
ABSTRACT PARTIAL CAD I: THE LIFTING PHASE

(EXTENDED TECHNICAL REPORT)

GRANT OLNEY PASSMORE AND PAUL B. JACKSON

LFCS, Edinburgh and Clare Hall, Cambridge, 10 Crichton Street, Edinburgh EH8 9AB, UK
e-mail address: grant.passmore@cl.cam.ac.uk

LFCS, Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
e-mail address: pbj@inf.ed.ac.uk

Abstract. Though decidable, the theory of real closed fields (RCF) is fundamentally
infeasible. This is unfortunate, as automatic proof methods for nonlinear real arithmetic
are crucially needed in both formalised mathematics and the verification of real-world
cyber-physical systems. Consequently, many researchers have proposed fast, sound but
incomplete RCF proof procedures which are useful in various practical applications. We
show how such practically useful, sound but incomplete RCF proof methods may be sys-
tematically utilised in the context of a complete RCF proof method without sacrificing
its completeness. In particular, we present an extension of the RCF quantifier elimina-
tion method Partial CAD (P-CAD) which uses incomplete ∃ RCF proof procedures to
“short-circuit” expensive computations during the lifting phase of P-CAD. We present
the theoretical framework as well as preliminary experiments with an implementation we
have undertaken in the open-source computer algebra system SAGE. These experiments
include the use of RealPaver, a high-performance interval constraint solver, to short-circuit
expensive computations during P-CAD construction.

1. Introduction

Tarski’s theorem that the elementary theory of real closed fields (RCF) admits effective
elimination of quantifiers is one of the longstanding hallmarks of mathematical logic [18].
From this result, the decidability of elementary algebra and geometry readily follow, and
a most tantalising situation arises: In principle, every elementary arithmetical conjecture
over finite-dimensional real and complex spaces may be decided simply by formalising the
conjecture and asking a computer of its truth. All one needs is the fortitude to implement
a decision method, the dedication to express conjectures formally, access to high-powered

1998 ACM Subject Classification: I.1.2, I.2.3.
Key words and phrases: decision procedures, nonlinear arithmetic, real closed fields.
This paper includes and extends work presented in Chapters 7 and 8 of the first author’s 2011 University

of Edinburgh Ph.D. thesis [13], supervised by the second author. This research was supported by the EPSRC
[grant numbers EP/I011005/1 and EP/I010335/1]. We thank Jeremy Avigad, James Davenport, Leonardo
de Moura and Larry Paulson for valuable conversations. We thank the referees of an earlier version of this
article for their helpful comments and suggestions.

LFCS TECHNICAL REPORT
UNIVERSITY OF EDINBURGH

c© ABSTRACT PARTIAL CAD I: THE LIFTING PHASE(EXTENDED TECHNICAL REPORT)
Creative Commons

1

2 ABSTRACT PARTIAL CAD I: THE LIFTING PHASE (EXTENDED TECHNICAL REPORT)

computing machinery, and the game is won. So why then do we still not know how many
unit hyperspheres may kiss1 in five dimensions? Is it 41? 42?

The issue is one of complexity. Though decidable, RCF is fundamentally infeasible.
This observation is made precise by a landmark algorithmic complexity result of the 1980s
[7]:

Theorem 1.1 (Davenport-Heintz). There are families of n-dimensional RCF formulas
of length O(n) whose only quantifier-free equivalences must contain polynomials of degree

22
Ω(n)

and of length 22
Ω(n)

.

Thus, arithmetical problems (especially those high-dimensional, i.e., many-variable) will not
in general be realistically solvable by full RCF quantifier elimination methods. Yet, there
are many examples of difficult high-dimensional RCF problems solved in mathematical and
engineering practice. What is the disconnect?

(1) RCF problems solved in practice — especially those solved by hand — are most
often solved using an ad hoc combination of methods, not by a general decision
method.

(2) RCF problems arising in practice commonly have structural properties dictated by
the application domain from which they originated. Such structural properties can
often be exploited making such problems more amenable to analysis and pushing
them within the reaches of restricted, more efficient variants of known decision
methods.

With this in mind, many researchers have proposed fast, sound but incomplete RCF
proof procedures, many of them being of substantial practical use [2, 10, 19, 14, 16, 8, 6].
This is especially true for formal methods, where improved automated RCF proof methods
are needed in the formal verification of cyber-physical systems. In these cases, as the
RCF problems to be analysed are usually machine-generated (and incomprehensibly large),
incomplete proof procedures can go a long way. For example, there is no denying the fact
that applying a full quantifier elimination algorithm to decide the falsity of a formula such
as

∃x1, . . . , x100 ∈ R (x1 ∗ x1 + . . .+ x100 ∗ x100 < 0)

is an obvious misappropriation of resources. While such an example may seem contrived,
consider the fact that when an RCF proof method is used in formal verification efforts, it
is often fed huge collections of machine-generated formulas which may be (un)satisfiable for
extremely simple reasons. Ideally, one would like to be able to use fast, sound but incomplete
proof procedures as much as possible, falling back on the far more computationally expensive
complete methods only when necessary. It would be desirable to have a principled manner
in which incomplete proof methods could be used to improve the performance of a complete
method without sacrificing its completeness.

In this paper, we present Abstract Partial Cylindrical Algebraic Decomposition (AP-
CAD), an extension of the RCF quantifier elimination procedure partial CAD. In AP-
CAD, arbitrary sound but possibly incomplete ∃ RCF proof procedures may be used to
“short-circuit” certain expensive computations during CAD construction. This is done in

1The n-dimensional kissing problem [15] asks: Given an n-dimensional unit hypersphere U centered at
the origin in Rn, how many other identical hyperspheres may be arranged so that they each “kiss” U (touch
U at a single point) without further overlaps ? In principle, this problem may be solved for each n through
iterated application of RCF quantifier elimination. But, in practice, this approach is hopeless for reasons
we soon discuss.

ABSTRACT PARTIAL CAD I: THE LIFTING PHASE (EXTENDED TECHNICAL REPORT) 3

such a way that the completeness of the combined proof method is guaranteed. We restrict
our AP-CAD presentation to the practically useful case of ∃ RCF. For full-dimensional cell
decompositions, we have implemented AP-CAD within our RCF proof tool RAHD2 [13]
and within the open-source computer algebra system SAGE [17]. In Section 4 we present
experiments utilising RealPaver [9], a modern high-performance interval constraint solver
to short-circuit CAD construction.

2. CAD Preliminaries

For a detailed account of CAD, we refer the reader to [3]. We present only the background
on (P-)CAD required to understand AP-CAD for ∃ RCF. P-CAD is currently the most
efficient known general quantifier elimination method for RCF3. An important fact is that
the complexity of the (P-)CAD decision algorithm is doubly exponential in the dimension
(number of variables) of its input formula. Generally, the most expensive phase of the
(P-)CAD algorithm is the so-called “lifting phase.” Let us fix some notation.

A semialgebraic set is a subset of Rn definable by a quantifier-free formula in the
language of ordered rings. A region of Rn is a connected component of Rn. An algebraic
decomposition of Rn is a decomposition of Rn into finitely many semialgebraic regions.
A cylindrical algebraic decomposition is a special type of algebraic decomposition whose
regions are in a sense “well-behaved” with respect to projections onto lower dimensions. A
cell is a region of a CAD.

Before delving into technical details, let us discuss how we can use a CAD to make
∃ RCF decisions. By “the polynomials of (an ∃ RCF formula) ϕ,” we shall mean the
collection of polynomials obtained by zeroing the RHS of every atom in ϕ through sub-
tracting the RHS from both sides. We assume each such ∃ RCF formula is in prenex
normal form, so that it is an ∃-closed boolean combination of sign conditions, i.e., of atoms
of the form (p � 0) with p ∈ Z[x1, . . . , xn], � ∈ {<,≤,=,≥, >}. We use QF (ϕ) to mean
the quantifier-free matrix of ϕ.

The key point is that if we have in hand a suitable CAD C = {c1, . . . , cm} ⊂ 2R
n

derived
from an ∃ RCF formula ϕ, we can decide the truth of ϕ from the CAD directly. The reason
is simple: C will have the property that every polynomial of ϕ has constant sign on each
ci, i.e., given p a polynomial of ϕ and a ci a cell, it shall hold that

∀~r ∈ ci(p(~r) = 0) ∨ ∀~r ∈ ci(p(~r) > 0) ∨ ∀~r ∈ ci(p(~r) < 0).

Consequently, QF (ϕ) has constant truth value at every point in a given cell. Thus, to
decide ϕ, we simply substitute a single sample point from each ci into QF (ϕ) and see if it
ever evaluates to true. It will evaluate to true on at least one sample point if and only if
ϕ is true over Rn.

2RAHD contains many RCF proof methods and allows users to combine them into their own heuristic
RCF proof procedures through a proof strategy language. This is ideal for AP-CAD, as the proof procedure
parameters used by AP-CAD can be formally realised as RAHD proof strategies.

3See [11] for an explanation as to why P-CAD is also currently the best known general decision method
for practical ∃ RCF problems, despite the fact that ∃ RCF has a theoretical exponential speed-up over
RCF.

4 ABSTRACT PARTIAL CAD I: THE LIFTING PHASE (EXTENDED TECHNICAL REPORT)

We shall define CAD by induction on dimension4. A CAD of R is a decomposition of
R into finitely many cells ci ⊆ R s.t. each ci is of the form (i) {α1}, or (ii)]α1, α2[, or (iii)
]-∞, α1[or]α1,+∞[for algebraic real numbers αi.
Given a set of univariate polynomials P = {p1, . . . , pk} ∈ Z[x], the CAD induced by P is
simply the collection of roots of the polynomials pi and the open intervals they induce.

Example 1. Let P = {x− 1, x2 − 2}. Then, the CAD induced by P is as follows:

c1 =]-∞,−
√

2[, c2 = {−
√

2}, c3 =]−
√

2, 1[, c4 = {1},

c5 =]1,
√

2[, c6 = {
√

2}, c7 =]
√

2,+∞[.

An important observation about a CAD of R1 is that there is a natural ordering between
the cells. That is, in the above example it makes sense to say

c1 < c2 < c3 < c4 < c5 < c6 < c7.

This ordering property of cells is fundamental to the definition of CADs in higher dimensions
and will allow us to obtain a CAD for Ri+1 from a CAD for Ri. Observe that for CADs
of R, there are essentially two types of cells — singleton pointsets and open intervals. This
dichotomy will continue in higher dimensions with the distinction between sections and
sectors.

In what follows, let A be a region of Ri. We shall call A× R the cylinder over A and
denote it by Z(A).

Definition 2.1 (Stack). Let f1, . . . , fk ∈ C(A,R). That is, fj is a continuous function from
A to R. Furthermore, suppose that the images of the fj are ordered over A s.t. ∀α ∈
A (fj(α) < fj+1(α)). Then, f1, . . . , fk induce a stack S over A, where S is a decomposition
of Z(A) into 2k + 1 regions of the following form:

• r1 = {〈α, x〉 | α ∈ A, x < f1(α)},
r3 = {〈α, x〉 | α ∈ A, f1(α) < x < f2(α)},
...
r2k−1 = {〈α, x〉 | α ∈ A, fk−1(α) < x < fk(α)},
r2k+1 = {〈α, x〉 | α ∈ A, fk(α) < x},
• r2 = {〈α, x〉 | α ∈ A, x = f1(α)},

...
r2k = {〈α, x〉 | α ∈ A, x = fk(α)}.

We call regions of the odd index form sectors and regions of the even index form sections.

We may now give the inductive step of the CAD definition. A CAD of Ri+1 will be obtained
from a CAD C of Ri by constructing a stack over every cell in C.

Definition 2.2 (CAD in Ri+1). An algebraic decomposition Ci+1 of Ri+1 is a CAD iff Ci+1

is a union of stacks Ci+1 =
⋃k

j=1wj , s.t. the stack wj is constructed over cell cj in a CAD

Ci = {c1, . . . , ck} of Ri.

The P -invariance property will allow us to use CADs to make ∃ RCF decisions.

4We shall speak freely of the symbolic manipulation and arithmetic of (irrational) real algebraic numbers.
See, e.g., [3] for an algorithmic account.

ABSTRACT PARTIAL CAD I: THE LIFTING PHASE (EXTENDED TECHNICAL REPORT) 5

Definition 2.3 (P-invariance). Let P = {p1, . . . , pk} ⊂ Z[x1, . . . , xn] and A be a region of
Rn. Then, we say A is P -invariant iff every member of P has constant sign on A. That is
given any pi ∈ P ,

∀~r ∈ A(pi(~r) = 0) ∨ ∀~r ∈ A(pi(~r) > 0) ∨ ∀~r ∈ A(pi(~r) < 0).

Given a CAD C, we say C is P -invariant iff every cell of C is P -invariant.

2.1. CAD Construction and Evaluation for ∃ RCF. The use of CADs for deciding ∃
RCF sentences will take place in four steps. In what follows, ϕ is an ∃ RCF sentence and
P = {p1, . . . , pk} ⊂ Z[x1, . . . , xn] is the collection of polynomials of ϕ.

: Projection The projection phase will begin with P and iteratively apply a projection
operator Proji of the form Proji : 2Z[x1,...,xi+1] → 2Z[x1,...,xi] until a set of polynomials
is obtained over Z[x1]. This process will consist of levels, one for each dimension, s.t.
at each level i we will have what is called a level-i projection set, Pi ⊂ Z[x1, . . . , xi].
These level-i projection sets will have a special property: If we have a Pi-invariant
CAD of Ri, then we can use this CAD to construct a Pi+1-invariant CAD of Ri+1.

: Base The base phase consists of computing a P1-invariant CAD of R1, implicitly
described as a sequence of sample points, one for each cell in the CAD. This can be
done by univariate real root isolation and basic machinery for arithmetic with real
algebraic numbers. Let us suppose we have done this and our sequence of sample
points is ~s1 < ~s2 < . . . < ~s2m+1.

: Lifting The lifting phase will take an implicit description of a P1-invariant CAD of
R1 and progressively transform it into an implicit description of Pn-invariant CAD
of Rn. Let C = {c1, . . . , cm} be the Pi-invariant CAD for Ri which we will lift to a
Pi+1-invariant CAD of Ri+1. Let S = {~s1, . . . , ~sm} be our set of sample points, one
from each cell in C. Then, for each cell cj , we will use the sample point ~sj ∈ cj to
construct a set of sample points in Ri+1 corresponding to a stack over cj :
(1) As ~sj ∈ Ri, we have that ~sj = 〈r1, . . . , ri〉 for some r1, . . . , ri ∈ R.
(2) Let Pi+1[~sj] denote Pi+1[x1 7→ r1, x2 7→ r2, . . . , xi 7→ ri]. Then Pi+1[~sj] ⊂

Z[xi+1] is a univariate family of polynomials.
(3) Using the same process as we did in the base phase, compute a Pi+1[~sj]-invariant

CAD of R1. Let this CAD be represented by a sequence of sample points
~t1 < ~t2 < . . . < ~t2v+1 ∈ R.

(4) Then, the stack over cj will be represented by the set of 2v + 1 sample points

obtained by appending each ~tj to the lower-dimensional sample point ~sj . That
is, our stack over cj will be represented by the following sequence of sam-
ple points ~z1, . . . , ~z2v+1 in Ri+1: ~z1 = 〈r1, . . . , ri, t1〉, ~z2 = 〈r1, . . . , ri, t2〉, . . .,
~z2v+1 = 〈r1, . . . , ri, t2v+1〉.

In the above construction, we call the cell cj (or the sample point representing it,
~sj) the parent of the stack {~z1, . . . , ~z2v+1}.

: Evaluation Let S = {~s1, . . . , ~sm} ⊂ Rn be our final set of sample points. Return
the boolean value

∨
~r∈S QF (ϕ)[~r].

6 ABSTRACT PARTIAL CAD I: THE LIFTING PHASE (EXTENDED TECHNICAL REPORT)

2.2. Partial CAD. Let us now sketch the idea of partial CAD, due to Collins and Hong
[5]. As it stands, the CAD construction algorithm will build a P -invariant CAD induced
by the polynomials P of an ∃ RCF formula ϕ without paying any attention to the logical
content of the formula itself. But, when performing lifting, i.e., constructing a stack of
regions of Ri+1 over a lower-dimensional cell cj ⊂ Ri, we may be easily able to see —
simply by substitution and evaluation — that the formula QF (ϕ) could never be satisfied
over cj . For instance, let QF (ϕ) =

(
(x44 + x3x

3
2 + 3x1 > 2x41) ∧ (x21 > x2 + x3)

)
. If cj is

a cell in a P3-invariant CAD of R3 represented by the sample point ~sj = 〈0, 1, 5〉, then we
can see QF (ϕ) will never be satisfied over a cell in a stack which is a child of cj . Thus, we
need not lift over cj and can eliminate it.

This is the idea behind partial CAD when applied to ∃ RCF formulas: Before lifting
over a cell in a CAD of Ri, check if there are any atoms in your formula only involving the
variables x1, . . . , xi. If so, then perform partial evaluation of your formula by evaluating
those atoms upon your sample point in Ri, and then use simple propositional reasoning
to try to deduce the truth of your formula. This can also allow us to find a satisfying
assignment for the variables in QF (ϕ) without constructing a whole CAD. For instance, let
QF (ϕ) =

(
(x44 + x3x

3
2 + 3x1 > 2x41) ∨ (x21 < x2)

)
. If cj is a cell in a P2-invariant CAD of

R2 represented by the sample point ~sj = 〈−1, 2〉, then we can see immediately by substi-
tution that QF (ϕ) is satisfiable over R4. As a witness to this satisfiability, we may return
〈−1, 2, r3, r4〉 where r3, r4 ∈ R are arbitrary.

3. Abstract Partial CAD

From a high level of abstraction, we can see partial CAD to be normal CAD augmented
with three pieces of algorithmic data:

(1) A strategy for selecting lower-dimensional cells to use for evaluating lower-dimensional
atoms in our input formula,

(2) An algorithm which when given a cell cj will construct a formula F (cj) which, if it
both has a truth value and is decided, can be used to tell (i) if the cell cj can be
thrown away (i.e., F (cj) is decided to be false), or (ii) if a satisfying assignment
for our formula can be extracted already from a lower-dimensional cell (i.e., F (cj)
is decided to be true),

(3) A proof procedure which will be used to decide the formulas F (cj) generated by the
algorithm above.

In fact, in their original paper on partial CAD, Collins and Hong make the point that
different cell selection strategies could be used and even implement and experiment with a
number of them5. For partial CAD restricted to ∃ RCF, these three pieces of algorithmic
data described above would be:

(1) Select cells ci ∈ C in some specified enumeration order (specified by s):
cs(1), cs(2), cs(3),

(2) Given a cell cj represented by a sample point ~sj = 〈r1, . . . , ri〉 ∈ Ri, the formula
F (cj) will be constructed from our original ∃ RCF formula ϕ by the following
process:

5For Collins and Hong, a cell selection strategy selects single cells in some specified order. In Abstract
Partial CAD, cell selection strategies will select sets of cells in some specified order and ∃ RCF proof
procedures will be applied to see if every cell in a selected set of cells may be eliminated.

ABSTRACT PARTIAL CAD I: THE LIFTING PHASE (EXTENDED TECHNICAL REPORT) 7

(a) Let ϕ′ be QF (ϕ) augmented by instantiating x1 with r1, x2 with r2,
(b) Evaluate all variable-free atoms in ϕ′ to obtain a new formula ϕ′′.
(c) Replace all (unique) variable-containing atoms in ϕ′′ with fresh propositional

variables to obtain a new formula F (cj).
(3) Use a propositional logic proof procedure to attempt to decide F (cj).

If F (cj) is false (i.e., unsatisfiable), cell cj can be abandoned and we need not lift over it.
If F (cj) is true (i.e., tautologous), then we can extract a witness to the truth of ϕ from
the sample point ~sj . Otherwise, we lift over cj . These three pieces of data give us the
widely-used partial CAD of Collins and Hong. But, from this point of view, we see that
there are many other choices we could make.

3.1. Stages, Theatres and Lifting. The fundamental notion of AP-CAD will be that of
an stage6. Let L∃OR be the fragment of the language of ordered rings consisting of purely
∃ prenex sentences.

Definition 3.1 (Stage). A stage A = 〈〈S, w〉,F,P〉 will be given by three pieces of algo-
rithmic data. We describe a stage by how it acts in the context of a fixed (but arbitrary)
i-dimensional space Ri. These data are as follows:

(1) A cell selection strategy for selecting subsets of Ci for analysis (we call such a subset
a “selection of cells”),

(2) A formula construction strategy for constructing an ∃ RCF formula whose truth
value will correspond to the relevance of a selection of cells (we call such a formula
a “cell selection relevance formula”),

(3) An ∃ RCF proof procedure used to (attempt to) decide the truth or falsity of a cell
selection relevance formula.

In the context of CAD construction, sample points will be eliminated when their corre-
sponding cells are deemed to be irrelevant to the ∃ RCF formula inducing the CAD. This
removal might then result in a set of sample points for which the cell selection function
behaves differently than it did initially. This motivates the containment axiom for covering
width functions, so that these dynamics do not result in a non-terminating CAD-based deci-
sion algorithm employing the stage machinery. In what follows, let Ri = {s ⊂ Ri | |s| < ω}.

(1) A cell selection strategy consists of two components:
(a) A covering width function w : Ri → N,
(b) A cell selection function S : Ri × N → Ri obeying for all Si ∈ Ri and all

j ∈ {1, . . . , w(Si)} the containment axiom: S(Si, j) ⊂ Si.
(2) A formula construction strategy is a function F : L∃OR×Ri → L∃OR obeying certain

relevance judgment axioms. To describe these axioms, we need the context of a fixed
(but arbitrary) ∃ RCF formula and an associated Pi-invariant CAD of Ri. Let
ϕ be an ∃ RCF formula with polynomials P ⊂ Z[x1, . . . , xn] and let Pn, . . . , P1

be a sequence of level-(n, . . . , 1) projection sets rooted in P (recall Pn = P). Let
Ci = {c1, . . . , cm} be a Pi-invariant CAD of Ri with Si a set of sample points
drawn from a subset of the cells in Ci. If we are given a set of sample points
{ ~sa1 , . . . ~sav} ⊆ Si, then 4({ ~sa1 , . . . ~sav}) will denote the set of cells from which
the sample points ~saj are drawn. Then, for each set of sample points Si and each
j ∈ {1, . . . , w(Si)} the following relevance judgment axioms must hold:

6The intended connotation is of a stage in a theatre.

8 ABSTRACT PARTIAL CAD I: THE LIFTING PHASE (EXTENDED TECHNICAL REPORT)

RCF |= ¬F(ϕ,S(Si, j)) =⇒ N (ϕ,S(Si, j)),

and

RCF |= F(ϕ,S(Si, j)) =⇒ RCF |= ϕ,

where N (ϕ, { ~sa1 , . . . ~sav}) means that no child (at any ancestral depth, i.e., in a
Pi+1-invariant CAD of Ri+1, in a Pi+2-invariant CAD of Ri+2, . . . , in a Pn-invariant
CAD of Rn) of any cell in the set ∆({ ~sa1 , . . . , ~sav}) will satisfy QF (ϕ).

(3) An ∃ RCF proof procedure is a function

P : L∃OR →

{true, false,unknown} ∪
⋃

j∈N+

Rj

obeying the soundness axioms:

P(ψ) = true =⇒ RCF |= ψ,

P(ψ = false =⇒ RCF |= ¬ψ,

P(ψ) ∈ Rj =⇒ RCF |= QF (ψ)[P(ψ)]

for arbitrary ψ ∈ L∃OR and with QF (ψ)[P(ψ)] in the final axiom being the sub-
stitution of the j-vector P(ψ) (or an arbitrary extension of it to the dimension of
the polynomials appearing in ψ) into ψ, resulting in a variable-free formula. In this
case, we call P(ψ) a witness to the truth of ψ.

We will want to have the freedom to give our AP-CAD algorithm a sequence of stages,
one for each dimension 1, . . . , n. The intuition is as follows: Stages are introduced so that
one can present a strategy to an underlying CAD decision algorithm which will prescribe a
method for the algorithm to recognise when it can short-circuit certain expensive computa-
tions. If we can abandon a cell at a low dimension, for instance at the base phase or when
beginning to lift over cells of R2, then this can potentially give us hyper-exponential savings
down the line. Thus, it makes sense to arrange stages A1,A2, . . .An so that stage A1 works
hardest to make relevance judgments about cells. For if A1 causes us to throw away cell
cj ⊂ R1, then this could lead to huge savings later. Then, A2 might still work hard but a
bit less hard, and so on. This collection of stages gives rise to the notion of an n-theatre.
In what follows, let Θ be the set of all stages.

Definition 3.2 (Theatre). An n-theatre T is a function T : {1, . . . , n} → Θ.

Stage i in a theatre will be used to make judgments about cells in a Pi-invariant (partial)
CAD of Ri (i.e., at level i). Let us describe a decision method we will use for deciding ∃
RCF sentences in the framework of AP-CAD.

Algorithm 2 (AP-CAD with Theatrical Lifting). Suppose we are given an ∃RCF sentence
ϕ with polynomials P ⊂ Z[x1, . . . , xn], and an n-theatre T.

(1) Projection As with standard P-CAD, compute a sequence of projection sets P1, . . . , Pn.
(2) Base As with standard P-CAD, compute a P1-invariant CAD of R1, C1 = {c1, . . . , c2m+1}

represented by sample points S1 = {~s1, . . . , ~s2m+1}. Set the current dimension
i := 1.

ABSTRACT PARTIAL CAD I: THE LIFTING PHASE (EXTENDED TECHNICAL REPORT) 9

(3) Lifting Let T(i) = Ai = 〈〈Si, wi〉,Fi,Pi〉 be the stage for dimension i, and Si the
set of sample points for the Pi-invariant (partial) CAD of Ri over which we need to
lift.
(a) Let U := wi(Si) and let j := 1.
(b) While j ≤ U do

(i) Let { ~sa1 , . . . , ~sav} := Si(Si, j).
(ii) Let χ := Pi(Fi({ ~sa1 , . . . , ~sav})).
(iii) If χ = true, then return true.
(iv) If χ = 〈x1, . . . , xw〉 ∈ Rw for some w ≤ n, then

(A) Fix an n-dim. extension of χ, e.g., ~r = 〈x1, . . . , xw,~0〉 ∈ Rn.
(B) Evaluate QF (ψ)[~r] and set R ∈ {true, false} to this result.
(C) If R = true, then return ~r as a witness to the truth of ϕ.
(D) If R = false, then return true7.

(v) If χ = false, then set S′i := Si \ { ~sa1 , . . . , ~sav}, else set S′i := Si.
(vi) If S′i = ∅ then return false.
(vii) If S′i = Si then set j := j + 1.

(viii) If S′i ⊂ Si then
(A) Set Si := S′i.
(B) Set U := wi(Si).
(C) Set j := 1.

(c) Now, Si = {~t1, . . . , ~tu} contains sample points corresponding to the cells we
have not deemed to be irrelevant. We need to lift over them.

(i) Let Si+1 := ∅.
(ii) For j from 1 to u do

(A) Substitute the components of ~tj in for the variables x1, . . . , xi in

Pi+1 to obtain a univariate family Pi+1[~tj] ⊂ Z[xi+1].

(B) Compute a Pi+1[~tj]-invariant CAD of R1, represented by sample
points Kj .

(C) Set Si+1 := Si+1 ∪Kj .
(d) Increase the current dimension by setting i := i+ 1.
(e) If i = n then lifting is done and we may proceed to the evaluation phase.
(f) If i < n then we loop and begin the lifting process again, but now with the set

of sample points Si+1.
(4) Evaluation Return the boolean value

∨
~r∈Sn

QF (ϕ)[~r].

Let us prove the correctness of Algorithm 2. This will be straight-forward given the
correctness of the classical CAD-based decision algorithm outlined previously, which we
accept as given.

Theorem 3.3. Algorithm 2 is a sound and complete ∃ RCF proof procedure.

Proof. There are two essential differences between this AP-CAD algorithm and the classical
one. These both take place during lifting. In Algorithm 2, we may

7This is perhaps the one counter-intuitive part of the algorithm. Note, however, that this is actually
correct: By the combination of the second relevance judgment axiom for Fi and the soundness axioms for
Pi, the fact that RCF |= Fi(Si(Si, j)) means that ϕ is true. It’s just that the witness Pi computed for
the truth of Fi(Si(Si, j)) might fail to be a witness for ϕ. In this case, we simply know ϕ is true without
knowing a witness for it.

10 ABSTRACT PARTIAL CAD I: THE LIFTING PHASE (EXTENDED TECHNICAL REPORT)

• discard a collection of cells if they are deemed to be irrelevant, and
• quit CAD construction altogether and return either true or a witness to the truth

of our input formula ϕ, or return false in the case that all cells have been discarded.

If {sa1 , . . . , sav} ⊂ Ri is a set of sample points for a Pi-invariant partial CAD of Ri, we
will say that {sa1 , . . . , sav} respects the truth of ϕ to mean that there is some n-dimensional
child of a sample point in {sa1 , . . . , sav} satisfying QF (ϕ) iff ϕ is true.

We will proceed by induction, assuming that the algorithm has constructed a set of
sample points {sa1 , . . . , sav} for a Pi-invariant partial CAD of Ri which respects the truth
of ϕ. The base case is verified by noting that the base phase of the algorithm constructs a
full set of sample points for a P1-invariant CAD of R1 which trivially respects the truth of
ϕ.

Let us first observe that if we discard a collection of cells because they have been deemed
to be irrelevant, then we have not affected the soundness of the decision algorithm.

Cells of a Pi-invariant partial CAD of Ri will only be deemed to be irrelevant when
an stage Ai indicates this is the case. The key line in the algorithm is 3(b)v, where χ =
Pi(Fi(ϕ, {sa1 , . . . , sav})). For this discarding to have occurred, we must have χ = false. By
the second soundness axiom for Pi, this means

RCF |= ¬Fi(ϕ, {sa1 , . . . , sav}).
By the first relevance judgment axiom for Fi, this means that N (ϕ, {sa1 , . . . , sav}) must
hold. Recall that N (ϕ, {sa1 , . . . sav}) means that no child (at any ancestral depth, i.e., in a
Pi+1-invariant CAD of Ri+1, in a Pi+2-invariant CAD of Ri+2, . . . , in a Pn-invariant CAD
of Rn) of any cell in the set ∆({sa1 , . . . , sav}) of cells corresponding to the sample points
{sa1 , . . . , sav} will satisfy QF (ϕ). Thus, by our induction hypothesis, removing the cells
from our analysis does not affect the soundness of the decision algorithm. In particular, if we
have removed all cells, this means that no ancestor of the cells at our current dimension can
satisfy QF (ϕ). By our induction hypothesis this means that there exists no n-dimensional
real vector satisfying QF (ϕ), and thus ϕ is false as the algorithm will report via line 3(b)vi.

Let us now turn to the second difference: Algorithm 2 may quit CAD construction
altogether and return either true or a witness satisfying QF (ϕ).

In the latter case, a witness is only returned if the algorithm verified, by evaluation,
that the witness satisfies QF (ϕ). That this does not affect soundness is apparent.

Let us examine the remaining case, when the algorithm returns simply true during lift-
ing. The first place this occurs is on line 3(b)iii. This happens when Pi(Fi(ϕ, {sa1 , . . . , sav}))
is equal to true. By the first soundness axiom for Pi, this means

RCF |= Fi(ϕ, {sa1 , . . . , sav}).
By the second relevance judgment axiom for Fi, it then follows that ϕ is in fact true over
RCF and so the soundness of the algorithm is not affected.

Finally, let us consider the second scenario in which this could occur, line 3(b)ivD. In
this case, Pi(Fi(ϕ, {sa1 , . . . , sav})) ∈ Rj for some j ∈ N. By the third soundness axiom for
Pi, this means that

RCF |= QF (Fi(ϕ, {sa1 , . . . , sav}))[Pi(Fi(ϕ, {sa1 , . . . , sav}))].
But this implies that

RCF |= Fi(ϕ, {sa1 , . . . , sav})).
So, as in the last case, by the second relevance judgment axiom for Fi, this means that ϕ is
in fact true.

ABSTRACT PARTIAL CAD I: THE LIFTING PHASE (EXTENDED TECHNICAL REPORT) 11

Finally, a word on termination of the while loop (cf. line 3b): Consider a pass of the
loop. If any sample points in Si are discarded, then |Si| is reduced. If no sample points in Si
are discarded, then U remains constant and j is incremented by 1. Thus, the lexicographic
product measure µ = 〈|Si|, U − j + 1〉 is always decreased along the ordinal ω2. If ever |Si|
is reduced to 0, then line 3(b)vi guarantees termination. Combining this with the fact that
the loop termination condition is (j > U), it follows by the well-foundedness of ω2 that the
loop must terminate.

Thus, by the correctness of the classical CAD-based decision algorithm, it follows by
induction that Algorithm 2 is sound and terminating.

4. Experimental Results

As an experiment, we built a concrete AP-CAD instance combining RealPaver [9], a modern
high-performance interval constraint solver, with partial formula evaluation upon sample
points as found in classical partial CAD. This is a significant extension of earlier work we
have done on an interval-based AP-CAD instance [13], extending this previous work both
in terms of the power of the interval method considered and in the scope of the empirical
study8. As CAD performance is strongly dependent on the number of cells retained at each
dimension, we shall compare this for standard P-CAD and this AP-CAD w.r.t. a family
of real-world benchmarks derived from the MetiTarski project [1]. Let us first define our
AP-CAD theatre and then discuss our experiments with it.

4.1. Definition of our AP-CAD Theatre. In defining this theatre, it will be useful to
allow our functions to work explicitly over lists of sample points as opposed to sets of sample
points. To do so, we use the maps

StoL : Ri → Lists(Ri)

and
LtoS : Lists(Ri)→ Ri.

StoL will map a set of sample points to a sorted representation of the set as a list, and LtoS
will map a list of sample points to its underlying set. We use the lexicographic product
order of the normal ordering < on R to order the sample points. If l is a list, then |l| will
be the length of the list. If l is a list and 0 ≤ m ≤ n ≤ |l|, then subseq(l,m, n) will be the
subsequence of l of the form9 〈l(m), . . . , l(n− 1)〉. We now build a stage for our theatre.

: cell selection function S(s, n) = LtoS(SLists(StoL(s), n)) where

SLists(l, n) =

l if n ≤ 1,

bSLists(l, k)c if n = 2k,

dSLists(l, k)e if n = 2k + 1,

8The AP-CAD implementation we report upon in the present paper is a new one, implemented within
the open-source computer algebra system SAGE [17]. It is available at the following URL: http://www.cl.
cam.ac.uk/~gp351/sage/.

9This perhaps strange way of indexing list subsequences is used so that our description matches our actual
implemention, as this is how Common Lisp does list subsequencing via the subseq function. For example,
subseq(〈a, b, c〉, 0, 2) = 〈a, b〉 and subseq(〈a, b, c〉, 0, 0) = nil, the empty list.

http://www.cl.cam.ac.uk/~gp351/sage/
http://www.cl.cam.ac.uk/~gp351/sage/

12 ABSTRACT PARTIAL CAD I: THE LIFTING PHASE (EXTENDED TECHNICAL REPORT)

and

blc =

{
subseq(l, 0, k) if |l| = 2k,

subseq(l, 0, k + 1) if |l| = 2k + 1,

and

dle =

{
subseq(l, k, |l|) if |l| = 2k,

subseq(l, k + 1, |l|) if |l| = 2k + 1.

Let us explain these functions in words. The function blc returns the first half of
the list l if |l| is even, and returns the first k + 1 elements of l if |l| = 2k + 1. The
function dle returns the second half of the list l if |l| is even, and returns the final
k elements of l if |l| = 2k + 1. In this way, we always have that the concatenation
of blc and dle is l itself. These two functions are used to “bisect” the list l by the
function SLists, regardless of whether or not |l| is even or odd.

The function SLists(l, n) computes subsequences of the list l in a “divide and
conquer” fashion, with the parameter n specifying which subsequence should be
computed. It is best understood as representing an enumeration of subsequences of
l which have been situated in a binary tree. To illustrate a concrete example, let
l = 〈a1, . . . , a7〉. Then, we have

SLists(l, 1) = l = 〈a1, . . . , a7〉,
SLists(l, 2) = b〈a1, . . . , a7〉c = 〈a1, . . . , a4〉,
SLists(l, 3) = d〈a1, . . . , a7〉e = 〈a5, . . . , a7〉,
SLists(l, 4) = bb〈a1, . . . , a7〉cc = b〈a1, . . . , a4〉c = 〈a1, a2〉,
SLists(l, 5) = db〈a1, . . . , a7〉ce = d〈a1, . . . , a4〉e = 〈a3, a4〉,
SLists(l, 6) = bd〈a1, . . . , a7〉ec = b〈a5, . . . , a7〉c = 〈a5, a6〉,
SLists(l, 7) = dd〈a1, . . . , a7〉ee = d〈a5, . . . , a7〉e = 〈a7〉.

The cell selection function S(s, n) then maps s to an underlying sorted list repre-
sentation StoL(s) and uses SLists to compute the nth subsequence of StoL(s) with
respect to the “divide and conquer” enumeration order given above.

: covering width function We will use a covering width function w of the form

w(s) = |s| − 1.

Given a collection of sample points s, this covering width will cause the AP-CAD
lifting algorithm (cf. Algorithm 2) to attempt to eliminate the cell selections S(s, 0)
through S(s, |s| − 1).

: formula construction function Our formula construction function F : L∃OR ×
Ri → L∃OR will accept an ∃ RCF formula ϕ and a set of i-dimensional sample
points s and work as follows:
(1) Reduce s first by performing the partial formula evaluation process of classical

partial CAD. That is, we iterate over s, and for each sample point ~r of s we
check whether or not QF (ϕ)[~r] has a truth value. If QF (ϕ)[~r] = false, then
we remove ~r from s. If s is made empty by this process, then

F(ϕ, s) = (0 = 1).

If QF (ϕ)[~r] = true, then

ABSTRACT PARTIAL CAD I: THE LIFTING PHASE (EXTENDED TECHNICAL REPORT) 13

F(ϕ, s) = ∃~x [~x = ~r ∧ QF (ϕ)] .

Otherwise, if F(ϕ, s) has not yet been determined, then we continue.
(2) Let minj(s) be the minimal value ever appearing as coordinate j in a sample

point in s. To be precise,

minj(s) = min{πj(x) | x ∈ s},
where πj projects a sample point x ∈ Ri onto its jth coordinate.

(3) Similarly, let maxj(s) be s.t.

maxj(s) = max{πj(x) | x ∈ s}.
(4) Then,

F(ϕ, s) = ∃~x

 i∧
j=1

xj ≥ minj(s) ∧ xj ≤ maxj(s)

 ∧ QF (ϕ)

 .
: ∃ RCF proof procedure

As our ∃ RCF proof procedure, we utilise the high-performance interval con-
straint solver RealPaver [9]. RealPaver has many solving options, and the exact
operation of this ∃ RCF proof procedure in our AP-CAD theatre may be varied by
changing various RealPaver parameters (more on this below). By the nature of in-
terval constraint methods, only answers of infeasible (i.e., that the ∃ RCF sentence
under consideration is false over R) can in general be trusted. Thus, this ∃ RCF
procedure returns false if RealPaver says the formula is infeasible, and unknown
otherwise.

Lemma 4.1. 〈〈S, w〉,F,P〉 as defined above is an AP-CAD stage.

Proof. Assuming the soundness of RealPaver infeasibility judgments, the only non-trivial
property to verify is that our formula construction function F satisfies the relevance judgment
axioms. Let ϕ be an L∃OR formula in x1, . . . , xn and s ⊂ Ri a finite set of i-dimensional
sample points (1 ≤ i ≤ n). We must verify that

RCF |= ¬F(ϕ, s) =⇒ N (ϕ, s),

and
RCF |= F(ϕ, s) =⇒ RCF |= ϕ,

where (restating the property a bit more concretely than its original axiomatisation in
Section 3.1):
N (ϕ, s) means that no child (at any ancestral depth, i.e., in a Pi+1-invariant CAD of

Ri+1, in a Pi+2-invariant CAD of Ri+2, . . . , in a Pn-invariant CAD of Rn) of any sample
point in s will satisfy QF (ϕ).

For the partial formula evaluation reasoning, this is immediate. In the next case, we
have that any child of any sample point in s will satisfy i∧

j=1

xj ≥ minj(s) ∧ xj ≤ maxj(s)

 ,

and so
RCF |= ¬F(ϕ, s) =⇒ N (ϕ, s)

14 ABSTRACT PARTIAL CAD I: THE LIFTING PHASE (EXTENDED TECHNICAL REPORT)

obviously holds. In the second case,

RCF |= F(ϕ, s) =⇒ RCF |= ϕ

is immediate.

Finally, we will turn this AP-CAD stage 〈〈S, w〉,F,P〉 into an AP-CAD theatre T in a
straight-forward fashion:

T(n) = 〈〈S, w〉,F,P〉.
That is, the same stage 〈〈S, w〉,F,P〉 will be used at every dimension during AP-CAD lifting.

4.2. Experiments. We have conducted experiments with this AP-CAD theatre. To study
its performance, we gathered a large collection (≈ 740) of real-world ∃ RCF benchmark
problems arising from the MetiTarski [1] project. MetiTarski is an automated theorem
prover for an undecidable extension of RCF involving transcendental functions such as
sin, cos, ex and log. MetiTarski works to prove universally quantified boolean combinations
of inequalities in this extended theory by reasoning about families of upper and lower bounds
for the functions expressed as rational functions. In the process of reasoning about these
rational functions, MetiTarski derives sequences of ∃ RCF subproblems. The formulas we
consider in our experiments arise in such sequences of subproblems.

For example, one series of ∃ RCF problems we consider called sqrt-1mcosq-7 arises
during MetiTarski’s proof of the following theorem:

∀x, y ∈ R

(
0.05 ≤ x ∧ x < y ∧ y ≤ π

2
=⇒ x

y
≤ 0.1 +

√
1− cos(x)2√
1− cos(y)2

)
.

During its proof of this theorem, MetiTarski generates thousands of ∃ RCF subproblems.
One typical subproblem is the existential closure of the following formula, which is false
over R:

y4 > 4y2 ∧ y14

87178291200
+

y10

3628800
+

y6

720
+
y2

2
>

y12

479001600
+

y8

40320
+
y4

24
+ 1 ∧

y2
(
y8 + 5040y4 + 1814400

)
> 90

(
y8 + 1680y4 + 40320

)
∧

y2
(
y4 + 360

)
> 30

(
y4 + 24

)
∧ y2 > 2 ∧

x14

87178291200
+

x10

3628800
+

x6

720
+
x2

2
<

x16

20922789888000
+

x12

479001600
+

x8

40320
+
x4

24
+ 1 ∧

x12

479001600
+

x8

40320
+
x4

24
+ 1 <

x14

87178291200
+

x10

3628800
+

x6

720
+
x2

2
∧

132x2
(
x8 + 5040x4 + 1814400

)
< x12 + 11880x8 + 19958400x4 + 479001600 ∧

x2
(
x8 + 5040x4 + 1814400

)
> 90

(
x8 + 1680x4 + 40320

)
∧

x2
(
x4 + 360

)
> 30

(
x4 + 24

)
∧ x2 ≥ 2 ∧ x < 0 ∧ x > y ∧ 20y > 1 ∧ 2x < z ∧

10000000z < 31415927 ∧ 5000000z > 15707963

To experiment with our AP-CAD theatre, we compared its execution on a large collec-
tion of MetiTarski ∃ RCF subproblems, both with respect to the number of cells retained
and total CPU time spent. For instance, upon the above problem, P-CAD retains 60 cells
and takes 5.615 CPU sec, while our AP-CAD theatre retains 0 cells and takes 4.386 CPU

ABSTRACT PARTIAL CAD I: THE LIFTING PHASE (EXTENDED TECHNICAL REPORT) 15

sec. In total, we considered 742 ∃ RCF subproblems arising from six MetiTarski transcen-
dental function problems10. Of these 742 problems, 327 are false over R, while 415 are true.
These problems are all full-dimensional (involving only strict inequalities), and we thus are
able to make use of some efficiency enhancements for the core CAD machinery which un-
derlies both the P-CAD and AP-CAD method we consider. These enhancements involve
appealing to McCallum’s theorem [12], which allows us to only consider full-dimensional
cells (selecting rational sample points, never having to compute with irrational real alge-
braic numbers), and the use of the Brown-McCallum projection operator [4], which among
its many virtues allows us to avoid the costly computation of subresultants.

Broadly summarising: 27% of problems have less cells retained by the AP-CAD method
than by normal P-CAD. Of these problems for which AP-CAD causes a cell reduction, AP-
CAD on average reduces the number of cells retained by 89%. For problems which are false
over R, this cell reduction results in an average of 15% reduction in total CPU time. For
problems which are false over R s.t. AP-CAD causes cell reduction and reduces the total
CPU time, the average reduction in CPU time is 39%. Over all problems in which AP-CAD
reduced cell reduction (including also those problems which are true over R), the average
total CPU time saved is roughly 2%. For 72 out of the 742 problems, AP-CAD completely
reduces the number of cells retained to 0 while P-CAD retains a non-zero number of cells (at
least 14 on average, and in 4 cases as many as 200). Each of these 72 problems is false over
R, and this collection comprises 22% of the false problems. The average CPU time saved
by AP-CAD for these problems is 41%. Over all 742 problems, the cummulative ratio of
(total P-CAD CPU time)
(total AP-CAD CPU time) is roughly 73%. Over the 327 false problems, this cummulative ratio

is roughly 86%. In the following three tables, we present a collection of (psuedo-)randomly
sampled results from our experiments. The first table consists of results sampled from all
742 problems. The second table consists of results sampled from the false problems. The
third table consists of results sampled from the false problems for which only AP-CAD was
able to eliminate all cells.

Finally, let us close with some experimental observations. First, the AP-CAD instance
we constructed and experimented with in this section is but one of many possible such
instances. The fact that even such a simple instance of the AP-CAD paradigm shows
promise is encouraging. By virtue of the fact that the judgments of RealPaver (and other
similar interval constraint solvers) can only be trusted when they decide an ∃ RCF problem
to be infeasible (false over R), it is perhaps not surprising that this AP-CAD theatre did
not generally improve upon the performance of P-CAD for problems true over R (and
these true problems comprise a majority of our benchmark set). Also, RealPaver is a
powerful engine, and its execution comes with a nontrivial overhead. We have not begun
to take advantage of RealPaver’s large collection of solving heuristics. We have only used
it in a naive way, as it comes “out of the box.” Still, using it in the context of AP-
CAD execution upon so many derived subproblems, a majority of which are true and thus
cannot benefit from the RealPaver judgements, seems nevertheless to cause a relatively small
slowdown overall. For the problems for which the AP-CAD helped, it was in many cases
able to reduce the number of cells retained and the total CPU time taken by substantially.
Though these experiments are most preliminary and should be significantly extended, we

10These top-level MetiTarski problems may be found in the MetiTarski benchmark
set, available at http://www.cl.cam.ac.uk/~lp15/papers/Arith/. The problems consid-
ered are polypaver-bench-exp-3d, polypaver-bench-sqrt, polypaver-sqrt-circles-1a,
polypaver-sqrt-circles-2a, polypaver-sqrt43-int-3vars, and sqrt-1mcosq-7.

http://www.cl.cam.ac.uk/~lp15/papers/Arith/

16 ABSTRACT PARTIAL CAD I: THE LIFTING PHASE (EXTENDED TECHNICAL REPORT)

problem p cells ap cells p secs ap secs status
polypaver-bench-sqrt-3d-0205 36 36 0.215 0.686 false
polypaver-bench-exp-3d-0132 8 8 0.012 0.309 true
polypaver-bench-sqrt-3d-0141 0 0 0.027 0.027 false
sqrt-1mcosq-7-0036 9 9 0.067 0.163 true
sqrt-1mcosq-7-0142 12 12 0.136 0.316 true
polypaver-bench-sqrt-3d-0267 0 0 0.040 0.037 false
sqrt-1mcosq-7-0209 96 12 6.837 6.037 true
sqrt-1mcosq-7-0021 4 4 0.017 0.046 true
polypaver-sqrt43-int-3vars-0046 40 40 0.822 1.743 false
polypaver-bench-sqrt-3d-0275 60 0 0.455 0.136 false
polypaver-bench-sqrt-3d-0302 120 120 0.719 2.163 true
polypaver-bench-exp-3d-0130 10 0 0.132 0.121 false
sqrt-1mcosq-7-0138 8 8 0.101 0.181 true
polypaver-bench-sqrt-3d-0207 50 50 0.285 0.571 false
polypaver-bench-exp-3d-0038 3 3 0.004 0.003 true
polypaver-bench-exp-3d-0027 4 4 0.025 0.027 false
sqrt-1mcosq-7-0225 12 0 0.246 0.139 false
sqrt-1mcosq-7-0117 2 2 0.013 0.010 true
polypaver-bench-sqrt-3d-0395 132 36 0.999 1.751 true
sqrt-1mcosq-7-0153 56 16 2.891 2.280 true

Figure 1: A sample of twenty results from the set of all problems

problem p cells ap cells p secs ap secs status
polypaver-bench-sqrt-3d-0166 0 0 0.027 0.028 false
polypaver-bench-exp-3d-0027 4 4 0.025 0.027 false
polypaver-bench-exp-3d-0099 12 0 0.080 0.035 false
polypaver-bench-exp-3d-0055 8 8 0.057 0.061 false
polypaver-sqrt43-int-3vars-0049 0 0 0.657 0.620 false
polypaver-bench-sqrt-3d-0262 90 0 0.472 0.147 false
polypaver-bench-exp-3d-0109 10 0 0.062 0.049 false
polypaver-sqrt43-int-3vars-0106 32 32 1.063 1.276 false
sqrt-1mcosq-7-0126 0 0 0.013 0.028 false
polypaver-bench-sqrt-3d-0110 0 0 0.007 0.006 false
polypaver-bench-exp-3d-0090 12 0 0.049 0.035 false
polypaver-bench-sqrt-3d-0318 170 170 1.048 4.309 false
polypaver-bench-exp-3d-0102 30 30 0.112 0.230 false
polypaver-bench-sqrt-3d-0300 0 0 0.104 0.102 false
polypaver-bench-sqrt-3d-0288 50 0 0.352 0.121 false
sqrt-1mcosq-7-0084 0 0 0.051 0.050 false
polypaver-bench-sqrt-3d-0343 189 0 1.489 0.705 false
sqrt-1mcosq-7-0093 4 4 0.049 0.046 false
polypaver-bench-exp-3d-0147 0 0 0.009 0.009 false
polypaver-sqrt-circles-2a-0016 0 0 0.006 0.006 false

Figure 2: A sample of twenty results from the set of false problems

ABSTRACT PARTIAL CAD I: THE LIFTING PHASE (EXTENDED TECHNICAL REPORT) 17

problem p cells ap cells p secs ap secs status
polypaver-bench-exp-3d-0088 10 0 0.055 0.038 false
sqrt-1mcosq-7-0045 3 0 0.027 0.018 false
polypaver-bench-sqrt-3d-0371 132 0 0.987 0.473 false
polypaver-bench-exp-3d-0099 12 0 0.080 0.035 false
polypaver-sqrt43-int-3vars-0048 54 0 3.961 3.755 false
polypaver-bench-exp-3d-0130 10 0 0.132 0.121 false
polypaver-bench-exp-3d-0079 10 0 0.085 0.067 false
polypaver-bench-sqrt-3d-0283 64 0 0.754 0.070 false
polypaver-bench-exp-3d-0143 10 0 0.137 0.120 false
polypaver-bench-exp-3d-0061 12 0 0.047 0.033 false
polypaver-bench-sqrt-3d-0342 280 0 3.704 2.442 false
sqrt-1mcosq-7-0049 3 0 0.031 0.019 false
polypaver-bench-sqrt-3d-0291 50 0 0.354 0.123 false
sqrt-1mcosq-7-0228 12 0 0.409 0.275 false
polypaver-bench-sqrt-3d-0343 189 0 1.489 0.705 false
polypaver-bench-sqrt-3d-0202 50 0 0.374 0.076 false
polypaver-bench-sqrt-3d-0235 90 0 0.473 0.146 false
sqrt-1mcosq-7-0235 12 0 0.258 0.145 false
polypaver-bench-exp-3d-0109 10 0 0.062 0.049 false
polypaver-bench-sqrt-3d-0234 50 0 0.397 0.159 false

Figure 3: A sample of twenty results where AP-CAD eliminates all cells

are encouraged by the potential this framework has for orchestrating, in a principled way,
a powerful heteregeneous collection of ∃ RCF proof methods. Now that the experimental
framework is in place (and made readily available through the open-source computer algebra
system SAGE), we should design many new AP-CAD theatres and experiment with them
heavily.

Second, though we have been working solely with full-dimensional variants of CAD-
based methods, AP-CAD may prove to be even more useful when it comes to full-on CAD-
based methods which require irrational algebraic number computations. The reason is that
through cell selection, formula construction and proof procedure execution, one has the
ability to eliminate a set of many sample points all at once using AP-CAD, and in this
way many irrational algebraic sample points may be eliminated with only rational number
computations. To use our concrete AP-CAD instance as an example in the context of
standard CAD not restricted to full-dimensional lifting, one has the potential to eliminate
a set of sample points such as {−3,−

√
2,−1,

√
2,
√

2 + 3
√

3, 15} simply by constructing
and refuting a formula that only references this set of sample points using its minimal and
maximal rational values, e.g., through a statement of the form F ∧ (x1 ≥ −3 ∧ x1 ≤ 15)
for some F . The ability to eliminate multiple irrational algebraic sample points simply
through reasoning about formulas involving rational numbers seems very promising for the
extension of these ideas to unrestricted cell decompositions.

18 ABSTRACT PARTIAL CAD I: THE LIFTING PHASE (EXTENDED TECHNICAL REPORT)

5. Conclusion

AP-CAD allows strategic algorithmic data to be used to “short-circuit” expensive computa-
tions during the lifting phase of a CAD-based decision algorithm. This provides a principled
approach for utilising fast, sound but possibly incomplete ∃ RCF proof procedures to en-
hance a complete decision method without threatening its completeness. We see many ways
this work might be extended. It would be very interesting to work out similar machinery
to be used during the projection phase of P-CAD. For this work to bear serious practical
fruit, many more AP-CAD stages should be constructed and experimented with heavily.

References

[1] B. Akbarpour and L. Paulson. MetiTarski: An Automatic Theorem Prover for Real-Valued Special
Functions. Journal of Automated Reasoning, 44(3):175–205, Mar. 2010.

[2] J. Avigad and H. Friedman. Combining Decision Procedures for the Reals. In Logical Methods in Com-
puter Science, 2006.

[3] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry. Springer-Verlag, Secaucus,
NJ, USA, 2006.

[4] C. W. Brown. Improved Projection for Cylindrical Algebraic Decomposition. Journal of Symbolic Com-
putation, 32:447–465, November 2001.

[5] G. E. Collins and H. Hong. Partial Cylindrical Algebraic Decomposition for Quantifier Elimination.
J.Sym.Comp., 12(3):299–328, 1991.

[6] M. Daumas, D. Lester, and C. Muñoz. Verified Real Number Calculations: A Library for Interval
Arithmetic. IEEE Trans. Comp., 58(2):226–237, 2009.

[7] J. H. Davenport and J. Heintz. Real Quantifier Elimination is Doubly Exponential. J. Symb. Comput.,
5:29–35, 1988.

[8] S. Gao, M. Ganai, F. Ivancic, A. Gupta, S. Sankaranarayanan, and E. Clarke. Integrating ICP and
LRA solvers for deciding nonlinear real arithmetic problems. In FMCAD, 2010, pages 81–89, 2010.

[9] L. Granvilliers and F. Benhamou. RealPaver: An Interval Solver using Constraint Satisfaction Tech-
niques. ACM TRANS. ON MATHEMATICAL SOFTWARE, 32:138–156, 2006.

[10] J. Harrison. Verifying Nonlinear Real Formulas via Sums of Squares. In TPHOLs’07, pages 102–118,
Berlin, Heidelberg, 2007. Springer-Verlag.

[11] H. Hong. Comparison of Several Decision Algorithms for the Existential Theory of the Reals. Technical
report, RISC, 1991.

[12] S. McCallum. Solving Polynomial Strict Inequalities using Cylindrical Algebraic Decomposition. The
Computer Journal, 36(5), 1993.

[13] G. O. Passmore. Combined Decision Procedures for Nonlinear Arithmetics, Real and Complex. PhD
thesis, University of Edinburgh, 2011.

[14] G. O. Passmore and P. B. Jackson. Combined Decision Techniques for the Existential Theory of the
Reals. In Calculemus’09, 2009.

[15] F. Pfender and G. M. Ziegler. Kissing Numbers, Sphere Packings, and Some Unexpected Proofs. Notices
of the A.M.S., 51:873–883, 2004.

[16] A. Platzer, J.-D. Quesel, and P. Rümmer. Real World Verification. In CADE-22, pages 485–501, Berlin,
Heidelberg, 2009. Springer-Verlag.

[17] W. Stein et al. Sage Mathematics Software (Version x.y.z). The Sage Development Team, YYYY.
http://www.sagemath.org.

[18] A. Tarski. A Decision Method for Elementary Algebra and Geometry. RAND Corporation, 1948.
[19] A. Tiwari. An Algebraic Approach for the Unsatisfiability of Nonlinear Constraints. In CSL 2005,

volume 3634 of LNCS, pages 248–262. Springer, 2005.

	1. Introduction
	2. CAD Preliminaries
	2.1. CAD Construction and Evaluation for RCF
	2.2. Partial CAD

	3. Abstract Partial CAD
	3.1. Stages, Theatres and Lifting

	4. Experimental Results
	4.1. Definition of our AP-CAD Theatre
	4.2. Experiments

	5. Conclusion
	References

