
(Exact Global Nonlinear)
Optimization on Demand

Leonardo de Moura & Grant Olney Passmore

ADDCT-2013 ~ CADE-24
(presentation only)

MSR, Redmond, USA Edinburgh and Cambridge, UK

Thursday, June 20, 13

Big Picture
A CDCL-like approach to exact nonlinear global
optimization over the real numbers

Thursday, June 20, 13

Big Picture
A CDCL-like approach to exact nonlinear global
optimization over the real numbers

Three main conceptual ingredients:

Thursday, June 20, 13

Big Picture
A CDCL-like approach to exact nonlinear global
optimization over the real numbers

Three main conceptual ingredients:

CAD-based approach to optimization
 eager method for nonlinear optimization, in Mathematica v9.x

Thursday, June 20, 13

Big Picture
A CDCL-like approach to exact nonlinear global
optimization over the real numbers

Three main conceptual ingredients:

nlsat / existential CAD `on demand’
 lazy CDCL-like approach to Exists RCF, in Z3 (Jovanović - de Moura, 2012)

CAD-based approach to optimization
 eager method for nonlinear optimization, in Mathematica v9.x

Thursday, June 20, 13

Big Picture
A CDCL-like approach to exact nonlinear global
optimization over the real numbers

Three main conceptual ingredients:

CAD-based approach to optimization
 eager method for nonlinear optimization, in Mathematica v9.x

nlsat / existential CAD `on demand’
 lazy CDCL-like approach to Exists RCF, in Z3 (Jovanović - de Moura, 2012)

computable nonstandard RCFs
 computable RCFs containing infinitesimals (de Moura - Passmore, 2013)

Thursday, June 20, 13

Big Picture
A CDCL-like approach to exact nonlinear global
optimization over the real numbers

Three main conceptual ingredients:

A practical application of nonstandard models!

nlsat / existential CAD `on demand’
 lazy CDCL-like approach to Exists RCF, in Z3 (Jovanović - de Moura, 2012)

computable nonstandard RCFs
 computable RCFs containing infinitesimals (de Moura - Passmore, 2013)

CAD-based approach to optimization
 eager method for nonlinear optimization, in Mathematica v9.x

Thursday, June 20, 13

Exact Global Optimization

minimize

~x

f(~x)

subject to

m^

i=1

f

i

(~x)  b

i

Many classes of optimization problems,
based on restrictions of f ’s and b’s

Thursday, June 20, 13

Exact Global Optimization

minimize

~x

f(~x)

subject to

m^

i=1

f

i

(~x)  b

i

Many classes of optimization problems,
based on restrictions of f ’s and b’s

nonlinear, computable

Thursday, June 20, 13

What is a Real Closed Field?

RCF = Th(hR,+, ⇤, <, 0, 1i)

Thursday, June 20, 13

What is a Real Closed Field?

RCF = Th(hR,+, ⇤, <, 0, 1i)

Examples:
The reals:

The algebraic reals:

The (a!) Hyperreals:

Real closures:

hR,+, ⇤, <, 0, 1i
hRalg,+, ⇤, <, 0, 1i

Y

N
hR,+, ⇤, <, 0, 1i

!
/ U

eK s.t. K = Q(t1, . . . , tn, ✏1, . . . , ✏m)

Thursday, June 20, 13

Optimization using RCF QE - I

 RCF admits quantifier elimination (QE)

Thursday, June 20, 13

Optimization using RCF QE - I

 RCF admits quantifier elimination (QE)

 In theory, one can exploit RCF QE to solve
 nonlinear optimization problems over the reals:
 Let’s see how! In the next slide...

Thursday, June 20, 13

Optimization using RCF QE - I

 RCF admits quantifier elimination (QE)

 In theory, one can exploit RCF QE to solve
 nonlinear optimization problems over the reals:
 Let’s see how! In the next slide...

 In practice, this is not a viable solution:
 RCF QE is infeasible: O(2^2^(Omega(n)))

Thursday, June 20, 13

Optimization using RCF QE - II

minimize

~x

f(~x)

subject to

m^

i=1

f

i

(~x)  b

i

Thursday, June 20, 13

Optimization using RCF QE - II

minimize

~x

f(~x)

subject to

m^

i=1

f

i

(~x)  b

i

Step 1: New coordinate function y

F (~x, y) ,

y = f(~x) ^

m̂

i=1

fi(~x)  bi

!

Thursday, June 20, 13

Optimization using RCF QE - II

minimize

~x

f(~x)

subject to

m^

i=1

f

i

(~x)  b

i

Use RCF QE to eliminate 9~x from 9~xF (~x, y), obtaining '(y) s.t.

'(y) ,
_

i

^

j

(pi,j(y) ./i,j 0), ./i,j2 {<,,=,�, >}, pi,j 2 Z[y].

Step 1: New coordinate function y

Step 2: QE (project onto y)

F (~x, y) ,

y = f(~x) ^

m̂

i=1

fi(~x)  bi

!

Thursday, June 20, 13

Use RCF QE to eliminate 9~x from 9~xF (~x, y), obtaining '(y) s.t.

'(y) ,
_

i

^

j

(pi,j(y) ./i,j 0), ./i,j2 {<,,=,�, >}, pi,j 2 Z[y].

Step 2: QE (project onto y)

Use univariate real root isolation (e.g., via Sturm sequences) to isolate all roots

of pi,j(y) 2 Z[y]. This partitions R into 2k + 1 connected components.

Step 3: Real Root Isolation
(note sign invariance: IVT!)

Thursday, June 20, 13

Use univariate real root isolation (e.g., via Sturm sequences) to isolate all roots

of pi,j(y) 2 Z[y]. This partitions R into 2k + 1 connected components.

Sweep from L to R, looking for first connected component satisfying '(y)

Step 4: Search!

Step 3: Real Root Isolation
(note sign invariance: IVT!)

Thursday, June 20, 13

Use univariate real root isolation (e.g., via Sturm sequences) to isolate all roots

of pi,j(y) 2 Z[y]. This partitions R into 2k + 1 connected components.

Sweep from L to R, looking for first connected component satisfying '(y)

Step 4: Search!

Step 3: Real Root Isolation
(note sign invariance: IVT!)

Thursday, June 20, 13

Use univariate real root isolation (e.g., via Sturm sequences) to isolate all roots

of pi,j(y) 2 Z[y]. This partitions R into 2k + 1 connected components.

Sweep from L to R, looking for first connected component satisfying '(y)

Step 4: Search!

Step 3: Real Root Isolation
(note sign invariance: IVT!)

Thursday, June 20, 13

Use univariate real root isolation (e.g., via Sturm sequences) to isolate all roots

of pi,j(y) 2 Z[y]. This partitions R into 2k + 1 connected components.

Sweep from L to R, looking for first connected component satisfying '(y)

Step 4: Search!

exact minimum found!

Step 3: Real Root Isolation
(note sign invariance: IVT!)

Thursday, June 20, 13

Four Possible Outcomes

No satisfying region: Infeasible

(-inf, r) : Unbounded

[r] : Exact minimum

(r, _) : No minimum, but exact infimum

Thursday, June 20, 13

Four Possible Outcomes

No satisfying region: Infeasible

(-inf, r) : Unbounded

[r] : Exact minimum

(r, _) : No minimum, but exact infimum

RUN OUT OF MEMORY AND/OR TIME!!!

Five

Computing '(y) explicitly is a bad idea!

Thursday, June 20, 13

A CAD-based Approach

Used by Mathematica

Doesn’t require explicit computation of Phi(y)

But, it is eager and pessimistic

Our new approach is lazy and optimistic

First, let’s understand the CAD-based
approach...

Thursday, June 20, 13

CAD: A partitioning of Rn

into finitely many RCF-definable connected
components which “behaves nicely” w.r.t.
projections onto lower dimensions.

CADP -invariant

a CAD of s.t. for all cells , all Rn

8~r 2 ci(p(~r) = 0) _
8~r 2 ci(p(~r) > 0) _
8~r 2 ci(p(~r) < 0) .

ci p 2 P

P ⇢ Z[x1, . . . , xn]

Cylindrical Algebraic Decomposition

CAD sphere diagrams: C. Brown and QEPCAD-B

Thursday, June 20, 13

CAD Phase I: Projection
Proji+1 : Z[x1, . . . , xi+1] ! Z[x1, . . . , xi]

Inductive Property:

A (P_{i+1})-invariant CAD for R^{i+1}
can be constructed from

a (P_i)-invariant CAD of R^i.

Pn = P ⇢ Z[x1, . . . , xn]

Pn�1 = Proj(Pn) ⇢ Z[x1, . . . , xn�1]

...

P2 = Proj(P3) ⇢ Z[x1, x2]

P1 = Proj(P2) ⇢ Z[x1]
Thursday, June 20, 13

Projection sets

Thursday, June 20, 13

Projection sets

Base Phase: R^1

Thursday, June 20, 13

Projection sets

Lifting Phase: R^1 -> R^2

Thursday, June 20, 13

Projection sets

Lifting Phase: R^2 -> R^3

Thursday, June 20, 13

A CAD-based Approach to Optimization
minimize

~x

f(~x)

subject to

m^

i=1

f

i

(~x)  b

i

Step 1: New coordinate function y

Step 2: CAD projection (with y lowest variable)

Pn+1 = {y � f(~x), f1(~x)� b1, . . . , fm(~x)� bm} ⇢ Z[y, x1, . . . , xn]

Pn = Proj(Pn+1) ⇢ Z[y, x1, . . . , xn�1]

...

P2 = Proj(P3) ⇢ Z[y, x1]

P1 = Proj(P2) ⇢ Z[y]

F (~x, y) ,

y = f(~x) ^

m̂

i=1

fi(~x)  bi

!

Thursday, June 20, 13

Step 2: CAD projection (with y lowest variable)

Pn+1 = {y � f(~x), f1(~x)� b1, . . . , fm(~x)� bm} ⇢ Z[y, x1, . . . , xn]

Pn = Proj(Pn+1) ⇢ Z[y, x1, . . . , xn�1]

...

P2 = Proj(P3) ⇢ Z[y, x1]

P1 = Proj(P2) ⇢ Z[y]

Base (y) ?

Step 3: CAD Base and Lifting (depth-first) from L to R

Thursday, June 20, 13

Step 2: CAD projection (with y lowest variable)

Pn+1 = {y � f(~x), f1(~x)� b1, . . . , fm(~x)� bm} ⇢ Z[y, x1, . . . , xn]

Pn = Proj(Pn+1) ⇢ Z[y, x1, . . . , xn�1]

...

P2 = Proj(P3) ⇢ Z[y, x1]

P1 = Proj(P2) ⇢ Z[y]

Base (y)

Lift (x_n)

?

Step 3: CAD Base and Lifting (depth-first) from L to R

Thursday, June 20, 13

Step 2: CAD projection (with y lowest variable)

Pn+1 = {y � f(~x), f1(~x)� b1, . . . , fm(~x)� bm} ⇢ Z[y, x1, . . . , xn]

Pn = Proj(Pn+1) ⇢ Z[y, x1, . . . , xn�1]

...

P2 = Proj(P3) ⇢ Z[y, x1]

P1 = Proj(P2) ⇢ Z[y]

Base (y)

Lift (x_n)
Lift (x_{n-1})

?

Step 3: CAD Base and Lifting (depth-first) from L to R

Thursday, June 20, 13

Step 2: CAD projection (with y lowest variable)

Pn+1 = {y � f(~x), f1(~x)� b1, . . . , fm(~x)� bm} ⇢ Z[y, x1, . . . , xn]

Pn = Proj(Pn+1) ⇢ Z[y, x1, . . . , xn�1]

...

P2 = Proj(P3) ⇢ Z[y, x1]

P1 = Proj(P2) ⇢ Z[y]

Step 3: CAD Base and Lifting (depth-first) from L to R

Base (y)

Lift (x_n)
Lift (x_{n-1})

x

Lift (x_1)
.
.
.

.

.

.

.

.

.

Thursday, June 20, 13

Step 2: CAD projection (with y lowest variable)

Pn+1 = {y � f(~x), f1(~x)� b1, . . . , fm(~x)� bm} ⇢ Z[y, x1, . . . , xn]

Pn = Proj(Pn+1) ⇢ Z[y, x1, . . . , xn�1]

...

P2 = Proj(P3) ⇢ Z[y, x1]

P1 = Proj(P2) ⇢ Z[y]

Step 3: CAD Base and Lifting (depth-first) from L to R

Base (y)

Lift (x_n)
Lift (x_{n-1})

x

Lift (x_1)
.
.
.

x

.

.

.

.

.

.

Thursday, June 20, 13

Step 2: CAD projection (with y lowest variable)

Pn+1 = {y � f(~x), f1(~x)� b1, . . . , fm(~x)� bm} ⇢ Z[y, x1, . . . , xn]

Pn = Proj(Pn+1) ⇢ Z[y, x1, . . . , xn�1]

...

P2 = Proj(P3) ⇢ Z[y, x1]

P1 = Proj(P2) ⇢ Z[y]

Step 3: CAD Base and Lifting (depth-first) from L to R

Base (y)

Lift (x_n)
Lift (x_{n-1})

x

Lift (x_1)
.
.
.

x !

So, no minimum exists, but
rather exact infimum!

.

.

.

.

.

.

Thursday, June 20, 13

Recap of CAD-based Approach

Used by Mathematica

Doesn’t require explicit computation of Phi(y)

But, it is eager and pessimistic:
 FULL CAD Projection (expensive!!!)

Our new approach is lazy and optimistic

We build on nlsat, a CDCL-like approach to the
Existential fragment of RCF

Thursday, June 20, 13

nlsat: CDCL-like approach to ExRCF

Start building model for formula immediately,
without first going through projection phase

When conflict arises, use projection on demand

Real-algebraic analogue of conflict clauses
generalize a non-extendable partial models to
rule out a delineable region containing them

Non-chronological backtracking

Thursday, June 20, 13

Thursday, June 20, 13

nlsat: CDCL-like approach to ExRCF

Thursday, June 20, 13

nlsat: CDCL-like approach to ExRCF

Thursday, June 20, 13

nlsat: CDCL-like approach to ExRCF

Thursday, June 20, 13

nlsat: CDCL-like approach to ExRCF

Thursday, June 20, 13

nlsat: CDCL-like approach to ExRCF

Thursday, June 20, 13

CAD-based optimization + nlsat = ?

CAD-based Optimization uses projection
eagerly and pessimistically

nlsat solves Exists RCF by using projection
lazily and optimistically

...but how can we combine the two?

Thursday, June 20, 13

Key difficulty: Sweeping L to R

We use coordinate function y to represent the
objective function

Then, we need to sweep along all possible values of
y from Left to Right

After CAD projection, we can do this

But, what about with nlsat?

Thursday, June 20, 13

Key difficulty: Sweeping L to R

vs

Thursday, June 20, 13

vs

where to start? how to move to `next’ region?

Key difficulty: Sweeping L to R

Thursday, June 20, 13

Key difficulty: Sweeping L to R

vs

Key idea:
RCFs containing infinitesimals!

-1/epsilon

where to start? how to move to `next’ region?

Thursday, June 20, 13

Key difficulty: Sweeping L to R

vs

where to start? how to move to `next’ region?

Key idea:
RCFs containing infinitesimals!

r-1/epsilon

Thursday, June 20, 13

Key difficulty: Sweeping L to R

vs

Key idea:
RCFs containing infinitesimals!

r-1/epsilon r+epsilon

where to start? how to move to `next’ region?

Thursday, June 20, 13

Thursday, June 20, 13

Thursday, June 20, 13

We say a procedure P, for the satisfiability modulo assignment problem, has

the finite decomposition property if every no-good sampling sequence is finite.

Thursday, June 20, 13

Min_0: Procedure for Univariate Optimization Problem
Check: Procedure for SAT Modulo Assignment Problem,

with support for RCFs containing infinitesimals,
and satisfying the finite decomposition property.

Thursday, June 20, 13

Input: A quantifier-free RCF formula F (~x, y).

Output (with ‘is (un)sat’ meaning ‘is (un)satisfiable over R’):
8
>>>>>><

>>>>>>:

unsat, if F (~x, y) is unsat,

unbounded, if for all v exists w < v s.t. F (~x,w) is sat,

(inf, a), if for all v  a, F (~x, a) is unsat, and

for all ✏ > 0 exists v 2 (a, a+ ✏) s.t. F (~x, v) is sat,

(min, a), if F (~x, a) is sat, and for all v < a, F (~x, v) is unsat.

The RCF Optimization Problem

Thursday, June 20, 13

Conclusion
A CDCL-like approach to exact nonlinear global
optimization over the real numbers (and all RCFs)

Three main conceptual ingredients:

nlsat / existential CAD `on demand’
 lazy CDCL-like approach to Exists RCF, in Z3 (Jovanović - de Moura, 2012)

computable nonstandard RCFs
 computable RCFs containing infinitesimals (de Moura - Passmore, 2013)

Our main CADE talk on Wednesday! Thank you!

CAD-based approach to optimization
 eager method for nonlinear optimization, in Mathematica v9.x

Thursday, June 20, 13

