

Language Model Based Grammatical Error Correction Without Annotated Training Data

Christopher Bryant and Ted Briscoe

Motivation

- State of the art Grammatical Error Correction (GEC) systems rely on as much annotated training data as possible.
- Language model (LM) based approaches do not require annotated training data but still performed well in the CoNLL-2014 shared task on GEC.
- **Question**: To what extent can a simple LM system compete with a state of the art system trained on millions of words of annotated data?

Methodology

1. Calculate the normalised log probability of the input sentence.

Input Sentence								Prob
ī	am	looking	forway	to	see	you	soon .	-2.71

2. Build a confusion set for each token in that sentence.

I am	looking	forway	to	see	you	soon .	-2.71
was	look	forward	of	seeing		sooner	
be	looks	Norway	in	saw		soonest	-
are	looked	foray	Ø	sees		• • •	

3. Rescore the sentence for each candidate correction in each confusion set.

I	am		looking		forway		to		see		you	soon		-2.71
	was	-2.67	look	-2.91	forward	-1.80	of	-2.98	seeing	-3.09		sooner	-3.05	
	be	-3.09	looks	-2.93	Norway	-2.36	in	-2.99	saw	-3.25		soonest	-3.20	-
	are	-3.10	looked	-2.95	foray	-2.70	Ø	-3.00	sees	-3.39				

4. Apply the single global best correction that improves the sentence probability above a threshold.

1	am	looking	forway	to	see	you	soon .	-2.71
Ī	am	looking	forward	to	see	you	soon .	-1.80

5. Iterate steps 1 - 4.

I am	looking	forway	to	see	you soon	. -2	2.71
I am	looking	forward	to	see	you soon	1	1.80
l am	looking	forward	to	seeing	you soon	1	1.65

Confusion Set Generators

- CyHunspell
 - Spelling errors
 e.g. freind → friend
 Inflectional errors
 e.g. advices → advice
- Automatically Generated Inflection Database

Noun number errors
 e.g. cat → cats

Verb tense/form/agreement
 e.g. eat → ate, eat → eating

• Adjective form e.g. bigger → biggest

- Manually defined confusion sets
 - Determiners: {Ø, the, a, an}
 - Prepositions: {Ø, about, at, by, for, from, in, of, on, to, with}

Thresholding

- Some corrections improve sentence probability more than others.
 - forway → forward

 $-2.71 \rightarrow -1.80$

am → was

 $-2.71 \rightarrow -2.67$

However, smaller improvements are likely to be false positives.

forway → forward

 $-2.71 \rightarrow -1.80$

• am → was

 $-2.71 \rightarrow -2.67$

Solution: Set improvement thresholds based on a development set.

Observation: Different datasets have different optimum thresholds even with a single tuning parameter.

Results

- We train a 5-gram LM on the 1 Billion Word Benchmark corpus with KenLM.
- We compare performance with several state of the art systems.
 - POST (2014): A LM approach that came 4th in CoNLL-2014.
 - AMU16_{SMT}+LSTM and CAMB16_{SMT}+LSTM: A hybrid combination of Statistical Machine Translation (SMT) and neural sequence labelling approaches reported in Yannakoudakis et al. (2017).
 - Sakaguchi et al. (2017): A neural reinforcement learning approach.

Test Set	System	Р	R	F05	GLEU
	POST 2014	34.51	21.73	30.88	59.50
CoNLL-2014	AMU16 _{SMT} +LSTM	58.79	30.63	49.66	68.26
CONLL-2014	CAMB16 _{SMT} +LSTM	49.58	21.84	39.53	65.68
	Our work	40.56	20.81	34.09	59.35
	AMU16 _{SMT} +LSTM	40.67	17.36	32.06	63.57
FCE-test	CAMB16 _{SMT} +LSTM	65.03	32.45	54.15	70.72
	Our work	44.78	14.12	31.22	60.04
	AMU16 _{SMT} +LSTM	60.68	22.65	45.43	42.65
JFLEG-test	CAMB16 _{SMT} +LSTM	65.86	30.56	53.50	46.74
JELEG-1681	Sakaguchi et al. (2017)	65.80	40.96	58.68	53.98
	Our work	76.23	28.48	57.08	48.75

Conclusions

- We improved upon the previous best LM approach by $> 3 F_{0.5}$.
- We outperformed 2 state of the art systems on JFLEG and came surprisingly close to the top system.
- State of the art systems do not seem to generalise well and probably overfit to different datasets.
- Our results are fairly competitive with data hungry systems despite
 - a) requiring minimal annotated data (for tuning purposes only).
 - b) only targeting ~50% of all error types.
- Our approach suggests it is possible to build a decent GEC system for any language where annotated training data may not be available.