes represented
by those extremal realisations which have a top element.

The proofs of the following observations are straightforward. They empha-
sise that extremal realisations with top are for our purposes (among them to
develop probabilistic strategies with parallel causes) an appropriate generalisa-
tion of (complete) primes when we move from prime event structures to general
event structures.

Proposition 17.13. Let (A,≤A,ConA) be a prime event structure. For an
extremal realisation (R,≤R), ρ of C∞(A), the function ρ ∶ R → ρR is an order
isomorphism between (R,≤R) and the configuration ρR ∈ C∞(A) ordered by the
restriction of ≤A. The function taking an extremal realisation (R,≤R), ρ to the
configuration ρR is an order isomorphism from the order of extremal realisations
of C∞(A) to the configurations of A; extremal realisations with a top correspond
complete primes of C∞(A).

We conclude with examples illustrating the nature of extremal realisations.
It is convenient to describe families of configurations by general event structures,
taking advantage of the economic representation they provide.

298CHAPTER 17. EVENT STRUCTURES WITH DISJUNCTIVE CAUSES

Example 17.14. This and the following example shows that prime extremal
realisations do not correspond to irreducible configurations. Below, on the right
we show a general event structure with irreducible configuration {a, b, c, d}. On
the left we show two prime extremals with tops d1 and d2 which both have the
same irreducible configuration {a, b, c, d} as their image. The lettering indicates
the functions associated with the realisations, e.g. events d1 and d2 in the partial
orders map to d in the general event structure.

d1 d2 d

c1

OO

c2

OO

c

AND

OO

OR

a

OO

b

VV

a

GG

b

OO

a

FF

CC

b

XX

[[

Example 17.15. On the other hand there are prime extremal realisations of
which the image is not an irreducible configuration. Below the prime extremal
on the left describes a situation where d is enabled by b and c being enabled by
a. It has image the configuration {a, b, c, d} which is not irreducible, being the
union of the two configurations {a} and {b, c, d}.

d d

c1

OO

c

AND

OO

a

OO

b

YY

a

FF

OR

b

XX

YY

Example 17.16. It is also possible to have prime extremal realisations in which
an event depends on another event having been enabled in two distinct ways,

17.9. AN ADJUNCTION FROM ES≡ TO FAM≡ 299

as in the following extremal realisation on the left.

f f

AND

d1

FF

e1

XX

d

EE

e

YY

c1

OO

c2

OO

c

CC[[

OR

a

OO

b

OO

a

DD

b

ZZ

The extremal describes the event f being enabled by d and e where they are in
turn enabled by different ways of enabling c. Although an extremal (with top
element) it is clearly not an injective realisation.

17.9 An adjunction from ES≡ to Fam≡

We exhibit an adjunction (precisely, a very simple case of biadjunction) from
ES≡, the category of ese’s, to Fam≡, the category of equivalence families.

The left adjoint I ∶ ES≡ → Fam≡ is the full and faithful functor which takes
an ese to its family of configurations with the original equivalence.

The right adjoint er ∶ Fam≡ → ES≡ is defined on objects as follows. Let A be
an equivalence family with underlying set A. Define er(A) = (P ,ConP ,≤P ,≡P)
where

• P consists of a choice from within each isomorphism class of those ex-
tremals p of A with a top element—we write top(p) for the image of the
top element in A;

• Causal dependency ≤P is ⪯ on P ;

• X ∈ ConP iff X ⊆fin P and top [X]P ∈ A —the set [X]P is the ≤P -
downwards closure of X, so equal to {p′ ∈ P ∣ ∃p ∈X. p′ ⪯ p};

• p1 ≡P p2 iff p1, p2 ∈ P and top(p1) ≡A top(p2).

Proposition 17.17. The configurations of P , ordered by inclusion, are order-
isomorphic to the order of extremal realisations: an extremal realisation ρ corre-
sponds, up to isomorphism, to the configuration {p ∈ P ∣ p ⪯ ρ} of P ; conversely,
a configuration x of P corresponds to an extremal realisation top ∶ x → A with
carrier (x,⪯), the restriction of the order of P to x.

300CHAPTER 17. EVENT STRUCTURES WITH DISJUNCTIVE CAUSES

Proof. It will be helpful to recall, from Corollary 17.8 , that if ρ ⪰f ρ′ between
extremal realisations, then the inverse relation f−1 is a rigid embedding of (the
carrier of) ρ′ in (the carrier of) ρ; so ρ′ ⪯ ρ stands for a rigid embedding. Suppose
x ∈ C∞(P). Then x determines an extremal realisation

θ(x) =def top ∶ (x ,⪯)→ A .

The function θ(x) is a realisation because each p in x is, and extremal because,
if not, one of the p in x would fail to be extremal, a contradiction. Clearly ρ′ ⪯ ρ
implies θ(ρ′) ⊆ θ(ρ). Conversely, it is easily checked that any extremal realisa-
tion ρ ∶ (R,≤)→ A defines a configuration {p ∈ P ∣ p ⪯ ρ}. If x ⊆ y in C∞(P) then
ϕ(x) ⪯ ϕ(y). It can be checked that θ and ϕ are mutual inverses, i.e. ϕθ(x) = x
and θϕ(ρ) ≅ ρ for all configurations x of P and extremal realisations ρ.

From the above proposition we see that the events of er(A) correspond to
completely-prime extremal realisations [1]. This justifies our future use of the
term ‘prime extremal’ instead of the clumsier ‘extremal with top element.’

The component of the counit of the adjunction εA ∶ I(er(A)) → A is given
by the function

εA(p) = top(p) .

It is a routine check to see that εA preserves ≡ and that any configuration x of
P images under top to a configuration in A, moreover in a way that reflects ≡.

Let Q = (Q,ConQ,≤Q,≡Q) be an ese and f ∶ I(Q)→ A a map in Fam≡. We
shall define a map h ∶ Q→ er(A) s.t. f = εAh.

We define the map h ∶ Q → er(A) by induction on the depth of Q. The
depth of an event in an event structure is the length of a longest ≤-chain up to
it—so an initial event has depth 1. We take the depth of an event structure to
be the maximum depth of its events. (Because of our reliance on Lemma 17.4,
we use the axiom of choice implicitly.)

Assume inductively that h(n) defines a map from Q(n) to er(A) where Q(n)

is the restriction of Q to depth below or equal to n such that f (n) the restriction
of f to Q(n) satisfies f (n) = εAh

(n). (In particular, Q(0) is the empty ese and
h(0) the empty function.) Then, by Proposition 17.17, any configuration x of
Q(n) determines an extremal realisation ρx ∶ h

(n)x→ A with carrier (h(n)x,⪯).
Suppose q ∈ Q has depth n + 1. If f(q) is undefined take h(n+1)(q) to be

undefined. Otherwise, note there is an extremal realisation ρ[q) with carrier
(h[q),⪯). Extend ρ[q) to a realisation ρ⊺

[q)
with carrier that of ρ[q) with a new

top element ⊺ adjoined, and make ρ⊺
[q)

extend the function ρ[q) by taking ⊺ to

f(q). By Lemma 17.4, there is an an extremal realisation ρ such that ρ⊺
[q)

⪰2 ρ.

Because ρ[q) is extremal ρ[q) ⪯1 ρ, so ρ only extends the order of ρ[q) with
extra dependencies of ⊺. (For notational simplicity we identify the carrier of
ρ with the set h[q) ∪ {⊺}.) Project ρ to the extremal with top ⊺. Define this
to be the value of h(n+1)(q). In this way, we extend h(n) to a partial function
h(n+1) ∶ Q(n+1) → er(A) such that f (n+1) = εAh

(n+1). To see that h(n+1) is a
map we can use Proposition 17.2. By construction h(n+1) satisfies property (ii)

17.9. AN ADJUNCTION FROM ES≡ TO FAM≡ 301

of Proposition 17.2 and the other properties are inherited fairly directly from f
via the definition of er(A).

Defining h = ⋃n∈ω h
(n) we obtain a map h ∶ Q→ er(A) such that f = εAh.

Suppose h′ ∶ Q→ er(A) is a map s.t. f ≡ εA ○ h
′. Then, for any q ∈ Q,

top(h ′(q)) = εA ○ h ′(q) ≡A f (q) = εA ○ h(q) = top(h(q)) ,

so h′(q) ≡P h(q) in er(A). Thus h′ ≡ h.

In summary, we have proved the following:

Theorem 17.18. Let A ∈ Fam≡. For all f ∶ I(Q) → A in Fam≡, there is a
map h ∶ Q→ er(A) in ES≡ such that f = εA ○ I(h) i.e. so the diagram

A I(er(A))
εAoo

I(Q)

f

cc

I(h)

OO

commutes. Moreover, if h′ ∶ Q → er(A) is a map in ES≡ s.t. f ≡ εA ○ I(h′),
i.e. the diagram above commutes up to ≡, then h′ ≡ h.

The theorem does not quite exhibit an adjunction, because the usual cofree-
ness condition specifying an adjunction is weakened to only having uniqueness
up to ≡. However the condition it describes does specify an exceedingly sim-
ple case of a biadjunction (or pseudo adjunction) between 2-categories—a set
together with an equivalence relation (a setoid) is a very simple example of a
category. As a consequence, whereas with the usual cofreeness condition allows
us to extend the right adjoint to arrows, so obtaining a functor, in this case
following that same line will only yield a pseudo functor er as right adjoint:
thus extended, er will only preserve composition and identities up to ≡.

The map

(P,≡)→ er(C∞(P),≡)

which takes p ∈ P to the realisation with carrier ([p],≤), the restriction of the
causal dependency of P , with the inclusion function [p]↪ P is an isomorphism;
recall from Proposition 17.13 that the configurations of a prime event structure
correspond to its extremal realisations. Such maps furnish the components of
the unit of the adjunction.

Example 17.19. On the right we show a general event structure and on its left
the ese which its family of configurations (with equivalence the identity relation)

302CHAPTER 17. EVENT STRUCTURES WITH DISJUNCTIVE CAUSES

gives rise to under the construction er :

d1 d2 d

c1

OO

c2

OO

c

AND

OO

OR

a

OO

GG

b

OO

WW

a

FF

CC

b

XX

[[

17.10 An adjunction from Fam≡ to GES
The right adjoint fam ∶ GES → Fam≡ is most simply described. Given (E,Con,⊢
) in GES it returns the equivalence family (C∞(E),=) in Fam≡ comprising the
configurations together with the identity equivalence between events that appear
within some configuration; the partial functions between events that are maps
in GES are automatically maps in Fam≡—the action of fam on maps.

For the effect of the left adjoint col ∶ Fam≡ → GES on objects, define the
collapse

col(A) =def (E,Con,⊢)

where

• E = A≡, the equivalence classes of events in A =def ⋃A

• X ∈ Con iff X ⊆fin y≡, for some y ∈ A

• X ⊢ e iff e ∈ E, X ∈ Con and e ∈ y≡ ⊆X ∪ {e}, for some y ∈ A.

Let (A,≡) ∈ Fam≡. Assume that A has underlying set A. The unit of the
adjunction is defined to have typical component ηA ∶ (A,≡) → fam(col(A,≡))
given by

ηA(a) = {a}≡ .

It is easy to check that ηA is a map in Fam≡.

Theorem 17.20. Suppose that B = (B,ConB ,⊢B) ∈ GES and that g ∶ (A,≡) →
(C∞(B),=) is a map in Fam≡. Then, there is a unique map k ∶ col(A,≡) → B
in GES s.t. the diagram

(A,≡)
ηA//

g
''

fam(col(A,≡))

fam(k)

��
(C∞(B),=)

commutes.

17.11. AN ADJUNCTION FROM ES≡ TO GES 303

Proof. The map k ∶ col(A,≡)→ B is given as the function

k(e) = g(a) where e = {a}≡ .

It is easily checked to be a map in GES and moreover to be the unique map from
col(A,≡) to B making the above diagram commute.

Theorem 17.20 determines an adjunction from Fam≡ to GES. The construc-
tion col automatically extends from objects to maps; maps in Fam≡ preserve
equivalence so collapse to functions preserving equivalence classes.

The counit of the adjunction has components εE ∶ col((C∞(E),=)) → E
which send singleton equivalence classes {e} to e. The conunit is an isomorphism
at precisely those general event structures E which are replete.

17.11 An adjunction from ES≡ to GES
Composing the adjunctions

ES≡
I

⊺ 22 Fam≡

er
rr

col

⊺ 22 GES
fam

rr

we obtain a adjunction

ES≡ ⊺ 22 GES .
rr

Strictly speaking this is only a pseudo adjunction because the first adjunction
from ES≡ to Fam≡ is only a pseudo adjunction.

The composite adjunction from ES≡ to GES cuts down to a reflection, in
which the counit is a natural isomorphism, when we restrict to the subcategory
of GES where all general event structures are replete. The right adjoint provides
a full and faithful embedding of replete general event structures (and so families
of configurations) in ese’s. Recall the right adjoint constructs an ese out of the
prime extremal realisations of a general event structure.

We can ask on what subcategory of ES≡ the adjunction further cuts down to
an equivalence of categories. We now provide those extra axioms an ese’s should
satisfy in order that the subcategory of such is equivalent to that of replete
general event structures. This amounts to characterising those ese’s which are
obtained to within isomorphism as images of replete general event structures
under the right adjoint, or equivalently as images of families of configurations.
The characterising axioms on an ese (P,≤,Con,≡) are:

(A) For X a finite down-closed subset of P ,
X ≡ y & y ∈ C(P) Ô⇒ X ∈ C(P) ;

(B) For p, q ∈ P , [p) = [q) & p ≡ q Ô⇒ p = q ;

(C) For X a down-closed subset of P and p ≡ q,
X ⊆ [p) & [q)≡ ⊆X≡ Ô⇒ X = [p) ;

304CHAPTER 17. EVENT STRUCTURES WITH DISJUNCTIVE CAUSES

(D) For x ∈ C(P) and t ∈ P ,
x∪[t] ∈ C(P) & (x∪[t])≡ = x≡∪{{t}≡} Ô⇒ ∃p ∈ P. p ≡ t & x∪{p} ∈ C(P) .

In writing the axioms we have used expressions such as X ≡ Y , for subsets X
and Y of P , to mean for any p ∈ X there is q ∈ Y with p ≡ q and vice versa;
and X≡ to stand for the set of ≡-equivalence classes {{p}≡ ∣ p ∈X}; so X ≡ Y iff
X≡ = Y≡.

Axiom (D) may be replaced by

(D′) For x, y ∈ C(P) and t ∈ P ,

x
t

−Ð⊂ & x ≡ y Ô⇒ ∃p ∈ P. p ≡ t & x ∪ {p} ∈ C(P) .

Assume (D) and, for x, y ∈ C(P), that x
t

−Ð⊂ and x ≡ y. Then, by (A), y ∪ [t] ∈
C(P) as y∪ [t] ≡ x∪{t}, clearly consistent; whence y∪{p} ∈ C(P) for some p by
(D). Conversely, assuming (D′) and x∪[t] ∈ C(P) and (x∪[t])≡ = x≡∪{{t}≡}, in

the case where t ∉ x we obtain x∪ [t)
t

−Ð⊂ and x∪ [t) ≡ x; whence x∪{p} ∈ C(P)
for some p by (D′). This shows (D) follows from (D′) in the case when t ∉ x; in
the case when t ∈ x, axiom (D) is obvious.

Theorem 17.21. Let P ∈ ES≡. Then, P ≅ er(A) for some equivalence family
A iff P satisfies axioms (A), (B), (C) and (D).

Proof. We show axioms (A), (B), (C), (D) hold of any ese P = er(A), con-
structed from a family of configurations A. We obtain P satisfies axiom (A)
from the way the consistency of er(A) is defined: if X ≡ y, with y a configu-
ration, X inherits consistency from y ensuring that X, assumed down-closed,
is a configuration. If [p) = [q) and p ≡ q, then p and q correspond to the same
extremal realisation with top, so are equal—ensuring (B) holds of P . We obtain
(C) via Lemma 17.10(i), as [p] corresponds to an extremal with top p. Given
the correspondence between configurations of P and extremal realisations, ax-
iom (D) expresses an obvious extension property of extremal realisations.

Conversely, we now show that if an ese P = (P,Con,≤,≡) satisfies (A), (B),
(C), (D) then there is an isomorphism

ηP ∶ P ≅ er(A)

if we take the family of configurations so

A = C∞(col(C∞(P),≡)) .

Recall, from Proposition 17.17, that the configurations of er(A) correspond to
extremal realisations of col(C∞(P),≡).

Before we define the map ηP we remark that a configuration x of P deter-
mines an extremal realisation of col(C∞(P),≡): the realisation has carrier x
with order inherited from P and map taking p ∈ x to the equivalence class {p}≡.
Axioms (B) and (C) ensure that this realisation is extremal, via Lemma 17.10.

It follows from the remark that we define a map ηP ∶ P → er(A) by sending
p ∈ P to the realisation with carrier [p], ordered as in P , and function [p]→ P≡

17.12. COREFLECTIVE SUBCATEGORIES OF ES≡ 305

taking elements to their equivalence classes. The injectivity of ηP follows from
(B). Moreover ηP reflects consistency because of axiom (A). We now only require
its surjectivity to ensure ηP is an isomorphism.

We use (D) in showing that ηP is surjective. We show by induction on n ∈ ω
that all extremal realisations with top of col(P) of depth less than n are in the
image of ηP . (Recall the depth of an event in an event structure is the length
of a longest ≤-chain up to it; we take the depth of an event structure to be the
maximum depth of its events.) Because ηP reflects consistency the induction
hypothesis entails that all extremal realisations of depth less than n are (up to
isomorphism) in the image under ηP of configurations of P .

Let (R,≤R) of depth n with ρ ∶ R → col(P) be an extremal realisation with
top r, so R = [r]R. Then its restriction ρ′ ∶ [r)R → col(P) is an extremal
realisation of lesser depth. By induction there is x′ ∈ C(P) and an isomorphism
of realisations θ′ ∶ ρ′ ≅ ηPx

′. Write y =def ρ
′[r)R, z =def ρ[r]R. Then y, z ∈

C(col(P)) and y
e

−Ð⊂ z for some e ∈ P≡. From the definition of col(P), it follows
fairly directly that there is some t ∈ P s.t. {t}≡ = e and [t)≡ ⊆ y. As ηP reflects
consistency, x′ ∪ [t] ∈ C(P). We have

(x′ ∪ [t])≡ = x
′
≡ ∪ {{t}≡} = z .

By (D) there is some p ∈ P s.t. p ≡ t and x′ ∪ {p} ∈ C(P). The configuration
x =def x

′∪{p} with order inherited from P and map taking p′ ∈ x to {p′}≡ is the
realisation ηPx. Let θ be the function θ ∶ R → x extending θ′ s.t. θ(r) = p. Then
θ ∶ ρ ⪰ ηPx is a map of realisations. But ρ is extremal ensuring θ ∶ ρ ≅ ηPx, and
that ηP is surjective.

Corollary 17.22. The adjunction from ES≡ to GES cuts down to a ***pseudo***
equivalence of categories between the subcategory of ES≡ satisfying axioms (A),
(B), (C), (D) and the subcategory of GES comprising the replete general event
structures.

17.12 Coreflective subcategories of ES≡
Consider the following successively weaker axioms on (P,Con,≤,≡):

Ax 0. {p1, p2} ∈ Con & p1 ≡ p2 Ô⇒ p1 = p2 .
Ax 1. p1, p2 ≤ p & p1 ≡ p2 Ô⇒ p1 = p2 .
Ax 2. p1 ≤ p2 & p1 ≡ p2 Ô⇒ p1 = p2 .
Ax 0 says that any two prime causes of disjunctive event are mutually ex-

clusive. Ax 2 we have met as a consequence of a realisation being extremal
(Lemma 17.9(i)) so it will always hold of any image under the construction er .
Ax 1 forbids any prime cause from depending on two distinct prime causes of
a common disjunctive event; while it does not hold of all extremal realisations
(see Example 17.16) and so can fail in an image under the construction er , Ax 1
enforces a form atomicity on disjunctive events: whereas several prime causes of
a disjunctive event may appear in a configuration, no other event is permitted

306CHAPTER 17. EVENT STRUCTURES WITH DISJUNCTIVE CAUSES

to detect and react on the occurrence of a nontrivial conjunction of prime causes
of the disjunctive event.

Restricting to the full subcategories of ES≡ satisfying these axioms we obtain
ES0

≡, ES1
≡ and ES2

≡ respectively. The factorisation of maps we met for ES≡ is
inherited by all the subcategories as their respective axioms are preserved by
the projection operation. So all the subcategories support hiding.

The inclusion functors

ES0
≡ ↪ ES

1
≡ ↪ ES

2
≡ ↪ ES≡

all have right adjoints so forming a chain of coreflections. Essentially the right
adjoints work by restricting the structures to that part satisfying the stronger
axiom. The adjunctions are enriched in the sense that the associated natural
isomorphisms preserve and reflect the equivalence ≡ between maps. (This would
not be the case with relational maps.)

For example, ES0
≡ is the full subcategory of ES≡ in which objects

(P,Con,≤,≡)

satisfy the strongest axiom Ax 0. Consequently its maps are traditional maps of
event structures which preserve equivalence. The inclusion functor ES0

≡ ↪ ES≡
has a right adjoint r ∶ ES≡ → ES

0
≡ taking Q = (Q,ConQ,≤Q,≡Q) to (Q′,Con′,≤′

,≡′) where
Q′ consists of all q ∈ Q s.t. q1 /≡Q q2 for all q1, q2 ≤Q q;
X ∈ Con′ iff X ⊆ Q′ and X ∈ ConQ and q1 /≡Q q2 for all q1, q2 ∈X;
≤′ and ≡′ are the restrictions of ≤Q and ≡Q to Q′.
The adjunction is enriched in the sense that the isomorphism

ES0
≡(P, r(Q)) ≅ ES0

≡(P,Q) ,

natural in P ∈ ES0
≡ and Q ∈ ES≡, preserves and reflects the equivalence ≡ between

maps.
As a consequence we obtain an adjunction from ES0

≡ to GES.2 The univer-
sality of counit is only up to ≡.

The most important subcategory for us will be ES1
≡. The right adjoint to

the inclusion
ES1

≡ ↪ ES≡

on objects simply restricts them to those events which satisfy Ax 1. In general,
within ES≡ we lose the local injectivity property that we’re used to seeing for
maps of event structures; the maps of event structures are injective from config-
urations, when defined. However for ES1

≡ we recover local injectivity w.r.t. prime
configurations: If f ∶ P → Q is a map in ES1

≡, then

p1, p2 ≤P p & f(p1) = f(p2) Ô⇒ p1 = p2 .

2It was falsely claimed in [5] that the ‘inclusion’ of the category of prime event structures in
that of general event structures had a right adjoint. The adjunction from ES0

≡
to GES corrects

that originally incorrect idea; though the repair of that putative adjunction is at the cost of
uniqueness up to ≡.

17.13. A NON-ENRICHED COREFLECTION 307

In the composite adjunctions from ES1
≡ to Fam≡, and from ES1

≡ to GES, the
right adjoint has the effect of restricting to those extremal realisations within
which Ax 1 holds; recall that the prime extremal realisations of an equiva-
lence family A correspond to the configurations of er(A). Because such prime
extremals are necessarily injective functions their carriers can be taken to be
configurations of the equivalence family or general event structure of which they
are realisations.

The coreflection from ES0
≡ to ES1

≡ is helpful in thinking about constructions
like pullback and pseudo pullback in ES1

≡ as its right adjoint will preserve such
limits. In the category ES0

≡, maps coincide with the traditional maps of labelled
event structures, regarding events as labelled by their equivalence classes. Con-
structions such as pullback are already very familiar in ES0

≡. All that changes
in the corresponding constructions in ES1

≡ is the manner of dealing with consis-
tency.

The category ES1
≡ will be of special importance to us. Amongst the sub-

categories of ES≡ it is the smallest extension of prime event structures which
supports parallel causes and hiding. It also has pullbacks and pseudo pullbacks,
not the case for example in ES≡. It is within ES1

≡ that we shall develop proba-
bilistic distributed strategies with parallel causes and be able to overcome the
restrictions and difficulties explained in the introduction to this chapter. (Later
objects of ES1

≡ will be renamed to event structures with disjunctive causes (edc’s)
and the category ES1

≡ to EDC.)

17.13 A non-enriched coreflection

There is an obvious ‘inclusion’ functor from the category of event structures ES
to the category ES0

≡; it takes an event structure to the same event structure
but with the identity equivalence adjoined. Regarding ES0

≡ as a category, so
dropping the enrichment by equivalence relations, the ‘inclusion’ functor

ES ↪ ES0
≡

has a right adjoint, viz. the forgetful functor which simply drops the equivalence
≡ from the ese. The adjunction is necessarily a coreflection because the inclusion
functor is full. Of course it is no longer the case that the adjunction is enriched:
the natural bijection of the adjunction cannot respect the equivalence on maps.

The adjunction
ES ↪ ES1

≡

obtained as the composite of the adjunctions from ES to ES0
≡ and ES0

≡ to ES1
≡. If

an edc P goes to event structure P0 under the right adjoint, the configurations
of P0 are the unambiguous configurations of P . The adjunction is not enriched
because that from ES to ES0

≡ isn’t.
Despite this the adjunction from ES to ES1

≡ has many useful properties.
Of importance for us is that the functor forgetting equivalence will preserve
all limits and especially pullbacks. In composing strategies in edc’s we shall

308CHAPTER 17. EVENT STRUCTURES WITH DISJUNCTIVE CAUSES

only be involved with pseudo pullbacks of maps f ∶ A → C and g ∶ B → C in
which C is essentially an event structure, i.e. an edc in which the equivalence
is the identity relation. The construction of such pseudo pullbacks coincides
with that of pullbacks. While this does not entail that composition of strategies
is preserved by the forgetful functor—because the forgetful functor does not
commute with hiding—it will give us a strong relationship, expressed as a map,
between composition of strategies after and before applying the forgetful functor.

17.14 ES1
≡ and SFam≡—a coreflection

The closeness of ES1
≡ to prime event structures ES suggests a generalisation of

stable families to aid with constructions such as product and pullback in ES1.
The generalisation has in fact already appeared in Section 17.6. Recall, an
equivalence family A,≡A, with underlying set of events A, is stable iff it satisfies

∀x, y, z ∈ A. x, y ⊆ z & z is unambiguous Ô⇒ x ∩ y ∈ A and

∀a ∈ A,x ∈ A. a ∈ x Ô⇒ ∃z ∈ A. z is unambiguous & a ∈ z ⊆ x .

(A configuration is unambiguous iff no two distinct elements are in the relation
≡.) Given the other axioms of an ef, we can deduce the seemingly stronger
property:

∅ ≠X ⊆ A, z ∈ A. (∀x ∈X. x ⊆ z) & z is unambiguous Ô⇒ ⋂X ∈ A .

We call SFam≡ the full subcategory of ef’s with objects the stable ef’s.
In effect a stable equivalence familyA contains a stable subfamily unambA of

unambiguous configurations out of which all other configurations are obtainable
as unions. There is an obvious ‘inclusion’ functor from the category of stable
families SFam to SFam≡; it takes a stable family A, with underlying set A, to
the stable ef (A, idA). Its has unamb as a right adjoint:

SFam ⊺ 11 SFam≡ .
unamb

rr

As the ‘inclusion’ functor from SFam to SFam≡ is full the adjunction is a core-
flection. The adjunction is not enriched in the sense that its natural bijection
ignores the equivalence on maps present in SFam≡. As right adjoints preserve
limits, the stable family of unambiguous configurations of the product, or pull-
back, of stable ef’s is the product, respectively pullback, in stable families of
the unambiguous configurations of the components.

Local to any unambiguous configuration there is a partial order on its events
and we can extract an edc in ES1

≡ from a stable ef in the same way as we can
extract an event structure from a stable family, though with a slight variation
in the way consistency is determined. The construction appears as right adjoint
to the ‘inclusion’ functor from ES1

≡ into the subcategory of stable equivalence
families.

17.15. CONSTRUCTIONS 309

In more detail, the ‘inclusion’ functor from ES1
≡ takes an ese (P,≤,Con,≡) to

its ef (C∞(P),≡) with maps remaining the same partial function in translating
from ES1

≡ to SFam≡. Its right adjoint takes a stable ef (A,≡A) to the ese
(P,≤,Con,≡) where, making use of the fact that the subfamily of unambiguous
configurations forms a stable family and the attendant notation,

P = {[a]z ∣ a ∈ z ∈ A & z is unambiguous}, the prime unambiguous configu-
rations;

≤ is inclusion;
X ∈ Con iff X ⊆fin P and ⋃X ∈ A;
p ≡ p′ iff p, p′ ∈ P and p = [a]z and p′ = [a′]z′ with a ≡A a

′.
Recall from stable families that [a]z =def ⋂{x ∈ A ∣ a ∈ x & x ⊆ z} where in this
case z is an unambiguous configuration in A. We denote the right adjoint by Pr
as it is a direct generalisation of the earlier construction we have seen providing
a right adjoint to the ‘inclusion’ of prime event structures in stable families. As
before, at a stable ef A the counit

(C∞(Pr(A,≡A)),≡)→ (A,≡A)

takes a prime to its top element and consequently a configuration x of Pr(A,≡A)
to ⋃x, the configuration of A comprising the union of all the prime configu-
rations x contains; the map need no longer be locally injective however as it
need only reflect equivalence locally. The adjunction is enriched: the natural
bijection between homsets preserves equivalence.

Compare the definition above with that of Pr on stable families. The signifi-
cant difference is in the way that consistency is defined; in the construction on a
stable ef the consistency is inherited not from the stable family of unambiguous
configurations but from the ambient ef A in which configurations may not be
unambiguous.

17.15 Constructions

Our major motivation in developing and exploring all the above categories was
in order to extend strategies with parallel causes. The various subcategories of
ES≡ have been designed to support the central operation of hiding. What about
the other construction key to the composition of strategies, viz. pullback?

We first introduce the constructions of product and pullback of ef’s; just as
with prime event structures we cannot expect such constructions to be easily
achieved directly on ese’s. The pullback of stable ef’s will be especially impor-
tant. The constructions of product and pullback of ef’s will reduce to product
and pullback on families of configurations when we take the equivalences ≡ to
be the identity relation. On stable families they reduce to the product and
pullback of stable families we have seen earlier.

The product of ef’s is given as follows. Let A and B be ef’s with underlying
sets A and B. Their product will have underlying set A ×∗ B, the product of
A and B in sets with partial functions with projections π1 to A and π2 to B.

310CHAPTER 17. EVENT STRUCTURES WITH DISJUNCTIVE CAUSES

We take c ≡ c′ in A×∗B iff π1c ≡ π1c
′, or both are undefined, and π2c ≡ π2c

′, or
both are undefined. Define the configurations of the product by: x ∈ A × B iff

x ⊆ A ×∗ B s.t.
π1x ∈ A & π2x ∈ B ,
∀c, c′ ∈ x. π1(c) ≡A π1(c

′) or π2(c) ≡B π2(c
′) Ô⇒ c ≡ c′ and

∀c ∈ x∃c1,⋯, cn ∈ x. cn = c &
∀i ≤ n. π1{c1,⋯, ci} ∈ A & π2{c1,⋯, ci} ∈ B .

We obtain the product in stable ef’s by restricting to those configurations
of the product of the stable ef’s which are unions of unambiguous configura-
tions. Notice that unambiguous configurations of the product of stable ef’s are
exactly the configurations in the product in stable families of the subfamilies of
unambiguous configurations.

Restriction w.r.t. sets of events which are closed under ≡ and synchronised
compositions are defined analogously to before. In particular we obtain pull-
backs and bipullbacks as restrictions of the product.

Pullbacks exist in general but we shall only need pullbacks of total maps. Let
f ∶ A→ C and g ∶ B → C be total maps of ef’s. Assume A and B have underlying
sets A and B. Define D =def {(a, b) ∈ A ×B ∣ f(a) = g(b)} with projections π1

and π2 to the left and right components. On D, take d ≡D d′ iff π1(d) ≡A π1(d
′)

and π2(d) ≡B π2(d
′). Define a family of configurations of the pullback to consist

of x ∈ D iff
x ⊆D s.t.
π1x ∈ A & π2x ∈ B , and
∀d ∈ x∃d1,⋯, dn ∈ x. dn = d &
∀i ≤ n. π1{d1,⋯, di} ∈ A & π2{d1,⋯, di} ∈ B .

The pullback in stable ef’s is again obtained by restricting to those con-
figurations which are unions of unambiguous configurations. The unambiguous
configurations in the pullback of stable ef’s are obtained as the pullback in stable
families of the subfamilies of unambiguous configurations.

Given that maps are related by an equivalence relation it is sensible to
broaden our constructions to pseudo pullbacks—the universal characterisation
of pseudo pullback follows the concrete construction.

Pseudo pullbacks of total maps f ∶ A → C and g ∶ B → C of ef’s are obtained
in a similar way to pullbacks. Assume A and B have underlying sets A and
B. Define D =def {(a, b) ∈ A ×B ∣ f(a) ≡C g(b)} with projections π1 and π2 to
the left and right components. On D, take d ≡D d′ iff π1(d) ≡A π1(d

′) and
π2(d) ≡B π2(d

′). Define a family of configurations of the pseudo pullback to
consist of x ∈ D iff

x ⊆D s.t.
π1x ∈ A & π2x ∈ B , and
∀d ∈ x∃d1,⋯, dn ∈ x. dn = d &
∀i ≤ n. π1{d1,⋯, di} ∈ A & π2{d1,⋯, di} ∈ B .

When A and B are stable ef’s we obtain their pseudo pullback by restricting to
those configurations obtained as the union of unambiguous configurations.

17.15. CONSTRUCTIONS 311

Recall the universal property of a pseudo pullback of f ∶ A→ C and g ∶ B → C
(in this simple case). A pseudo pullback comprises two maps π1 ∶ D → A and
π2 ∶ D → B such that fπ1 ≡ gπ2 with the universal property that given any two
maps p1 ∶ E → A and p2 ∶ E → B such that fp1 ≡ gp2 there is a unique map
h ∶ E → D such that p1 = π1h and p2 = π2h:

E

p2

��

p1

��

h

��
D ==

π2 ��π1~~
A

f

≡ B

g��
C

Pseudo pullbacks are defined up to isomorphism. Clearly pseudo pullbacks
coincide with pullbacks when the maps involved have an event structure as
their common codomain.

The right adjoint, er , a pseudo functor, of the pseudo adjunction from ES≡
to Fam≡ will not preserve pullbacks and pseudo pullbacks in general; a pseudo
pullback is only generally sent by the right adjoint to a bipullback, which sat-
isfies a weaker condition, ensuring commutation and uniqueness only up to ≡.
Whereas ES≡ consequently has bipullbacks it does not have all pullbacks or all
pseudo pullbacks. Bipullbacks have the drawback of not being defined up to iso-
morphism and only up to the equivalence on objects induced by the equivalence
of maps.3

Fortunately we do have both pullbacks and pseudo pullbacks in the sub-
category ES1

≡. This will be important later in characterising strategies based
on maps in ES1

≡. The constructions of pullbacks and pseudo pullbacks in ES1
≡

can by-pass the complicated er construction and be done via the corresponding
constructions in SFam≡ in the manner we’re familiar with from event structures
and stable families. This is because we have an adjunction from ES1

≡ to SFam≡

and moreover an adjunction which is enriched with respect the equivalence on
homsets. So, for example, to form the (pseudo) pullback of ese’s in ES1

≡ we
regard their configurations as stable ef’s, form the (pseudo) pullback in SFam≡

and take the image under the right adjoint Pr. Each stable ef includes a sub-
family of unambiguous configurations and it is fortunate indeed that e.g. the
subfamily of unambiguous configurations of the pullback of stable ef’s f ∶ A→ C
and g ∶ B → C is got as the pullback in stable families of f and g between the
subfamilies of unambiguous configurations.

3Two objects P and Q are equivalent iff there are two maps f ∶ P → Q and g ∶ Q→ P such
that gf ≡ idP and fg ≡ idQ.

312CHAPTER 17. EVENT STRUCTURES WITH DISJUNCTIVE CAUSES

17.16 Summary

A figure summarising all the adjunctions:

ES≡
I

⊺ 22

��

Fam≡

er
rr

col

⊺ 22 GES
fam

rr

ES2
≡

⊢

UU

��
ES1

≡ ⊺ 22

��

⊢

UU

SFam≡

Pr
rr ?�

OO

unamb

��

ES0
≡

��

⊢

UU

ES

⊢

UU

⊺ 22 SFam

⊢

SS

Pr
ss

The adjunctions

ES ⊺ 33 ES0
≡

ss
and SFam ⊺ 22 SFam≡

unamb
rr

are not enriched in the sense that the natural bijection does not respect the
equivalence ≡ on maps.

Ultimately our motivation has been to develop strategies with parallel causes.
For this we would like an extension of general event structures which supports
hiding and a pullback, or possibly a pseudo pullback. Although we could per-
haps manage with bipullbacks the fact that these are only characterised up to
equivalence would prevent us from a characterisation of strategies up to isomor-
phism of the kind we have seen earlier and will see again in the next chapter. We
shall base strategies with parallel causes on maps in ES1

≡. The category supports
hiding and has pullbacks, pseudo pullbacks and, it will turn out, probability,
leading to a robust definition of probabilistic strategies with parallel causes.
The category ES1

≡ is also much simpler to work with than ES≡ as, through the
adjunction from ES1

≡ to Fam≡, we can avoid the complicated construction of ex-
tremal realisations. Has something been lost? Quite possibly there will be a call
for perhaps a more resource-conscious notion of strategy with parallel causes,
one which requires strategies based on maps in ES≡ rather than ES1

≡. But first
things first. The restrictions maps in ES1

≡ will impose implicitly on strategies
do not seem unnatural.

Along with their future central role, objects of ES1
≡ will be rechristened to

event structures with disjunctive causes (edc’s) and the category ES1
≡ renamed

to EDC. In the next chapter we shall investigate probabilistic strategies based
on maps within EDC.

17.17. GENERAL EVENT STRUCTURES AS EDC’S 313

17.17 General event structures as edc’s

Earlier in Section 17.11 we showed how to refine the pseudo adjunction from
ES≡ to GES to a pseudo equivalence by imposing axioms on ese’s and restricting
to replete general event structures. By adapting these earlier results we can
characterise those edc’s which arise from families of configurations and obtain
an analogous equivalence between a subcategory of edc’s and replete general
event structures. Recall the pseudo adjunction from edc’s to families of con-
figurations: the functor collapsing an edc to a replete general event structure,
or equivalently to a family of configurations, has a right pseudo adjoint edc;
the pseudo functor takes a family of configurations A to er(A) its ese built
form extremal realisations but cut down to those events which meet the axiom
required of an edc.

Recall Proposition 17.17 expressing the order-isomorphism between the con-
figurations of er(A) and the order of extremal realisations of A. With respect
to this isomorphism, the configurations of the edc(A) correspond to extremal
realisations (R,≤R), ρ) which satisfy

r1, r2 ≤R r & ρ(r1) = ρ(r2) Ô⇒ r1 = r2

—realisations which are locally unambiguous; just as we can say a realisation
(R,ρ) is unambiguous when ρ is injective. In this context, where A does not
itself carry a nontrivial equivalence, an unambiguous extremal realisations cor-
responds to an unambiguous configuration of the edc.

The characterising axioms on an edc (P,≤,Con,≡) are:

(A) For X a finite down-closed subset of P ,
X ≡ y & y ∈ C(P) Ô⇒ X ∈ C(P) ;

(B) For p, q ∈ P , [p) = [q) & p ≡ q Ô⇒ p = q ;

(C) For X a down-closed subset of P and p ≡ q,
X ⊆ [p) & [q)≡ ⊆X≡ Ô⇒ X = [p) ;

(D1) For x an unambiguous configuration in C(P) and t ∈ P ,
x∪[t] ∈ C(P) & (x∪[t])≡ = x≡∪{{t}≡} Ô⇒ ∃p ∈ P. p ≡ t & x∪{p} ∈ C(P) .

In writing the axioms we have used expressions such as X ≡ Y , for subsets X
and Y of P , to mean for any p ∈ X there is q ∈ Y with p ≡ q and vice versa;
and X≡ to stand for the set of ≡-equivalence classes {{p}≡ ∣ p ∈X}; so X ≡ Y iff
X≡ = Y≡. Recall, a configuration x of an ese is unambiguous if

p1, p2 ∈ x & p1 ≡ p2 Ô⇒ p1 = p2 .

Axiom (D1) may be replaced by

(D′
1) For x, y ∈ C(P), with y unambiguous, and t ∈ P ,

x
t

−Ð⊂ & x ≡ y Ô⇒ ∃p ∈ P. p ≡ t & x ∪ {p} ∈ C(P) .

314CHAPTER 17. EVENT STRUCTURES WITH DISJUNCTIVE CAUSES

Assume (D1) and, for x, y ∈ C(P), that x
t

−Ð⊂ and x ≡ y and y is unambiguous.
Then, by (A), y ∪ [t] ∈ C(P) as y ∪ [t] ≡ x ∪ {t}, clearly consistent; whence
y∪{p} ∈ C(P) for some p by (D1). Conversely, assuming (D′

1) and x∪[t] ∈ C(P)
and (x ∪ [t])≡ = x≡ ∪ {{t}≡} and x unambiguous, in the case where t ∉ x we

obtain x ∪ [t)
t

−Ð⊂ and x ∪ [t) ≡ x; whence x ∪ {p} ∈ C(P) for some p by (D′
1).

This shows (D1) follows from (D′
1) in the case when t ∉ x; in the case when

t ∈ x, axiom (D1) is obvious.

Theorem 17.23. Let P be an edc. Then, P ≅ edc(A) for some equivalence
family A iff P satisfies axioms (A), (B), (C) and (D1) (or (D′

1)).

Proof. The proof is essentially a slight refinement of the proof of Theorem 17.21.
As the axioms (A), (B), (C) hold of er(A)—Theorem 17.21—they certainly

hold of its restriction to an edc. Given the correspondence between configura-
tions of P and extremal realisations, axiom (D) of Section 17.11, without the
assumption that x is unambiguous, expresses an obvious extension property of
extremal realisations in general; the extra assumption that x is unambiguous
ensures that the event p ∈ P , asserted to exist, satisfies the condition required
of an edc.

Conversely, if an edc P = (P,Con,≤,≡) satisfies (A), (B), (C), (D1) then
there is an isomorphism

ηP ∶ P ≅ edc(A)

if we take the family of configurations so

A = C∞(col(C∞(P),≡)) .

Recall, from the remarks preceding the axioms, that the configurations of edc(A)
correspond to extremal realisations of col(C∞(P),≡) which are locally unam-
biguous. In more detail, a configuration x of P determines a locally-unambiguous
extremal realisation of col(C∞(P),≡): the realisation has carrier x with order
inherited from P and map taking p ∈ x to the equivalence class {p}≡. Axioms
(B) and (C) ensure that this realisation is extremal, via Lemma 17.10.

It follows that we define a map ηP ∶ P → er(A) by sending p ∈ P to the
realisation with carrier [p], ordered as in P , and function [p] → P≡ taking
elements to their equivalence classes. The injectivity of ηP follows from (B).
Moreover ηP reflects consistency because of axiom (A). We now only require its
surjectivity to ensure ηP is an isomorphism.

We use (D1) in showing that ηP is surjective. We show by induction on
n ∈ ω that all unambiguous extremal realisations with top of col(P) of depth
less than n are in the image of ηP . Because ηP reflects consistency the induction
hypothesis entails that all locally-unambiguous extremal realisations of depth
less than n are (up to isomorphism) in the image under ηP of configurations of
P ; moreover, all unambiguous extremal realisations of depth less than n are (up
to isomorphism) in the image under ηP of unambiguous configurations of P .

Let (R,≤R) of depth n with ρ ∶ R → col(P) be an unambiguous extremal
realisation with top r, so R = [r]R. Then its restriction ρ′ ∶ [r)R → col(P) is

17.18. DETERMINISTIC GENERAL EVENT STRUCTURES 315

an unambiguous extremal realisation of lesser depth. By induction there is an
unambiguous x′ ∈ C(P) and an isomorphism of realisations θ′ ∶ ρ′ ≅ ηPx

′. Write

y =def ρ
′[r)R, z =def ρ[r]R. Then y, z ∈ C(col(P)) and y

e
−Ð⊂ z for some e ∈ P≡.

From the definition of col(P), it follows fairly directly that there is some t ∈ P
s.t. {t}≡ = e and [t)≡ ⊆ y. As ηP reflects consistency, x′ ∪ [t] ∈ C(P). We have

(x′ ∪ [t])≡ = x
′
≡ ∪ {{t}≡} = z .

Because x′ is unambiguous, by (D1) there is some p ∈ P s.t. p ≡ t and x′ ∪ {p} ∈
C(P). The configuration x =def x

′ ∪ {p} with order inherited from P and map
taking p′ ∈ x to {p′}≡ is the realisation ηPx. Let θ be the function θ ∶ R → x
extending θ′ s.t. θ(r) = p. Then θ ∶ ρ ⪰ ηPx is a map of realisations. But ρ is
extremal ensuring θ ∶ ρ ≅ ηPx, and that ηP is surjective.

Corollary 17.24. The adjunction from EDC to GES cuts down to a ***pseudo***
equivalence of categories between the subcategory of EDC satisfying axioms (A),
(B), (C), (D1) and the subcategory of GES comprising the replete general event
structures.

17.18 Deterministic general event structures

Proposition 17.25. (i) Let A be a family of configurations. Defining

A0 =def {x ∈ A ∣ x is finite}

we obtain a family of finite configurations which satisfy:

(a) ∅ ∈ A0;

(b) If x ⊆ x1 & x ⊆ x2 & x1 ↑ x2 in A0 then x1 ∪ x2 ∈ A;

(c) For all x ∈ A0, there is a covering chain

∅−⊂x1−⊂⋯−⊂xn = x

in A0.

(ii) Conversely, if A0 is a family of finite sets satisfying axioms (a), (b) and (c)
above then defining A to be the family consisting of unions of directed subfamilies
of A0 we obtain a family of configurations.

Furthermore, the two operations described in (i) and (ii) are mutual inverses.

Remark Condition (c) above can be replaced by “coincidence-freeness” of ear-
lier, by Exercise 3.6. In condition (b) it suffices to replace the supposed inclu-
sions by the covering relation.

316CHAPTER 17. EVENT STRUCTURES WITH DISJUNCTIVE CAUSES

Definition 17.26. Let A be a family of configurations with underlying set
of events A possessing a polarity function pol ∶ A → {+,−,0}. Say A,pol is
deterministic iff

∀a, a′ ∈ S,x ∈ A. x
a

−Ð⊂ & x
a′

−Ð⊂ & pol(a) ∈ {+,0} Ô⇒ x ∪ {a, a′} ∈ A .

[We shall sometimes leave the polarity information implicit.]
As earlier we shall write ⊆+, ⊆− and ⊆0 to indicate inclusions in which all

adjoined events have the specified parity; we shall use ⊆p to indicate that the
supplementary events of the inclusion all have +ve or neutral polarity.

Proposition 17.27. A family of configurations is deterministic iff

x ⊆p x1 & x ⊆ x2 in A0 Ô⇒ x1 ∪ x2 ∈ A
0 .

Proof. (Idea) “If”: Straightforward. “Only if”: By repeated use of the defini-
tion of deterministic based on coverings, startng with covering chains from x to
x1 and from x to x2.

Deterministic general event structures support hiding. Let A,pol be a de-
terministic general event structure with underlying events A. Define its visible
events to be

V =def {a ∈ A ∣ pol(a) ∈ {+,−}} .

Define the projection
A ↓ V =def {x ∩ V ∣ x ∈ A} .

Lemma 17.28. Let A0 be the finite configurations of a deterministic family of
configurations A. Then,
(i) ∀x, y ∈ A0. x ∩ V ⊆ y ∩ V Ô⇒ ∃y′ ∈ A. y ⊆0 y′ & x ⊆ y′ .
(ii) ∀x2, x2 ∈ A

0. x1 ∩ V ↑ x2 ∩ V in (A ↓ V)0 Ô⇒ x1 ↑ x2 in A0 .

Proof. (i) Let x, y ∈ A0. Assume x ∩ V ⊆ y ∩ V . Define x0 to be the largest
subconfiguration of x such that x0 ⊆ y. Choose a covering chain from x0 to x:

∅ = x0
a1
−Ð⊂x1

a2
−Ð⊂⋯

an
−Ð⊂xn = x

We show by induction along the chain that for all i, 0 ≤ i ≤ n,

xi ⊆ y
(i) for some y(i) ⊇0 y .

Clearly, the basis of the induction, when i = 0, holds. Assume, inductively, for
i ≤ n that

xi ⊆ y
(i) with y(i) ⊇0 y .

If ai+1 ∈ y
(i) take y(i+1) =def y

(i). Otherwise ai+1 ∉ V , so has neutral polarity. In
which case choose a covering chain

xi−⊂⋯−⊂y
(i) .

17.18. DETERMINISTIC GENERAL EVENT STRUCTURES 317

and notice
xi

ai+1
−Ð⊂xi+1 .

Now, by repeatedly using that A is deterministic, working along the chain we
finally obtain y(i+1) with

xi+1 ⊆ y(i+1) & y(i)
ai+1
−Ð⊂ y(i+1) ,

which with the induction hypothesis entails y ⊆0 y(i+1) —as required to maintain
the induction hypothesis.
(ii) Assume x1 ∩ V ↑ x2 ∩ V in (A ↓ V)0. Then

x1 ∩ V ⊆ y1 ∩ V and x2 ∩ V ⊆ y2 ∩ V

for some y1, y2 ∈ A
0 with y1 ∩ V = y2 ∩ V . Applying (i) to the former we obtain

y′1 ∈ A
0 with y1 ⊆

0 y′1 and x1 ⊆ y
′
1. But y′1 ∩ V = y1 ∩ V = y2 ∩ V , so

x2 ∩ V ⊆ y′1 ∩ V ,

which, by (i) again, yields y′′ ∈ A0 with y′1 ⊆
0 y′′. Automatically we have both

x1 ⊆ y
′′ and x2 ⊆ y

′′ ,

whence x1 ↑ x2 in A0.

Theorem 17.29. When A is a deterministic family of configurations with visi-
ble events V its projection A ↓ V is also a deterministic family of configurations.

Proof. We use Proposition 17.25 to show (A ↓ V)0 is a family of finite config-
urations. Properties (a) and (c) are straightforward. To show (b), use Propo-
sition 17.27, on the assumption that z1 ↑ z2 in (A ↓ V)0. Then there are
x1, x2 ∈ A

0 such that
z1 = x1 ∩ V & z2 = x2 ∩ V .

By Lemma 17.28 (ii),
x1 ↑ x2 in A0 .

Therefore x1 ∪ x2 ∈ A
0 and

z1 ∪ z2 = (x1 ∪ x2) ∩ V in (A ↓ V)0

ensuring condition (b).
To see that A ↓ V is deterministic, assume

z ⊆+ z1 & z ⊆ z2 in (A ↓ V)0 .

Then there are x1, x2, x ∈ A
0 such that

x1 ∩ V = z1 & x2 ∩ V = z2 & x ∩ V = z .

By Lemma 17.28(i), w.l.o.g. we may assume

x ⊆p x1 & x ⊆ x2 .

As A is deterministic we obtain x1 ∪ x2 ∈ A
0. Clearly (x1 ∪ x2) ∩ V = z1 ∪ z2 ∈

(A ↓ V)0, as required to show A ↓ V is deterministic.

318CHAPTER 17. EVENT STRUCTURES WITH DISJUNCTIVE CAUSES

17.19 Strategies with general event structures

Prelims: rigid map of ef’s : consec events go to concurrent implies they are
concurrent. Same as lifting cond?

counits ε ∶ C∞(ese)A → A and ε ∶ C∞(edc)A → A rigid and reflect concur-
rency squares - via props of extremal realisations

Entails edc and ese of a rigid map of ef’s are rigid: if f rigid so is esef
RIGHT NAME? and edcf despite their being pseudo functors so charac-
terised only up to ≡

Warning: For edc’s, ef’s, ese’s don’t have rigidity respected by ≡: obv two
maps from a < b to a < b∥a∥b

Partial strategies with replete general event structures, so families of config-
urations

A strategy based on families of configs (so equivalently replete general event
structures) comprises a total map σ ∶ S → A of families of configurations, where
A is (the family of configurations of) an event structure with polarity, which is

receptive :***
innocent:****satn conds***
Same as via lifting conds?
Say deterministic when S is deterministic
copycat as before composition of det ges strategies by pb with hiding
Generalisation of partial strategies to those based on gen ev strs
under col a det edc partial strategy is sent to a det ges partial strategy

Lemma 17.30. The composition (with or without hiding) of deterministic par-
tial strategies based on general event structures is a deterministic partial strategy.

Proof. I believe that the earlier proof of Lemma 5.9 goes through almost ver-
batim.

an edc is strongly deterministic if deterministic and image under edc of a
gen ev str

edc(σ) is a total map of edc’s which satisfies **** (an edc strategy). Use
edc(σ) = σ ε viewed IN ef’s and facts about counit above

If σ is deterministic, then edc(σ) is strongly deterministic.
edc(σ) defined on the nose because A is an ev str and functorial action of

edc defined up to ≡ in the codomain, in this case the identity relation.
edc does not pres pbs of such maps, nor ⊛, but does preserve bipbs, as

pseudo rt adjoint?
A first suggestion do the constructions with strongly det edc’s:
But ⊛ does not pres strong det
and strong det isn’t preserved by hiding as hiding of strong det edc’s does

not satis axioms of last section: the edc of after hiding two init events of the
edc got from two parallel causes of an event doesn’t satis (B)

Hiding on strongly det edc’s wd require special treatment - closing up by ax
(A) to (D) after trad edc hiding.

17.19. STRATEGIES WITH GENERAL EVENT STRUCTURES 319

However all this fuss can be avoided I think if we work with edc strategies
which are ≡-equivalent to strongly deterministic strategies because of:

For A, B objects in a ≡-category (***define?!***) say they are ≡-equivalent,
and write A ≡ B, iff there are mutual inverses up to ≡ between them.

Note if A ≡ B in EDC then col(A) ≅ col(B) as col is ≡-enriched.
Extend ≡-equivalence to strategies based on edc’s in the obv way.

Lemma 17.31. Let F be a deterministic family of configurations with underly-
ing set of events A (with polarities pol ∶ A{−,+,0}). Write V =def {a ∈ A ∣ pol(a) ≠ 0}
and V ′ =def {p ∈ er(F) ∣ pol(top(p)) ≠ 0} Then,

er(F) ↓ V ′ ≡ er(F ↓ V) .

The ≡-equivalence restricts:

edc(F) ↓ V′ ≡ edc(F ↓ V) .

Proof. We obtain the map f from partial-total factorisation properties of the
partial map er(F)⇀ V defined and acting as the identity function on V , where
we have regarded V as the event structure comprising events V with trivial,
identity causal dependency in which all finite subsets are consistent. The partial
map factors as

er(F)⇀ er(F) ↓ V ′ → V .

Whereas from the analogous factorisation of F ⇀ V we obtain

F ⇀ F ↓ V → V ,

so

er(F)⇀ er(F ↓ V)→ V .

The existence of f ∶ er(F) ↓ V ′ → er(F ↓ V) now follows from the universal
property of the factorisation of er(F) ⇀ V . (Notice that the map er(F) ⇀
er(F ↓ V) is obtained from the action of the pseudo functor er whose definition
depends on the axiom of choice, as therefore does f—see *****.)

The other part of the ≡-equivalence,

g ∶ er(F ↓ V)→ er(F) ↓ V ′

is built by induction on depth of events making use of F being deterministic.
Assume, inductively, that we have constructed a map g up to but not including
depth n so that for all r ∈ er(F ↓ V) of lesser depth

top(g(r)) = top(r) .

Let p ∈ er(F ↓ V) have depth n. Then the configuration [p) correponds to the
extremal realisation

top ∶ [p)→ ⊺[p)

320CHAPTER 17. EVENT STRUCTURES WITH DISJUNCTIVE CAUSES

in F ↓ V in which the carrier [p) is endowed with the order of er(F ↓ V). The
finite configuration g[p) ∈ C(er(F) ↓ V ′) has down-closure [g[p)] ∈ C(er(F)).
The down-closure corresponds to an extremal realisation

top ∶ [g[p)]→ top[g[p)]

in F , with it carrier [g[p)] inheriting the order of er(F). From the induction
hypothesis,

(top[g[p)]) ∩V = top[p) .

Observe that

top[p)
a

−Ð⊂ top[p]

where a =def top(p) ∈ V . By Lemma 17.28(i), it follows that there is x′ ∈ F such
that top[p) ⊆ x ′ and x′∩V = top[p]. (This step relies on F being deterministic.)
In other words the only events in x′ additional to those in top[p) are either the
event a or neutral.

Extend the extremal realisation top ∶ [g[p)] → top[g[p)] to a realisation
R → x′ where [g[p)] ⊆ R and the order on R restricts to that on [g[p)]; one way
to do this is to serialise the events in R∖ [g[p)], making them all dependent on
[g[p)]. By Lemma 17.4, there is a coarsening of this realisation that is extremal.
This then restricts to a prime extremal realisation, defined to be g(p), for which
top(g(p)) = a = top(p). (The definition of g also involves choice via the use of
Lemma lem:existextr.)

Using Proposition 17.2, it is easy to check that g, defined inductively as
above, is a map of ese’s because the equivalences and consistency are inherited
from equality and compatibility in F ; condition (ii) of the proposition, concern-
ing causal dependency, is obvious from the way g is constructed. Similarly, that
gf ≡ id and fg ≡ id falls back on the fact that equivalence stems from equality
of events in F .

Finally, the ≡-equivalence restricts to the edc’s because both the maps edc’s
f and g preserve unambiguous configurations so send a prime of edc(F) to a
prime of edc(F ↓ V) and vice versa.

Corollary 17.32. If σ ∶ S → A∥N is a deterministic partial strategy of general
event structures with σ0 the result of hiding neutral events and (edc(σ))0 the
result of hiding neutral events in edc(σ), then

(edc(σ))0 ≡ edc(σ0) .

Lemma 17.33. (i) Let σ and τ be partial strategies of general event structures.

edc(σ)⊛ edc(τ) ≡ edc(σ ⊛ τ) .

(ii) Let σ and τ be deterministic strategies of general event structures.

edc(σ)⊙edc(τ) ≡ edc(σ⊙τ) .

17.19. STRATEGIES WITH GENERAL EVENT STRUCTURES 321

Proof. (i) by the pseudo adjunction from edc’s to ges’s, the pseudo right adjoint
of which preserves bipullbacks and so composition without hiding, up to ≡. (ii)
By (i) and Corollary 17.32.

Although it is not the case that under edc composition of deterministic
strategies is preserved, it is up to ≡. Recall too, the converse, that if two
deterministic edc strategies are ≡-equivalent, then under col they are sent to
isomorphic strategies of gen eve strs.

Thus working with deterministic edc strategies ≡-equivalent to strongly de-
terministic strategies provides an alternative to working with deterministic strate-
gies based on general event structures.

322CHAPTER 17. EVENT STRUCTURES WITH DISJUNCTIVE CAUSES

Chapter 18

Edc strategies

We mimic the work of earlier on developing the definition of strategy, based on
pre-strategies which are left invariant under composition with copycat, but this
time based on edc’s rather than prime event structures. We shall make the sim-
plifying assumption that games are represented by prime event structures (or,
strictly speaking, the edc’s which correspond to such, in which the equivalence
is the identity relation); the copycat strategy is then defined as earlier. We
characterise those edc pre-strategies which are left invariant under composition
with copycat and take such as our definition of strategies based on edc’s. We
show that we can extend the probabilistic strategies of earlier to edc strategies.

18.1 Edc pre-strategies

We develop strategies in edc’s in a similar way to that of strategies. But what
is copy-cat on an edc? If games are edc’s, shouldn’t pullback be replaced by
pseudo-pullback? To avoid such issues we assume that games are (the edc’s of)
prime event structures.

An edc with polarity comprises (P,≤,Con,≡,pol), an edc (P,≤,Con,≡) in
which each element p ∈ P carries a polarity pol(p) which is + or −, according as
it represents a move of Player or Opponent, and where the equivalence relation
≡ respects polarity.

A map of edc’s with polarity is a map of the underlying edc’s which preserves
polarity whenever the map is defined. The adjunctions of the previous chapter
are undisturbed by the addition of polarity.

As before we can define the dual A⊥ and simple parallel composition A∥B
of edc’s with polarity; the additional equivalence relation of edc’s stays passive
in extending the former definitions on event structures.

A game is represented by an edc with polarity in which the edc is that of a
prime event structure. A pre-strategy in edc’s, or an edc pre-strategy, in a game
A is a total map σ ∶ S → A of edc’s.

323

324 CHAPTER 18. EDC STRATEGIES

18.1.1 Constructions on edc’s and stable equivalence-families

Recall the adjunction from EDC to SFam≡. *****

stable equivalence family *** stable ef ******

Π1,Π2 for the projections in edc’s***

18.2 Composing edc pre-strategies

Because games are essentially event structures we can define the copy-cat strat-
egy essentially as before; copycat associated with the game A is ccA ∶ CCA →
A⊥∥A defined as before but now regarding the event structures as edc’s by
associating them with the identity equivalence.

Given two edc pre-strategies σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C, ignoring
polarities we can form the pullback in edc’s:

T ⊛ S

Π1

yy

Π2

%%
S∥C

σ∥C $$

A∥T

A∥τzz
A∥B∥C .

There is an obvious partial map of event structures A∥B∥C → A∥C undefined
on B and acting as identity on A and C. The composite partial map τ ⊛σ from
T ⊛ S to A∥C given by following the diagram (either way round the pullback
square)

T ⊛ S

Π1

zz

Π2

$$
S∥C

σ∥C $$

A∥T

A∥τzz
A∥B∥C

��
A∥C

factors through the projection of T ⊛S to those events at which the partial map
is defined. Its defined part gives us the composition τ⊙σ ∶ T⊙S → A⊥∥C once
we reinstate polarities.

****SUGGESTION: EARLIER MAKE A DISTINCTION BETWEEN PAR-
TIAL STRATEGIES AS τ⊛σ ABOVE AND *EXPLICIT* PARTIAL STRATE-
GIES with total maps to an codomain extended with neutral events****

18.3. AN ALTERNATIVE DEFINITION OF COMPOSITION 325

18.3 An alternative definition of composition

It is useful to have an alternative, if more laboured, definition of composition.
It’s the concrete definition we shall mainly use in proofs.

Consider two edc pre-strategies σ ∶ A + //B and τ ∶ B + //C as spans:

S
σ1

~~

σ2

��
A⊥ B

T
τ1

~~

τ2

B⊥ C .

We form the product of stable ef’s (C∞(S),≡S) × (C∞(T),≡T) with projec-
tions π1 and π2, and then form a restriction:

(C∞(T),≡T)⊛ (C∞(S),≡S) =def (C∞(S),≡S) × (C∞(T),≡T) ↾R

where

R =def {(s,∗) ∣ s ∈ S & σ1(s) is defined}∪

{(s, t) ∣ s ∈ S & t ∈ T & σ2(s) = τ1(t) with both defined}∪

{(∗, t) ∣ t ∈ T & τ2(t) is defined} .

I.e. the stable ef (C∞(T),≡T) ⊛ (C∞(S),≡S) is the synchronized composition
of the stable ef’s (C∞(S),≡S) and (C∞(T),≡T) in which synchronizations are
between elements of S and T which project, under σ2 and τ1 respectively, to
complementary moves in B and B⊥.

For this particular synchronized composition we can simplify the require-
ments to be a configuration:

Proposition 18.1. A set x is a configuration of (C∞(T),≡T)⊛(C∞(S),≡S) iff

(i) x ⊆ R ,

(ii) π1x ∈ C
∞(S) & π2x ∈ C

∞(T) and

(iii) ∀c ∈ x∃c1,⋯, cn ∈ x. cn = c &
∀i, j ≤ n. ci ≡ cj Ô⇒ i = j &
∀i ≤ n. π1{c1,⋯, ci} ∈ C

∞(S) & π2{c1,⋯, ci} ∈ C
∞(T) .

Proof. Suppose a set x satisfies the conditions above. We show it is a configura-
tion of the product of stable ef’s. Firstly we check it is a configuration of their
product as ef’s. The only nontrivial requirement we encounter is the third, that

π1(c) ≡A π1(c
′) or π2(c) ≡B π2(c

′) Ô⇒ c ≡ c′ ,

and this only non-obvious in the situation where c = (s, t) and c′ = (s′, t′).
However, in this case if π1(c) = s ≡S s′ = π1(c

′) then σ(s) = σ(s′) = b ∈ B
and τ(t) = τ(t′) = b ∈ B⊥. But t, t′ ∈ π2x ∈ C∞(T) so as τ is a map t ≡T t′

making c ≡ c′. A similar argument applies if π2(c) = π2(c
′). For x to be a

326 CHAPTER 18. EDC STRATEGIES

configuration of the product in stable ef’s we require that each of its elements is
in an unambiguous subconfiguration, but this follows from condition (iii) above.

Conversely, suppose x is a configuration of (C∞(T),≡T)⊛(C∞(S),≡S). Con-
ditions (i) and (ii) are obvious. Any c ∈ x is in an unambiguous finite subcon-
figuration of x of which a serialization produces a chain c1,⋯, cn required for
(iii).

The edc

T ⊛ S =def Pr((C∞(T),≡T)⊛ (C∞(S),≡S))

is isomorphic to the pullback of the last section, so there is no conflict of
notation—see Proposition 18.2. It represents the composition of pre-strategies,
including internal, neutral elements arising from synchronizations.

To obtain the composition of pre-strategies we hide the internal elements
due to synchronizations. The edc of the composition of pre-strategies is defined
to be

T⊙S =def Pr((C∞(T),≡T)⊛ (C∞(S),≡S)) ↓ V ,

the projection onto “visible” elements,

V =def {p ∈ Pr((C∞(T),≡T)⊛ (C∞(S),≡S)) ∣ ∃s ∈ S. top(p) = (s,∗)} ∪

{p ∈ Pr((C∞(T),≡T)⊛ (C∞(S),≡S)) ∣ ∃t ∈ T. top(p) = (∗, t)} .

Finally, the composition τ⊙σ is defined by the span

T⊙S
υ1

||

υ2

""
A⊥ C

where υ1 and υ2 are maps of edc’s, which on p of T⊙S act so υ1(p) = σ1(s)
when top(p) = (s,∗) and υ2(p) = τ2(t) when top(p) = (∗, t), and are undefined
elsewhere.

Proposition 18.2. The stable ef (C∞(T),≡T)⊛(C∞(S),≡S) with maps f1 and
f2 is the pullback of σ∥C and A∥τ , where

f1(d) =

⎧⎪⎪
⎨
⎪⎪⎩

(1, π1(d)) if π1(d) is defined,

(2, τ2π2(d)) otherwise

and

f2(d) =

⎧⎪⎪
⎨
⎪⎪⎩

(2, π2(d)) if π2(d) is defined,

(1, σ1π1(d)) otherwise.

18.4. EDC STRATEGIES 327

18.4 Edc strategies

We imitate [?] and provide necessary and sufficient conditions for a pre-strategy
in edc’s to be stable up to isomorphism under composition with copycat. For-
tunately we can inherit a great deal from the proof of [?].

An edc strategy in a game A is an edc pre-strategy σ ∶ S → A such that
ccA⊙σ ≅ σ. In the next two sections we will show that an edc pre-strategy
σ ∶ S → A is an edc strategy if it is subject to the following axioms:

(1) innocence:
+-innocence: if s _ s′ & pol(s) = + then σ(s) _ σ(s′);
−-innocence: if s _ s′ & pol(s′) = − then σ(s) _ σ(s′).

(2) +-consistency: X ∈ ConS if σX ∈ ConA and [X]+ ∈ ConS , for X ⊆fin S.
(Recall [X]+ comprises the +ve elements in the downwards closure of X.)

(3) ≡-saturation: s1 ≡S s2 if σ(s1) = σ(s2) .

(4) ∃-receptivity: σx
a

−Ð⊂ & polA(a) = − ⇒ ∃s ∈ S. x
s

−Ð⊂ & σ(s) = a , for all
x ∈ C(S), a ∈ A. (Note we no longer have uniqueness.)

(5) non-redundancy: [s1) = [s2) & s1 ≡S s2 & polS(s1) = polS(s2) = − Ô⇒
s1 = s2 .

The converse “only if” directions of axioms (2) and (3) are automatic. The
new axiom (2) holds automatically for traditional strategies expressed as prime
event structures. Reading (2) contrapositively, it says that any inconsistency
derives from inconsistency in the underlying game or from prior moves of Player;
so Player cannot impose additional consistency constraints on moves of Oppo-
nent. In the presence of axiom (3), the non-redundancy axiom (5), is equivalent
to

[s1]
+ = [s2]

+ & σ(s1) = σ(s2) & polS(s1) = polS(s2) = − Ô⇒ s1 = s2

which says that the only distinctions an edc strategy makes between Opponent
moves are those due to the game or prior distinctions between Player moves.

Proposition 18.3. Axiom (2), +-consistency, is equivalent to

∀s, s′ ∈ S,x ∈ C(S).

x
s

−Ð⊂ & x
s′

−Ð⊂ & pol(s) = − & σx ∪ {σ(s), σ(s′)} ∈ C(A) Ô⇒ x ∪ {s, s′} ∈ C(S) .

Proof. The proof is very like that of Lemma 5.1.

Assuming axiom (2) it is easy to show the property above. Suppose x
s

−Ð⊂x1

and x
s′

−Ð⊂x2 with pol(s) = − and σx1 ↑ σx2. Taking X =def x1 ∪ x2, axiom (2)
yields the consistency of x1 ∪ x2 ensuring x1 ∪ x2 ∈ C(S).

328 CHAPTER 18. EDC STRATEGIES

To show the converse assume the property of the proposition’s statement.
Suppose both [X]+ and σX are consistent. We have [X]+ ⊆− [X]. Let z be a
maximal configuration of S such that

[X]+ ⊆ z ⊆ [X] .

Suppose, to obtain a contradiction, that z ⊊ [X]. Then there is a ≤-minimal,
necessarily −ve s ∈ [X] ∖ z. From the minimality of s we obtain [s) ⊆ z. Take a
covering chain

[s)
s1
−Ð⊂⋯

sn
−Ð⊂ z .

As [s)
s

−Ð⊂ [s] and σ{s, s1,⋯, sn} ⊆ σX ∈ ConA, by repeated use of the property

above in the proposition, we obtain a configuration z′ ⊆ [X] with z
s

−Ð⊂ z′ —the
desired contradiction. Hence [X] = z, ensuring X consistent, as required to
establish axiom (2).

18.4.1 Necessity

We shall exploit the close connection between pre-strategies in edc’s and pre-
strategies in event structures that we inherit from the adjunction from event
structures ES to edc’s EDC—see Section 17.13. However we have to be careful.1

While the right adjoint of the adjunction from event structures ES to edc’s
EDC preserves the composition of pre-strategies before hiding—because such
composition is given by pullback—it is not the case that the right adjoint pre-
serves their composition (with hiding). Hiding is not preserved by the right
adjoint.

Recall the left adjoint from ES to EDC simply regards an event structure as
an edc with the identity relation as its equivalence. To avoid clutter we shall
identify an event structure A with its edc. Recall the right adjoint produces an
event structure from an edc by simply making distinct elements in the equiva-
lence of the edc inconsistent. Let us denote the action of the right adjoint by
E ↦ E0. With these notational understandings the counit of the adjunction
at an edc E is given essentially by the identity function (not the identity map)
E0 ↪ E; the identity function provides a rigid inclusion map from E to E′ where
all that changes is consistency.

Example 18.4. We illustrate why hiding is not preserved by the right adjoint.
Consider the edc E

c d

a

OO

b

OO

Let V = {a, b}. The event structure obtained after projection (E ↓ V)0 is

c d

1Here and in “Sufficiency” there are slight notational inconsistencies with other parts of the
chapter, in using C(CCA)⊛ C(S) for the finite configurations of (C∞(CCA),=)⊛ (C

∞(S),≡S).

18.4. EDC STRATEGIES 329

which is not isomorphic to the projection of the event structure obtained from
the edc E0 ↓ V

c d

The reason is that inconsistency (conflict) is always preserved upwards w.r.t. causal
dependency while the equivalence relation of an edc need not. ◻

Notice in the above example that there is an obvious map from E0 ↓ V to
(E ↓ V)0. Such a map exists in general and will help us relate the composition
of edc pre-strategies to the composition of the event-structure strategies they
are associated with. Suppose f ∶ E → E′ is a map of edc’s. Let V ⊆ E be the
subset at which f is defined. Then f factors as

E ⇀ E ↓ V → E′

which images under the right adjoint to

E0 ⇀ (E ↓ V)0 → E′
0 .

Compare this with the factorisation of f0 ∶ E0 → E′
0, the image of f under the

right adjoint; it is the same underlying partial function but now regarded as a
map of event structures. This map has factorisation

E0 ⇀ E0 ↓ V → E′
0 .

Its universal characterisation yields a total map

E0 ↓ V → (E ↓ V)0

with the accompanying commutations. The map is the identity function idV on
events providing a rigid inclusion E0 ↓ V ↪ (E ↓ V)0.

We carry the same notation over to pre-strategies: an edc pre-strategy σ ∶
S → A is sent to an event-structure pre-strategy σ0 ∶ S0 → A0 = A, essentially got
as the precomposition of S0 ↪ S with σ. Composition of edc pre-strategies is
obtained from a pullback—preserved by the right adjoint to event structures—
followed by hiding. Before hiding we have the following commuting diagram:

T0 ⊛ S0 = (T ⊛ S)0

τ0⊛σ0=(τ⊛σ)0 ((

� � // T ⊛ S

τ⊛σ

��
A⊥∥C .

After hiding, for the reason above, there is a canonical map

τ0⊙σ0 → (τ⊙σ)0

from composition of the event-structure pre-strategies of edc pre-strategies to
the event-structure pre-strategy of the composition of the original edc pre-
strategies; again the map has underlying function the identity on events and
provides a rigid inclusion T0⊙S0 ↪ (T⊙S)0.

330 CHAPTER 18. EDC STRATEGIES

Despite the map τ0⊙σ0 → (τ⊙σ)0 not being an isomorphism it is helpful
to relate the two compositions of pre-strategies, between event-structure pre-
strategies and between edc pre-strategies. The two compositions have much
structure in common: they share the same set of events and the same causal
dependency relation. What they don’t share is a common consistency relation.

In this section we are specifically concerned with the composition ccA⊙σ of
copycat with an edc pre-strategy and showing that it necessarily satisfies axioms
(1)-(5). We pause to note a proposition that will be useful in its proof.

Proposition 18.5. Let z ∈ C(CCA)⊛C(S). Let a ∈ A with polA(a) = −. Let u be
an event of the family C(CCA)⊛ C(S). Then, u _z (∗, (2, a)) iff u = (∗, (2, a′))
for some a ∈ A with a′ _A a .

Proof. “Only if”: Assume u _z (∗, (2, a)). As u is an event of the family
C(CCA) ⊛ C(S) it must have the form (s, (1, a′)), wth σ(s) = a′, or (∗, (2, a′)).
By Lemma 3.27 we must have either (1, a′) _CCA (2, a) or (2, a′) _CCA (2, a),
but only the latter, with a′ _A a, is possible as a is −ve. “If”: Conversely, if
a′ _A a it can be checked that z ∪ {(∗, (2, a′))} ∈ C(CCA)⊛ C(S).

Lemma 18.6. Let σ ∶ S → A be a pre-strategy in edc’s. The composition γA⊙σ
satisfies axioms (1), (2), (3), (4) and (5).

Proof. (1)innocence: By the remarks above γA⊙σ0 and γA⊙σ share the same
events and causal dependency. Hence γA⊙σ inherits innocence from that of
γA⊙σ0.

(2) +-consistency: We first prove the property

(step) w
u1
−Ð⊂ z1 & w

u2
−Ð⊂ z2 & pol(u1) = − in C(CCA)⊛ C(S)

& (π2z1)2 ∪ (π2z2)2 ∈ C(A)

Ô⇒ z1 ∪ z2 ∈ C(CCA)⊛ C(S) .

Let z =def z1 ∪ z2. We show π1z is consistent in S and π2z is consistent
in CCA. The finite set π2z ⊆ CCA is down-closed, being the union of (down-
closed) configurations π2z1 and π2z2. Thus π2z is consistent in CCA if the two
components (π2z)1 and (π2z)2 are consistent in A⊥ and A respectively.

In the case where pol(u2) ∈ {+,−} the configuration π1z = π1w, so is clearly
consistent. In this case (π2z)1 = (π2w)1 is consistent as is (π2z)2 = (π2z1)2 ∪
(π2z2)2.

In the case where pol(u2) = 0, we have π1z = π1z2 which is consistent in S,
while (π2z)1 = (π2z2)1 and (π2z)2 = (π2z1)2, both of which are consistent.

For z to be consistent we also require

π1(u1) ≡S π1(u2) or π2(u1) = π2(u2) Ô⇒ u1 ≡ u2 .

As π1(u1) is undefined the only nontrivial case is when π2(u1) = π2(u2). But
then we must have u1 = (∗, (2, a)) = u2, for some a ∈ A.

18.4. EDC STRATEGIES 331

To show +-consistency, assume that

x
p1

−Ð⊂ y1 & x
p2

−Ð⊂ y2 & pol(p1) = − in C(CCA⊙S)

& (ccA ⊛ σ)y1 ∪ (ccA ⊛ σ)y2 ∈ C(A) .

Let p1 have top u1, −ve by assumption, and p2 have top u2. By Proposition 18.5
the local immediate causal predecessors of a visible −ve event in C(CCA⊛S) must
themselves be visible. It follows that

⋃x
u1
−Ð⊂ ⋃ y1

in C(CCA)⊛ C(S). Meanwhile

⋃x
o

−Ð⊂ ⋅ ⋯ ⋅
o

−Ð⊂ ⋅
u2
−Ð⊂ ⋃ y2

in C(CCA) ⊛ C(S) a covering chain of synchronised events (signified by o) up
to the occurrence of the visible event u2. In addition (ccA ⊛ σ)y1 = (π2⋃ y1)2

and (ccA ⊛ σ)y2 = (π2⋃ y2)2 so (π2⋃ y1)2 ∪ (π2⋃ y2)2 is a configuration of A.
Now a straightforward induction using the property (step) above shows that

⋃ y1∪⋃ y2 ∈ C(CCA)⊛C(S). The induction is illustrated below; each step of the
“ladder” is an application of (step):

⋃ y1
� �⋅ � �⋅ ⋯ ⋅ � �⋅ � �⋃ y1 ∪⋃ y2

⋃x

u1

?�

o � �⋅

?� ?�

� �⋅

?�

⋯ ⋅

?�

o � �⋅

?�

u2 � �⋃ y2

?�

It follows that y1 ∪ y2 is consistent so a configuration of CCA⊙S, as required to
show (2).

(3) ≡-saturated: Suppose ccA⊙σ(q1) = ccA⊙σ(q2) = a, where q1, q2 ∈ CCA⊙S.
Then top(q1) = top(q2) = (∗, (2 ,a)) which implies q1 ≡ q2 by definition.

(4) ∃-receptivity: Suppose x ∈ C(CCA⊙S) with ccA⊙σx
a

−Ð⊂ where polA(a) = −.

Then ⋃x ∈ C(CCA)⊛ C(S) and ccA ⊛ σ⋃x = ccAπ2⋃x
a

−Ð⊂ . There is an event
(∗, (2, a)) of C(CCA) ⊛ C(S). Recall from Proposition 18.5 that any immedi-
ate causal predecessor of (∗, (2, a)) within any configuration takes the form
(∗, (2, a′) with a′ _A a. For this reason z =def ⋃x∪ {(∗, (2, a))} is a configura-
tion in C(CCA)⊛C(S), as can be checked. Taking q =def [(∗, (2, a))]z we obtain

x
q

−Ð⊂ and ccA⊙σ(q) = a.

(5) non-redundancy: Suppose [q1) = [q2) and q1 ≡S q2 for two −ve events
in CCA⊙S. Then q1 and q2 are prime configurations of C(CCA) ⊛ C(S) with
top(q1) = top(q2) = (∗, (2 ,a)) for some a ∈ A of −ve polarity. By Lemma 18.5

u _q1 (∗, (2, a)) iff u = (∗, (2, a′)) for some a ∈ A with a′ _A a .

332 CHAPTER 18. EDC STRATEGIES

Because each (∗, (2, a′)) is ‘visible’ (i.e. remains unhidden under composition),

[q1) = {[(∗, (2, a′))]q1 ∣ a′ _A a} .

Analogous characterisations hold with q2 in place of q1. Consequently,

q1 = {(∗, (2, a))} ∪⋃{[(∗, (2, a′))]q1 ∣ a′ _A a}

= {(∗, (2, a))} ∪⋃[q1)

= {(∗, (2, a))} ∪⋃[q2)

= {(∗, (2, a))} ∪⋃{[(∗, (2, a′))]q2 ∣ a′ _A a}

= q2

18.4.2 Sufficiency

Let σ ∶ S → A be a pre-strategy in edc’s which satisfies axioms (1), (2), (3), (4),
(5).

Under the right adjoint of the adjunction from ES to EDC the edc (with
polarity) S is sent to the event structure (with polarity) S0. The counit provides
a rigid inclusion map S0 ↪ S; the configurations of S0 are the unambiguous
configurations of S. Through pre-composition with σ we obtain a map of event
structures with polarity

σ0 ∶ S0 → A.

As a function on events σ0 is exactly the same as σ.

Lemma 18.7. The map σ0 ∶ S0 → A is a strategy.

Proof. The event structure S0 shares the same causal dependency with S so
innocence of σ0 follows from innocence of σ. We obtain the existence part of
receptivity for σ0 directly from that of σ. We now only need verify the unique-

ness part of receptivity for σ0. Suppose x ∈ C(S0) for which x
s1
−Ð⊂ and x

s2
−Ð⊂

in C(S0) where σ0(s1) = σ0(s2) is −ve. Then x
s1
−Ð⊂ and x

s2
−Ð⊂ in C(S) where

moreover x is an unambiguous configuration of S. By axiom(2), +-consistency,
{s1, s2} ∈ ConS . Consequently s1 ≡ s2 as σ(s1) = σ(s2). From σ(s1) = σ(s2) by
−-innocence we deduce that [s1) = [s2), essentially by a repetition of the argu-
ment for Lemma 4.4(i). Suppose s _ s1. Then by −-innocence, σ(s) _ σ(s1).
As σ(s1) = σ(s2) and σ is a map of event structures there is s′ < s2 such that
σ(s′) = σ(s). But s, s′ both belong to the unambiguous configuration x, so s = s′

as σ is a map of edc’s. Symmetrically, if s _ s2 then s < s1. It follows that
[s1) = [s2). Finally, by axiom (5), non-redundancy, we deduce that s1 = s2.

Now that we know σ0 is a strategy we can recall from Section ?? the iso-
morphism between strategies θ0 ∶ ccA⊙σ0 → σ0. (In Section ?? we consider
the isomorphism θ0 ∶ σ0⊙ ccA → σ0 where σ0 ∶ S → A⊥∥B. Here we are consid-
ering the isomorphism obtained by duality in the special case where B is the

18.4. EDC STRATEGIES 333

empty game.) Let p0 ∶ C(CCA⊙S0) → C(S0) be the function p0(x) = π1⋃x for
x ∈ C(CCA⊙S0). Now the isomorphism is a map θ0 ∶ CCA⊙S0 → S0 such that
p0(x) ⊆

− θ0 x, for all x ∈ C(CCA⊙S), and σ0θ0 = γA⊙σ0:

CCA⊙S0

θ0

��

ccA⊙σ0

⊆
−

$$

p0

⊆
−

// S0

σ0

��
A.

The same underlying bijection as that of the map θ0 will provide an isomor-
phism

θ ∶ γA⊙σ → σ ,

as will now be shown. For x ∈ C(CCA⊙S) define p(x) =def π1⋃x, projecting to
a configuration of S. Then, for x ∈ C(CCA⊙S),

p(x) =⋃{p0(x0) ∣ x0 ⊆ x & x0 ∈ C(CCA⊙S0)} .

In other words p extends p0 from the unambiguous finite configurations of
CCA⊙S to all the finite configurations. We tentatively extend θ0 from unam-
biguous finite configurations of CCA⊙S to all finite configurations by taking

θx =def ⋃{θ0x0 ∣ x0 ⊆ x & x0 ∈ C(CCA⊙S0)} ,

when x ∈ C(CCA⊙S). Clearly
p(x) ⊆− θx

because p0(x0) ⊆
− θ0x0 for each unambiguous subconfiguration x0 of x. From

axiom (2), the +-consistency of σ, it follows that the rhs is consistent, so a
configuration of S. It follows that we have a map of edc’s θ ∶ CCA⊙S → S and
moreover a map of edc strategies θ ∶ γA⊙σ → σ as the required σθ = γA⊙σ is
a direct consequence of σ0θ0 = γA⊙σ0. It also follows that θ reflects as well as
preserves equivalence.

It remains to show that θ reflects consistency. The proof depends on the
function p reflecting consistency on special sets, those ⋃X for which X ⊆fin

CCA⊙S comprises primes of which all the top events are +ve (Lemma 18.9
below).

Lemma 18.8. Let q ∈ CCA⊙S with top(q) ∈ {+}. Then,

π2q ⊆ σπ1q∥σπ1q ∈ C(CCA)

Proof. Let q ∈ CCA⊙S with top(q) = (∗, c0) where polCCA(c0) = +. Firstly note
that σπ1q ∈ C(A) being the image under the map σπ1 of the configuration q of
the family C(CCA)⊛ C(S). Secondly note any member of q must have the form
(∗, c), where c ∈ CCA has the form c = (2, a) for some a ∈ A, or (s, c), where

334 CHAPTER 18. EDC STRATEGIES

s ∈ S and c ∈ CCA is of the form c = (1, a) for some a ∈ A such that σ(s) = a.
These facts follow directly from the definition of CCA⊙S and that of the family
C(CCA)⊛ C(S) on which its construction depends.

We show by induction on n that if u _n
q (∗, c0) then

either u = (∗, c) and ∃a ∈ A. c = (2, a) & a ∈ σπ1q

or u = (s, c) and ∃a ∈ A. c = (1, a) & a ∈ σπ1q .

In the basis case where n = 0 we must have (s0, c0) _q (∗, c0) for some s0 ∈ π1q
because of the dependency c0 _CCA c0 of copycat. Then c0 = (2, a0) with
σ(s0) = a0 ensuring a0 ∈ σπ1q. For the induction step assume n > 0. Then

u _q u1 _(n−1)
q (∗, a0) .

If u has the form (s, c) then we directly have c = (1, a) and σ(s) = a which
combined with s = π1(u) yields a ∈ σπ1q. Otherwise u = (∗, c) and

either (∗, c) _q (s1, c1) = u1

or (∗, c) _q (∗, c1) = u1.

In the former case by Lemma 3.27, we must have c _CCA c1, while c and
c1 belong to different components of CCA, ensuring that c = c1. Then c = (2, a)
and c1 = (1, a) for some a ∈ A. Inductively a ∈ σπ1q, maintaining the induction
hypothesis.

In the latter case by Lemma 3.27, c _CCA c1, necessarily within the same
rhs component of CCA. Then c = (2, a) and c1 = (2, a1) with a _A a1 in A.
As inductively a1 ∈ σπ1q we deduce a ∈ σπ1q as σπ1q is a configuration of A,
maintaining the induction hypothesis.

Having established the induction hypothesis we obtain

π2q ⊆ σπ1q∥σπ1q

directly. As σπ1q is a configuration of A and σπ1q its copy as a configuration
of its dual A⊥, we have that σπ1q∥σπ1q is a configuration of CCA.

Lemma 18.9. Let X ⊆fin CCA⊙S with topX ⊆ {+}. Then.

π1⋃X ∈ ConS Ô⇒ ⋃X ∈ C(CCA)⊛ C(S) .

Proof. Suppose X ⊆fin CCA⊙S with topX ⊆ {+}. Assume π1⋃X ∈ ConS . Then
π1⋃X ∈ C(S) being the consistent union of configurations π1q for q ∈ X. Thus
its image under σ is a configuration σπ1⋃X ∈ C(A). Accordingly we obtain a
configuration

σπ1⋃X∥σπ1⋃X

of the copycat strategy.

18.4. EDC STRATEGIES 335

We shall show π2⋃X ∈ C(CCA). Note that π2⋃X is down-closed being the
union of π2q for q ∈X. To show that π2⋃X is also consistent we observe

∀q ∈X. π2q ⊆ σπ1q∥σπ1q ∈ C(CCA)

from Lemma 18.8, to derive

π2⋃X ⊆ σπ1⋃X∥σπ1⋃X .

As the rhs is a configuration of CCA the set π2⋃X is consistent and, being
down-closed, also a configuration of CCA.

Now we know π1⋃X ∈ C(S) and π2⋃X ∈ C(CCA) it is a routine matter to
verify that ⋃X ∈ C(CCA)⊛ C(S), as required.

It remains to show that θ reflects consistency. To this end, suppose X ⊆fin

CCA⊙S, the set X is down-closed and θX ∈ ConS ; so in fact θX is a configuration
of S as it is down-closed. Then

π1⋃X = ⋃
q∈X

p([q]) ⊆− θX .

As θX is consistent, π1⋃X is also consistent in S. A fortiori π1⋃(X+) is
consistent in S. By Lemma 18.9, ⋃(X+) is a configuration of C(CCA) ⊛ C(S).
From the construction of CCA⊙S, it follows that X+ is consistent in CCA⊙S.
Finally, because ccA⊙σ satisfies +-consistency, axiom (2), from Lemma 18.6,
we deduce that X is consistent in CCA⊙S, as required.

As θ is a bijection on events which preserves and reflects consistency, and
equivalence and causal dependency (because θ0 does) it is an isomorphism θ ∶
CCA⊙S ≅ S of edc’s.

We conclude:

Theorem 18.10. Let σ ∶ S → A be an edc pre-strategy. Then, σ ≅ ccA⊙σ iff σ
satisfies axioms (1)-(5).

Corollary 18.11. Let σ ∶ B + //C be an edc pre-strategy. Then, σ ≅ ccC⊙σ⊙ ccB
iff σ satisfies axioms (1)-(5).

Proof. Write A = B⊥∥C. The construction of ccC⊙σ⊙ ccB coincides with that
of ccA⊙σ.

The new axiom (2) holds automatically for traditional strategies expressed
as prime event structures. Reading (2) contrapositively, it says that any incon-
sistency derives from inconsistency in the underlying game or from prior moves
of Player; so Player cannot impose additional consistency constraints on moves
of Opponent. Axiom (4) says the only distinctions the strategy makes between
Opponent moves are those due to the game or prior distinctions between Player
moves.

We can derive a stronger form of receptivity for edc strategies.

336 CHAPTER 18. EDC STRATEGIES

Proposition 18.12. In an edc strategy σ ∶ S → A whenever σx ⊆− y in C(A),
where x ∈ C(S) and y ∈ C(A), there is a maximum x′ ∈ C(S) so that x ⊆
x′ & σx′ = y , i.e.

x_

σ

��

⊆ x′_

σ

��
σx ⊆

− y .

Proof. Suppose σx ⊆− y in C(A), where x ∈ C(S) and y ∈ C(A). Using ∃-
receptivity, we obtain some x′ ∈ C(S) such that x ⊆ x′ and σx′ = y. To see that
we can obtain a maximum such x′ notice by +-consistency that if x ⊆ x1 and
x ⊆ x2 for x1, x2 ∈ C(S) with σx1 = σx2 = y, then x1 ∪ x2 is consistent, so in
C(S).

The definition of race-freeness lifts directly from event structures with po-
larity to edc’s.

Proposition 18.13. In an edc strategy σ ∶ S → A if the game A is race-free
then so is S.

Proof. Directly from +-consistency. Assume x
−

−Ð⊂x1 and x
+

−Ð⊂x2. Assuming
A is race-free we obtain σx1 ∪ σx2 is a configuration. Now, from axiom (2), +-
consistency, taking X =def x1 ∪ x2 and remarking that [X]+ = x2 so consistent,
we obtain that X is consistent, ensuring that x1 ∪ x2 is a configuration of S, as
required to show race-freeness.

In considering the composition of edc strategies without hiding the following
lemma is useful.

Lemma 18.14. Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be edc strategies. Suppose
q _ p in T ⊛ S.

(i) If pol(p) = − then top(q) ∈ V (i.e. q is a visible event).

(ii) If pol(q) = + then top(p) ∈ V (i.e. p is a visible event).

Proof. We refer to the concrete construction of T ⊛ S in Section 18.3. We
prove (i); the proof of (ii) is similar. Suppose q _ p in T ⊛ S and pol(p) = −.
Then top(p) has the form (s,∗) with s −ve in S or (∗, t) with t −ve in T .
Consider the case top(p) = (s,∗). Suppose top(q) had the form (s′, t′) with
s′ ∈ S and t′ ∈ T . Then s′ _S s by Lemma 3.27. From the innocence of σ we
obtain σ(s′) _A⊥∥B σ(s) and hence σ1(s

′) _A⊥ σ1(s). But then (s′, t′) ∉ R, a
contradiction. The case top(p) = (∗, t) similarly leads to a contradiction, using
the innocence of τ .

Our earlier treatment of (explicit) partial strategies generalises straightfor-
wardly. An explicit partial strategy in edc’s from game A to game B comprises
a map of edc’s σ ∶ S → A⊥∥N∥B, where N consists solely of neutral events, sat-
isfying exactly the same axioms, (1)-(5), as above, but where now events may
also be neutral. The defined part of such a partial strategy in edc’s is a strategy
in edc’s.

18.5. A BICATEGORY OF EDC STRATEGIES 337

18.5 A bicategory of edc strategies

Below we give an alternative description of an edc strategy as a function on
events which restricts to a conventional strategy on unambiguous configurations,
with some extra properties. The proposition uses the counit of the coreflection
from ES to EDC; it has components S0 ↪ S where essentially S0 is the event
structure obtained by making all distinct ≡-equivalent event conflicting, so with
configurations the unambiguous configurations of S.

Proposition 18.15. An edc strategy to a game A corresponds to a function
σ ∶ S → A from events of an event structures S to those of A preserving polarities
s.t.

fx ∈ C(A) for all x ∈ C(S);

an edc (S,≡) is obtained by defining s ≡ s′ iff σ(s) = σ(s′);

the restriction σ0 ∶ S0 → A is a concurrent strategy as earlier;

and (+-consistency) for all s, s′ ∈ S,x ∈ C(S)

x
s

−Ð⊂ & x
s′

−Ð⊂ & pol(s) = − & σx∪{σ(s), σ(s′)} ∈ C(A) Ô⇒ x∪{s, s′} ∈ C(S) .

The corresponding edc strategy σ ∶ (S,≡) → A is given by the function σ. Con-
versely from an edc strategy σ ∶ (S,≡)→ A we obtain such a function σ ∶ S → A.

Proof. Given an edc strategy σ ∶ (S,≡) → A using Lemma 18.7 the function
f ∶ S → A clearly satisfies the conditions listed above. Conversely, given such
a function σ ∶ S → A we obtain an edc map σ ∶ (S,≡) → A by taking s1 ≡ s2

iff σ(s1) = σ(s2). By virtue of σ0 ∶ S0 → A being a strategy σ ∶ (S,≡) → A
satisfies all conditions required to be an edc strategy but for +-consistency; and
the latter is imposed directly as a condition on the function σ.

Two cells comprise f ∶ σ ⇒ σ′ where f is an edc map such that σ = σ′f .
Note if f is a map of event structures with polarity then from the commutation
σ = σ′f it automatically preserves equivalence ≡ and is thus a map of edc’s;
there are of course more edc maps f such that σ = σ′f than those obtained as
maps of event structures with polarity—see the following example.

Example 18.16. The game comprises a single Player move ⊞, the first strategy
two parallel, and ≡-equivalent, Player moves ⊞ ≡ ⊞ and the second strategy a
single Player move ⊞. The map is the obvious one collapsing the two parallel
moves into one. ◻

Proposition 18.17. Under the ‘inclusion’ functor taking event structures with
polarity to edc’s (endowing event structures with the identity as equivalence) a
map which is a strategy becomes an edc strategy.

338 CHAPTER 18. EDC STRATEGIES

Proof. If a total map σ ∶ S → A is innocent and receptive then as a map of
edc’s it remains innocent and ∃-receptive, axioms (1) and (4). Axiom (3), ≡-
saturation is obvious, as is axiom (5), non-redundancy. It remains to establish
axiom (2), +-consistency. Easiest is to prove the reformulation of +-consistency

provided by Proposition 18.3. Suppose x
s

−Ð⊂x1 and x
s′

−Ð⊂x2 in C(S) with s −ve

and that σx1 ↑ σx2. Then σx2

σ(s)
−Ð⊂ . By receptivity of σ there is s′′ ∈ S such

that x2
s′′

−Ð⊂ and σ(s′′) = σ(s). But from the −-innocence of σ we derive x
s′′

−Ð⊂

and that x ∪ {s′′} ↑ x2 in C(S). Now both x
s

−Ð⊂ and x
s′′

−Ð⊂ with σ(s) = σ(s′′).
By the uniqueness part of receptivity, we immediately get s′′ = s ensuring that
x1 ↑ x2, as required.

It seems (mathematically) sensible to say an edc strategy σ ∶ S → A is deter-
ministic if S is deterministic regarded as an event structure with polarity (i.e.,
ignoring its equivalence), even though it may contain benign races between
Player moves.

Definition 18.18. An edc strategy σ ∶ S → A is deterministic iff S is determin-
istic in the old sense, forgetting about the equivalence ≡S, i.e.

∀x ∈ C(S), s1, s2 ∈ S. x
s1
−Ð⊂ & x

s2
−Ð⊂ & pol(s1) = + Ô⇒ x ∪ {s1.s2} ∈ C(S) .

18.6 A language for edc strategies

***duplication strategy σ ∶ A + //A∥A is deterministic, if A is deterministic for
Opponent, i.e. A⊥ is deterministic as an event structure with polarity**** As we
now have parallel causes duplication strategy is more often, though not always,
deterministic****

When we adjoin probability later for a game A which is deterministic for
Opponent we shall take δA ∶ A + //A∥A to have configuration-valuation assigning
1 to all finite configurations.****

Chapter 19

Probabilistic edc strategies

19.1 Probability with an Opponent

As before it will be convenient, to define a probabilistic stable ef in which some
events are distinguished as Opponent events (where the other events may be
Player events or “neutral” events due to synchronizations between Player and
Opponent). Events which are not Opponent events we shall call p-events. For
configurations x, y we shall write x ⊆p y if x ⊆ y and y∖x contains no Opponent
events; we write x−⊂py when x−⊂y and x ⊆p y; we continue to write x ⊆− y if
x ⊆ y and y ∖ x comprises solely Opponent events.

Definition 19.1. Let F be a stable ef F together with a specified subset of
its events which are Opponent events. A configuration-valuation is a function
v ∶ F → [0,1] for which v(∅) = 1,

x ⊆− y Ô⇒ v(x) = v(y) (1)

for all x, y ∈ F , and satisfies the “drop condition”

d(n)v [y;x1,⋯, xn] ≥ 0 (2)

for all n ∈ ω and y, x1,⋯, xn ∈ F with y ⊆p x1,⋯, xn.
A probabilistic equivalence family a stable ef F together with a specified

subset of Opponent events and a configuration-valuation v ∶ F → [0,1]. The
notion specialises to event structures with a distinguished subset of Opponent
events.

In particular, a probabilistic edc with polarity comprises E an edc with po-
larity together with a configuration-valuation v ∶ C(E)→ [0,1].

****RACE-FREE WRT p and - moves? ****

Definition 19.2. Let A be (the edc of) a race-free event structure with polarity.
A probabilistic edc strategy in A comprises a probabilistic edc S, v and an edc
strategy σ ∶ S → A. [By Proposition 18.13, S will also be race-free.]

339

340 CHAPTER 19. PROBABILISTIC EDC STRATEGIES

Let A and B be a race-free event structures with polarity. A probabilistic
edc strategy from A to B comprises a probabilistic edc S, v and a strategy σ ∶
S → A⊥∥B.

We remark that the configuration-valuation of an edc doesn’t necessarily re-
spect the equivalence of the edc; different prime causes of a common disjunctive
event may well be associated with different probabilities.

Example 19.3. Recall the game of Section 17.2. ***the two watchers may
be associated with probabilities p ∈ [0,1] and q ∈ [0,1] provided they form a
configuration valuation *** diagram**** ◻

We extend the usual composition of edc strategies to probabilistic edc strate-
gies. Assume probabilistic edc strategies σ ∶ S → A⊥∥B, with configuration-
valuation vS ∶ C(S) → [0,1], and τ ∶ T → B⊥∥C with configuration-valuation
vT ∶ C(T) → [0,1]. We tentatively define their composition on stable ef’s, tak-
ing v to be

v(x) = vS(π1x) × vT (π2x)

for x a finite configuration of (C(T),≡T)⊛ (C(S),≡S).

Lemma 19.4. Let y, x1,⋯, xn be finite configurations of (C(T),≡T)⊛(C(S),≡S)
with y−⊂px1,⋯, xn. Assume that π1y−⊂

+π1xi when 1 ≤ i ≤ m and π2y−⊂
+π2xi

when m+1 ≤ i ≤ n. Then the drop function of (C(T),≡T)⊛(C(S),≡S) associated
with v satisfies

d(n)v [y;x1,⋯, xn] = d
(m)
v [π1y;π1x1,⋯, π1xm] × d(n−m)

v [π2y;π2xm+1,⋯, π2xn] .

Proof. Under the assumptions of the lemma, by proposition 15.3,

d(m)
v [π1y;π1x1,⋯, π1xm] = vS(π1y) −∑

I1

(−1)∣I1∣+1vS(⋃
i∈I1

π1xi) ,

where I1 ranges over sets satisfying ∅ ≠ I1 ⊆ {1,⋯,m} s.t. {π1xi ∣ i ∈ I1} ↑.
Similarly,

d(n−m)
v [π2y;π2xm+1,⋯, π2xn] = vT (π2y) −∑

I2

(−1)∣I2∣+1vT (⋃
i∈I2

π2xi) ,

where I2 ranges over sets satisfying ∅ ≠ I2 ⊆ {m + 1,⋯, n} s.t. {π2xi ∣ i ∈ I2}↑.
We show that when ∅ ≠ I1 ⊆ {1,⋯,m},

{π1xi ∣ i ∈ I1}↑ in C(S) iff {xi ∣ i ∈ I1}↑ in (C∞(T),≡T)⊛ (C∞(S),≡S) .

“If”: obvious as the projection π1 preserves consistency. “Only if”: Assume

⋃i∈I1 π1xi is a configuration of S. We use Proposition 18.1 to show ⋃i∈I1 xi
is a configuration of (C∞(T),≡T) ⊛ (C∞(S),≡S). Conditions (i) and (iii) of
Proposition 18.1 obviously hold of ⋃i∈I1 xi. From the assumption, certainly
π1⋃i∈I1 xi a configuration of S, as π1 distributes through unions. To verify the
remaining condition (ii) we need to show X =def π2⋃i∈I1 xi a configuration of

19.1. PROBABILITY WITH AN OPPONENT 341

T . Clearly X is down-closed being the union of configurations π2xi. That it
is consistent and so a configuration of T follows from the +-consistency of τ :
notice that π2y ⊆− X so X+ = π2y

+ is consistent as is τX, being equal to the
configuration σ2⋃i∈I1 π1xi∥∅; hence by the +-consistency of τ , the set X is
consistent and, being down-closed, a configuration in (C∞(T),≡T)⊛(C∞(S),≡S
). Similarly it can be shown that when ∅ ≠ I2 ⊆ {m + 1,⋯, n},

{π2xi ∣ i ∈ I2}↑ in C(T) iff {xi ∣ i ∈ I2}↑ in (C∞(T),≡T)⊛ (C∞(S),≡S) .

Hence in the equations

⋃
i∈I1

π1xi = π1 ⋃
i∈I1

xi and ⋃
i∈I2

π2xi = π2 ⋃
i∈I2

xi

we know, for instance in the first equation, that ⋃i∈I1 π1xi is a configuration in
C(S) iff ⋃i∈I1 xi is a configuration in C(T) ⊛ C(S); a similar fact holds for the
second equation.

Making these rewrites and taking the product

d(m)
v [π1y;π1x1,⋯, π1xm] × d(n−m)

v [π2y;π2xm+1,⋯, π2xn] ,

we obtain

vS(π1y) × vT (π2y) −∑
I2

(−1)∣I2∣+1 vS(π1y) × vT (π2 ⋃
i∈I2

xi)

−∑
I1

(−1)∣I1∣+1 vS(π1 ⋃
i∈I1

xi) × vT (π2y)

+ ∑
I1,I2

(−1)∣I1∣+∣I2∣ vS(π1 ⋃
i∈I1

xi) × vT (π2 ⋃
i∈I2

xi) .

But at each index I2,
vS(π1y) = vS(π1 ⋃

i∈I2

xi)

as π1y ⊆
− π1⋃i∈I2 xi. Similarly, at each index I1,

vT (π2y) = vT (π2 ⋃
i∈I1

xi) .

Hence the product becomes

vS(π1y) × vT (π2y) −∑
I2

(−1)∣I2∣+1 vS(π1 ⋃
i∈I2

xi) × vT (π2 ⋃
i∈I2

xi)

−∑
I1

(−1)∣I1∣+1 vS(π1 ⋃
i∈I1

xi) × vT (π2 ⋃
i∈I1

xi)

+ ∑
I1,I2

(−1)∣I1∣+∣I2∣ vS(π1 ⋃
i∈I1

xi) × vT (π2 ⋃
i∈I2

xi) .

To simplify this further, we observe that

{xi ∣ i ∈ I1}↑ & {xi ∣ i ∈ I2}↑ ⇐⇒ {xi ∣ i ∈ I1 ∪ I2}↑ .

342 CHAPTER 19. PROBABILISTIC EDC STRATEGIES

The “⇐” direction is clear. We show “⇒.” Assume {xi ∣ i ∈ I1}↑ and {xi ∣ i ∈ I2}↑.
We obtain {π1xi ∣ i ∈ I1}↑ and {π1xi ∣ i ∈ I2}↑ as the projection map π1 preserves
consistency. Hence ⋃i∈I1 π1xi and ⋃i∈I2 π1xi are configurations of S. Further-
more, by assumption,

π1y ⊆
+
⋃
i∈I1

π1xi and π1y ⊆
−
⋃
i∈I2

π1xi .

As S, an edc strategy over the race-free game A⊥∥B, is automatically race-free—
Proposition 18.13—we obtain

⋃
i∈I1∪I2

π1xi ∈ C(S)

by Proposition 5.5. Similarly, because T is race-free, we obtain

⋃
i∈I1∪I2

π2xi ∈ C(T) .

By Proposition 18.1, together these entail

⋃
i∈I1∪I2

xi ∈ C(T)⊛ C(S) ,

i.e. {xi ∣ i ∈ I1 ∪ I2}↑, as required; condition (i) of Proposition 18.1 is obvious
while its condition (iii) is inherited by ⋃i∈I1∪I2 xi from its holding for each xi,
i ∈ I1 ∪ I2. Notice too that

π1 ⋃
i∈I1

xi ⊆
− π1 ⋃

i∈I1∪I2

xi and π2 ⋃
i∈I2

xi ⊆
− π2 ⋃

i∈I1∪I2

xi ,

which ensure

vS(π1 ⋃
i∈I1

xi) = vS(π1 ⋃
i∈I1∪I2

xi) and vT (π2 ⋃
i∈I2

xi) = vT (π2 ⋃
i∈I1∪I2

xi) ,

so that
v(⋃
i∈I1∪I2

xi) = vS(π1 ⋃
i∈I1

xi) × vT (π2 ⋃
i∈I2

xi) .

We can now further simplify the product to

v(y) −∑
I2

(−1)∣I2∣+1 v(⋃
i∈I2

xi)

−∑
I1

(−1)∣I1∣+1 v(⋃
i∈I1

xi)

+ ∑
I1,I2

(−1)∣I1∣+∣I2∣ v(⋃
i∈I1∪I2

xi) .

Noting that any subset I for which ∅ ≠ I ⊆ {1,⋯, n} either lies entirely within
{1,⋯,m}, entirely within {m + 1,⋯, n}, or properly intersects both, we have
finally reduced the product to

v(y) −∑
I

(−1)∣I ∣+1v(⋃
I

xi) ,

19.1. PROBABILITY WITH AN OPPONENT 343

with indices those I which satisfy ∅ ≠ I ⊆ {1,⋯, n} s.t. {xi ∣ i ∈ I}↑, i.e. the

product reduces to d
(n)
v [y;x1⋯, xn] as required.

Corollary 19.5. The assignment v(x) = vS(π1x) × vT (π2x) to finite configu-
rations x in (C∞(T),≡T)⊛ (C∞(S),≡S) yields a configuration-valuation on the
stable ef (C∞(T),≡T)⊛ (C∞(S),≡S).

Proof. Clearly,
v(∅) = vS(π1∅) × vT (π2∅) = 1 × 1 = 1 .

Assuming x−⊂−y in (C∞(T),≡T)⊛(C∞(S),≡S), then either x
(s,∗)
−Ð⊂ y, with s a

−ve event of S, or x
(∗,t)
−Ð⊂ y, with t a −ve event of T . Suppose x

(s,∗)
−Ð⊂ y, with s −ve.

Then π1x
s

−Ð⊂π1y, where as s is −ve, vS(π1x) = vS(π1y). In addition, π2x = π2y
so certainly vT (π2x) = vT (π2y). Combined these two facts yield v(x) = v(y).

Similarly, x
(∗,t)
−Ð⊂ y, with t −ve, implies v(x) = v(y). As x ⊆− y is obtained via the

reflexive transitive closure of −⊂− it entails v(x) = v(y), as required.
By Lemma 15.11(i) we need only verify requirement (2), the ‘drop condition,’

for p-covering intervals, which we can always permute into the form covered by
Lemma 19.4—any p-event of (C(T),≡T)⊛ (C(S),≡S) has a +ve component on

one and only one side. The drop condition d
(n)
v [y;x1,⋯, xn] ≥ 0 of the composi-

tion is then inherited from the drop conditions d
(m)
v [π1y;π1x1,⋯, π1xm] ≥ 0 and

d
(n−m)
v [π2y;π2xm+1,⋯, π2xn] ≥ 0 of the components S and T with configuration-

valuations vS and vT .

Lemma 19.6. If x
p

−Ð⊂ y with p −ve in T⊙S then ⋃x
top(p)
−Ð⊂ ⋃ y with top(p) −ve

in (C(T),≡T)⊛ (C(S),≡S).

Proof. By Lemma 18.14, or copy of the proof of Lemma ??.

We complete the definition of the composition of probabilistic edc strategies:

Lemma 19.7. Let A, B and C be race-free event structure with polarity. As-
sume probabilistic edc strategies σ ∶ S → A⊥∥B, with configuration-valuation
vS, and τ ∶ T → B⊥∥C with configuration-valuation vT . Assigning vS(π1⋃x) ×
vT (π2⋃x) to x ∈ C(T⊙S) yields a configuration-valuation on T⊙S with which
τ⊙σ ∶ T⊙S → A⊥∥C forms a probabilistic strategy from A to C.

Proof. (The proof copies that earlier for probabilistic strategies in Lemma 15.25.)
We need to show that the assignment w(x) =def vS(π1⋃x) × vT (π2⋃x)

to x ∈ C(T⊙S) is a configuration-valuation on T⊙S. We know that v(z) =def

vSπ1(z) × vTπ2(z), for z a finite configuration in (C(T),≡T) ⊛ (C(S),≡S), is a
configuration-valuation.

Clearly
w(x) = vS(π1⋃x) × vT (π2⋃x) = v(⋃x) .

Consequently,
w(∅) = v(⋃∅) = v(∅) = 1 .

344 CHAPTER 19. PROBABILISTIC EDC STRATEGIES

The function w inherits requirement (1) to be a configuration-valuation from

v because of Lemma 19.6. Suppose x
p

−Ð⊂ y with p −ve in T⊙S. Then, by the

lemma, ⋃x
top(p)
−Ð⊂ ⋃ y with top(p) −ve in (C(T),≡T)⊛ (C(S),≡S). Hence

w(x) = v(⋃x) = v(⋃ y) = w(y) ,

as required for (2).
In addition, w inherits requirement (2) from v, as w.r.t. w,

d(n)v [y;x1,⋯, xn] = w(y) −∑
I

(−1)∣I ∣+1w(⋃
i∈I

xi)

= v(⋃ y) −∑
I

(−1)∣I ∣+1v(⋃⋃
i∈I

xi)

= v(⋃ y) −∑
I

(−1)∣I ∣+1v(⋃
i∈I

(⋃xi))

≥ 0 ,

whenever y ⊆p x1,⋯, xn in C(T⊙S). (Above, the index I ranges over sets satis-
fying ∅ ≠ I ⊆ {1,⋯, n} s.t. {xi ∣ i ∈ I}↑.

19.2 A bicategory of probabilistic edc strategies

We obtain a bicategory of probabilistic edc strategies in which objects are race-
free games, 1-cells (or maps) are probabilistic edc strategies and 2-cells are rigid
2-cells of edc strategies satisfying a constraint in the way that configuration-
valuations are related. In detail, let σ ∶ S → A⊥∥B with configuration-valuation
v and v′, σ′ ∶ S′ → A⊥∥B with configuration-valuation v′ be probabilistic edc
strategies. A 2-cell from σ, v to σ′, v′ is a 2-cell f ∶ σ ⇒ σ′ of edc strategies in
which f ;S → S′ is a rigid map of event structures such that the push-forward
fv satisfies

(fv)(x′) ≤ v′(x′) ,

for all configurations x′ ∈ C(S′). The statement relies on being able to push-
forward a configuration-valuation across a rigid two cell. The following results
ensure we can apply the earlier results of Section 15.3.

Lemma 19.8. Let f ∶ σ ⇒ σ′ be a rigid 2-cell between edc strategies σ ∶ S → A
and σ′ ∶ S′ → A in a game A. Then, f is receptive.

Proof. We require receptivity, i.e. letting x ∈ C(S′), s′ ∈ S′ be such that fx
s′

−Ð⊂

with s′ -ve, there exists a unique s ∈ S for which x
s

−Ð⊂ withf(s) = s′.
We first show existence,i.e. the ∃-receptivity of f . By the rigidity of f

the subconfiguration [s′) ⊆ fx determines a subconfiguration z ⊆ x such that
fz = [s′). Letting a = σ′(s′) ∈ A,

σz = σ′fz = σ′[s′)
a

−Ð⊂ .

19.3. A LANGUAGE OF PROBABILISTIC EDC STRATEGIES 345

By the ∃-receptivity of σ, there is s ∈ S with z
s

−Ð⊂ and σ(s) = a. As [s) ⊆ z we
have f[s) ⊆ fz = [s′) and, by rigidity, [f(s)) = f[s). Hence

[f(s)) ⊆ [s′) .

We now show the converse inclusion, so the equality [f(s)) = [s′). Consider an
arbitrary s1 _ s′. Then from the innocence of σ′ we obtain σ′(s1) _ a. Now
σ′(f(s)) = σ(s) = a and as σ′ locally reflects dependency there is (for an edc S′

a unique) s2 < f(s) for which σ′(s2) = σ
′(s1). But now s1 ≡ s2 because they

share a common image under σ′. From s1, s2 ∈ [s′] and S′ being an edc we
obtain s1 = s2 so s1 ∈ [f(s)). As s1 was an arbitrary s1 _ s′ we deduce the
sought converse inclusion [f(s)) ⊇ [s′), so [f(s)) = [s′). Clearly f(s) ≡ s′ as
they both become equal to a under σ′. Hence by the irredundancy of σ′ we
deduce f(s) = s′, as required for existence.

Now we show uniqueness. Suppose x
s1
−Ð⊂ and x

s2
−Ð⊂ and f(s1) = f(s2) = s

′.
As f is rigid,

f[s1) = f[s2) = [s′) .

Because f is a map of event structures it is locally injective w.r.t. x. As
[s1), [s2) ⊆ x this implies [s1) = [s2). Moreover, σ(s1) = σ′f(s1) = σ′f(s2) =
σ(s2) so s1 ≡ s2. As both s1 and s2 are −ve (the map f preserves polarity), by
irredundancy, we deduce s1 = s2, as required to show uniqueness

Theorem 19.9. Let f ∶ σ ⇒ σ′ be a 2-cell between edc strategies σ ∶ S →
A and σ′ ∶ S′ → A which is a rigid map of event structures. Let v be a
configuration-valuation on S. Taking v′(y) =def ∑x∶fx=y v(x) for y ∈ C(S′),
defines a configuration-valuation, written fv, on S′.

Proof. The push-forward results of earlier, Section 15.3, extend to rigid 2-cells
of edc’s as by Lemma 19.8 thay are automatically receptive.

A probabilistic edc strategy is deterministic if its configuration-valuation as-
signs 1 to all finite configurations; its underlying edc strategy is then necessarily
deterministic too.

19.3 A language of probabilistic edc strategies

***duplication strategy σ ∶ A + //A∥A is deterministic, if A is deterministic for
Opponent, i.e. A⊥ is deterministic as an event structure with polarity, and we
now have parallel causes**** recursion simple now as I think is the relation of
recursion with trace ****

***a configuration-valuation on a general event structure with polarities (the
earlier defns still apply) can be pulled backwards to a configuration-valuation
on its edc***

346 CHAPTER 19. PROBABILISTIC EDC STRATEGIES

Chapter 20

Revisions/Extensions to
edc-strategies

The concept of edc-rigid maps leads us to revise and generalise the earlier two
chapters on edc-strategies and edc-strategies with probability. (The intention
is to rewrite them to accommodate the greater generality here.) The main
advantages are that we obtain a rigid image of edc maps (missing before), the
ensuing rigid-image of edc-strategies, and more general 2-cells for probabilistic
strategies via a stronger push-forward result.

20.1 Edc-rigid maps

Definition 20.1. Let f ∶ A → B be a total map of edc’s. Say f is edc-rigid iff
f preserves causal dependency, i.e.

a ≤ a′ in A Ô⇒ f(a) ≤ f(a′) in B .

Below we characterise edc-rigidity in a similar way to rigidity on event struc-
tures, though notice that the existence asserted with edc’s is not unique.

Lemma 20.2. Let f ∶ A→ B be a total map of edc’s. Then, f is rigid iff

∀x ∈ C(A), y ∈ C(B). y ⊆ fx Ô⇒ ∃x′ ⊆ x. fx = y .

Proof. “if”: Assume
y ⊆ fx Ô⇒ ∃x′ ⊆ x. fx = y ,

for all finite configurations x of A and y of B. Suppose to obtain a contradiction
that [f(a)]B ⊊ f[a]A. Then there a ≤-maximal b ∈ f[a]A∖[f(a)]B , i.e. b ∈ f[a]A
and b ∉ [f(a)]B . Then, by the maximailty of b, the set y = f[a]A ∖ {b} is a con-

figuration for which y
b

−Ð⊂ f[a]A. From the assumption, there is a configuration
x′ such that x′ ⊆ [a]A and fx′ = y. As f is total and A an edc, it restricts to a

347

348 CHAPTER 20. REVISIONS/EXTENSIONS TO EDC-STRATEGIES

bijection f ∶ [a]A ≅ f[a]A. The bijection restricts to a bijection between x′ and

fx′ = y
b

−Ð⊂ f[a]A. From cardinality considerations there must be a′ ∈ A such

that x′
a′

−Ð⊂ [a]A and f(a′) = b. But x′
a′

−Ð⊂ [a]A implies a′ = a. It follows that
f(a) = b so b ∈ [f(a)]B , a contradiction. We conclude [f(a)]B = f[a]A so that
if a′ ≤ a then f(a′) ≤ f(a).

“Only if”: Assume f is rigid, i.e. preserves causal dependency. Suppose x ∈

C(A) and y
b

−Ð⊂ fx in C(B). Suppose a ∈ x and f(a) = b. Then a is ≤-maximal
in x: Suppose a ≤ a′ in x. Then b = f9a) ≤ f(a′) ∈ fx, from the assumption.

But y
b

−Ð⊂ fx so f(a′) = f(a) = b and a = a′; otherwise we would not be able to
“remove” b from fx. Hence x′ =def x ∖ {a ∈ x ∣ f(a) = b} ∈ C(A) with x′ ⊆ x and
fx′ = y.

Write EDCt for the category of edc’s with total maps and EDCr for its sub-
category of rigid maps. There is a right adjoint to EDCr ↪ EDCt given by the
following construction.

Let B be an edc. Define aug(B) to comprise

• events, prime augmentations of finite unambiguous configurations p of B
with top topB(p) and equivalence p ≡ q iff topB(p) ≡B topB(q);

• causal dependency given by rigid inclusion;

• consistency, X ∈ Con iff top[X] ∈ ConB .

We can develop rigid images in a way analogous to before. Via the adjunction
any total map f ∶ A→ B of edc’s factors through the counit topB ∶ aug(B)→ B
as the composite

A
f // aug(B)

topB // B

where f is edc-rigid. We take the rigid image of A to comprise: those events of
B in the image of f ; with causal dependency that of B; with a finite set of its
events consistent if they are the image of a consistent set in A; and two events
equivalent if they are the image of equivalent events in A. There is a universal
characterisation like that earlier.

20.2 Games as edc’s

There are two ways to generalise edc-strategies to games which are proper edc’s.
(1) This stays very close to the existing development—see below. Copycat

is constructed in exactly the same way but for the addition of an equivalence
≡ inherited from the game A,≡A: two moves in CCA are ≡-equivalent if their
corresponding moves in A⊥∥A are ≡A-equivalent. Composition is achieved via
pullback of edc’s as before.

20.2. GAMES AS EDC’S 349

(2) This is a more radical departure from the existing approach. The copycat
strategy associated with a game A,≡A now allows Player to copy ≡A-equivalent
moves. Composition is now achieved via pseudo pullback.

For the moment we eschew approach (2) although it would sensible if the
Player of copycat were unable to distinguish which parallel cause Opponent had
applied in making their move. There are technical advantages in following (1).
For instance, a 2-cell f ∶ σ ⇒ σ′ between existing edc-strategies σ ∶ S → A and
σ′ ∶ S′ → A will if edc-rigid inherit the properties of a strategy developed under
approach (1); note S′ is generally a proper edc so to view f as a strategy in S′

(as is useful in a proof below) requires the generalisation to games as edc’s.

Definition 20.3. (Strategies over games as edc’s) Let σ ∶ S → A be a total map
of edc’s with polarity, where A may be a proper edc with non-identity equivalence
≡A. Then σ ∶ S → A is an edc strategy if it satisfies the following axioms:

(1) innocence:
+-innocence: if s _ s′ & pol(s) = + then σ(s) _ σ(s′);
−-innocence: if s _ s′ & pol(s′) = − then σ(s) _ σ(s′).

(2) +-consistency: X ∈ ConS if σX ∈ ConA and [X]+ ∈ ConS, for X ⊆fin S.
(Recall [X]+ comprises the +ve elements in the downwards closure of X.)

(3) ≡-saturation: s1 ≡S s2 if σ(s1) ≡A σ(s2) .

(4) ∃-receptivity: σx
a

−Ð⊂ & polA(a) = − ⇒ ∃s ∈ S. x
s

−Ð⊂ & σ(s) = a , for all
x ∈ C(S), a ∈ A. (Note we no longer have uniqueness.)

(5) non-redundancy: [s1) = [s2) & s1 ≡S s2 & polS(s1) = polS(s2) = − Ô⇒
s1 = s2 .

Proposition 20.4. Let σ ∶ S → A be a total map of edc’s with polarity where A
is an edc. Then, σ is an edc-strategy as above iff

s1 ≡S s2 ⇐⇒ σ(s1) ≡A σ(s2), for all s1, s2 ∈ S;

the image σ0 ∶ S0 → A0 of σ (under the right adjoint to the inclusion of event
structures in edc’s) is a strategy of concurrent games, as earlier;

σ satisfies +-consistency.

CLAIM: The results of Chapters 18 and 19 carry over directly w.r.t. copycat
ccA ∶ CCA → A⊥∥A obtained as before with equivalence inherited from the game
A⊥∥A. In particular, an edc strategy in a game A is a total map σ ∶ S → A of
edc’s with polarity such that ccA⊙σ ≅ σ. In the following we shall refer to the
existing theorems of Chapters 18 and 19 as if they apply in this more slightly
general context.

Lemma 20.5. Let f ∶ σ ⇒ σ′ be a 2-cell between edc strategies σ ∶ S → A and
σ′ ∶ S′ → A (where A may be a proper edc). If f is edc-rigid then f is an edc
strategy in S′.

350 CHAPTER 20. REVISIONS/EXTENSIONS TO EDC-STRATEGIES

Proof. Under the right adjoint (−)0 to the ‘inclusion’ functor ES ↪ EDC, the edc-
rigid 2-cell f becomes a 2-cell f0 ∶ σ0 ⇒ σ′0 between the ‘old’ strategies. Thus f0

is also an ‘old’ strategy. It is easy to show ≡-saturation and +-consistency from
the commutation associated with the 2-cell f ∶ σ⇒ σ′.

20.3 Push-forward across edc-rigid 2-cells

Results of the chapter on probability extend straightforwardly; the only change
in the notion of strategy is a slight modification to ≡-saturation.

Recall from Section 15.1 that we write e.g. ⋁Z for ⋃Z when a set of config-
urations Z is compatible, i.e. Z ↑, so ⋃Z is a configuration, and ⊺ otherwise.

Theorem 20.6. Let σ ∶ S → A be an edc-rigid edc-strategy. (A may be a proper
edc.) Let v be a configuration-valuation for S. Then there is a push-forward
configuration-valuation σv for A for which the value (σv)(y), at y ∈ C(A), is
the supremum of

∑
∅≠Z⊆X

(−1)∣Z∣+1v(⋁Z)

as X ranges over finite subsets of {x ∈ C(S) ∣ y = σx}.

Proof. W.r.t. y ∈ C(S), define a probablilistic counterstrategy τy ∶ Ty ↪ A⊥ to σ
as follows:

Ty =def A
⊥ ↾ (y ∪ {a ∈ A⊥ ∣ polA⊥(a) = −})

with τy the inclusion map associated with Ty ⊆ A
⊥.

The strategy τy is deterministic and so can be associated with a configuration-
valuation assigning 1 to each of its finite configurations. The composition with-
out hiding τy ⊛ σ is given by the pullback

Ty ⊛ S
N n

|| ""
S

σ
""

TyM m

τy
{{

A

where we can take advantage of the simple form of τy to describe Ty ⊛ S as a
restriction of S,viz.

Ty ⊛ S =def S ↾ {s ∈ S ∣ σ(s) ∈ y or polS(s) = +} .

Then
x ∈ C∞(Ty ⊛ S) iff x ∈ C∞(S) & y ∩ σx ⊆+ σx .

The configuration-valuation of the composition is given by vy the restriction of v
to C(Ty⊛S). The composition Ty⊛S consists purely of synchronisation (=neu-
tral) events ensuring that vy makes Ty ⊛ S into a probabilistic event structure.

20.3. PUSH-FORWARD ACROSS EDC-RIGID 2-CELLS 351

Because Ty ⊛ S with vy is a probabilistic event structure, vy determines a
continuous valuation wy on the Scott-open sets of C∞(Ty ⊛ S) in which

wy(x̂) = vy(x)

for all x ∈ C(Ty ⊛ S); recall x̂ is the open set {z ∈ C∞(Ty ⊛ S) ∣ x ⊆ z}.
For y ∈ C(A), define

ϕ(y) =def {x ∈ C∞(S) ∣ y ⊆+ σx} .

From the construction of Ty ⊛ S it is seen that

ϕ(y) = {x ∈ C∞(Ty ⊛ S) ∣ y ⊆ σx} ,

an open subset of C∞(Ty ⊛ S). Take

(σv)(y) =def wy(ϕ(y)) ,

for y ∈ C(A). We show that σv is a configuration-valuation for A, the push-
forward of v along σ. First, clearly

(σv)(∅) = wy(ϕ(∅)) = wy(C
∞(Ty ⊛ S)) = 1 .

We show the ‘drop’ condition. Let yi ∈ C(A) for i ∈ I, a finite set. Recall
from earlier that we write ⋁i∈I yi for ⋃i∈I yi when {yi ∣ i ∈ I} ↑, i.e. the set of
configurations is compatible, so ⋃i∈I yi ∈ C(A), and ⊺ otherwise. Extend ϕ so
ϕ(⊺) = 0. Observe that

ϕ(⋁
i∈I

yi) =⋂
i∈I

ϕ(yi) .

Now, supposing y ⊆+ y1,⋯, yn in C(A),

d
(n)

(σv)
[y; y1,⋯, yn] =wy(ϕ(y)) − ∑

∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1wy(ϕ(⋁
i∈I

yi))

=wy(ϕ(y)) − ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1wy(⋂
i∈I

ϕ(yi))

=wy(ϕ(y)) −wy(ϕ(y1) ∪⋯ ∪ ϕ(yn))

which is nonnegative by the monotone property of the continuous valuation wy;
clearly

ϕ(y1) ∪⋯ ∪ ϕ(yn) ⊆ ϕ(y) .

Remark Above, we have used the following: for a continuous valuation w, by
virtue of its modular property, we can derive that for opens sets U1, . . . , Un

w(U1 ∪⋯ ∪Un) = ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1w(⋂
i∈I

Ui) .

Suppose y ⊆− y′ in C(A). We shall show (σv)(y) = (σv)(y′), i.e.

wy(ϕ(y)) = wy′(ϕ(y
′)) .

352 CHAPTER 20. REVISIONS/EXTENSIONS TO EDC-STRATEGIES

We first show wy(ϕ(y))) ≤ wy′(ϕ(y
′)). As a key step we observe

x ∈ ϕ(y) ∩ C(S) Ô⇒ ∃x′ ∈ ϕ(y′) ∩ C(S). x ⊆− x′ . (1)

To see this suppose x ∈ ϕ(y) ∩ C(S). Then y ⊆+ σx and y ⊆− y′ entail by the
race-freeness of A that y′ ∪ σx ∈ C(A) where y′ ⊆+⊆ y′ ∪ σx and σx ⊆− y′ ∪ σx.
But from the latter inclusion, by the ∃-receptivity of σ there is an x′ such that
σx′ = y′ ∪ σx with x ⊆− x′, which establishes (1).

The open set ϕ(y) of C∞(Ty ⊛ S) is a directed union of basic open sets

x̂1 ∪⋯ ∪ x̂n

where x1,⋯, xn ∈ ϕ(y) ∩ C(S). The value wy(ϕ(y)) is the supremum of the
values

wy(x̂1 ∪⋯ ∪ x̂n) = ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I

xi)

of the basic open sets in the directed union—because wy is a continuous valua-
tion. By (1), for each xi, with 1 ≤ i ≤ n, there is x′i ∈ ϕ(y

′)∩C(S) with xi ⊆
− x′i.

Hence, once we have shown that, for ∅ ≠ I ⊆ {1,⋯, n},

{xi ∣ i ∈ I}↑ ⇐⇒ {x′i ∣ i ∈ I}↑ (2)

we are assured that
v(⋁
i∈I

xi) = v(⋁
i∈I

x′i) ,

as, when configurations, ⋁i∈I xi ⊆
− ⋁i∈I x

′
i. Then it will follow that

wy(x̂1 ∪⋯ ∪ x̂n) = wy(x̂′1 ∪⋯ ∪ x̂′n)

because both will expand to the same sum of values.
We now show (2). We have {xi ∣ i ∈ I} ↑ iff ⋃i∈I xi ∈ ConS . By the +-

consistency of σ,

⋃
i∈I

xi ∈ ConS iff (⋃
i∈I

xi)
+ ∈ ConS & ⋃

i∈I

σxi ∈ ConA .

As each x′i ⊇
− xi, clearly

⋃
i∈I

σx′i ∈ ConA Ô⇒ ⋃
i∈I

σxi ∈ ConA .

The converse also holds. If ⋃i∈I σxi ∈ ConA then ⋃i∈I σxi ∈ C(A) with both

y ⊆+ ⋃
i∈I

σxi and y ⊆− y′ .

Because A is race-free, y′ ∪ ⋃i∈I σxi ∈ C(A). But y′ ∪ ⋃i∈I σxi equals ⋃i∈I σx
′
i

which is therefore consistent. Just as

{xi ∣ i ∈ I}↑ iff (⋃
i∈I

xi)
+ ∈ ConS & ⋃

i∈I

σxi ∈ ConA .

20.3. PUSH-FORWARD ACROSS EDC-RIGID 2-CELLS 353

so
{x′i ∣ i ∈ I}↑ iff (⋃

i∈I

x′i)
+ ∈ ConS & ⋃

i∈I

σx′i ∈ ConA .

But clearly (⋃i∈I xi)
+ = (⋃i∈I x

′
i)
+ and we have just shown ⋃i∈I σxi ∈ ConA iff

⋃i∈I σx
′
i ∈ ConA. Hence (2), as required.

The value wy′(ϕ(y
′)) is obtained as the supremum of contributions

wy′(x̂′1 ∪⋯ ∪ x̂′n)

where x′1,⋯, x
′
n ∈ ϕ(y′) ∩ C(S). We now obtain wy(ϕ(y)) ≤ wy(ϕ(y

′)) as any
contribution to the supremum determining wy(ϕ(y)) is matched by a contribu-
tion to the supremum determining wy′(ϕ(y

′)).

We also need wy′(ϕ(y
′))) ≤ wy(ϕ(y). This is the one place in the proof

where edc-rigidity plays a role—see Example 20.8 below for comments on the
necessity of rigidity.

Write
µ(y′) =def {x ∈ C(S) ∣ y′ = σx} .

Observe that
x′ ∈ µ(y′) Ô⇒ ∃x ∈ ϕ(y) ∩ C(S). x ⊆− x′ (3)

follows directly from the edc-rigidity of σ: if x′ ∈ µ(y′) then y′ = σx′ which with
y ⊆− y′ entails y = σx for some x ⊆− x′. Because σ is edc-rigid

∀z′ ∈ ϕ(y′)∃x′ ∈ µ(y′). x′ ⊆+ z′ .

Hence the open subset ϕ(y′) of C∞(Ty ⊛ S) is a directed union of

x̂′1 ∪⋯ ∪ x̂′n

where x′1,⋯, x
′
n ∈ µ(y

′). The value wy′(ϕ(y
′)) is the supremum of the values

wy′(x̂′1 ∪⋯ ∪ x̂′n) = ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I

x′i) .

Let ∅ ≠ I ⊆ {1,⋯, n}. By (3), for each i ∈ I there is some xi such that xi ⊆
− x′i.

As above,
{xi ∣ i ∈ I}↑ iff {x′i ∣ i ∈ I}↑

and
v(⋁
i∈I

x′i) = v(⋁
i∈I

xi) .

Hence
wy′(x̂′1 ∪⋯ ∪ x̂′n) = ∑

∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I

x′i)

= ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I

xi)

=wy(x̂1 ∪⋯ ∪ x̂n) .

354 CHAPTER 20. REVISIONS/EXTENSIONS TO EDC-STRATEGIES

The value wy(ϕ(y)) is obtained as the supremum of contributions

wy(x̂1 ∪⋯ ∪ x̂n)

where x1,⋯, xn ∈ ϕ(y) ∩ C(S). Hence wy′(ϕ(y
′)) ≤ wy(ϕ(y)) as required.

Thus σv is indeed a configuration-valuation for A. To complete the charac-
terisation of σv stated in the theorem, let y ∈ C(A) and write

µ(y) =def {x ∈ C(S) ∣ y = σx} .

As above, (σv)(y) is obtained as the supremum of values

wy(x̂1 ∪⋯ ∪ x̂n) = ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I

xi)

over x1,⋯, xn ∈ µ(y). A slight reformulation gives the statement of the theorem.

We recover the earlier Theorem 15.34 as a special case:

Corollary 20.7. (Theorem 15.34) Let σ ∶ S → A be a rigid, receptive map be-
tween event structures with polarity S and A. Let v be a configuration-valuation
for S. Then, taking

(σv)(y) =def ∑
x∶σx=y

v(x)

for y ∈ C(A), defines a configuration-valuation σv for A, the push-forward of v.

Proof. In the case where σ is such a map it can be identified with an edc-rigid
edc-strategy (the edc equivalence is taken to be the identity) so Theorem 20.6
applies—see Proposition 18.17. In this case however distinct x and x′ for which
σx = σx′ = y are incompatible and the complicated sum of Theorem 20.6 simpli-
fies to the above: each finiteX ⊆ {x ∈ C(S) ∣ y = σx} is associated with summand

∑x∈X v(x). (Recall an infinite sum of non-negative reals is the supremum of its
finite summands.)

Example 20.8. It is intriguing that rigidity is only needed for one part of the
proof of Theorem 20.6. We comment on the necessity of σ being rigid in the
proof.

Consider S comprising ⊟ _ ⊞ and A comprising the two moves ⊟, ⊞ con-
current with each other. Suppose S carries a configuration valuation v which
takes value p on the configuration {⊟,⊞}; it is 1 elsewhere. The map σ ∶ S → A
is the only total map respecting polarity; it is clearly not rigid. In this case
the constructions of the proof of Theorem 20.6 would give ϕ(y) = ∅ when
y = {⊞}, as there is no configuration x of S such that y ⊆+ σ(x) and consequently
(σv)(y) = 0, which can be seen to be impossible for a configuration-valuation
for A unless p = 0.

In the light of the above example it might be thought that one could modify
the definition of ϕ(y) in the proof so that

20.3. PUSH-FORWARD ACROSS EDC-RIGID 2-CELLS 355

phi(y) = {x ∈ C∞(S) ∣ y ⊆ σx}—so not insisting that y ⊆+ σx. However this
suggestion is foiled by the following example. Let both A and S comprise
⊟ ⊟ consisting of two conflicting Opponent moves and let σ be the iden-

tity function. Let S carry configuration-valuation v, the only one possible as-
signing 1 to all configurations. According to the modified definition the push
forward σv would give value (σv)(∅) = 2, clearly impossible for a configuration-
valuation.

There may of course be more subtle ways in which to push forward configuration-
valuations across more general 2-cells between strategies, though experimenta-
tion has suggested that they are, at the very least, quite complicated. From
the proof of Theorem 20.6 it can be seen that a modified form of configuration-
valuation v in which y ⊆− y′ only implies v(y) ≤ v(y′) would be preserved by
arbitrary 2-cells; I can’t presently understand the intuition behind such a gen-
eralisation or if it is useful.

In the light of this result it is sensible to take 2-cells f ∶ (σ, v) ⇒ (σ′, v′)
between probabilistic edc strategies to be 2-cells f ∶ σ ⇒ σ′ which are edc-rigid
maps for which the push forward fv is pointwise less than or equal to v′.

Now we have edc-rigid images of total maps of edc’s we can develop rigid-
images of edc strategies analogously to earlier.

356 CHAPTER 20. REVISIONS/EXTENSIONS TO EDC-STRATEGIES

Chapter 21

Disjunctive causes via
symmetry

This chapter sketches out a way to obtain edc strategies from strategies on
games with symmetry. It needs to be checked.

21.1 Games with symmetry

In this chapter we shall refer to the paper “Symmetry in concurrent games” [36].
However there are a few extra definitions and results on which we shall rely, so
they are included here.

Recall weak maps f ∶ σ⇒ σ′ between pre-strategies σ ∶ S → A and σ′ ∶ S′ → A
are maps f ∶ S → S′ for which σ ∼ fσ′. When f ∶ σ ⇒ σ′ and g ∶ σ′ ⇒ σ satisfy
gf ∼ id and fg ∼ id we say f, g forms a weak equivalence between pre-strategies
σ and σ′ and write σ ≈ σ′ and sometimes f ∶ σ ≈ σ′ or even f ∶ σ ≈ σ′ ∶ g, though
note g is determined up to symmetry, i.e., up to ∼, by f .

It is convenient to work with a ∼-bicategory of games with symmetry and
weak strategies (pre-strategies weakly equivalent to strategies) considered up to
weak equivalence ≈. It comprises

objects, which are games with symmetry;
maps (1-cells) which are weak strategies;
2-cells f ∶ σ⇒ σ′, which are rigid weak maps between strategies;
Vertical composition is that of maps of event structures with symmetry and

horizontal composition that of weak strategies using bipullbacks. Note that
Strat(A,B), the category of strategies from A to B with maps 2-cells between
them is enriched in setoids; the maps are between event structures with sym-
metry and bear the equivalence relation ∼. The bicategory laws hold, though
only up to ∼. Without restricting to rigid 2-cells would not later get ?s a pseudo
functor.

The following lemma presents a sufficient condition for a pre-strategy to be
a weak strategy:

357

358 CHAPTER 21. DISJUNCTIVE CAUSES VIA SYMMETRY

Lemma 21.1. Let A be a game with symmetry. A pre-strategy σ ∶ S → A which
is innocent and strong-receptive is a weak strategy; it is weakly equivalent to the
strategy Sat(σ) obtained as the saturation of σ.

Throughout this chapter assume event structures A are consistent-countable,
i.e. there is a consistent-enumeration χ ∶ A→ ω such that

{a, a′} ∈ ConS & χ(a) = χ(a′) Ô⇒ a = a′ .

A consistent-enumeration need only be injective on consistent sets.

21.2 A pseudo monad

Let A = (A,≤A,ConA,polA) be an event structure with polarity. Define

?A = (?A,≤,Con,pol)

to comprise

• events (a,α) ∈?A where a ∈ A and α ∶ [a]A → ω such that α(a) = 0 if
polA(a) = − with pol((a,α)) = polA(a);

• causal dependency,

(a′, α′) ≤ (a,α) ⇐⇒ a′ ≤A a & α′ = α ↾ [a′]A ;

• consistency,

X ∈ Con ⇐⇒ X ⊆fin?A & {a ∣ ∃α. (a,α) ∈X} ∈ ConA .

We extend a symmetry on A to a symmetry on ?A via the following construction
on isomorphism families: for x, y ∈ C(?A),

θ ∶ x ≅?A y ⇐⇒ θ is a bijection respecting ≤ and

{(a, a′) ∣ ∃α,α′. θ(a,α) = (a′, α′)} is in the isomorphism family of A.

Idea: the different copies (a,α), variants of events of A, correspond to different
parallel causes of event a.

Except for Section 21.4, we shall almost exclusively consider ?A, a game with
symmetry, when A is game, with trivial symmetry. Then θ ∶ x ≅?A y holds of
two finite configurations of ?A iff θ is a bijection respecting ≤ and the underlying
moves of the game A.

Lemma 21.2. Let A be an event structure with polarity. For events (a,α) and
(a′, α′) in ?A, write

(a,α) ≡?A (a′, α′) iff a = a′ .

The function dA ∶ (?A,≡?A)→ A taking (a,α) ∈?A to a ∈ A is an edc strategy in
A. It satisfies the equation

σ = dA ○w is(σ) .

21.3. EDC STRATEGIES AS STRATEGIES 359

Proof. The properties required for dA to be an edc strategy are shown straight-
forwardly: innocence and ∃-receptivity because indices do not disturb the un-
derlying causal dependency of A; non-redundancy because we always index −ve
events by 0; the property ≡-saturation by definition; and finally +-consistency
because dA reflects consistency. Directly from the definitions, σx = dA(w is(σ)x),
for any x ∈ C(S), establishing the equation.

The operation ? forms a pseudo monad. Its unit η?
A ∶ A →?A takes a to

(a,0a) where 0a ∶ [a]→ ω is constantly 0. To define its multiplication µ?
A ∶??A→

?A we use an injective pairing ⟨m,n⟩ of natural numbers in natural numbers.
Define µ?

A(([a], α), β) = (a, γ) where γ(a′) = ⟨α(a′), β([a′], α′)⟩ where α′ is the
restriction of α to [a′] for a′ ≤ a.

We shall also use a pseudo monad ! defined by

!A =def (?(A⊥))⊥

which in contrast to ? duplicates Opponent events.

21.3 Edc strategies as strategies

Edc strategies σ ∶ S → A in a game A can be viewed as Kleisli maps σ′ ∶ S′ →?A.
The Kleisli maps are weak strategies in the game with symmetry ?A.

An edc strategy σ ∶ S → A determines a Kleisli map w is(σ) ∶ S′ →?A: the
event structure with polarity and symmetry S′ is obtained from the edc S by
simply dropping the equivalence ≡S and imposing the identity symmetry while
the map w is(σ) chooses a copy of the event σ(a) in an appropriately coherent
way, using the consistent-countability of S. Consistent countability of S provides
a function χ ∶ S → ω which is injective on consistent sets. With it define

w is(σ)(s) = (σ(s), α)

where α ∶ [σ(s)]A → ω is defined so α(a) = 0 if a is −ve while

α(a) = χ(s′) for that unique s′ ≤ s such that σ(s′) = a

if a is +ve.
Of course, the construction of w is(σ) ∶ S′ →?A from an edc strategy σ ∶ S →

A is w.r.t. a choice of enumeration χ of S. However, in this way we do determine
a weak strategy—by Proposition 21.3—which is weakly equivalent to any other
obtained via a different choice of enumeration.

Proposition 21.3. Given an edc strategy σ, the function w is(σ) is a weak
strategy σ′ ∶ S′ →?A which is

(i) innocent and receptive, for which

(ii) S′ has the trivial identity symmetry and

360 CHAPTER 21. DISJUNCTIVE CAUSES VIA SYMMETRY

(iii) s1, s2 ≤ s & σ′(s1) = (a,α) & σ′(s2) = (a,α′) Ô⇒ s1 = s2 .

If two edc strategies σ1 and σ2 are isomorphic, then w is(σ1) and w is(σ2) are
weakly equivalent weak strategies.

Proof. That properties (ii), (iii) and the innocence of (i) hold of w is(σ) is
obvious. We show the receptivity of σ′ =def w is(σ) required by (i).

Let x ∈ C(S). Suppose σ′(x)
(a,α)
−Ð⊂ where pola(a) = −. Define

x0 = [{s′ ∈ x ∣ ∃(a′, α′) < (a,α). α′(a′) = χ(s′)}]S .

Then x0 is the minimum subconfiguration of x for which σ′x0

(a,α)
−Ð⊂ . Conse-

quently, σx0
a

−Ð⊂ . As σ is ∃-receptive, there is some s such that x0
s

−Ð⊂ and
σ(s) = a. Thus σ[s)S ⊇ [a)A. It follows from the definition of w is(σ) that
σ′[s)S ⊇ [(a,α)) with [s)S = x0, and hence that σ′(s) = (a,α). This yields

x
s

−Ð⊂ with σ′(s) = (a,α). To show its uniqueness suppose x
s1
−Ð⊂ and x

s2
−Ð⊂

with σ′(s1) = σ
′(s2) = (a,α). Then the causal predecessors s′1 <S s1 share the

same enumeration index as the causal predecessors s′2 <S s2 within the config-
uration x. Hence [s1) = [s2) with σ(s1) = σ(s2) and s1 and s2 −ve. By the
“non-redundancy” of σ we obtain s1 = s2, so uniqueness.

As S′ has the trivial identity symmetry, the receptivity of w is(σ) ensures
its strong-receptivity. Then by Lemma 21.1 we obtain that w is(σ) is a weak
strategy in the game ?A. It is easy to check that the choices of enumeration for
two isomorphic edc strategies will take corresponding configurations to results
within the isomorphism family of ?A.

Conversely, recalling the edc strategy dA ∶?A→ A of Lemma 21.2,

Proposition 21.4. Given a weak strategy σ′ ∶ S′ →?A which satisfies conditions
(i), (ii), (iii) of Proposition 21.3, there is an edc strategy wos(σ′) ∶ S → A:
define S to be the edc obtained from S′ by dropping its trivial symmetry and
endowing it with equivalence ≡S where

s1 ≡S s2 iff dAσ
′(s1) = dAσ

′(s2)

and define wos(σ′) to be the function dAσ
′ ∶ S′ → A.

If weak strategies σ′1 and σ′2 satisfy conditions (i), (ii), (iii) of Proposi-
tion 21.3 and are weakly equivalent, then wos(σ′1) and wos(σ′2) are isomorphic
edc strategies.

Proof. The weak strategy σ′ is in particular a strategy so can be identified with
an edc strategy. Composed with the edc strategy dA we obtain wos(σ′), which
is thus an edc strategy. Weak equivalence is sent to isomorphism under wos
because the event structures involved carry the trivial identity equivalence.

Theorem 21.5. Let σ be an edc strategy. Then, wos ○w is(σ) = σ.
Let σ′ ∶ S′ →?A be a weak strategy satisfying conditions (i), (ii), (iii) of

Proposition 21.3. The weak strategy w is ○ wos(σ′) is weakly equivalent to the
weak strategy σ′.

21.4. COMPOSITION 361

Proof. That wos ○ w is(σ) = σ is easy to see. That w is ○ wos(σ′) is weakly
equivalent to σ′ follows straightforwardly using the local injectivity of σ′.

Of course we should check that the operation of converting an edc strategy
to a strategy respects composition. We must first settle the question of how to
compose strategies σ ∶ S →?(A⊥∥B) and τ ∶ T →?(B⊥∥C). Notice that, e.g.,

?(A⊥∥B) =?(A⊥)∥?B = (!A)⊥∥?B .

Consequently,

σ ∶!A + // ?B and τ ∶!B + // ?C .

As we shall see in the next section, strategies of this form and a specified com-
position arise in a double Kleisli construction [15].

21.4 Composition

The operations ? and ! are (pseudo) monads up to symmetry on event structures
with polarity and symmetry with units and multiplication η?, µ? and η!, µ!,
respectively.

They lift to (pseudo) monads and, by the duality of strategies, to comonads
on strategies on games with symmetry. We first lift ? and ! to (pseudo) functors
on strategies.

Within event structures with polarity, a total map σ ∶ S → A⊥∥B determines
a total map ?sσ ∶?sS → (?A)⊥∥?B. We first describe ?sS and ?sσ on event
structure with polarity S = (S,≤S ,ConS ,polS) without symmetry, which we
shall treat later.

Define

?sS = (?sS,≤,Con,pol)

to comprise:

• Events (s,α) ∈?sS if s ∈ S and α ∶ [s]S → ω is such that α(s) = 0 if σ1(s) is
defined and polS(s) = +, or σ2(s) is defined and polS(s) = −. The polarity
of (s,α) is that of s. The function

?sσ ∶?sS → (?A)⊥∥?B

acts so ?sσ((s,α)) =def (σ(s), β). The function β has domain [σ(s)], the
down-closure of σ(s) in (?A)⊥∥?B; it sends c ≤ σ(s) to β(c) = α(s′) where
s′ is the unique event s′ ≤ s such that σ(s′) = c.

• Causal dependency,

(s′, α′) ≤ (s,α) ⇐⇒ s′ ≤S s & α′ = α ↾ [s′]S .

362 CHAPTER 21. DISJUNCTIVE CAUSES VIA SYMMETRY

• Consistency,

X ∈ Con ⇐⇒X ⊆fin?sS & {s ∣ ∃α. (s,α) ∈X} ∈ ConS &

∀(s,α1), (s1, α2) ∈X. ?sσ((s1, α1)) =?sσ((s2, α2)) Ô⇒ (s1, α1) = (s2, α2) &

∀s ∈ S+, α1, α2. (s,α1), (s,α2) ∈X & [(s,α1))
− = [(s,α2))

− Ô⇒ α1 = α2 .

[We are using s ∈ S+ to signify s has +ve polarity in S.]

We extend a symmetry on S to a symmetry on ?sS via the following construction
on isomorphism families: for x, y ∈ C(?sS),

θ ∶ x ≅?sS y ⇐⇒ θ is a bijection respecting ≤ and

{(s, s′) ∣ ∃α,α′. θ(s,α) = (s′, α′)} is in the isomorphism family of S .

The first two clauses in the definition ensure that ?sσ is a map of event
structures. The final clause is more odd. Without it we could not show that
?s preserves copycat or, later, satisfies the monad laws. The final clause says
that consistent distinct variants of a +ve event causally depend on distinct −ve
variants. By the following remark we can drop the insistence on the variants
on which the two +ve variants depend being −ve. The consistency condition in
the definition of ?sS may equivalently be replaced by

X ∈ Con ⇐⇒X ⊆fin?sS & {s ∣ ∃α. (s,α) ∈X} ∈ ConS &

∀(s,α1), (s1, α2) ∈X. ?sσ((s1, α1)) =?sσ((s2, α2)) Ô⇒ (s1, α1) = (s2, α2) &

∀s ∈ S+, α1, α2. (s,α1), (s,α2) ∈X & [(s,α1)) = [(s,α2)) Ô⇒ α1 = α2 .

This is by virtue of the following proposition.

Proposition 21.6. Let X be a down-closed finite subset of events of ?sS for
an event structure with polarity S. The following are equivalent

(i) ∀s ∈ S+, α1, α2. (s,α1), (s,α2) ∈X & [(s,α1))
− = [(s,α2))

− Ô⇒ α1 = α2 ;

(ii) ∀s ∈ S+, α1, α2. (s,α1), (s,α2) ∈X & [(s,α1)) = [(s,α2)) Ô⇒ α1 = α2 .

Proof. (i)⇒ (ii) is obvious. To show (ii)⇒ (i), assume (ii). Suppose (s,α1), (s,α2) ∈
X and [(s,α1))

− = [(s,α2))
− where s is +ve. Suppose [(s,α1)) ≠ [(s,α2)),

to obtain a contradiction. Then, for some ≤-minimal +ve s′ ≤ s we have
α1(s

′) ≠ α2(s
′). Write α′1 and α′2 for the restrictions of α1 and α2 to [s′].

Then (s′, α′1), (s
′, α′2) ∈X, as X is down-closed, and

[(s,α′1)) = [(s,α′1))
− = [(s,α′2))

− = [(s,α′2)) ,

by the minimality of s′. Hence by (ii), α′1 = α′2 making α1(s
′) = α2(s

′) —
a contradiction. Now, as [(s,α1)) = [(s,α2)), we obtain α1 = α2 by (ii), as
required.

21.4. COMPOSITION 363

We extend ?s to 2-cells. Suppose f ∶ σ ⇒ σ′ is a rigid 2-cell between pre-
strategies σ ∶ S → A⊥∥B and σ′ ∶ S′ → A⊥∥B. We describe the rigid 2-cell
?sf ∶?sσ ⇒?sσ′. For (s,α) ∈?sS we define ?sf(s,α) = (f(s), α′) where for
s′ ≤ f(s) we take α′(s′) = α(s1) for s1 that unique s1 ≤ s for which f(s1) = s

′.
Because we restrict to rigid 2-cells we so obtain a functor from Strat(A,B) to
Strat(?A, ?B); the functor preserves ∼, the equivalence of maps up to symmetry.

Proposition 21.7. The operation ?s sends any weak strategy to a weak strategy.

Proof. Because ?s is a functor from Strat(A,B) to Strat(?A, ?B) which pre-
serves ∼, the operation ?s preserves weak equivalence between pre-strategies: if
σ ≈ σ′, for pre-strategies σ,σ′, then ?sσ ≈?sσ′. Any weak strategy is weak equiv-
alent to a weak strategy which is innocent and strong receptive—Lemma 21.1.
It can be checked that if σ is innocent and strong receptive then so is ?sσ and
hence also a weak strategy, again by Lemma 21.1. Consequently, the operation
?s sends any weak strategy to a weak strategy.

The operation ?s yields a (pseudo) functor, which must preserve copycat and
composition up to weak equivalence of strategies.

Lemma 21.8. If ccA ∶ A + //A then ?s ccA ≅ cc ?sA.

Proof. Sketch: The causal dependency of CCA ensures that the down-closure
of a +ve event of CCA consists of [a]∥[a], for a ∈ A, where θ ∶ [a] ≅A [a] is in
the isomorphism family of A; if a is +ve then a is the top event and otherwise
the top is a. Consequently the +ve events of ?sCCA correspond to bijections
θ ∶ [a] ≅A [a] together with functions α1 ∶ [a] → ω and α2 ∶ [a] → ω, for a ∈ A.
The consistency condition on ?sCCA ensures that configurations of ?sCCA are
isomorphic to those of CC?A.

The following propositions show the close relationship between configura-
tions of ?sS, with σ ∶ S → A⊥∥B, and those of an event structure with symme-
try S —useful in demonstrating that ?s preserves composition.

Proposition 21.9. Let S be an event structure with polarity σ ∶ S → A⊥∥B.
Say z ∈ C(?sS) is unambiguous iff

(s,α), (s,α′) ∈ z Ô⇒ α = α′ .

Let x ∈ C(?sS). Let X consist of the ⊆-maximal unambiguous subconfigurations
of x. Then,

⋃X = x ,

z ∈X & z ⊆ z′ ⊆ x & z′ unambiguous Ô⇒ z = z′ , and

y, z ∈X & (?sσ)1y = (?sσ)1z & dSy = dSz Ô⇒ y = z .

Above, dS is a function from ?sS to S acting so dS(sα) = s; it takes a configu-
ration y of ?sS to the configuration dSy = {s ∣ ∃α. (s,α) ∈ y}.

364 CHAPTER 21. DISJUNCTIVE CAUSES VIA SYMMETRY

Above, each maximal unambiguous subconfiguration z of a configuration of
?sS corresponds to a configuration of S. Hence:

Proposition 21.10. Let S be an event structure with polarity σ ∶ S → A⊥∥B.
The finite configurations of ?sS correspond to finite families W of pairs

v, lv ∶ v → ω

where v ∈ C(S) and lv(s) = 0 if σ1(s) is defined and polA(a) = + or σ2(s) is
defined and polA(a) = − for s ∈ v and

∀(v, lv), (w, lw) ∈W. lv ↾ v1 = lw ↾w1 Ô⇒ v = w &

lv ↾ v ∩w = lw ↾ v ∩w Ô⇒ (v, lv) = (w, lw) .

Above, for instance, w1 =def {s ∈ w ∣ σs is defined}.
The correspondence takes a finite configuration x of ?sS to the family con-

sisting of pairs, one for each maximal unambiguous subconfiguration z of x; the
pair for z comprises the configuration

dsz = {s ∣ ∃α. (s,α) ∈ z} ∈ C(S)

and the function taking s in this set to α(s) where, because z is unambiguous,
α is the necessarily unique α such that (s,α) ∈ z.

Lemma 21.11. Let σ ∶ A + //B and τ ∶ B + //C be weak strategies. Then
?sτ⊙?sσ and ?s(τ⊙σ) are weakly equivalent strategies.

Proof. Idea: As ?s preserves weak equivalence of strategies and any strategy
is weak equivalent to an innocent, strong receptive strategy, w.l.o.g. we may
assume that σ and τ are innocent, strong receptive strategies. In this case
we can show that ?sτ⊙?sσ and ?s(τ⊙σ) are isomorphic strategies from which
the claim follows. The idea is to use Proposition 21.10 to relate the secured
bijections involved in the definition of ?sτ⊙?sσ to those in ?s(τ⊙σ).

Corollary 21.12. The operation ?s is a pseudo endofunctor on the ∼-bicategory
of strategies on games with symmetry, provided 2-cells are restricted to rigid
maps.

To lift the monad structure we use the fact that an affine map f ∶ A →
B of event structures with polarity lifts forwards to a strategy f! ∶ A + //B
and backwards to a strategy f∗ ∶ B + //A and that this also applies when the
event structures carry symmetry. (The metalanguage extends to games with
symmetry.) In fact, there is also a less direct way in which we can lift f to a
strategy from B to A: first form the map fs ∶ A⊥ → B⊥ got as f but with a
switch of polarities; lift this to a strategy fs! ∶ A⊥ + //B⊥; then form the dual
strategy (fs!)

⊥ ∶ B + //A. However this coincides with the direct backwards
lift f∗ ∶ B + //A, viz. f∗ = (fs!)

⊥ ∶ B + //A. There is an unfortunate clash of
notation with ! both representing an operation duplicating Opponent events

21.4. COMPOSITION 365

and the forwards lift. In this chapter we shall from now on write f∗ ∶ A + //B
for the forwards lift of f ∶ A→ B.

The forwards lifts of the original units and multiplications of the monad
associated with ? provide us with the units and multiplications of the monad
? on strategies which, overloading notation we shall write as η? and µ?. The
backwards lifts of the original units and multiplications of ? provide us with
counit ε? and comultiplication δ? of the comonad ? on strategies. Analogously,
we obtain a monad and comonad by lifting the monad associated with ! to
strategies, with e.g. the counit and comultiplication being written as ε!, δ!. We
should also verify that ? is a (pseudo) monad with unit η? and multiplication µ?;
duality will then ensure analogous results for the remaining putative monads
and comonads.

The (pseudo) functor !s on strategies is defined in a dual fashion:

!s(σ) = (?s(σ⊥))⊥ ,

for σ ∶ A + //B.
It will be useful later to observe the simple form that η?

A takes when A has
the trivial identity strategy.

Proposition 21.13. Assume A has trivial identity symmetry. The strategy
η?
A ∶ A + // ?A comprises η?

A ∶ EA → A⊥∥?A. The events EA are the subset
EA ⊆!A⊥∥?A comprising

EA = {(1, a) ∣ a ∈ A} ∪ {(2, (a,0a) ∣ a ∈ A}

where 0a denotes the constantly 0 function from [a]A. The causal dependency
≤ of EA is the least transitive relation including that from A⊥∥?A and

(1, a) ≤ (2, (a,0a))

when polA(a) = +, and
(2, (a,0a)) ≤ (1, a)

when polA(a) = −. The map η?
A is the inclusion function on events. The sym-

metry on EA is the trivial identity symmetry.

The (co)monad laws for the (co)units and (co)multiplications of ?s and !s

lift from the original (co)monads ? and !. However, their naturality has to be
verified separately.

Theorem 21.14. ?s and !s are pseudo monads on the ∼-bicategory of strategies.

Proof. Because of duality it suffices to verify naturality just for the unit and
multiplication of ?s. For a weak strategy σ ∶ A + //B we need to verify that

A

σ+

��

η?
A
+ // ?A

?sσ+≈

��
B

η?
B

+ // ?B

and ??A

?s?sσ+

��

µ?
A
+ // ?A

?sσ+≈

��
??B

µ?
B

+ // ?B

commute up to weak equivalence ≈.

366 CHAPTER 21. DISJUNCTIVE CAUSES VIA SYMMETRY

Images of edc strategies σ ∶ A + //B are maps σ ∶!A + // ?B of the double
Kleisli construction w.r.t. comonad ! and monad ?. In such situations maps
σ ∶!A + // ?B and τ ∶!B + // ?C standardly compose as

!A +
δ!
A // !!A +

!σ // !?B +
dB // ?!B +

?τ // ??C +
µ?
C // ?C .

with the help of a distributive law dB ∶!?B + // ?!B.
However both !?B and ?!B are isomorphic to !?B defined as ?B and !B but

allowing arbitrary indices on events of both polarities:
For A = (A,≤A,ConA,polA) an event structure with polarity, define

!?A = (!?A,≤,Con,pol)

to comprise

• events (a,α) ∈ !?A where a ∈ A and α ∶ [a]A → ω with pol((a,α)) = polA(a);

• causal dependency,

(a′, α′) ≤ (a,α) ⇐⇒ a′ ≤A a & α′ = α ↾ [a′]A ;

• consistency,

X ∈ Con ⇐⇒ X ⊆fin !?A & {a ∣ ∃α. (a,α) ∈X} ∈ ConA .

We extend a symmetry on A to a symmetry on !?A via the following construction
on isomorphism families: for x, y ∈ C(!?A),

θ ∶ x ≅!?A y ⇐⇒ θ is a bijection respecting ≤ and

{(a, a′) ∣ ∃α,α′. θ(a,α) = (a′, α′)} is in the isomorphism family of A.

As !?B ≅ !?B ≅?!B the distributive law from !?B to ?!B is trivial and compo-
sition of σ ∶!A + // ?B and τ ∶!B + // ?C can be given as the composite strategy

!A +
δ!
A // !!A +−−

!sσ // !?B ≅?!B +
?sτ // ??C +

µ?
C // ?C .

The identity at a game A is given by the composite strategy

!A +
ε!A // A +

η?
A // ?A.

Proposition 21.15. When A has trivial identity symmetry, the composite strat-

egy !A +
ε!A // A +

η?
A // ?A. is isomorphic to the strategy κA ∶ KA → (!A)⊥∥?A.

The events KA form a subset of (!A)⊥∥?A and comprise

KA = {(1, (a,0a) ∣ a ∈ A} ∪ {(2, (a,0a) ∣ a ∈ A}

21.4. COMPOSITION 367

where 0a denotes the constantly 0 function from [a]A. The causal dependency
≤ of KA is the least transitive relation including that from (!A)⊥∥?A and

(1, (a,0a)) ≤ (2, (a,0a))

when polA(a) = +, and
(2, (a,0a)) ≤ (1, (a,0a))

when polA(a) = −. The map κA is the inclusion function on events. The sym-
metry on KA is the trivial identity symmetry.

Proof. We use Proposition 21.13 which characterises the strategy η?
A. We obtain

an analogous simple characterisation of ε!A by duality. Their composition is then
seen to take the form described.

We now show that w is, the operation taking an edc strategy σ ∶ A + //B to a
double-Kleisli map, a strategy w is(σ) ∶!A + // ?B is a pseudo functor. We need to
check that w is preserves identities and that the image of the composition of edc
strategies coincides to within weak equivalence of strategies with composition
in double Kleisli maps of their images.

Lemma 21.16. Let A be a game. Then, w is(ccA) ∶!A + // ?A is the identity for
composition of strategies in the double-Kleisli construction.

Proof. Consider the image under w is of the copycat strategy ccA ∶ CCA →

A⊥∥A. Its image w is(ccA) is isomorphic to the identity !A +
ε!A // A +

η?
A // ?A

in the double-Kleisli construction by the characterisation of Proposition 21.15.

Lemma 21.17. Let σ ∶ S → A + //B and τ ∶ B + //C be edc strategies. Then,

w is(τ⊙σ) ≈ w is(τ)⊙w is(σ) .

Proof. Let σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C be edc strategies. Write w is(σ) ∶
S′ →?(A⊥∥B) and τ ∶ T ′ →?(B⊥∥C). Let τ ⊛σ ∶ T ⊛S → A⊥∥B∥C be the partial
edc strategy before hiding. Write (T ⊛ S)′ for the event structure obtained
by dropping its equivalence. We show that (T ⊛ S)′ is isomorphic to ?sT⊛!sS
obtained as the pullback of ?sσ∥C and A∥!sτ ; because of thinness of the games
and strategies involved the pullback is a bipullback. ****

Theorem 21.18. The operation w is is a pseudo functor from edc strategies,
in which 2-cells are rigid, to strategies in the double-Kleisli construction.

368 CHAPTER 21. DISJUNCTIVE CAUSES VIA SYMMETRY

Chapter 22

Probabilistic programming

By specialising to games in which all moves are those of Player we obtain
a monoidal-closed sub-bicategory of probabilistic strategies ***NO!!! LOSE
MONOIDAL CLOSURE WHEN INTRODUCE PROBABILITY*** that can
serve as a foundation for probabilistic programming with discrete probability
distributions. The restriction to discrete probability distributions is a conse-
quence of the fact that configuration-valuations correspond to continuous valu-
ations on domains of configurations.

22.1 Stable spans

Over the years there have been many solutions to giving a compositional se-
mantics to nondeterministic dataflow (see [?] for fuller references). But they all
hinge on some form of generalized relation, to distinguish the different ways in
which output is produced from input. A compositional semantics can be given
using stable spans of event structures, an extension of Berry’s stable functions
to include nondeterminism [?, ?]. A process of nondeterministic dataflow, with
input type given by an event structure A and output by an event structure B,
is captured by a pair of maps (a span)

E

dem

��

out

A B

where E is also an event structure. The map out ∶ E → B is a rigid map,
i.e. a total map of event structures as in Section ?? which preserves the relation
of causal dependency, or equivalently, a total map with the property that for a
configuration x of E if y is a subconfiguration of out x then there is a (necessarily

369

370 CHAPTER 22. PROBABILISTIC PROGRAMMING

unique) subconfiguration x′ of x such that out x′ = y:

x′ ⊆_

��

x_

��
y′ ⊆ out x

The map dem ∶ E → A, associated to input, is of a different character. It
is a demand map, i.e. a function from C(E) to C(A) which preserves finite
configurations and unions; dem x is the minimum input for x to occur and is
the union of the demands of its events. The occurrence of an event e in E
demands minimum input dem [e] and is observed as the output event out(e).
Deterministic stable spans, where consistent demands in A lead to consistent
behaviour in E, correspond to Berry’s stable functions.

The stable span A E
demoo out // B determines a profunctor Ẽ from the

finite configurations p of A to the finite configurations q of B:

Ẽ(p, q) = {x ∈ C(E) ∣ dem x ⊆ p & out x = q} ,

the set of ways the input-output pair (p, q) is realized.
Stable spans can be composed one after the other (essentially by a pullback

construction, as rigid maps extend to special demand maps between configurations)—
their composition coincides with the composition of their profunctors. They also
have a nondeterministic sum, and compose in parallel, and most significantly
allow a feedback operation [?]. Stable spans form a bicategory; their two cells
are rigid maps *****

In fact, stable spans were first discovered explicitly as a way to represent,
and give operational meaning to, the profunctors that arose as denotations of
terms in affine-HOPLA, an affine Higher Order Process LAnguage [?, ?]. The
spans helped explain the tensor of affine-HOPLA as the parallel juxtaposition of
event structures and a form of entanglement which appeared there as patterns
of consistency and inconsistency on events. The use of stable spans in nonde-
terministic dataflow came later as a representation of the profunctors used in
an earlier semantics [?, ?].

Consider the sub-bicategory of games and strategies in which all moves are
those of Player. This sub-bicategory is equivalent to the bicategory of stable
spans. In this case, a strategy σ ∶ S → A⊥∥B corresponds to a stable span:

S
σ1

~~

σ2

��
A⊥ B

←→ S+

σ−1

~~

σ+2

!!
A B ,

where S+ is the projection of S to its +ve events; σ+2 is the restriction of σ2 to
S+, necessarily a rigid map by innocence; σ−2 is a demand map taking x ∈ C(S+)
to σ−1 (x) = σ1[x] ; here [x] is the down-closure of x in S. Composition of stable

22.1. STABLE SPANS 371

spans coincides with composition of their associated profunctors—see [17, 18, 3].
If we further restrict strategies to be deterministic (and, strictly, event structures
to be countable) we obtain a bicategory equivalent to Berry’s dI-domains and
stable functions [3].

Let A and B be games in which all moves are +ve, i.e. those of Player. We
construct its stable function space by first describing a stable family. The stable
family F comprises those F ⊆fin C(A) ×B for which

(i) ⋃{x ∣ ∃b. (x, b) ∈ F} ∈ C(A),

(i) ∀x0 ∈ C(A). {b ∣ ∃x ⊆ x0. (x, b) ∈ F} ∈ C(B) and

(i) ∀(x, b), (x′, b) ∈ F. x = x′.

It can be checked that F is a stable family. Define (A ⇒ B) =def Pr(F). The
configurations of A⇒ B, isomorphic to those of F , represent the computation
paths a strategy from A to B can follow in computing output in B from input
in A.

There is a stable span

A⇒ B
d0

{{

r0

##
A B ,

where

d0(z) =⋃{x ∣ ∃b. (x, b) ∈⋃ z} ,

for z ∈ C(A⇒ B), and

r0(p) = b if top(p) = (x , b) for some x ,

for p ∈ Pr(A⇒ B).

Lemma 22.1. For each stable span B E
demoo out // C there is a unique rigid

map f ∶ E → (B ⇒ C) such that dem = d0 ○ f and out = r0 ○ f ; the map f takes
e ∈ E to (dem(e),out(e)).

Lemma 22.2. **** monoidal-closed in the sense that there is a bijection ***

Proof. Via Lemma 22.1, there is a bijection between stable spans A∥B Eoo // C

and stable spans A Eoo // (B ⇒ C) . ***

RIGID IMAGE*

372 CHAPTER 22. PROBABILISTIC PROGRAMMING

22.2 Probability

with probabilityLOSE MONOIDAL CLOSURE WRT ∥*****
Note though that probability distributions are discrete in that they corre-

spond to continuous valuations on open sets. *****
Assume that games A and B comprise solely +ve moves. A probablistic

strategy v, σ ∶ S → A⊥∥B corresponds to a probabilistic stable span

S+

σ−1

~~

σ+2

!!
A B ,

in which S+ is endowed with a configuration-valuation v+ to make it into a
probabilistic event structure: take v+(x) =def v([x]) for x ∈ C(S+). It is easy to
check that v+ is a configuration valuation for S+.

Generally for a configuration-valuation v on an event structure with po-
larity S whenever y ⊆+ x we can read the conditional probability Prob(x ∣ y) =
v(x)/v(y). Consequently *** for a probabilistic stable span, with configuration-
valuation v we can read v as giving

v(x) = Prob(x ∣ x−) ,

the probability of x ∈ C(S) conditional on its Opponent moves x−.

22.3

Consider now the sub-bicategory of games and edc strategies in which all moves
are those of Player. ****the fn space for product now seems to need an equiv-
alence ≡ forcing all games to be edc’s. But then what is copycat? **** Think
the fn space is as above but with

(x1, b1) ≡ (x2, b2) iff x1 ≡A x2 & b1 ≡B b2 ,

where x1 ≡A x2 means x1 and x2 determine the same equivalence ≡-classes,
i.e. x1≡A = x2≡A .

*** can the earlier work on edc strategies be generalised to allow proper edc’s
as games? ***** Appears so with copycat which allows ‘cross-overs” between
≡-equivalenet events and composition based on pseudo pullback. ***only can
characterise edc strategies now up to ≡***

Acknowledgments

Thanks to Aurore Alcolei, Samy Abbes, Nathan Bowler, Simon Castellan, Pierre
Clairambault, Pierre-Louis Curien, Marcelo Fiore, Mai Gehrke, Julian Gutier-
rez, Jonathan Hayman, Martin Hyland, Alex Katovsky, Tamas Kispeter, Marc

22.3. 373

Lasson, Paul-André Melliès, Samuel Mimram, Hugo Paquet, Gordon Plotkin,
Silvain Rideau, Frank Roumen, Sam Staton and Marc de Visme for helpful dis-
cussions. The support of Advanced Grant ECSYM of the European Research
Council is acknowledged with gratitude.

374 CHAPTER 22. PROBABILISTIC PROGRAMMING

Bibliography

[1] Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and
domains. TCS 13 (1981) 85–108

[2] Winskel, G., Nielsen, M.: Models for concurrency. In Abramsky, S., Gab-
bay, D., eds.: Semantics and Logics of Computation. OUP (1995)

[3] Saunders-Evans, L., Winskel, G.: Event structure spans for nondetermin-
istic dataflow. Electr. Notes Theor. Comput. Sci. 175(3): 109-129 (2007)

[4] Winskel, G.: Event structure semantics for CCS and related languages. In:
ICALP’82. Volume 140 of LNCS., Springer, A full version is available from
Winskel’s homepage (1982)

[5] Winskel, G.: Event structures. In: Advances in Petri Nets. Volume 255 of
LNCS., Springer (1986) 325–392

[6] Rideau, S., Winskel, G.: Concurrent strategies. In: LICS 2011. (2011)

[7] Joyal, A.: Remarques sur la théorie des jeux à deux personnes. Gazette
des sciences mathématiques du Québec, 1(4) (1997)

[8] Winskel, G.: Event structures with symmetry. Electr. Notes Theor. Com-
put. Sci. 172: 611-652 (2007)

[9] Laird, J.: A games semantics of idealized CSP. Vol 45 of Electronic Books
in Theor. Comput. Sci. (2001)

[10] Ghica, D.R., Murawski, A.S.: Angelic semantics of fine-grained concur-
rency. In: FOSSACS’04, LNCS 2987, Springer (2004)

[11] Melliès, P.A., Mimram, S.: Asynchronous games : innocence without
alternation. In: CONCUR ’07. Volume 4703 of LNCS., Springer (2007)

[12] Katovsky, A.: Concurrent games. First-year report for PhD study, Com-
puter Lab, Cambridge (2011)

[13] Curien, P.L.: On the symmetry of sequentiality. In: MFPS. Number 802
in LNCS, Springer (1994) 29–71

375

376 BIBLIOGRAPHY

[14] Hyland, M.: Game semantics. In Pitts, A., Dybjer, P., eds.: Semantics
and Logics of Computation. Publications of the Newton Institute (1997)

[15] Harmer, R., Hyland, M., Melliès, P.A.: Categorical combinatorics for in-
nocent strategies. In: LICS ’07, IEEE Computer Society (2007)

[16] Melliès, P.A.: Asynchronous games 2: The true concurrency of innocence.
Theor. Comput. Sci. 358(2-3): 200-228 (2006)

[17] Nygaard, M.: Domain theory for concurrency. PhD Thesis, Aarhus Uni-
versity (2003)

[18] Winskel, G.: Relations in concurrency. In: LICS ’07, IEEE Computer
Society (2005)

[19] Abramsky, S., Melliès, P.A.: Concurrent games and full completeness. In:
LICS ’99, IEEE Computer Society (1999)

[20] Hyland, M.: Some reasons for generalising domain theory. Mathematical
Structures in Computer Science 20(2) (2010) 239–265

[21] Cattani, G.L., Winskel, G.: Profunctors, open maps and bisimulation.
Mathematical Structures in Computer Science 15(3) (2005) 553–614

[22] Curien, P.L., Plotkin, G.D., Winskel, G.: Bistructures, bidomains, and
linear logic. In: Proof, Language, and Interaction, essays in honour of
Robin Milner, MIT Press (2000) 21–54

[23] Castellan, S., Clairambault, P., Rideau, S., Winskel, G.: Games and strate-
gies as event structures. Logical Methods in Computer Science 13(3) (2017)

[24] Abramsky, S.: Semantics of interaction. In Pitts, A., Dybjer, P., eds.:
Semantics and Logics of Computation. Publications of the Newton Institute
(1997)

[25] Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2) (1975)
363–371

[26] Milner, R.: A Calculus of Communicating Systems. Volume 92 of Lecture
Notes in Computer Science. Springer (1980)

[27] Jones, C., Plotkin, G.: A probabilistic powerdomain of valuations. In:
LICS ’89, IEEE Computer Society (1989)

[28] Varacca, D., Völzer, H., Winskel, G.: Probabilistic event structures and
domains. Theor. Comput. Sci. 358(2-3): 173-199 (2006)

[29] Varacca, D.: Probability, nondeterminism and concurrency. PhD Thesis,
Aarhus University (2003)

BIBLIOGRAPHY 377

[30] M Alvarez-Manilla, A Edalat, N.S.D.: An extension result for continuous
valuations. Journal of the London Mathematical Society 61(2) (2000) 629–
640

[31] Kahn, G., Plotkin, G.D.: Concrete domains. Theor. Comput. Sci.
121(1&2) (1993) 187–277

[32] Nygaard, M., Winskel, G.: Linearity in process languages. In: LICS’02,
IEEE Computer Society (2002)

[33] Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Inf.
Comput. 127(2) (1996) 164–185

[34] Winskel, G.: Distributed probabilistic and quantum strategies. Electr.
Notes Theor. Comput. Sci. 298: 403-425 (2013)

[35] Winskel, G.: Events in computation. (1980) PhD thesis, Edinburgh.

[36] Castellan, S., Clairambault, P., Winskel, G.: Symmetry in concurrent
games. In: LICS’14, ACM (2014)

378 BIBLIOGRAPHY

Appendix A

Exercises

On event structures and stable families

Recommended exercises: 1, 3, 4, 5 (Harder), 6, 7, 10.

Exercise A.1. Let (A,≤A,ConA), (B,≤B ,ConB) be event structures. Let f ∶
A ⇀ B. Show f is a map of event structures, f ∶ (A,≤A,ConA) → (B,≤B
,ConB), iff

(i) ∀a ∈ A, b ∈ B. b ≤B f(a) Ô⇒ ∃a′ ∈ A. a′ ≤A a & f(a′) = b , and

(ii) ∀X ∈ ConA. fX ∈ ConB & ∀a1, a2 ∈X. f(a1) = f(a2) Ô⇒ a1 = a2 .

◻

Exercise A.2. Show a map f ∶ A ⇀ B of E is mono if the function C(A) →
C(B) taking configuration x to its direct image fx is injective. [Recall a map
f ∶ A → B is mono iff for all maps g, h ∶ C → A if fg = fh then g = h.] Show
the converse does not hold, that it is possible for a map to be mono but not
injective on configurations. Taking B to be the event structure comprising two
concurrent events, can you find an event structure A and an example of a total
map f ∶ A → B of event structures which is both mono and where f is not
injective as a function on events? ◻

Exercise A.3. Verify that the finite configurations of an event structure form
a stable family. ◻

Exercise A.4. Say an event structure A is tree-like when its concurrency rela-
tion is empty (so two events are either causally related or inconsistent). Suppose
B is tree-like and f ∶ A → B is a total map of event structures. Show A must
also be tree-like, and moreover that the map f is rigid, i.e. preserves causal
dependency.

1

2 APPENDIX A. EXERCISES

Exercise A.5. Let F be a nonempty family of finite sets satisfying the Com-
pleteness axiom in the definition of stable families. Show F is coincidence-free
iff

∀x, y ∈ F . x ⊊ y Ô⇒ ∃x1, e1. x
e1
−Ð⊂x1 ⊆ y .

[Hint: For ‘only if ’ use induction on the size of y ∖ x.] ◻

Exercise A.6. Prove Proposition 3.14: Let f ∶ F → G be a map of stable
families. Let e, e′ ∈ x, a configuration of F . Show if f(e) ≤fx f(e

′) (with both
f(e) and f(e′) defined) then e ≤x e

′.

Exercise A.7. Prove the two propositions 3.7 and 3.10. ◻

Exercise A.8. (From Section 3.2) For an event structure E, show C∞(E) =
C(E)∞. ◻

Exercise A.9. (From Section 3.2) Let F be a stable family. Show F∞ satisfies:

Completeness: ∀Z ⊆ F∞. Z ↑ Ô⇒ ⋃Z ∈ F∞ ;
Stability: ∀Z ⊆ F∞. Z /= ∅ & Z ↑ Ô⇒ ⋂Z ∈ F∞;
Coincidence-freeness: For all x ∈ F∞, e, e′ ∈ x with e /= e′,

∃y ∈ F∞. y ⊆ x & (e ∈ y ⇐⇒ e′ ∉ y) ;

Finiteness: For all x ∈ F∞,

∀e ∈ x∃y ∈ F . e ∈ y & y ⊆ x & y is finite .

Show that F consists of precisely the finite sets in F∞. ◻

Exercise A.10. Let A be the event structure consisting of two distinct events
a1 ≤ a2 and B the event structure with a single event b. Following the method
of Section 3.3.1 describe the product of event structures A ×B. ◻

3

On strategies

Recommended exercises: 11, 12, 13, 14, 15, 17.

Exercise A.11. Consider the empty map of event structures with polarity∅→
A. Is it a strategy? Is it a deterministic strategy? Consider now the identity
map idA ∶ A → A on an event structure with polarityA. Is it a strategy? Is it a
deterministic strategy? ◻

Exercise A.12. For each instance of total map σ of event structures with po-
larity below say whether σ is a strategy and whether it is deterministic. In each
case give a short justification for your answer. (Immediate causal dependency
within the event structures is represented by an arrow _ and inconsistency, or
conflict, by a wiggly line .)

(i) S

σ

��

⊟
� ,,2

_

��

⊞_

��
A ⊟ ⊞

(ii) S

σ

��

⊞
� ,,2

_

��

⊟_

��
A ⊞ ⊟

(iii) S

σ

��

⊞
� ,,2

_

��

⊞_

��
A ⊞ ⊞

(iv) S

σ

��

⊟
� ,,2

_

��

⊟_

��
A ⊟ ⊟

(v) S

σ

��

⊟_

��
A ⊟

� ,,2⊞

(vi) S

σ

��

⊞_

��
A ⊞

� ,,2⊞

4 APPENDIX A. EXERCISES

(vii) S

σ

��

⊞_

��
A ⊞

� ,,2⊟

(viii) S

σ

��

⊞_

��

⊞A

��
A ⊞

(ix) S

σ

��

⊟_

��

⊟A

��
A ⊟

(x) ⊟,

))

� ,,2⊞ �

uu

S

σ

��

⊞

_LLR

_

��

⊟_

��

_LLR

�llr

A ⊞

_���

⊟

_���
⊟ ⊞

◻

Exercise A.13. Let idA ∶ A→ A be the identity map of event structures, sending
an event to itself. Show the identity map forms a strategy in the game A. Is it
deterministic in general? ◻

Exercise A.14. Show any strategy σ ∶ A + //B has a dual strategy σ⊥ ∶ B⊥ + //A⊥.
In more detail, supposing σ ∶ S → A⊥∥B is a strategy show σ⊥ ∶ S → (B⊥)⊥∥A⊥

is a strategy where

σ⊥(s) =

⎧⎪⎪
⎨
⎪⎪⎩

(1, b) if σ(s) = (2, b)

(2, a) if σ(s) = (1, a) .

◻

Exercise A.15. Let B be the event structure consisting of the two concurrent
events b1, assumed −ve, and b2, assumed +ve in B . Let C consist of a single
+ve event c. Let the strategy σ ∶ ∅ + //B comprise the event structure s1 _ s2

5

with s1 −ve and s2 +ve, σ(s1) = b1 and σ(s2) = b2. In B⊥ the polarities are
reversed so there is a strategy τ ∶ B + //C comprising the map τ ∶ T → B⊥∥C
from the event structure T , with three events t1 and t3 both +ve and t2 −ve so
t2 _ t1 and t2 _ t3, which acts so τ(t1) = b1, τ(t2) = b2 and τ(t3) = c. Describe
the composition τ⊙σ. ◻

Exercise A.16. Say an event structure is set-like if its causal dependency re-
lation is the identity relation and all pairs of distinct events are inconsistent.
Let A and B be games with underlying event structures which are set-like event
structures. In this case, can you see a simpler way to describe determinis-
tic strategies A + //B? What does composition of deterministic strategies be-
tween set-like games corresponds to? What do strategies in general between set-
like games correspond to? What does composition of strategies between set-like
games corresponds to? [No proofs are required.] ◻

Exercise A.17. By considering the game A comprising two concurrent events,
one +ve and one −ve, show there is a nondeterministic pre-strategy σ ∶ S → A
such that s _ s′ in S without σ(s) _ σ(s′). Could you find such a counterex-
ample were σ deterministic? Explain. ◻

Exercise A.18. Let G =def (A,W) be a game with winning conditions. Say a
pre-strategy σ ∶ S → A is winning iff σx ∈ W for all +-maximal configurations
x ∈ C∞(S). Show that if G has a winning receptive pre-strategy, then the dual
game G⊥ has no winning strategy (use Corollary 10.3.) Show that G may have a
winning pre-strategy (necessarily not receptive) while G⊥ has a winning strategy.

◻

6 APPENDIX A. EXERCISES

Appendix B

Projects

The projects are quite ambitious and to some extent open-ended. You can
achieve a good grade, even in the more technical questions, without complet-
ing every part. You may use any results from the notes provided you state them
clearly.

Project 1. Stable families with coincidence. There are possibly good
reasons to investigate event structures and stable families in which the causal
dependency relation is a pre-order rather than a partial order (cf. the work on
“round abstraction” in circuits of Ghica and Menaa). In particular, investigate
stable families but without the axiom of coincidence-freeness; what are their
maps, what are their products, how do they relate to event structures? [My
ICALP 1982 paper and report on “Event structure semantics of CCS and re-
lated languages,” available from my Cambridge homepage, might be helpful for
proofs.]

Project 2. Strategies from maps of event structures. In this project you
are guided part of the way to showing that f ∶ A → B, a partial map between
event structures with polarity, can be regarded as a (special) strategy σ ∶ A + //B
in such a way that composition and identities are respected.

For f ∶ A→ B, a partial map of event structures with polarity, we construct
a strategy σ(f) ∶ S → A⊥∥B. The event structure S is built as Pr(S) from a
stable family S. The family S consists of subsets

{1} × x ∪ {2} × y , abbreviated to (x, y) ,

where x ∈ C(A), y ∈ C(B), which satisfy

a ∈ x & polA⊥(a) = + Ô⇒ f(a) ∈ y and

b ∈ y & polB(b) = + Ô⇒ ∃a ∈ x. f(a) = b .

(1) Show, for (x, y) ∈ S,

(i) ∀x0 ∈ C(A). x0 ⊆ x Ô⇒ (x0, (fx0) ∩ y) ∈ S

7

8 APPENDIX B. PROJECTS

(ii) ∀y0 ∈ C(B). y0 ⊆ y Ô⇒ (x ∩ [f−1y0], y0) ∈ S .

(2) Show S is a stable family.

With S =def Pr(S), define

σ(f)(s) =

⎧⎪⎪
⎨
⎪⎪⎩

a if top(s) = (1 ,a) ,

b if top(s) = (2 , b) .

(3) Show σ(f) is a total map of event structures σ(f) ∶ S → A⊥∥B which re-
spects polarity.

(4) Show σ(f) is a strategy σ(f) ∶ A + //B.

(5) Show, in the case where f is the identity map idA ∶ A→ A, that σ(idA) = ccA,
the copy-cat strategy.

(6) Suppose now f ∶ A → B and g ∶ B → C are maps of event structures with
polarity. Can you show that σ(gf) ≅ σ(g)⊙σ(f)? (Hard)

(7) Is σ(f) always a deterministic strategy for all maps f of event structures
with polarity? If not can you see what properties are required of f for σ(f) to
be deterministic?

Project 3. Winning strategies with neutral positions. A natural gen-
eralisation of the games with winning conditions of Chapter 10 is to games
(A,W,L) comprising an event structure with symmetry A and disjoint subsets
W and L of C∞(A) which specify the winning and losing configurations without
necessarily having that one is the complement of the other—configurations in
C∞(A)∖(W ∪L) would be neutral positions. Imitate the constructions on games
and winning conditions of Chapter 10 in this broader framework. Adopt the
same definition of winning strategy as before. For the new dual operation and
parallel composition take

G⊥ = (A,LG,WG) and G∥H = (A∥B, WG∥C
∞(B) ∪ C∞(A)∥WH), LG∥LH) ,

where G = (A,WG, LG) and H = (B,WH , LH)—the notation of Chapter 10 is
being used here. In the new parallel composition to win is to win in either
component and to lose is to lose in both. What is the unit of ∥? What are
the winning and losing configurations of G⊥∥H? As before, a winning strat-
egy from G to H is a winning strategy in G⊥∥H. It is important that you try
to show that the composition of winning strategies is winning (follow the pat-
tern of the proof in Chapter 10), and that for suitable games copy-cat is winning.

Project 4. An essay on strategies in logic. Write an essay explaining
to your best friend in humanities why logicians and philosophers are interested

9

in games and strategies. The papers of Johan van Bentham provide a good start.

Project 5. Games in other models. Take a favourite model, e.g. transition
systems, languages, some variety of Petri nets, Mazurkiewicz trace languages,
and try to imitate the constructions on games there. You might find it conve-
nient to allow “internal” events, which are neither moves of Opponent or Player,
for instance in defining composition of strategies in your model.

