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Big Picture

@ A CDCL-like approach to exact nonlinear global

optimization over the real numbers

@ 'l'hree main conceptual ingredients:

@ A practical application ot nonstandard models!
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Eixact Global Optimization

Many classes of optimization problems,
based on restrictions of t’s and b’s
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What 1s a Real Closed Field?




What 1s a Real Closed Field?

Examples:
® |'he reals: <R7 T Ov 1>

@ The algebraic reals: (R4, +, *, <,0, 1)

@ 'The (a!) Hyperreals: (H(R,+,*, <0, 1>> /U

I\

o Real closures: K s.t. K= Q(t1,...,tn, €1, €m)
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wew coordinate function y
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Optimization using RGEF QF - 11

wew coordinate function y

3 Step 2: QE (project onto y)
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AP 2: QE (project onto y)

Use RCF QE to eliminate 3% from dZF(Z,y), obtaining p(y) s.t

\//\ p’L,] NZ.] ) NZ)]E {<7 §7:7 Z’ >}7 p’L,] E Z[y]'

Step 3: Real Root Isolation
(note sign invariance: IVT!)
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Step 3: Real Root Isolation
(note sign invariance: IVT!)

Use univariate real root isolation (e.g., via Sturm sequences) to isolate all roots
of p; j(y) € Zly]. This partitions R into 2k + 1 connected components.

< N —

Step 4: Search!
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Four Possible Outcomes




Five
rour Possible Outcomes

RUN OUT OF MEMORY AND/OR TIME!!

Computing p(y) explicitly is a bad idea!
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A GAD-based Approach

@ Used by Mathematica
@ Doesn’t require explicit computation of Phi(y)
@ But, 1t 15 eager and pessumaistic

@ Our new approach 1s lazy and optimastic

@ Iirst, let’s understand the CAD-based
approach...
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Cylindrical Algebraic Decomposition

CAD: A partitioning of R"
into finitely many RCF-definable connected
components which “behaves nicely” w.r..

projections onto lower dimensions.
P C Z[ibl,...,ﬁm

P-invariant CAD

a CAD of IR™s.t. forall cells ci allp € P
Ve ¢;(p(r) =0) V i
Vi€ ¢i(p(r) > 0) V
Vi € ¢;(p(r) < 0)

CAD sphere diagrams: C. Brown and QEPCAD-B
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CAD Phase I: Projection

PTOij_l IZ[CUl,---;xi—I—l] — Z[wlw“awi]

A (P {1+ 1 H-mvarnant GAD for R231+ 14

L

b , - . 1) (£
can be constructed trom

a (P 1)-invariant GAD of R”1

PnZPCZ:ZE‘l,...,QZ'n]
P,_1 = Proj@Fy) C 7515 Sy

Py = Proj(Ps) C Z{z1, z2]
Py = Proj(Pz) C Z|z1]




Projection sets

sz{a:%+$%+x§—4}

PQZ{mg—}—CE%—Zl}
P ={z1+ 2,21 — 2}
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Projection sets

sz{a:%+$%+x§—4}

PQZ{mg—}—CE%—Zl}
P ={z1+ 2,21 — 2}

Base Phase: R
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Projection sets

sz{a:%+$%+x§—4}

PQZ{mg—}—CE%—Zl}
P ={z1+ 2,21 — 2}

Litting Phase: R*] -> R”*2

Thursday, June 20, 13



Projection sets

sz{a:%+$%+x§—4}

PQZ{mg—}—CE%—Zl}
P ={z1+ 2,21 — 2}

Litting Phase: R*2 -> R”3
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A GAD-based Approach to Optimization

~~_Step 1: New coordinate function y

Step 2: CAD projection (with y lowest variable)
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K

Step 2: CAD projection (with y lowest variable)

Pn—|—1 — {y_f(f\)?fl(f) _blw")fm(f) _bm} C Z[yaxla'“axn]
P, = Proj(Pn+1) C Zly,z1,...,Tn—1]

Py = Proj(Ps) C Zly, x1]
P, = Proj(P,) C Z[y]

\S’rep 3: CAD Base and Lifting (depth-first) from L to R
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K

Step 2: CAD projection (with y lowest variable)

Pn—|—1 — {y_f(f\)?fl(f) _blw")fm(f) _bm} C Z[yaxla'“axn]
P, = Proj(Pn+1) C Zly,z1,...,Tn—1]

Py = Proj(Ps) C Zly, x1]
P, = Proj(P,) C Z[y]

Thursday, June 20, 13



Recap ot CAD-based Approach

@ Used by Mathematica
@ Doesn’t require explicit computation of Phi(y)

@ But, 1t 15 eager and pessinustic:

FULL CAD Projection (expensive!!!)
@ Our new approach 1s lazy and optimastic

@ We build on nisat, a GDCL-like approach to the
Existential fragment of RCEF
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nlsat: GDGL-like approach to ExRCGF

@ Start building model for formula immediately;
without first going through projection phase

@ When conflict arises, use projection on demand

@ Real-algebraic analogue ot conflict clauses
generalize a non-extendable partial models to
rule out a delineable region containing them

@ Non-chronological backtracking
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How hard is GR?

PSPACE membership
PSPACE Canny — 1988,

Grigor'ev — 1988
4R
NP-hardness

X is “Boolean”— x (x-1)=0
xoryorz — x+y+2>0
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nlsat: GDGL-like approach to ExRCGF

Two kinds of decision
1. case-analysis (Boolean)
2. model construction (CAD lifting)

Parametric calculus: explain(F, M)

Finite basis explanation function

Explanations may contain new literals

They evaluate to false in the current state
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nlsat: GDGL-like approach to ExRCGF

Key ideas: Use partial solution to guide the search

. . | 3 4 252 4 3y2 —
Feasible Region X bar sy s o sl

Starting search
Partial solution:

o { 2

—4xy —4x+y>1 "

What is the core?

2 +yt<i - Can we extend it to y?
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nlsat: GDGL-like approach to ExRCGF

Key ideas: Use partial solution to guide the search

. . 3 2 2
Feasible Region x* +2x“+3y“=5<0

v'_

Starting search
Partial solution:

x 0S5

—4xy —4x+y>1 "
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nlsat: GDGL-like approach to ExRCGF

Key ideas: Solution based Project/Saturate

P.(A,x)

U coeff(f.x) U U psc(g.qg..x) U U
JEA GRS 3

' <)
g ER( S . x)
“ , » h'l ,l J

Standard project operators are pessimistic.
Coefficients can vanish!
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nlsat: GDGL-like approach to ExRCGF

Key ideas: Lemma Learning

Prevent a Conflict from happening again.

Current assignment
x = 0.75
y = 0.75

Conflict Current assignments does
x?+yt+2% < not satisfy new constraint.

Lemma
-1<x<1 Ay>rooty(1— y4—
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CAD-based optimization + nlsat = ?

...but how can we combine the two?
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Key difficulty: Sweeping L. to R

® We use coordinate function y to represent the
objective function

@ Then, we need to sweep along all possible values of
y from Left to Right

@ After GAD projection, we can do this

@ But, what about with nlsat?
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Key difficulty: Sweeping L. to R

< = >

I

r+epsilon

where to start? how to move to next’ region?




Satisfiability Modulo Assignment

We define the satisfiability modulo assignment problem as: given a formula
F|z,y| and an assignment {y — ¥}, produce one of the following outputs:

sat: if there is a w s.t. {Z — W, §j — ¥} satisfies F|z, §l;

unsat(S): if thereis no w s.t. {Z — W, > v} satisfies F|Z, ], S is a formula
that does not contain #, S is implied by F|Z, 4|, and the assignment
{y — ¥} does not satisfy S.
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Satisfiability Modulo Assignment

We define the satisfiability modulo assignment problem as: given a formula
F|z,y| and an assignment {y — ¥}, produce one of the following outputs:

sat: if there is a w s.t. {Z — W, §j — ¥} satisfies F|Z, §|;

unsat(S): if there is no w s.t. {Z — W,y > ¥} satisfies F[Z, 7], S is a formula
that does not contain #, S is implied by F|Z, 4|, and the assignment
{3y —» ¥} does not satisfy S.

|
If we view the assignment {y — v} as a formula § = v, then the formula

S is essentially an interpolant for the formulas F[z,y] and § = v. We can
also view S as a generalization of why {y — v} cannot be extended to a full
assignment that satisfies F [z, y|.
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Satisfiability Modulo Assignment

Given a procedure P for the satisfiability modulo assignment problem,
we say the (not necessarily finite) sequence [0y, #g, ...} is a no-good sampling
for F|z,y| if

P(F|z,9l,{5 > 71}) = unsat(S5:), G1=5;
iy satisfies G;, P(F[Z,9],{y — t2}) = unsat(S;), G2 =G, A S;

iy satisfies G;—1, P(F[z,y),{y > ©5}) = unsat(S;), G, =Gi;—1 AS;

Note that each formula G; does not contain z, and can be viewed as a
good region that does not contain any of the bad assignments {vy,...,9;}.

We say a procedure P, for the satisfiability modulo assignment problem, has
the finite decomposition property it every no-good sampling sequence is finite.
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procedure Min( F(Z, y))
G i= true
¢ := Mkinfinitesimal() (+ create an infinitesizal value #)
loop
ri:= Ming(G)
case r of
unsat = return unsat
unbounded = v : :

(inf,a) =>v:i=a+e¢
(min,a) =>v:.i=a

end
case Check( F(Z,y).{y+* v}) of
Sat = return r
(unsat,S) =G :=GAS
end
end

Min_0: Procedure for Univariate Optimization Problem
Check: Procedure for SAT Modulo Assignment Problem,
with support for RCF's containing infinitesimals,
and satistying the finite decomposition property.
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T'he RCEF Optimization Problem

Input: A quantifier-free RCF formula F(Z,y).

Output (with ‘is (un)sat’ meaning ‘is (un)satisfiable over R’):

unsat, if F'(Z,y) is unsat,

unbounded, if for all v exists w < v s.t. F(Z,w) is sat,

(inf, a), if for all v < a, F(Z,a) is unsat, and
for all € > 0 exists v € (a,a + €) s.t. F'(Z,v) is sat,

(min, a), if F'(Z,a) is sat, and for all v < a, F(Z,v) is unsat.
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Conclusion
@ A CDCL-like approach to exact nonlinear global

optimization over the real numbers (and all RCEs)

@ 'l'hree main conceptual ingredients:

‘411” main CADE talk on Wednesday! ~ Thank you!
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