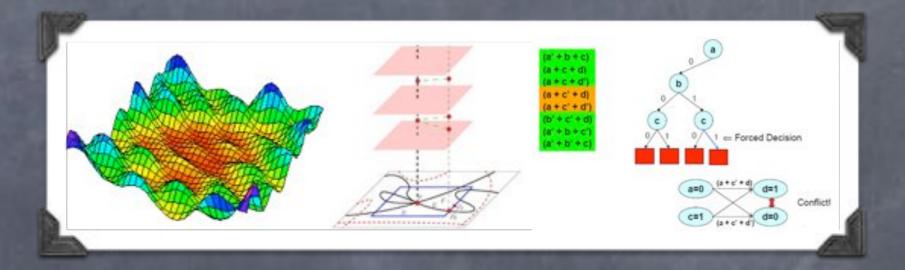
(Exact Global Nonlinear) Optimization on Demand



Leonardo de Moura & Grant Olney PassmoreMSR, Redmond, USAEdinburgh and Cambridge, UK

ADDCT-2013 ~ CADE-24 (presentation only)

A CDCL-like approach to exact nonlinear global optimization over the real numbers

A CDCL-like approach to exact nonlinear global optimization over the real numbers

Three main conceptual ingredients:

A CDCL-like approach to exact nonlinear global optimization over the real numbers

Three main conceptual ingredients:

CAD-based approach to optimization eager method for nonlinear optimization, in Mathematica v9.x

A CDCL-like approach to exact nonlinear global optimization over the real numbers

Three main conceptual ingredients:

CAD-based approach to optimization eager method for nonlinear optimization, in Mathematica v9.x

nlsat / existential CAD `on demand'

lazy CDCL-like approach to Exists RCF, in Z3 (Jovanović - de Moura, 2012)

A CDCL-like approach to exact nonlinear global optimization over the real numbers

Three main conceptual ingredients:

CAD-based approach to optimization

eager method for nonlinear optimization, in Mathematica v9.x

nlsat / existential CAD `on demand'

lazy CDCL-like approach to Exists RCF, in Z3 (Jovanović - de Moura, 2012)

computable nonstandard RCFs

computable RCFs containing infinitesimals (de Moura - Passmore, 2013)

A CDCL-like approach to exact nonlinear global optimization over the real numbers

Three main conceptual ingredients:

CAD-based approach to optimization

eager method for nonlinear optimization, in Mathematica v9.x

nlsat / existential CAD `on demand'

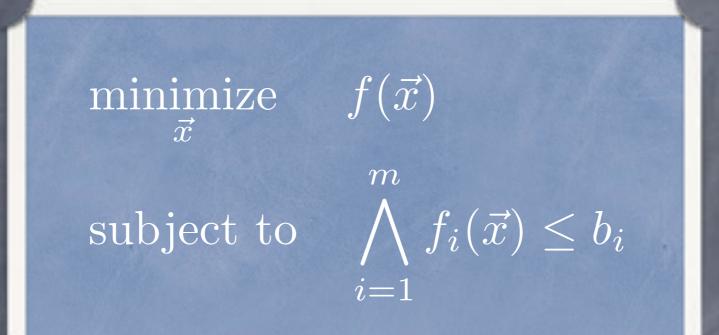
lazy CDCL-like approach to Exists RCF, in Z3 (Jovanović - de Moura, 2012)

computable nonstandard RCFs

computable RCFs containing infinitesimals (de Moura - Passmore, 2013)

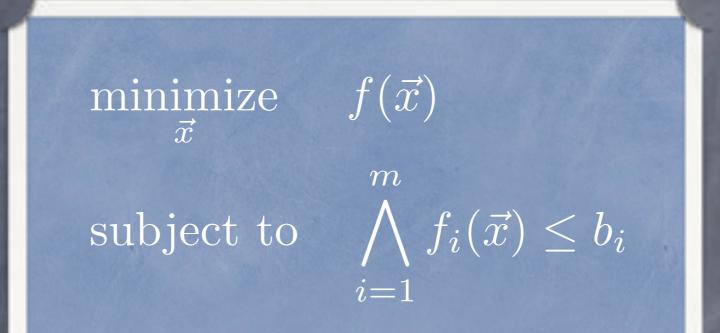
A practical application of nonstandard models!

Exact Global Optimization



Many classes of optimization problems, based on restrictions of f's and b's

Exact Global Optimization



Many classes of optimization problems, based on restrictions of f's and b's

nonlinear, computable

What is a Real Closed Field?

$\operatorname{RCF} = Th(\langle \mathbb{R}, +, *, <, 0, 1 \rangle)$

What is a Real Closed Field?

$RCF = Th(\langle \mathbb{R}, +, *, <, 0, 1 \rangle)$

Examples: • The reals: $\langle \mathbb{R}, +, *, <, 0, 1 \rangle$

The algebraic reals: \$\langle \mathbb{R}_{alg}, +, *, <, 0, 1\$
The (a!) Hyperreals: \$\left(\prod_{\mathbb{R}}, +, *, <, 0, 1\$\rangle \right) / \$\mathcal{U}\$

• Real closures: $\widetilde{\mathbb{K}}$ s.t. $\mathbb{K} = \mathbb{Q}(t_1, \ldots, t_n, \epsilon_1, \ldots, \epsilon_m)$

Optimization using RCF QE - I

RCF admits quantifier elimination (QE)

Optimization using RCF QE - I

RCF admits quantifier elimination (QE)

In theory, one can exploit RCF QE to solve nonlinear optimization problems over the reals: *Let's see how! In the next slide...*

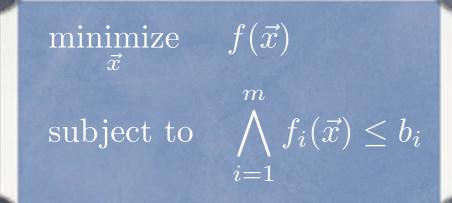
Optimization using RCF QE - I

RCF admits quantifier elimination (QE)

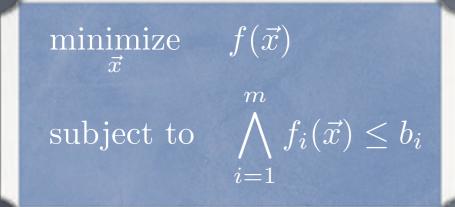
In theory, one can exploit RCF QE to solve nonlinear optimization problems over the reals: *Let's see how! In the next slide...*

In practice, this is not a viable solution: RCF QE is infeasible: O(2^2^(Omega(n)))

Optimization using RCF QE - II



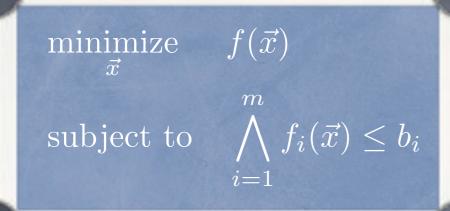
Optimization using RCF QE - II



Step 1: New coordinate function y

$$F(\vec{x}, y) \triangleq \left(y = f(\vec{x}) \land \bigwedge_{i=1}^{m} f_i(\vec{x}) \le b_i \right)$$

Optimization using RCF QE - II



Step 1: New coordinate function y

$$F(\vec{x}, y) \triangleq \left(y = f(\vec{x}) \land \bigwedge_{i=1}^{} f_i(\vec{x}) \le b_i \right)$$

m

Step 2: QE (project onto y)

Use RCF QE to eliminate $\exists \vec{x} \text{ from } \exists \vec{x} F(\vec{x}, y)$, obtaining $\varphi(y)$ s.t. $\varphi(y) \triangleq \bigvee_{i} \bigwedge_{j} (p_{i,j}(y) \bowtie_{i,j} 0), \qquad \bowtie_{i,j} \in \{<, \leq, =, \geq, >\}, \quad p_{i,j} \in \mathbb{Z}[y].$

Step 2: QE (project onto y)

Use RCF QE to eliminate $\exists \vec{x} \text{ from } \exists \vec{x} F(\vec{x}, y)$, obtaining $\varphi(y)$ s.t.

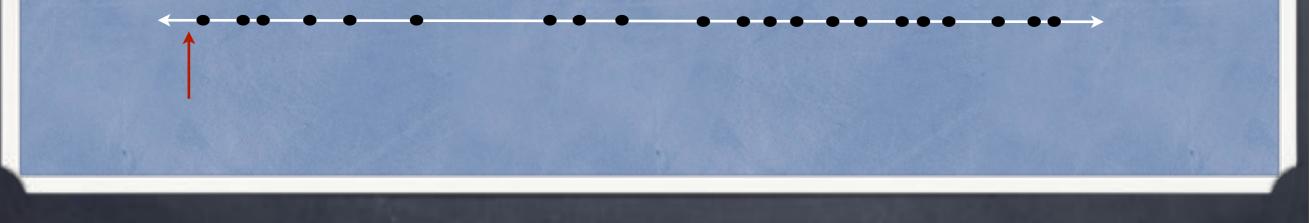
 $\varphi(y) \triangleq \bigvee_{i} \bigwedge_{j} (p_{i,j}(y) \bowtie_{i,j} 0), \qquad \bowtie_{i,j} \in \{<, \le, =, \ge, >\}, \quad p_{i,j} \in \mathbb{Z}[y].$

Step 3: Real Root Isolation (note sign invariance: IVT!)

Use univariate real root isolation (e.g., via Sturm sequences) to isolate all roots of $p_{i,j}(y) \in \mathbb{Z}[y]$. This partitions \mathbb{R} into 2k + 1 connected components.

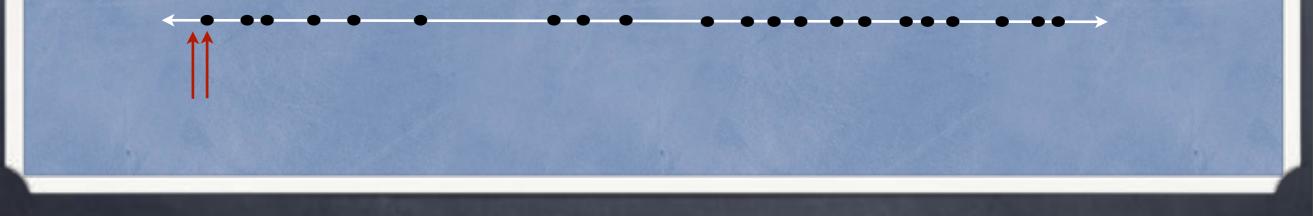
Use univariate real root isolation (e.g., via Sturm sequences) to isolate all roots of $p_{i,j}(y) \in \mathbb{Z}[y]$. This partitions \mathbb{R} into 2k + 1 connected components.

Sweep from L to R, looking for first connected component satisfying $\varphi(y)$



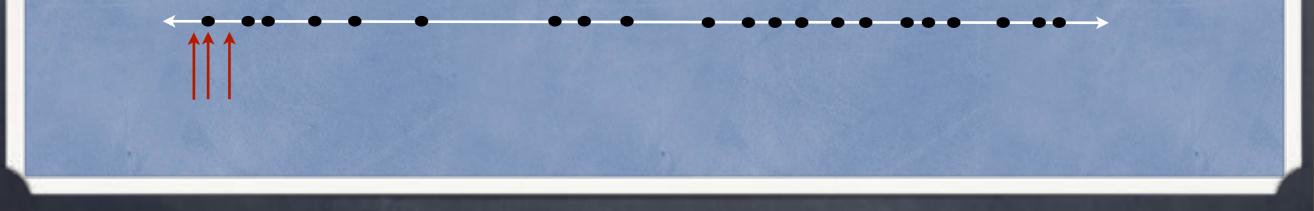
Use univariate real root isolation (e.g., via Sturm sequences) to isolate all roots of $p_{i,j}(y) \in \mathbb{Z}[y]$. This partitions \mathbb{R} into 2k + 1 connected components.

Sweep from L to R, looking for first connected component satisfying $\varphi(y)$



Use univariate real root isolation (e.g., via Sturm sequences) to isolate all roots of $p_{i,j}(y) \in \mathbb{Z}[y]$. This partitions \mathbb{R} into 2k + 1 connected components.

Sweep from L to R, looking for first connected component satisfying $\varphi(y)$



Use univariate real root isolation (e.g., via Sturm sequences) to isolate all roots of $p_{i,j}(y) \in \mathbb{Z}[y]$. This partitions \mathbb{R} into 2k + 1 connected components.

Sweep from L to R, looking for first connected component satisfying $\varphi(y)$

exact minimum found!

Four Possible Outcomes

No satisfying region: Infeasible
(-inf, r) : Unbounded
[r] : Exact minimum
(r, _) : No minimum, but exact infimum

Five Four Possible Outcomes

- No satisfying region: Infeasible
- \bigcirc (-inf, r) : Unbounded
- [r] : Exact minimum
- ∅ (r, _): No minimum, but exact infimum

Computing $\varphi(y)$ explicitly is a bad idea!

A CAD-based Approach

- Used by Mathematica
- Doesn't require explicit computation of Phi(y)
- But, it is *eager* and *pessimistic*
- Our new approach is *lazy* and *optimistic*
- First, let's understand the CAD-based approach...

Cylindrical Algebraic Decomposition

CAD: A partitioning of \mathbb{R}^n into finitely many RCF-definable connected components which "behaves nicely" w.r.t. projections onto lower dimensions.

$$P \subset \mathbb{Z}[x_1, \dots, x_n]$$

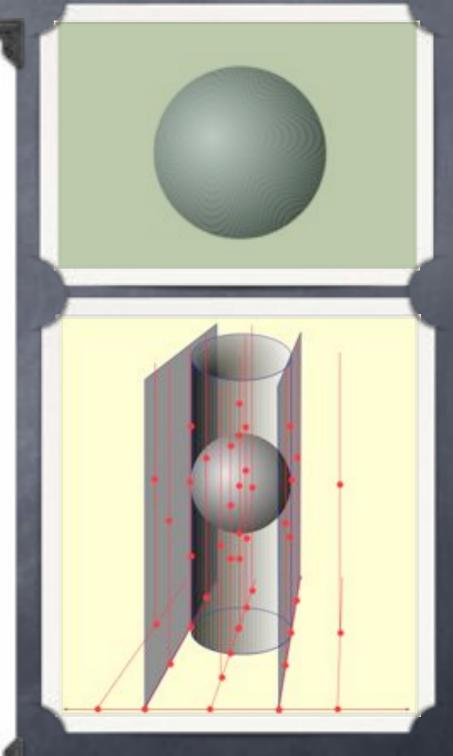
$$P \text{-invariant } \textbf{CAD}$$

$$\textbf{a CAD of } \mathbb{R}^n \text{ s.t. for all cells } c_i, \text{ all } p \in P$$

$$\forall \vec{r} \in c_i(p(\vec{r}) = 0) \quad \lor$$

$$\forall \vec{r} \in c_i(p(\vec{r}) > 0) \quad \lor$$

$$\forall \vec{r} \in c_i(p(\vec{r}) < 0) \quad .$$



CAD sphere diagrams: C. Brown and QEPCAD-B

CAD Phase I: Projection

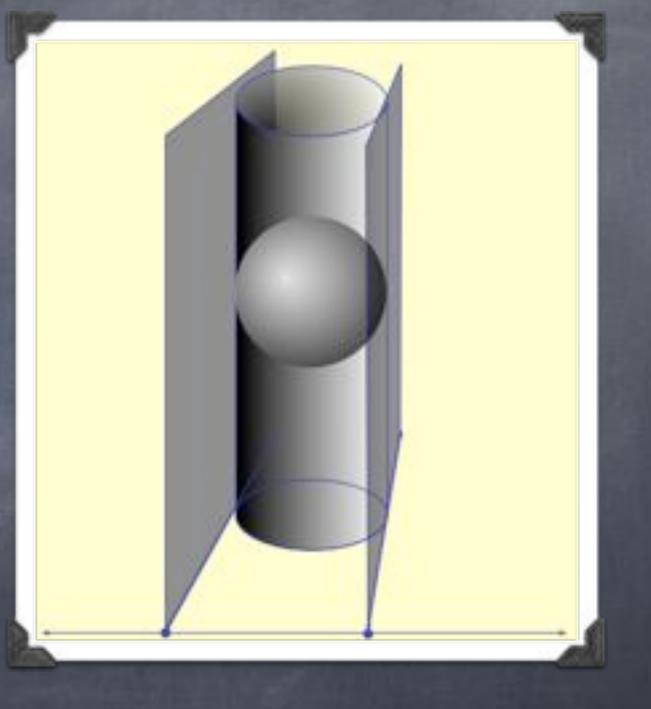
 $Proj_{i+1}: \mathbb{Z}[x_1, \ldots, x_{i+1}] \to \mathbb{Z}[x_1, \ldots, x_i]$

Inductive Property: A (P_{i+1})-invariant CAD for R^{i+1} can be constructed from a (P_i)-invariant CAD of R^i.

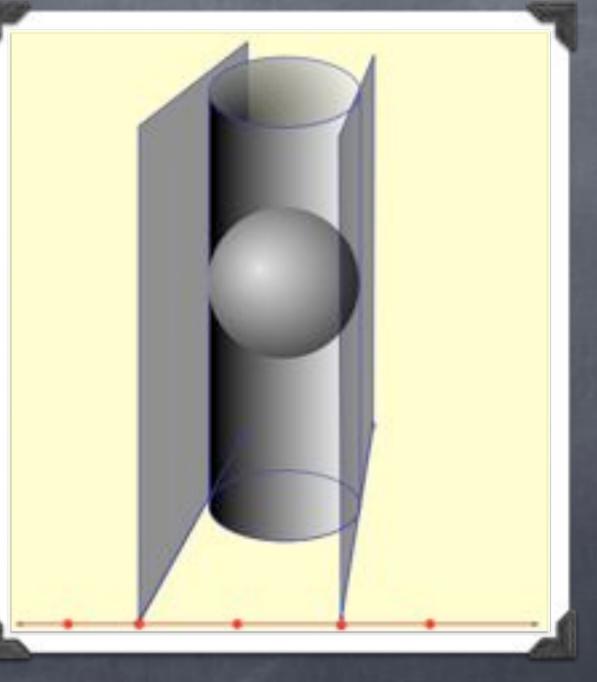
 $P_n = P \subset \mathbb{Z}[x_1, \dots, x_n]$ $P_{n-1} = Proj(P_n) \subset \mathbb{Z}[x_1, \dots, x_{n-1}]$

 $P_2 = Proj(P_3) \subset \mathbb{Z}[x_1, x_2]$ $P_1 = Proj(P_2) \subset \mathbb{Z}[x_1]$

 $\begin{array}{l} P_3 = \{x_1^2 + x_2^2 + x_3^2 - 4\} \\ P_2 = \{x_2^2 + x_1^2 - 4\} \\ P_1 = \{x_1 + 2, x_1 - 2\} \end{array}$

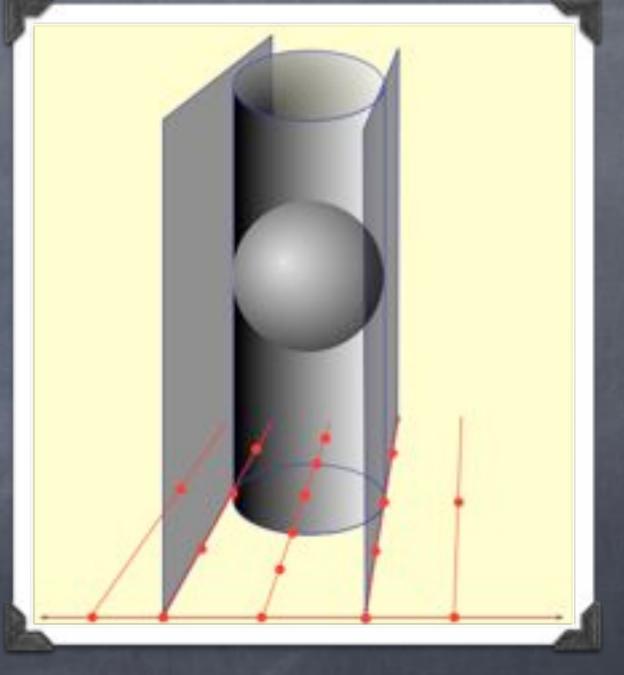


 $P_3 = \{x_1^2 + x_2^2 + x_3^2 - 4\}$ $P_2 = \{x_2^2 + x_1^2 - 4\}$ $P_1 = \{x_1 + 2, x_1 - 2\}$



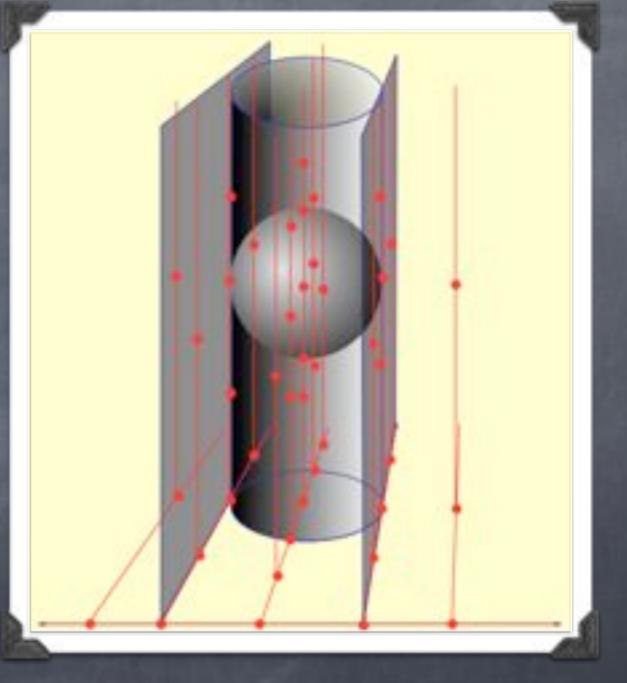
Base Phase: R^1

 $P_3 = \{x_1^2 + x_2^2 + x_3^2 - 4\}$ $P_2 = \{x_2^2 + x_1^2 - 4\}$ $P_1 = \{x_1 + 2, x_1 - 2\}$



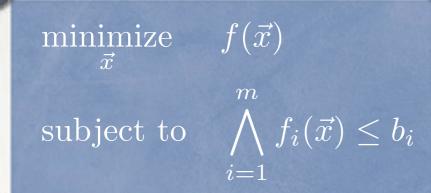
Lifting Phase: R^1 -> R^2

 $\begin{array}{l} P_3 = \{x_1^2 + x_2^2 + x_3^2 - 4\} \\ P_2 = \{x_2^2 + x_1^2 - 4\} \end{array}$ $P_1 = \{x_1 + 2, x_1 - 2\}$



Lifting Phase: R^2 -> R^3

A CAD-based Approach to Optimization



Step 1: New coordinate function y

 $F(\vec{x}, y) \triangleq \left(y = f(\vec{x}) \land \bigwedge_{i=1}^{m} f_i(\vec{x}) \le b_i \right)$

Step 2: CAD projection (with y lowest variable)

 $P_{n+1} = \{y - f(\vec{x}), f_1(\vec{x}) - b_1, \dots, f_m(\vec{x}) - b_m\} \subset \mathbb{Z}[y, x_1, \dots, x_n]$ $P_n = Proj(P_{n+1}) \subset \mathbb{Z}[y, x_1, \dots, x_{n-1}]$

 $P_2 = Proj(P_3) \subset \mathbb{Z}[y, x_1]$ $P_1 = Proj(P_2) \subset \mathbb{Z}[y]$

$$P_{n+1} = \{y - f(\vec{x}), f_1(\vec{x}) - b_1, \dots, f_m(\vec{x}) - b_m\} \subset \mathbb{Z}[y, x_1, \dots, x_n]$$

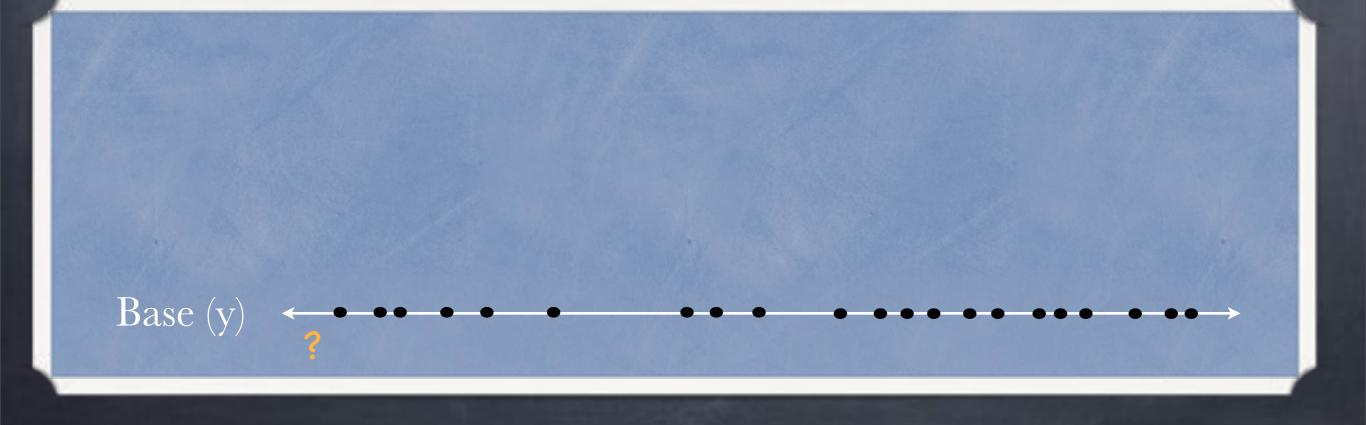
$$P_n = Proj(P_{n+1}) \subset \mathbb{Z}[y, x_1, \dots, x_{n-1}]$$

$$\vdots$$

$$P_2 = Proj(P_3) \subset \mathbb{Z}[y, x_1]$$

$$P_1 = Proj(P_2) \subset \mathbb{Z}[y]$$

Step 3: CAD Base and Lifting (depth-first) from L to R



Thursday, June 20, 13

$$P_{n+1} = \{y - f(\vec{x}), f_1(\vec{x}) - b_1, \dots, f_m(\vec{x}) - b_m\} \subset \mathbb{Z}[y, x_1, \dots, x_n]$$

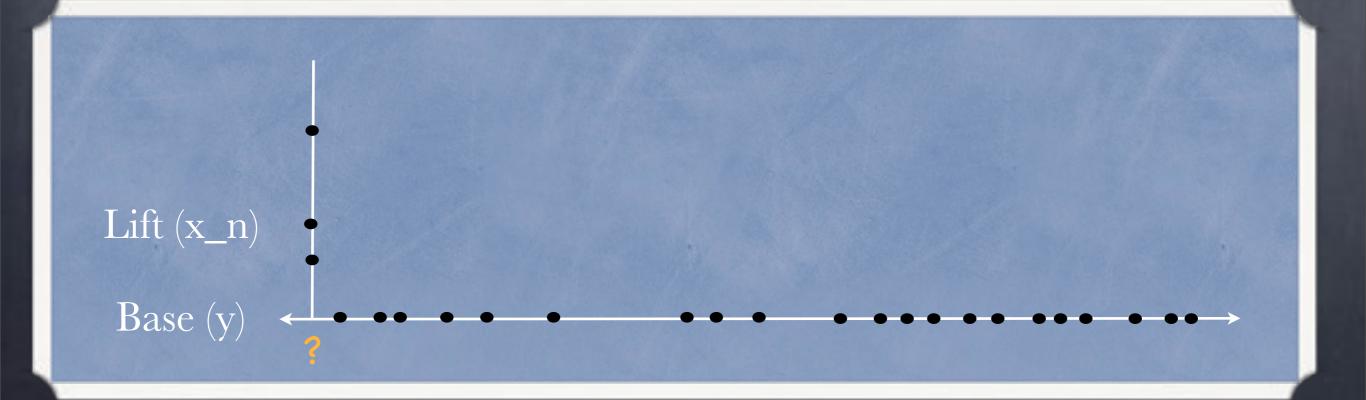
$$P_n = Proj(P_{n+1}) \subset \mathbb{Z}[y, x_1, \dots, x_{n-1}]$$

$$\vdots$$

$$P_2 = Proj(P_3) \subset \mathbb{Z}[y, x_1]$$

$$P_1 = Proj(P_2) \subset \mathbb{Z}[y]$$

Step 3: CAD Base and Lifting (depth-first) from L to R



$$P_{n+1} = \{y - f(\vec{x}), f_1(\vec{x}) - b_1, \dots, f_m(\vec{x}) - b_m\} \subset \mathbb{Z}[y, x_1, \dots, x_n]$$

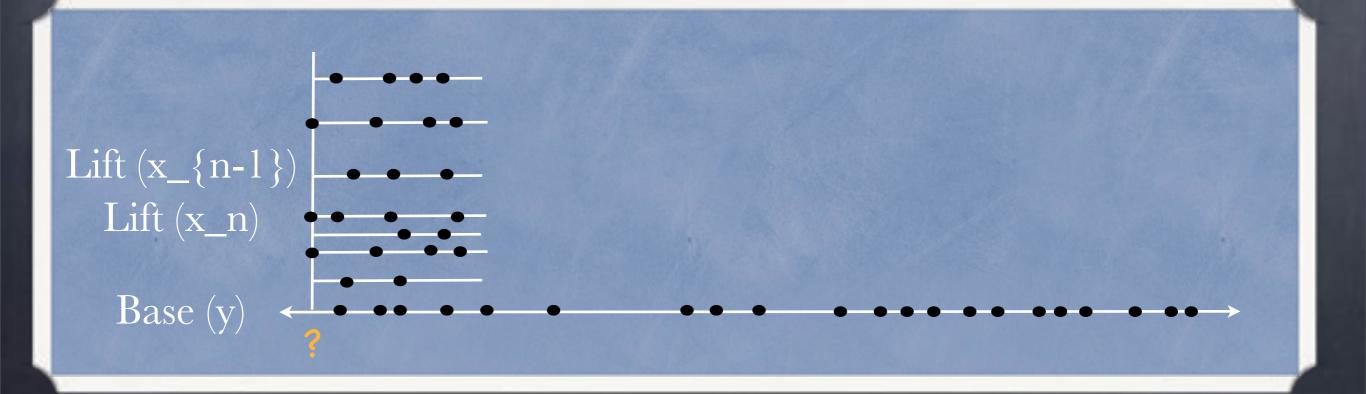
$$P_n = Proj(P_{n+1}) \subset \mathbb{Z}[y, x_1, \dots, x_{n-1}]$$

$$\vdots$$

$$P_2 = Proj(P_3) \subset \mathbb{Z}[y, x_1]$$

$$P_1 = Proj(P_2) \subset \mathbb{Z}[y]$$

Step 3: CAD Base and Lifting (depth-first) from L to R



$$P_{n+1} = \{y - f(\vec{x}), f_1(\vec{x}) - b_1, \dots, f_m(\vec{x}) - b_m\} \subset \mathbb{Z}[y, x_1, \dots, x_n]$$

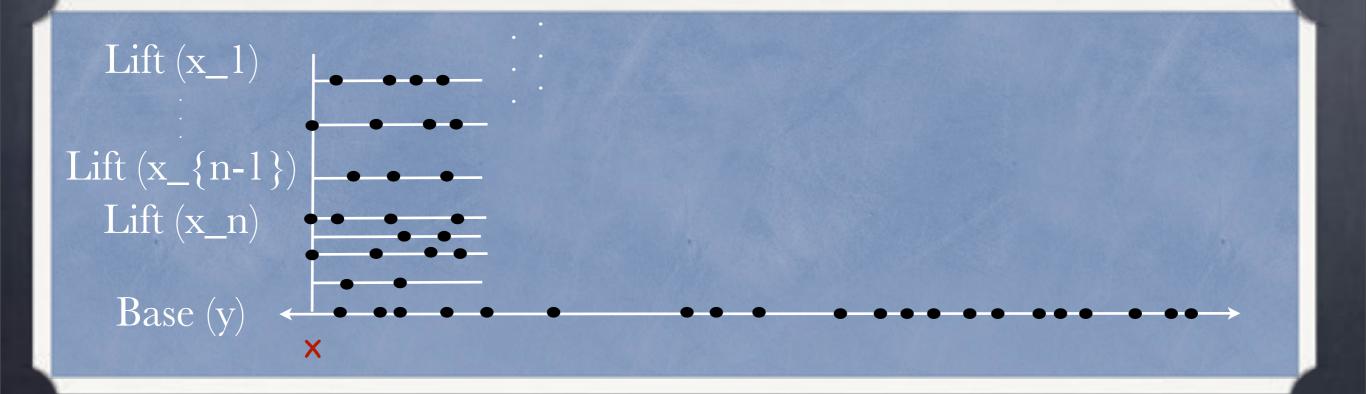
$$P_n = Proj(P_{n+1}) \subset \mathbb{Z}[y, x_1, \dots, x_{n-1}]$$

$$\vdots$$

$$P_2 = Proj(P_3) \subset \mathbb{Z}[y, x_1]$$

$$P_1 = Proj(P_2) \subset \mathbb{Z}[y]$$

Step 3: CAD Base and Lifting (depth-first) from L to R



Step 2: CAD projection (with y lowest variable)

$$P_{n+1} = \{y - f(\vec{x}), f_1(\vec{x}) - b_1, \dots, f_m(\vec{x}) - b_m\} \subset \mathbb{Z}[y, x_1, \dots, x_n]$$

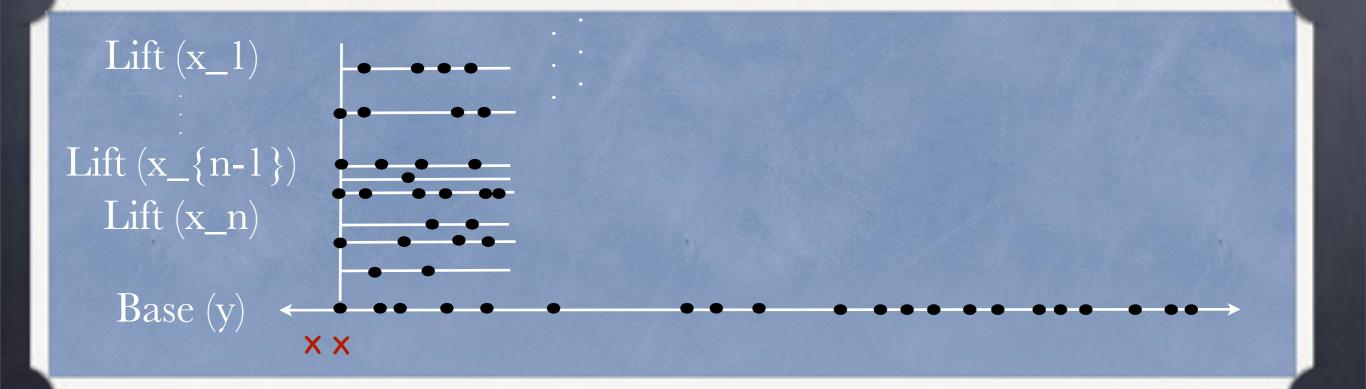
$$P_n = Proj(P_{n+1}) \subset \mathbb{Z}[y, x_1, \dots, x_{n-1}]$$

$$\vdots$$

$$P_2 = Proj(P_3) \subset \mathbb{Z}[y, x_1]$$

$$P_1 = Proj(P_2) \subset \mathbb{Z}[y]$$

Step 3: CAD Base and Lifting (depth-first) from L to R



Step 2: CAD projection (with y lowest variable)

$$P_{n+1} = \{y - f(\vec{x}), f_1(\vec{x}) - b_1, \dots, f_m(\vec{x}) - b_m\} \subset \mathbb{Z}[y, x_1, \dots, x_n]$$

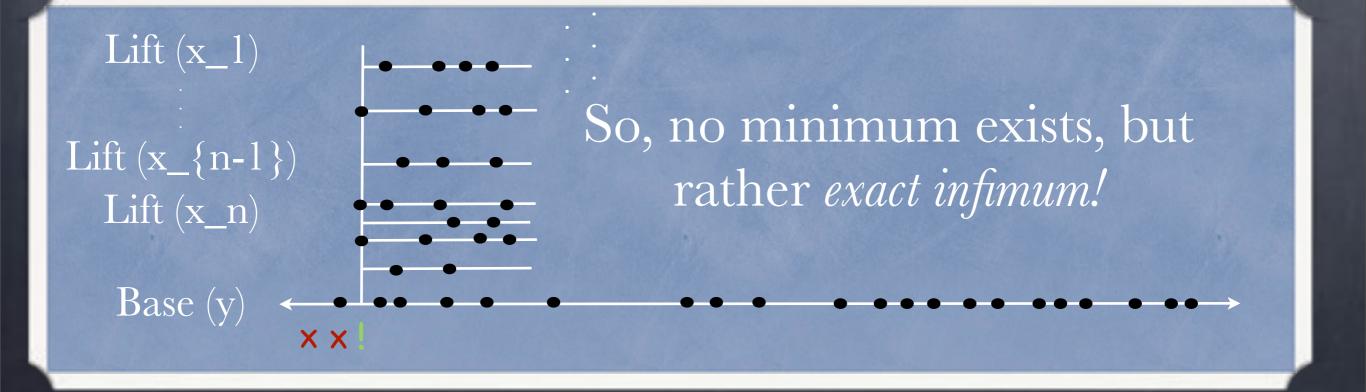
$$P_n = Proj(P_{n+1}) \subset \mathbb{Z}[y, x_1, \dots, x_{n-1}]$$

$$\vdots$$

$$P_2 = Proj(P_3) \subset \mathbb{Z}[y, x_1]$$

$$P_1 = Proj(P_2) \subset \mathbb{Z}[y]$$

Step 3: CAD Base and Lifting (depth-first) from L to R

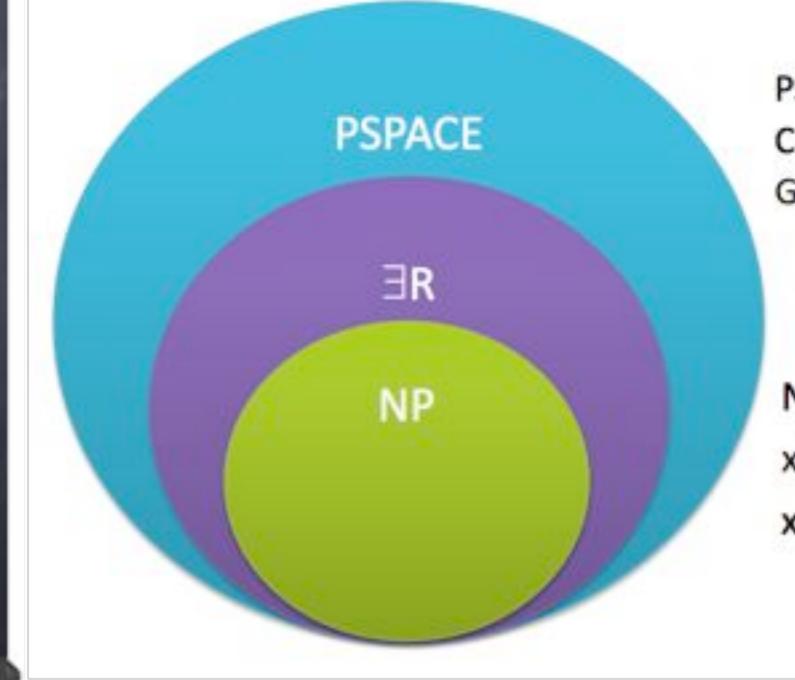


Recap of CAD-based Approach

- Used by Mathematica
- Doesn't require explicit computation of Phi(y)
- But, it is *eager* and *pessimistic:* FULL CAD Projection (expensive!!!)
- Our new approach is *lazy* and *optimistic*
- We build on *nlsat*, a CDCL-like approach to the Existential fragment of RCF

- Start building model for formula immediately, without first going through projection phase
- When conflict arises, use *projection on demand*
- Real-algebraic analogue of *conflict clauses* **generalize** a non-extendable partial models to rule out a *delineable* region containing them
- Non-chronological backtracking

How hard is **BR**?

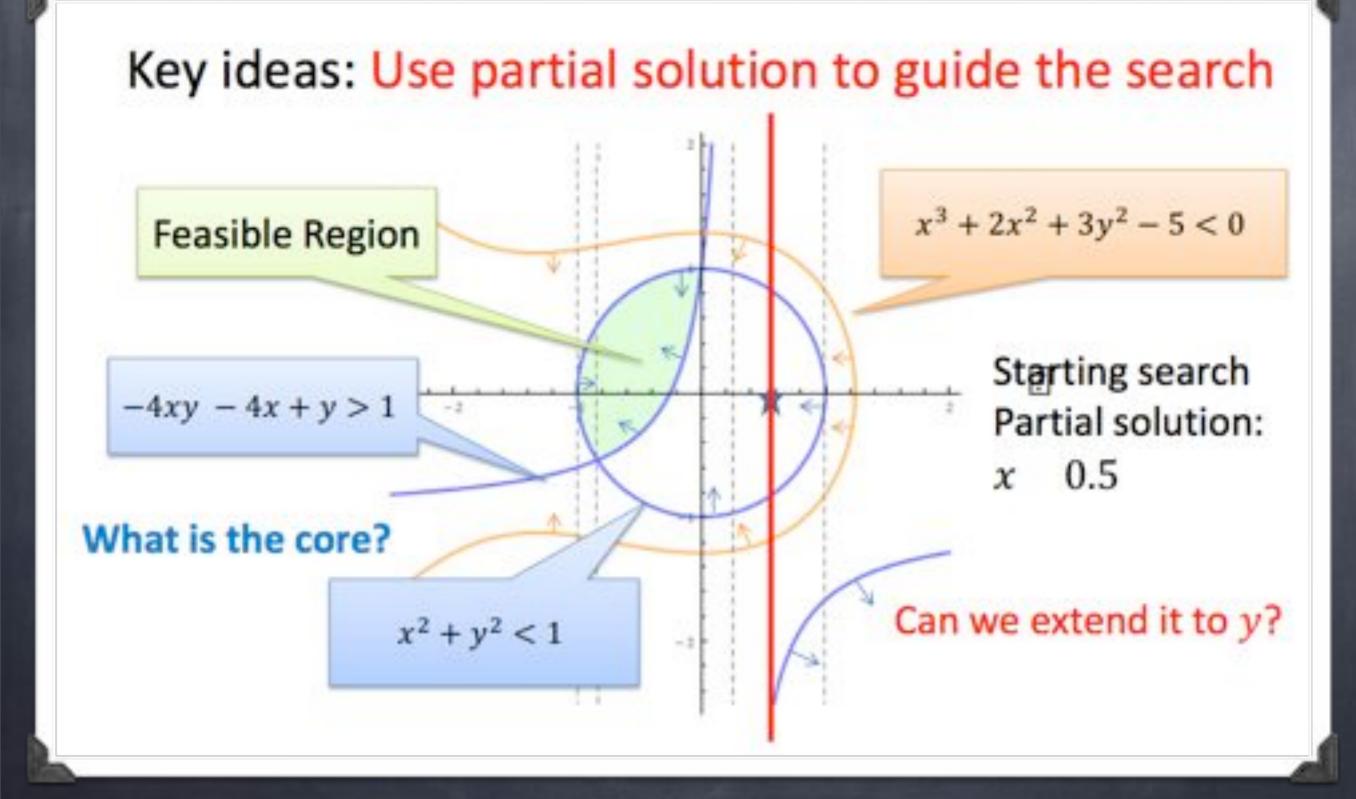


PSPACE membership Canny – 1988, Grigor'ev – 1988

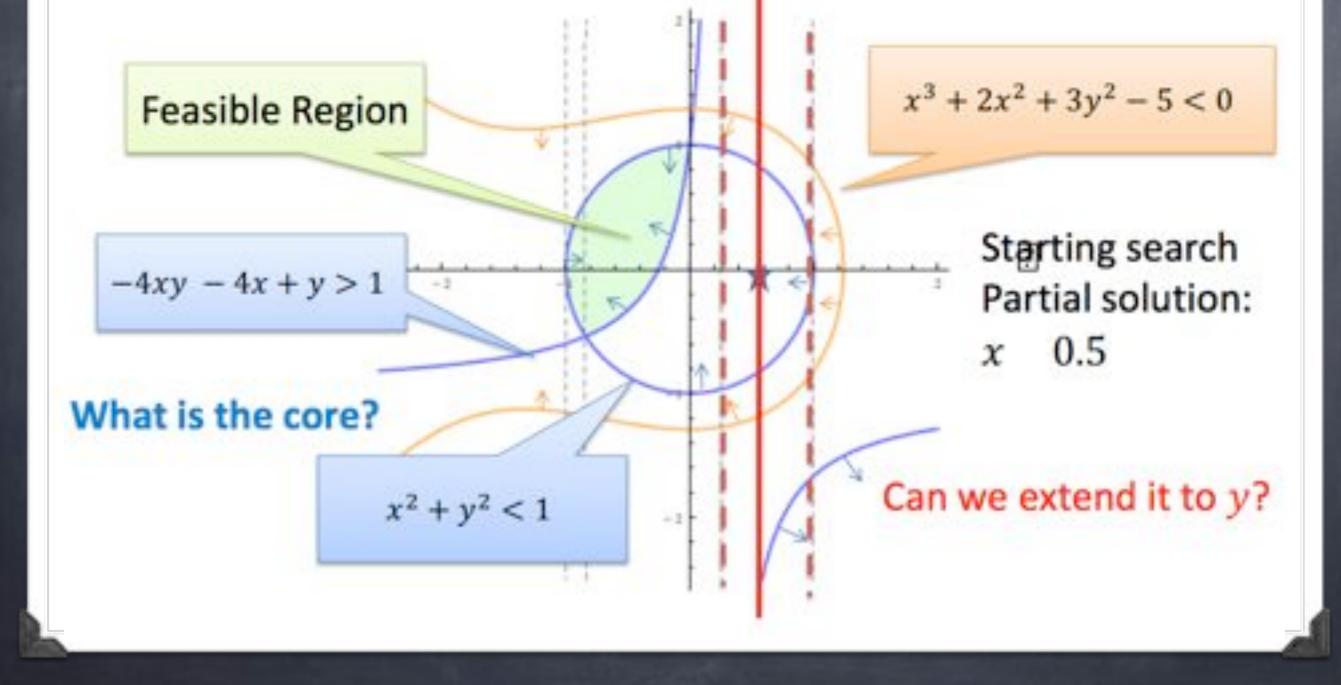
NP-hardness x is "Boolean" \rightarrow x (x-1) = 0 x or y or z \rightarrow x + y + z > 0

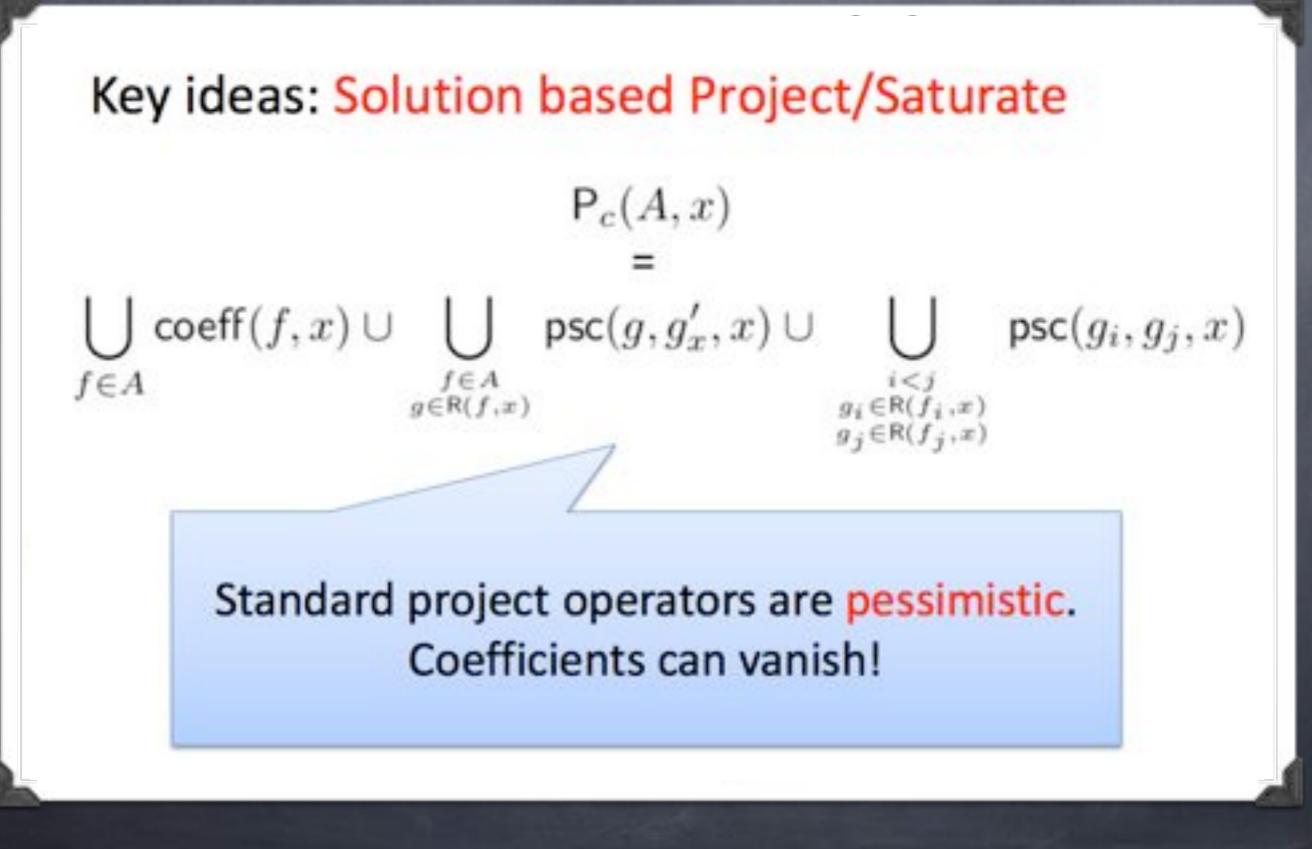
Thursday, June 20, 13

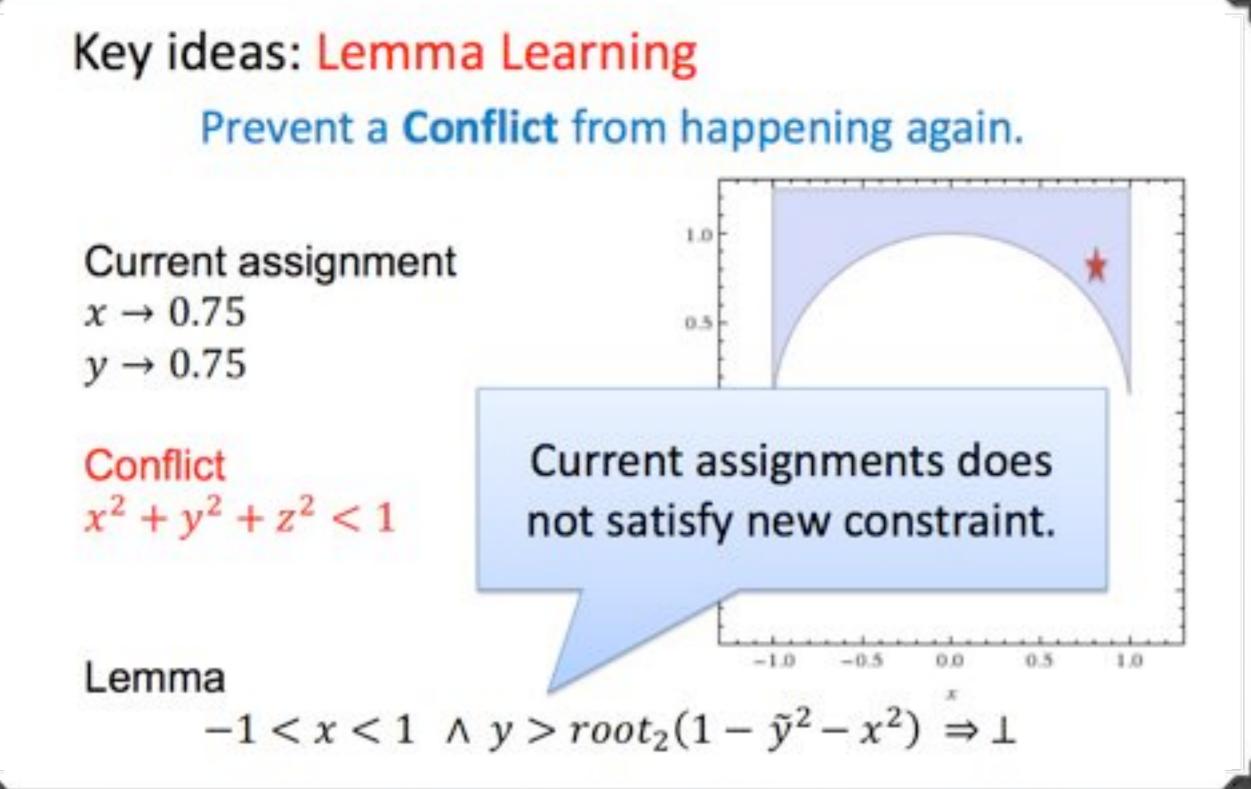
Two kinds of decision case-analysis (Boolean) model construction (CAD lifting) Parametric calculus: explain(F, M)Finite basis explanation function Explanations may contain new literals They evaluate to false in the current state



Key ideas: Use partial solution to guide the search







CAD-based optimization + nlsat = ?

CAD-based Optimization uses projection eagerly and pessimistically

nlsat solves Exists RCF by using projection lazily and optimistically

...but how can we combine the two?

- We use coordinate function y to represent the objective function
- Then, we need to *sweep* along all possible values of y from Left to Right
- After CAD projection, we can do this
- But, what about with nlsat?

VS

where to start? how to move to `next' region?

Thursday, June 20, 13

Key idea: RCFs containing infinitesimals!

-1/epsilon

where to start? how to move to `next' region?

Key idea: RCFs containing infinitesimals!

where to start? how to move to `next' region?

Key idea: RCFs containing infinitesimals!

/epsilon r r+epsilon

where to start? how to move to `next' region?

Thursday, June 20, 13

Satisfiability Modulo Assignment

We define the satisfiability modulo assignment problem as: given a formula $F[\bar{x}, \bar{y}]$ and an assignment $\{\bar{y} \mapsto \bar{v}\}$, produce one of the following outputs:

sat: if there is a \bar{w} s.t. $\{\bar{x} \mapsto \bar{w}, \bar{y} \mapsto \bar{v}\}$ satisfies $F[\bar{x}, \bar{y}]$;

unsat(S): if there is no \bar{w} s.t. $\{\bar{x} \mapsto \bar{w}, \bar{y} \mapsto \bar{v}\}$ satisfies $F[\bar{x}, \bar{y}], S$ is a formula that does not contain \bar{x}, S is implied by $F[\bar{x}, \bar{y}]$, and the assignment $\{\bar{y} \mapsto \bar{v}\}$ does not satisfy S.

Satisfiability Modulo Assignment

We define the satisfiability modulo assignment problem as: given a formula $F[\bar{x}, \bar{y}]$ and an assignment $\{\bar{y} \mapsto \bar{v}\}$, produce one of the following outputs:

sat: if there is a \bar{w} s.t. $\{\bar{x} \mapsto \bar{w}, \bar{y} \mapsto \bar{v}\}$ satisfies $F[\bar{x}, \bar{y}]$;

unsat(S): if there is no \bar{w} s.t. $\{\bar{x} \mapsto \bar{w}, \bar{y} \mapsto \bar{v}\}$ satisfies $F[\bar{x}, \bar{y}], S$ is a formula that does not contain \bar{x}, S is implied by $F[\bar{x}, \bar{y}]$, and the assignment $\{\bar{y} \mapsto \bar{v}\}$ does not satisfy S.

If we view the assignment $\{\bar{y} \mapsto \bar{v}\}$ as a formula $\bar{y} = \bar{v}$, then the formula S is essentially an interpolant for the formulas $F[\bar{x}, \bar{y}]$ and $\bar{y} = \bar{v}$. We can also view S as a generalization of why $\{\bar{y} \mapsto \bar{v}\}$ cannot be extended to a full assignment that satisfies $F[\bar{x}, \bar{y}]$.

Satisfiability Modulo Assignment

Given a procedure P for the satisfiability modulo assignment problem, we say the (not necessarily finite) sequence $[\bar{v}_1, \bar{v}_2, ...]$ is a no-good sampling for $F[\bar{x}, \bar{y}]$ if

$$\begin{array}{ll} & \mathsf{P}(F[\bar{x},\bar{y}],\{\bar{y}\mapsto\bar{v}_1\}) = \mathsf{unsat}(S_1), & G_1 = S_1 \\ & \mathsf{P}(F[\bar{x},\bar{y}],\{\bar{y}\mapsto\bar{v}_2\}) = \mathsf{unsat}(S_2), & G_2 = G_1 \wedge S_2 \\ & \cdots \\ & \bar{v}_i \text{ satisfies } G_{i-1}, & \mathsf{P}(F[\bar{x},\bar{y}],\{\bar{y}\mapsto\bar{v}_i\}) = \mathsf{unsat}(S_i), & G_i = G_{i-1} \wedge S_i \\ & \cdots \end{array}$$

Note that each formula G_i does not contain \bar{x} , and can be viewed as a good region that does not contain any of the bad assignments $\{\bar{v}_1, \ldots, \bar{v}_i\}$.

We say a procedure P, for the satisfiability modulo assignment problem, has the *finite decomposition property* if every *no-good sampling* sequence is finite.

```
procedure Min(F(\vec{x}, y))
  G := true

ϵ := MkInfinitesimal() (* create an infinitesimal value *)

  loop
     r := Min_0(G)
     case r of
        unsat ⇒ return unsat
        unbounded \Rightarrow v := -\frac{1}{2}
        (\inf, a) \Rightarrow v := a + \epsilon
        (\min, a) \Rightarrow v := a
     end
     case Check(F(\vec{x}, y), \{y \mapsto v\}) of
        sat \Rightarrow return r
         (unsat, S) \Rightarrow G := G \land S
     end
  end
```

Min_0: Procedure for Univariate Optimization Problem
Check: Procedure for SAT Modulo Assignment Problem,
with support for RCFs containing *infinitesimals*,
and satisfying the *finite decomposition* property.

The RCF Optimization Problem

Input: A quantifier-free RCF formula $F(\vec{x}, y)$.

Output (with 'is (un)sat' meaning 'is (un)satisfiable over \mathbb{R} '):

unsat,if $F(\vec{x}, y)$ is unsat,unbounded,if for all v exists w < v s.t. $F(\vec{x}, w)$ is sat,(inf, a),if for all $v \leq a, F(\vec{x}, a)$ is unsat, and
for all $\epsilon > 0$ exists $v \in (a, a + \epsilon)$ s.t. $F(\vec{x}, v)$ is sat,(min, a),if $F(\vec{x}, a)$ is sat, and for all $v < a, F(\vec{x}, v)$ is unsat.

Conclusion

 A CDCL-like approach to exact nonlinear global optimization over the real numbers (and all RCFs)

Three main conceptual ingredients:

CAD-based approach to optimization eager method for nonlinear optimization, in Mathematica v9.x

nlsat / existential CAD `on demand'

lazy CDCL-like approach to Exists RCF, in Z3 (Jovanović - de Moura, 2012)

computable nonstandard RCFs

computable RCFs containing infinitesimals (de Moura - Passmore, 2013)

Our main CADE talk on Wednesday!

Thank you!