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1 Overview: ACF0 and a Series of Notes

In this short expository note, we present a self-contained proof that algebraically closed fields of
characteristic zero admit elimination of quantifiers over the elementary language of rings. We do
this by fleshing out a method due to Muchnik1 (and possibly Cohen2). This note is the first part of
a series on algebro-geometric quantifier elimination: the next note shall use much of the machinery
developed herein as the basis of a presentation of quantifier elimination over real closed fields, using
again the method of Muchnik. Further notes in this series shall be written on quantifier elimi-
nation techniques based upon Gröbner bases, cylindrical algebraic decomposition and its variants,
virtual term substitution, connected component sampling and the computation of semialgebraic
Betti numbers.

2 Algebraically Closed Fields

2.1 Axiomatisation of ACF

We now present an axiomatisation of the elementary theory of algebraically closed fields. We shall
then prove that this theory, once extended by fixing a characteristic (in our case, zero), admits
elimination of quantifiers. This result is due, using predominantly syntactic methods, to Tarski
[Tar48], though it was subsequently recast in model-theoretic terms by Abraham Robinson in his
1949 Ph.D. thesis [Rob49]. Many approaches to this result have since been developed. We have
chosen to present a method due to Muchnik and discuss why we made this choice below.

∗Most of this note has been extracted from Section 2.1 of Chapter 2 (Mathematical Preliminaries) of my
University of Edinburgh PhD dissertation. I am very thankful to Dr. Paul B. Jackson for his careful reading and
many suggestions. If you wish to cite this note, please cite my PhD dissertation (Combined Decision Procedures for
Nonlinear Arithmetics, Real and Complex ) instead.

1Unfortunately, it seems Muchnik never published his result. Instead, it was communicated to his students and
colleagues and then appeared in two publications in Russian [Sem86, SV00] in which it was attributed to him. We have
learned the method from two excellent English reconstructions of Muchnik’s approach [Sch04, MO02]. For pedagogical
reasons, we have presented the method in substantially more detail than the sources from which we learned it.

2Personal discussion with Alexander Shen.
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Definition 2.1 (Axiomatisation of ACF). Let LR be the first-order language with constants {0, 1},
relation symbol {=}, function symbols {+,−, ∗}, and logical symbols {∧,∨,¬,∀,∃}. LR is called
the language of rings. Given an LR term t, we use tn as shorthand for t ∗ t ∗ . . . ∗ t and (t 6= 0) as
shorthand for ¬(t = 0). As no ambiguity will arise, we use = as both object-theoretic and meta-
theoretic equality. ACF, the elementary theory of algebraically closed fields, is then the LR-theory
defined as:

ACF = F
⋃

UPR,

where

1. F is an axiomatisation of the elementary LR-theory of fields,

2. U = {∀a0, . . . , an−1∃x(a0 + a1 ∗ x+ a2 ∗ x2 + . . .+ an ∗ xn = 0) | n ∈ N s.t. n ≥ 1}.

Note that U, the collection of LR-sentences stating that every univariate non-constant polynomial
with coefficients in the field has a root in the field, is a countably infinite first-order axiom scheme.
Note also that in the case of F, field properties are readily expressed in LR by eliminating multi-
plicative inverses in favour of their defining multiplicative property (e.g., x−1 is replaced with a fresh
variable y and the constraint x∗y = 1 is conjoined with y quantified as is contextually appropriate).
This is done so that every function symbol in LR denotes a total function.

As it stands, ACF is not a complete theory. This is because the characteristic of the field is not
specified. For instance, in the absence of a specified characteristic, the ground sentence (1 + 1 = 0)
cannot be decided. If we specify a characteristic to obtain a theory ACFp of algebraically closed
fields of characteristic p, then ACFp is complete, decidable, and admits elimination of quantifiers.
As our interest in algebraically closed fields is chiefly motivated by making decisions over the complex
numbers, we henceforth deal only with algebraically closed fields of characteristic zero.

2.2 ACF0 Admits Quantifier Elimination

We shall now prove the important theorem on quantifier elimination which will lead to the de-
cidability of ACF0. Geometrically, it is essentially the theorem of Chevalley stating projections
of constructible sets are themselves constructible, though proved effectively by presenting an algo-
rithm for obtaining explicit descriptions of such projections as constructible sets. When proving
this general quantifier elimination result about ACF0, we will often reason concretely over the
complex numbers. Each time this is done, however, the reader should observe that the properties
of Cn actually used in fact hold over every algebraically closed field of characteristic zero, and so
our reasoning carries over to the theory ACF0 as a whole.

We prove this theorem by presenting the complex specialisation of a real quantifier elimination
procedure due originally to Muchnik. This procedure is very elementary and is of limited practical
interest. But, its simple nature makes it pedagogically superior to other more advanced methods,
and it provides a vehicle for introducing many important concepts. It also has the advantage that
much of the algebraic machinery we define in the context of this ACF0 result will be reusable in
the RCF case in the next note where we present the Muchnik procedure in its full RCF form.

The result we will prove is as follows.
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Theorem 2.1 (ACF0 Quantifier Elimination). The theory of algebraically closed fields of charac-
teristic zero admits effective elimination of quantifiers.

We prove this by induction by showing how to eliminate a single existential quantifier from a formula
with parameters. First, we introduce some algebraic machinery.

2.2.1 Complex Root Diagrams

Definition 2.2 (Labeled Row of Roots). Let p ∈ Z[x]. A finite binary sequence indexed by complex
numbers α ∈ {0, 1}C s.t. C ⊂ C and |C| < ω is a labeled row of roots for p iff

• p 6= 0 =⇒
[(∃ζ ∈ C s.t. α(ζ) = 1) ∧ (|{ζ ∈ C | α(ζ) = 0}| = |{ζ ∈ C | p(ζ) = 0}|)],

• ∀ζ ∈ C (α(ζ) = 0 ⇐⇒ p(ζ) = 0).

We write RC(α, p) to mean that α is a labeled row of roots for p.

Observation 2.1. If α is a labeled row of roots for p 6= 0, then α contains precisely as many 0’s as
there are distinct roots of p.

Observation 2.2. If α is a labeled row of roots for p = 0, then α is a row of 0’s.

Definition 2.3 (Root Diagram). If P = {p1, . . . , pk} is a set of polynomials in Z[x] then a root
diagram for P is a labeled binary matrix M with columns labeled by members of C ⊂ C s.t. |C| < ω
and rows labeled p1, . . . , pk s.t.

• ∀pi ∈ P (RC(M(pi), pi)),

• ∃ζ ∈ C ∀pi ∈ P (M(pi, ζ) = 0 ⇐⇒ pi = 0),

where M(pi) is the row labeled by pi. We call columns ζ witnessing the second property above
anti-solutions, as they correspond to sample points within regions of C in which no non-zero pi ∈ P
vanishes.

Observation 2.3. If M is a root diagram for P and M ′ is obtained from M by some combination
of

• permuting the columns of M ,

• adding or removing some (but not all) anti-solution columns from M ,

• choosing a different label for the anti-solution column of M ,

then M ′ is still a root diagram for P .

Lemma 2.1. Up to the modifications described in Observation 2.3, a root diagram M for P is
uniquely determined.
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Proof. This is immediate, as every root diagram for P must contain a minimal core consisting of
columns labeled by every root of each p ∈ P , together with at least one anti-solution column for
P . It is clear that none of these columns may be removed from M while maintaining its status
as a root diagram for P , though a different label may be used for the anti-solution column. Thus,
given two distinct root diagrams M,M ′ for P , M and M ′ may only differ by the operations given
in Observation 2.3.

Given this relative uniqueness, we will now write D(P ) (“the root diagram for P”) to mean a
canonically chosen root diagram for P .

2.2.2 Muchnik Sets and Sequences

We now present the concepts of Muchnik sets and sequences which we will use to compute root
diagrams for sets of polynomials.

Let A be a unique factorisation domain (UFD) and let p ∈ A[x] s.t.

(p = 0) ∨ (p =
d∑
j=0

cjx
j ∧ cd 6= 0).

Definition 2.4 (Polynomial Degree).

deg(p) =

{
d if p 6= 0,
−∞ if p = 0.

Definition 2.5 (Polynomial Tail).

τ(p) =

{ ∑d−1
j=0 cjx

j if p 6= 0,

0 if p = 0.

We now face a problem: we will need to perform division upon pairs of polynomials in A[x], where
A is some non-Euclidean UFD such as Z[y1, y2]. Recall that if A is a UFD, then A[x] is as well. We
will thus make use of polynomial pseudo-division as the unique pseudo-remainder it computes for
pairs of polynomials will be sufficient for inductively obtaining root diagrams.

Let q ∈ A[x] s.t.

q =

e∑
j=0

bjx
j ∧ q 6= 0 ∧ deg(q) = e ≤ d.

Definition 2.6 (Polynomial Pseudo-remainder). Given p, q as specified above, polynomial pseudo-
division of p by q will compute unique h, r ∈ A[x] s.t.

bd−e+1
e p = hq + r ∧ deg(r) < e.
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We refer to r = rem(p, q) as the pseudo-remainder3 of p by q.

Let M 6= ∅ ⊂ A[x] s.t. |M| < ω.

Definition 2.7 (Muchnik Set). We say M is a Muchnik set iff

1. p ∈M =⇒ τ(p) ∈M,

2. p ∈M =⇒ ∂p
∂x ∈M,

3. p, q 6= 0 ∈M ∧ deg(q) ≤ deg(p) =⇒ rem(p, q) ∈M.

Observation 2.4. If M is Muchnik, then 0 ∈M.

Definition 2.8 (Muchnik Closure). Given M ⊂ A[x], let M∗ be the smallest Muchnik set containing
M. We say M∗ is the Muchnik closure of M.

Observation 2.5. If M ⊂ A s.t. |M| < ω and 0 ∈M then M is Muchnik.

Definition 2.9 (Constant Fragment). A constant is a polynomial p ∈ A. If M is Muchnik then let
M0 be M ∩ A – the constant fragment of M – which is also Muchnik.

Lemma 2.2 (Finiteness). Let M ⊂ A[x] s.t. |M| < ω. Then |M∗| < ω.

Proof. Immediate as each of the three operations placing polynomials into M∗ are strictly degree
reducing.

All Muchnik sets we encounter will be finite and we henceforth omit the explicit assumption. We
now introduce the notion of a Muchnik sequence and prove its important substructural property.

Definition 2.10 (Muchnik Sequence). Let M be Muchnik. Then any sequence β ∈ M|M| is a
Muchnik sequence iff

∀1 ≤ i < |M| (deg(β(i)) ≤ deg(β(i+ 1)).

Observe that as deg(0) = −∞, a Muchnik sequence always begins with 0.

The following lemma will be important for inductively extending Muchnik sequences.

Lemma 2.3 (Muchnik Subsequence). Let β be a Muchnik sequence. Then, any non-empty initial
segment β′ of β is a Muchnik sequence.

Proof. By the definition of Muchnik, we must show β′ is closed under the operations of tail, partial
differentiation and pseudo-remainder. But this is immediate by the fact that these three closure
operations are strictly degree reducing, and in a Muchnik sequence β (and hence any initial segment),
the polynomials must be ordered so that (deg(β(i)) ≤ deg(β(i+ 1)).

3Knuth gives an excellent presentation of polynomial pseudo-division on pp 425-428 of [Knu97]. Sufficient back-
ground on UFDs is given on pp 422-424. To reiterate the elementary nature of the quantifier elimination procedure
we are presenting, though, let us note that computing pseudo-remainders is conceptually very simple: In fact, over a
UFD such as our A[x] above, one can compute the pseudo-remainder of p by q by first multiplying p by bd−e+1

e and
then performing standard polynomial division (that is, the division algorithm for polynomials over a field) between
the product (bd−e+1

e p) and q.
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2.2.3 Elimination of a Single Existential Quantifier

With the Muchnik machinery in hand, let us now discuss our strategy for eliminating an existential
quantifier. Given a set of polynomials P = {p1, . . . , pk} ⊂ Z[y1, . . . , yn][x] (e.g., A = Z[~y] is our
ambient ring of coefficients for polynomials in x), let P (~c) = {p1(~c), . . . , pk(~c)} ⊂ Z[x] for any
~c ∈ Cn. Recall that P ∗ is the Muchnik closure of P with P ∗0 = (P ∗ ∩ Z[~y]) its subset of constants
w.r.t. x. We will present an algorithm for computing all possible root diagrams for P ∗. This will
be done in such a way that each root diagram for P ∗ will be derived (and uniquely determined)
from a root diagram for P ∗0 . By viewing P ∗ as a collection of univariate polynomials in x, the set
of all root diagrams for P ∗ arises by considering the specialisations of A = Z[~y] to points ~c ∈ Cn.
Let us introduce the notion of an extended root diagram to formalise this process.

Definition 2.11 (Extended Root Diagram). Let P = {p1, . . . , pk} be a set of polynomials in
Z[y1, . . . , yn][x]. Then, an extended root diagram for P w.r.t. ~c ∈ Cn is a labeled binary matrix
M ∈ {0, 1}P×C with C ⊂ C and |C| < ω s.t.

• ∀pi ∈ P (RC(M(pi), pi(~c))),

• ∃ζ ∈ C ∀pi ∈ P (M(pi, ζ) = 0 ⇐⇒ pi(~c) = 0),

where M(pi) is identified with a function in {0, 1}C in the obvious way.

Intuitively, if M is an extended root diagram for P w.r.t. ~c, then M is in principle a normal
root diagram for P (~c) ⊂ Z[x], but constructed so that row the labels of M hold a record of the
polynomials pi ∈ Z[~y][x] from which the pi(~c) ∈ Z[x] were derived. Thus, one may see such an
extended root diagram as what happens when one computes a root diagram for a specialisation of
P to P (~c) and then forgets the specialisation of the row labels.

It is easy to see that the same uniqueness properties that hold for root diagrams (à la Lemma 2.1)
also hold for extended root diagrams.

Finally, it turns out that all of the information needed to perform quantifier elimination can actually
be obtained from a variant of extended root diagrams in which neither the columns nor rows carry
explicit labels.

Definition 2.12 (Unlabeled Extended Root Diagram). Let P = {p1, . . . , pk} be a set of polynomials
in Z[y1, . . . , yn][x]. Then, an unlabeled extended root diagram for P w.r.t. ~c ∈ Cn is an (k × m)
binary matrix M obtained from an extended root diagram M ′ for P w.r.t. ~c by forgetting the row
and column labels of M ′. That is, M is simply the underlying binary matrix of M ′. Given that P
is ordered, we will use M(pi) and “the row corresponding to pi” to mean the ith row of M , even
though M is formally simply a matrix (without explicit polynomial row labels). If M is a matrix
consisting of a single column, then we will use M(pi) to mean the value of the single entry in the
row corresponding to pi.

From now on, when we say “the unlabeled extended root diagram for P w.r.t. ~c,” we will mean
a canonically chosen unlabeled extended root diagram for P w.r.t. ~c. We will write D∗(P,~c) to
mean the unlabeled extended root diagram for P w.r.t. ~c. Similarly, if β is a Muchnik sequence of
polynomials in Z[~y][x], then D∗(β,~c) will be the unlabeled extended root diagram for the underlying
set of β w.r.t. ~c.
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Let

D = {D∗(P ∗,~c) | ~c ∈ Cn},

and

D0 = {D∗(P ∗0 ,~c) | ~c ∈ Cn}.

The key observations are:

1. Both sets D and D0 are finite (and every member of D0 consists of a single-column binary
matrix), and

2. Given any ~c ∈ Cn, the unlabeled extended root diagram for P ∗ w.r.t. ~c (i.e., D∗(P ∗,~c) ∈ D)
may be obtained from the unlabeled extended root diagram for P ∗0 w.r.t. ~c (i.e., D∗(P ∗0 ,~c) ∈
D0).

This derivation of D∗(P ∗,~c) from D∗(P ∗0 ,~c) , which we call diagram lifting, will be done by an
algorithm AC with the following universal property:

∀~c ∈ Cn(AC(D∗(P ∗0 ,~c)) = D∗(P ∗,~c)).

Let us now see how this machinery can be applied.

Consider a quantifier-free formula

ϕ(~y, x) = (
k∧
i=1

(pi σpi 0)) with (σpi ∈ {=, 6=}).

Let Z(σpi) hold iff σpi is ‘=’. Say that the unlabeled extended root diagram C for P ∗ is ϕ-compatible
iff there exists a column j in C s.t.

∀1 ≤ i ≤ k(C(pi, j) = 0 ⇐⇒ Z(σpi)).

Given any ~c ∈ Cn, we will then have

∃x(ϕ(~c, x)) ⇐⇒ AC(D∗(P ∗0 ,~c)) is ϕ-compatible.

Let k0 be s.t. P ∗0 = {p1, . . . , pk0}. Observe that |D0| ≤ 2k0 . That is, there are at most 2k0 possible
unlabeled extended root diagrams which could arise in the process of specialising P ∗0 to any point
in Cn. LetM0 be the set of all (k0× 1) binary matrices. Observe that D0 ⊆M0. Then, conditions
ψ(~y) upon ~y s.t.
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∀~y(ψ(~y) ⇐⇒ ∃x(ϕ(~y, x)))

are given by

ψ(~y) =
∨

d0∈Qϕ

ELR(d0),

where

Qϕ = {d0 ∈M0 | AC(d0) is ϕ− compatible}

and

ELR(d0) =
∧
q∈P ∗

0

(q �d0(q) 0)

s.t.

�d0(q) =

{
‘=’ if d0(q) = 0,
‘6=’ if d0(q) = 1.

Now, there is one aspect of the above derivation of ψ(~y) which is counterintuitive. Naively, one
would expect Qϕ to be defined as the set S as follows:

S = {d0 ∈ D0 | AC(d0) is ϕ− compatible}.

The issue with this definition is that in practice, we will not a priori know if a given binary matrix
d0 ∈ M0 is actually the unlabeled extended root diagram for P ∗0 w.r.t. any ~c ∈ Cn. That is, given
some d0 ∈ M0, we will not know in advance if it is a member of D0 or not. Thankfully, it will will
not actually matter what our lifting algorithm gives as the value of AC(d0) when d0 ∈ (M0 \ D0).
Let us see why this is so.

Lemma 2.4. Let d0 ∈ (M0 \ D0). Then, based upon our construction of ψ(~y) above, it does not
matter which (k ×m) binary matrix our lifting algorithm constructs as the value AC(d0).

Proof. Assume we are eliminating ∃x from ∃xϕ(~y, x) to obtain a quantifier-free equivalent formula
ψ(~y) as above. Consider d0 ∈ (M0 \D0). That is, d0 is a k0× 1 binary matrix that is not realisable
as the unlabeled extended root diagram for P ∗0 w.r.t. any ~c ∈ Cn. Now, let us apply AC to lift d0
and obtain an (k ×m) binary matrix d = AC(d0). We have two cases: either d is ϕ-compatible, or
it is not. If d is not ϕ-compatible, then d0 will not contribute at all to our construction of ψ(~y) and
so the value of d does not matter. On the other hand, assume that d is ϕ-compatible. Then, d will
contribute to our construction of ψ(~y) in the following way: ELR(d0) will be present as a disjunct
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in ψ(~y). But, since d0 is not realisable as the unlabeled extended root diagram of P ∗0 w.r.t. any
~c ∈ Cn, this means that

〈C,+,−, ∗, 0, 1〉 |= ∀~y(ELR(d0) ⇐⇒ 0 = 1).

Thus, ELR(d0) is only contributing a contradictory conjunction as a disjunct in our formula ψ(~y),
which means ψ(~y) is logically equivalent to ψ(~y) with ELR(d0) removed. So, it is indeed the case that
if d0 is not realisable as the unlabeled extended root diagram of P ∗0 w.r.t. any ~c ∈ Cn, then it does
not matter which (k ×m) binary matrix our lifting algorithm constructs as the value AC(d0).

This fact permits us a simple approach to constructing ψ(~y): We will generate all 2k0 possible
(k0 × 1) binary matrices as candidate unlabeled extended root diagrams for P ∗0 , lift each of them,
and construct ψ(~y) as a disjunction of conjuncts corresponding to the ϕ-compatible lifted candidates.

Thus, once we have exhibited an algorithm AC for diagram lifting, we will have proved the following
theorem establishing, by induction, that ACF0 admits elimination of quantifiers.

Theorem 2.2 (Projective Closure of Definability). Given any quantifier-free LR-formula ϕ(~y, x)
there exists a quantifier-free LR-formula ψ(~y) s.t.

ACF0 |= ∀~y (∃xϕ(~y, x) ⇐⇒ ψ(~y)) .

Moreover, ψ(~y) is effectively computable from ϕ(x, ~y).

Let us now finish the proof by constructing such an AC. Again, let P ⊂ Z[~y][x] with P ∗ its
Muchnik closure. Recall that P ∗0 is the collection of constants in P ∗ w.r.t. x. Let β = 〈p1, . . . , pk〉
be a Muchnik sequence for P ∗ and β0 = 〈p1, . . . , pk0〉 a Muchnik sequence for P ∗0 . We will construct
an algorithm AC which will map a (k0 × 1) binary matrix d0 to a (k ×m) binary matrix d s.t. if
d0 is the unlabeled extended root diagram for β0 w.r.t. ~c ∈ Cn, then AC(d0) will be the unlabeled
extended root diagram for β w.r.t. ~c. By Lemma 2.4, it will not matter what AC returns if its
input is not realisable as the unlabeled extended root diagram for β0 w.r.t. any ~c ∈ Cn. Recall
that by Lemma 2.3, every subsequence β ↓ of β is Muchnik. Given an unlabeled extended root
diagram for β0 w.r.t. ~c, we will use this property of Muchnik sequences to build an extended root
diagram for β w.r.t. ~c inductively, by building one for each of its subsequences β ↓.

Lemma 2.5 (ACF0 Single-Step Diagram Lifting Algorithm). Let β ∈ Z[~y][x]k be a Muchnik
sequence. Let C be a (k ×m) binary matrix (a candidate unlabeled extended root diagram for β).
Let p ∈ Z[~y][x] be a non-constant polynomial w.r.t. x s.t. β+ = 〈β(1), . . . , β(k), p〉 is Muchnik.
Then, there is an algorithm AC sending C 7→ C+ s.t. if C is the unlabeled extended root diagram for
β w.r.t. ~c ∈ Cn, then C+ is the unlabeled extended root diagram for β+ w.r.t. the same ~c. That is,

C = D∗(β,~c) =⇒ C+ = D∗(β+,~c).

As established by Lemma 2.3, if C is in fact not an unlabeled extended root diagram for β w.r.t.
any ~c ∈ Cn, then it is of no consequence which (k + 1 ×m′) binary matrix this algorithm returns.
In certain cases, this algorithm may be able to “short-circuit” its processing by recognising that the
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candidate C is not the unlabeled extended root diagram for β w.r.t. any ~c ∈ Cn. In these cases, the
algorithm will return a special value ⊥ to signify this.

In summary, letting M(β) denote the collection of candidate extended root diagrams for β, we will
present an algorithm AC with the following properties:

AC : M(β)→M(β+)

∀~c ∈ Cn
(
AC(D∗(β,~c)) = D∗(β+,~c)

)
M ∈M(β) ∧ AC(M) = ⊥ =⇒ ¬∃~c ∈ Cn(M = D∗(β,~c)).

Proof. Let deg(p) = d and α ∈ Z[y1, . . . , yn] be the highest degree coefficient of p (both w.r.t. x).
Recall that as Muchnik sets are closed under partial differentiation, d!α appears in β and thus
corresponds to a row in C. Let r be this row. If r is not a constant row, then C cannot be an
unlabeled extended root diagram for β, so we return ⊥. Otherwise, we have two cases:

[Case I: r = ~0] In this case, the root conditions for p are equivalent to those for 0 ∗ xd + τ(p) =
τ(p) ∈ Z[~y][x]. But, note that deg(τ(p)) < d w.r.t. x. Thus, by definition of Muchnik sequence, we
have that the row of roots for τ(p) already exists in C. Hence we may simply copy this row of roots
as the row for p and we are done.

[Case II: r = ~1] If C = D∗(β,~c) for ~c ∈ Cn, then r = ~1 yields that α(~c) 6= 0. To extend C to C+ by
taking into account p, we must meet the following requirements:

• Any root of p not already represented by a column of C must be represented by a column of
C+ (columns must be added for these roots),

• The nullity of every polynomial represented by a row of C at each new root of p must be
determined,

• The nullity of p at all points represented by columns of C must be determined (p will be 0 in
every column of C+ which is not present in C, as these are roots of p),

• The existence of an anti-solution column must be maintained.

Let ζ be a column of C. We have two cases:

[Case II.a: ζ is not an anti-solution column] So, the column ζ contains a 0 which does not come
from a 0-row. Let q ∈ B be of minimal degree (deg(q) = e) s.t. C(q, ζ) = 0 and C(q) 6= ~0. If C is
an extended root diagram for β w.r.t. ~c ∈ Cn, then this means that q(~c, ζ) = 0 and q(~c) ∈ Z[x] is
not identically zero. Let γ ∈ Z[~y] be the highest degree coefficient of q s.t. q = γxe + τ(q). Observe
by definition of Muchnik sequence that e!γ corresponds to a row in C. If C(e!γ) is not a constant
row, then C cannot be an unlabeled extended root diagram for β and we return ⊥. Thus we assume
C(e!γ) is a constant row.
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Let us now observe that if C(e!γ) = ~0, then C cannot be an unlabeled extended root diagram for β.
If C(e!γ) = ~0, then we have that the root conditions of q are equivalent to those of 0+ τ(q) = τ(q) ∈
Z[~y][x]. So, τ(q)(~c, ζ) = 0. But then by assumption that q was of minimal degree with q(~c, ζ) = 0
and C(q) 6= ~0, we have that C(τ(q)) must be a 0-row. But, then C(q) would be a 0-row as well,
which is a contradiction. So, if C(e!γ) = ~0 then C cannot be an unlabeled extended root diagram
for β and we return ⊥. Thus we assume C(e!γ) = ~1.

Let r = rem(p, q) be the pseudo-remainder of p by q. So, γd−e+1p = hq + r for some h, r ∈ Z[~y][x]
s.t. deg(r) ≤ e− 1. As C(q, ζ) = 0, if C is an unlabeled extended root diagram for β w.r.t. ~c ∈ Cn,
then p(~c) = r(~c). By definition of Muchnik sequence, r ∈ B so r is the label of a row in C. Therefore
we simply set C+(p, ζ) = C(r, ζ) and this case is complete. Observe that this process allows us to
determine the nullity of p for every column of C which is a root of some non-constant polynomial
in B.

[Case II.b: ζ is an anti-solution column] So, the ζ only has 0’s coming from 0-rows. We have two
requirements left to meet:

• We must add columns to C+ corresponding to the roots of p which are not represented by
columns of C and determine the nullity of each polynomial corresponding to a row of C at
these new roots of p,

• We must guarantee the existence of an anti-solution column for C+.

As p ∈ Z[~y][x] is non-constant by assumption, we can extend ζ to be an anti-solution column of C+

by simply setting C+(p, ζ) = 1. Thus, the requirements of both determining the nullity of p at every
column label of C and guaranteeing the existence of an anti-solution column for C+ have been met.

It now remains to add columns to C+ representing the roots of p not already represented by columns
of C and to determine the nullity of every polynomial represented by a row of C at these new roots.
Observe that any root of p not represented by a column of C must have multiplicity 1, as otherwise
it would be a root of ∂p

∂x and hence would be already represented by a column of C. By the
Fundamental Theorem of Algebra, we may determine the number of new roots of p to add to C+

as (deg(p) − #κ) where #κ is the number of roots of p already represented in C counted with
multiplicity. To determine #κ, it will suffice to determine the multiplicity m(ξ) of every root ξ of

p appearing in C. To compute m(ξ), we examine the successive derivatives ∂p
∂x ,

∂2p
∂x2

, . . . and check
the nullity of each derivative at ξ. By definition of Muchnik sequence, all such derivatives will
correspond to rows of C, and thus this information may be computed from C. Then, m(ξ) = j

where j is the least power s.t. C( ∂
jp
∂xj

, ξ) = 1. Thus, #κ =
∑

ξ∈χm(ξ) where χ is the collection of

points represented by columns of C s.t. C(p, ξ) = 0. Now, we add (deg(p)−#κ) new columns to C+

with 0’s in their bottom row (corresponding to p), 0’s in their rows corresponding to 0-rows, and
1’s in all other rows. As we have met our final requirements, this completes our proof.

As it is easy to see all properties of C used in the above construction hold over every F s.t. F |=
ACF0, Theorem 2.2 follows by induction along β. That is, we may always eliminate a single
existential quantifier. From this result, Theorem 2.1 follows by induction by placing LR formulae
in prenex normal form and successively eliminating the innermost existential quantifier until no
quantified variables remain.
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