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Abstract

Domain theory and denotational semantics were invented in the late
1960’s by Christopher Strachey and Dana Scott. They provided the first
mathematical foundation for the semantics of programming languages and
their analysis tools. Domain theory has been extremely influential and is
still an active area of research especially in its extensions to probabilis-
tic, quantum programming and differentiable programming. This article
traces domain theory from its origins as a theory of computable functions,
through its limitations, to recent connections with interactive computa-
tion via concurrent games and strategies.

1 Introduction

After more than 50 years of development, domain theory permeates computer
science. While it has its limitations it has set a compelling paradigm in the
formalisation and analysis of computation. It interprets types as domains and
programs as (continuous) functions. In many contexts its models and reasoning
techniques are the simplest we could hope for. If alone for this reason, it is here
to stay. It grew up accompanied by the methodology of denotational semantics.
This methodology, of giving meaning to programming languages and systems
in a compositional fashion, is the only way to manage their complexity; and its
achievement tests our understanding and the robustness of our models.

A word on the historical importance of domain theory, which I think is
sometimes forgotten in the rush of practice and innovation. Domain theory
and denotational semantics have played key roles in many areas, for instance:
they were critical in the evolution of functional programming languages; con-
tinuations (widely used in compilation) originated there; their cousin, abstract
interpretation, sharing the same techniques, is at the foundation of many static
analysers; linear logic, through domain theory, provides the important theory
behind the popular system-programming language Rust. As I hope will become
clear, the techniques of domain theory and denotational semantics marry well
with interactive computation and are still highly relevant today.

Domain theory grew out of a functional way of understanding computation.
It is no surprise that it began to meet its limits with the shift to a more inter-
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active form of computation. While the functional paradigm has a long history,
theories of interactive computation have been more unsettled. The article con-
cludes with an indication of recent work which combines the methodology of
domain theory with interaction through distributed/concurrent games; the role
of domains is replaced by games and that of functions by strategies, so types
are games and programs are strategies.

Central to any compositional theory of interaction is the dichotomy between
a system and its environment. Concurrent games and strategies address the
dichotomy in fine detail, very locally, in a distributed fashion, through distinc-
tions between Player moves (events of the system) and Opponent moves (those
of the environment). A functional approach has to handle the dichotomy more
ingeniously, through its blunter distinction between input and output. This has
led to a variety of functional approaches, specialised to particular interactive
demands. They include: Girard’s Geometry of Interaction; Gödel’s Dialectica
interpretation; lenses and optics; and the latter’s extensions to containers in de-
pendent lenses and optics. Surprisingly, at least for the author, domain-theoretic
expressions of these functional paradigms arise from special, rather simple, cases
of concurrent games.

Should the reader wish to follow up by reading more on domain theory and
its history there is e.g. the author’s textbook “The formal semantics of program-
ming languages” which is also available in Chinese [1]. For a more advanced
treatment of domain theory see the handbook chapter [2]. The later part of this
article, on concurrent games and strategies and their relation with functional
paradigms, is expanded on informally in a newsletter [3] and more technically
in [4].

I have tried to be as informal as possible in writing this article. Where I’ve
added technical or additional parts for more precision they are indicated by being
in italic font, so they can be skipped more easily.

2 Early beginnings

The history of domain theory is fairly well known. In the mid 1960’s Christopher
Strachey realised he needed new techniques to understand the sophisticated pro-
gramming languages he was developing; that he needed a mathematical model
with which to give semantics of programming languages. How else was he to be
convinced of the correctness of his programs?

Over lunch, in Wolfson College, Oxford, the physicist Roger Penrose sug-
gested he investigate the lambda calculus, a tool of logicians for describing and
reasoning about computable functions. Meanwhile the logician Dana Scott, at
Princeton, was highly critical of the untyped nature of the lambda calculus, that
it allowed such paradoxical phenomena as self-application, the application of a
function to itself, something forbidden in traditional set theory. The paradoxical
combinator which allows recursive definitions in the lambda calculus relies on
self-application. When Strachey and Scott met there were going to be fireworks,
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of one kind or another. They got on very well, marking the beginning of their
famous collaboration.

Scott persuaded Strachey to move to the safe typed lambda calculus and for-
malised a Logic of Computable Functions, LCF, as a foundation for Strachey’s
ambitions. As a logician, Scott was concerned with mathematical foundations
right from the start. Scott introduced the idea that types denoted domains, sim-
ple forms of topological spaces, built on an order of approximation. Although
a computable function can act on an infinite input, for instance a computable
function can act on a function on the natural numbers, it can only do so via
finite approximations to the input. Accordingly Scott promoted the idea that a
computable function be understood as a continuous function from the domain
of its input to the domain of its output. On domains the usual topological
definition of continuity amounted to the function preserving the approximation
order and least upper bounds of chains.

The simplest form of domain is a complete partial order, that is, a par-
tial order (D,⊑D) of approximation with a least element �D and least upper
bounds ⊔n dn, a form of limit point, of chains of d0 ⊑D d1 ⊑D ⋯ ⊑D dn ⊑D ⋯

in D. A function F from a domain (D,⊑D) to a domain (E,⊑E) is continu-
ous if F (d) ⊑E f(d′) when d ⊑D d′, and ⊔n F (dn) = F (⊔n dn) for any chain
d0 ⊑D d1 ⊑D ⋯ ⊑D dn ⊑D ⋯ in D. Based on earlier ideas of Kleene, a continuous
function F from a domain to itself has a least fixed point fix(F) constructed as
the least upper bound, ⊔n F

n(�) =∶ fix(F).

One remarkable feature of domains and continuous functions is that, unlike
topological spaces in general, under the pointwise, or Scott order on functions
the set of continuous functions from a domain D to a domain E itself formed a
domain, the function space [D → E]. More obviously the product of domains
D ×E, consisting of pairs of elements, formed a domain when ordered coordi-
natewise. Then, in particular, a recursively defined function from D to E could
be readily understood as a least fixed point of the continuous function F on
[D → E] associated with the body of its recursive definition. LCF included a
useful inequational logic for reasoning about recursive programs with tools such
as Scott induction for establishing properties of least fixed points.

Scott’s 1969 article on LCF was circulated widely and very influential. But
it was only published relatively much later in 1993 [5]. The reason: Scott had
suddenly seen that the techniques for understanding recursive functions as least
fixed points could be pushed to the level of types, thus providing a nontrivial
domain D isomorphic to its domain of continuous functions [D → D], so a
model of the (untyped) lambda calculus. His objections to the lambda calculus
had vanished [6, 7]. Scott’s discovery led to a flurry of activity.
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3 The word spreads

Researchers outside Oxford joined in the effort. David Park, at Warwick, showed
that in Scott’s model the paradoxical combinator of the lambda calculus denoted
its least fixed point operator. A young Gordon Plotkin, at Edinburgh, and Scott
independently discovered universal domains, within which all manner of types
could be defined recursively by describing them as certain functions on the
domain. Plotkin and Mike Smyth, then a postdoc at Warwick, extended Scott’s
ideas to a categorical treatment of recursively defined domains. This provided
an understanding of a very broad range of recursive types. The mathematical
foundations of functional programming were set.

Meanwhile, at Stanford, Robin Milner, Malcolm Newey and Richard Weyrauch
had forged ahead with the mechanisation of proofs in LCF [8, 9]. In the process
Milner invented the functional language ML as a MetaLanguage to support as-
sisted proofs securely. ML was inspired both by the functional nature of LCF
itself and Peter Landin’s language ISWIM [10].1 With its watertight type dis-
cipline, ML ensured that only programs yielding legitimate LCF proofs would
receive the type “Theorem.” At Stanford, Milner began the push into the se-
mantics of concurrent computation through “oracles” to settle nondeterministic
choices. These roots continued at Stanford with the work of Zohar Manna and
his student Jean Vuillemin on reasoning about recursively defined programs [11].

Domain theory forged new links between computer science and logic. Pro-
gramming languages and computing systems were amenable to mathematical
analysis. Computer scientists approached programming languages with a new
confidence born out of a belief that sensible language constructs could be given a
mathematical definition. The guidelines of domain theory influenced the design
of programming languages and provided a foundation for functional program-
ming.

By the mid 1970’s it seemed only a matter of time before domain theory
could tackle all features of programming languages. Through continuations
Strachey and Christopher Wadsworth had shown how to provide semantics to
jumps in imperative languages [12]; building on earlier ideas of Egli and Mil-
ner, Plotkin had extended domain theory to a treatment of nondeterministic
and parallel programs through his powerdomain [13]—his treatment avoided
the non-associativity and non-commutativity of parallel composition Milner had
met through using oracles; Nasser Saheb-Djahromi began constructing a prob-
abilistic powerdomain, so enabling the denotational semantics of probabilistic
programs. Young researchers in France were beginning to lend their own bril-
liant vision and mathematical expertise.

4 Limitations—early signs

Domain theory has given us a lasting vision of a mathematical approach to
the semantics of programming languages. It supported the method of denota-

1ISWIM is Peter Landin’s joke acronym for ”If you See What I Mean.”
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tional semantics whereby the semantics of a programming language is defined
compositionally by structural induction on its syntax.

However, intimations of the limits of domain theory were present in very
early work. Gilles Kahn showed how dataflow fitted easily within the scheme;
it was a simple matter to represent dataflow processes as continuous functions
from streams of input to streams of output, and handle loops in the network
through the fixed point treatment of recursion that domain theory provided [14].
But, the extension to nondeterministic dataflow was to be problematic. The
difficulties in giving a compositional semantics to nondeterministic dataflow
was stressed much later in 1981 by Brock and Ackerman [15, 16]. There are
ways to give denotational semantics to nondeterministic dataflow but they lie
outside traditional domain theory.

From LCF, Plotkin got the idea of studying its core programming language
PCF (Programming Computable Functions), a tradition that continues in test-
ing new theories with some extra feature or other in the presence of function
spaces [17]. He invented the concept of full abstraction—the name is due to
Milner—a way to formalise full agreement between the denotational and opera-
tional semantics of a language. Plotkin did this through the vehicle of PCF. Tra-
ditional domain theory did not provide a fully abstract model because Scott’s
domains contained “parasitic” elements such as “parallel or,” undefinable in
PCF, on which operationally equivalent terms disagreed.

This sparked off the search for more operationally tuned domain theory,
one which could capture the sequential evaluation of PCF and lambda-calculi.
Both Milner and Vuillemin gave early, slightly different, definitions of what
it meant for a continuous function f ∶ D1 × ⋯ × Dm → E1 × ⋯ × En between
products of domains to be sequential: for a particular input (x1,⋯, xm) where
f(x1,⋯, xm) = (y1,⋯, yn) any increase in an output place yj had to depend
uniformly on an increase in a critical input place xi. A problem with such a
definition is that it depends on the particular way one decomposes a domain
into a product.

This was remedied in 1975 by Kahn and Plotkin’s definition of sequential
function between concrete domains in which there is an inbuilt notion of place
(there called a cell) [18]. Roughly, the elements of a concrete domain consist
of a set of events where an event is the filling of a cell with a particular value;
as events occur further cells become accessible and able to be filled by at most
one of several values. According to Kahn and Plotkin’s definition a sequential
function between concrete domains is a continuous function for which at any
input the filling of an accessible output cell depends on the filling of a critical
accessible input cell; there can be several critical cells. The problem was that
space of sequential functions wasn’t itself a concrete domain. Concrete domains
didn’t appear suitable for giving a denotational semantics to PCF.

Gérard Berry suggested two remedies. In his first, he proposed restricting
continuous functions between domains to those which were stable—an approx-
imation to being sequential [19]. Technically, stable functions preserve meets
of compatible subsets of elements, but, more intuitively, in a stable function
any part of the output depends on a minimum part of the input (reading “part
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of” as below in the order). Significantly, once the domains are axiomatised ap-
propriately, as what Berry called dI-domains, they have function spaces: the
set of all stable functions between dI-domains when ordered by a refinement
of Scott’s order, the stable order, themselves form a dI-domain. Roughly, two
functions are in the stable order if they are in the Scott order and they share
the same minimum inputs when producing common output. Berry went on to
consider bidomains which possessed both a Scott and stable order. Berry’s sta-
ble domain theory received an extra impetus in the mid 1980’s with Jean-Yves
Girard’s use first of qualitative domains in models of polymorphism [20] and
then with his path-breaking discovery of linear logic through special kinds of
dI-domains called coherence spaces related by stable functions [21].

Stable functions have their own importance, but as a treatment of sequential-
ity they are just an approximation. With student Pierre-Louis Curien, Berry
showed that there was a way to construct a domain theory for sequentiality,
within which one could give a denotational semantics to PCF. Though it was at
the cost of departing from functions. They showed that concrete domains did
indeed have a form of function space if instead of sequential functions they used
sequential algorithms [22]. Sequential algorithms can be expressed in terms of
local decisions as to whether to output a value or inspect a cell for its value.
Berry and Curien’s pioneering work is a precursor to game semantics, and a
sequential algorithm a form of strategy and the decisions its moves, as was laid
bare by François Lamarche [23]. However, as Berry and Curien showed, a se-
quential algorithm can also be viewed as a sequential function together with a
function which, given input and a cell accessible at the output, returns a specific
critical cell accessible at the input. (This characterisation anticipated lenses in
functional programming.)

In sequential algorithms we begin to see a more interactive view of computa-
tion, not simply as a the calculation of a function from input to output, but one
in which the algorithm actively queries and makes demands on the input, and
assigns values to cells. Without it being so obvious at the time, both sequential
algorithms and stable functions were part of a growing chorus suggesting com-
putation be based on interaction.

The Brock-Ackerman anomaly of nondeterministic dataflow: While, as Kahn
was early to show, deterministic dataflow is a shining application of simple do-
main theory, nondeterministic dataflow is beyond its scope and, it turns out, an
early indicator of the need for a more interactive view of computation. The com-
positional semantics of nondeterministic dataflow needs a form of generalised
relation which specifies the ways input-output pairs are realised. A compelling
example comes from the early work of Brock and Ackerman who were the first to
emphasize the difficulties in giving a compositional semantics to nondetermin-
istic dataflow, though our example is based on simplifications in the later work
of Rabinovich and Trakhtenbrot [24], and Russell [25].

Consider the dataflow context below:
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There are two simple nondeterministic processes A1 and A2, which have the
same input-output relation, and yet behave differently in the common feedback
context C[−], illustrated above. The context consists of a fork process F (a
process that copies every input to two outputs), through which the output of the
automata Ai is fed back to the input channel, as shown in the figure. Process
A1 has a choice between two behaviours: either it outputs a token and stops, or
it outputs a token, waits for a token on input and then outputs another token.
Process A2 has a similar nondeterministic behaviour: Either it outputs a token
and stops, or it waits for an input token, then outputs two tokens. For both
automata, the input-output relation relates empty input to the eventual output
of one token, and non-empty input to one or two output tokens. But C[A1]

can output two tokens, whereas C[A2] can only output a single token. Notice
that A1 has two ways to realise the output of a single token from empty input,
while A2 only has one. It is this extra way, not caught in a simple input-output
relation, that gives A1 the richer behaviour in the feedback context.

Over the years there have been many solutions to giving a compositional
semantics to nondeterministic dataflow. But they all hinge on a form of gener-
alised relation, to distinguish the different ways in which output is produced from
input. A compositional semantics can be given using stable spans, an extension
of Berry’s stable functions to include nondeterminism [26]. Stable spans have
re-emerged as a special form of concurrent strategy—see Section 8.

5 Interaction

Concurrent processes can proceed independently but with points of interaction.
Their treatment has long been a bugbear of traditional domain theory. While
special cases such as deterministic dataflow were easily expressible within do-
mains, and Plotkin’s powerdomains with a recursively defined domain of resump-
tions supported parallel composition through the nondeterministic interleaving
of actions [13], in general the denotational semantics of parallel programs could
seem convoluted. Indeed, after initial excursions into domain models, these
complications led Robin Milner to forsake domain theory and denotational se-
mantics in favour of a Calculus of Communicating Systems (CCS) based on
Plotkin’s structural operational semantics and the process equivalence of bisim-
ulation [27]. Instead, Tony Hoare, with Steve Brookes and Bill Roscoe, proposed
a purpose-built domain of failure sets for Communicating Sequential Processes
(CSP) [28]. Both Hoare and Milner settled on synchronisation, possibly with
the exchange of values, as their primitive of communication. For a number
of years concurrency became a rather separate field of study and is still often
rather syntax-driven.

Meanwhile since the early 1960’s Carl Adam Petri and others had been
developing a radically new model of computation, Petri nets. Petri nets are
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based on events making local changes to conditions representing local states. A
state of a Petri net is captured by a marking which picks out those conditions
which currently hold. The net’s dynamics, how one marking changes to another,
is based on the key idea that the occurrence of an event ends the holding of its
preconditions (those conditions with arrows leading to the event) and begins
the holding of its postconditions (those conditions with arrows from the event).

The structures of Petri were remarkably similar to those Kahn and Plotkin
had uncovered as representations of concrete domains in their investigations of
sequentiality. In fact, through the intermediary concept of event structure, com-
prising a set of event occurrences with relations of causal dependency and con-
flict, Mogens Nielsen, Gordon Plotkin and the author were able to transfer con-
cepts across the two communities, around Petri nets and domains; just as tran-
sition systems unfold to trees, so Petri nets unfold to event structures [29, 30].
Notably, Petri’s notion of confusion freeness in Petri nets coincided with the
restrictions Kahn and Plotkin were making to localise nondeterministic choice
to cells. A little later it was realised that Berry’s dI-domains were exactly the
domains of configurations of event structures ordered by inclusion [31, 32].

In its simplest form, an event structure is

(E,≤,#) ,

comprising a partial order of causal dependency ≤ and a symmetric, irreflexive
binary relation of conflict # on events E. The relation e′ ≤ e expresses that event
e causally depends on the previous occurrence of event e′. That e#e′ means
that the occurrence of one event, e or e′, excludes the occurrence of the other.
Together the relations satisfy two axioms: the first axiom says that an event
causally depends on only a finite number of events while the second says that
events which causally depend on conflicting events are themselves in conflict. A
state or history of an event structure is caught in the definition of configuration:
a configurations of an event structure consists of a subset of events which is
down-closed w.r.t. ≤ and conflict-free. Two events e, e′ are considered to be
causally independent, called concurrent, if they are not in conflict and neither
one causally depends on the other.

In diagrams, events are depicted as squares, immediate causal dependencies
by arrows and immediate conflicts by wiggly lines. For example,

� �

�

_LLR_LLR

�

�ZZe _LLR

�

represents an event structure with five events. The event to the far-right is in
immediate conflict with one event—as shown, but in conflict with all events but
that on the lower far-left, with which it is concurrent.

But there was a curious mismatch. Whereas Petri nets were largely used to
model concurrent processes the corresponding structures in domain theory were
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being used as representations of domains, so types of processes. The reconcil-
iation of these two views came much later in generalisations of domain theory
in which both types and processes denoted event structures—as is the case in
concurrent games and strategies.

From the burgeoning world of richly structured models and their equivalences
in concurrency, it became clear that concurrent computation wasn’t going to fit
neatly within traditional domain theory. For instance, a Petri net carried much
more structure than could be supported by a point in a domain of information.

Fortunately category theory helped organise models for concurrency: an in-
dividual model, say Petri nets, event structures or a transition systems, carried
its own style of map to form a category; the maps represented a form of event-
respecting simulation and could be used, for instance, to relate the behaviour of
a parallel composition to that of its components. Relations between the different
categories of models could be expressed as adjunctions; and helped systematise
the equivalences on concurrent processes [33, 34]. This separated models of
concurrency from the syntax and operational semantics in which they were so
often embedded.

For example, a map of event structures from E to E′ is a partial function
f on events which respects configurations and events: it sends a configuration
x of E, by direct image, to a configuration f x of E′ such that no two distinct
events in x go to the same event in f x. While causal dependency need not be
preserved by f , it is reflected locally: if the e, e′ ∈ x and f(e) ≤ f(e′) then e ≤ e′.
Consequently maps of event structures automatically preserve the concurrency
relation on events.

This taxonomy was based on existing models, but it suggested a more gen-
eral class of models with the versatility to be adapted in the same way as domain
theory—a form of generalised domain theory [35, 36]. In several early domain
models of processes, a process had been identified with the set of computation
paths it could perform. One well-known model of this kind is Hoare’s “trace”
model of CSP in which a process denotes the set of sequences of visible actions
it can perform. The generalised domain theory was similar, but instead of a
process being a set of computation paths it took a process to be a presheaf of
computation paths. Roughly a presheaf is like a generalised characteristic func-
tion but where the usual truth values are replaced by sets, to be thought of sets
of ways of realising truth. By modelling a process as a presheaf one allowed
for the process possibly following several computation paths of the same shape
and kept track of how the paths of the process branched nondeterministically.
Presheaf models for concurrency connected concurrent computation with a rich
mathematics, in particular the mathematics of species, but their operational
reading could be challenging. Sometimes though, a denotational semantics in
terms of presheaves could be represented by event structures; technically the
category of elements of the presheaf denotation took the form of the configura-
tions of an event structure. By bringing the role of event structures to the fore
this eventually led to a game semantics based on event structures—Section 8.
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6 French influence

Jean-Yves Girard has been an imposing figure in French logic and computation.
He has a distrust of what he sees as too simple and over-arching use of algebra
to structure and analyse logic. He has been exaggeratedly rude about Alfred
Tarski’s definition of truth in a model for first-order logic, and indeed about
denotational semantics, to which his work has nevertheless contributed enor-
mously.2 Girard’s work emphasises an operational understanding of proof and
computation. This is far from saying it forsakes mathematical models, or con-
centrates on syntax in the way of traditional proof theory. On the contrary, the
models he has developed and inspired have considerable ingenuity and depth,
and have shifted interest to new ways of understanding proof and computation.

Through his reinvention of stable domain theory in the more restricted set-
ting of coherence spaces, Girard was led to the important discovery of linear
logic in the mid 1980’s [21]. This gave a deconstruction of traditional logic into a
more fundamental resource-conscious logic. That work helped turn the empha-
sis of domain theory away from function spaces supporting “currying” w.r.t. a
product, to w.r.t. more general tensor products. In the jargon of category the-
ory, it shifted the emphasis from cartesian-closed to monoidal-closed categories.
Now in semantics of computation we see models of linear logic everywhere. Gi-
rard’s coherence spaces correspond to a very special form of event structure in
which causal dependency is the trivial identity relation.

In studying the proofs of linear logic, Girard discovered geometry of inter-
action (GoI) [38]. Although originally explained in terms of the mathematical
structures of quantum mechanics, GoI was shown by Samson Abramsky and
Radha Jagadeesan to have a more traditional, domain-theoretic reading in which
the mechanism of interaction was that of least fixed points of domains in the
manner of Kahn networks [39]. GoI was related to Jean-Jacques Lévy’s optimal
reduction of the lambda-calculus by Martin Abadi, George Gonthier and Lévy
and has influenced the implementation of programming languages, notably via
token-based computation [40]. Today GoI is perhaps most often viewed as an
early form of game semantics—see Section 8.3.

7 Game semantics

There was some vagueness about what a solution to the full-abstraction problem
for PCF entailed.

The 1980’s had seen several technical successes, through the use of represen-
tations of domains: concrete data structures [18] and event structures [32] to
give an operational description of how functions compute; information systems
due to Scott and the author to give a logical presentation, and considerably sim-
plify the recursive definition of domains and their logical relations [41, 42, 43].
Girard’s work too, often exploited the fine structure of such representations.

2For instance in domain models of polymorphism [37] and through linear logic [21].
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Given this history, it is not surprising that several early attempts to con-
struct a fully-abstract model for PCF were based on adjoining extra structure
to domains or their representations; for example using both the Scott order
and stable order on functions in bidomains and bistructures [44], via Ehrhard’s
hypercoherences [45] or O’Hearn and Riecke’s powerful logical relations [46].
These attempts were put paid to, or at least compromised, by Ralph Loader.
In a tour de force Loader showed that the full-abstraction problem for PCF,
as originally understood, couldn’t be achieved effectively; the presentation of a
fully abstract domain model for PCF would be non-computable [47].

This left open the intermediate question of whether there were other more in-
dependently motivated models in which all the finite elements were definable by
PCF terms; from which then a (non-effective) domain model could be obtained
by quotienting. To this question, called “intensional full-abstraction,” two dif-
ferent affirmative answers were given and pioneered the highly informative use of
games in the semantics of programming languages. Samson Abramsky, Radha
Jagadeesan and Pasquale Malacaria invented AJM games [48], while Martin Hy-
land, Luke Ong, and independently Hanno Nickau, discovered HO games [49].
In many ways game semantics fitted the bill for a more operationally tuned do-
main theory; the role of domains was replaced by games and that of continuous
functions by strategies. The role of games was extended beyond functional to
imperative programs.

To give a flavour of game semantics of programs we give slightly nonstandard
presentations of games and strategies as event structures; they are instances of
concurrent games and strategies described in Section 8. We first describe the
game generally associated with the type of Booleans as an event structure. In
this game the first move is by Opponent (standing for the environment) asking
for a value, the event ⊟, to which Player (standing for the program) may then
respond by a move providing a value, either true represented by the event ⊞T or
false by the conflicting event ⊞F :

⊞T ⊞F

⊟

wWWa G==G

With an eye to illustrating type constructions on games, let’s simplify the game.
Imagine a type with a single value. We can represent this by a game in which
Opponent’s initial move is to ask for a value, the event ⊟, to which Player then
may respond by a move providing the value, the event ⊞. This game we draw as
the event structure:

⊞

⊟

_LLR

Suppose we wish to represent the type of pairs of values as a game. We can do
this simply by putting two copies of the single-value game in parallel, forming
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event structure:
⊞ ⊞

⊟

_LLR

⊟

_LLR

Opponent may ask for a value on the left and/or a value on the right, to which
Player may or may not respond.

For the next step we ask how we can represent as a game the type of programs
from pairs to a value, a form of function type. It’s usual to consider a strategy in
a game. Less well-known but quite widely used is the idea of a strategy from one
game to another.3 According to this idea, explained a little further in Section 8,
a strategy from the game of pairs to the single-value game is a strategy in the
game below:

⊟ ⊟ ⊞

⊞

_LLR

⊞

_LLR

⊟

_LLR

The game is built as the parallel composition of the two games, but with the
role of Player and Opponent reversed in the game for pairs. A strategy in
this game is essentially a program. For example, consider the following event
structure: it represents the strategy (or program) which first inspects input in
the left component of a pair, then inspects the right component before yielding
an output value.

⊟

� ��(

⊟
� ,,2⊞

⊞

_LLR

⊞

_LLR

⊟

_LLR

gPPW

In general, a strategy in the game above, if it responds to the initial move of
Opponent, will either output a value directly or demand more input from which
to play further. I hope this gives an idea of how programs can be viewed as
strategies. As here, a great deal of traditional game semantics is not concerned
with winning conditions, though they have a role, for instance in ensuring a
program is correct or progresses.

However the game story was far from complete. For one thing, it wasn’t
clear, at least initially, how to reconcile the two different versions, AJM and
HO, of game semantics. For another, more significantly, the games were based
on sequential plays in which Player and Opponent moves alternated.

The bias towards sequentiality has handicapped the theories of games in
general. In game theory it has led to a menagerie of different kinds of games,
each kind specialised to cope with one feature or another. There concurrency
is handled in a piecemeal fashion, often through extra structure to capture
imperfect information. This limits the ways that the games and strategies of

3The author first met this idea in a talk John Conway gave on Numbers and Games in the
early 1970’s to the Archimedeans—the mathematical society of the University of Cambridge.
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game theory can be composed. While game semantics is very much concerned
with structure and composition, its games are predominantly sequential; in
most cases concurrency is represented indirectly via the interleaving of atomic
actions of the participants. This rarely does justice to the distributed nature of
the system described, inhibits analysis of its causal dependencies, and is often
accompanied by compensatory, ad hoc fairness assumptions.

What was lacking was a rich algebraic theory of distributed/concurrent
games in which Player and Opponent are more accurately thought of as teams
of players, distributed over different locations, able to move and communicate.
Although there are glimpses of such a theory in earlier work [50, 51, 52, 53, 54],
a considerable unification occurs with the systematic use of event structures to
formalise concurrent games and strategies through their causal structure [55, 56].

8 Concurrent strategies

Distributed/Concurrent games answer the need to rethink the foundations of
games, to a more flexible grounding where they more truly belong, in the models
and theories of interaction of computer science. The driving idea is to replace
the role of games trees in more traditional developments by event structures.

A concurrent game is represented by an event structure together with a po-
larity marking its events to say whether they are moves of Player, marked +
(the system) or Opponent, marked − (the unknown environment). Games often
have extra features such as winning conditions, describing those configurations
at which Player wins, or a payoff functions assigning a reward to each configu-
ration. For simplicity, here we assume games are race-free, i.e. that there is no
immediate conflict between a Player and an Opponent move; there may be con-
flict between Player and Opponent moves but it must be inherited from conflict
between earlier moves, either both of Player, or both of Opponent.

With games as event structures the history of a play of a game is no longer
described by a sequence of moves, but by a partial order expressing their causal
dependency. The transition from total to partial order brings in its wake tech-
nical difficulties and potential for undue complexity unless it’s done artfully.
Fortunately one can harness the mathematical tools developed for interacting
processes, specifically on event structures [32, 33].

There are two fundamentally important operations on two-party games. One
is that of forming the dual game in which the roles of Player and Opponent are
interchanged. On an event structure with polarity A this amounts to reversing
the polarities of events to produce the dual A⊥. By a strategy in a game we
implicitly mean a strategy for Player. A strategy for Opponent, or counterstrat-
egy, in a game A is identified with a strategy in A⊥. The other operation is a
parallel composition of games, achieved on event structures A and B by simply
juxtaposing them, with events from different components, not in conflict, to
form A∥B.

Following ideas of Conway and Joyal [57, 58], a strategy σ from a game A
to a game B is taken to be a strategy in the compound game A⊥∥B. Given
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another strategy τ from the game B to a game C the composition τ⊙σ is given
essentially by playing the two strategies against each other over the common
game B, and then hiding that interaction.

But what is a strategy in a concurrent game? We refer the reader to [55] for
the detailed answer and its rationale: a definition of strategy is chosen precisely
to make the copycat strategy the identity w.r.t. composition. But, roughly,
a strategy in a concurrent game prescribes moves and dependencies of moves
for Player which both obey the constraints of the game and do not constrain
Opponent’s behaviour beyond the constraints of the game. The axioms on
strategies entail a formal connection with presheaf models mentioned earlier in
Section 5 and through them with Scott domains [59]. In general strategies may
be nondeterministic, but we can restrict to deterministic strategies in which all
nondeterministic behaviour stems from Opponent.

As an example of a strategy, consider the copycat strategy in the game A⊥∥A
which, following the spirit of a copycat, has Player copy the corresponding Op-
ponent moves in the other component. The copycat strategy CCA is obtained
by adding extra causal dependencies to A⊥∥A so that any Player move in either
component causally depends on its copy, an Opponent move, in the other com-
ponent. It is illustrated below when A is the simple game comprising a Player
move causally dependent on a single Opponent move:

⊟
� ,,2
⊞

A⊥ CCA A

⊞

_LLR

⊟

_LLR

�llr

Strategies are not always obtained by simply adding extra causal dependencies
to the game. In general, a strategy in a game A is expressed as a map of
event structures σ ∶ S → A describing the choices of Player moves by the event
structure S. For example, consider the game comprising two Opponent moves
in parallel with a Player move, and the strategy (for Player) in which Player
makes their move if Opponent makes one of theirs. It is represented by the map

⊞ ⊞
σ //

⊞

⊟

_LLR

⊟

_LLR

⊟ ⊟

which takes the two conflicting Player moves on the left to the single Player
move on the right and each Opponent move on the left to the corresponding
Opponent move on the right.

Not all maps of event structures σ ∶ S → A are strategies. There are two
further axioms on maps for them to be deemed strategies, receptivity and (lin-
ear) innocence. Intuitively, they prevent Player from constraining Opponent’s
behaviour further than is allowed by the game. Receptivity expresses that any
Opponent move allowed from a reachable position of the game is present as a
possible move in the strategy. Innocence says a strategy can only adjoin new
causal dependencies of the form ⊟ _ ⊞, where Player awaits moves of Oppo-
nent, beyond those inherited from the game. Silvain Rideau and the author have
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shown that the axioms are precisely those that make copycat the identity for the
composition of strategies [55].

A strategy from a game A to a game B is a strategy in the compound game
A⊥∥B; so a map σ ∶ S → A⊥∥B. Given another strategy τ ∶ T → B⊥∥C from
B to a game C, the composition τ⊙σ is got by playing off the two strategies
against each other over the game B. To do this precisely it is useful to harness
two operations associated with maps of event structures: pullback, to produce
the interaction τ ⊛σ ∶ T ⊛S → A⊥∥B∥C, which “synchronises” matching moves
of S and T over the game B; then, a partial-total factorisation property of
partial maps of event structures, to hide the synchronisations and produce, as
its defined part, the strategy composition τ⊙σ ∶ T⊙S → A⊥∥C.

A strategy σ ∶ S → A is deterministic if all conflict in S is inherited through
causal dependency on conflicting Opponent moves. Deterministic strategies
compose. That copycat is deterministic, so an identity for the composition of
deterministic strategies, is due precisely to games being race-free. The strategy
illustrated above is not deterministic.

8.1 Winning conditions

Winning conditions of a game A specify a subset of its winning configurations
W . An outcome in W is a win for Player. A strategy (for Player) is winning if
it always prescribes moves for Player to end up in a winning configuration, no
matter what the activity or inactivity of Opponent [60].

Formally, a strategy σ ∶ S → A is winning if σx is in W for all +-maximal
configurations x of S; a configuration is +-maximal if no additional Player
moves can occur from it. This can be shown equivalent to all plays of σ against
counterstrategies of Opponent resulting in a win for Player.

As the dual of a game A with winning conditions W we again reverse the
roles of Player and Opponent to get A⊥ and take its winning conditions to
be the set-complement of W . In a simple parallel composition of games with
winning conditions, A∥B, Player wins if they win in either component. With
these extensions we can take a winning strategy from a game A to a game B,
where both games have winning conditions, to be a winning strategy in the
game A⊥∥B. The choices ensure that the composition of winning strategies is
winning. Because games are race-free, copycat will always be a winning strategy.

8.2 Imperfect information

In a game of imperfect information some moves are masked, or inaccessible,
and strategies with dependencies on unseen moves are ruled out. One can ex-
tend games with imperfect information in a way that respects the operations of
concurrent games and strategies [61]. Each move of a game is assigned a level
in a global order of access levels; moves of the game or its strategies can only
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causally depend on moves at equal or lower levels.

In more detail, a fixed preorder of levels (Λ,⪯) is pre-supposed. A Λ-game,
comprises a game A with a level function l ∶ A → Λ such that if a ≤A a′ then
l(a) ⪯ l(a′) for all moves a, a′ in A. A Λ-strategy in the Λ-game is a strategy
σ ∶ S → A for which if s ≤S s

′ then lσ(s) ⪯ lσ(s′) for all s, s′ in S. The access
levels of moves in a game are left undisturbed in forming the dual and parallel
composition of games. As before a Λ-strategy from a Λ-game A to a Λ-game B
is a Λ-strategy in the game A⊥∥B. It can be shown that Λ-strategies compose.

8.3 Old from new

The additional complexity of event structures over trees shouldn’t obscure di-
rect connections between strategies on concurrent games and the more familiar
notions on games as trees. Event structures subsume trees. An event structure
is tree-like when any two events are either in conflict or causally dependent, one
on another; in this case its configurations form a tree w.r.t. inclusion, with root
the empty configuration.

A tree-like game is one for which its underlying event structure is tree-like.
Because we are assuming games are race-free, at any finite configuration of a
tree-like game, the next moves, if there are any, are either purely those of Player,
or purely those of Opponent; in this sense positions of a tree-like game either
belong to Player or Opponent. At each position belonging to Player a deter-
ministic strategy either chooses a unique move or to stay put. In contrast to
many presentations of games, in a concurrent strategy Player isn’t forced to
make a move, though that can be encouraged through suitable winning condi-
tions. Winning conditions specify those configurations at which Player wins,
so in a tree-like game can be both finite and infinite branches in the tree of
configurations.

Clearly the dual of a tree-like game is tree-like. A counterstrategy, as a
strategy in the dual game, picks moves for Opponent at their configurations;
when the counterstrategy is deterministic at each Opponent configuration it
chooses to stay or make one particular move. As expected, the interaction of a
deterministic strategy with a deterministic counterstrategy determines a finite
or infinite branch in the tree of configurations, which in the presence of winning
conditions will be designated as a win for one of the two players.

On tree-like games we recover familiar notions. More surprising is that by
exploiting the richer structure of concurrent games we can recover other familiar
paradigms, not traditionally tied to games, or if so only somewhat informally.

For example, by restricting to deterministic strategies between concurrent
games where all moves are Player moves we rediscover stable functions and
Berry’s stable domain theory, of which Girard’s qualitative domains and co-
herence spaces are special cases. For such restricted games, general, possibly
nondeterministic, strategies correspond to stable spans, a model discovered and
rediscovered in compositional accounts of nondeterministic dataflow.
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In more detail, consider a strategy σ from one such purely Player game A to
another B. This is a map σ ∶ S → A⊥∥B which is receptive and innocent. Notice
that in A⊥∥B all the Opponent moves are in A⊥ and all the Player moves are
in B. By receptivity any configuration of A is copied as possible initial input
in S. By innocence, the only new immediate causal connections, beyond those
in A⊥ and B, that can be introduced in S are those from Opponent moves of
A⊥ to a Player move in B. Beyond the causal dependencies inherited from the
two games, S can only make a Player move in B causally depend on a finite
subset of moves in A⊥. For this reason any Player move s in S is associated
with both an output event out(s) in B and a demand on input dem(s), a finite
configuration of A needed for s to occur. A strategy between purely Player games
corresponds to a stable span

S+

dem

~~

out

!!
A B ,

involving two (special) functions from the event structure S+ obtained by re-
stricting S to Player moves. For a general strategy, the output events for a
particular input may be in conflict—the output is nondeterministic. When σ is
deterministic, all conflicts are inherited from conflicts between Opponent moves.
Then the strategy σ corresponds to a stable function from the domain of config-
urations of A to the domain of configurations of B.

Only marginally more complicated than those purely Player games are games
which consist of two parallel components, one a purely Player game and the
other with purely Opponent moves. The deterministic strategies between such
games yield the Abramsky-Jagadeesan model for Geometry of Interaction built
on stable functions [39].

Adjoining winning conditions and imperfect information to these games, so
Opponent can see the moves of Player but not the converse, we recover a dialec-
tica category [62], so Gödel’s dialectica interpretation [63], from deterministic
strategies. We obtain from Gödel’s work an interpretation of proofs in first-
order arithmetic as winning strategies. Dialectica categories, studied by Valeria
de Paiva in her Cambridge PhD, mark an early occurrence of “lenses” used
in functional programming, where they were invented independently to make
composable local changes on data-structures [64, 65].

Generalising dialectica games a little they become examples of “container
types” and deterministic strategies become “dependent lenses” [66]. Lenses
generalise to “optics” in the context of general tensor products [67]. Optics
based on stable spans are recovered when we allow the strategies to be nonde-
terministic.

Because concurrent games and strategies have been enriched, for example,
to provide semantics to probabilistic and quantum programs [68, 69, 70, 71]
these enrichments remain for these special cases. They show for example how
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to add probability to strategies between dialectica games. All this is dealt with
in more detail in [4], and informally and more accessibly in [3].

The examples above concern ways of handling interaction within a func-
tional approach. They have evolved, often independently. Any compositional
theory of interaction is forced to handle the dichotomy between a system and
its environment. Concurrent games and strategies address the dichotomy in fine
detail, very locally, in a distributed fashion, through polarities on events. As
the examples show, a functional approach has to handle the dichotomy much
more ingeniously, through its cruder distinction between input and output; with
basic interaction treated through the application of a function to its argument.
Within concurrent games we can more clearly see what separates and connects
the differing paradigms.

The examples don’t cover all the ways in which functions are extended to
cope with interaction. A notable omission in this article is the theory of effects in
programming languages which uses the technology of monads and algebraic the-
ories to refine the influential work of Eugenio Moggi and, roughly, describe com-
putation in terms of enriched computation trees [72, 73]. Concurrent strategies
have been enriched to address probabilistic and quantum computation. There
is work to do in connecting concurrent games and strategies with the theory of
effects.

9 Conclusion

Although this article discusses the limitations of domain theory, it also demon-
strates its lasting power. Concurrent games and strategies provide a general
model of interaction. Their generality can provide guidance in the form a model
or its enrichment should take. In special cases they simplify to easier domain
models. In one direction concurrent strategies help build domain models. In the
other, when domain models are available they can simplify concurrent strategies
enormously. It would be foolish to use a complicated model when a simpler one
is available. In many contexts domain theory provides the simplest models we
know!
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