ISSN 0105-8517

An Introduction to Event Structures

Glynn Winskel

DAIMI PB - 278

April 1989
AARHUS UNIVERSITY I h—ﬂ | U
COMPUTER SCIENCE DEPARTMENT —“: qr il
Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK _‘__]J =
Telephone: +456 1271 88 Telex: 64767 aausci dk —‘] l l IT

o

N
~N O O W N
~—

co
T g N R I N

TN N TN TN NN N N

An introduction to event structures

by
Glynn Winskel

Computer Science Department,
Aarhus University,
Denmark.

ABSTRACT: Event structures are models of processes as
events constrained by relations of consistency and enabling.
These notes are intended to introduce the mathematical the-
ory of event structures, show how they are related to Petri
nets and Scott domains, and how they can be used to provide
semantics to programming languages for parallel processes as
well as languages with higher types.

Key words: Event structures, Petri nets, traces, concur-
rency, nondeterminism, parallel computation, semantics,
communicating processes, higher types, lambda calculus.

CONTENTS
Introduction
Modelling concurrency
Adding nondeterminism
Stable event structures
A complete partial order of event structures
Semantics of communicating processes
Nets, traces and event structures

Higher-type event structures
Further work

0. Introduction.

Event structures are models of processes as events constrained by re-
lations of consistency and enabling. Their study in denotational semantics
first arose as a biproduct in the pioneering work of G.Kahn and G.Plotkin on
some foundational questions in denotational semantics (see [KP]). The con-
crete data structures of Kahn and Plotkin were later realised to be closely
related to confusion-free Petri nets (see [NPW]) and this led to the more
general definitions discussed here. Since then they have been developed as
a model in their own right and for certain applications (e.g. see section 7
on higher-type event structures) they are easier and less clumsy to use than
Petri nets, to which they are closely related however. These notes are in-
tended to introduce the mathematical theory of event structures, show how
they are related to Petri nets and Scott domains, and how they can be used
to provide semantics to programming languages for parallel processes as well
as languages with higher types.

The notes [W1] provide another description of event structures, in many
ways fuller than the presentation here. They overlap a great deal with the
notes here, and fairly often the reader is referred to [W1] for proofs or further

details. These notes do however try to compensate for the terse presentation
in [W1] and should be easier to read.

1. Modelling concurrency.

The models of computation we shall consider in these notes are based on
the primitive notion of an event. We all have an intuitive idea, from everyday
experience and science, of what an event is. Attempting a rough definition we
might say an event is an action which one can choose to regard as indivisible—
it either has happened or has not according to our description of some process.
This is not to say that an event is indivisible, and without detailed structure,
in any absolute sense; it might well have internal structure, and consist of a
complicated process, which it is sensible to analyse at another level of abstrac-
tion. But then, of course, at that more detailed level of abstraction what was
originally an event is no longer a single event, but several or many. ;From
their far perspective, historians may talk of the event of a battle or the birth
of a famous person—mnot just single events to the people involved at the time!
An event can have detailed structure in another sense—its occurrence may
be very significant a change a great deal—though this is determined more by
how the event influences other events. How we catch this will be discussed

2

shortly. Another property we expect of an event is that it is localised in space
and time, that as far as our description is concerned it occurs in a small area
and over a small period of time. Speaking informally, this really follows from
our understanding of an event as being without detailed structure—if we were
to understand an event as occupying some extended region of space and time
then its dimensions would presumably be important. Again, of course, there
is nothing absolute about this; what we think of as small depends on what
we are modelling and how we go about it.

In viewing the events of a distributed computation, it may well be that we
can ascribe precise places and times to all the events of interest. True, if the
computation is very distributed, so that relativistic effects become important,
these may not be agreed on by all observers. But even without relativistic
effects, and even if it is feasible, there is generally no point in analysing the
computation at such a level of detail—the precise places and times are most
often incidental details. What is important in designing and analysing dis-
tributed computations are the significant events and how the occurrence of
an event causally depends on the previous occurrence of others. For example,
the event of a process transmitting a message would presumably depend on
it first performing some events, so it was in the right state to transmit, in-
cluding the receipt of the message which in turn would depend on its previous
transmission by another process. This outlook has been proposed by Lamport
among others (see e.g. [Lam)]).

The scale at which it is sensible to view a computation as distributed can
vary immensely. For example, similar ideas have been used in the analysis of
self-timed circuits in VLSI (See e.g. [Rem)).

Such ideas suggest that we view distributed computations as event oc-

currences together with a relation expressing causal dependency, and this we
may reasonably take to be a partial order. As a definition we take:
1.1 Definition. An elementary event structure (E, <) is a partially ordered
set. The set E is to be thought of as a set of event occurrences and the partial
order relation as expressing causal dependency; for two events e,e’ we have
e < €’ when the occurrence of the event €’ depends on the previous occurrence
of the event e.

Guided by our interpretation we can formulate a notion of computation
state of an elementary event structure (E, <). Taking a computation state of
a process to be represented by the set z of events which have occurred in the
computation, we expect that

e€ecr & e<e =ecu;

3

if an event has occurred then all events on which it causally depends have
occurred too. Say a subset « C F which satisfies this property is left-closed,
and collect all such subsets together in the family described as £(E).
A particular left-closed set is determined by an event e of an event struc-
ture (F, <). Define
el ={e e E| € <€},

which is clearly left-closed.

Viewing computation states as such subsets, progress in a computation
is measured by the occurrence of more events. Let z,y € L(E) for an event
structure E. If x C y then x can be regarded as a subbehaviour of y. The
relation of inclusion between left-closed subsets is an information order of
the sort familiar from denotational semantics, but special in that more in-
formation corresponds to more events having occurred. The least element
of information in an order (L(E),C) is the empty set, when no events have
occurred, and there is a maximum element, the set containing all events. In
fact the partial orders of left-closed subsets are complete lattices. Recall:

1.2 Definition. A complete lattice is a partial order which has least upper

bounds (joins or suprema) and greatest lower bounds (meets or infima)

[IX of arbitrary subsets X. We write Ll y and = My for the least upper
ound and greatest lower bound respectively of two elements z,v.

As we shall see the lattices associated with left-closed sets are lattices of
a rather special sort.

This view of a process as a domain of computation states is a little non-
standard and unusual—one is used to processes being denotated by elements
of a domain, not by a domain itself. Domains are more usually used as deno-
tations of types. However, thinking of a domain of computation states £(F)

as the “type” of computation states of a process makes the idea less strange,
and more familiar.

One can ask: precisely what class of domains are represented in this
way? In fact the class is exactly that of algebraic lattices which are infinitely
distributive in that they satisfy the following laws:

(K ny=|fzny|zeX} (1)
(E)uy=Tfzuy |z e X} (2)

It is straightforward to verify one part of this statement. First, recall the
definition of algebraic lattice.

1.3 Definition.
A directed subset of a partial order L is a subset S C L with the property

that for any finite set X C § there is an element s € S such that Vz € X. z C
s.

(In particular, a chain is directed.)

A finite element of a complete lattice is an element f with the property
that for all directed sets S, if f C L}S’ then there is some s € S for which
fCs.

A complete lattice is algebraic if for any element d the set {z C d | is finite}
is directed and has least upper bound d.

1.4 Theorem. Let (E,<) be a partial order. Then (L(E), C) is an algebraic
lattice which satisfies the distributive laws (1) and (2) above.

Proof. Verifying that left-closed subsets of a partial order, ordered by inclu-
sion, form an algebraic lattice with meets and joins given as intersections and
unions is routine, as is the verification of the distributivity laws.

The converse is harder. A first, simpler representation of the lattices
represented by elementary event structures starts by observing that an event
e in an event structure corresponds with the left-closed set

[e] ={e | ¢ < e}

Such configurations are characterised in the domain order as being complete
primes. Moreover as every left-closed subset is the union of such configurations
they form a subbasis in the domain of configurations of an event structure.

1.5 Definition. Let (L,C) be a complete lattice.
A complete prime of L is an element p € L such that

pC|K=TzeX pCe

for any set X.
L is prime algebraic iff

T = U{p C 2 | p is a complete prime},

forall z € L.

1.6 Example. Consider the lattice:

<>.y

w

As in any finite lattice, all the elements are finite, and the lattice is algebraic.
The least element w, like all least elements, is the least upper bound

without there being an element in () which dominates it. It can not therefore
be a complete prime. The element z is dominated, in fact equal to, the least
upper bound z| | without being dominated by either x or y. It can not be a
complete prime either. On the other hand both x and y are complete primes—

any least uper bound of a set dominating them must contain an element which
does so.

1.7 Proposition. Let E be an elementary event structure. In the partial

order (L(E),C) the complete primes are precisely those left-closed subsets of
the form [e] for e € E.

Conversely, any complete lattice which is prime algebraic domain is asso-
ciated with an elementary event structure in which the events are its complete
primes.

1.8 Definition. Let L be a complete lattice which is prime algebraic. Define
Pr(L) = (P, <), where P consists of the complete primes of I and

p<p epCyp

for p,p’ € P

1.9 Theorem. Let L be a complete lattice which is prime algebraic. Then
Pr(L) is an elementary event structure, with ¢ : L = (LPr(L), C) giving an
isomorphism of partial orders where

¢(d) = {p C d | p is a complete prime} with inverse 8 : LPr(L) — L given by
6(x) = LJE

Proof. Let P be the complete primes of L. Obviously the maps 6 and ¢ are
monotonic ¢.e, order preserving. We show they are mutual inverses and so
give the required isomorphism.

Firstly we show 8 ¢ = 1. Thus we require z = U{p € P |pCz} for all
¢ € L. But this is just the condition of prime algebraicity.

Now we show ¢ 6 = 1. Let X € L(P,<). We require X = ¢ 6(X) i.e.
X={peP|pC | K} Clearly X C {pe P |p L | X} Conversely if
pLC LP(, where p is a complete prime, then certainly p C ¢ for some g € X.
However X is left—closed so p € X, showing the converse inclusion.

Thus we have established the required isomorphism. |

To show prime algebraicity for infinitely distributive, algebraic lattices
we use another idea. Events in (E, <) also manifest themselves in the lattice

(L(E),C) as prime intervals. We say « is covered by z’ in a partial order,
written x < o’ iff

eCa & aota & Vz.2C2C¢ =>a=2 or z=ua).

The relation < is called the covering relation. A prime interval is a pair
[x,2'] such that z < @’. In (£(E),C) a prime interval is associated with the
occurrence of an event at some element = € £(E); in (£(E), C), the relation
z < @' holds iff there is an event e such that e ¢ = and 2’ = 2 U {e} with
z,z' € L(E). Note that an event is not in general associated with a unique
prime interval but many.

In a complete lattice which is prime algebraic, © < 2’ means there is a

unique complete prime p such that @' = z U p, and in fact p can be recovered
as

p=J[z |2’ ExUz}.

This observation and the following lemma, which ensures there are enough
prime intervals, give the heart of the proof.

1.10 Lemma. Let L= (L,C) be an algebraic lattice. Then
Ve,yeb.eCy & e#y=3z,2 €L .z2C2<2 Cy.

Proof. Suppose z,y are distinct elements of L such that C y. Because L
is algebraic there is a finite element b such that b [Z « & b C y. By Zorn’s
lemma there is a maximal chain C of elements above z and strictly below z LIb.
As b is finite, from the construction of C' we must have & C Lp <xzUbLC y.
|

1.11 Theorem. Let L be a complete lattice. Then L is prime algebraic iff

it is algebraic and infinitely distributive (i.e. satisfies the distributive laws (1)
and (2)).

Proof.

“only if’:

Let L be a prime algebraic complete lattice. Let P be the ordering of L
restricted to its complete primes. By the previous theorem we know L 22 L(P)
so it is sufficient to prove properties for £(P). We have already seen the
distributivity laws follow from the corresponding laws for sets.

The finite elements of (L(P),C) are easily shown to be precisely the
left-closures of finite subsets of P. Suppose x € L(P) is finite. Obviously
z = | f[X] | X Cyin «}. But the set {{X] | X Cs;, 2} is clearly directed so,
because z is finite, # = [X] for some finite set X C P. Conversely, it is clear
that an element of the form [X], for a finite X C P, is necessarily finite; if
[X] C |JS for a directed subset S of L£(P) then X, and so [X], is included
in the union of a finite subset of S, and so in an element of S. Clearly now
every element of £(P) is the least upper bound of the finite elements below
it, making £(P) algebraic. ,

Thus L is an algebraic lattice satisfying the distributive laws (1) and (2).

“if’:

Let L = (L,C) be an algebraic lattice satisfying the distributive laws (1)
and (2).

Let * < z’ in L. Define prz,z'] = [y € L |2 <zuUy}. We show
p = prlz,'] is a complete prime of L. Note first that z Up = H{w Uy |2 C
z Uy} = ' by distributive law (2). Now suppose p C for some Z C L.
Then p = (y}Z) Mp=| [2Np |z € Z} by the distributive law (1). Write Z’ =
{zNp|z € ,sopzld(Z’. Then 2’ = zlp==zU(| Z') = LtLa:LJz’ |2 € Z'}.
Clearly x C Uz’ Cx forall z € Z/. As z < 2’ we must have 2/ = z L 2/
for some 2’ € Z'; otherwise # = z U 2’ for all 2’ € Z' giving the contradiction
T = U{w Uz' | 2 € Z'} = 2/. But then p C 2’ from the definition of p.
However 2z’ = 2 M p for some z € Z. Therefore p C z for some z € Z. Thus P
is a complete prime of L.

That L is prime algebraic follows provided for z € I, we have z =
prlz,@'] | @ < @' C 2}, Let z € L. Write w = | [pr[z,2'] | 2 < 2’ C z}.
eatly w £ z. Suppose w # z. Then, by the lemma, w C & < 2’ C 2

for some z,2' € L. Write p = pr[z,z']. Then p C w making z Up = z, a
contradiction as x LIp = z’. Thus each element of L is the least upper bound
of the complete primes below it, as required.

Thus we have established the required equivalence between prime alge-
braic complete lattices and algebraic lattices satisfying (1) and (2). &

8

So far we have fed very little intuition into our definition of event struc-
ture. True, our interpretation of the partial order as one of causal dependency
motivated our choice of formulation of computation state. But our physical
understanding of what events are invokes more than is caught there. For ex-
ample, should it be possible for an event to occur when it causally depends
on an infinite set of events, as in the following examples? In the diagrams

we represent a single link in the causal dependency relation, say ey < ey, by
drawing ege — ee; or e;0 «— e¢g.

€00 — €10 — €20 —> - €. 0 —>---0€

T ER® > -t — 0 — €10 — €0
o
e
€O — & — @
AN
O — 0 .— @
L
pV
e e
/
L

In the first example, an event e can only occur after a chain of events, first e,
then eq, then es etc. , have occurred. Such an event structure is of the kind
that arises in describing the processes in the paradoxes of Zeno. Zeno, to point

9

out the illusory nature of reality, argued that a door could never close because
the event of it doing so would depend on the events of it first half closing, then
three-quarters closing, then seven-eighths closing etc. . Nowadays, familiar
as we are with the calculus and the physics of continuous processes, it is
hard to appreciate the difficulties Zeno saw. But still, we would not expect
such an event structure to arise when describing processes where the events
are discrete, meaning roughly that the events do not blur into one another.
Attempting a tentative definition of what we mean by “discrete”, we shall say
a set of events in space and time is discrete when we can uniformly choose

some real number 7 so that any two events can be separated by spheres of
space and time of radius r.*

The remaining examples are a little more subtle. The second example
represents a process where in order for an event e to occur e; must have
occurred before, before that e, etc. . The third example represents a process
where the occurrence of an event e depends on the previous occurrence of
chains of events of unbounded length. The fourth shows an event e whose
occurrence depends on the previous occurrence of an infinite number of events
all independent of each other. When the events are understood to be discrete
the reasonableness of these three descriptions is determined by whether or not
there is an initial state, at which no events have occurred. If there is such an
initial state the second, third and fourth examples cannot be discrete.

To see this, we use the fact there is an upper bound on the speed at which
causal influence can travel. Any point in space and time determines a future-
cone of points in space and time which it can effect and a past-cone of points
which can have affected it. Assume a process begins with some “initial event”
i, marking a state where no process events have occurred, and includes the
occurrence of an event e. Then the intersection of the future-cone of i and the
past-cone of e is a bounded closed region which therefore has the property
that any infinite subset of points has an accumulation point. Because this
region must contain all the process events on which e depends we cannot have
discreteness for any of the examples above.

In fact the argument entails that to obtain discreteness under the as-
sumption that there is an initial state, at which no events have occurred, we

* Another definition which works equally well for our purposes is to say a
set of events in space and time is discrete when it is a closed subset such that
any two events can be separated by an open neighbourhood. I do not know
how to choose between the two definitions.

10

should insist on the following strong discreteness axiom on event structures,

1.12 Definition. Say an elementary event structure satisfies the axiom of
finite causes when

Ve € E. {€' € B | € < e} is finite.

We have just seen an attempt to argue for an axiom on event structures
based on simple physical principles. As a computational argument for the
axiom we shall show how it is implied by Scott’s thesis, once we make cer-
tain assumptions about how to get datatypes and functions between them
from an elementary event structure. Dana Scott proposed the thesis that
computable functions between datatypes are continuous, it being understood
that datatypes are associated with domains of information and that com-
putable functions between datatypes are associated with functions between
their domains of information. A function f : D — FE from one complete
lattice D to another E is continuous iff it preserves least upper bounds of
directed sets i.e. for all directed sets S

LIfS = 7(LI9)-

Note a continuous function is monotonic, i.e.

Ve,ye D.zCy= f(z) C f(y),

In particular, a continuous function should preserve least upper bounds of
w-chains, i.e. for all chains zg C2; C--- C @, C +-- in D we have

|_hew! (@n) = f(|_Lew®n)-

Intuitively the ultimate output value should be no more than the limit of the
values determined at finite stages in delivering the input, so we can approx-
imate the ultimate output value arbitrarily closely by the output values at
finite stages. Scott’s thesis has an intuitive justification (see e.g. [St]), and
plays a key part in the mathematical basis of denotational semantics.

We show E = (E, <) will obey Scott’s thesis iff it satisfies the axiom of
finite causes. Of course we need to make clear what we mean by “obey Scott’s
thesis”. This hinges on associating datatypes and continuous functions with

E.

11

We can choose to imagine some of the events of E as being events of input
Ej from some datatype, some as internal events, and others as events of output
F1 to some datatype. The datatypes may have their own causal dependencies,
which contribute to the dependency of the full process, so the input datatype
can carry an partial order Eg = (Ejp, <¢) and the output datatype a partial

order E; = (E7,<;). The orderings of the datatypes should be sub-partial
orders of that of the process, i.e.

EOQE & EIQE)

meaning <oC< and <;C<. There are natural domains of information asso-
ciated with the two datatypes, viz. their domains of left-closed sets of events.
The process induces a function between the domains. Define

fEo,E:, : L(Eg) — L(E;) to map z +— {e€e By | [e]NE, C x}.

The idea is that an event of E occurs once the necessary input events have
occurred. It is clear that:

1.13 Proposition. The function fg, g, is monotonic.

However for partial orders in general the function may not be continuous.
Consider, for example, the partial order

e
%.
€0 €1 €9 .-y -

with Ey = {e, | n € w} and By = {e} ordered by the identity relation. Then
taking S to be the directed set consisting of all finite subsets of E, we see
(as in the proof of the theorem below) that the least upper bound of S is not
preserved by fg,, g, . If E is to represent a computable process, according to
Scott’s thesis, fg,,g, should be continuous. Furthermore it should be for any
choice of events for the input and output datatypes.

1.14 Definition. We say E obeys Scott’s thesis iff

VEo,Ei1. (BEo CE & E; CE = fg, g, is continuous).

12

Now by a simple argument we can show those elementary event structures

E which obey Scott’s thesis are precisely those which satisfy the axiom of finite
causes.

1.15 Theorem. The elementary event structure E obeys Scott’s thesis iff
it satisfies the axiom of finite causes.

Proof.

“only if” Suppose E obeys Scott’s thesis. Suppose for some e in F we
had [e] infinite. Take

Ey={e' € E| € <e}and E; = {e},

with both ordered by the identity relation. Define S to consist of all finite
subsets of Ey. Then S is a directed subset of L(Ep). Moreover no element of
S is Ep as Eyp is infinite. However now fg, g, (US) = {e} while UfEO,Els = 0.
Thus fg,,g, is not continuous which contradicts the assumption that E obeys
Scott’s thesis. Thus [e] is finite for all e € E.

“if” Suppose [e] is finite for all e in F. Assume Ey; C F and F; C E.
Let S be a directed subset of £(Eg). Abbreviate fg, g, to f. As f is always
monotonic we have | JfS C f(| J5). Suppose e € f(| J5). Then [e]NE, C LS
As [e] is finite so is [e] N Ey. Thus because S is directed [e] N Ey C s for
some s € S. Then e € f(s). This shows f(LJS') C | JfS so f(LJS') = |JfS.
Therefore f is continuous. Hence (E, <) obeys Scott’s thesis, as required.

It should be stressed that the argument does rest on assumptions about
how to obtain datatypes and functions between them from an elementary
event structure; in the presence of, for example, a topology on events, when
they are not discrete, these are likely to be obtained differently.

It is a slippery business arguing for axioms on event structures, resting as
it does on assumptions about common understanding and intuitions. Hence-
forth we shall just assume the axiom of finite causes, or an equivalent, for our
models of processes.

The axiom of finite causes on event structures has its lattice-theoretic
analogue.

1.16 Definition. Say an algebraic lattice is finitary iff every finite element
dominates only a finite number of elements, i.e. {d | d C x} is finite for every
finite element .

Not surprisingly, the algebraic lattices represented by elementary event
structures satisfying the axiom of finite causes are finitary. Because of this

13

the infinite distributivity laws are implied by distributivity, just in a finite
form.

1.17 Definition. Say a lattice is distributive iff it satisfies

zM(yUz)=(zNy)U(zMz) (3).

Theorem. Let L be an an algebraic lattice which is finitary. Then ¥ is
prime algebraic iff L satisfies the finite distributive law (3).

1.18 Corollary.

(i) Let E be an elementary event structure satisfying the axiom of finite causes.
Then (L(FE),C) is an algebraic lattice which is finitary and satisfies the finite
distributive law (3).

(ii) Let L be an algebraic lattice which is finitary and satisfies the finite
distributive law (3). Then there is an elementary event structure E satisfying
the axiom of finite causes such that L = (L(E), C).

A word on our formulation of computation state as a left-closed subset:
Here the most generous formulation has been given, in that it allows the most
general set of left-closed subsets. It includes all infinite left-closed subsets of
events which according to our interpretation could only be realised after an
infinite period of time. A more refined analysis of what is to be meant by
“computation state” might rule out some of them. Questions of “fairness”
might rule out all infinite left-closed subsets but the maximal one.

2. Adding nondeterminism.

So far we have postulated that concurrency or parallelism is to be mod-
elled through a partial order expressing causal dependency. Clearly, one thing
is missing from such descriptions, and this is the ability to model a process
which, perhaps influenced by the environment, can behave in different and
incompatible ways, the phenomenon of nondeterminism. To model nondeter-
minism we adjoin further structure in the form of a conflict relation to express
how the occurrence of certain events rules out the occurrence of others. In
these notes we shall assume that events exclude each other in a binary fash-
ion (see [W1] for a more general treatment). As an example of such a binary
conflict, the event of an “a” being typed in the first position of a line conflicts
with the event of a “b” being typed in that same position.

14

2.1 Definition. Define a prime event structure to be a structure E —
(B, #, <) consisting of a set E, of events which are partially ordered by <,
the causal dependency relation, and a binary, symmetric, irreflexive relation
C E x E, the conflict relation, which satisfy

{€' | ¢ < e} is finite,
6#6’36”#6#6”

for all e,e’,e" € E.

2.2 Definition. Let (E,#,<) be a prime event structure. Define its
configurations, L(E), to consist of those subsets # C E which are
conflict-free: Ve, e’ € . —(ed#te’) and
left-closed: Ve,e'. ¢! < e €z =€ c z.
In particular, define [e] = {¢' € E | ¢/ < e}.

We study the kind of domains which are represented by prime event struc-
tures. As we have chosen to work with a binary conflict relation we rightly
expect that compatibility in the domain of configurations will be determined
in a binary fashion.

2.3 Definition. Let (D,C) be a partial order.

Say a set X C D is finitely compatible iff if every finite Y C X has an
upper bound.

(A directed set is finitely compatible.)

Say D is consistently complete iff every finitely compatible subset X C D
has a least upper bound .

A partial order is a Scott domain (or simply a domain) iff it is consistently
complete and the restriction of the order to {zx € D | z C d} is an algebraic
lattice for all d € D; its finite elements are precisely those elements which are
finite in some such lattice.

Say D is coherent iff all subsets X C D such that

Vdo,dr € X. dy 1 dy

have least upper bounds .

(Note a consistent complete partial order has a least element, viz. L =| [,
though it may not have a greatest. It follows the same is true also for coherent
partial orders.)

Remark. Note any consistent complete partial order has greatest lower

bounds of any nonempty subsets: For X nonempty, I_[X = U{d | Vz €
X. dC z}.

15

There is another characterisation of finite elements of a domain:

2.4 Proposition. Let (D,C) be a domain, as defined above. An element
x € D is finite iff for every directed subset S of D x C US implies there is
some s € S for which x C s.

Proof. The proof of the proposition uses the fact that meets in an algebraic
lattice L are continuous i.e.

| [Snd=| fsnd]|seS}

for all elements d and directed subsets S. It is clear that”s Nd|seS}C

Md. To see the converse, let z be a finite element of I with z C US' Md.

en as ¢ C ; a directed set, there is an s € S so z C s. Hence 2 C s M d,

giving z C | [sMd | s € S}. In an algebraic lattice this is enough to establish
the converse ordering, and hence the equality.

Suppose is an element of D with the property that for every directed
subset S if ¢ C L}S’ then z T s for some s € §. Take any d such that
z d. The element z is finite in the lattice {y € D | y C d}, and so is
finite in D. Conversely, suppose z is finite in D. Then z is finite in a lattice
L ={y e D|yCd} for somed € D. Suppose S is a directed subset of D
such that = C US Then by the fact above

wgugﬂdzL]{sﬂdlsES},

the least upper bound of a directed set in the lattice L. Thus = C s d, so
x L s, as required. |
For those familiar with another definition of domain, we remark that the

proposition above is the key to showing our definition of domain is equivalent
to the usual definition.

As in the section on elementary event structures, the simplest representa-
tion of the domains represented by prime event structures starts by observing
that an event e in an event structure corresponds with the configuration [e].
Such elements are characterised as being complete primes, extending the def-
inition used before.

2.5 Definition.

A domain D is a prime algebraic iff each sublattice {x € D | z C d}
is prime algebraic; the complete primes of D are those elements which are
complete primes in any sublattice {x € D | z C d}.

16

A domain D is a distributive (respectively infinitely) iff each sublattice
{z € D | « C d} is distributive (respectively infinitely).

A domain D is a finitary iff each sublattice {z € D | =z C d} is finitary.

(From earlier results it follows that several concepts coincide. For ex-
ample it is a direct consequence of the definition and the result 1.11 that a
domain is prime algebraic iff it is infinitely distributive. Similarly, if a do-
main is finitary then it is prime algebraic iff it is distributive. Elsewhere, in
[NPW,W,W1], other definitions have been given of the concepts above so we
spend a moment checking the new definitions agree with the old. A standard
way to say a domain is distributive is expressed in the next proposition as an
equivalent to the definition above.

2.6 Proposition. A domain is distributive iff it satisfies:
zly=(xUy)Nz=(zNz)U(yMz) (%)

Proof. Suppose the condition (*) holds in some domain D. Then certainly
any sublattice {z € D | = C d} is distributive for any d € D. Conversely,
suppose D is distributive in the sense of the definition above. Let z,y,z € D
with © T y. Then z,y C d for some d € D. Take 2/ = zMd. Then, as the
sublattice {z € D | C d} is distributive with elements z,y, 2’

(zUy)Nz=(zUy) N2 =(xN2)U(ynz)=(zNz)U(ynz).

Similar, more standard, reformulations are possible for the definitions of
the stronger notions of distributivity of a domain.

2.7 Proposition. Let D be a prime algebraic domain. Its complete primes
are precisely those elements p with the property that for any compatible subset
XC_ZDiprUX then p C z for some z € X.

We remark that the fact above is the key to showing the present defini-
tion and the alternative definition of prime algebraicity in [W,NPW,W1] are
equivalent.

Earlier results make it straightforward to characterise the order of con-
figurations of prime event structures.

2.8 Theorem. Let E be a prime event structure. The partial order

(L(E), C) is a coherent, finitary prime algebraic domain; the complete primes
are the set {[e] | e € E}.

17

Conversely, any coherent, finitary prime algebraic domain is associated
with a prime event structure in which the events are its complete primes.

2.9 Definition. Let D be a coherent, finitary prime algebraic domain.
Define Pr(D) = (P, #, <), where P consists of the complete primes of D,

p<peplCy,

and
p#p S p VP,
for p,p’ € P
2.10 Theorem. Let D be a coherent, finitary prime algebraic domain.

Then Pr(D) is a prime event structure, with ¢ : D = (LPr(D), C) giving an
isomorphism of partial orders where
é(d) = {p C d | p is a complete prime} with inverse 0 : LPr(D) — D given by
0(z) = Je.

Thus prime event structures and coherent, finitary prime algebraic do-
mains are equivalent; one can be used to represent the other.

As we have seen in section 1, events also manifest themselves in a domain
of configurations as prime intervals. Recall a prime intervalis a pair [d, d'] such
that d < d’. In a domain of configurations a prime interval is associated with
the occurrence of an event at some configuration; in a domain of configurations
(L£(E),C), the relation @ < 2’ holds iff there is an event e such that e ¢
and ' =z U {e} with z,2’ € L(F). Define

[e,d]<[d,d]ed =dUd & c=c Nd.

Form the equivalence relation ~ as the symmetric, transitive closure of <,
and write [d,d’]~ for the equivalence class of [d,d'] with respect to ~. In a
domain of configurations, [c,c'] ~ [d,d’] implies ¢/ \ ¢ = d’ \ d = {e} for the
same event e. So ~-classes are associated with unique events. For domains
represented as families of configurations of complete primes this association
is a 1-1 correspondence.

2.11 Proposition. Let D be a coherent, finitary prime algebraic domain.
Let ¢ : D= LPr(D) be the isomorphism d — {p C d | p is a complete prime}.
Define the following map from ~-classes to complete primes:

[d,d'|~—p

18

where p is the unique member of ¢(d')\é(d). This map is a 1-1 correspondence
with inverse

p—d, d’]N

Wheredzu{clcgp & c+#p} and d = p.

Sometimes one makes use of the fact that if d is a finite element of a
coherent, finitary prime algebraic domain D then there is a covering chain

in D up to d. This is obvious because we can represent any such domain as
the left closed consistent subsets of some prime event structure.

Another characterisation of finitary, coherent prime algebraic domains
can be obtained from the results in the last section.

2.12 Theorem. A finitary, coherent domain is prime algebraic iff it is
distributive.

Remark. Prime event structures represent finitary, coherent prime algebraic

domains. These are precisely the coherent dI-domains of Gérard Berry (see
[Be]).

3. Stable event structures.

Not all the constructions we want to use are easily defined on prime
event structures. For example, parallel compositions and function space con-
structions are not easily defined directly on them and to do so involves fairly
complicated inductive definitions. The problem arises because in a prime
event structure each event has the property that it causally depends on a
unique set of events—it is enabled in a unique way. There are situations
where this property does not arise naturally. Consider the event of typing a
second character on a line, say “b” to be precise. It depends on having typed
a first character, and any character “a”, “b”, “c” etc. will do. The occurrence
of typing “b” in the second space cannot be said to causally depend on any
particular one occurring in the first place. The only way to describe such a
situation by a prime event structure is to work with an idea of event different
than that which first suggests itself. In this case, instead of a single event,
standing for putting “b” in the second place, we could use events called ab,
bb, cb etc. meaning “b” after “a”, “b” after “b”, “b” after “c” etc. . And as
we mentioned, analogous problems arise in defining some constructions like

19

parallel composition on prime event structures and give some technical diffi-
culties to do with encoding the history of their dependency into the naming
of events.

Such difficulties can be avoided by working with more general event struc-
tures, which allow an event to be enabled in several different ways. For sim-
plicity we shall not be quite as general as we might be and keep to a binary
conflict relation.

3.1 Definition. An event structure is a triple (E, #,) where:
(i) E is a set of events.
(i) # is a binary symmetric, irreflexive relation on E, the con-
flict relation. We shall write Con for the set of finite conflict-
free subsets of E, i.e. those finite subsets X C E for which

Ve,e' € X. =(ed#e’).
(ili) FC Con X E is the enabling relation which satisfies

XFe & XCYeCon=Y te.

Our intuitive understanding of the conflict relation is the same as before.
The enabling relation is expressed in the notion of configuration we adopt for
event structures. A configuration is a set of events which have occurred by
some stage in a process. According to our understanding of the conflict rela-
tion a configuration should be conflict-free. According to our understanding of
the enabling relation every event in a configuration should have been enabled
by events which have occurred previously. However the chain of enablings
should not be infinite but eventually end with events which are enabled by
the null set, and so need no events to occur previously.

3.2 Definition. Let E = (E,#, I) be an event structure. Define a config-
uration of E to be a subset of events 2 C E which is

(i) conflict-free: Ve,e' € z. —(efte’),

(ii) secured: Ve € z3eg,--,e, €z. e, =€ & Vi < n.{eg, - €1}

€;.
The set of all configurations of an event structure is written as F(E).
It is helpful to unwrap condition (ii) a little. It says an event e is secured

in a set x iff there is a sequence of events eg,---,e,, = e in z such that

@ I_-e()a {60} }‘61,"',{80,‘”,6,‘_1} !_ei""){em"’)en—l} '—erv

20

We call such a sequence eg,eq,...,e, =€ a securing for e in z. The following
proposition expresses when an event can be added to a configuration to obtain
another configuration. We use X C4;, Y to mean X is a finite subset of Y.

3.3 Proposition. Let E = (E,#,+) be an event structure. Suppose
z € F(E) and e € E. Then = U {e} € F(E) iff
(i) VX Cginx. X U{e} € Con and

Each event structure determines a family of subsets of events, the config-
urations of the event structure. Such families have a simple characterisation.

3.4 Definition. Let F be a family of subsets. Say a subset X of F is
pairwise compatible iff for all z,z’ € X there is some z € F with z,z’ C z.
3.5 Theorem. Let E be an event structure. Its configurations F = F (E)
form a set of subsets of E which satisfy

(i) coherence: If X is a pairwise compatible subset of F then
€ F,
(ii) finiteness:

Ve € FVe € 23z € F. (2 is finite & e€z & z C),
(iii) coincidence-freeness:
Ve € FVe,e' €r.e#e = (Iye FyCzx & (ecyee ¢v) 8

3.6 Lemma. Let F be a family of subsets satisfying (i), (ii) and (iii) above.
For all z,y € F

rCy=>decy\z.zU{e} €F.

We can use this fact to show any family satisfying (i), (ii) and (iii) above
can be got as the family of configurations of an event structure.
3.7 Theorem. Let F be a family of configurations of a set E. Define a
structure E(F) = (E,#, F) on E by taking
e#e iff VeeF.ece e ¢z,
X Feiff X is conflict-freeand Iz € F.e € z & = C XU{e}.
If F is a family of configurations then £(F) is an event structure such that
FE(F)=F.
Notice we do not have £F(E) and E equal in general for event struc-
tures E, and two different event structures can determine the same family

21

of configurations. However, for two families of configurations Fy and Fq, if

g(FQ) S(Fl) then Fo = F1

A characterisation of the domains which can be obtained as configura-
tions of an event structure (E,#,) will be given, though without proofs,
which can be found in [W] and [C]. Our concern will be largely with the
more restricted class of stable event structures, the domains of which have
a much simpler characterisation along the lines of that for elementary event
structures.

Certainly, the partial order (F(E),C), of an event structure E, will be
finitary domain. In addition it satisfies further axioms on domains which
involve the covering relation, prime intervals and the equivalence ~ on them.
They are:

Axiom Ciz <y & z<2z2 & y1z & y#z=>y<ylz & z<ylz
Axiom R: [z,y] ~ [z, = y =9/

Axiom V: [z,2'] ~ [y,y'] & [z,2"] ~[y,y"] & &' 12" =y 1y"

3.8 Theorem.

(i) Let E be an event structure. The partial order (F(E),g) is a finitary
domain which satisfies axioms C, R and V. Furthermore it is coherent.

(ii) Let D be a finitary domain which satisfies axioms C, R and V. Then there
is an event structure E such that D & (F(E),C). Furthermore D is coherent.

Proof. See the thesis [W] or the book [C] for the proof. The verification of (i)
is routine. That of (ii) requires the construction of an event structure from
the domain—its events are ~-classes of prime intervals. [

Consider an event structure consisting of three events a, b, ¢ with empty
conflict relation but where the enabling relation is the least such that § + a,
0 Fb,{a} F candalso {b} | c. In this case the set {a,b,c} is a configuration.
Because the event c is enabled by either of a or ¢ its occurrence can not be
said to causally depend on either one or the other or both. We might say that
c has been caused by a and b in parallel. We can not ascribe a partial order
of causal dependency to the events as they stand. This is not to say that such
an event structure is not a legitimate description of any process. It might
well be, but not one to which our intuitions about a partial order of causal
dependency apply directly. In a great many examples of processes there are

“parallel causes” and a form of causal dependency, local to configurations,
can be seen on the events. For them the event structures are stable in the
following sense:

22

3.9 Definition. Let E = (E,#, I) be an event structure. Say E is stable if
it satisfies the following axiom

XFe&YhrFe & XUYU{e}€Con=XNY Ie.

The stability axiom ensures that an event in a configuration is enabled in
an essentially unique way. Assume e belongs to a configuration z of a stable
event structure. Suppose X F e and X C z. Then X U {e} € Con—the
enabling X F e is consistent. Take

Xo=(YY|YCX &Y Fe}

Because X is finite this is an intersection of a finite number of sets and we
see by the stability axiom that Xy F e. Moreover Xj is the unique minimal
subset of X which enables e. More formally, for any event structure, stable
or otherwise, we can define the minimal enabling relation +,,;, by

XtpneeX ke & WYCX.YtFe=Y =X).
Then for any event structure
YFe=3XCY X F,une.

But for stable event structures we have uniqueness too, at least for consistent
enablings:

Yie & YU{e}€Con=3IXCY. X ki e
It follows that for stable event structures
X Fmine &Y Fpune & XUYUeceCon=X=Y,

Consequently the families of configurations of stable event structures satisfy
the following intersection property.

3.10 Theorem. Let E be a stable event structure. Then its family of
configurations F(E) satisfies

VX CF(B). X #0 & X1= KX € F(E).

23

3.11 Definition. Say a family of sets F is stable when it satisfies the
following axiom (in addition to those in theorem 3.5)

(stability) VXCF. X#0 & X1= [eF.

Thus the configurations of a stable event structure form a stable family.
For a stable family there is a partial order of causal dependency on each
configuration of events.

3.12 Definition. Let F be a stable family of configurations. Let z be a
configuration. For e,e’ € z define

€ <,ecVyeF.dcy & yCa=ecy.
When e € z define

lele=(fyv€F|ecy & yCa}.
We say a set y is <,-left closed when it satisfies
e <,e & ecy=e€cuy.

As usual, we write ¢/ <, efore<, e & e##e€.

3.13 Proposition. Let z be a configuration of a stable family F. Then <,
is a partial order and [e], is a configuration such that

lele ={' €z | € <, e}.

Moreover the configurations y C « are exactly the left—closed subsets of <.

Let = be a configuration of a stable family. Intuitively an event e in z
can only occur once all its predecessors {¢/ € z | ¢’ <, €} have occurred.

A special form of stable event structure is obtained from a prime event
structure (E.#, <) in the following way: Define

X Fee{e} CXU{e}.

Then (E, #, I-) is a stable event structure such that F(FE, #, F) = L(E.#,<).
For such stable families all the orders <,, for a configuration z, are restric-
tioons of a common causal dependency relation <. This is not the case for
stable families in general.

24

3.14 Example. Let E be the event structure with events {0,1,2} with
conflict relation the least one such that 0#1, and enabling relation the least
one such that

B0, 0F1, {0} F2, {1} 2.

Then E is a stable event structure and the configurations F(E) have the form

{0,2}e e {1,2}

{0}\ / {1}
0

Let z = {0,2} and y = {1,2} be particular configurations. Then 0 <, 2 and
1<y2but 0£,2and 1 £, 2. The orderings <, and <, are not restrictions
of a “global” partial order on events.

3.14 Theorem.

Let E be a stable event structure. Then its family of configurations F(E)
is stable.

Let F be a stable family of configurations. Then E(F) is a stable event
structure.

Families of configurations of stable event structures are prime algebraic.
The axiom of stability on event structures has as its counterpart the axiom
of distributivity on domains.

3.15 Theorem. Let F be a family of sets which satisfies (i), (ii), (iii)
in theorem 3.5 and is stable (3.11). The partial order (F,C) is a finitary,
coherent, prime algebraic domain; the complete primes are the set {[e]= | e €
x & x € F(E)}.

Referring to theorem 2.12:

3.16 Corollary. Let E be a stable event structure. The domain of configu-
rations (F(E), C) is a coherent, distributive domain.

Thus stability of event structures appears as distributivity of the domains
of configurations. The fact that events must be secured in configurations,
expressing the intuition that an event’s occurrence can only depend on a

25

finite number of previous occurrences, reappears as the fact that domains of
configurations are finitary.

Conversely, given a finitary, coherent, prime algebraic domain D we can
generate an isomorphic stable family viz. the family £Pr(D) got by taking the
configurations of the prime event structure corresponding to D. Hence we can

produce prime, and stable, event structures with domains of configurations
isomorphic to D.

4. A complete partial order of event structures.

There is an ordering on event structures which is useful for giving meaning
to recursively defined event structures. The order is based on an idea of
substructure.

4.1 Definition. Let E(] = (E{),#O, i_()) and El = (El,#l, i“1> be event
structures. Define
Eo <E; ©FEy C E4,
Ve,e'. e#toe’ & e,e' € By & eftie and
VX,e.X }“DC@XQEO & QEEQ & X I—le.

In this case say Eg is a substructure of E;.

The notion of substructure is closely tied to that of restriction, an im-
portant operation in its own right.

4.2 Definition. Let E = (E,#, F) be an event structure. Let A C E.
Define the restriction of E to A to be

EI-A' = (A) #A) l_A)

where
X€Conyg & XCA & X e Con,

XtaesXCA &ecd & X le.

4.3 Proposition. Let E = (E,#,) be an event structure. Let A C E.
Then E[A is an event structure.
Let Eq = (Ey, #0, o) and Ey = (E1,#,, 1) be event structures. Then
Ey<E, & Ey = El[-Eo.

26

IfEO d El and EO = E1 then EO = El.
Proof. Obvious from the definitions. |

This definition of substructure almost gives a complete partial order (cpo)
of event structures. There is a least event structure, the unique one with the
empty set of events. Each w-chain of event structures, increasing with respect
to < has a least upper bound, with events, consistency and enabling relations
the union of those in the chain. But of course event structures form a class
and not a set and for this reason alone they do not quite form a cpo. We call
structures like cpos but on a class rather than a set large cpos. This is all we

need. (Very similar approaches for solving domain equations, or equations for
structures like domains, occur elsewhere.)

4.4 Theorem. The relation < is a partial order on event structures. It
has a least event structure § =gy (0,{0},0). An w—chain of event structures
Eo<QE;---9E, g where E,, = (E,, #n, F-») has a least upper bound

UnewBn = (UnewBns Unew Cotin, hew Fn)-

Proof. Routine. J

The substructure relation on event structures is closely related to the
rigid embeddings of Kahn and Plotkin [KP].

4.5 Definition. Let Do and D; be domains. Let f : Dy — D; be a
continuous function. Say f is an embedding iff there is a continuous function
g : D1 — Dy, called a projection, such that

g9f(d) =d for all d € Dy and
fg(c) E ¢ for all c € D;.

Say f is a rigid embedding iff it is an embedding with projection g such that

cE f(d) = fg(c)=c

for all d € Dy,c € D;.

4.6 Proposition. Let E, and E; be event structures such that Eqy < E;.
The inclusion map i : F(Ey) — F(E,) is a rigid embedding with projection
j: F(Ey) — F(Eo) given by j(y) = | fz € F(Eo) | = Cy} fory € F(Ey).
The next lemma is a great help in proving operations continuous on the
large cpo of event structures. Generally it is very easy to show that a unary

27

operation is monotonic with respect to < and continuous on the sets of events,
a notion we now make precise.

4.7 Definition. Say a unary operation F on event structures is continuous
on events iff for any w-chain, Eg <E;---<E, 4 ---, each event of F(ULE,) is
a event of UF(E")

4.8 Lemma. Let F be a unary operation on event structures. Then F is
continuous iff F' is monotonic with respect to < and continuous on events.

4.9 Definition. Let D be a large cpo ordered by 4, with least upper bounds
when they exist. Let F be a continuous operation on D. Define fiz F to

be the least upper bound
quFn (-Q)‘

4.10 Proposition. For the situation in the above definition, the element
fix F' of D is the least fixed point of F.

As a simple example of a recursively defined event structure we consider
the fixed point of an operation called prefixing (sometimes called lifting, or
guarding) whose effect on an event structure is to adjoin an extra initial event.
Then once it has occurred the behaviour resumes as that of the original event
structure.

4.11 Definition. Let a be an event. For an event structure E = (E, #,)
define aE to be the event structure (E’,#’', ') where

B ={0,0)}U{(1,¢) | e € B},
eoFt' ey © Jeo,e1.) = (1,e0) & € = (1,e1) & eoten,
XFHeée oed=(0,a) or [¢=(le) & (0,0) €X & {e|(1,e) € X} Feyl

4.12 Proposition. For any event a the operation a() is <—continuous on
event structures. The least fixed point fiz a() has events in 1-1 correspon-
dence with strings in the regular language 1*0a; any finite subset of events is
consistent and the enabling relation satisfies

0 F Oa,
X F1"0a < {0a,---,1"'0a} C X,

forn > 1.

28

Only fixed points of unary operators on event structures have been consid-
ered so far. The generalisation to n-ary operators is straightforward following
the scheme familiar from domain theory. Such operators are continuous iff
they are continuous in each argument separately. They compose to give other
continuous operators and we can take their least fixed points to deal with
simultaneous recursive definitions. Note that other orderings can sometimes
work just as well to handle recursive definitions; for example, simple coordi-
natewise inclusion gives a large cpo with respect to which most operations
are continuous, though it will not work for function space constructions like
those mentioned in section 7.

5. Semantics of communicating processes.

One use of event structures is to give a denotational semantics of a lan-
guage of parallel processes which reflects the parallelism in processes as causal
independence between events. The nature of the events, how they interact
with the environment, is specified in the language by associating each event
with a label from the synchronisation algebra L. The language we shall use is
one where processes communicate by events of synchronisation with no value
passing. Its syntax has the form:

pu=mnil|ap|po+pi | poxpi|p[A]pE] |z | recep

where z is in some set of variables X over processes, « is a label, A is a subset
of labels, in p[=] the symbol 2 denotes a relabelling function between tow sets

of labels.

Informally, the product py X p; is a form of parallel composition which
introduces arbitrary events of synchronisation between processes. Unwanted
synchronisations can be restricted away with the help of the restriction op-
eration p[A and then existing events renamed with the relabelling operation

p[E]. So in this way we can define specialised parallel compositions of the
kind that appear in CCS and CSP, for example.

To explain formally the behaviour of the constructs in the language we
describe them as constructions on labelled event structures, so a closed process
term in this language is to denote a stable event structure but where the events
are labelled.

5.1 Definition. A labelled event structure consists of (E,#, I, L,1) where
(E,#,) is an event structure, L is a set of labels, not including the element
*, and [is a function [: E — L from its events to its labels.

29

Remark. The special role of the element % will become clear soon.
It shortens some definitions if we use the reflexive conflict relation:

5.2 Notation. In an event structure we shall write W for the reflexive
conflict relation by which we mean that eWe’ in an event structure iff either
e#fe’ or e = €/. With this notation instead of describing the conflict-free sets
of an event structure as those sets X such that

Ve,e' € X. —(efte)
we can say they are those sets X for which

Ve, € X. eWe = e=¢.

The term nil represents the nil process which has stopped and refuses

to perform any event; it will denoted by the empty labelled event structure
(0,0,0,0,0)—no events, no labels.

A prefixed process ap first performs an event of kind a to become the

process p. Its denotation is given using the prefixing construction of the last
section.

5.3 Definition. Let (E, L,!) be alabelled event structure. Let o be a label.
Define a(E, L,1) to be the labelled event structure (aE, I/,l’) with labels

L = {a} UrL
and

11 a ife=(0,a
l(e)z{l(e) ifezgl,e))

for all ¢ € E'.

The configurations of oE, a prefixed labelled event structure, have the
simple and expected characterisation. (By F(E) of a labelled event struc-
ture E we shall understand the set of configurations of the underlying event
structure.)

5.4 Proposition. Let E be a labelled event structure. Let o be a label.
rEF(aE) e z=0 or [(0,0) ez & {e](l,e) € 2} € F(E)].

30

A sum py + p1 behaves like pg or p;; which branch of a sum is followed
will often be determined by the context and what kinds of events the process
is restricted to.

5.5 Definition. Let Eo = (Eo, #0, Fo, Lo,lo) and E; = (B, #;, F1, L1, 1)
be labelled event structures. Their sum, Eg+Eq, is defined to be the structure
(B, #, F,1) with
events £ = {(0,e) | e € Eo} U {(0,¢) | e € E,}, the disjoint union of sets E,
and F, with injections 4 : By, — E, given by tx(e) = (k,e), for k= 0,1,
conflict relation

efte’ ©deg,ep. e =1o(en) & € =19(e}) & eo#toe)

or Jer,ej.e=1(e1) & € =1i(e]) & e1#€]

or deg,e1. (e =1o(en) & € =1y(e1)) or (€ =1o(er) & e= ti(e1))
and enabling relation

XFesXecCon & ec E &
[(3Xo € Cong,ep € Ey. X = 10Xy & e=1to(e0) & Xo o ep) or
(3X1 - Conl,el € F. X=L1X1 & 6261<61) & X1 61)].

Its set of labels is the disjoint union Ly L;, with injections k; : L; — LowW Iy
for i = 0,1. Its labelling function acts so

e) — Iio(lo(eo) if€=bg(€0))
(e) {nl(ll(el) if e = uy(er).

The choice to take disjoint sets of labels is somewhat arbitrary, though
later it does lead to a direct categorical characterisation, and afterall we can
obtain another form of sum where copies of events keep their original labels
by using relabelling.

The configurations of a sum are obtained from copies of the configurations
of the components identified at their empty configurations.

5.6 Proposition. Let Ey and E; be labelled event structures.
T € F(Ey+ Ey) & (Jwo € F(Ey). ¢ = 1omo) or (Jzy € F(E1). © = yyz1).

For purposes like modelling value-passing it can be useful to generalise
the definition of sum to indexed families of event structures. The definition
is straightforward (it can be found in [W1]).

31

A product process py x p; behaves like py and p; set in parallel. Their
events of synchronisation are those pairs of events (eo,€1), one from each
process; if eg is labelled ag and e; is labelled oy the synchronisation event is
then labelled (v, ;). Events need not synchronise however; an event in one
component may not synchronise with any event in the other. We shall use
events of the form (eg,*) to stand for the occurrence of an event eo from one
component unsynchronised with any event of the other. Such an event will

be labelled by (cvo,*) where aq is the original label of ey and * is a sort of
undefined.

In fact we shall often want to take the first or second coordinates of such
pairs and, of course, this could give the value * which we think of as undefined,
so that, in effect, we are working with partial functions with * understood to
be undefined. We can keep expressions tidier by adopting some conventions
about how to treat this undefined value when it appears in expressions and
assertions.

5.7 Notation. We shall be working with partial functions 8 on events. We
indicate that 6 is a partial function from F, to E; by writing 6 : By —, E.
Then it may not be the case that 6(e) is defined and we use * to represent
undefined, so 6(e) = * means the same as 6(e) is undefined. It is a nuissance
when using predicates like 6(e) € X to always have to say “provided f(e)
is defined”. Instead we adopt the convention that the basic predicates of
equality, membership, conflict, and reflexive conflict are strict in the sense

that if they mention §(e) this implies 6(e) is defined. Under this convention,
for example,

f8(e) € X = 6(e) is defined, and
0(e) = 0(e’) = 6(e) is defined & 6(e') is defined.
We adopt a similar strict interpretation for function application. So if f is a

function applied to some value, denoted by a, then f (a) is undefined (gives
*) if @ is undefined.

As usual we represent the image of a set under a partial function by
0X ={0(e) |ec X & f(e)is defined}.
5.8 Definition. Let Eg = (E(),#Q, l‘o,Lo,lo) and E1 = (E17#17 |_1,L1,l1)
be labelled event structures. Define their product Eq x E; to be the structure
E = (E,#, I, L,l) consisting of

32

events F of the form

EoxFq = {(60,*) Ieg € EO}U{(*,el) l €1 € El}U{(eo,el) Ieo €EFEy & e; € El},

with projections m; : E —, Ej;, given by mi(eo,e1) = e;, for i = 0,1,
reflexive conflict relation W given by

eWe' & mo(e)Womo(e') or mi(e)Wyimi(e')

for all e, e’—we use Con for the conflict-free finite sets,
enabling relation F given by
XFesXeCon & ecF &
(mo(e) is defined = mo X o mo(e)) & (mi(e) is defined = m X +y 71 (e))

Its set of labels is

LO X*Ll = {(ao,*) |a0 € Lo}U{(*,al) |O{1 € Ll}U{(Oéo,Oll) | Qg € L() & o1 € Ll}

with projections A; : E —, FEj;, given by Ai(ag,a1) = oy, for i = 0,1. Its
labelling function is defined to act on an event e so

I(e) = (lomo(e€),l1m1(e)).

We characterise the configurations of the product of two event structures
in terms of their configurations.

5.9 Proposition. Let Ey X E; be the product of labelled event structures
with projections mo,71. Let * C Ey X, Ey, the events of the product. Then

z € F(Ey x By) iff

@) € F(Ey) & max € F(E),

VEhE' € x. mo(e) = mo(e’) or mi(e) =m(e) = e=¢,

Vedg =3y C z. moy € F(Ey) & my e F(Ey) & ecy & |y| < oo and

Ve €z et e =y Ca myecF(E) & mye F(B) & (ecyee ¢y).

The proposition above expresses the intuition that an allowable behaviour
of the product of two processes is precisely that which “projects” to allowable

33

behaviours in the component processes—the complicated-looking conditions
(c) and (d) are there just to ensure that the family of sets is finitary and
coincidence-free.

The restriction t[A behaves like the process p but with its events re-
stricted to those with labels which lie in the set A.

5.10 Definition. Let E = (E,#, -, L,1) be a labelled event structure. Let
A be a subset of labels. Define the restriction E[A to be (B, #', ', LN A, "
where (E',#', ') is the restriction of (E,#, I) to the events {ee E|le) €
A} and the labelling function I’ is the restriction of the original labelling
function to the domain L N A.

5.11 Proposition. Let E = (E,#, |, L,1) be a labelled event structure. Let
ACL.

z € F(E[A) ©xc F(E) & Yecz.l(e) € A.

A relabelled process p[E] behaves like p but with the events relabelled
according to E.

5.12 Definition. Let E = (E,#, I, L,1) be a labelled event structure. Let

A,L" be sets of labels and Z : A — L’. Define the relabelling E[E] to be
(E,#, F,L'l") where

, Zi(e) ifl(e) € A,
Fe) = {l(e) otherwise. °

In order to give a meaning to the recursively defined processes of the form
rece.p we use the fact that the operations are continuous with respect to a
large c.p.o. of labelled event structures. The large c.p.o. of event structures
< extends naturally to labelled event structures in such a way that operations
like parallel composition are continuous.

Define the ordering «; on labelled event structures by:
(Eo, Lo, lo) gf, (E1, Ly, 1) © Bo By & Ly C Ly & Iy =14 [Ey.

The null labelled event structure (8,0,) is the least L-labelled event structure
with respect to g7 Of course, 9 has least upper bounds of w-chains; the lub
of a chain (Eo, Lo, 1), ..., (Epn, Ln,1y),. .. takes the form (UnEm uLn, Ualn)
All the operations prefixing, sum, restriction, relabelling and parallel compo-
sition are continuous with respect to <;. The proofs follow by applying lemma

34

4.8. It is straightforward to check that each operation is monotonic and con-
tinuous on events for each argument separately, and so is <continuous. Thus
we can give a denotational semantics to Procpby representing recursively
defined processes as the least fixed points of continuous operation.

5.13 Definition. Denotational semantics: Define an environment for pro-
cess variables to be a function p from process variables X to labelled event
structures. For a term ¢ and an environment p, define the denotation of ¢ with
respect to p written [t]p by the following structural induction—syntactic op-
erators appear on the left and their semantic counterparts on the right.

[l =(0,0) [{[Alp =[t]o[A
o =plz) [=le =[HplE)
[atle =a([t]s) [t x tolo=[t:]p [ta]p

[t1 + t]p=[t1]p + [t2]p [recz.t]p =fiz T

where I is an operation on labelled event structures given by I'(E) = [t]p[E/«]
and fiz is the least—fixed—point operator.

Remark. A straightforward structural induction shows that I' above is in-
deed continuous with respect to 4; so the denotation of a recursively defined
process is really the least fixed point of the associated functional T.

It can be shown that each operation preserves the stability axiom on
event structures and so restricts to an operation on stable event structures.
Consequently, according to the denotational semantics each closed process
term denotes a labelled stable event structure. By taking events to be com-
plete primes in the families of configurations—using the operation Pr—we
obtain labelled prime event structures as denotations.

5.14 Example. With respect to any environment p, the terms a8nil and
vnil denote event structures with domains of configurations of the form below:

L

p

[aBnillp: o [ynilp: ~

35

where we label prime intervals by the labels of the corresponding events. The
domains of configurations of [aBnil x ynil]p look like:

? (%,7)
Bo%) | (B,7) —°
(%) (8,%)
(@, %) y
0 (%)

where we have encircled the complete primes. A labelled prime event struc-
ture is obtained by taking the complete primes as new events and the causal
dependency and conflict relations as restrictions of the ordering and incom-
patibility relations. (We leave this to the reader.)

Labelled stable event structures are fairly complicated things, and con-
structions on them are complicated too. Originally, for the most part, lan-
guages like the one we are using were given an “interleaving semantics” in the
sense that parallelism was simulated by nondeterministically interleaving the
events of two processes set in parallel, except where they were synchronised
together. How are we to check that our semantics agrees with such semantics
even though it expresses more about the computations?

Part of the answer lies in taking a more abstract view of the constructions
used by employing elementary category theory. Category theory not only
provides abstract characterisations of constructions like product, restriction
and relabelling, which determine the constructions to within isomorphism,
but also provides techniques for proving the consistency of one semantics
with respect to another.

Examples of morphisms have been introduced implicitly in the definition
of sum and product, and, for example, the definition of product used pro-
jection functions on the events and labels. Through them, proposition 5.9
formalises the intuition that an allowable behaviour of the product of two
processes is precisely that which “projects” to allowable behaviours in the
component processes.

36

The following gives the general definition of morphism between labelled
event structures.

5.15 Definition. Let EO = (Eo,#o, l‘o,Lo,lo) and E1 = (El,#l, I“‘l,Ll,ll)
be labelled event structures. A (partially synchronous) morphism from Ej to
E; is a pair (7, A) of partial functions : Ey —, E4 on events and) : Ly —, Ly
on labels which satisfies

Q) n(e)Wan(e') = eWae

(i) X Fo e & n(e) is defined = nX F; 75(e) and

(iii)l1m = M.
(Note by our strictness convention in handling undefined the truth of n(e)Win(e')
asserts also that 7(e) and 7(e’) are defined.)

Remark. The partially synchronous morphisms here are are a little different
from those presented in [W1]. Firstly, because conflict is based on a binary
relation in these notes, the conditions are expressed differently—though with
the same effect on configurations. Secondly, here event structures carry labels
and we have made the morphisms respect them. While this addition does
permit a categorical characterisation of restriction and relabelling, it does not
complicate many of the proofs.

A morphism (7,A) : Eg — E; between labelled event structures Eq and
E1 expresses how behaviour in Ey determines behaviour in E;. The partial
function 7 expresses how the occurrence of events in Ey imply the simultaneous
occurrence of events in E;; the fact that n(eg) = e; means that the event
e; is a component of the event ey and, in this sense, that the occurrence
of ey implies the simultaneous occurrence of e;. The final condition (iii)
simply ensures the agreement of the functions on events and the function on
labels. To understand condition (i) it is helpful to break it into an equivalent
conjunction of the following two conditions:

(ia) mn(e) =n(e') = eWoe',

(ib) n(e)#1n(e) = e#oe’
for all events e, €’ in Eg. The condition (ia) says if two distinct events e, e’ have
the same image then they are in conflict. This formalises the idea that if two
distinct events in Eq have the same image e; in E; then they cannot belong
to the same configuration. Otherwise, by the property of coicidence-freeness
of configurations, there would be a configuration containing both events but
with a subconfiguration which separated them. Considering the effect of the
occurrence of the two events, under the morphism, this would lead to the
contradiction of e; occurring twice. Condition (1b) says that if two events

37

have images in conflict then they must themselves be in conflict. It says
conflict-free sets in Ey determine conflict-free behaviour in E;. Condition (ii)
in the definition says that a morphism preserves enabling. Together conditions
(i) and (ii) ensure that a configuration in E, determines a configuration in
Ei, in other words that morphisms preserve configurations.

5.16 Proposition. Let (n,\) : Ey — E; be a morphism of stable event
structures. Then

z € F(Eo) = (nx € F(B1) & Ve,e €x.n(e) =n(e) =>e=¢).

5.17 Proposition. Labelled event structures with partially synchronous
morphisms form a category with composition the coordinatewise composition
of partial functions and identity morphisms pairs of identity functions on
events and labels.

The product and sum are familiar categorical constructions:

5.18 Proposition. The product of labelled event structures is the cat-
egorical product in the category of labelled event structures with partially
synchronous morphisms. The sum is the categorical coproduct.

These facts determine the product and sum to within isomorphism.

Restriction and relabelling are constructions which depend on labelling
sets and functions between them. Seeing them as categorical constructions
involves dealing explicitly with functions on labelling sets and borrowing a
couple of fundamental ideas from indexed category theory.

We can project a morphism (7,) between labelled event structures to
a partial function p(n,A) = A on labelling sets, determining a functor p from
the category of labelled event structures to the category of labelling sets with
functions. Suppose E is an event structure with labelling set L. We will lose
no generality if we assume the restricting set A is a subset of L. Then there is
an inclusion morphism j : A — L in the category of labelling sets with partial
functions. The restriction E[A has labelling set A and there is a morphism
(4,5) : E[A — E where i is the inclusion map on events. This morphism
is characterised abstractly as the cartesian lifting of j with respect to E. A
morphism f : E' — E between event structures is said to be a cartesian lifting
of the morphism p(f) between labelling sets with respect to E if for any
morphism g : EY — E on event structures and morphism X : p(E") — p(E')
between labelling sets for which p(f)A = p(g) there is a unique morphism
h:E" — E' such that p(h) = X and fh = g.

38

Relabelling can be characterised in a similar way but using a dual notion.
Suppose E is a labelled event structure with labelling set L. To simplify the
explanation, as we lose no generality, we assume = : I — L’ is a total function.
The labelled event structure E[Z] has labelling set L’ and there is a morphism
(1,E) : E — E[E], where 1 is the identity function on the set of events.
This morphism is a cocartesian lifting of = with respect to E. A morphism
f 1 E — E' between event structures is said to be a cocartesian lifting of the
morphism p(f) between labelling sets with respect to E if for any morphism
g : E — E” on event structures and morphism) : p(E") — p(E") between
labelling sets for which Ap(f) = p(g) there is a unique morphism h : E' — E”
such that p(h) = X and hf = g.

It is not hard to see that the notions of cartesian and cocartesian liftings
are general notions which make sense whenever we have a functor p from
one category to another. It can be checked that the domain of a cartesian
lifting and the codomain of a cocartesian lifting are determined to within
isomorphism, and moreover, by isomorphisms which project to the identity.

To summarise:

5.19 Proposition. Operations of restriction are obtained as cartesian
liftings of an inclusion between labelling sets. Operations of relabelling are
obtained as cocartesian liftings of total functions between labelling sets.

I do not know a categorical characterisation of prefixing. Nor do I know a
categorical way of expressing hiding (the operation of making certain specified
events hidden or internal, so that they can occur within a process but cannot
synchronise further with any events in the environment).

The abstract and general constructions of the operations used to describe
our language of processes are useful when we come to consider different mod-
els. The same abstract constructions apply in many different models. We
can draw on some general results about functors preserving constructions in
order to show how semantics in terms of one model is preserved when it is
translated to semantics in terms of another.

For example, a well-known interleaving model is that of synchronisation
trees in which nodes represent states and arcs carrying labels are thought of
as labelled events. By regarding such trees as (families of configurations of)
special kinds of labelled prime event structures we inherit a notion of partially
synchronous morphism on them. In the category of synchronisation trees the
coproduct is an operation which “glues” trees together at their roots, while

39

the product is of the kind one would hope for from Milner’s expansion theo-
rem. Again cartesian and cocartesian liftings give restriction and relabelling
operations. The identification of synchronisation trees with certain kinds of
labelled event structures is essentially an inclusion functor from the category
of synchronisation trees to the category of labelled event structures. There is
another functor, going the other way from labelled event structures to syn-
chronisation trees, which given a labelled event structure serialises its event
occurrences to produce a synchronisation tree whose behaviour is an inter-
leaved version of that of the original event structure. These two functors bear
a useful relationship with each other: the serialisation functor is right adjoint
to the inclusion functor, a fact which characterises it to within isomorphism.
The adjunction is, in fact, of a special form: if we serialise a synchronisation
tree we obtain a synchronisation tree isomorphic to the original. This makes
the adjunction a coreflection.

Armed with this knowledge we can make use of some general results.
Right adjoints preserve all limits, and products in particular. This immedi-
ately yields that the serialisation of the product of labelled event structures
is the product (as a tree) of their serialisations. There are other useful facts
like that left adjoints preserve coproducts, and results on the preservation of
cartesian and cocartesian liftings. Such facts are clearly useful in showing how
semantics is preserved by operations, like serialisation, across different mod-
els. They can save us calculations in another way. To give the idea, rather
than work out the product in trees we can see they exist from the existence
of a coreflection, given that we know we have products of event structures.
If Ty and Ty are synchronisation trees, we can regard them as event struc-
tures, form their product T X g T} as event structures, serialise this to get
S(To xg T1) and know this is the product of S (To) and S(T1) because the
right adjoint S preserves products. As § is part of a coreflection S (To) 2T,
and S(T1) =2 T;1. So S(Ty xg Ty) is the product of Ty and 7} in the category
of synchronisation trees.

For a a detailed account of categories of models for parallel computation
see [W1] (although the treatment of labels there is different, the presence of
labels does not complicate the proofs much) and [W2] (where labels are taken
into account but largely for the model of Petri nets).

40

6. Nets, traces and event structures.

In this section we sketch the relationship between event structures and
two other models of parallel computation, Petri nets and trace languages. All
three follow a similar philosophy in the way they represent concurrency.

In defining Petri nets and constructions on them we shall use multisets
and their notation—see the appendix for a quick summary. Note, especially,
that we call a multiset a set when its multiplicities are all less than or equal
to 1.

6. Definition. A Petri net is a structure (B, Mo, E, pre, post) where,
B is a set of conditions,

My is a multiset of conditions, called the initial marking,

E is a set of events,

pre and post are multirelations E —,,, B, called the pre and

post condition maps respectively,
which satisfy the restriction:

Vb€ B. Moy #0 or (e € E. pre(e)s #0 or post(e)y #

0).
6.2 Notation. When the context makes it clear we shall use *() and ()*
for the pre and post condition maps.

The restriction in the definition of Petri nets is there for the technical
reason that in the full treatment with morphisms on nets it ensures that we
can always manage with multisets in which the multiplicities are finite.

6.3 Definition. The behaviour of nets:
Let N = (B, My, E, pre, post) be a Petri net.
A marking M is a multiset of conditions, i.e. M € m(B).
Let M, M’ be markings. Let 4 be a finite multiset of events. Define

M-ASM A<M & M =M-"A+ A°.

This gives the transition relation between markings. The transition M -4

M' means that the finite multiset of events A can occur concurrently from
the marking M to yield the marking M’.
A reachable marking of N is a marking M for which

Agy—
My 2o M; 41 ... ‘s M, =M

for some markings and finite multisets of events.

41

6.4 Notation. We write M —4— M’ : N to mean M is a reachable marking
of N and M 24— M’ is a transition of N. We write M —4—: N to mean
M -2 M': N, for some M.

6.5 Definition. Say a Petri net IV is safe iff *e and e® are sets, for all events
e, and whenever M —4—: N then M and A are sets.

As Mazurkiewicz has shown, the behaviour of safe nets can be analysed
through the notion of trace, and we refer the reader to his lecture notes in
this volume for a fuller account. (Please be prepared for our definitions to
appear superficially different from his.)

6.6 Definition. A trace language consists of (A4,I,T) where A is a set of
events, I is a binary, symmetric, irreflexive relation on A called the indepen-
dence relation and T is a nonempty subset of sequences A* which is

prefix closed: sa € T = s €T forall s € A*,a € A,

I-closed: sabt € T & alb=> sbat € T for all 5,t € A*,a,b €
A.

Say a trace language is coherent iff

sa €T & sbeT & alb= sabec T

for all s € A*,a,b € A.

Probably more familiar is the definition of a trace language as a set of
equivalence classes along the following lines.

6.7 Definition. Let (4,I,T) be a trace language. Define the relation =;
on T' to be the smallest equivalence relation such that

to =yt if 35,8’ € T,a,b € A. alb & ty = sabs’ & t, = sbas’.

For s € T write {s} for the =r-equivalence class of s. For =-equivalence
classes z,y, define z < y iff there are s,s’ such that ¢ = {s}; and y = {t};
and s is a prefix of ¢.

Write T for the set of =; equivalence classes ordered by <j; call its
members traces.

Of course, all traces are equivalence classes of finite sequences. They
represent finite computations. Not having limit points, traces do not form
domains. However, we can add limit points by taking a completion by ideals.

6.8 Definition. Let (P, <) be a partial order. An ideal of P is a left-closed,
directed subset. In particular the principal ideals are those subsets of the

42

form {g € P | ¢ < p}, for some p € P. Define the completion by ideals, P,
to be the partial order of ideals ordered by inclusion.

6.9 Proposition. Let P be a partial order. The ideal completion P> is
a domain iff P has least upper bounds of all finite compatible subsets. In

the case where P> is a domain its finite elements are precisely the principal
ideals.

Remark. The proposition holds in further generality, for what are known as
algebraic complete partial orders. These can be characterised as those partial

orders which arise, to within isomorphism, as ideal completions of partial
orders with a least element.

6.10 Lemma. Let (A4,I,T) be a trace language. The order T§® is a finitary,
prime algebraic domain.

Proof. A proof can be found in Bednarczyk’s thesis [B] thoughthere they are
given just for full trace languages with all sequences. Bednarczyk’s proofs
(p-54-58) apply in the wider context of all trace languages, to show that T}
has least upper bounds of finite compatible sets and is distributive i.e.

cly=(zUy)Nz=(zNz)U(yMz).

Tr can thus be identified with the finite elements of a distributive domain
T7°. Built out of finite sequences ordered by extension, the domain has to be
finitary and hence prime algebraic. |

6.11 Lemma. If a trace language (A, I,T) is coherent then the domain Tge
is coherent.

Proof. Again, Bednarczyk’s proof (p.58) applies more generally. Another
proof follows from the representation theorem 3.8. It is easily checked that all
the axioms C, R, V hold of the finitary domain T'7° (Notice that if two prime
intervals are ~-equivalent then their event symbols from the trace language
are the same). The domain TF° is thus coherent by 3.8(ii). N

6.12 Definition. Let N be a safe net. Define Trace(N) = (A,I,T) where
A is the set of events of N, egle; holds between events eq, e; iff (*eoUep®) N

(*e1 Uer®) =0, and T consists of the set of firing sequences (€1,...,€n_1)
from the initial marking (i.e. My —%— ... ==t where M, is the initial
marking).

6.13 Proposition. Let N be a safe net. Then Trace(N) is a coherent trace
language.

43

Proof. Well-known, and fairly easy to see (See [Maz]). 1§

6.14 Corollary. Let N be a safe net. Let Trace(N) = (A,I,T). Then T§°
1s a coherent, finitary prime algebraic domain.

Thus via traces we have defined an operator from safe nets to coherent,
finitary prime algebraic domains. As prime event structures are equivalent to
such domains we can as well obtain an operator £ taking a safe net to a prime
event structure whose events correspond to occurrences of events in the net.

There is an operator in the opposite direction from prime event structures
to safe nets. Given an event structure we can form a Petri net with the same
behaviour by adding enough conditions to the events to express the causal
dependency and conflict of the original event structure: if e < €’ in the event
structure then we put in a condition as a precondition of ¢’ and a postcondition
of e; if efte’ we make e and e’ share a common precondition. More precisely
we can build conditions out of events in accord with the causal dependency
and conflict relations in the following way:

6.15 Definition. Let E = (E,#,<) be an event structure. Define N(E) to
be (B, E, F,M) where

M={0,A)| ACE & (Va,a’ € A. a(#U1)d’)}
B=MU{(e,A) |e€E & ACE & (Va,a’ € A. a(W)a') & (Va € A. e < a)}
F={(e,(e;A)) | (e,4) € By U{((c,;A),e) | (c,A) € B & e € A}.

This shows how we can translate between the different models of safe
Petri nets and prime event structures, or equivalent prime algebraic domains.
Notice ENV(E) = E. In fact the scheme extends to the situation when we
label events and endow nets with morphisms on the same lines as those for
event structures. The operations £ and A between the two models extend to
functors which form a coreflection. The presence of morphisms makes £ less
arbitrary than it might otherwise seem—there are many ways of building a
net with the same behaviour as a prime event structure (see e.g. ch.6 of [W2]
for another).

The story extends to many more categories of models. The morphisms on
the different models also express synchronisation. The appropriate construc-
tions to give denotations to our language of processes have the same abstract
characterisation in all the different categories. The fact that they are pre-
served in moving from one model to another follows from general properties
of the adjoints (see [W1] and [B] for details, though just for unlabelled struc-
tures).

44

7. Higher-type event structures.

So far we have focussed on one particular interpretation of events, as
actions of synchronisation between processes. Of course other interpretations
are possible. We now look at another specific interpretation in which event
structures are used to represent higher types. We have seen how stable event
structures represent domains. In fact such domains can be made into a carte-
sian closed category. Not only does this yield a model for various typed
A-calculi but, using the techniques of section 4, we can produce models of so
called untyped A-calculi. We shall not present any proofs in this section—they
can be found in [W1].

As morphisms between stable event structures we take stable functions
between their domains of configurations.

7.1 Definition. Let Ey and E; be stable event structures. A stable function
from Eo to E, is a continuous function f : (F(Eo),C) — (F(E,), C) on their
configurations which is continuous and satisfies

VX CF(Bo). X #0 & X1= F(()X) = (VX.

7.2 Proposition. Stable event structures with stable functions composed
as functions and the usual identities form a category.

The key idea to the treatment of higher types is the general construction
of an event structure to represent the function space of stable functions be-
tween two event structures. We must somehow represent the space of stable,
continuous functions f : Ey — E; between two stable event structures Eo
and E; as an event structure itself. This is done by taking the events of a
“function space” event structure to be basic parts of functions (x,e) standing
for the event of outputting e at input , a finite configuration of Ey. The
function f will correspond to a configuration of events (z,e) in which z is a
minimal input configuration at which e is output.

7.3 Definition. Let E() = (Eo,#o, f"o) and E1 = (E17#1) |"‘1) be stable
event structures. Their stable function space, [Ey — E;] is defined to be the
event structure (E,#, i) with events E consisting of pairs (z,e) where z is a
finite configuration in F(Ey) and e € F, a reflexive conflict relation W given

by
(z,e)W(z',e") iff 272" & eWé

45

and an enabling relation given by

{(zo,€0),- -, (®p—1,€n_1)} F (z,e) iff {e; | z; C z} ;e

7.4 Proposition. The stable function space of two stable event struc-
tures is a stable event structure. The stable function space construction is
<-continuous.

The configurations of a stable function space [Ey — E1] correspond to
stable, continuous functions F(Ey) — F(E;).

7.5 Definition. Let Ey and E; be stable event structures.
For F € F([Ey — E;]) define

(@(F))(x) ={e€ E |’ Cz. (z',e) € F}

for z € F(Ey).
For f : 7(Eo) — F(E1) a stable, continuous function define x(f) a subset
of events of [Ey — E;] by

(z,e) e u(f) ©ec flr) & (Vo' Cz.e€ f(z') =2’ =2).

7.6 Theorem. Let Ey and E; be stable event structures.

(i) For F' € F(|[Ey — Ei]), the function ¢(F) : F(Ey) — F(E,) is continuous
and stable.

(i) For f : F(Ey) — F(E;) a stable, continuous function, the subset p(f) €
F([Eo — Ei]).

(iii) Further, ¢ and p are mutual inverses giving a 1-1 correspondence be-
tween configurations F([Ey — Ei]) and stable, continuous functions F (Eo) —
F(Ey).

The product in the category is obtained very simply. The event structures
are allowed to operate disjointly, completely in parallel, neither one having
an effect on the other. It is easily defined for all event structures not just the
stable ones.

7.7 Definition. Let E() = (E{),#g, f“o) and El = (El,#l, f‘l) be stable

event structures. Their disjoint product, Eg @ Ey, is the structure (E, #,)
where the events are

E={0} x Ey U{1} x Ey,

46

a disjoint union, the consistency predicate is given by
X € Con & {e | (0,e) € X} € Cony & {e| (1,e) € X} € Cony,
and the enabling by

XFeeXeCon & ecE &
[(Jeo € Eo. e = (0,e0) & {€' | (0,€') € X} kg ep) or
(Je1 € Br.e=(1,e1) & {e'| (1,€') € X} Fy)]

Define the projections py, : F(Eo@®E;) — F(Ey) by taking py(z) = {e | (k,e) €
z}, for k=0,1.

7.8 Proposition. Let Ey and E, be event structures with events Eqy, By
respectively. Then

{BEf(E()EBEl)@ngoL‘UEl & po(w)E.'F(Eo) & pl(w)E]:(El).

There is a 1-1 correspondence between F(Ey @ Ey) and F(Ey) x F(E;) given
by

z = (po(@), pr())-
The disjoint product is <-continuous.

Thus we can identify @, a configuration of a disjoint product, with the pair
(Po(@), p1(2))-
7.9 Theorem. The disjoint product Ey @ E; of stable event structures E,
and Ey, with projections my, 7y, is a product in the category Esqp.

At this point we can directly prove the cartesian closure of Eiap, based
on the observation that, for stable event structures B, Ey, E; the two event

structures
[E @ EO — E]_]

and
[E — [Eo — Eq]]

are the same up to a natural renaming of events.

7.10 Lemma. Let E, Ey, E; be stable event structures. There is a 1-1
correspondence 6 between the events of [E® Ey — Ey] and [E — [Ey — E1]]
given by

0: ((w,z),e) — (w,(z,e)),

47

for w,z finite configurations of E, Ey and event e of Ey, such that 6 gives an
isomorphism of event structures in the strong sense that

a#pt’ & 0(a)d 16(a)

and

X Fpae0X b 6(a),

where #,, |-, are the conflict and entailment relations of [Eo ® E; — Es] and
#7y, 5 are the relations of [Ey — [E; — E,]].

Certainly the category of stable event structures with stable functions
has products including the null event structure as terminal object. The above
results yield a natural 1-1 correspondence between morphisms Eg @ E; — E,
and Eg — [E; — E,] and so show the category is cartesian closed [Mac.
p-95-96]. We show the exponentiation more explicitly.

7.11 Theorem. The category E,,,; is cartesian closed. It has products as
shown and an exponentiation of two stable event structures Ey and FE, has
the form [Ey — Ey], ap where ap: [Ey — E;]| ® Ey — E, is given by

ap(f,z) = (¢f)(x)

for f € F([Eo — E1]) and © € F(E).
(We have identified (f,x) with the corresponding configuration of the disjoint
product.)

In the traditional function space used in denotational semantics the func-
tions in the function space [D — E], where D and E are domains are ordered
pointwise, i.e. two continuous functions f, g are ordered by

fC g VdeD. f(d)C g(d).
This ordering is called the extensional order. The inclusion order on the con-

figurations of [Eg — E;] induces another order on stable, continuous functions
(F(Eo),C) — (F(E1), C) which we have seen can be expessed as

f<gepufCpug.

This order is called the stable order (a name due to Berry). We give an
example.

48

7.12 Example. The two point domain O consisting of L T T can be
represented as the the configurations of the obvious event structure with a
single event e, so L = () and T' = {e}. All the monotonic functions O — O
are stable and continuous. Ordered extensionally they are

(Az.L)C (Az. 2 =T —T|L) C (\2.T)
while according to the stable ordering we only have
(Az.L)<(Az.2=T —T|L) and (Az.l)< (2.T),

because (Az. x =T — T'|L) £ (Az.T). For two functions to be in the stable
order it is not only necessary that they are ordered extensionally but also that
if they both output a value for common input then they do so for the same
minimal value.

As an example we indicate how the category can be used to give a model
for a A-calculus with atoms.

7.13 Example. We can use the sum construction on event structures (it
extends to a functor) and a constant event structure A of atomic events to
define an operation

El—-)A—l—[E—>E]

This operation is <-continuous, being the composition of continuous things,
and so has a least fixed point which can serve as a model for the \-calculus
with atoms following standard lines.

Recent work of Girard has pointed the way to another appplication for
the category of event structures with stable functions, or the equivalent cat-
egory of dI-domains. In [G], Girard works with a full subcategory of ours
with objects called coherent spaces and shows how they give a model to his
System F, the polymorphic A-calculus. From the point of view of denotational
semantics, coherent spaces are too restrictive because they are not closed un-
der the useful operations of lifting (prefixing) or separated sum. However
Girard’s ideas can be extended to our category (see [CGW]) which supports
such constructions as well as polymorphism. (It should also be mentioned
that Girard’s ideas also extend, though less directly, to the more traditional
category of Scott domains with continuous functions—see [CGW1].)

Another possible use of stable event structures is as a model of Girard’s
“linear logic” [G1] though this is not yet widely understood . By restrict-
ing the category of stable event structures to stable functions which are also

49

additive (i.e. preserve all least uper bounds when they exist) we obtain the
subcategory with so-called linear maps. This category forms a model for Gi-
rard’s intuitionistic linear logic (see [YL]) with coherent spaces and linear
maps, a model for classical linear logic, as a reflective subcategory. Although
these categories are not cartesian closed, they are monoidal closed, a property
which means there is a function space but with respect to a bifunctor which is
not necessarily a categorical product. Monoidal closed categories have arisen
in another context, in the work of Meseguer and Montanari on categories
of Petri nets, in generalising the partially synchronous morphisms on nets
(see [MM]). The mathematical structure they uncover, as with the monoidal
closed categories of event structures, holds great promise, I think, though, at
present 1 don’t know how to use it; whereas the partially synchronous mor-
phisms yield familiar and intuitively understandable constructions, underlying
working languages like Occam, the linear morphisms give constructions not
so familiar in Computer Science. The tie-in with linear logic may be fruitful.
While on the topic, I'll mention a that there is a right adjoint to the inclusion
functor from stable event structures with partially synchronous morphisms
(ignoring labels) and that of stable event structures with finitary linear maps
(linear maps preserving finite elements); the right adjoint makes new events
out of subsets of the original event structure. Whether this provides any re-
duction of a linear logic to another more basic one, along the lines of Girard’s
reduction of intuitionistic to linear logic, I don’t know.

8. Further work.

There are two holes in these notes. One is that left by omitting any
discussion of logic and proof systems on event structures, and the other is
the absence of any treatment of operational semantics and its relation to the
event structure models of processes. Some work has been done in both these
areas but it is patchy, at least as I perceive it.

A representation of certain kinds of domains was first carried out by
G.Kahn and G.Plotkin in their attempt to define a general notion of sequential
function (see [KP]). Their work on sequentiality was made higher order by
G.Berry and P-L.Curien (see [BC], [C]) though at the expense of moving
to algorithms rather than functions. Berry’s thesis [Be] is rich in results
including the beginnings of an operational characterisation of the stable order
between stable functions. As for event structure models of parallel processes
and attempts to justify them in operational or observational terms we mention

[BoCal, [Ca], [EN], [MDN].

50

A compositional proof system for Petri nets with categorical combina-
tors of the sort seen here and a recursively defined Hennessy-Milner logic is
presented in [W2]. Its generalisation to event structures has proved elusive so
far—the thesis [Z] will indicate some of the difficulties. For examples of logics
on prime event structures se [TL] and [P].

Appendix: Multisets and multirelations.

Let X and Y be sets. A multirelation from X to YV is a function « :
Y X X — w, with entries o, which are nonnegative numbers; we indicate
such a multirelation by writing o : X —,,, Y. Multirelations are composed
as matrices: Let o : X —,, Y and 8:Y —,, Z. Define their composition
Ba: X —,, Z to be given by

(ﬂa)z,w =YyevBey * Y

which exists provided no infinite sums of nonzero integers arise in this way.

A multiset over a set X is a multirelation o : 1 —,,, X from a distin-
guished one-element set 1. We write v € m(X) to mean « is a multiset over
X, and write the entry of the multiset o at € X as a,,.

Regarded as matrices we can form entrywise sums and scalar products
of multirelations, and provided the results never go negative we can subtract
one multirelation from another. We write o + 3 and o — 8 for the sum and
difference of @, 8 : X —,,, Y. Similarly, we can write o < 3, for a,0: X —,,
Y, when o, < B, forallze X,y €Y.

We identify subsets of a set X with those multisets over it whose entries
never exceed 1. In particular, the null multiset 0 of X for which every entry
is 0 corresponds to the empty set. For € X, we shall write simply z for
the singleton multiset which has entry 1 at z and 0 elsewhere. We shall
identify relations between a set X and a set Y with those multirelations
0 : X —,, Y for which all entries are at most 1. In particular, a partial
function f : X —, Y, between sets X and Y, is identified with a multirelation
f:X =, Y inwhich f, , <1,forallz € X,y €Y, and for any z € X there
is at most one y €Y so f, . = 1; the fact that an application f(z) of a partial
function f to an element z is undefined corresponds to the application fx of
the multirelation f to the singleton multiset being 0.

51

Acknowledgements: Thanks to Mogens Nielsen for helpful comments.
References

[Be] Berry, G., Modéles complétement adéquats et stables des lambda-calculs
typés. These de Doctorat d’Etat, Université de Paris VII (1979).

[B] Bednarczyk, M.A., Categories of asynchronous systems. PhD in Comp
Sc, University of Sussex, report no.1/88 (1988).

[BC] Berry, G., and Curien, P-L., Sequential algorithms on concrete data
structures. TCS vol 20 (1982).

[BoCa]|Boudol,G., and Castellani,I., On the semantics of concurrency: partial
orders and transition systems. Springer Lec Notes in Comp Sc vol 249 (1987).

[C]Curien, P-L., Categorical combinators, sequential algorithms and func-
tional programming. Research notes in theoretical comp. sc., Pitman, London
(1986).

[Ca] Castellani, I., Permutations of transitions. This volume.

[EN] Engberg,U., Nielsen,M., and Larsen K.S., Fully abstract models of a
language with refinement. This volume.

[CGW] Coquand, T., Gunter, C., and Winskel, G., Polymorphism and domain
equations. In the proc of Third Workshop on the Mathematical Foundations
of Programming Language Semantics, New Orleans, LA 1987.

[CGW1] Coquand, T., Gunter, C., and Winskel, G., Domain theoretic models
of polymorphism. To appear in Information and Computation, 1987.

[G] Girard, J-Y., The system F of variable types, fifteen years later. TCS
vol.45 (1986).

[G1] Girard, J-Y., Linear logic. TCS 1987.

[KP] Kahn, G., and Plotkin, G., Domaines Concrétes. Rapport IRIA Laboria
No. 336 (1978).

[YL] Lafont, Y., Linear logic and lazy computation. Springer Lec Notes in
Comp Sc vol 249 (1987).

[Lam| Lamport, L., Time clocks and the ordering of events in a distributed

system. CACM 21, (1978).

[Mac|] Maclane, S., Categories for the Working Mathematician. Graduate
Texts in Mathematics, Springer (1971).

[Maz] Mazurkiewicz, A., Traces. This volume.

[Mil]Milner, R., A Calculus of Communicating Systems. Springer Lecture
Notes in Comp. Sc. vol. 92 (1980).

52

[MM] Meseguer, J., and Montanari, U., Petri nets are monoids: a new al-
gebraic foundation for net theory. Proc of LICS, Computer Society Press
(1988).

[MDN] Degano, P., De Nicola,R. and Montanari, U., On the consistency of

“truly concurrent” operational and denotational semantics. Proc of LICS,
Computer Society Press (1988).

[NPW] Nielsen, M., Plotkin, G., Winskel, G., Petri nets, Event structures and
Domains, part 1 . Theoretical Computer Science, vol. 13 (1981).

[P] Penczek,W., The temporal logic of event structures. Report 616,
Inst of Comp Sc, Polish Academy of Science, Warsaw, 1987.
[Rem] Rem, M., Partially ordered computations, with an application to VLSI

design. In “Foundations of Computer Science IV, part 2”, Mathemtical Cen-
tre, Amsterdam (1983).

[TL] Lodaya,K., and Thiagarajan, P.S., A modal logic for a subclass of event
structures. Proc of ICALP 1987 published in Springer Lecture Notes in C.S.
(1987).

[W] Winskel, G., Events in Computation. Ph.D. thesis, available as a technical
report, Comp. Sc. Dept., University of Edinburgh (1980).

[W1]Winskel, G., Event structures. Invited lectures for the Advanced Course
on Petri nets, September 1986. Appears as a report of the Computer Labo-
ratory, University of Cambridge, 1986, and in the proceedings of the school,
published in Springer Lecture Notes in C.S., vol.255 (1987).

[W2] Winskel, G., A category of labelled nets and compositional proof system.
Proc of LICS, Computer Society Press (1988).

[Z] Zhang, G.Q., Logic and semantics in computation. PhD in progress,
Computer Laboratory, Cambridge University.

53

